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Abstract 

 

Intentional controlled islanding (ICI) is proposed as the ultimate protective solution 

to split the power system into a certain number of self-healing islands and prevent 

blackouts following a large disturbance. Implementing ICI posed two main challenges: 

determining when to island, where and how to island. This study focuses on the “Where 

to island” problem, which involves maintaining the stability of formed islands while 

minimising load shedding in the power system.  

This PhD thesis introduces a new framework for identifying coherent generators 

based on the dynamic coupling of generators and the Support Vector Clustering method 

to address the challenge of determining where to island. The framework identifies 

coherent groups of generators that will serve as the cores of the formed islands. 

Additionally, the algorithm can identify the optimal number of islands without prior 

information about the number of clusters. To apply the clustering algorithm to datasets 

with non-Euclidean distance measures, an embedding strategy will also be used. 

A Mixed Integer Linear Programming (MILP) model will be formulated in this study 

to address the ICI problem. The model aims to minimize power flow disruption and 

load shedding while ensuring the transient stability as well as voltage, and frequency 

stability of ICI. Additionally, the proposed algorithm will be extended to power systems 

with large-scale wind power plants (WPPs) using a virtual synchronous generator 

model for wind turbine generators. The study will present a framework for partitioning 

a WPP-integrated power system considering the dynamic coupling between 

synchronous generators and wind turbine generators. Additionally, this study will 

analyse the effects of Virtual Inertia on a power system integrated with WPP. Finally, 

the effectiveness of the proposed algorithm will be tested on the New England 39-bus 

and IEEE 118-bus test systems. 
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Introduction 
 

1.1 Research motivation 

When a power system experiences cascading failures that lead to transmission line 

overloading and generator out-of-step conditions, certain protective relays may respond 

by tripping the lines and generators they are designed to protect. Although these local 

protective measures can safeguard the affected equipment, they can also exacerbate the 

situation by lacking coordination with the rest of the system. Ultimately, this can cause 

the transmission network to collapse and become fragmented into electrical islands [1]. 

On 28 September 2016, a severe storm damaged a transmission line in South Australia, 

causing cascading failures in the National Electricity Market (NEM). As shown in 

Figure 1.1, this led to an uncontrolled separation of the South Australian power grid 

from the rest of the NEM and resulted in a widespread blackout. As a result, all power 

supply to the SA region was lost, and almost 850,000 customers were left without 

electricity [2]. 

 

Figure 1.1 South Australian blackout of 2016 
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In recent years, the situation has worsened due to a significant rise in the demand for 

electricity while investment in expanding transmission and power system restructuring 

has been limited. As a result, large power systems may have to operate at their stability 

limits [3]. Additionally, uncertain sources such as load and wind generation can affect 

system stability, potentially leading to severe contingencies like voltage collapse, 

cascading trips, and undamped oscillations, resulting in large-scale blackouts. Studies 

have shown that Intentional Controlled Islanding (ICI) or partitioning of the power grid 

into stable subsystems before an impending blackout can help prevent such widespread 

failures. ICI is a strategy that involves separating an interconnected power grid into 

multiple stable subsystems intentionally to prevent a critical transition or blackout, 

allowing them to continue operating as separate islands, rather than shutting down the 

entire system. ICI is a more advisable approach than waiting for the network to collapse 

unpredictably. With ICI, the generated power of the system can continue to be delivered 

to most customers in parallel islands, even if the network separates. If an appropriate 

islanding strategy had been implemented during the SA blackout in 2016 by 

disconnecting the Victoria-SA Heywood Interconnector and implementing load 

shedding in the SA island, it might have been possible to prevent the loss of power 

supply in the entire SA region. 

After correcting all the failures, the entire system can be restored through the 

resynchronisation of the islands. This is usually easier than a black-start process 

because most loads have already been saved by ICI. In comparison, a black-start 

process requires restarting the portion of the system in the power outage area, which 

involves a time-consuming procedure. This includes starting black-start generating 

units to crank other non-black-start units, energising transmission lines, and picking up 

critical and noncritical loads, which usually takes several hours [3, 4]. 

As shown in Figure 1.2, the intentional controlled islanding procedure deals with 

three different problems:  

- “WHEN” problem 

- “WHERE” problem 

- “WHAT AFTER” problem 

The “WHEN” problem pertains to the proper timing of separation at the locations of 

separation, determined in the where problem. It is important to ensure that the lines are 

not opened too late, as this could result in missing the optimal timing for separating the 
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generators that are at risk of losing synchronism. Hence, it is crucial at this stage to 

constantly monitor the transient stability of the power system and keep track of the 

stability of interconnected areas to prevent their separation [5]. During extreme events 

like cascading failures, the system condition can change unpredictably at any time. For 

example, new unstable generators or overloaded lines may emerge in an electrical 

island. Therefore, disconnecting electrical islands at the specified locations as soon as 

possible increases the likelihood of mitigating cascading failures and saving the system. 

The “WHERE” problem in ICI pertains to the locations where separation should 

occur, i.e., which transmission lines should be opened to form sustainable islands. The 

cut set of lines that split the network into islands must essentially adhere to constraints 

critical to the survival of the islands, such as maintaining coherency of generators 

contained in each island, generation-load balance and thermal capacity of transmission 

lines and transformers in each island [6]. In previous studies, these constraints were 

usually modelled under a combinatorial optimisation problem, where the objective 

function was to minimise the disruption of power flow or power imbalance within 

islands [7]. However, these optimization problems are often nondeterministic 

polynomial time (NP)-hard, with binary variables and non-convex constraints. 

Therefore, developing optimal controlled islanding models can be computationally 

challenging, particularly for online applications [8]. 

The “WHAT AFTER” problem deals with identifying additional corrective control 

actions that need to be taken in each island after ICI is implemented. These control 

actions may include load shedding or generation rejection in the formed islands [9]. 

It is important to note that the three above mentioned problems – “when”, "where" 

and "what after” – are interrelated. However, they are typically studied separately and 

within different frameworks. Existing studies tend to focus on solving either the 

"where" or "when" question in isolation, and give relatively less attention to the "what  
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“WHERE” Problem

“WHEN” Problem
“Controlled Islanding” 

Problem “WHAT AFTER” Problem

- Defining the objectives of partitioning
- Solving the partitioning problem

- Transient Stability Assessment
- Determining the islanding time

- Securing the stability of each island
- Load shedding / Generation rejection?

  

Figure 1.2 Different aspects of Intentional Controlled Islanding problem 

 

after" question. This research mainly focuses on the “where” and “what after” 

problems. However, an area-based transient stability index [32] was employed to 

identify the critical time of controlled islanding scheme.   

In order to create stable islands, the most crucial constraint in determining where 

separation should occur is the generators' slow coherency constraint. This constraint 

ensures that generators in each island remain in synchronisation and maintain transient 

stability after separation. Slow coherency refers to the coherency resulting from slower 

interarea modes, which are oscillatory modes caused by groups of machines oscillating 

against each other. These modes occur within the slower frequencies of power system 

transients, typically in the range of 0.1-0.8 Hz. [10]. If these interarea modes are 

negatively damped, they can lead to system separation and significant loss of load. 

The concept of slow coherency can be explained based on the strength of connections 

or transmission lines in the power system [11]. This means that, as shown in Figure 1.3,  

generators that are strongly connected to each other via transmission lines can be 

identified as coherent groups of generators (CGGs) in the power system. The strength 

of connections implies how tightly the generators are connected in the grid via 

transmission lines and is usually determined by two factors [12]: the number of 

connections in a coherent group area compared to the number of external  
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Strong connection Weak connection

Coherent Group 1
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G

Coherent Group 2
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G
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Figure 1.3 Formation of coherent groups following a disturbance 

connections connections in a coherent group area compared to the number of external 

connections and the impedance of internal connections compared to external 

connections. This physical explanation is supported by previous research in the field. 

Based on two time-scale transients in the power system [13], when a power system 

is exposed to severe disturbance and the conventional protection schemes are not 

sufficient to save the grid, it is necessary to separate the coherent groups of generators 

at weak connections. This is because even weak connections can become strong enough 

over longer time periods to propagate the transients. Therefore, if an ICI is not 

implemented, the power system will be separated into several islands that will 

ultimately become unstable.  

In order to maintain transient stability in an islanding strategy, it is essential to split 

the power system into partitions that only contain CGGs. Thus, as shown in Figure 1.4, 

the generator coherency analysis solution is used as an input for the ICI problem. In 

this graph representation of a power system, the generator buses are denoted by black 

nodes. Studies on generator coherency mostly rely on prior knowledge of the number 

of generator clusters [14]. However, this work will demonstrate that clustering on a 

fixed number of partitions could result in an unstable islanding solution. Therefore, 

there is a need to develop a generator coherency analysis method that does not require 

the number of clusters. The proposed method should employ a clustering algorithm that 

determines the optimal number of coherent generators and is able to define the CGGs 

adaptively.    
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Figure 1.4 Generator coherency constraint in islanding solution 

In existing literature, steady-state constraints such as power balance, operational 

limits, and power flow disruption are the primary constraints considered in the ICI 

problem, apart from the generator coherency constraint required for maintaining the 

transient stability of islanding which is the only dynamic constraint in the ICI. The 

steady-state voltage and frequency stability of the created islands are ensured by 

enforcing active and reactive power balance in each island after the separation, as seen 

in previous studies [15, 16]. However, it has been observed that these steady-state 

stability constraints are inadequate for ensuring the frequency and voltage stability of 

the islanding in practical scenarios [1]. Therefore, the islanding model must incorporate 

both dynamic and steady-state constraints for an effective solution [17]. 

Traditional model-based intentional controlled islanding strategies are based on fixed 

separation points determined through offline power system stability and protection 

studies [11, 18]. However, these fixed separation points do not adapt well to variations 

in the system operating conditions or disturbances that cause an out-of-step condition. 

While a set of fixed separation points may be designed to form generation-load 

balanced islands for a typical operating condition, if the power flow profile of a new 

operating condition is significantly different, the set of separation points may no longer 

be applicable. It was shown in [19] that the pattern of generator grouping following a 

disturbance can change due to the operating condition or disturbance, and assigning 
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generators that are out-of-step into one island can lead to instability. Therefore, an 

adaptive approach to the ICI problem is necessary, where separation points can change 

adaptively based on the operating condition and dynamic response of the power system 

following a disturbance. 

One of the critical challenges faced by modern power systems in implementing 

islanding strategies is their increased susceptibility to disturbances owing to their lower 

inertia as compared to traditional systems with mostly synchronous generators. Inertia 

is an inherent characteristic of synchronous generators and plays a crucial role in 

frequency response [20]. Synchronous generators release their stored kinetic energy 

into the grid to prevent frequency drops following sudden power shortages, and vice 

versa [21]. With the growing use of inverter-connected Renewable Energy Sources 

(RES) and loads, the inertia of modern power systems has been reduced. As a result, 

according to the swing equation in power systems [20], disturbances cause faster and 

sharper swings in frequency response. Additionally, the decrease in power system 

inertia alters generator coherency and, consequently, makes ICI more critical in RES 

integrated power systems.  

There is a lack of research on the influence of Wind Power Plants (WPPs) on 

intentional controlled islanding. In previous studies, wind turbine generators (WTGs) 

were considered to be decoupled from the grid, and the effect of virtual inertia on 

islanding strategies was not explored. Furthermore, the reduction in inertia's effect on 

the frequency stability of ICI has not been investigated in previous researches. A 

successful islanding strategy for power systems with WPPs should account for the rapid 

dynamics of WTG after a disturbance and improve the frequency stability of ICI in the 

presence of these generators. 

This dissertation aims to address the limitations of previous studies on generator 

coherency for intentional controlled islanding and enhance the ICI model by including 

additional constraints such as transient stability, voltage stability, and dynamic 

frequency stability. Furthermore, the proposed methodology will be extended to 

account for large WPP integrated into the power system. 

1.2 Research objectives  

The main objective of this thesis is to explore a suitable intentional control islanding 

strategy that can handle all crucial stability limitations, including transient, voltage, and 
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frequency stability, in a unified algorithm. The method should be able to attain an 

optimal solution in power systems with low inertia, without the need for prior 

knowledge about the number of partitions. The specific research objectives are as 

follows: 

 The impact of the number of partitions on the transient stability of the islanding 

strategy will be examined in this study. Various scenarios will be evaluated 

through time domain simulations to determine how a power system can 

maintain stability by using an islanding approach with the appropriate number 

of partitions. If the system is partitioned into an incorrect number of islands, a 

large-scale blackout may occur. 

 The goal is to develop an islanding strategy that is not dependent on the number 

of partitions. To achieve this, Different clustering algorithms will be explored 

to develop a generator coherency analysis that can automatically determine the 

optimal number of CGGs using a suitable measure of cluster quality. The 

objective is to ensure that the islanding strategy remains effective regardless of 

the number of partitions. 

 The generator coherency methodology developed in this research will be 

verified by conducting time domain simulations and comparing it with other 

similar methodologies that have been proposed in existing literature. 

 The study will explore a generator coherency measure that is founded on the 

fundamental principle of slow coherency, which refers to the dynamic coupling 

between generators, rather than the proximity of rotor speeds of generators 

following a disturbance. 

 It is important for an islanding methodology to consider all critical stability 

constraints, including transient stability, voltage stability, and frequency 

stability, in a unified algorithm. The proposed islanding solutions should be 

tested and validated through time domain simulations. 

 The computation time of the intentional controlled islanding strategy should be 

evaluated to ensure that it is feasible to implement in real-time applications. 
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 This study will investigate the impact of large-scale renewable energy resources 

on the intentional control islanding solution. ICI in low inertia power systems 

will be investigated in this study. 

 This study will also examine the influence of the virtual inertia produced by 

wind turbine generators on the islanding strategy. 

To achieve these objectives, the generator coherency and ICI algorithms will be 

implemented in MATLAB, and time domain simulations will be conducted in 

DIgSILENT PowerFactory. The research findings will be validated through 

simulations on two well-known test systems: New England 39-bus and IEEE 118-bus 

systems.  

 

1.3 Research significance  

1.3.1 Generator coherency analysis  

1) The proposed algorithm is independent of a priori knowledge about the number 

of CGGs. Thus the ICI algorithm does not required the number of partitions. 

This is achieved by utilizing the Support Vector Clustering technique in the 

coherency analysis methodology, which automatically identifies the optimal 

number of clusters. 

2) The proposed embedding strategy allows for datasets with non-metric distance 

measures to be embedded into Euclidean space, as long as the similarity matrix 

is positive semi-definite. This enables the inclusion of non-metric distance 

measures such as dynamic coupling between generators in the coherency 

analysis within the clustering procedure. 

 

1.3.2 Intentional Controlled Islanding 

3) The proposed ICI algorithm considers all critical stability constraints, including 

transient stability with a generator coherency constraint and minimizing power 

flow disruption, as well as voltage and frequency stability constraints, in a 

unified algorithm. Moreover, the dynamic frequency stability of islanding is 
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addressed by formulating the linearised swing equation in the Mixed Integer 

Linear Programming (MILP) problem for each island. 

4) The thesis proposes a new post-islanding multi-stage algorithm that adjusts the 

generation-load based on a Linear Programming (LP) model of the islands. The 

algorithm improves the voltage stability margin of the islands by using a voltage 

stability index. 

5) The study compared the proposed ICI algorithm, which aims to minimise power 

flow disruption, with other methods that focus on minimising power imbalance 

during islanding. 

1.3.3 Intentional Controlled Islanding in WPP integrated power systems 

6) By incorporating the Virtual Synchronous Motion Equation (VSME) model of 

wind turbine generators, the proposed generator coherency analysis was able to 

consider the dynamic coupling between synchronous generators and WTGs, 

making the ICI algorithm more reliable for power systems integrated with large 

scale WPPs.  

7) The study introduced a Virtual Inertia Controller (VIC) to capture the available 

inertia of the rotating components of Doubly Fed Induction Generators (DFIGs) 

that are only partially coupled to the network as generators. The simulation 

results demonstrated that WTGs equipped with VIC caused a low-inertia power 

system to exhibit behavior similar to a conventional power system with only 

synchronous generators during the islanding process. 

 

1.4 Thesis structure  

The thesis is organised in six chapters. The outlines of the chapters are as follows 

Chapter 1 (Introduction) is an introductory chapter that outlines the motivation, 

objectives, and contributions of the thesis. 

Chapter 2 (On the Number of System Partitions in Intentional Controlled 

Islanding) presents an investigation into the impact of the number of partitions on the 

transient stability of intentional controlled islanding, through the use of a constrained 



16 
 

spectral clustering based islanding methodology. Simulation results are presented and 

discussed for the 39-bus and 118-bus test systems.  

Chapter 3 (Generator Coherency Analysis using Support Vector Clustering) 

presents a comprehensive literature review on coherency analysis and proposes a novel 

approach to identify generator coherency using dynamic coupling as the coherency 

measure and support vector clustering as the clustering technique. The chapter also 

explains the developed embedding strategy used as a dataset pre-processing stage. The 

results of the coherency analysis on test systems are discussed, and the effectiveness of 

the proposed approach in real-time applications is also evaluated. Furthermore, the 

generator clustering results are compared and validated against other coherency studies 

in the literature. 

 Chapter 4 (MILP Model for Intentional Controlled Islanding) presents a literature 

review on existing ICI methodologies and proposes a two-stage optimisation problem 

to solve the ICI problem. The chapter first introduces an MILP formulation for solving 

the "where" problem, followed by an LP model for solving the "what after" problem. 

The proposed methodology integrates steady-state voltage and frequency stability of 

islanding. Simulation results are used to validate the effectiveness of the proposed 

method on test models. The optimality and computation times of the proposed method 

are discussed, and a comparison is made between the proposed method and another 

method using a different objective function.      

Chapter 5 (Intentional Controlled Islanding in wind integrated power systems) 

presents a literature review on coherency analysis and ICI methodologies in WPP 

integrated power systems. The concept of virtual inertia in WTGs is explained, and the 

VSME model of wind turbine generator is introduced. The equations for dynamic 

coupling between synchronous generators and doubly fed induction generators (DFIGs) 

are derived, and the generator coherency method presented in Chapter 3 and the ICI 

method presented in Chapter 4 are modified to be applicable to WPP integrated power 

systems. The proposed method is validated through simulation on modified test models 

with WPP integrated into the system, and the impact of virtual inertia controller (VIC) 

on the islanding solution is discussed.   

Chapter 6 (Conclusions and Recommendations) provides the conclusions and 

recommendations.  
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On the Number of System Partitions in 
Intentional Controlled Islanding 

 

 
2.1 Introduction  

Intentional Controlled Islanding is a last resort solution used to prevent widespread 

blackouts in the power grid following cascading failures. While it is not the first option 

due to its significant economic impact on customers, it becomes essential in emergency 

situations when conventional protection schemes are not enough to maintain grid 

stability. Uncontrolled islands that are created after large disturbances and tripping 

transmission lines often suffer from significant power mismatch, leading to instability 

in the grid. ICI helps to address this issue by dividing the grid into several stable islands, 

disconnecting only a fraction of the load to achieve power balance in each island. This 

allows the majority of customers to still benefit from the network, making ICI a suitable 

operational scheme for saving the power system. 

The main problems in implementing islanding in power systems can be divided into 

three categories [22]: where to perform the islanding, when to perform the islanding 

and what complementary actions to take after the islanding. The first category focuses 

on determining the boundaries of sustainable islands in the power network, which must 

be established according to certain conditions necessary for the formation of stable 

islands. These conditions include generator coherency, load-generation balance, and 

minimum power flow disruption. The choice of the objective function depends on the 

advantages of the adopted strategy. The generator coherency constraint ensures 

transient stability after the separation such that all generators that are swinging together 

will remain in the same island [23]. The load-generation balance ensures island stability 

by balancing the amount of load and generation in each island, while minimum power 

flow disruption minimises the change in power flow by disconnecting some lines in the 
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power system [7]. Therefore, addressing the "where" problem involves an optimization 

problem of finding islands with the best stability conditions. 

Various studies have taken different approaches to address the problem of 

determining the boundaries of sustainable islands in the power network. One study [24] 

used the generator coherency and minimum load generation imbalance as objective 

functions and applied the Ordinary Binary Decision Diagram (OBDD) algorithm to find 

the optimal islanding strategy. Other studies [11, 25] utilised exhaustive search-based 

algorithms like Depth First Search (DFS) and Breadth First Search (BFS) based on the 

graph model of the network. A heuristic search based approach was also proposed in 

[8] for the min-cut problem in the power system. In another study [26], the load 

generation balance was solved by Particle Swarm Optimization (PSO). Recent studies 

have focused on using generator coherency and power flow disruption as primary 

constraints in designing the islanding scheme, while power balance inside the islands 

is achieved by complementary actions like load shedding after implementing the ICI 

[7]. This chapter follows a similar approach to the previously adopted schemes. 

In the ICI, the timing of the islanding process is also a major problem that needs to 

be addressed, known as the "when" issue. The improper timing of islanding can lead to 

economic and industrial consequences if the procedure is carried out too soon. 

Conversely, if the islanding is implemented too late, unstable and uncontrolled islands 

will be formed leading to widespread blackout. One method proposed in [27] involves 

monitoring active power flow at specified locations to determine the appropriate time 

for islanding. In [28], a decision tree-based method was used to determine if islands 

formed after a fault would remain stable or lose their stability. Previous studies in [29, 

30] proposed a solution for ICI based on setting out-of-step relays at predetermined tie 

lines to detect any changes in the apparent impedance of lines within a specific time. 

[31] presented an algorithm to predict voltage angles' out-of-step operation in the grid.  

After implementing the ICI procedure, an essential step to ensure transient stability 

is to use load shedding and/or generation tripping practices. In most cases, this 

complementary action is required for the formation of stable islands, and it must be 

applied immediately after the islanding process [32].    

This chapter presents a new unified algorithm for ICI, which aims to address the 

issue of transient instability during the process. The proposed algorithm focuses on 
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constraints related to the transient performance of intentional controlled islanding. The 

algorithm consists of two steps. In the first step, Gaussian spectral clustering is used to 

identify coherent generators. In the second step, buses are clustered using constrained 

spectral clustering to identify the cutset with minimum power flow disruption. The 

algorithm is combined with a transient stability assessment approach to determine the 

appropriate timing of the ICI. The study also explores the impact of various islanding 

schemes on the transient stability of the ICI. 

The key aspects of this chapter involve the use of Gaussian spectral clustering to 

achieve generator coherency and the integration of a “Centre of Inertia” (COI) referred 

transient stability assessment index into the ICI algorithm for determining the timing of 

ICI. However, the study acknowledges the limitation of clustering-based methods, 

which depend on prior information about the number of clusters. This study discusses 

the impact of the number of partitions on the transient stability of intentional controlled 

islanding, using scenarios with both the correct and incorrect number of partitions. 

The remainder of the chapter is structured as follows: Section 2.22.2 provides a 

background on clustering techniques, while section 2.3 presents an overview of the 

proposed algorithm. The results of time domain simulations are presented in section 

2.4, and a discussion is provided to analyse the transient behavior of the ICI scheme. 

Finally, section 2.5 concludes this chapter. 

 

2.2 Spectral Clustering Based Islanding 

2.2.1 Spectral clustering 

Spectral clustering is a method for dividing a graph into subgraphs based on the 

Eigenanalysis of a similarity matrix [33]. The graph is represented as G(V,E,W), where 

V is the set of vertices, E is the set of edges, and W is the set of weights that represent 

the similarity between the vertices. The goal is to divide the graph into two subgraphs, 

G1(V1,E1,W1) and G2(V2,E2,W2), such that the vertices in the same group are more 

similar to each other and less similar to those in the other group. This is achieved by 

maximizing the sum of weights within each group and minimizing the sum of weights 

of the cut edges that connect the two subgraphs. Spectral clustering is a useful tool for 

many applications, including image segmentation, text clustering, and community 

detection in social networks [33].  
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In the view point of graph cut, the spectral graph clustering is expressed as follow:  

Cut of a graph:  𝑐𝑢𝑡 = ∑ 𝑤௜௝௜∈௏భ ,௝∈௏మ  

Degree of node i in graph:  𝑑௜ = ∑ 𝑤௜௝
௡
௝ୀଵ  

Volume of a graph:  𝑣𝑜𝑙 = ∑ 𝑑௜௜∈௏   

Problem in graph cut point of view:   𝑚𝑖𝑛
௜∈௏భ ,   ௝∈௏మ,

௖௨௧

௩௢௟
              (2.1) 

 

The first step in normalised spectral clustering involves defining a similarity measure 

as well as determining the number of partitions (k). The next steps are as follows: 

 

1. Form a similarity matrix (W); 

2. Compute Normalised Laplacian matrix, Lsym (Lsym=D-1/2(D-W) D-1/2). D is the 

Degree matrix [33]; 

3. Find the first k eigenvectors of Lsym: v1,v2,…,vk and form U containing the vectors; 

4.  Normalise the rows of  U to norm 1; 

5.  Cluster the rows of U with k-means into k clusters. 

 

2.2.2 Coherency Analysis  

According to inter-area analysis of power systems, when a disturbance happens, 

generators near the disturbance location oscillate with fast transients against each other, 

while more distant generators oscillate with slower frequencies [10]. Therefore, some 

slow CGGs swinging together will be formed after a disturbance occurs. Coherency 

between two generators is defined as their rotor angle difference not exceeding a 

specified tolerance for a certain period of time [34].  

ห𝛿௜ − 𝛿௝ห < 𝜀   for  0 < 𝑡 < 𝑇    (2.2) 

Assuming that the rotor angle of a generator is measured at equal time intervals (0,…,tk-

1,tk,…), the distance between two generators i and  j at the time tk can be defined as: 

  𝑑𝑖𝑠௜௝(𝑡௞) =
หఋ೔(௧ೖ)ିఋೕ(௧ೖషభ)ห

௧ೖି௧ೖషభ
= ห𝜔௜(𝑡௞) − 𝜔௝(𝑡௞ିଵ)ห (2.3) 

 

where ω is the rotor speed of generators. Then the distance between generators i and j 

at the time tk is determined by adding up the instantaneous distances at all points in 

time.  
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𝑑𝑖𝑠௜௝ = ෍  ห𝜔௜(𝑡௞) − 𝜔௝(𝑡௞ିଵ)ห

௧ఢ[଴,்]

  (2.4) 

To obtain the final pairwise distance measure for clustering the generators, the distance 

measure is normalized: 

 𝑑௜௝ =
ௗ௜௦೔ೕ

୫ୟ୶ (ௗ௜௦೔ೕ)
   (2.5) 

The spectral clustering algorithm in this study utilised the Gaussian similarity 

function to create the similarity graph.   

 𝑤௜௝ = 𝑒𝑥𝑝 (−
ௗ೔ೕ

మ

ଶఙమ)    (2.6) 

The similarity graph for the spectral clustering algorithm was constructed using the 

Gaussian similarity function, where the edge weights were represented by w, and the 

clustering width parameter σ, was used to determine the width of the neighborhoods. 

The selection of σ for gaussian spectral clustering is dependent on the dataset's domain, 

and there is no universal recommendation available for choosing the parameter σ [33]. 

For this study, the rotor speed deviations' range was used to determine σ, which was set 

to 0.25 

 

2.2.3 Island boundaries  

After obtaining the subgraphs resulting from coherency analysis, they can be used as 

potential island boundaries in the next stage of ICI procedure. The boundaries of stable 

islands can be obtained using spectral clustering, by searching for all subgraphs in the 

power grid that meet the condition of minimum power flow disruption. The weights of 

the graph should be chosen such that the graph cut problem minimises the power flow 

disruption at the moment of islanding. Unlike the coherency analysis stage, a 

constrained spectral clustering approach must be used to ensure all generators are in 

one coherent group in the optimal island [23, 33]. To achieve this, a constraint matrix 

Q, where Q belongs to the set of real n by n matrices (n being the number of buses), is 

defined as follows [35]: 

𝑄௜௝ = 𝑄௝௜ = ൝
+1                𝑖, 𝑗 belong to one coherent group
−1   𝑖, 𝑗 do not belong to one coherent group
0                                 no information available

 (2.7) 

Then the required steps are as follows [35]: 

1. Form a similarity matrix (W) 



22 
 

2. Compute Normalised Laplacian matrix, Lsym , Qsym 

(Qsym=D-1/2Q D-1/2) and Qmod= Qsym –(β/vol)I according to instruction in [35]. 

3. Compute generalised eigenvectors of LsymV=λ Qmod V 

4. Find the first k-1 eigenvectors of Lsym: v1,v2,…,vk and form U containing the vectors 

5.  Normalise the rows of  U to norm 1 

6.  Cluster the rows of U with k-means into k clusters. 

The method used in this stage is similar to the coherency analysis. A similarity graph 

is constructed where the weights of the edges correspond to the power flow of the lines 

at the time of islanding (tk). The dataset includes n points, and the similarity matrix L is 

defined as [23]: 

𝐿௜௝(𝑡௞) =
ห௉೔ೕ(௧ೖ)หାห௉ೕ೔(௧ೖ)ห

ଶ
= ห𝑉௜(𝑡௞)𝑉௝(𝑡௞)𝐵௜௝𝑠𝑖𝑛 (𝛿௜௝(𝑡௞))ห     (2.8) 

The similarity matrix L is calculated based on the imaginary part of the network 

admittance matrix B, as well as the voltages Vi and Vj, and the angle difference δij 

between the buses i and j at the instant tk. 

2.2.4  Transient Stability Assessment  

The study utilised an area-based transient stability index to determine the critical 

time for the ICI scheme. This index was based on the concept of coherent generators 

and represented the rotor angle stability of a specific area in the power system that 

contained a group of coherent generators [36]. The stability of an equivalent single 

machine was used to represent the rotor angle stability, and its rotor angle was set to 

the inertial average of the rotor angles of all synchronous generators within the group. 

The equivalent rotor angle of area j was calculated as follows: 

𝛿ఫ
ഥ =

∑ ு೔ఋ೔

೙ೕ
೔సభ

∑ ு೔

೙ೕ
೔సభ

      (2.9) 

The variables δi and Hi represent the rotor angle and inertia constant of generator i in 

area j. The COI (centre of inertia) of the power system is determined by taking the 

average of the equivalent rotor angles of all the areas or CGGs, where c is the total 

number of such groups. 

𝛿௖௢௜ =
∑ ுೕఋണ

തതത೎
ೕసభ

∑ ுೕ
೎
ೕసభ

       (2.10) 
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Where Hj represents the total inertia of area j and the denominator represents the total 

inertia of the entire power system. Then 𝛿௝
௖௢௜ is a measure that reflect the transient 

behaviour of area j and is defined as follows [37]. 

𝛿௝
௖௢௜ = 𝛿ఫ

ഥ − 𝛿௖௢௜   (2.11) 

When a fault occurs in the power system, the behavior of 𝛿௝
௖௢௜is similar to that of the 

rotor angle of generators. The study utilised the concept that if the equivalent rotor angle 

of an area goes beyond ±180° after a disturbance, the area is considered unstable; 

otherwise, the area is stable, leading to the formation of controlled islands [37]. This 

concept was employed to identify the critical timing of ICI in the study 

 

2.3 Proposed Algorithm for Intentional Controlled Islanding 

The flowchart presented in  Figure 2.1  outlines the algorithm proposed for real-time 

monitoring of the power system for implementing the ICI scheme. The methodology 

comprises four distinct stages, each aimed at solving specific problems to establish an 

effective islanding strategy. The functions of each stage are explained in detail below. 

2.3.1 Stage 1: Generator coherency analysis 

During the initial stage of the proposed algorithm for online monitoring of power 

systems to implement ICI, rotor speed measurements are gathered for a specific time 

interval T from PMUs on all generator buses. This data is then used to generate an input 

dataset for the clustering algorithm to identify the coherent clusters of generators. In 

this study, the duration of T was set to 10 second to capture the low frequencies in the 

range of 0.1-1 Hz [53], and the CGGs are updated every time step of ΔT which was set 

to 1 second in this study 
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Figure 2.1 Proposed algorithm for ICI 

2.3.2 Stage 2: Timing of islanding 

In the second stage of the proposed algorithm, the equivalent rotor angle and COI 

referred angle of each area are calculated based on equations (2.9) and (2.11), 

respectively. 𝛿௝
௖௢௜ is continuously monitored and compared to a maximum permissible 

value to prevent the area from going out of step. In this stage, 𝛿௝
௖௢௜is updated for every 

time step of Δt. In this study, the duration of Δt was set to 0.1 second to be used in real-

time monitoring of the power system. In order to avoid instability, the threshold angle 

in this study was set to ±150°, which is less than the maximum permissible level of 

±180° mentioned in [37]  

2.3.3 Stage 3: Island boundaries 

Once it is determined that the power system needs to be split into islands, a constrained 

spectral clustering algorithm is employed in this stage to identify the cutset that results 

in the minimum power flow disruption. 
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2.3.4 Stage 4: Stabilising the islands 

Once the boundaries of the cutset are identified, there will be several islands formed in 

the power system, each containing its own generators and loads. To reach a stable 

equilibrium point, the power balance condition must be met in each island. Various 

approaches can be used to achieve this balance, such as intentional load shedding or 

generation trip, or a combination of the two as complementary protective measures. In 

this study, the load shedding method proposed in [38] was used to compensate for any 

imbalance. The total generation-load imbalance of an area, Pimb, was estimated by 

calculating fc the frequency of the equivalent inertial centre of that area. 

𝑃௜௠௕ = ∑(𝑃 ௜ − 𝑃௅௜) = 𝜉
ௗ௙೎

ௗ௧
      (2.12) 

𝑓௖ =
∑ 𝐻௜𝑓௜

௡
ଵ

∑ 𝐻௜
௡
ଵ

 (2.13) 

𝜉 =
ଶ

௙బ
∑ 𝐻௜

௡
ଵ    (2.14) 

where f0 is rated frequency and Hi & fi are inertia constant and frequency of generator 

i. For load shedding, the priority is given to those buses with a lower magnitude of the 

voltage.  

  

2.4 Simulation Results  

Various scenarios were tested using New England 39-bus and IEEE 118-bus systems 

to evaluate the proposed ICI algorithm. The simulations were performed in 

PowerFactory, while the algorithm itself was implemented using MATLAB. The 

contingencies tested were designed to push the system towards instability, and bus 31 

and bus 69 were used as slack buses in the 39-bus and 118-bus systems, respectively. 

The simulations were conducted assuming full observability, and the sampling rate was 

set to 60 Hz for the New England 39-bus system, and 50 Hz for the IEEE 118-bus 

system. 

 

2.4.1 New England 39-bus test system 

The New England grid comprises 39 nodes, 10 generators, 19 loads, 34 lines, and 

12 transformers, and the total dispatched load at base case is 6191 MW [39]. The single 
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line diagram of New England test system and its graph representation diagram are 

depicted in Figure 2.2  and  

Figure 2.3 , respectively. In the graph diagram of the test system, generator buses 

are highlighted by black nodes, while the white nodes represent load buses. For the first 

scenario (case I), a three-phase short circuit was created at line 15-16 near bus 15 at 

time t=0 s and cleared after 250 ms by disconnecting the faulty line. After the 

disturbance, the relative rotor angles of generators are separated into three groups, but 

generator G8 goes out of step after t=2 s. The rotor speed plot (Figure 2.4 (b)) and 

voltage magnitude of generator buses (Figure 2.4 (c)) show that if no protective 

measures are taken, this would lead to a blackout.  
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Figure 2.2 Single line diagram of the New England 39-bus test system   
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Figure 2.3 Graph representation of the New England 39-bus test system   

 

 

Figure 2.4 39-bus system, Case I, without islanding; a) Relative rotor angles b) Rotor speed c) Generator 
bus voltage d) COI-referred rotor angle of coherent groups  
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Once the number of islands is determined, the rotor speed signals are analysed using 

Gaussian spectral clustering. Assuming k=3, three sets of generators are detected: 

{1,8,10}, {2,3}, and {4,5,6,7,9}. A σ value of 0.25 is used for the Gaussian similarity 

function. Time domain simulation validates the spectral clustering results, as seen in 

Figure 2.4 (b), where the generators in each group have rotor speeds close to each other. 

The simulation result is consistent with the outcome of the clustering process, as the 

deviation of rotor speed among generators was utilised as the criterion for similarity 

during the clustering algorithm. The COI-referred rotor angles of each coherent group 

(Figure 2.4 (d)) indicate that the equivalent angle of group 3 surpasses the study's 

threshold angle of 150° (dashed line) at t=0.6 s, indicating that this group is the weakest 

among all CGGs. Group 2 follows shortly after, and the third group goes out of step 

around t=1 s. 

The Q matrix was first formed based on coherency analysis to perform constrained 

spectral clustering. At t=0.5 s, a controlled islanding scheme with three islands was 

implemented by disconnecting lines 5-6, 6-7, 17-18 and 25-26 (Figure 2.5 (a)). The 

objective of finding the final boundaries of separated islands was to minimise power 

flow disruption, not load generation imbalance. Table 2.1 shows the generators and 

loads of the three islands, where each island contains only one coherent group of 

generators. Island 1 was found to be load-rich with a deficiency of 141 MW, while 

islands 2 and 3 were generation-rich, and that is the reason why the generators in inlands 

2 and 3 accelerate. This power imbalance was compensated by load shedding or 

generation rejection. The efficiency of the selected scheme in stabilising the frequency 

was validated by the frequency of the island after controlled islanding, as shown in 

Figure 2.6 (b). A margin of 10% was considered as the permissible thresholds of voltage 

and frequency deviation after both voltage and frequency were settled to secure the 

transient behavior of controlled islanding. Time domain simulations showed that both 

frequency and voltages in the created islands were within the permissible range. 

In Case II, a fault was created at bus 2 and line 2-25 was tripped to clear the fault. 

By assuming the desired number of islands to be 4, the controlled islanding scheme can 

result in four controlled and stable islands. However, when k is assumed to be 2, 

controlled islanding cannot guarantee the grid's protection from a widespread blackout. 

The rotor speeds are divided into four groups after the fault in Figure 2.7 (a). These 
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groups include generators {1,10}, {2,3}, {4,5,6,7}, {8,9}. It is observed that the groups 

1 and 2 are coherent at the beginning for a short time after the fault occurred, but they 

start to separate before t=0.5 s. If the number of islands is decided to be 2, coherency 

analysis will result in two coherent groups: {1,10} and {2,3,4,5,6,7,8,9}. Time domain 

simulations reveal that the transient stability of the group of eight generators would fall 

apart after a short time, with generators 8 and 9 getting out of step, followed by 

generators 4 to 7 separating from generators 2, and 3. 

Figure 2.7 (b) shows that the groups of coherent generators still oscillate together, 

and the islanding scheme can maintain their coherency. Therefore, controlled islanding 

with two partitions fails even with a large amount of load shed from the grid, but 

controlled islanding with four partitions can be considered a proper islanding scheme 

with stable islands. The boundaries of the islands are shown in Figure 2.5 (b). 

Table 2.1 Generation and Loads Before Islanding 

Island Generation Load Imbalance 

1 2407 MW 2548 MW +141 MW 

2 871 MW 806 MW -65 MW 

3 2913 MW 2837 MW -76 MW 
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Figure 2.5 Controlled islands of 39-bus system a) case I b) case II 

(a) 

(b) 
htt

(b)  
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Figure 2.6 39-bus system, case I, with ICI and proper number of partitions a) Relative rotor angle b) 
Rotor speed c) Bus voltage of generators 

 

Figure 2.7 Relative rotor angles in 39-bus system, Case II, a) without ICI b) with ICI 

2.4.2 IEEE 118-bus test system 

The 118-bus test system is an approximation of the US Midwest's high voltage 

transmission network, with 19 generators, 35 synchronous condensers, 91 static loads, 

177 transmission lines, and 9 transformers. The single line diagram of IEEE 118-bus 

test system is shown in Figure 2.8 . A cascading failure that caused a blackout was 

studied. In this chapter, a three-phase short circuit was created at the middle of line 38-

65 and cleared after 0.2 s. Later, due to overloading protection, the lines 69-75, 49-66, 

64-65, 62-66, 23-24, 30-88 tripped at different times, t=1, t=2, t=3, t=4, t=8, t=9 s 

(a) 
htt

(a) 
htt

(b) 
htt

(c) 
htt

(b) 
htt



32 
 

respectively. Figure 2.9  illustrates the post-disturbance behavior of rotor angle, rotor 

speed, and bus voltage of generators. At t=7 s, generators G46 to G61 separated from 

the other generators, and after the last event, generators G10 to G31 went out of step. 

Figure 2.10  demonstrates the trajectory curves of generators after the controlled 

islanding was implemented at t=6.5 s. Time domain simulations indicated that 

assuming two islands fails to prevent a blackout, but splitting the grid into three 

controlled islands results in self-sustaining and stable islands. The proposed algorithm 

identified the boundaries of three controlled islands by disconnecting specific lines 

shown in Figure 2.11 . 

It is clear that implementing controlled islanding with more than the required 

minimum number of partitions will result in a severe generation-load imbalance and 

disrupted power flow due to a large number of disconnected lines. Conversely, 

islanding with fewer partitions than the minimum required can cause interference 

between CGGs within the island. Thus, to ensure the stability of a controlled islanding 

scheme, it is crucial to develop a procedure that is not dependent on a predetermined 

number of clusters and can automatically determine the optimal clustering structure by 

setting appropriate clustering parameters. 

 
Figure 2.8 Single line diagram of the IEEE 118-bus test system 



33 
 

 

Figure 2.9 118-bus system without islanding a) Relative rotor angle b) Rotor speed c) Bus voltage of 
generators 

 

Figure 2.10 118-bus system after islanding with the correct number of partitions a) Relative rotor angle 
b) Rotor speed c) Bus voltage of generators 

(c) 

(a) 
htt

(b) 
htt

(a)  

(b) 

(c)  
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Island 1 Island 2

Island 3  
Figure 2.11 Controlled islands of 118-bus system     

2.5 Summary 

In this chapter, a four-stage algorithm was proposed for designing an ICI scheme. The 

algorithm uses a two-step spectral clustering technique to identify coherent generators 

and island boundaries, and other stages to determine critical timing and post-islanding 

protective measures. The gaussian spectral clustering method is suggested for generator 

coherency analysis. The study highlights the importance of identifying the correct 

number of necessary partitions to achieve a successful controlled islanding scheme. 

 The chapter points out the limitations of existing clustering algorithms, which require 

prior knowledge of system characteristics and offline studies, such as the pre-specified 

number of partitions. The results of the study suggest the need for further investigation 

to develop a framework for controlled islanding that can automatically detect the 

optimal number of coherent areas in the power system using a real-time reliable 

clustering algorithm. The simulation results on the New England 39-bus and IEEE 118-

bus systems demonstrate the dependence of the dynamic performance of intentional 

controlled islanding and the transient stability of the power system on the correct 

identification of the number of CGGs.  
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Generator Coherency Analysis Using Support 
Vector Clustering 

 

3.1 Introduction 

Despite considerable efforts being devoted to clustering generators into certain 

coherent groups based on their similar oscillatory behaviour after a disturbance, 

traditional offline coherency studies are unable to fully demonstrate the dynamic 

behaviour of power systems [40]. On the other hand, the gradual increase in demand in 

the electricity market causes the power system to operate closer to its stability margins, 

making it more vulnerable to the complicated dynamic behaviour of the system 

following a disturbance [41]. Additionally, the impact of renewable power generation 

on inter-area oscillations of power systems shows that a power system with a high 

penetration level of renewable generation can be pushed towards the unstable zone of 

operation at certain oscillation modes [42-44].  

Therefore, conventional model-based monitoring and control systems, which are 

designed for specific operating conditions, are not robust enough to track all dynamical 

responses of the power system caused by the heterogeneous dynamic behaviour of 

inverter-connected renewable energy sources. Under such conditions, developing a 

suitable data-based monitoring system in a wide area power network that depends on 

collected measurements in online applications is more desirable to detect transient 

oscillations between different areas. This can be achieved with the assistance of 

Synchrophasor technology, i.e., deployment of PMUs at appropriate buses and 

designing a reliable wide area monitoring, protection, and control (WAMPC) system 

to secure stable operation and avoid widespread blackouts [45]. If local protective 

systems fail to detect and operate against power system disturbances, the WAMPC 

system becomes active as the second line of defence. The continuous surveillance of 

oscillations between the emerged coherent groups in the post-disturbance condition is 

the primary duty of such a WAMPC system.  
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In this context, generator coherency refers to the natural tendency of a group of 

generators in a power system swinging together against other groups of generators after 

the occurrence of a disturbance [46]. The motivation for improving the generator 

coherency studies arises from the necessity of applying the results of coherency analysis 

to some applications of the WAMPC system, such as intentional controlled islanding 

to split the power system into a distinct number of self-sustaining islands [11], and 

Wide-area Control [47]. Other applications such as power system model reduction [12] 

also benefit from improved coherency studies. The inter-area oscillation modes and 

emergence of coherent areas are mainly recognised by some intrinsic characteristics of 

the grid such as the number of internal and external lines of each area and the impedance 

of interconnection lines [12]. However, protective schemes cannot rely only on offline 

studies due to the unpredictable behaviour of some loosely coherent generators in each 

area [19]. Therefore, online identification of CGGs is inevitable.       

In the study of generator coherency, there are two general approaches [48]. The first 

approach is the model-based method, which is used in slow coherency based studies 

[11, 12, 46]. In this method, the oscillation modes are extracted from the Eigen-analysis 

of a small-signal model of the power system [46]. Early works have shown that using 

a simplified linear model of the power system for coherency analysis, even in large 

disturbance conditions, is valid [49].  

Applying the singular perturbation theory to a two-time-scale power system model 

[46, 50] shows that there is a connection between slow coherency and weak connections 

in power systems. Slow coherency identifies weak connections between the CGGs, 

thereby solving the problem of CGG identification. In this approach, the coherency of 

generators is not affected by the location and severity of disturbances in the power 

system [11]. However, it is sensitive to changes in the system’s operating conditions.  

A method was devised in [51] to trace the system’s eigenvalues to update the CGGs 

after any change in system condition caused by disturbances. In [52], the effectiveness 

of applying the model-based slow coherency to find the proper cutsets of intentional 

controlled islanding schemes in large power systems such as the Western Electricity 

Coordinating Council (WECC) system in North America with 15000 buses, was 

investigated. 
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The measurement-based approach is a widely used method in contingency studies, 

utilising time domain simulation of different scenarios to analyse the dynamic response 

of generators, and is independent of the detailed model of the power system. Some 

studies aimed to use PMU measurements to construct a reduced-order model of large 

power system and capture the slow oscillation between coherent areas or transient 

stability margins due to disturbances. Although a reduced-order model of the power 

system is constructed in these studies, they should not be confused with small signal 

model based methods. The aggregated models of the WECC network obtained in [53, 

54] captured the network’s dynamic response to different disturbances. However, it is 

not possible to trace the dynamic behaviour of each generator in a five-machine model 

of the WECC system.  

Other measurement-based coherency studies rely on a coherency criterion as the 

basis for splitting the generators. For example, the frequency response of rotor angles 

[55], frequency deviation of terminal buses of generators with respect to the system 

nominal frequency [56], and the difference between phases of dominant modes in the 

frequency spectrum of rotor speed deviations [57] have been used. Statistical 

assessment tools such as signal correlation coefficients and Spearman’s rank correlation 

coefficients have also been utilised in some studies [41, 58, 59] to assess the correlation 

between angle and speed signals of generator pairs. In [60], a method based on the 

wavelet transform of the phase difference of generator rotor angles was proposed. 

Modal analysis of swing curves was performed by the Koopman operator in [61] to 

extract the Koopman modes and recognise the coherent generators. In [62], the phase 

of oscillation modes was considered as the coherency criterion by implementing the 

Empirical Mode Decomposition (EMD) technique combined with Hilbert transform. 

Additionally, a new multiflock-based coherency identification was introduced in [63], 

inspired by the flocking behaviour of nature.   

In contrast, other studies have utilised clustering techniques to separate the CGGs 

based on a predefined distance measure in Euclidean space. For example, K-means 

clustering technique combined with a competitive neural network algorithm was 

proposed in [64] based on a speed criterion as the coherency measure. Fuzzy C-means 

(FCM) clustering was applied in [65], but due to its dependence on random initialisation 

and time-consuming nature in large power systems, an improved FCM clustering 

method (FCMdd) was suggested in [48, 66]. This approach uses an offline probabilistic 
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coherency analysis of generators to overcome the problem of random initialization. 

Subtractive clustering was proposed in [67] to overcome this limitation. Principal 

Component Analysis (PCA) technique was used in [68] to obtain the first three principal 

components of generator speed and bus angles, which were then clustered. The optimal 

direction in projection from multi-dimensional to low dimensional space was found in 

[69] using a statistical technique to extend the idea of extracting the principal 

components of rotor angles.  

Spectral clustering algorithm has also proven to be effective in terms of simplicity, 

readiness, and the ability to define user-defined similarities [40]. A data-driven 

similarity measure was proposed in [70] by combining several similarity indices based 

on generator rotor angle and rotor speed trajectories, and then spectral clustering was 

used to obtain the CGGs. A similar approach with multiple similarity indices was 

adopted in [58] to derive the similarity index, but agglomerative hierarchical clustering 

was applied instead to separate the generators. Hierarchical clustering was also used in 

[71, 72] to cluster the motion trajectories of power system based on similarity matrix 

and pattern recognition techniques, respectively.  

Kernel Principal Component Analysis (KPCA) method was employed in [73] to 

reduce the dimension of data and integrate multiple similarity indices into a data-driven 

coherency detection algorithm. Affinity Propagation (AP) method was used to cluster 

the generators, but only rotor angle and rotor speed were considered for computing the 

similarity indices. Support Vector Clustering was also applied in [74] directly on angle 

or speed deviation of generators, but it was shown in [57] that the rotor angle deviation 

could lead to the wrong grouping of generators. This study employed the concept of 

slow coherency of generators in a measurement-based coherency detection method and 

indicated that dynamic coupling is a more reliable coherency measure than angle or 

speed deviation of generators.    

All studies on generator coherency are fundamentally based on two elements: a 

coherency measure and a technique to separate generators based on that coherency 

measure. This study proposes using dynamic coupling between generators as the 

coherency measure, and applying the SVC technique on embedded data points to 

determine the CGGs. Clustering-based methods referred to in literature often rely on 

pre-existing knowledge of the number of clusters [75] or have limitations such as 

recursive separation as seen in [19] and [23]. To address these shortcomings, this study 
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introduces an online coherency identification method that results in the formation of 

CGGs with a more reliable coherency measure. Additionally, this method is 

independent of a predefined number of clusters and can automatically adjust the 

clustering procedure's parameters to obtain the optimal clustering structure. 

By applying the SVC technique, any clustering algorithm benefits from finding the 

clusters in datasets with arbitrary shaped boundaries, which is the unique advantage of 

the SVC [76]. Another interesting aspect of this work is incorporating an embedding 

strategy in the clustering algorithm to apply the clustering technique on datasets with 

inherent Non-Euclidean distance measure.   

Hence, this study presents two main contributions reagarding generator coherency 

analysis. Firstly, it proposes an online coherency detection method that does not require 

prior knowledge about the number of partitions Secondly, an embedding startegy is 

adopted in the coherency identification algorithm to include any Non-Euclidean 

distance measure in the clustering process. In order to present the framework, first, the 

coherency criterion is introduced in section 3.2, then after reviewing the background of 

support vector clustering in section 3.3, the required steps of pre-processing the input 

data to be prepared for the clustering algorithm are explained. The results will be 

validated by time-domain simulations in 39-bus and 118-bus test systems, and the 

effectiveness of the proposed algorithm is validated by a cluster validity index, and also 

the results will be compared with other existing clustering methods. Finally, the 

conclusion is provided in section 3.8. 

 

3.2 Generator Coherency Based on Dynamic Coupling  

 

In order to conduct transient stability analysis, the network with n machines and its 

corresponding connected representation graph is reduced to only the internal generator 

nodes (nodes located behind the transient reactance), while all load and generator 

terminal buses are eliminated. If Ybus=[Yij]=[Gij+jBij] is the admittance matrix of the 

reduced network, then the response of the system to a disturbance can be described 

using the following equation [12]:  
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൞

2𝐻௜𝛿ప̈ = 𝑃௠௜ − 𝑃௘௜                          

𝑃௘௜ = 𝐸௜
ଶ𝐺௜௜ + ෍ 𝐸௜𝐸௝(

௡

௝ୀଵ,௝ஷ௜

𝐵௜௝ sin 𝛿௜௝ + 𝐺௜௝ cos 𝛿௜௝)
 (3.1) 

  

where δi, Hi, Ei, Pmi, Pei are rotor angle, inertia constant, internal generated voltage, 

input mechanical power and electrical power of generator i, respectively and δij is the 

relative angle between generators i and j. After linearising the equations and neglecting 

the mutual conductance (Gij), the small deviation of the rotor angle of generator i can 

be expressed as: 

2𝐻௜ 𝛿̈௟∆ = − ෍ 𝐾௜௝

௡

௝ୀଵ,௝ஷ௜

𝛿௝∆  (3.2) 

𝐾௜௝ =
𝜕𝑃௜௝

𝜕𝛿௜௝

 │ఋ೔ೕబ
= 𝐸௜𝐸௝𝐵௜௝ cos 𝛿௜௝଴  (3.3) 

 

The equations above can also be expressed in matrix form: (Hereafter, all matrices are 

denoted by bold letters.) 

 2𝐇𝜹̈𝚫 = −𝐊𝛅∆                                               (3.4) 

 

H is a diagonal matrix of the inertia coefficients of generators, meaning it is a matrix in 

which all off-diagonal elements are zero, and all diagonal elements represent the inertia 

coefficient of each generator. K=[Kij] is a matrix in which the diagonal entries are 

defined as:   

𝐾௜௜ = − ∑ 𝐾௜௝
௡
௝ୀଵ,௝ஷ௜      (3.5) 

 

Kij /2Hi in (3.2) is interpreted as the acceleration of the rotor angle of machine i due 

to a change in the rotor angle of machine j. According to the definition given in [77], 

two generators are considered exactly coherent if their rotor acceleration due to a 

disturbance is the same. However, exact coherency is an ideal concept that rarely occurs 

in real power systems. Instead, it has been observed in [46] that after a disturbance, 

some machines tend to be strongly dynamically coupled within the same CGG, while 

swinging against other groups with inter-area weak coupling. Therefore, this study 

proposes a coherency criterion based on the concept of dynamic coupling [78]. The 

similarity function between generators i and j is defined as follows: 

 

𝑤௜௝ = ቆ
1

𝐻௜

+
1

𝐻௝

ቇ 𝐸௜𝐸௝𝐵௜௝ cos 𝛿௜௝଴      (3.6) 
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To capture this behavior, the study employs slow coherency as the coherency 

measure in a measurement-based method. The dynamic coupling between generators i 

and j is denoted as wij, and the slow coherency is influenced by the inertia constants and 

admittance of the reduced network. Specifically, generators with smaller inertia 

constants and larger admittance (thus, smaller impedance) have a higher coherency 

value, reflecting the effect of weak connections in the power system on slow coherency.        

3.3 Background on Support Vector Clustering  

The SVC technique was inspired by the concept of Support Vector Machine (SVM), 

which is commonly used for data point classification [79]. The original idea of using a 

hyperplane in feature space to classify data points was extended in [80], where a 

hypersphere was used to describe the domain of a dataset [80]. It was later discovered 

in [76] that the same approach could be used to solve clustering problems. The main 

idea of SVC is to map the data points in the original data space, as shown in Figure 3.1 

, into a higher dimensional feature space using a nonlinear transformation (φ). In this 

feature space, the minimum sphere that encloses all the data points is found, and then 

transformed back to the original space. The resulting contours in the original data space 

represent the boundaries of the clusters [76].  

 

 
Figure 3.1 Transformation of data points to feature space [76]  
 

Assume {𝑥௜} ⊂ 𝑋, i=1,…,N is a dataset with 𝑋 ⊂ 𝑅ௗ, the d-dimensional data space. 

An unknown nonlinear transformation (φ) maps the data points to the feature space. 

The minimal sphere that contains all the points in this space, is described by:   

 

‖𝜙(𝑥௜) − 𝑎‖ଶ ≤ 𝑅ଶ + 𝜉௜   ∀𝑖      (3.7) 
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where 𝑎 and R are the centre and radius of the enclosing sphere and 𝜉௜ is a slack variable 

for applying a soft margin constraint to the optimisation problem that can be formulated 

as:  

ቊ
min 𝑅ଶ + 𝐶 ∑ 𝜉

𝑖𝑖

𝑠. 𝑡.   ‖𝜙(𝑥௜) − 𝑎‖ଶ ≤ 𝑅ଶ + 𝜉௜   ∀𝑖, 𝜉௜ > 0
  (3.8) 

 

In this formulation, the penalty constant C takes into account the degree to which the 

constraints are violated. To solve this optimization problem, the Lagrangian function is 

utilised, and through the application of Karuch-Kuhn-Tucker conditions [76], a data 

point called Boundary Support Vectors (BSV) with 𝜉௜ > 0 and 𝛽௜ = 𝐶 is identified 

outside the sphere in the feature space. When 𝜉௜ = 0 and  𝛽௜ > 0, the point lies on the 

surface of the sphere and is known as a Support Vector (SV). If 𝜉௜ = 0, and 𝛽௜ = 0, 

the point is located within the minimal sphere. It has also been observed that if 𝐶 ≥ 1, 

there will be no BSV, which means that outlier cannot exist in the data set. By applying 

these conditions to the primal optimisation problem, a dual problem with the same 

solution can be obtained.  

⎩
⎪
⎨

⎪
⎧max ෍ 𝛽௜𝜙(𝑥௜)

ଶ

𝑖

− ෍ 𝛽௜𝛽௝𝜙(𝑥௜)𝜙൫𝑥௝൯

𝑖,𝑗

       

𝑠. 𝑡.  0 ≤ 𝛽௜ ≤ 𝐶, ෍ 𝛽௜

௜

= 1
 (3.9) 

By finding an appropriate Kernel function that satisfies Mercer theorem [81], dot 

products can be expressed by the Kernel function. In this study, a Gaussian kernel 

function was employed, where 𝐾൫𝑥௜ , 𝑥௝൯ = exp ቀ−𝑞ฮ𝑥௜ − 𝑥௝ฮ
ଶ

ቁ with q as the width 

parameter and ‖. ‖ indicating the Euclidean distance. Hence, the optimisation problem 

can be expressed as follows. 

ቊ
max ∑ 𝛽௜𝐾(𝑥௜ , 𝑥௜)𝑖 − ∑ 𝛽௜𝛽௝𝐾(𝑥௜ , 𝑥௝)𝑖,𝑗            

𝑠. 𝑡.  0 ≤ 𝛽௜ ≤ 𝐶, ∑ 𝛽௜௜ = 1
   (3.10) 

The unknowns in the dual problem are only the 𝛽௜s, and it can be solved using a 

quadratic programming solver by selecting appropriate values for q and C [82]. The 

distance of the image of any point x in the data space from the centre of the sphere in 

the feature space can be obtained using the following equation: 

𝑅ଶ(𝑥) = ‖𝜙(𝑥) − 𝑎‖ଶ = 𝐾(𝑥, 𝑥) − 2 ∑ 𝛽௜𝐾(𝑥௜ , 𝑥)𝑖 + ∑ 𝛽௜𝛽௝𝐾൫𝑥௜ , 𝑥௝൯ 𝑖,𝑗   (3.11) 
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Then, the radius of the sphere is:  

𝑅 = {𝑅(𝑥௜)|𝑥௜  is SV} (3.12) 

 

The enclosing contours of the points in the original data space are expressed by a set of 

points: 

{𝑥|𝑅(𝑥) = 𝑅}   (3.13) 

In the cluster labeling stage, all points are assigned to distinct clusters [76]. A 

proximity graph-based method is used [76], where given any pair of points in data 

space, the connecting path is divided into several points (e.g. 10 points in this study), 

and if all the corresponding images in the feature space are located inside the minimal 

sphere, the points in the data space belong to the same cluster. An adjacency matrix, 

A=[aij] is formed, where aij indicates whether a pair of data points i and j belong to the 

same cluster or not: 

𝑎௜௝ = ൜ 
1 if ∀𝜆 ∈ [0,1],    𝑅൫𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗൯ ≤ 𝑅

0 otherwise
    (3.14) 

 

Finally, the clusters are formed as the connected components of the graph defined by 

A. The selection of appropriate values for the width parameter of the Gaussian function 

(q) and soft margin constant (C) is critical in the SVC algorithm. It has been 

demonstrated in [76] that variations in q and C have effects on the boundaries of clusters 

and the number of outliers, respectively. To achieve the optimal clustering result, an 

algorithm for automatically setting the values of q and C is used in this study [83].    

      

3.4 Embedding the Data in Euclidean Space: Pre-processing data  

To identify the coherent generators from dynamic coupling, it is necessary to use a 

distance measure for the SVC algorithm, based on the pairwise similarity between the 

generators. Generally, machine learning-based algorithms such as SVC require metric 

distance measures to manipulate datasets. Therefore, non-metric distance measure 

defined on the pairwise similarity of data points must be translated into an appropriate 

metric distance to be usable. The Euclidean distance between points is required by the 

Gaussian function employed in the SVC algorithm, but the dissimilarity or distance 

matrix obtained from the dynamic coupling analysis of generators is not intrinsically a 

metric distance measure.  
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To address this issue, embedding is used to translate the defined non-metric pairwise 

similarity of data points into a Euclidean space [84]. To address this issue, embedding 

is used to translate the defined non-metric pairwise similarity of data points into a 

Euclidean space [84]. The goal of embedding is to find the points in the Euclidean space 

such that their distance in this space is equal to the calculated dissimilarity values of 

generators obtained from the dynamic coupling study. As shown in Figure 3.2 , the 

resulting points act as the input dataset given to the clustering algorithm to be clustered 

according to their Euclidean distances. 

In this study, a method similar to Kernel Principal Component Analysis (KPCA) is 

used for embedding. KPCA is a nonlinear extension of PCA [85] and is used to 

determine the principal components of the data in Euclidean space. These principal 

components are then used to identify a dataset in the Euclidean space, which maintains 

the defined distance between the input data points. This allows for the data to be 

represented in a low dimensional Euclidean space that is non-linearly related to the high 

dimensional input data. 

 One important distinction between KPCA and conventional PCA is that in KPCA, 

the input data are mapped to a feature space using a nonlinear kernel function, and then 

PCA is used to extract the principal components of the data in the feature space. This 

differs from conventional PCA, where the principal components are directly calculated 

in the original data space. 

 

Embeddingx1 x2

x3 x4

SVC

 
Figure 3.2 Steps of embedding and clustering the input dataset 
 

As per the definition [84], the distance matrix D=[dij] is considered to be Euclidean 

if and only if n points present in the Euclidean space, and the Euclidean distance 

between points i and j is equal to dij. It is only possible to embed into a Euclidean space 
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if the distance matrix is also Euclidean. Additionally, it was demonstrated [86] that if 

the similarity matrix S=[sij] is positive semi-definite (p.s.d) with 0 ≤ 𝑠௜௝ ≤ 1 and sii=1, 

then the distance matrix D=[dij] with 𝑑௜௝ = ඥ1 − 𝑠௜௝ is also Euclidean. Therefore, 

embedding the points into a Euclidean space is possible if we can define a similarity 

measure in such a way that the distance matrix is p.s.d. In this study, the similarity 

matrix is constructed in the format of a normalised Laplacian matrix since it has been 

established in [52] that the Laplacian matrix is p.s.d: 

𝐒 = 𝐆ି
భ

మ(𝐆 − 𝐖)𝐆ି
భ

మ     (3.15) 

 

Here, the coupling matrix W is defined by the dynamic coupling between generators i, 

j, and G is the Degree matrix, which is a diagonal matrix with gii equal to the sum of 

the coupling weights of generator i with all other generators j, i.e., 𝑔௜௜ = ∑ 𝑤௜௝
௡
௝ୀଵ . 

After defining the similarity matrix to make the dataset embeddable in Euclidean 

space, the next step is to follow the procedure shown in Figure 3.3  to embed the dataset 

in Euclidean space. As depicted, the subsequent step is to compute matrix C from the 

squared distance matrix. This matrix C represents the covariance matrix of the data 

points in the Euclidean space and can serve as the kernel function in the KPCA-based 

method proposed in this study. 

𝐂 = −
𝟏

𝟐
𝐐𝐃𝐬𝐪𝐐    ,   𝐃𝐬𝐪 = ൣ𝑑௜௝

ଶ ൧    3.16) 

 

where Q is centring matrix defined as: 

𝐐 = 𝐈 −
1

𝑛
𝐞𝐞𝐭      (3.17) 

 

Here, n represents the number of points in the dataset, I denotes the unity matrix, and e 

is a column vector of ones. Similar to the KPCA method, the desired data points in the 

Euclidean space are obtained through the eigen-decomposition of the matrix C. In the 

next step, the eigenvalues and eigenvectors of C are obtained. 

𝐂 = 𝐕𝚲𝐕𝐭    (3.18) 

 

Here, V=[v1 v2 … vn] is a row matrix of eigenvectors vi, and Λ is a diagonal matrix of 

eigenvalues. The points in the Euclidean space can be obtained from: 
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𝐗 = 𝐕𝚲ଵ/ଶ        (3.19) 

 

The matrix X is constructed by arranging the n data points as row vectors in an n-

dimensional Euclidean space. The resulting embedded dataset is then provided as input 

to the SVC algorithm for identifying distinct clusters of the new dataset. 

 
 

 
 
Figure 3.3 Steps of embedding the input data into the Euclidean space 

 

3.5 Proposed Algorithm for Coherency Identification  

 

Figure 3.4 presents the overall procedure proposed for real-time detection of coherent 

generators. The assumption is made that PMUs are installed at all buses, providing 

synchrophasor data for the entire network for a long enough time window T to monitor 

the slow oscillations of generators. The groupings of generators is updated every time 

step ΔT <T.  The algorithm, as shown in Figure 3.4, demonstrates the steps required for 

each time step ΔT. 

 First, the similarity values between any pair of generators for the last time window 

T are computed according to (3.6), resulting in an ng×ng distance matrix (ng being the 

number of generators), which serves as the input data for the clustering algorithm. The 

SVC technique with parameter selection and cluster validity method previously verified 

in [83], is implemented to achieve optimal cluster structure.  
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Figure 3.4 Proposed clustering flowchart 
 

The proposed algorithm in this study for the coherency detection is robust against 

noise or outliers. If the input dataset contains noise signals, they are eliminated during 

preprocessing when the input dataset is embedded in Euclidean space. The reason is 

that the KPC-based technique orders the principal components of high-dimensional 

dataset by their eigenvalues, then selects a number (in this case, ng) of  the largest 

eigenvalues that cover largest possible variance and neglects the noise with the lowest 

eigenvalues, hence smaller variance. Moreover, the SVC method is the best option to 

deal with outliers due to its robustness to outliers. Generally, the soft contraint 
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parameter C in SVC algorithm allows the exclusion of outliers or inclusion of singleton 

clusters in the cluster structure. In this study, the soft constraint parameter is set to C=1 

to ensure every generator is assigned to a cluster and no generator is left unattended.  

In this method, the SVC is carried out repeatedly for several iterations, and the width 

parameter (q) is automatically set at each iteration to result in the best possible 

clustering result. The cluster validity measure used in this study is that every cluster 

number corresponds to a q interval, and the optimal cluster corresponds to the largest q 

interval [83]. This is due to the fact that the boundaries of the clusters change by 

variation of q. It was observed that increasing q leads to a gradual increase in the 

tightness of the contours of cluster boundaries and the number of Support Vectors, until 

the current contours split into smaller contours, resulting in an increase in the number 

of clusters [83].  

Adopting this approach eliminates the need to evaluate a conventional cluster 

validity index at each q step, resulting in a significant reduction in the total number of 

iterations. As depicted in Figure 3.4, the initial step following the dataset embedding is 

to determine the search range for qr= [qmin, qmax] [41]: 

 

𝑞௠௜௡ =
1

max
ଵஸ௜,௝ஸ௡

ฮ𝑥௜ − 𝑥௝ฮ
ଶ , 𝑞௠௔௫ =

1

min
ଵஸ௜,௝ஸ௡

ฮ𝑥௜ − 𝑥௝ฮ
ଶ     (3.20) 

 

In addition to the search range, a maximum number of clusters is also defined based 

on practical considerations of the network operator. While the simplest heuristic search 

method to find the largest q interval involves dividing the search range qr into several 

intervals and running SVC at the mean value of each interval regarding an assumed 

accuracy, this approach can lead to an unfeasibly large number of iterations in real-time 

applications, especially for large search ranges. To address this issue, a search method 

that combines Fibonacci and Bisection techniques with the minimum number of 

iterations was proposed in [83]. The parameters and details of this method were chosen 

and performed according to [82].  

Assuming that the number of clusters obtained from an SVC run with q is ni (N(q)= 

ni), the Fibonacci search technique is used to find any two points in the overall search 

range with the same number of clusters, i.e., N(qf0)= N(qf1)= ni, and the Bisection search 

technique is used to locate the approximate point at which ni changes. The SVC is 
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carried out for every Fibonacci iteration within the range [qf0, qf1] and also for every 

Bisection iteration within the range [qb0, qb1]. The procedure starts with qf0 = qmin and 

qf1 = 0.5(qmin+ qmax). Once two points with the same number of clusters are located 

during the Fibonacci search, the search stops temporarily and the procedure enters a 

bisection search to find the lower and upper bounds of the associated interval for each 

cluster number. After the interval bounds are found, qmin is updated, and the same 

procedure is repeated for finding the next q interval until all intervals are covered and 

the optimal clustering structure is provided as the clustering result associated with the 

largest interval.   

3.6 Results and Discussions  

 

The proposed algorithm's effectiveness is demonstrated through time domain 

simulations of defined events in both 39-bus and 118-bus test systems. The scenarios 

assume that all rotor angles and voltage magnitudes of generators are obtained from the 

PMUs installed at all generator buses. 

For the simulation of defined events in the 39-bus and 118-bus test systems, Bus 31 

and Bus 69 were selected as slack buses respectively. Both test systems were fully 

observable, with a sampling rate of 60 Hz and 50 Hz for 39-bus and 118-bus, 

respectively. To detect low frequency oscillations, coherency analysis was performed 

over the last time window of T=10 s and updated for every time step ΔT=1 s after the 

fault. Consequently, the CGGs were updated accordingly. The dominant inter-area 

modes usually fall within the range of 0.1-0.8 Hz, and a time window of T=10 s is 

sufficient to capture even the slowest modes [87]. 

3.6.1 Test system I: New England 39-bus system 

The components data for the 39-bus system were obtained from [88], but the 

synchronous generator parameters, including power ratings and inertia constants, were 

adjusted to ensure realistic inertia time constants and enable power dispatch within 

reasonable governor limits. A three-phase short circuit was introduced at the midpoint 

4-14 at t = 0 s, and the fault was cleared by opening the faulty line after 0.15 s. The line 

16-17 was then tripped at t = 2.1 s due to overloading. Figure 3.5 (a) shows the 

oscillations of all ten generators. The instant of fault clearing (t0) was considered as the 

reference time for the coherency analysis. 
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Figure 3.5 Rotor angle of generators during the defined scenarios in a) 39-bus system b) 118-bus system  
 

 
Figure 3.6 Colour plots of distance matrix for 39-bus system a) At t0+ΔT b) At t0+2ΔT c) At t0+3ΔT 

 

Dynamic coupling between generators was calculated, and pairwise distance values 

were computed using equation (3.15). The resulting pairwise distance values are shown 

(a) (b) 

(c) 

(a) 

(b) 
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in Figure 3.6  as colour image plots, illustrating the coupling between generators over 

the time window T at three consecutive time steps after the disturbance. Darker squares 

correspond to smaller distances (larger similarity) between the generators. As shown in 

Figure 3.6 (a), generators G2 and G3 are strongly coupled, while G4 and G5 are coupled 

together, as well as G6 and G7. All diagonal units are blue, indicating the maximum 

possible coupling since the distance of a generator with respect to itself is zero. Figure 

3.6 (b) shows that 1 second after the fault, the coupling between G2 and G3 weakens, 

while G1 shows a tendency to form a strong connection with G2. 

After constructing the distance matrix for the current time window, the data points 

are embedded in Euclidean space, and the three principal components of the rotor 

angles in the new space are depicted in Figure 3.7 . Next, the clustering algorithm is 

applied to the embedded data points to cluster the data points with the optimal number 

of CGGs, which was found to be five for the first time step. While generators with 

closer distances may have stronger coupling due to the effect of impedance in 

synchronising coefficient, this grouping can change during the short time dynamic 

response of the generators, and a generator may jump off a CGG and join another group 

regarding the dynamic change in acceleration of rotor angles. The dynamic behaviour 

of generators following the events are better demonstrated in Figure 3.8 . 

 The clustering procedure initially groups the generators into five groups: {G1}, {G2, 

G3}, {G4, G5}, {G6, G7, G9}, and {G8, G10}. After the second time step, the grouping 

is updated such that G2 separates from G3 and joins G1 to form a new CGG, while G3 

becomes a cluster containing a single generator. Then, after t=2.1 s, disconnecting the 

line 16-17 weakens the strong tie between {G9} and {G6, G7}. Hence, G9 leaves its 

CGG and tends to oscillate with {G8, G10}. Similarly, G1 joins this group, and {G1, 

G8, G9, G10} form a group of generators swinging together.  

 After embedding the original data space in the Euclidean space, the SVC algorithm 

is initiated by setting the values of q and C parameters. Since the aim is to assign every 

single generator to a CGG, without invoking any outliers, the value of C is taken as 1, 

while q is iteratively changed until the optimal q associated with the optimal cluster 

number is achieved. For the first time step, the initial search range for q is identified by 

computing the minimum and maximum values of q from (3.20) as qmin = 1.13 and qmax 

= 6912.7. A final uncertainty interval of Δ=0.1 is chosen for both Fibonacci and 

Bisection search methods, while ε=0.01 is selected as the reduction factor in the 
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uncertainty interval of Fibonacci method. Figure 3.9 (a) shows the relationship between 

the number of clusters and q obtained by SVC. As shown, the optimal number of 

clusters is five for the first time step, corresponding to the q interval [1030.8, 1888.2] 

with Δq=857.4. Compared to the scenario in which all values of q within [1.13, 6912.7] 

are investigated at every q=0.1 (due to the assumption of Δ=0.1), the total number of 

SVC iterations decreased significantly, thereby accelerating the computation 

procedure.   

 
 

   

  

Figure 3.7 Principle components of rotor angles embedded in Euclidean space for 39-bus system a) At 
t0+ΔT b) At t0+2ΔT c) At t0+3ΔT 
 

(a) (b) 

(c) 

(c) 
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Figure 3.8 The change of CGGGs in 39-bus system over time  
 

    
 
Figure 3.9 No. of clusters vs. q parameter in SVC a) 39-bus system b) 118-bus system 
  

3.6.2 Test system II: IEEE 118-bus system 

A three-phase short circuit was defined on line 8-30 close to bus 8. Without 

autoreclosing being considered, the fault was cleared after 0.2 s by opening the 

corresponding line, and then three lines 49-51, 100-103 and 103-104 were tripped at 

t=2 s, t=3 s, t=3.2 s, respectively, due to overloading protection. The post-disturbance 

behaviour of the rotor angle of generators is depicted in Figure 3.5 (b), and the curves 

with dash lines indicate generators that change their CGGs over time according to the 

proposed algorithm. Table 3.1 shows the grouping result after four consecutive time 

steps.  

The proposed SVC technique has the advantage of automatically identifying the best 

partition number, which is determined to be five as shown in Figure 3.9 (b), 

corresponding to the q interval [86.79, 255.96] with Δq=169.2. The results indicate that 

(a) (b) 



54 
 

the coherency of the generators remains unchanged from the first event until the 

occurrence of the second event at t=2 s. Initially, after the first event, five coherent areas 

are identified, while after the second event generator 49 transitions to group 4, and after 

the third event, group 5 splits into two distinct clusters. Previous offline studies have 

shown that generators 10, 12, 25, 26, 31 have a natural tendency to swing together [40]. 

However, in this particular case, disconnecting the line 8-30 weakens the inherent 

dynamic coupling of the generators, causing two distinct groups of 10, 12 and 25, 26, 

31 to swing against each other and the other CGGs, as shown in Figure 3.5 (b). 

Subsequently, opening line 49-51 immediately after the second event severs the weak 

coupling between generator 49 and the rest of the generators in its CGG. A significant 

change in the dynamic operating condition of the grid following a disturbance can 

induce a change in the coupling between the generators.  Therefore, in this scenario, 

generator 49 separates from its group and joins the groups of generators 65, 66, 69. 

Similarly, opening the lines 100-103 and 103-104 causes the group consisting of 

generators 80, 87, 89, 100, 103, 111 to split into two groups, while 80, 87, 89 swing in 

one group against 100, 103, 111.  

 Figure  3.10  shows colour plots of distance values for the first and fourth time steps 

to demonstrate the change of coherent groups. For simplicity, generators are numbered 

from 1 to 19 instead of showing the bus numbers. Several bluish patches of square units 

are identifiable in the plot, which means that these generators form different coherent 

clusters.  

The dataset representing the generators with calculated pairwise similarity values 

after the first time step is embedded in Euclidean space, and the three first principal 

components of this new dataset are depicted in Figure 3.11 .   

  Table 3.1 Clustering Result for 118-Bus System 

Time Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

t0+ΔT 10,12 25,26,31 46,49,54,59,61 65,66, 69 80,87,89,100,103,111 - 

t0+2ΔT 10,12 25,26,31 46,49,54,59,61 65,66,69 80,87,89,100,103,111 - 

t0+3ΔT 10,12 25,26,31 46,54,59,61 49,65,66,69 80,87,89,100,103,111 - 

t0+4ΔT 10,12 25,26,31 46,54,59,61 49,65,66,69 80,87,89 100,103,111 
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 Figure  3.10 Colour plots of distance matrix for 118-bus system a) At t0+ΔT b) At t0+4ΔT 

 

3.7     Validation of Generator Grouping and Comparative Analysis 

The proposed clustering algorithm's grouping of generators is validated using the 

average silhouette width. The silhouette width (Si) of a data point i is used to measure 

how similar it is to other points in the same cluster and how different it is from points 

in neighbouring clusters. Si is calculated using the following formula [89]:   

𝑆௜ = ቐ

1 − 𝑎𝑖/𝑏𝑖 if 𝑎𝑖 < 𝑏𝑖 
0 if 𝑎𝑖 = 𝑏𝑖

𝑏𝑖/𝑎𝑖 − 1 if 𝑎𝑖 > 𝑏𝑖

                
 
(3.21) 

 

Specifically, Si is defined as the difference between bi and ai divided by the maximum 

value between them, where ai is the average distance of i to all other points within its 

cluster, and bi is the smallest average distance of i to all points in any other cluster of 

which i is not a member. The overall silhouette width of a cluster structure (or shortly 

silhouette value) reflects the compactness of dataset within the clusters and separation 

from neighbouring clusters in a single value. From the above definition, −1 ≤ 𝑆௜ ≤ 1. 

Larger values of Si indicate better clustering of the dataset.  

Figure 3.12 depicts the silhouette plots of the coherent groups for different cluster 

numbers during the first time interval of the 39-bus system oscillation scenario. As 

shown in Figure 3.12(a), the overall silhouette value for the case with two coherent 

groups is 0.485, indicating that the generators are not well clustered. From Figure 

3.12(b)-(e), by increasing the number of groups to three, four, five, and six, the overall 

silhouette values increase to 0.725, 0.741, 0.817 and 0.793, respectively. This suggests 

that the proper number of coherent groups for the first time interval is five, which  

(a) 
(b) 
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Figure 3.11 Principle components of rotor angles embedded in the Euclidean space, 118-bus system, 
the first time step 

 

provides the maximum silhouette value and indicates better separation of the generators 

based on their dynamic coupling. The results are consistent with the output of the SVC 

algorithm presented in Figure 3.7 (a).   

The proposed SVC method is compared with another measurement-based coherency 

identification method which was investigated in several studies [40, 65]. In this 

alternative approach, the degree of coherency between any pair of generators is defined 

based on rotor speed deviation of generators. Spectral Clustering (SC), and Fuzzy C-

means Clustering (FCM) were used to cluster the generators with the adopted 

coherency measure in [40] and [65], respectively. The SC method is based on Eigen-

analysis of the similarity matrix, and FCM is based on the minimisation of the within-

cluster variances. The FCM method assigns each generator to multiple coherent groups 

with varying degrees of membership. Table 3.2 presents the clustering structure and 

overall silhouette values (S) of the first two intervals of the 39-bus system resulting 

from different methods, including the proposed SVC method used in the present study, 

to better demonstrate its efficiency.  

It is worth noting that both clustering methods resulted in the power system being 

split into five clusters of {1}, {3}, {4,5}, {6,7,9}, and {2,8,10} after the second 

updating time interval. It can be observed that generator 2 temporarily joined the group 

{8,10} because its rotor speed came close to that group, as shown in Figure 3.13 . 

However, over the ten-second time window, generator 2 has stronger dynamic coupling 

with generator 3. The last column of Table 3.2  compares all the overall silhouette 

values of cluster structures resulting from different methods. The higher values of S for 

SVC indicate the better quality of generator separation by the proposed SVC method. 

Therefore, dynamic coupling is a more reliable criterion for generator coherency than 



57 
 

speed deviation because it is possible to cluster the generators based on their slow 

coherency, rather than closeness of their rotor speeds. 

The reason why the FCM method separated two generators, 8 and 9, into different 

clusters despite their strong dynamic coupling in both calculations and simulations, or 

alternatively joined the groups of {4,5}and {6,7,9}, can be explained by the dependence 

of the FCM clustering algorithm on the randomly selected initial cluster centres. 

Additionally, both the SC and FCM methods require the number of clusters to be 

specified before applying the algorithm. In contrast, the SVC algorithm achieves the 

optimal clustering solution and identifies the proper number of coherent groups using 

a reliable search method. 

Comparing the proposed method with other clustering methods shows that it 

produces more reliable coherent groups with the advantage of automatically identifying 

the optimal number of clusters. 

 
Figure 3.12 Silhouette plots of CGGs for different numbers of groups in 39-bus system a) two b) three 
c) four d) five e) six clusters   

(a) (b) 

(c) 

(d) 

(e) 

(d) 
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Table 3.2 Clustering Result for 39-Bus System  

 Time Group 1 Group 2 Group 3 Group 4 Group 5 S 

SVC 
t0+ΔT 1 2,3 4,5 6,7,9 8,10 0.817 

t0+2ΔT 1,2 3 4,5 6,7,9 8,10 0.809 

FCM 
t0+ΔT 1 2,3 4,5,6,7,9 8 10 0.551 

t0+2ΔT 1 3 4,5,6,7 9 2,8,10 0.632 

SC 
t0+ΔT 1 2,3 4,5 6,7,9 8,10 0.817 

t0+2ΔT 1 3 4,5 6,7,9 2,8,10 0.785 

 

 
Figure 3.13 Rotor speed of generators with defined events in 39-bus system 

The final section of this chapter explores the computational effectiveness of the 

suggested approach as it is intended to be employed in real-time applications. Table 3.3 

presents the computation times for the 39-bus and 118-bus system cases for a specific 

disturbance in each case. The running times were compared among various methods 

using MATLAB 2017a on an Intel Core i7-6700 with 16 GB RAM. While the FCM 

and SC methods had lower computation times, the proposed method is still appropriate 

for real-time applications, as the running times on a laptop PC were much less than the 

updating time step ΔT =1 s. The SVC method had a longer running time than FCM and 

SC due to the embedding and SVC stages being time-consuming procedures. However, 

considering other benefits of the SVC method such as producing more dependable 

clustering results, being resistant to noise/outliers, and providing an automatically 
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identified number of clusters, the proposed method is the preferable choice for 

coherency detection.          

Table 3.3 Computational time of test cases  

 FCM SC SVC 

39-bus system 0.003 s 0.010 s 0.051 s 

118-bus system 0.005 s 0.029 s 0.283 s 

3.8 Summary 

 
This chapter presented a generator coherency detection approach for real-time 

applications utilising measurements of voltages and angles from PMUs. This is crucial 

for implementing protective measures in power systems such as intentional controlled 

islanding or wide area control. The methodology employs dynamic coupling of 

generators, which is determined by their acceleration following a disturbance, as the 

coherence criterion. The algorithm consisted of two main stages: embedding the 

original dataset in a Euclidean space and then performing SVC clustering on the 

embedded dataset to identify coherent generators. By clustering the generators based 

on their slow coherency, it is feasible to identify consistent oscillatory patterns among 

the generators. 

The most significant advantage of the proposed framework for generator coherency 

analysis is its ability to identify the optimal number of clusters. Unlike other clustering 

methods, this new method does not require prior information about the number of 

clusters and can systematically choose the best option among all possible clustering 

structures. Additionally, the proposed method is robust to noise and outliers. The noise 

is eliminated during the embedding stage, and the presence of outliers can be controlled 

by adjusting the soft constraint parameter of SVC. 

To verify the clustering results, a cluster validity measure based on the compactness 

of each cluster and the separation between clusters was used. The results showed that 

the proposed algorithm outperformed other coherency detection methods in reliably 

grouping generators with stronger dynamic coupling. Furthermore, the computational 

efficiency of the proposed algorithm was evaluated, and it was found to be suitable for 

implementation in real-time applications. 



60 
 

The study has highlighted that the embedding strategy incorporated in a clustering 

algorithm can have broader applicability beyond coherency analysis. It can also be 

applied to other clustering applications such as power network partitioning and 

intentional controlled islanding, as long as an appropriate dissimilarity measure is 

adopted, even if it is not a metric distance measure. 
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MILP Model for Intentional Controlled 
Islanding   

 

 

Nomenclature  

Sets  

E  Set of transmission lines 

V  Set of buses 

K={1,2,…,Nk}  Set of island numbers 

𝑉ீ/𝑉௅,  Set of generator/load buses, 

𝑉௞
ீ     Set of generator buses in island k, 𝑘 ∈ 𝐾 

𝑉௞
௅   Set of load buses in island k, 𝑘 ∈ 𝐾 

𝐿ா௜  Set of lines entering bus i 

𝐿ை௜  Set of lines leaving bus i 

Parameters  

N    Total Number of buses 

𝑁௞    Number of islands 

𝑃௟ Power flow on the line l:(i,j) 

𝑔௟  Conductance of line l:(i,j) 

𝑏௟  Susceptance of line l:(i,j)  

𝑏௟
ᇱ  Shunt susceptance of line l:(i,j) 

𝜑௜   Load angle at bus i 

𝐺௜௝  Real part of ij element in admittance matrix 

𝐵௜௝  Imaginary part of ij element in admittance matrix 

𝑧௟    Binary variable indicating line l belongs to  cutset or not 

𝑥௜,௞  Binary variable indicating bus i belongs to  island k or not 

αi   Penalty cost of load shedding at bus i 

𝑓௟,௞   Amount of fictitious flow on the line l  in partition k 

𝑃 ௜  Initial P generations at generator buses 

𝑄ீ௜  Initial Q generations at generator buses 

𝑃௅௜   Active power of load at bus i 

𝑄௅௜   Reactive power of load at bus i 

∆𝑃 ௜  Change of P generations at generator  buses 

∆𝑄ீ௜  Change of Q generations at generator  buses 

∆𝑃௅௜   Amount of active power load to be shed at bus i 

∆𝑄௅௜  Amount of reactive power load to be shed at bus i 

 ∆𝑃௜௠௕
௞   Total initial power imbalance of island k 
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4.1 Introduction 

Intentional controlled islanding is the ultimate solution that can be implemented in 

order to save the network from blackout after the occurrence of cascading failures. After 

a large disturbance, generators with strong dynamic coupling tend to oscillate together, 

forming coherent groups of generators that may separate from other CGG groups. This 

separation can ultimately result in the collapse of the entire power network. In such 

scenarios, if conventional emergency protective measures fail to mitigate the threat, ICI 

can still save the network by splitting the grid into several controlled self-sustaining 

islands, each containing coherent groups, and preventing the blackout. Once the islands 

are stabilised through generation adjustment and/or Load Shedding (LS), they can be 

synchronised and reconnected to restore the original operating condition.     

Three different aspects of the ICI problem have been investigated so far [59]. The 

first aspect is “when” to perform islanding, which was investigated in studies such as 

[5, 90] and is not the focus of the present work. The second aspect of the ICI problem 

is “where” to perform islanding, i.e., which lines of the network shall be disconnected. 

The “where” problem can be considered as a combinatorial optimisation problem with 

a suitable objective function such as minimal Power Imbalance (PI) or minimal Power 

Flow Disruption (PFD). In [91], the ICI problem was solved using minimal PI as the 

objective function; however, the resulting islands did not contain CGG, which would 

cause generators in each island to lose synchronism. To address this issue, [92] 

considered the slow coherency of generators to create stable islands with minimum PI. 

In [16], the same objective function was used along with the first swing transient 

stability of generators. However, this approach was based on linearised transient 

stability constraints and only considered the first swing equations. On the other hand, 

it was shown in [7, 23, 93] that minimal PFD not only ensures the transient stability of 

ICI but also prevents the risk of overload on transmission lines.  

𝑉௜  Voltage vector at bus i = 𝑉௜∡𝜃௜ 

Vi  Voltage magnitude at bus i 

𝜃௜   Voltage angle at bus i 

𝜃௜௝   Voltage angle difference of buses i & j 

𝐵௜   Indicator of risk for voltage instability at bus i 
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The third aspect of the ICI problem, which has received less attention, is “what” 

actions to take after separation, i.e., what post-islanding measures are necessary to 

stabilise each island. The effectiveness of implementing ICI with various remedial 

controls and protective schemes, such as load shedding and generation tripping on a 

large power system was demonstrated in [94]. A new formulation was proposed in [9] 

to coordinate the amount of load shedding between the existing Under Frequency Load 

Shedding (UFLS) plan and the LS plan applied by the ICI itself.  

In the literature, two main approaches have been proposed to solve the “where” 

problem of ICI: graph-theory-based method and optimisation-based methods. Graph-

theory-based methods consider the ICI problem as a Graph Partitioning (GP) problem, 

which is generally an NP-complete problem and cannot be solved in polynomial time 

[8], because it needs an exhaustive search in a huge search space to find the optimal 

solution. Brute-force search algorithms such as Depth-First Search (DFS) and Breadth-

First Search (BFS) [11, 25], as well as ordered binary decision diagram (OBDD) 

algorithm [24] have been proposed to search for the best islanding solution in the search 

space of all possible islanding schemes. 

In some studies [95], the initial islanding boundaries are formed by CGGs, and then 

a multi-layer GP technique is used to assign the load buses to islands such that each 

island has minimum power imbalance. A recursive Dijkstra shortest path algorithm was 

applied in [96] to allocate load buses with the shortest electrical distance to generation 

buses in initial CGGs, such that minimum imbalance is achieved. The transient 

frequency behaviour of the islands was modeled using an aggregated system frequency 

response model. The total amount of load shedding was determined by comparing the 

dynamic frequency excursions with the allowable values. However, the study did not 

address the implementation of the load shedding scheme. Another drawback of this 

study was the use of high-order and accurate frequency model of the power system, 

which could potentially slow down the computation procedure. Additionally, the study 

neglected the reactive power balance.  

The network’s graph representation was partitioned by using various clustering 

algorithms, including spectral clustering [23], hierarchical spectral clustering [97], and 

subtractive clustering [67]. In [98], spectral clustering was combined with the optimal 

alignment of normalized eigenvectors of the Laplacian matrix to partition the similarity 

graph of the power system. In [99], both balanced active and reactive power were 
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considered to create controlled islands. Active and reactive power flows were treated 

as separate weights of the network graph, and a multi-objective GP algorithm was used 

to combine the weights and transform the problem to a single objective GP. Finally, the 

edge-cut was minimised with respect to the new combined edge weight.  

The second approach to solving the ICI problem involves using mathematical 

programming to formulate the desired objective function and corresponding 

constraints. A probabilistic search algorithm based on linear programming was 

proposed in [100] to solve the ICI problem by minimising the power imbalance. The 

algorithm started from some randomly selected initial points; however, the number of 

islands was predefined.  

A combination of graph-based method and optimisation technique was implemented 

first in [6, 101] to simplify the large scale network and then optimise the objective 

function. Genetic Algorithm was used in [101] to find the boundaries with minimal load 

shedding. Angle Modulated Particle Swarm Optimisation (AMPSO) technique was 

employed in [26] to optimise a fitness function that considered both the power balance 

of islands and the coherency index. The coherency index reflects the similarity between 

the solution candidate and the desired grouping obtained from the slow coherency 

analysis of generators.  

Mixed Integer Linear Programming (MILP) was proposed in [91] to minimise the 

load shedding cost of islanding, but generator coherency was not considered in this 

study. ICI problem was solved in [92] by applying an MILP model, considering 

generator coherency, but DC power flow equations were used to achieve power balance 

in each island, which ignored the effect of reactive power balance. Although MILP was 

shown to be efficient in solving the ICI problem in several works [9, 16, 17], these 

studies primarily aimed to minimize the amount of load shedding and did not consider 

PFD as a major cause of transient instability during islanding operations. Moreover, 

stability constraints were not considered in these studies. In [6], a new MILP 

formulation was proposed to obtain the islanding solution with minimal PFD, but the 

need for corrective actions to stabilize the islands was not discussed in this study. 

Most studies on ICI fail to adequately address transient stability along with other 

stability constraints in a timely efficient framework. While these studies mostly suffice 

to show that the generator coherency constraint is enough for transient stability of 
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controlled islanding operation; they overlook the impact of power flow disruption on 

the stability of islands. On the other hand, integrating the dynamic behaviour of the 

network after separation with the ICI problem is computationally challenging and can 

cause undesired delays in real-time applications.  

This study proposes a framework that solves the ICI problem in a timely manner by 

combining transient stability constraints with both static voltage and frequency stability 

constraints. The proposed approach ensures transient stability of the ICI by minimising 

the PFD during islanding and ensuring that each island only comprises coherent 

generators. The steady-state frequency and voltage stabilities are assured by 

maintaining the active and reactive power balance of each island after islanding; 

furthermore, the network is reinforced against the voltage and frequency instabilities 

by considering a reliable voltage stability index in post-islanding generation-load 

adjustment algorithm as well as a dynamic frequency constraint.  

This study assumes the generation-load adjustments are executed as fast as possible. 

Therefore, there is a short time between the instant of splitting and load shedding 

execution, making it impractical to fully model the nonlinear dynamic frequency 

response of the system in the ICI problem. However, the study incorporated a frequency 

constraint to improve the frequency stability of islands.  

To address the ICI problem, a unified algorithm based on a two-stage linear 

programming formulation is proposed to solve both the "where" and "what" sub-

problems of ICI. In the first stage, the “where” problem is solved through an MILP 

formulation that minimises PFD and ensures each island is partitioned into a certain 

number of internally connected islands, and each island contains only coherent 

generators. In the second stage, the islanding solution is given to a multi-stage LP-based 

algorithm to adjust the power imbalance of the formed islands.  

The main contributions of this chapter can be considered as follows:  

- The formulation addresses all aspects of ICI stability, including transient 

stability (minimising PFD and coherency constraint), and voltage and frequency 

stability constraints.     

- A new post-islanding multi-stage generation-load adjustment algorithm is 

proposed based on the LP model of islands, which improves the voltage stability 

margin of the islands by using a voltage stability index. 
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- The results of islanding with minimal PDF are compared with different methods 

based on minimising the power imbalance.     

The rest of the present chapterr is organized as follows. The next section explains the 

ICI problem and motivations for different objective functions. The pre-islanding MILP 

islanding formulation is developed in Section 4.3. Then post-islanding LP formulation 

for multi-stage generation-load adjustment is explained in Section 4.4. The results of 

the simulations are presented in Section 4.5. The optimality and time efficiency of the 

proposed method is discussed in Section 4.6, and the results are compared with other 

methods in section 4.7. The conclusion is the last section of the chapter. 

4.2 ICI Problem: two-stage optimisation problem 

Most of the studies in the literature focus on either minimizing the power imbalance 

(PI) or minimising the power flow disruption (PFD) as the objective function of the ICI 

problem: 

𝑂𝐹1:  min 𝑃𝐹𝐷 = min ∑ |𝑃௟|௟:(௜,௝)∈ா
௜∈௏భ,௝∈௏మ

  (4.1) 

𝑂𝐹2: min 𝑃𝐼 =  min│ ෍ 𝑃௟

௟:(௜,௝)∈ா
௜∈௏భ,௝∈௏మ

 │ 
(4.2) 

  

It is noted that PFD is the arithmetic sum of power flows on disconnected lines between 

islands V1 and V2, while PI is the algebraic sum of power flows. For the network shown 

in Figure 4.1 , with Pl1 = -1 pu and Pl2 = +2 pu, PFD and PI are 3 pu and 1 pu, 

respectively. An advantage of the solution with minimal PFD is securing the transient 

stability of the islanding operation. For example, a solution with Pl1 = -4 pu and Pl2 = 

+4 pu will result in two islands with a balanced generation and load. However, the 

power system could hardly be expected to survive the transient disturbance with the 

amount of 8 pu. Moreover, islanding with minimal PFD minimises the risk of 

overloading of transmission lines [23]. It can also expedite the restoration process due 

to the minimum change compared to the pre-islanding condition.  
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Figure 4.1 Post-islanding corrective measures 

 

 

In this study, it is recognized that formulating all stability constraints in a single 

optimisation problem is not computationally practical to overcome all these difficulties 

simultaneously. Therefore, the ICI problem is tackled by first minimising PFD, and 

subsequently preserving the voltage and frequency stability of created islands through 

generation-load adjustments in each island. In islands with load deficiency (generation-

rich islands), generation rejection or reduction is necessary, whereas islands with 

generation deficiency (load-rich islands) required a combination of generation change 

and load shedding operations. 

Figure 4.2  demonstrates the overall structure of the ICI problem in the present work. 

The proposed strategy is based on a two-stage optimisation problem, that each stage 

deals with “where” and “what” problems, respectively. The proposed method relies on 

the slow coherency of generators. Since in the majority of state-of-the-art coherency 

studies, measurement-based techniques have shown a significant superiority in 

detecting the coherent generators over the traditional model-based methods [14], in our 

study, before the “where” sub-problem is solved, CGGs are identified by an efficient 

measurement-based clustering technique that uses the dynamic coupling between 

generators as the coherency criterion. After the occurrence of a disturbance, there is a 

strong inherent coupling among synchronous machines in the same CGG while 

swinging against other CGGs with inter-area weak coupling. Therefore, the generators 

are clustered according to the similarity function between generators i and j:   
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𝑤௜௝ = ቆ
1

𝐻௜

+
1

𝐻௝

ቇ 𝐸௜𝐸௝𝐵௜௝ 𝑐𝑜𝑠(𝛿௜ − 𝛿௝) (4.3) 

where wij is the dynamic coupling between generators. 𝐸௜, 𝛿௜ and 𝐻௜ are internal voltage, 

rotor angle and inertia constant of generator i. Bij is the imaginary part of the ijth element 

of the admittance matrix. It is assumed that all buses are equipped with Phasor 

Measurement Units (PMUs), and voltage magnitude and angle (θ) of all buses are 

available by direct measurements. Then the rotor angle (δ) of each generator can be 

obtained from the equivalent circuit diagram of the synchronous generator [20]:   

𝛿 =  𝜃 + tanିଵ ቆ
𝑋௤𝐼௧ cos 𝜑 − 𝑅௔𝐼௧ sin 𝜑

𝑉௧+𝑅௔𝐼௧ cos 𝜑 + 𝑋௤𝐼௧ sin 𝜑
ቇ (4.4) 

In the above equation, 𝑅௔, 𝑋௤ , 𝐼௧ , 𝑉௧, 𝜑 are stator resistance, quadrature axis reactance, 

terminal current, terminal voltage, and power factor angle, respectively. Both θ and δ 

are angles with respect to the network slack bus. The second term on the right side of 

(4) is the rotor angle with respect to its terminal bus voltage. State-of-the-art PMUs 

deployed in actual power systems have functions to directly record rotor angles of 

generators in real time through measurements and theoretical calculations [70]. For the 

purpose of coherency study in this research, δ is assumed to be available. However, as 

discussed in the Appendix A, the error between the ideal measurement approach and 

the estimation by (4.4) appears to be acceptable. The measured data are obtained for 

the last time window T, which is long enough (e.g. T=10 s) to extract the slow modes 

of generators, and it is repeated every short time step (e.g. ΔT=1 s) following the 

disturbance to update the CGGs.  
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Figure 4.2 The overall structure of ICI problem 

The Support Vector Clustering (SVC) technique is applied to cluster the data points 

(generators) with respect to the distance measure constructed based on (4.3) [102]. In 

this method, the input dataset, is initially embedded in Euclidean space, and then 

mapped into a higher dimensional space using a nonlinear transformation. The 

minimum sphere in the feature space, which encloses all the data points, is identified, 

and the surface of the sphere in feature space, when it is transferred back to the original 

space, represents the cluster boundaries in the original space. The main advantage of 

using SVC as the clustering technique is that this technique identifies the optimal 

number of CGGs automatically, and does not require the number of islands as a prior 

knowledge [102].  

In this study, the proper splitting timing is obtained from a reliable “when” sub-

problem solving algorithm based on an area-based index for transient stability 

assessment (TSA) of generators [37]. The TSA tool uses the result of coherency 

analysis to detect if any CGG is separating from other. The rotor angles of generators 

are referred to the centre-of-inertia (COI) of the grid, and the equivalent rotor angles of 
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all CGGs are continuously monitored. When the equivalent angle of a CGG approaches 

a threshold and different CGGs begin to separate from each other, the splitting 

command is triggered at t = ttri [2]. Coherency analysis and TSA of CGGs, which are 

pre-processing steps of the ICI problem, were investigated in the published works of 

the author [75, 102].  

When the necessity of islanding is decided, the next step is to find a suitable islanding 

solution. In the first stage, an MILP model is used to solve the “where” problem by 

determining the boundaries of the islands. The set of splitting points is determined by 

the pre-islanding optimisation problem formulated as an MILP model. This model 

minimises the PFD at the instant of islanding and ensures partitioning, connectivity and 

generator coherency constraints of the controlled islands. Partitioning constraint 

ensures that the network is split into the desired number of partitions with no physical 

connections. Inter-connectivity of each island is assured by the connectivity constraint, 

and generator coherency constraint guarantees that each island contains only coherent 

generators. The number of partitions is decided based on the number of CGGs obtained 

from pre-islanding coherency analysis.  

Once the island boundaries are determined, the second stage involves using an LP 

model to solve the “what” problem of stabilising the created islands. This model is 

adopted in a multi-stage algorithm to minimise the load shedding cost at each stage 

while considering the power flow constraint, active/reactive power balance of each 

island, and operational limits. To ensure the voltage stability of each island after 

splitting, an indicator of risk for voltage instability is linearised and integrated with the 

LP formulation. 

Since each step of the ICI can be time-consuming, it is crucial that it is performed in 

a timely manner to prevent the power system from collapse. Figure 4.3  presents the 

sequence of all the steps involved in ICI. Following a disturbance at tdis, the formed 

CGGs may separate from each other. If the emergency protection system fails to save 

the network, the TSA unit indicates the necessity of islanding at tcri and the optimal 

islanding solution is found by solving the “where” problem at ttri when the islanding 

command is triggered. The optimal solution for “what” problem is also determined after 

a computational time at tadj. Reducing these computation times are necessary for timely 

efficient ICI scheme. Furthermore, to assess the efficiency of the proposed 

methodology to be compatible with real-time applications, a time delay is considered 
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between ttri and line switching (tisl) and also between tadj and execution of generation-

load changes (tLS). This unintentional time delay takes place due to some delays in the 

communication system, relay tripping, and actuating circuit breakers. Therefore in this 

study, it assumed that line switching or generation-load adjustments are executed 0.2 s 

after the corresponding action is triggered [103]. It is also assumed that the generation 

increment is provided by fast ramping up of generators at tLS. The computation time for 

both “where” and “what problems are assumed to be 0.1 s. It will be shown in section 

6 that this assumption is reasonable for applications in real power systems with 

powerful computers.   

 

 

tcritdis ttri

TSA

tisltadj tLS
t

Execution delaySolve “where” 
problem

Solve “what” 
problem Execution delay

 

Figure 4.3 Timeline of the proposed methodology  

 

4.3 Pre-islanding MILP Model: determining island boundaries 

In this section, a MILP model is formulated to minimise the PFD at the instant of 

islanding such that partitioning, connectivity, and generator coherency constraints are 

properly met. First, the power system network is modelled by a weighted and 

undirected graph G(V,E,W) with a set of nodes (V) and edges (E) representing the buses 

and lines of the grid, respectively. The graph representation was used for the simpler 

formulation of the ICI problem. W is the set of weights between the nodes and indicates 

the absolute value of the power flow of lines. The number of partitions (Nk) is the same 

as the number of CGGs, specified by coherency analysis. Then the controlled islanding 

problem can be described  as a graph partitioning problem such that graph G(V,E) is 

partitioned into Nk subgraphs G1(V1,E1),…,GNk(VNk,ENk) with the minimum cut [8].  

 

𝑐𝑢𝑡 = ෍ 𝑃௟

௟:(௜,௝)∈ா

= ෍
ห𝑃௜௝ห + ห𝑃௝௜ห

2
௜∈௏೘, 

௝∈௏೙

 (4.5) 
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where Pij is the power flow on the line from bus i to j between islands Vm and Vn . The 

average of Pij and Pji is considered to incorporate line losses in the problem. The 

constraints of the problem guarantee that the grid is split into a certain number of 

partitions in a way that sub-graph of each partition is connected, and includes the nodes 

corresponding to coherent generators. To formulate the problem, two binary decision 

variables are defined. zl = 0 denotes that line l is in the cutset and zl = 1 if otherwise. xi,k 

= 0 if bus i belongs to island k and xi,k =1 if otherwise. The matrix X = [xi,k], 𝑋 ∈ 𝑅ே×ேೖ 

as the solution to the ICI problem indicates the belongings and boundaries of all islands. 

By considering the decision variables, the objective function is then expressed by:  

objective function: min ෍(1 − 𝑧௟)𝑃௟

௟∈ா

 (4.6) 

 

In (4.6) the lines with ends belonging to separate partitions (zl = 0) contribute to the 

partitioning cost of the ICI problem. Then the constraints of the problem are formulated 

as follows. 

4.3.1 Partitioning constraints 

The intention is to partition the graph into a specified number of sub-graphs (Nk). It 

can be achieved by the following constraints: 

෍ 𝑥௜,௞

ேೖ

௞ୀଵ

= 1      ∀𝑖 ∈ 𝑉  (4.7) 

𝑧௟ = ෍ 𝑥௜,௞𝑥௝,௞

ேೖ

௞ୀଵ

     ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 (4.8) 

𝑧௟ ≤ 1 + 𝑥௜,௞ − 𝑥௝,௞        ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 (4.9) 

𝑧௟ ≤ 1 − 𝑥௜,௞ + 𝑥௝,௞        ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 (4.10) 

𝑥௜,௞ ∈ {0,1}, 𝑧௟ ∈ {0,1}      ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 (4.11) 

 

The constraint (4.7) indicates that every node i can belong to exactly one island. (4.8) 

indicates that a line is in the final cutset if neither of the ends of the line lies in the same 

partition. According to (4.8), zl = 1 if and only if for some k such that xi,k = xj,k = 1 and 

all others xi,k’ = xj,k’ = 0. Since (4.8) has quadratic terms which are products of two 

binary variables, it cannot be used in MILP solver. Therefore (4.8) is linearised by 

equations (4.9) and (4.10) to be used in the MILP solver [104]. It means that we can 
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use (4.9) and (4.10) as alternative constraints for (4.8). The constraint (4.11) is written 

according to the definition of xi,k and zl . 

4.3.2 Connectivity constraint 

A graph is considered connected if there exists a path between every pair of nodes 

inside the graph [91], and no nodes are unreachable. Enforcing a connectivity constraint 

ensures that all buses, including generator and load buses, are interconnected on each 

island, thus preventing the formation of isolated nodes and unstable islands. Constraints 

(4.12)-(4.21) guarantee the connectivity of the graph of resulted partitions.  

 
ଵ

ே
∑ 𝑥௜,௞

௝
௜ୀଵ ≤ 𝑦௝,௞ ≤ ∑ 𝑥௜,௞

௝
௜ୀଵ       ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.12) 

𝑥௜,௞ ≤ 𝑦௜,௞       ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.13) 

𝑢௝,௞ = 𝑦௝,௞ − 𝑦௝ିଵ,௞      ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.14) 

𝑢ଵ,௞ = 𝑦ଵ,௞       ∀𝑘 ∈ 𝐾 (4.15) 

෍ 𝑢௝,௞

ே

௝ୀଵ

= 1     ∀𝑘 ∈ 𝐾 (4.16) 

𝑞௜,௞ + ෍ 𝑓௟,௞

௟∈௅ಶ೔

= 𝑥௜,௞ + ෍ 𝑓௟,௞

௟∈௅ೀ೔

           ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾 (4.17) 

𝑞௜,௞ = 𝑢௜,௞ ൭෍ 𝑥௜,௞

௞

൱ (4.18) 

𝑢௝,௞ ≤ 𝑞௝,௞ ≤ 𝑁𝑢௝,௞       ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.19) 

෍ 𝑥௜,௞

ே

௜ୀଵ

+  𝑁𝑢௝,௞ − 𝑁  ≤  𝑞௝,௞ ≤ ෍ 𝑥௜,௞

ே

௜ୀଵ

+  𝑢௝,௞ − 1   ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.20) 

𝑓௟,௞ ≤ 𝑁𝑧௟       ∀𝑙 ∈ 𝐸, 𝑘 ∈ 𝐾 (4.21) 

 

In this study, Single Commodity Flow encoding was used to enforce the connectivity 

of subgraphs [6, 105]. An arbitrary node was selected as the source of an injected flow 

into the grid. Each node in the path of this injected flow consumes one unit of flow. The 

flow conservation constraint at each node was used to enforce connectivity of the nodes. 

The node with the smallest index was chosen to be the source node in the present work. 

Two auxiliary variables yi,k, and ui,k are defined, and  equations (4.12)-(4.16) are used 

to identify the node with the smallest index in each partition. Equations (4.12)-(4.13) 
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are defined to ensure that a transition from 0 to 1 is induced at the source node and 

(4.14)-(4.16) are defined to find the source node with the smallest index. ui,k =1 means 

that node i in the kth partition has the smallest index. (4.17) and (4.18) hold the flow 

conservation at each node in the network. fl,k is a continuous variable representing the 

amount of flow on the line l in partition k. The left side of (4.17) has two components. 

𝑞௜,௞ is equivalent to the amount of injection to node i, which is equal to the size of the 

corresponding partition for the source node and 0 for other nodes, because ui,k=1 only 

for the source node. The second term is the total flow incoming the node i. The first 

term on the right side is the local consumption of node i, and the second term is the total 

flow leaving the node. Indeed, qi,k is defined as an auxiliary variable to get rid of the 

quadratic term which is the product of a binary variable (𝑢௜,௞) and a continuous one 

൫∑ 𝑥௜,௞௞ ൯, therefore it can be linearized according to (4.22) by using the upper and lower 

bounds of the continuous variable [91]. In (4.22) A and x are the continuous and binary 

variables, respectively. The bounds of qi,k are considered according to (9.2). 

൜
𝑧 = 𝐴𝑥

𝐴௠௜௡ ≤ 𝐴 ≤ 𝐴௠௔௫
≅  ൜

𝐴௠௜௡𝑥 ≤ 𝑧 ≤ 𝐴௠௔௫𝑥
𝐴 − 𝐴௠௔௫(1 − 𝑥) ≤ 𝑧 ≤ 𝐴 − 𝐴௠௜௡(1 − 𝑥)

 (4.22) 

1 ≤ ෍ 𝑥௜,௞  

௞

≤ 𝑁 (4.23) 

 

By using (4.22) and (4.23), it is now possible to replace (4.18) with (4.19) and (4.20) 

in the MILP solver. The last constraint limits the upper bound of the amount of flow in 

a line and enforces it to be 0 for the lines in the cutset.    

4.3.3 Generator coherency constraint 

All coherent generators must remain in the same partition during ICI to avoid 

transient instability of the islanding operation. The coherent generators are assigned to 

the same partition by: 

𝑥௜,௞ = 1      ∀𝑖 ∈ 𝑉௞
ீ , 𝑘 ∈ 𝐾 (4.24) 

 

where 𝑉௞
ீ  is the kth set of CGGs, obtained by the pre-processing coherency analysis.  

4.3.4 Frequency stability constraint 

According to the timeline of actions in islanding operation (Figure 4.3 ), a short time 

delay between the opening time of line breakers and load shedding is inevitable. This 
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time delay is assumed to be less than 0.2 s. To ensure the frequency stability of the 

island during this short period, the power imbalance in the created island must not 

exceed a certain value. This frequency constraint can be formulated as below: 

 

∆𝑃௜௠௕
௞ = ෍ 𝑥௜,௞ (𝑃 ௜

௜∈௏

− 𝑃௅௜)     𝑘 ∈ 𝐾 (4.25) 

∆𝑃௜௠௕
௞ ≤

2𝐻௞

𝑓଴
(𝑑𝑓/𝑑𝑡)௠௔௫         𝑘 ∈ 𝐾 (4.26) 

 

which f0 is the rated frequency and Hk is the equivalent inertia constant of generators in 

kth island and is calculated by summation of the inertial constant of all generators in the 

island. (df/dt)max is the maximum allowable rate of change of frequency (RoCoF) of 

generating units [36] which in this study is assumed 1 Hz/s as a conservative threshold 

recommended by the European Network of Transmission System Operators (ENTSO) 

[106].  

Considering all the constraints formulated above, the optimal islanding solution is 

obtained by solving the MILP problem with minimising (4.6) subject to the constraints 

given by (4.7), (4.9)-(4.11), (4.12)-(4.17), (4.19)-(4.21), and (4.24)-(4.26). 

 

4.4 Post-islanding LP Problem: Generation/Load adjustment 

The main objective in this stage is to minimise the cost of load shedding while 

considering voltage and frequency stability constraints as well as operational limits of 

the power system components. The generation-load balance of each island is restored 

with minimum change in load supply, and the balance is mainly compensated by 

changes in generation until the generators reach their voltage and operational limits. 

The cost of load shedding can be interpreted as the total weighted amount of load 

shedding. Therefore, the objective function is obtained by:  

 

objective function: min ෍ 𝛼௜∆𝑃௅௜

௜∈௏

 (4.27) 

 

where αi and ΔPLi are penalty cost and the amount of load shedding at node i, 

respectively. Considering the variables described in the Nomenclature, the constraints 

are explained as follows.  



76 
 

4.4.1 Power flow constraints 

Unlike some studies in the literature, such as [91], which only use DC power flow 

for solving the ICI problem and ignore the impact of reactive power balance on the 

voltage stability of the network, the AC power flow was utilized in this study to 

consider both frequency and voltage stability constraints of the islanding operation. The 

AC power flows of line l:(i,j) are expressed by: 

 

𝑃௟ = −𝑔௟𝑉௜
ଶ +  𝑉௜𝑉௝൫𝑔௟ cos 𝜃௜௝ + 𝑏௟ sin 𝜃௜௝൯     ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸 (4.28) 

𝑄௟ = (𝑏௟ + 𝑏௟
ᇱ 2⁄ )𝑉௜

ଶ +  𝑉௜𝑉௝൫𝑔௟ sin 𝜃௜௝ − 𝑏௟ cos 𝜃௜௝൯ ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸 (4.29) 

 

We can linearise the AC power flow equations with sufficiently accurate 

approximation by using Taylor series expansion at a given operating point assuming 

that 𝑉௜ = 𝑉௝ ≈ 1, 𝜃௜௝ ≈ 0 [15]. Thus, the line flows at steady-state condition are 

obtained from: 

𝑃௟ = 𝑧௟ൣ−𝑔௟൫𝑉௜ − 𝑉௝൯ + 𝑏௟൫𝜃௜ − 𝜃௝൯൧   ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸  (4.30) 

𝑄௟ = 𝑧௟ൣ(𝑏௟ + 𝑏௟
ᇱ)𝑉௜ − 𝑏௟𝑉௝ + 𝑔௟൫𝜃௜ − 𝜃௝൯ − 𝑏௟

ᇱ 2⁄ ൧    ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸 (4.31) 

 

The binary variable (zl) known from the solution of the pre-islanding MILP model is 

incorporated in (4.30) and (4.31) to reflect the status of line l in the cutset. If the line is 

selected to be opened zl =0 and the power flows of the line are zero, otherwise, zl =1.  

4.4.2 Power balance and operational limits 

In order to preserve the steady-state frequency and voltage levels of the resulted 

islands within an acceptable limit, active and reactive power imbalance within each 

island must be eliminated. The active and reactive power balance equations at each 

node i considering the amount of load shedding and generation changes are obtained 

by: 

𝑃 ௜ + ∆𝑃 ௜ + ෍ 𝑃௟

௟∈௅ಶ೔

= 𝑃௅௜ − ∆𝑃௅௜ + ෍ 𝑃௟

௟∈௅ೀ೔

      ∀𝑖 ∈ 𝑉 (4.32) 

𝑄ீ௜ + ∆𝑄ீ௜ + ෍ 𝑄௟

௟∈௅ಶ೔

= 𝑄௅௜ − ∆𝑄௅௜ + ෍ 𝑄௟

௟∈௅ೀ೔

   ∀𝑖 ∈ 𝑉 (4.33) 

∆𝑄௅௜ = tan 𝜑௜ ∆𝑃௅௜     ∀𝑖 ∈ 𝑉௅ (4.34) 
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It is noted that the initial power imbalance of all buses is eliminated by a combination 

of generation change (∆𝑃 ௜/∆𝑄ீ௜) and load shedding (∆𝑃௅௜/∆𝑄௅௜). It is assumed that 

the amount of load shedding at node i is non-negative: ∆𝑃௅௜ ≥ 0 and ∆𝑄௅௜ ≥ 0. (4.34) 

ensures that the load shedding at node i takes place at constant power factor.  

The operational limits of network components, including lines, generator and load 

buses are enforced via the set of constraints (4.35)-(4.42). 

𝑉௠௜௡ ≤ 𝑉௜ ≤  𝑉௠௔௫    ∀𝑖 ∈ 𝑉 (4.35) 

𝜃௠௜௡ ≤ 𝜃௜ ≤  𝜃௠௔௫    ∀𝑖 ∈ 𝑉 (4.36) 

−𝑃௠௔௫ ≤ 𝑃௟ ≤  𝑃௠௔௫    ∀𝑙 ∈ 𝐸 (4.37) 

−𝑄௠௔௫ ≤ 𝑄௟ ≤  𝑄௠௔௫    ∀𝑙 ∈ 𝐸 (4.38) 

∆𝑃 ௠௜௡ ≤ ∆𝑃 ௜ ≤  ∆𝑃 ௠௔௫    ∀𝑙 ∈ 𝐸 (4.39) 

∆𝑄ீ௠௜௡ ≤ ∆𝑄ீ௜ ≤  ∆𝑄ீ௠௔௫    ∀𝑙 ∈ 𝐸 (4.40) 

0 ≤ ∆𝑃௅௜ ≤  𝑃௅௠௔௫    ∀𝑖 ∈ 𝑉௅ (4.41) 

0 ≤ ∆𝑄௅௜ ≤  𝑄௅௠௔௫     ∀𝑖 ∈ 𝑉௅ (4.42) 

 

The maximum loading of lines depends on the thermal limit, voltage drop limit, and 

steady-state stability limit of the line [20]. Pmax and Qmax were considered according to 

load-ability curves and line lengths [20]. For example, Pmax for a line of 100km length 

was set to 2 × SIL (surge impedance loading). The values of PLmax and QLmax are 

considered, as explained in the next section.  

Considering above constraints, the generation-load adjustment at each stage of the 

multi-stage post-islanding LP problem can be formulated with minimising (4.27), 

subject to the constraints given by (4.30) to (4.42).  

4.4.3 Voltage stability constraint for multi-stage Generation-load adjustment 

Although the reactive power balance within the formed island maintains the voltage 

profile within an acceptable range, it was shown [107] there might be some cases where 

the voltage level is equal or close to the operating limits, but the power system may still 

experience voltage instability, which could lead to the entire collapse of the network. 

Therefore, I integrated the proposed post-islanding LP formulation with a method of 

voltage stability assessment to design a multi-stage algorithm of generation-load 

adjustment. The idea is that a reliable indicator of the risk of voltage instability is 



78 
 

linearised at an assumed operating point to be employed in the post-islanding LP model. 

Therefore, each stage of power adjustment is carried out with a small amount of load 

shedding so that linearisation around the operating point at each stage is accurate 

enough. The voltage stability of each island is guaranteed through the computation of 

the voltage stability indicator to assure that the voltage levels of load buses in each 

island are within a safe margin to avoid voltage collapse after splitting. Indeed, I 

employed a static technique to achieve a stable dynamic response of voltages of the 

islands. The proposed method is based on a voltage stability index developed by [108] 

and then modified and formulated by [109]. The indicator of risk of instability at load 

bus j is calculated by:  

 

𝐵௝ = ቤ1 −
∑ 𝐶௝௜𝑉௜௜∈௏ಸ

𝑉௝

ቤ    𝑗 ∈ 𝑉௅ (4.43) 

Where VG and VL are the sets of generator and load buses, respectively. 𝑉௜  and 𝑉௝  are 

voltage at load and generator buses, respectively, and Cji is the element of matric C 

determined by: 

𝑪 = −[𝑩𝑳𝑳]ିଵ (4.44) 

BLL and BLG are the imaginary parts of the matrices YLL and YLG, which are submatrices 

of the network admittance matrix and are obtained by separating the load and generator 

buses. The value of B-index changes between 0 (no-load condition) and 1 (voltage 

collapse). It is intended to construct a sensitivity matrix that associates the amount of 

load shedding with the change of the indicator. Then it will be possible to assess the 

post-islanding behaviour of each island regarding voltage stability. The indicator at bus 

j can be described by its real and imaginary parts: 

𝐵௝
ோ = 1 −

∑ 𝐶௝௜𝑉௜cos (𝜃௜ − 𝜃௝)௜∈௏ಸ

𝑉௝
 (4.45) 

𝐵௝
ூ = 1 −

∑ 𝐶௝௜𝑉௜sin (𝜃௜ − 𝜃௝)௜∈௏ಸ

𝑉௝
 (4.46) 

The change of real and imaginary parts of the indicator can be expressed based on the 

partial derivatives of the indicator with respect to voltage angle and magnitude. 
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ቈ
∆𝐵ூ

∆𝐵ோ
቉ =

⎣
⎢
⎢
⎡

𝜕𝐵ூ

𝜕𝜃

𝜕𝐵ூ

𝜕𝑉
𝜕𝐵ோ

𝜕𝜃

𝜕𝐵ோ

𝜕𝑉 ⎦
⎥
⎥
⎤

൤
∆𝜃

∆𝑉
൨ = [𝑇] ൤

∆𝜃

∆𝑉
൨ (4.47) 

 

Matrix T is the sensitivity matrix between indicator changes and voltage angle and 

magnitude changes and the equations for computing its elements are given in [109]. 

From (4.47), the change of real and imaginary parts of B can be obtained.   

∆𝐵௝
ூ = −

1

𝑉௝
෍ 𝐶௝௜𝑉௜ cos൫𝜃௜ − 𝜃௝൯

௜∈௏ಸ

∆𝜃௜ − ൫𝐵௝
ோ − 1൯∆𝜃௝ −

𝐵௝
ூ

𝑉௝
∆𝑉௝ (4.48) 

∆𝐵௝
ோ = −

1

𝑉௝
෍ 𝐶௝௜𝑉௜ sin൫𝜃௜ − 𝜃௝൯

௜∈௏ಸ

∆𝜃௜ + 𝐵௝
ூ∆𝜃௝  −

(𝐵௝
ூ − 1)

𝑉௝
∆𝑉௝ (4.49) 

 

Using the load flow Jacobian matrix [42], we can find a relationship between the change 

of indicator and power changes: 

൤
∆𝑃

∆𝑄
൨ = ൦

𝜕𝑃

𝜕𝜃

𝜕𝑃

𝜕𝑉
𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝑉

൪ ൤
∆𝜃

∆𝑉
൨ = [𝐽] ൤

∆𝜃

∆𝑉
൨ (4.50) 

ቈ
∆𝐵ூ

∆𝐵ோ
቉ = [𝑇] ൤

∆𝜃

∆𝑉
൨ = [𝑇][𝐽]ିଵ ൤

∆𝑃

∆𝑄
൨ = [𝑆] ൤

∆𝑃

∆𝑄
൨ (4.51) 

 

Where S is the sensitivity matrix between indicator changes and active and reactive 

load changes. The total change of indicator at load bus j in terms of its real and 

imaginary parts is: 

𝐵௝
ଶ = ൫𝐵௝

ோ൯
ଶ

+ ൫𝐵௝
ூ൯

ଶ
 (4.52) 

 

The sensitivity between indicator change at load bus j and change of active/reactive 

power at other buses is obtained by differentiating both sides of the above equation with 

respect to Pi and Qi, respectively: 

𝑆஻௉ೕ೔
=  

𝜕𝐵௝

𝜕𝑃௜
=

𝐵௝
ோ

𝐵௝
.
𝜕𝐵௝

ோ

𝜕𝑃௜
+

𝐵௝
ூ

𝐵௝
.
𝜕𝐵௝

ூ

𝜕𝑃௜
 (4.53) 

𝑆஻ொೕ೔
=

𝜕𝐵௝

𝜕𝑄௜
=

𝐵௝
ோ

𝐵௝
.
𝜕𝐵௝

ோ

𝜕𝑄௜
+

𝐵௝
ூ

𝐵௝
.
𝜕𝐵௝

ூ

𝜕𝑄௜
 (4.54) 
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Where 𝑆஻௉ೕ೔
 and 𝑆஻ொೕ೔

are the sensitivity of change of indicator at bus j with respect to 

change of active and reactive power at load bus i, respectively.  Now from (4.53) and 

(4.54), we can calculate the total change of stability indicator at bus j in terms of 

elements of S: 

[∆𝐵] = [𝑆஻௉ 𝑆஻ொ] ൤
∆𝑃

∆𝑄
൨ (4.55) 

∆𝐵௝ = ෍ ቀ𝑆஻௉ೕ೔
∆𝑃௅௜ + 𝑆஻ொೕ೔

∆𝑄௅௜ቁ

௜∈௏ಽ

 (4.56) 

SBP and SBQ are submatrices of matrix S corresponding to active and reactive powers, 

respectively. To keep the network in a safe distance from voltage instability, it is 

necessary to set a threshold for the values of the indicator. (i.e. 𝐵௝ < 𝐵௧௛௥)  

∆𝐵௝ = ෍ ቀ𝑆஻௉ೕ೔
∆𝑃௅௜ + 𝑆஻ொೕ೔

∆𝑄௅௜ቁ

௜∈௏ಽ

< (𝐵௧௛௥ − 𝐵௝଴) (4.57) 

The sensitivities of instability indicator are nonlinear functions of active and reactive 

power. Therefore, the change of indicator at bus j has been linearised around the 

operating point according to (4.56) to be incorporated in the linear formulation of the 

post-islanding generation-load adjustment. As the sensitivity can vary significantly 

with the changes in the network’s operating condition, using a constant value for 

sensitivities may not lead to an optimal solution. To overcome this problem, the 

generation-load adjustment design is carried out using a multi-stage algorithm.  

The idea is that by using a piecewise linear approximation of sensitivities, the 

proposed method limits the problem to a small amount at each stage until the optimal 

solution to the original problem is achieved. This method converts the original non-

linear problem into a series of linear problems. The amount of load shedding step size 

is a tradeoff between accuracy and simplicity of the proposed method, where smaller 

step sizes (e.g. 5%) can lead to more accurate solutions; however, it would be 

computationally expensive. The computation of the load-ability margin of buses in the 

power system with the LS step size of 20% was assumed to have a valid linearity 

assumption in [110]. This shedding fraction of load was considered up to 80% in [109], 

therefore, in the proposed algorithm, the amount of load to be shed at each stage is 

limited to a small value (e.g. 10% of the original load) such that the values of 

sensitivities can be considered constant. The indicator changes more rapidly when the 
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operating point is close to instability, and thus, it is recommended to select the threshold 

value far from the instability point where the behaviour of B is less nonlinear and the 

proposed linearisation is more accurate. The value of indicator at load buses of each 

island must be less than 𝐵௧௛௥after generation-load adjustment. If 𝐵௧௛௥is too high, B is 

more nonlinear and the voltage stability may not be satisfactorily ensured. On the other 

hand, if 𝐵௧௛௥is too low, the amount of load shedding will be too excessive. The suitable 

threshold level can be found from the minimum permissible voltage level of the 

network [109].   

The necessary steps for generation-load adjustments are depicted in Figure 4.4 . 

Firstly, the variables ΔPLi and ΔPGi are initialized to record the amount of load shedding 

at each stage. The initial values of instability indicators at each load bus are computed 

bases on the states of the network after splitting (V, δ, P, Q), and the sensitivities of 

indicator with P and Q are calculated at the operating point using (4.53) and (4.54). 

Matrices SBP and SBQ are constructed and stored to determine the change in the indicator 

using (4.57). The LP problem is solved and the solutions (∆𝑃௅௜
∗  and ∆𝑄௅௜

∗ ) are also 

applied to (4.57) to calculate  the change in the indicator. At this stage, the amounts of 

generation-load rescheduling and B are updated using the LP optimisation outcome. If 

the value of B exceeds the threshold, it must be further reduced. Therefore, a Newton-

Raphson-based load flow analysis updates all the voltage and angles of the network, 

considering the small changes in PLi and PGi. Then matrix C is updated, and all the 

previous steps are iterated again to modify the amount of generation-load changes. The 

detailed loop is repeated until the instability indicator reaches a value below 𝐵௧௛௥. At 

each iteration, the amount of load shedding (∆𝑃௅௜
∗ ) is determined when either B reaches 

𝐵௧௛௥, or this amount is higher than 𝑃௅௠௔௫. It should be noted that the term “multi-stage” 

in the proposed flowchart refers to the stages of calculating the final amount of load 

shedding, not the stages of LS implementation. Although in practice, the load shedding 

occurs in specific load blocks, the size of load blocks is not discussed here for the sake 

of simplicity. It is assumed that all loads are sheddable in small blocks, and the closest 

amount to the calculated value is shed. Shedding loads in large blocks may lead to over-

shedding and non-optimal solutions.        
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Figure 4.4 Algorithm for multi-stage post-islanding generation-load adjustment 

 

4.5 Simulation results 

In this section, the proposed ICI strategy is simulated on the New England 39-bus 

and IEEE 118-bus test systems, and various scenarios are defined that could potentially 

cause a network blackout in the absence of an islanding scheme. The test power systems 

are simulated in DIgSILENT PowerFactory and the proposed optimisation models are 

formulated and solved in MATLAB using the CPLEX solver. Bus 31 and Bus 69 are 

considered as slack buses in 39-bus and 118-bus systems, respectively. For coherency 

analysis, PMUs are installed at all buses, and all generators in the test system are 

equipped with IEEE Type DC1A exciter and a simple governor [20]. The weights of 
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penalty cost for load shedding at all buses are also considered to be αi = 1. Coherency 

analysis in the defined scenarios is performed over the last time window of T=10 s 

following the disturbance, and the CGGs are updated at every time step of ΔT=1 s. 

Since the dominant inter-area modes generally fall within the range of 0.1-0.8 Hz, a 

time window of T=10 s is suitable for capturing even the slowest modes [102]. 

4.5.1 Test system I: New England 39-bus system 

4.5.1.1 Case 1  

To verify the efficiency of the proposed islanding procedure, two scenarios leading 

to system collapse following a disturbance were simulated. In the first case, a three-

phase short circuit was created at the middle of line 17-27 at t = 0 s. followed by tripping 

the line at t=0.2 s and clearing the fault. Figure 4.5  shows the rotor angle oscillations 

of all generators with respect to the reference bus, generator frequencies, and voltage 

magnitudes of all buses without islanding. It can be observed that after clearing the 

fault, generators G2 & G3 separate from other generators, and G3 later separates from 

G2, leading to system instability. This unstable condition can also be observed in the 

bus voltage magnitude and generator frequencies. 

The pre-islanding coherency analysis resulted in coherent grouping of {G2, G3} and 

{G1, G4-G10}, which was passed to the MILP model as input. The COI-referred angle 

of the two CGGs indicates that islanding is necessary at tcri =1 s. By considering the 

power flow at this instant (tcri =1 s), the solution of the MILP problem for finding the 

splitting point is available at ttri =1.1 s, and the islanding command is triggered.  

The optimal solution of the MILP problem is presented in Table 4.1 , and the obtained 

cutset of islanding is illustrated in Figure 4.6 using red dashed lines. The island 

boundaries are highlighted by red and blue regions. The opening of the lines occurs at 

tisl =1.3 s due to 0.2 s delay in CB tripping and communication delays. It is observed 

that by disconnecting the lines 5-6, 7-8, and 13-14 with a total active/reactive power 

flow of 580.1 MW/458.9 MVar, the grid is split into two islands. The bigger island with 

31 buses contains generators {G1, G4-G10}, and the smaller island with eight buses 

contains two other generators {G2, G3}. After the separation, the generators with the 

largest generation capacity were considered as the slack bus in their island. Thus, G8 

and G2 were slack buses in islands 1 and 2, respectively.  
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Table 4.1 Islanding cutset, 39-bus system, case 1 

Cutset 5-6 7-8 13-14 Total 

P (MW) 55.0 63.7 461.4 580.1 

Q (MVar) 129.5 98.4 231.1 458.9 

 

 

 

 

Figure 4.5 Dynamic response without ICI, 39-bus system, case 1 

 

 

 



85 
 

G10

G8

G2 G3

G6

G7

G4

G5

G9

30

2

1

39

37

3

4

5

8

9

12

13

11

7

31

6

18
17

27

26

28

29 38

21

24

16

14

15

22 35

3623

33

19

32

10

34

20

G1

31

Island 1

Island 2

25 F

        

Figure 4.6 Island boundaries, 39-bus system, case 1 

 

 

The cutset obtained from the MILP model is fed into the multi-stage LP model to 

determine the necessary adjustments in generation and load balance. The post-islanding 

solution is assumed to be obtained at tadj = ttri+0.1=1.2 s, and all the necessary 

generation-load adjustments take place at tLS = tadj+0.2=1.4 s. The total power 

disruption and load shedding of the islanding solution is presented in Table 4.2. 

Moreover, the results of the post-islanding multi-stage LP problem are presented in 

Table 4.3. 

  

Table 4.2 ICI results  

 

 

Case 
No of 
islands 

Coherent Generators Cutset 
PFD 

(MW) 

Q of 
cutset 

(MVar) 

Total load 
shedding 

(MW) 
39-bus 
system, 
case 1 

2 {G1, G4-G10} {G2,G3}  5-6, 7-8, 13-14 580.1 437.6 391.6  

39-bus 
system, 
case 2 

3 
{G1,G8-G10} {G2,G3} {G4-
G7} 

 3-4, 4-5, 5-6, 7-8, 
13-14, 16-17 

325.9 118.5 357.1 

118-bus 
system 

2 
{10,12,25,26,31} 
{46,46,54,59,61,65,66,69,80,
87,89,100,103,111} 

 23-24,34-43,37-
40,38-65,39-40 

338.2 99.9 318.1 
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Table 4.3 Results of generation-load adjustment for the simulated cases 

 

It is important to note that island 1, with a total generation of 4716.0 MW and a load 

of 5846.6 MW, is a load-rich island with an excess load of 1130.6 MW that required to 

be compensated by some corrective measures. On the other hand, island 2 has 

generators producing 1420.6 MW, while the loads only consume 250.5 MW, indicating 

an excess generation of 1170.1 MW. After analysis, it was found that the excess load 

in island 1 can be compensated by a combination of 739.0 MW increase in generator 

outputs, and 391.6 MW load shedding. Additionally, the excess generation in island 2 

can be eliminated by reducing the generator outputs by 1170.1 MW. It should be noted 

that in ideal conditions, the power imbalance in all islands should sum up to zero. 

However, in practical scenarios, there may be imbalances due to transmission lines 

losses.  

Figure 4.7  displays the initial B-index and voltage magnitude at all non-generation 

buses in island 1. A B-index closer to 1 indicates a bus closer to voltage instability. It 

is observed that B0 ranges from 0.25 to 0.62, with larger values for buses near the island 

boundaries and smaller V0. The steady-state operating voltage falls between 0.9 and 1.1 

pu. From Figure 4.7 , the buses with a voltage magnitude below 0.9 pu have B-index 

values exceeding 0.5. Therefore, a maximum permissible B-index value of 0.5 is set for 

this case. Additionally, to keep a compromise between load shedding accuracy and 

problem simplicity, the maximum amount of load shedding at each stage of the multi-  

39-bus system, case 1: 

Island 
no. 

No. 
of 

buses 

Total 
Gen 

(MW) 

Total 
Load 
(MW) 

Pimb ΔPG ΔPL Qimb ΔQG ΔQL 

1 31 4716.0 5846.6 -1130.6 +739.0 391.6 -591.6 +511.9 79.6 

2 8 1420.6 250.5 +1170.1 -1170.1 0 +289.4 -289.4 0 

39-bus system, case 2: 

1 17 2620.0 3239.5 -619.5 +619.5 0 -394.4 +394.4 0 

2 14 2096.0 2607.1 -511.1 +154.0 357.1 -197.1 +93.8 103.3 

3 8 1420.6 250.5 +1170.1 -1170.1 0 +289.4 -289.4 0 

118-bus system: 

1 42 1076.0 1590.4 -514.4 +196.3 318.1 -354.9 +186.5 168.4 

2 76 5031.6 4348.4 +683.2 -683.2 0 +161.8 -161.8 0 
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Figure 4.7 Initial B-index and V0 of non-gen buses in island 1, 39-bus system, case 1 

 

   

Figure 4.8 Change of B-index at all buses of island 2, case 1, 39-bus system 

 

-stage LP model was capped at 10% of the original load. In Figure 4.8 , after four 

iterations of the LP model, all nodes in island 1 have B-index of below 𝐵௧௛௥.  

Figure 4.9  and Figure 4.10  compare the active/reactive power of loads and 

generations at all buses before and after islanding, respectively. Figure 4.9  shows that 

the amounts of active/reactive power of loads in island 2 (buses 7, 12, 31) does not need 

to change, whereas all loads in island 1 require a reduction with the total reduction 

given in Table 4.3. It is noted that the load curtailment with respect to the load original 

size is not substantial. Figure 4.10  indicates that the active/reactive power produced in 

island 2 by G2 and G3 decreased by 1170 MW/289.4 MVar totally to restore the power 

balance in island 2. On the other hand, the generators in island 1, mostly G10, produced 

an additional 739 MW/511.9 MVar to balance the active/reactive power. It is observed 

that the total amount of reactive power increases in island 1; however, some generators 

such as G1, G3, and G5 reduced their reactive power generations.  
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Figure 4.11  shows the dynamic trajectories of the grid after implementing the 

obtained solution. It is evident that the proposed islanding scheme was able to stabilise 

the rotor angle of generators, bus voltage magnitude, and generator frequencies after 

the critical disturbance.  

 

 

 
 

 

Figure 4.9 Load shedding in 39-bus test system, case 1 

  

 

Figure 4.10 Generation changes in 39-bus test system, case 1 
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Figure 4.11 Dynamic response with ICI, 39-bus system, case 1 

 

 

Figure 4.12 Post fault trajectories, without ICI, 39-bus system, case 2 
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4.5.1.2 Case 2  

To assess the robustness of the proposed method against changes in fault location, I 

conducted an additional simulation scenario leading to system blackout if ICI was not 

implemented. A three-phase fault was initiated on line 3-4, close to bus 4 at t=0 s and 

then was removed at t=0.15 s by opening the line 3-4. Subsequently, line 16-17 was 

tripped due to overloading. The coherency clustering algorithm recognised three 

clusters of CGGs: {G1, G8-G10}, {G2, G3} {G4-G7}. The critical time for ICI was 

calculated as tcri= 0.8 s, and the islanding time was set to tisl= 1.1 s, considering the time 

delays. As reported in Table 4.2, after opening lines 3-4, 4-5, 5-6, 7-8, 13-14, and 16-

17, the power system loses six lines with a total capacity of 325.9 MW. However, the 

stability of islands is maintained by splitting the system into three islands and making 

generation-load adjustment at tLS= 1.2 s, resulting in a total load shedding of 357.1 MW.  

Figure 4.12  and Figure 4.13  demonstrate that the islands remain stable after the ICI 

scheme is implemented. 

 

 

Figure 4.13 Post fault trajectories, with ICI, 39-bus system, case 2 
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4.5.2 Test system II: IEEE 118-bus system 

The original loads the IEEE 118-bus test system are 40% increased to push the 

network toward instability. A three-phase short circuit occurred at the middle of line 

30-38 at t=0 s, which was cleared at t=0.15 s by opening the line. Then line 26-30 was 

tripped due to overloading at t=1 s, causing the generators to oscillate in two separate 

groups. As shown in the post-fault trajectories in Figure 4.14 , after about 6 seconds, 

the group of coherent generators consisting of generators 10, 12, 25, 26, and 31, which 

stayed coherent, separated from other generators, and the bus voltages started to 

decline, ultimately leading to system blackout. Moreover, it is noted that the generator 

frequencies exceeded the acceptable band. The islanding command was triggered at 

ttri=6 s and the islanding is executed at tisl=6.2 s. The islanding solution is summarised 

in Table 4.2, and the island boundaries obtained from the MILP model are shown in 

Figure 4.16 . 

Based on the coherency analysis, two islands are formed, to stabilise the system, 

containing the CGGs by tripping five lines with a total PFD of 338.2 MW. After the 

separation, the generators at buses 12 and 69 were considered as slack buses in islands 

1 and 2. The results of the post-islanding multi-stage LP model are given in Table 4.3. 

Load shedding and generation changes are executed at ttri=6.3 s. In the smaller island 

(island 1), which is a load-rich island with 514.4 MW of excess load, the active power 

balance is achieved by increasing generation by 196.3 MW and shedding load by 318.1 

MW. Consequently, the reactive power generation in island 1 is increased by 186.5 

MVar and the load shedding reduces the reactive power at load buses by 168.4 MVar, 

achieving the balance of active and reactive powers. In island 2 as a generation-rich 

island, stability is achieved by reducing the output of generators by 683.2 MW, without 

needing to shed any load in the island. Figure 4.15  shows that the generator rotor 

angles, bus voltages and generator frequencies settle into stable conditions after 

splitting the network and implementing the generation-load adjustments. The post-

islanding dynamic response of the system suggests that the proposed methodology can 

effectively partition the network into stabilised islands and prevent the blackout.  
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Figure 4.14 Dynamic response of 118-bus system without controlled islanding 

 

Figure 4.15 Dynamic response of 118-bus system with controlled islanding 
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    To assess the efficacy of the proposed method in restoring voltage stability to the 

islands by considering the risk index of voltage instability, the post-islanding LP-based 

problem for generation-load adjustment in the 118-bus system was solved, while the 

voltage stability constraint was ignored. The LP problem was solved solely with the 

operational limits of voltage to ensure that the bus voltages were within an acceptable 

range after the splitting. The voltage profile of all buses in the 118-bus system is 

depicted in Figure 4.17 . A comparison between Figure 4.17  and Figure 4.15  highlights 

that the voltage magnitudes at buses in the controlled islanding without the voltage 

stability constraint were outside the acceptable range. In contrast, the proposed method 

effectively performs the islanding operation, leading to the formation of stable islands 

with voltage levels ranging from 0.9-1.1 pu. 

4.6 Optimality and Computation Time 

Table 4.4  presents the computation times for each stage of the islanding problem, 

highlighting the efficiency of the proposed methodology in finding optimal solutions 

within a reasonable timeframe. Additionally, the progress of both LP and MILP solvers 

for executing the solve command is displayed separately for different optimality 

tolerances. In the pre-islanding problem, the integer programming solver of CPLEX in 

MATLAB was utilised, employing the Branch-and-bound algorithm to solve the MILP 

model [111]. For the LP model of the post-islanding problem, the Dual-Simplex 

algorithm was implemented in MATLAB [111]. All problems were executed on a PC 

equipped with an Intel core i7, 2GHz CPU and 16GB RAM.  

The Branch-and-bound algorithm is utilised in a minimization problem where the 

optimal solution is bounded from below by the minimum objective of the relaxed 

solution without integrity constraints and from above by the largest integer objective 

value obtained during the solution process. The relative optimality gap is defined as the 

relative gap between these two bounds. The relative optimality gap between these two 

bounds decreases during the iterations of the algorithm until it reaches zero, indicating 

that the optimal solution has been achieved. For the 39-bus system, case 1, the optimal 

solution was obtained after 0.025 s and 115 iterations of the algorithm, while for the 

118-bus system, it was found after 0.39 s with 383 iterations. In real-time applications 

for large power systems, it is possible to use a sub-optimal solution with an acceptable 

optimality gap of 5% or 10%.   
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For the LP problem, the dual form of the main problem is solved using the Simplex 

algorithm. According to the duality theorem, the solution is optimal if and only if both 

primal and dual problems are feasible and the optimal value of the two problems 

coincide. Two measures were defined to quantify the distance to optimality: 

Primal infeasibility for the Primal problem and Dual infeasibility for the dual problem 

[112]. As presented in Table 4.4 , for the 39-bus system, the optimal amount of load 

shedding was achieved after 0.003 s with 126 iterations, while for the 118-bus system, 

it was obtained after 0.015 s and 631 iterations. The total computation times for the pre-

islanding problem were 0.84 s and 2.58 s for the 39-bus and 118-bus systems, 

respectively.  The post-islanding model was solved in 0.18 s and 0.35 s for the 39-bus 

and 118-bus systems, respectively. These results were obtained using a regular PC, 

indicating that the computation time assumed for implementing the methodology (0.1 

s) is feasible for practical applications, which typically use hardware that is much more 

powerful than a regular PC used in this study.  

 

`

Island 1 Island 2

 

Figure 4.16 Island boundaries in 118-bus test system 
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Figure 4.17 Bus voltage in 118-bus test system, with ICI, without voltage stability constraint  

 

Table 4.4 Progress of solvers 

39-bus system, case 1 118-bus system 

  MILP solver (Branch-and-bound algorithm) 

Relative gap 
(pu) 

Iter. No. PFD (MW) comp. time (s) Relative  gap 
Iter. 
No. 

PFD 
(MW) 

comp. 
time (s) 

10% 62 635.0 0.005 10% 92 620.1 0.09 

5% 85 602.3 0.010 5% 225 534.9 0.26 

0 115 580.1 0.025 0 383 338.2 0.39 

Pre-islanding problem 0.84  2.58 

  LP solver (Dual-simplex algorithm) 

Primal Infeas. Iter. No. LS (MW) comp. time (s) 
Primal 
Infeas. 

Iter. 
No. 

LS (MW) 
comp. 

time (s) 

863.6 50 642.0 0.001 797.7 100 850.0 0.004 

8.41 100 459.3 0.002 3.56 400 628.4 0.009 

0 126 391.6 0.003 0 631 318.1 0.015 

Post-islanding problem 0.18    0.35 

4.7 Comparison between ICI with min PI and min PFD 

To compare the effectiveness of islanding solutions for the two aforementioned 

objectives, identical disturbances were introduced to both 39-bus and 118-bus systems, 

and the ICI problem was solved to minimise power imbalances across all islands. As 

such, the MILP model formulation was modified in accordance with [92], and the 

results of both approaches were compared in Table 4.5 . The total amount of power 

flow disruption, load shedding, maximum frequency deviation (Δfmax) and maximum 

steady-state voltage deviation (ΔVmax) are reported to assess the performance of each 

method in controlled islanding of the power system. PFD and LS are obtained from 
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solving the ICI problem, while ΔVmax, Δfmax are the result of simulating ICI with the 

obtained PFD and LS.  

For the 39-bus test system, case 1, the cutset obtained by solving the problem with 

min PI in is {3-4, 5-8, 7-8, 14-15},  corresponding to a total PFD of 995.3 MW. As 

shown in Table 4.5 , this amount is larger than the disconnected power in the min PFD 

method, which was expected given that the problem was solved with a different 

objective rather than minimising the amount of PFD. However, it is observed that the 

total amount of load shedding in the min PI method (247 MW) is less than the amount 

obtained by the proposed method. To compare the dynamic stability of the two cases, 

the maximum frequency deviations following the same disturbance are observed. 

Figure 4.18 , showed that for the 39-bus system, post-islanding Δfmax reaches 1.17, 

which is higher than the 1.085 obtained in the case solved with min PFD (as seen in 

Figure 4.11 ).  

It is important to note that the islanding problem solved with min PI does not 

naturally limit the solutions to cutset with minimal power flow, and it may even lead to 

unstable solutions. Additionally, Figure 4.18 showed that the steady-state voltage 

deviation in the min PI method (0.18 pu) is larger than the ΔVmax in the proposed method 

(Figure 4.15 ), which integrated the voltage stability into the islanding problem. Similar 

comparative results were obtained for the simulated case in the 118-bus system, as 

presented in Table 4.5 .  

Based on the above comparative analysis, it can be concluded that the proposed 

method achieved better transient stability at the expense of losing a larger amount of 

load after islanding. It is worth noting that the primary goal of the ICI is to provide a 

way to prevent blackout.  

Table 4.5 Results of islanding for different objectives 

 39-bus system, case 1 118-bus system 

Method PFD (MW) LS (MW) Δfmax (pu) ΔVmax (pu) 
PFD 

(MW) 
LS (MW) Δfmax (pu) 

ΔVmax 
(pu) 

Min PFD 580.1 391.6 0.085 0.08 338.2 318.1 0.07 0.10 

Min PI 995.3 247.0 0.17 0.18 410.9 229.3 0.11 0.13 
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Figure 4.18 Dynamic response of ICI with minimal PI, 39-bus system, case 1 

4.8 Summary 

Unlike most other existing methods, which aim to attain an islanding solution with 

minimum ultimate power imbalance in each island, the ICI problem in this study was 

solved by minimising PFD and then stabilizing the islands after the splitting occurred. 

It was demonstrated that different forms of stability, including rotor angle, voltage, and 

frequency stability, could be achieved by minimising the PFD of the islanding operation 

while considering generator coherency and voltage and frequency stability constraints. 

To achieve this, the ICI problem was formulated as a two-stage LP-based optimisation 

problem.  

In the first stage, the proposed islanding strategy determined island boundaries by 

solving a pre-islanding MILP model that minimised PFD by considering partitioning 

and connectivity constraints, as well as the slow coherency of generators. In the first 

stage, the proposed islanding strategy determined island boundaries by solving a pre-

islanding MILP model that minimized PFD by considering partitioning and 

connectivity constraints, as well as the slow coherency of generators. The second stage 

stabilized the created islands through a multi-stage LP model that minimized the load 

shedding cost of the islands. However, generation-load adjustments were undertaken in 

one stage, with an execution delay following the disturbance. The computation times 

for the algorithms used to solve the MILP and LP models were determined, and the 

time sequence of all necessary steps of ICI was discussed, taking into account the time 
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delays in practical systems, to verify that the proposed method can prevent power 

system collapse in real-time applications.  

The optimality of the obtained solutions to the MILP and LP models was also 

explored, as well as a salient feature of the proposed islanding strategy, which improved 

the voltage stability margin by including an indicator of voltage instability in the post-

islanding problem. Comparing the results with another ICI approach based on minimal 

PI revealed that the proposed method is capable of creating more stable islands. 

However, this stability is achieved with a slightly higher amount of total load shedding. 

It should be noted that the primary objective of the ICI is to prevent blackouts, and in 

this regard, the proposed method has demonstrated good performance. 
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Intentional Controlled Islanding in wind 
integrated power systems 

 
5.1 Introduction 

Inertia is an innate feature of synchronous generators and motors, and it has a crucial 

function in regulating the frequency response. Whenever there is a sudden shortage of 

power, these rotating machines will discharge their stored kinetic energy into the grid, 

preventing a drop in frequency, and conversely, during an oversupply of power, they 

will absorb the excess energy to stabilize the frequency. However, the higher the 

penetration of inverter-connected RES and loads in the power system, the lower the 

inertia becomes, leading to a power system with low inertia that is highly susceptible 

to disturbances [113].  

The decrease in power system inertia is not only caused by the greater power 

injection from inverter-connected RES, but also due to the fluctuation of power 

injection from RES, leading to a significant variation in inertia over time. Moreover, 

the use of inverter-connected generation to imitate inertia as a potential remedy for 

mitigating the decline of system inertia and reinforcing the inertial frequency response, 

complicates the provision of frequency control in power systems. 

A power system with low and time-varying inertia will experience a more rapid and 

severe swing in frequency after a disturbance, increasing the risk of instability and 

blackouts. Therefore, for low inertia systems, ICI is crucial to prevent blackouts. 

However, the question of how to island a low inertia system remains unanswered. 

Changes in inertia will affect the coherency of generators and, consequently, the 

adopted islanding strategy. This chapter proposes a new strategy for ICI based on 

VSME model of wind turbine generator to address this question. The proposed strategy 

enables us to incorporate the Virtual Inertia Controller of WTGs into our ICI algorithm 

to capture the fast dynamic of WTGs in our islanding strategy.      
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5.1.1 Generator Coherency analysis in wind integrated power systems  

The primary difficulty in the ICI process when dealing with power systems that have 

a high penetration of RES is to identify the CGGs, because they are either dynamically 

fully decoupled from the grid (Type-4 WTGs with fully-rated converters) or partially 

decoupled from the grid (Type-3 WTG with Doubly Feed Induction Generator) [114]. 

Only a small number of research studies have documented the outcomes of research 

conducted on the ICI of power systems that incorporate RES. However, some studies 

have explored the coherency of generators in the presence of RES.  

An online measurement based coherency grouping was proposed in [40] by applying 

spectral clustering on speed deviation of generators following a disturbance. The 

coherency grouping was used in this study to design a Wide Area Control system for 

damping the inter area oscillations, however, the details of modelling the WTGs were 

not discussed. It appears that in this study, the WTGs were treated as equivalent to 

synchronous generator in terms of their dynamic response. It was assumed that the 

WTGs had the same level of coupling to the grid as synchronous generators.   

Souvik Chandra et al. [115] extended the works on previously research related to 

slow coherency and time-scale separation of the dynamic response of power system, by 

developing a mathematical model for wind-integrated power system. Their study 

indicated that the location of WPP and the level of wind penetration have impacts on 

the frequency of slow oscillatory modes, while fast oscillations are influenced by the 

network and penetrations levels, which can impact power system stability under certain 

operating conditions. 

Singular perturbation theory was utilised in [116, 117] to investigate how the 

coherency of generators is affected by the location and penetration level of WPP. The 

analytical study of inter-area oscillations in wind integrated power systems 

demonstrated [116] that DFIG integrated power systems can  exhibit three distinct time 

scales rather than two time scales in their behaviour, i.e. the slow motion of the 

aggregate angle of the wind integrated area was found to be faster than that of the 

synchronous generator area, whilst it was slower than the fast dynamics of the 

synchronous generator area. Additionally it was demonstrated that increasing the 

penetration level leads to faster inter-area oscillations between the wind-integrated area 

and the synchronous generator area.     
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The results of the two aforementioned studies indicate that model-based coherency 

analysis is insufficient for capturing the dynamic behaviour of highly-penetrated power 

systems, as the transient dynamics of the system are dependent not only on the network 

structure but also on the type and location of the disturbance [14]. Therefore, there is a 

need for the implementation of reliable measurement-based coherency grouping of 

generators that can be applied for online coherency detection in ICI schemes. 

The voltage phase angle of buses connecting to synchronous and non-synchronous 

generators was used in [56] to determine the frequency deviation at the generator 

terminal buses from the nominal frequency. The generators were then separated into 

coherent groups by applying a Nearest-neighbour clustering algorithm around the 

averaged frequency, which required a clustering threshold to be set and posed a 

challenge in the presence of RES. Additionally, this method didn’t consider the 

dynamic behaviour of the Phase Locked Loop (PLL) and assumed that the reference 

frame of the wind power plant and the grid were synchronised which ignored the delay 

between the two rotating frames and resulted in an inaccurate grouping of coherent 

generators. In other word, the study assumed that the voltage phase angle (ϕ) 

represented the dynamics of the WPP at the point of connection and could be used as a 

coherency measure, which was not a precise assumption and could lead to inaccurate 

results.   

In a different study [118], the time-frequency similarity between pairs of bus 

frequency signals was evaluated to identify CGGs in the presence of renewables. 

Initially, time-frequency features were extracted from frequency signals using Discrete 

Cosine Stockwell Transform (DCST). Then, Mean-Shift Spectral Clustering (MSSC) 

technique was employed to cluster the feature matrix. In this study, wind generators 

were assumed to be synchronised to the network via PLLs and WTGs were not 

dynamically coupled to synchronous generators. As a result, the coherency of 

generators was not analysed with synthetic inertia taken into account in generator 

models.  

A method based on a Wide Area Measurement System (WAMS) was proposed in 

[73]  was proposed to identify coherent groups of generators in a highly renewable 

penetrated power system. Multiple similarity indexes were used to detect coherent 

groups, and the final coherent groups were determined by applying the Kernel Principal 

Component Analysis (KPCA) method and the Affinity Propagation (AP) clustering 
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technique to the resulting similarity matrix. However, the study only focused on the 

trajectories of synchronous generators for coherency analysis, as it was assumed that 

non-synchronous generators have no inertia and hence were entirely decoupled from 

the network.  

Koopman Mode Analysis (KMA) was utilised in [119] to extract the oscillation 

frequency modes  of rotor angle measurements in a power system with type 4 WTGs. 

Coherent generators were identified by clustering the amplitude coefficient and initial 

phase of the largest mode. However, the effect of synthetic inertia on the oscillations 

was not considered in this study. 

A data driven approach was introduced in [58] that defined multiple similarity 

indexes to measure the similarity of trajectories between any two generators. The study 

also proposed a CRITIC (Criteria Importance Through Inter criteria Correlation) based 

decision-making method to incorporate the correlation among different indexes. An 

agglomerative Hierarchical Clustering (AHC) was applied to determine CGGs from the 

similarity matrix. Although the proposed method was demonstrated to be useful for 

capturing coherency among generators, the dynamic behaviour of renewable generators 

was not taken into consideration and only the coupling between synchronous generators 

was considered in the study. 

5.1.2 Stability of ICI in WPP integrated power systems 

Transient stability of power system depends on the ability of the synchronous 

machines to preserve or restore the balance between the mechanical and 

electromagnetic torques. The inclusion of WTGs does not modify the basic definition 

of rotor angle stability as presented in [20]. However, in wind integrated power systems, 

the overall inertia of the system decreases. Consequently, this impacts both the transient 

and frequency stability of the system [120].  

As the displacement of synchronous generators leads to a reduction in grid inertia, 

frequency deviations occur more rapidly, thereby increasing the probability of 

instability happening earlier. This highlights the necessity of developing reliable fast-

acting algorithm for ICI in power system.  

Numerous studies have been carried out on the stability of ICI in power systems, 

particularly regarding transient and frequency stability. However, there is a lack of 

research on the stability of ICI in power systems that integrate wind energy. The 
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following are some of the main findings from recent research publications. Overall, 

these recent research publications demonstrate the importance of studying the stability 

of intentional controlled islanding systems, particularly those that integrate RES such 

as wind and solar PV, and highlight the potential solutions to enhance the stability of 

such systems. 

An MILP-based method was utilised for ICI in [121] which relied on a parameter-

free coherency detection approach and aimed to generate a minimal number of islands. 

This method was proposed to establish a more practical islanding scheme, better suited 

for restoring the islanded network. However, a significant limitation of this method was 

its failure to take into account the transient stability of the ICI in the proposed 

formulation. Therefore, it was necessary to examine the transient stability through time 

domain simulations. 

A multi-objective function was introduced in [122] to minimise the power imbalance 

in each island after splitting, while maximising the transient stability of the resultant 

islands. The proposed method yielded transiently stable islands with a 20% increase in 

power imbalance compared to conventional method that used a single objective 

function of minimising power imbalance. The shortcoming was that the proposed 

method was not valid for the networks integrated with inverter-based generators. 

However, a drawback of the proposed method was that it was not applicable to networks 

integrated with inverter-based generators. 

In [123], an iterative two-stage algorithm was proposed to ensure the transient 

stability of ICI scheme, with the aim of minimising the load imbalance. In the first 

stage, the ICI problem was solved without considering the transient stability constraint, 

and in the second stage, the transient stability function of the splitting solution obtained 

from the first stage was evaluated. Then a linear constraint was introduced to the first 

stage problem, and MILP was solved to identify the final islanding solution.   

A new MILP formulation for ICI problem was introduced in [16] with minimal 

Power Imbalance as the objective function which involved the first swing transient 

stability of generators. However, this was based on linearized transient stability 

constraints and only took into account the first swing equations. 

In [124], the frequency stability of islanding was integrated with Transmission 

expansion planning (TEP) constraints of ICI in a MILP formulation to obtain a stable 
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islanding solution in future planning periods with minimised investment, operation, and 

load shedding costs. The frequency stability of islands was ensured by minimising the 

frequency deviation of generators from their island’s centre of inertia (COI) frequency.      

A multi-objective MILP approach was proposed in [125] to split a power system into 

islands with minimised load shedding, while maximising the voltage stability margin 

of the islands. They incorporated a linear frequency constraint into the ICI formulation 

to restrict the amount of temporary load shedding that occurs after the split. However, 

the study did not take into account the dynamic frequency response of the islands during 

the splitting process. This study defines the amount of load shedding associated with 

the frequency constraint as temporary load shedding, even in cases where no permanent 

load shedding is required after splitting, when steady state constraints are only 

considered. 

The frequency stability of islanding in a low inertia power system was addressed in 

[126] by including frequency deviation and RoCoF constraints in the ICI formulation. 

However, the study did not analyse the dynamic behaviour of WPP and renewable 

sources were assigned to coherent groups of synchronous generators by assessing the 

correlation coefficients between voltage angles of generator terminals. 

In [17], the linearised swing equations were employed as a constraint to represent the 

frequency response of islands after splitting. To ensure the frequency stability of 

controlled islanding, both steady-state and dynamic frequency deviation constraints 

were incorporated into the ICI formulation.  The aim was to minimize the load-

generation imbalance following separation.    

An approach for coordinating the ICI and existing under frequency load shedding 

was presented in [9, 127]. Building on the method proposed in [17], a two-stage 

formulation was introduced in [9] to coordinate the controlled islanding scheme with 

post-islanding load shedding. The frequency response of islands in the presence of 

UFLS was linearised and taken into account in the first stage of the ICI problem. Then, 

in the second stage, the amount of load shedding was adjusted to ensure stable islands. 

In both [128] and [129], the frequency stability of islanding was represented by linear 

frequency response of the islands, which was modelled as the average frequency 

response of turbine-governor and boiler models of conventional generators within each 

island. 
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The MILP formulation of ICI introduced in [130] included both frequency and 

voltage stability constraints, with islanding boundaries determined to preserve the 

transient stability of the islanding process. However, the dynamic frequency behaviour 

of islands was not considered in the study. 

The impact of doubly fed induction generators on the out-of-step centre of 

transmission lines was studied in  [131], which was served as a basis for determining 

the splitting boundaries in the ICI process.    

 Uncertainties in renewable generation were incorporated into the ICI process in 

[132] by employing an adjustable robust optimisation programming formulation. 

However, the study only examined the impact of changes in the uncertainty level of 

renewables on the coherency of conventional generators, and did not take into account 

the dynamic response of renewable generators. 

The challenges of ICI in WTG integrated power systems has not been well-addressed 

in literature. While studies have explored the coherency of generators in power systems 

using RES, there has not been sufficient investigation into the dynamic coupling 

between SGs and WTGs. In most ICI studies, WTGs are assumed to be decoupled from 

the grid, and the impact of virtual inertia on islanding strategies has not been examined. 

In addition, the effect of reducing inertia on the frequency stability of ICI has not been 

considered in existing literature. To enhance the frequency stability of ICI in the 

presence of WTGs, this study models WTGs as virtual synchronous generators and 

incorporates the frequency stability of islanding into the mixed integer linear 

programming (MILP) formulation of the ICI problem.   

5.2 Virtual inertia in WTG 

The purpose of this chapter is to investigate the effect of virtual inertia provided by 

doubly fed Induction generators (DFIG) on generator coherency and ICI results. The 

reason for selecting DFIGs in this study is that they are directly connected to the grid 

via the stator winding and partially connected to a converter through the rotor winding, 

allowing them to provide a limited amount of inertia. This is in contrast to WTG Type 

4, which is connected to the grid via a full-scale power converter. However, it should 

be noted that the virtual synchronous generator model for coherency identification is 

demonstrated using the DFIG as an example, but this does not assume that this specific 

type of generator is the only one that can be used. All equations presented in this thesis 
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can be modified and extended to address other types of WTGs or even renewable 

resources. The only difference for other types of renewables, such as WTG Type 4 or 

PVs, is that they do not have inherent inertia, and this must be extracted from the stored 

inertial energy from the rotating mass of WTGs [133] or provided by a Battery Energy 

Storage System (BESS) and relevant control schemes [134]. 

The natural inertia of synchronous generator units typically responds automatically 

during system disturbances without requiring any control actions [20]. This feature can 

also be achieved in WTGs through power electronic converters and wind turbine 

controls that can convert kinetic energy into active power, providing virtual inertia to 

the system [135]. This concept is illustrated in Figure 5.1 . The virtual inertia control 

scheme involves the emulation of the inertia of a synchronous generator by controlling 

the rotor speed of the DFIG. The scheme works by injecting a controlled amount of 

power into the grid to emulate the inertia of a synchronous generator. The amount of 

power injected depends on the difference between the rotor speed of the DFIG and the 

grid frequency. If the grid frequency decreases, the rotor speed of the DFIG is increased 

to inject more power into the grid and emulate the inertia of a synchronous generator. 

If the grid frequency increases, the rotor speed of the DFIG is decreased to absorb power 

from the grid and emulate the inertia of a synchronous generator.  

The combination of natural and virtual inertias allows the release of active power to 

the power system from the kinetic energy of generation units. In WPPs, this process is 

carried out through power electronics converters and wind turbine controls that extract 

kinetic energy from moving parts and convert it into real power output. The swing 

equation, which is directly derived from Newton's law of motion on rotating objects, 

can be used to describe this characteristic of inertia response in WTGs. Because of the 

correlation between the virtual inertia of WTG and the real inertia of synchronous 

generation units, an estimated inertia for WTG can be determined in a manner similar 

to that used for conventional generators. 

Usually, the controllers of wind turbines with variable speeds attempt to maintain the 

turbine at its optimal speed to generate the most amount of power. The MPPT block in 

Figure 5.1  is responsible for determining the ideal reference value of the rotor speed 

based on the Maximum Power Point Tracking curve. This reference value is then 

utilised by the DFIG, which adjusts its active power reference value to ensure that the 

rotor speed closely follows the reference value. The converter control, which regulates 
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the generator currents, utilises the power set point (Pref) as input to achieve the desired 

torque. The Virtual Inertia Controller (VIC) was proposed, which modifies the power 

set point as a function of the rate of change of the grid frequency (RoCoF). As shown 

in Figure 5.1 , the emulated inertia is proportional to the controller constant (Kvic). Kvic 

is similar to the inertia constant of a synchronous generator, and traditionally is 

regarded as twice the total inertia constant of wind turbine generator [136]. It was 

shown in [137] that the most appropriate value for Kvic is 1.85 times the total inertia 

constant of wind turbine generator, which was considered in this study.          

Converter 
Control

Pmeas ωref PMPPT

PVI

PI
Δω

ωrmeas

Pref

Kvic

Filterd/dtωsys

MPPT

+
-

VIC

+

+

-
+

× 

 

Figure 5.1 Virtual inertia concept in WPPs 

To model the VIC in this study, dynamic control model of DFIG was created in 

DIgSILENT PowerFactory. Then an additional control loop for the VIC (highlighted 

in Figure 5.1 ) was integrated into the model using DIgSILENT Simulation Language 

(DSL). Figure 5.2  shows the composite frame of the DFIG control. The dynamic model 

of DFIG includes several components and composite models, with each component 

representing different controllers of the overall DFIG control [138]: 

- DFIG generator model: Asynchronous machine, 0.69 kV, 5 MW, 60 Hz, 4 

poles; 

- Shaft model: Two-mass models of wind turbine drive train;   

- Turbine model: Mechanical power of wind turbine, wind speed is assumed to 

be constant;  

- Pitch control:  controls the positions of the blades with respect to longitudinal 

axis; 

- PQ control: provides d and q components of the rotor reference current for 

rotor-side converter controller; 
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- Rotor current control: controls the rotor current and voltage and provides to 

DFIG; 

- Speed control: controls the turbine speed; 

- Maximum Power Point Tracking control: ensures the turbine is operating at 

its optimal speed; 

- Frequency droop control: control frequency response of the WTG 

- Protection unit: protects the rotor-side converter against high rotor currents 

and activates the crowbar;   

- Phase-Locked Loop (PLL): phase measurement unit that provides the 

reference frame for converter; 

- Active/reactive power measurement unit 

 

 

Figure 5.2 DFIG control structure in PowerFactory 

 

 The speed controller of DFIG was modified according to the block control diagram 

shown in Figure 5.1 . The PowerFactory DSL model is depicted in Figure 5.3 . The 

Mechanics

Electronic

udc

vw

Ptot
Fmeas

Pref

ird_ref;irq_ref

dud_synch;duq_synch
u;ug..

pref_in

usr;usi

ird
;ir

q

pctrl;qctrl

Irot

spe..

id
;iq

beta

pt

pw

sp
e

ed
_r

ef

psir_r;ps..

cosphire..

co
sp

hi
u;

..

cosphim..

Frame DFIG Generic with Inertia:

SlowFrequMeas-m..
*

FreqDroop
ElmDsl*

SpeedRef
ElmDsl*

Ir_ctrl
*

Speed-Ctrl-..
ElmDsl*

Shaft
ElmDsl*

Pitch Co..
ElmDsl*

Vac_gen
StaVmea*

Vac_bus
StaVme..

Theta meas.
ElmPhi*

Protection
ElmPro*

Turbine
ElmDsl*

MPT
ElmMpt*

Current Measurement
*

Compensation
ElmCom

PQ Control
ElmPQ*

DFIG
ElmAsm*

PQ_tot
StaPqmea

C
rea

te
d

 w
ith

 D
Ig

S
IL

E
N

T P
o

w
e

rF
a

cto
ry T

he
sis Licen

ce

Pitch 
control Turbine Shaft 

Speed 
Mechanics 

DFIG 

Comp 

Current 

PLL 

PLL 

MPT 

Speed 
Ctrl Freq 

droop 

PQ 
ctrl 

droop 

Irot 
ctrl 

droo

Prot 

Vgrid 

Vgen 

PQ 
meas 

Electronic
anics 

Frame DFIG Generic with Inertia 



109 
 

differential gain of the VIC was adjusted to ensure that the provided inertia is less than 

the kinetic energy stored in the rotating mass of the wind turbine.  

It is worth noting that to enable inertial response from DFIGs, the wind turbine is 

initially de-loaded to allow the WTG to increase its power during low-frequency 

excursions.   

  

 

Figure 5.3 Speed controller of DFIG in PowerFactory, modified with VIC 

 

To analyse the inertial response of the WTG, a frequency disturbance is applied in 

the New England 39-Bus system. Figure 5.4  shows the WTG response to a step change 

in the amount of load connected to bus 29. It was assumed that a 50% increase in load 

occurred at t=2s, although this is not a very practical assumption. Figure 5.4 (a) shows 

that the rotor speed reduces immediately after the under-frequency event to release its 

kinetic energy and then recovers and settles back to the reference speed. Figure 5.4 (b) 

also shows that during the speed reduction following the frequency disturbance, the 

output power of the WTG increases. In contrast, the WTG’s response without VIC is 

presented with a dashed line in both plots. It is observed that the WTG doesn’t change 

its output in response to the frequency event.  

VIC 
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Figure 5.4 DFIG response to frequency disturbance 

 

 

5.3 Virtual Synchronous Motion Equation (VSME) and Dynamic Coupling 
between synchronous generator and DFIG 

The virtual synchronous motion equation (VSME) is a mathematical model used in 

the control strategy of WTGs that emulate the behaviour of a synchronous generator. 

The VSME is used to describe the dynamic behaviour of the WTG under different 

operating conditions. The objective of this section is to develop a mathematical model 

for a DFIG that can be represented in the form of the Rotor Motion Equation of a 

conventional synchronous generator (SG), as illustrated in Figure 5.5  [20]. This model 

will enable the analysis of the DFIG’s dynamic behaviour. In the RME model of SG, 

Pg represents the electromagnetic power of the SG. The damping coefficient is denoted 

by Dg and ωg denotes the rotor speed. Mg refers to the inertia constant, while s represents 

the differential operator. Assuming constant mechanical power, the linear form of the 

RME in the frequency domain can be expressed as [20]: 

1

𝑀௪ . 𝑠
൫−Δ𝑃௚ − 𝐷௚. Δ𝜔௚൯ = Δ𝜔௚ (5.1) 
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Figure 5.5 Rotor Motion Equation of SG 

 

This section explains how to derive and integrate the VSME model of a DFIG into a 

power system for generator coherency analysis, then the power system model will 

eventually contains only synchronous generators. A dynamic coupling equation 

between the DFIG and synchronous generator is obtained and used for generator 

clustering. The equations presented in this section are mainly obtained from [139]. 

5.3.1 DFIG model 

The DFIG model includes a transient electromagnetics model based on Phase-

Locked Loop and VIC models. The PLL is used for accurate determination of the grid 

phase angle and synchronization between the DFIG and the grid [140]. As DFIG's rotor 

operates asynchronously with respect to the grid frequency, it cannot provide a 

synchronous inertia to the power system, and hence dynamic coupling between the 

DFIG and synchronous generators is not possible. However, by integrating the VIC into 

the WTG model, it is possible to establish synchronous operation between the DFIG 

and the network and derive dynamic couplings between the WTG's and SG's. The 

DFIG's are now modelled as per VSME model for this purpose. 

Figure 5.6  shows a simplified diagram of DFIG connection to the grid. As shown in 

the figure, the total active power output of DFIG is the summation of power from the 

stator and rotor: 

𝑃஽ிூீ =
3

2
(1 − 𝑠௥)(𝑣ௗ௦𝑖ௗ௦ + 𝑣௤௦𝑖௤௦) (5.2) 

where vds and vqs refer to the stator voltage in the d axis and q axis, respectively, while 

ids and iqs refer to stator currents in the d axis and q axis stator currents; The slip ratio is 

denoted as sr. 

In the case of a small disturbance, (5.2) can be linearised as: 
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 Δ𝑃஽ிூீ =
ଷ

ଶ
(1 − 𝑠௥)(Δ𝑣ௗ௦𝑖ௗ௦ + 𝑣ௗ௦Δ𝑖ௗ௦ + Δ𝑣௤௦𝑖௤௦ + 𝑣௤௦Δ𝑖௤௦) (5.3) 

 

All the entries of the right-hand side of (5.3) will now be determined.  
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Figure 5.6 Diagram of DFIG control 

 

d

q

Vse
jδs

ωs

d’q’ ωpll

ωpll

ωs

Vqse
jδpll

δpll-δs

Vdse
j(δpll-90)

 

Figure 5.7 Synchronous reference frame (rotating at ωs) and PLL reference frame (rotating at ωpll) 
during transient state 

 

Figure 5.7  illustrates how voltage oriented control places the stator voltage Vs on the 

q-axis within the synchronous reference frame [141]. In steady-state conditions, vds = 0 

and vqs = Vs. However, during the transient state, the rotation of vds and vqs occurs on 

the d' and q' axis, respectively, of the PLL reference frame [139]. Hence, vds and vqs are: 

𝑣ௗ௦ = 𝑉௦ sin(𝛿௉௅௅ି𝛿௦) (5.4) 

𝑣௤௦ = 𝑉௦ cos(𝛿௉௅௅ି𝛿௦) (5.5) 
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Where δs and δpll represents the phase angle of the stator voltage and the q'-axis in the 

PLL frame, respectively. From (5.3), the expressions for Δvqs and Δvds can be obtained. 

Δ𝑣ௗ௦ = 𝑉௦ cos(𝛿௉௅௅ି𝛿௦) Δ𝛿௉௅௅ − 𝑉௦ cos(𝛿௉௅௅ି𝛿௦) Δ𝛿௦ = 𝑉௦(Δ𝛿௉௅௅ିΔ𝛿௦) (5.6) 

Δ𝑣௤௦ = −𝑉௦ sin(𝛿௉௅௅ି𝛿௦)Δ𝛿௉௅௅ + 𝑉௦ sin(𝛿௉௅௅ି𝛿௦)Δ𝛿௦ = 0 (5.7) 

 

Δδpll can be replaced by its mathematical equivalent from the transfer function block 

diagram [139]:   

Δ𝛿௉௅௅ ≈
𝐾௣_௉௅௅ . 𝑠 + 𝐾௜_௉௅௅

𝑠ଶ + 𝐾௣_௉௅௅ . 𝑠 + 𝐾௜_௉௅௅
Δ𝛿௦ (5.8) 

 

Where Ki_pll and Kp_pll refer to the integral and proportional gains of the PLL, 

respectively. The equation for Δiqs is obtained from Δiqr , which, in turn, is obtained 

from (5.9)-(5.14): 

𝑖௤௦ = −(𝐿௠/𝐿௦)𝑖௤௥ (5.9) 

1

2𝐻. 𝑠
(∆𝑇௠ − ∆𝑇௘) = ∆𝜔௥ (5.10) 

൬
𝐾௜௦

𝑠
+ 𝐾௣௦൰ ∆𝜔௥ = ∆𝑇௦ (5.11) 

1

1 + 𝜏𝑠
. ∆𝑖௤௥

∗ = ∆𝑖௤௥ (5.12) 

−
𝑠. 𝐾௩௜௖

1 + 𝑇௙ . 𝑠
∆𝜔௉௅௅ = ∆𝑇௩௜௖ (5.13) 

Δ𝑖௤௦ = ቈ−
∆𝑇௘

2𝐻𝑠
൬

𝐾௜௦

𝑠
+ 𝐾௣௦൰ − Δ𝜔௉௅௅

𝑠. 𝐾௩௜௖

1 + 𝑇௙𝑠
቉ .

2

3𝑝𝜓ௗ௦
.

1

1 + 𝜏𝑠
 (5.14) 

 

Where Tm and Te are mechanical and electromagnetic torque; H is the total inertia 

constant of the turbine and the generator; ωr represents the rotor speed of DFIG. Ts is 

the electromagnetic torque generated by the speed control, and Kis and Kps are the 

integral and proportional gains of the speed control, respectively. iqr and iqr* represent  

q-axis current of the rotor, and its reference value. τ denotes the time constant of the 

converter and Kvic represents the differential gain of VIC. Tf denotes the filter time 

constant, p is the number of pole pairs, ψds is the stator flux linkage on d-axis, and Tvic 

represents the torque generated by VIC. 
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Regarding (5.2) to (5.8), we have proven that Δvqs=0, vds =0, vqs=Vs, and Δvds is solely 

determined by Δδpll;  and it can be shown that ΔPdfig is obtained by [139]:  

Δ𝑃஽ிூீ =
3

2
(1 − 𝑠௥)𝑉௦

−𝑠ଶ

𝐾௣ುಽಽ
. 𝑠 + 𝐾௜ುಽಽ

Δ𝛿௉௅௅ . 𝑖ௗ௦

+
3

2
(1 − 𝑠௥)𝑣௤௦ ቈ−

∆𝑇௘

2𝐻𝑠
൬

𝐾௜௦

𝑠
+ 𝐾௣௦൰ − Δ𝜔௉௅௅

𝑠. 𝐾௩௜௖

1 + 𝑇௙𝑠
቉ 

 

(5.15) 

 

5.3.2 Virtual Synchronous Motion Equation of DFIG 

By assuming that that the rotor speed, ωr, remains almost constant near the 

equilibrium point and Vs = vqs = 1, and ω0 = 1, (5.14) can be converted into: 

−
2 [3(1 − 𝑠௥)]⁄ + 𝐺௠௘௖(𝑠)

[𝑖ௗ௦ + 𝐺௩௜௖(𝑠). 𝐺௉௅௅(𝑠)]𝑠
൫𝐾௣_௉௅௅ . 𝑠 + 𝐾௜_௉௅௅൯Δ𝑃஽ிூீ = Δ𝜔௉௅௅ (5.16) 

where 

𝐺௠௘௖(𝑠) =
2

3𝑝𝜓ௗ௦
.

1

1 + 𝜏𝑠
.

1

2𝐻𝜔௥𝑠
൬

𝐾௜௦

𝑠
+ 𝐾௣௦൰ 

 

(5.17) 

𝐺௩௜௖(𝑠) =
2

3𝑝𝜓ௗ௦
.

1

1 + 𝜏𝑠
.

𝐾௩௜௖

1 + 𝑇௙𝑠
 (5.18) 

𝐺௉௅௅(𝑠) = 𝐾௣_௉௅௅ . 𝑠 + 𝐾௜_௉௅௅ (5.19) 

 

The transfer function resulting from the mechanical components, converter control and 

speed control is denoted by Gmec(s). Gpll(s) and Gvic(s) represent the transfer functions 

generated from PLL and VIC, respectively. Hence, (5.16) can be presented in a standard 

format of (5.1) for synchronous machines.  

1

𝑀௪ . 𝑠
(−Δ𝑃஽ிூீ − 𝐷௪ . Δ𝜔௉௅௅) = Δ𝜔௉௅௅ 

 

(5.20) 

1

𝑀௪
=

2 [3(1 − 𝑠௥)]⁄ + 𝐺௠௘௖(𝑠)

[𝑖ௗ௦ + 𝐺௩௜௖(𝑠). 𝐺௉௅௅(𝑠)]
𝐾௜_௉௅௅ (5.21) 

𝐷௪ =
𝐾௣_௉௅௅

𝐾௜_௉௅௅
.

Δ𝑃஽ிூீ

Δ𝜔௉௅௅/𝑠
=

𝐾௣_௉௅௅

𝐾௜_௉௅௅
.
Δ𝑃஽ிூீ

Δ𝛿௉௅௅
 (5.22) 

 

Equation (5.20) expresses the equivalent inertia constant of DFIG. It should be noted 

that the equivalent inertia constant is not constant and varies across the frequency 

domain. This variation is influenced by various factors such as the gearbox, speed 

control, PLL, VIC, and converter. Given the fast transient response of the current 

controller in DFIG (~20 ms) [142], it is reasonable to assume that τ ≈ 0 and ignore the 
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effect of speed control due to its slow response compared to VIC and PLL. 

Additionally, applying the Initial Value Theorem in Laplace transform theory [143], 

the initial value of the inertia can be calculated as the limit of sF(s) as s approaches 

infinity, as shown in equation (5.23). Therefore, the inertia of the DFIG can be 

determined using equation (5.24). 

𝑀௪(0ା) = lim
௦→ஶ

𝑠𝑀௪(𝑠) (5.23) 

𝑀௪ ≈ (1 − 𝑠௥) ቆ
3𝑖ௗ௦

2𝐾௜_௉௅௅
+

𝐾ௗ_௩௜௖𝐾௣_௉௅௅

𝐾௜_௉௅௅𝑇௙
ቇ (5.24) 

 

The transfer function of VSME model for DFIG is shown in Figure 5.8  which is similar 

to the transfer function of synchronous machine in Figure 5.5 .  

 

Figure 5.8 VSME model of DFIG 

 

It should be noted that the initial inertia of the DFIG depends on the d-axis 

component of the stator current, as well as the parameters of the VIC and PLL. As per 

(5.24), a DFIG without VIC control has weak inertia, which is provided by the PLL. 

The PLL's primary function is to synchronize the DFIG with the grid by maintaining 

the angle difference between the DFIG voltage and the grid voltage. However, the 

integration of a VIC control into the DFIG model significantly increases the amount of 

inertia provided by the DFIG to the grid, thereby enhancing the dynamic coupling 

between the DFIG and the grid. 

To determine the dynamic coupling between a DFIG and a synchronous generator, 

the transient behaviour of the DFIG can be modelled using a virtual synchronous 

generator. The same method can be applied to obtain the dynamic coupling between 

two synchronous generators. The transient model of the DFIG can be characterized by 

its virtual internal voltage and transient reactance [144]. 
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The dynamic equivalent circuit of a DFIG is illustrated in Figure 5.9 . This has been 

demonstrated in [144] that it is possible to construct the DFIG's dynamic model by 

determining the virtual internal voltage, stator resistance, and reactance if the rotor 

currents and voltages are removed from the DFIG model's transient equations.  

The virtual internal voltage serves as a link to represent the interaction between the 

DFIG and the grid. On one hand, variations in the virtual internal voltage will affect the 

power exchange between the DFIG and the grid. On the other hand, the power exchange 

will, in turn, impact how the internal voltage changes [140]. Regarding the dynamic 

equivalent circuit of DFIG, internal voltage behind the reactance are determined from 

the equations below:  

𝑣ௗ௦ = 𝑟௦𝑖ௗ௦ − 𝑋𝑖௤௦ + 𝐸ௗ (5.25) 

𝑣௤௦ = 𝑟௦𝑖௤௦ + 𝑋𝑖ௗ௦ + 𝐸௤ (5.26) 

Where 

𝐸ௗ = 𝜔௦𝐿௠𝑖௤௥ (5.27) 

𝐸௤ = −𝜔௦𝐿௠𝑖ௗ௥ (5.28) 

𝑋 = 𝜔௦ ቆ𝐿௦ −
𝐿௠

ଶ

𝐿௥
ቇ (5.29) 

 

Ed and Eq are internal the voltages; while vd and vq represent the stator voltage in the dq 

reference frame; Similarly, idr and iqr denote the rotor current. The rated angular speed 

is denoted by ωs, while Ls represents the stator inductance, Lr represents the rotor 

inductance and Lm denotes the mutual inductance between the rotor and stator. 

rs + jX

+_ 

ids + jiqs

Ed + jEqvds + jvqs

 

Figure 5.9 Dynamic equivalent circuit of a DFIG 

 

Since the DFIG model is now presented in the same format as the classical model for 

a Synchronous Generator, it can be easily integrated into a network of SGs. The same 
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approach used for studying multi-machine networks of conventional generators can be 

followed [145]. We utilised the virtual inertia and virtual internal voltage and angle of 

the DFIG to determine the dynamic coupling between the DFIG and SG and identify 

CGGs based on the dynamic coupling between the generators. 

 

5.3.3 Generator coherency analysis in the presence to DFIGs 

The Support Vector Clustering algorithm was used to cluster the generators into 

coherent groups [102]. To construct the representing graph of the power system, the 

power system is initially reduced to the internal buses of the generators or the buses 

where the voltage behind the transient reactance is applied. For buses connected to 

DFIGs, the virtual internal bus of the DFIG is used as a node of the system graph.  

In a system with N synchronous generators, a small deviation of the rotor angle of 

SGi about the operating point can be obtained from the linearised equation for 

synchronous motion of SGi:    

 

𝑀௡𝛿̈௡∆ = − ∑ 𝐾௡௜
ே
௜ୀଵ,௜ஷ௡ 𝛿௜∆  (5.30) 

𝐾௡௜ =
𝜕𝑃௡௜

𝜕𝛿௡௜
 │ఋ೙೔బ

= 𝐸௡𝐸௜𝐵௡௜ cos 𝛿௡௜଴ (5.31) 

 
 
Here, δnΔ, Mn, and En represent the small motion of the rotor angle, inertia constant, and 

internal voltage of generator n, respectively. Bni denotes the imaginary part of the (n,i)-

th entry of the admittance matrix, and δni0 is the relative angle between generators n and 

i at the operating point. The above equations neglect the mutual conductance between 

generators. 

To obtain the transient response of a DFIG in a system with N-1 synchronous 

generators and a DFIG connected to bus j, the following equation can be used 

Regarding the VSME model of DFIG:  

𝑀௝𝛿̈௣௟௟_௝∆ = − ∑ 𝐾௝௜
௡
௜ୀଵ,௜ஷ௝ 𝛿௜∆  (5.32) 

𝐾௝௜ =
𝜕𝑃௝௜

𝜕𝛿௝௜
 │ఋೕ೔బ

= 𝐸௝𝐸௜𝐵௝௜ cos 𝛿௝௜଴    (5.33) 
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Where δpll_jΔ, Mj, Ej represent the small motion of the PLL angle, virtual inertia, and 

virtual internal voltage of the DFIG, respectively.  

 The equations for small synchronous motion of generators can be expressed in 

matrix format as follows (bold letters denote matrices): 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑀ଵ

𝑀ଶ

⋱
𝑀௝

⋱
𝑀ே⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝛿̈ଵ∆

𝛿̈ଶ∆

⋮
𝛿̈௣௟௟_௝∆

⋮
𝛿̈ே∆ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

= −𝐊

⎣
⎢
⎢
⎢
⎢
⎡

𝛿ଵ∆

𝛿ଶ∆

⋮
𝛿௣௟௟_௝∆

⋮
𝛿ே∆ ⎦

⎥
⎥
⎥
⎥
⎤

  

 

(5.34) 

𝑴𝜹̈𝜟 = −𝑲𝜹∆   (5.35) 

 
 In the equation mentioned, M and K represent the inertia and synchronizing torque 

matrices, respectively. It determines the dynamic coupling between synchronous 

generators and DFIGs in a power system that is integrated with WTGs. In this study, 

the coupling between generators was used as a similarity function in the clustering 

algorithm. The similarity function between generators i and j is defined in this section 

as the same was defined in Chapter 3 [102]: 

 

𝑤௜௝ = ቆ
1

𝑀௜
+

1

𝑀௝
ቇ 𝐸௜𝐸௝𝐵௜௝ cos 𝛿௜௝଴    (5.36) 

 
In this equation, wij represents the dynamic coupling between generators i and j, 

including both SGs and DFIGs. It should be noted that the strength of coupling between 

SGs and WTGs in the power system is affected by the dynamics of PLL and VIC. 

 

5.4 MILP formation of the ICI model  

Figure 5.10 shows the two-stage methodology proposed to address the ICI problem 

in a DFIG integrated power system. The first stage involves determining the coherent 

groups of generators through a measurement-based method during online monitoring 

of the buses with SGs and DFIGs. The input data is measured over a 10-second time 

window, which is long enough to extract the slow modes of generator oscillations. The 

network is represented as a connected graph by reducing it to internal generator nodes,  



119 
 

Represent SG with 
Internal voltage & 

rotor angle 

Represent DFIG 
with Virtual Internal 

voltage & angle 

Reduce n-machine 
system to internal 

nodes

Calculate dynamic 
coupling of generators

Coherent groups of 
generators 

Min    Load Shedding Cost

Subject to:   
                  
 - Gen. coherency constraint
 - Partitioning constraint
 - Connectivity constraint
 - Power flow constraint
 - Power balance constraint
 - Operational constraint
 - Frequency stability constraint

Coherency Analysis

MILP Problem

 

Figure 5.10 Overall procedure for ICI-VSM problem to solve the ICI problem in the presence of  DFIGs 

i.e. nodes behind the transient reactance in SGs and virtual internal generator nodes in 

DFIGs. Inertia constant and synchronizing torque matrices for the wind integrated 

power system are constructed, and dynamic coupling between all generator pairs is 

calculated as per the equations presented in the previous section. The dynamic coupling 

is used to obtain similarity indices between nodes in the graph, which are used as the 

weights of the representing graph in the clustering algorithm. Support Vector Clustering 

technique is applied to cluster the nodes representing each generator in the power 

system, including SGs and DFIGs, based on the similarity indices [102].  

As shown in the Figure 5.10, the number of clusters resulting from the coherency 

analysis of the power system forms a constraint for the second stage of the ICI problem, 
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and the number of clusters is the same as the number of controlled islands in the overall 

ICI solution.  

In the second stage of the ICI problem, a weighted undirected graph G(V,E) is 

constructed to represent the entire network, including load buses, and partition it into 

separate sub-graphs with minimum power imbalance. The weights of the graph (wij) 

represent the active power flow between the nodes i and j. To achieve this partitioning, 

an MILP formulation is used to solve an optimization problem with the objective of 

minimizing the active power imbalance in each island after separation. This objective 

is equivalent to minimizing the amount of load shedding in each island after separation 

[23]. The objective function is defined as: 

Objective function: min ෍ 𝛼௜∆𝑃௅௜

௜∈௏ಽ

    (5.37) 

   

Here, αi is a coefficient used to account for the incremental costs of load shedding for 

each bus. The ICI problem is formulated while considering the following constraints. 

To solve the ICI problem, the decision variables 𝑥௜,௞, ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 and 

𝑧௟, ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 are introduced to indicate whether a node or edge belongs to a 

particular sub-graph or not. K denotes the set of islands in these equations. If node i 

belongs to the sub-graph k, its decision variable is set to 1, otherwise it is set to 0. 

Similarly, if both ends of an edge are part of a sub-graph, its decision variable is set to 

1, otherwise it is set to 0 and the edge is considered as a member of the solution cutset 

for the ICI problem. The partitioning constraints for the ICI problem with Nk sub-graphs 

are then formulated based on these decision variables. 

෍ 𝑥௜,௞

ேೖ

௞ୀଵ

= 1      ∀𝑖 ∈ 𝑉  (5.38) 

𝑧௟ = ෍ 𝑥௜,௞𝑥௝,௞

ேೖ

௞ୀଵ

     ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 (5.39) 

𝑧௟ ≤ 1 + 𝑥௜,௞ − 𝑥௝,௞        ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 (5.40) 

𝑧௟ ≤ 1 − 𝑥௜,௞ + 𝑥௝,௞        ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 (5.41) 

𝑥௜,௞ ∈ {0,1}, 𝑧௟ ∈ {0,1}      ∀𝑙: (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾 (5.42) 
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Due to the quadratic nature of the constraint (5.39) in terms of decision variables, it is 

linearized using equations (5.40) and (5.41) for use in the linear programming solver 

The inter-connectivity of the resulting sub-graphs is ensured by applying the theory 

of network flow [6] [130]. Equations (5.43)-(5.47) are used to identify the node with 

the smallest index in each partition as the source of flow. To achieve this, auxiliary 

variables yi,k, and ui,k are defined. A transition of yi,k from 0 to 1 indicates the source 

node, and for the source node of each sub-graph, ui,k  is set to 1. Flow conservation is 

maintained through equation (5.48) with fl,k representing the amount of flow on line l 

of sub-graph k, and qi,k represents the total consumption of the sub-graph as defined in 

(5.49). Equations (5.50) and (5.51) are a linearised form of (5.49) that includes a 

quadratic term.   

 ଵ

ே
∑ 𝑥௜,௞

௝
௜ୀଵ ≤ 𝑦௝,௞ ≤ ∑ 𝑥௜,௞

௝
௜ୀଵ       ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (5.43) 

𝑥௜,௞ ≤ 𝑦௜,௞       ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (5.44) 

𝑢௝,௞ = 𝑦௝,௞ − 𝑦௝ିଵ,௞      ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (5.45) 

𝑢ଵ,௞ = 𝑦ଵ,௞       ∀𝑘 ∈ 𝐾 (5.46) 

෍ 𝑢௝,௞

ே

௝ୀଵ

= 1     ∀𝑘 ∈ 𝐾 (5.47)  

𝑞௜,௞ + ෍ 𝑓௟,௞

௟∈௅ಶ೔

= 𝑥௜,௞ + ෍ 𝑓௟,௞

௟∈௅ೀ೔

           ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾 (5.48) 

𝑞௜,௞ = 𝑢௜,௞ ൭෍ 𝑥௜,௞

௞

൱ (5.49)  

𝑢௝,௞ ≤ 𝑞௝,௞ ≤ 𝑁𝑢௝,௞       ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (5.50) 

෍ 𝑥௜,௞

ே

௜ୀଵ

+  𝑁𝑢௝,௞ − 𝑁  ≤  𝑞௝,௞ ≤ ෍ 𝑥௜,௞

ே

௜ୀଵ

+  𝑢௝,௞ − 1   ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (5.51)  

𝑓௟,௞ ≤ 𝑁𝑧௟       ∀𝑙 ∈ 𝐸, 𝑘 ∈ 𝐾 (5.52)  

 

To maintain the transient stability of power system separation during islanding, the 

ICI formulation includes the generator coherency constraint, which ensures that all 

coherent generators are located in the same partition. This constraint is implemented 

using (5.53). 
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𝑥௜,௞ = 1      ∀𝑖 ∈ 𝑉௞
ீ , 𝑘 ∈ 𝐾 (5.53) 

 
Here, 𝑉௞

ீ  represents the kth set of CGGs, which is obtained through pre-processing 

coherency analysis.  

The AC power flows of line l:(i,j) are described by: 

𝑃௟
௉ி = −𝑔௟𝑉௜

ଶ + 𝑉௜𝑉௝൫𝑔௟ cos 𝜃௜௝ + 𝑏௟ sin 𝜃௜௝൯     ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸 (5.54) 

𝑄௟
௉ி = (𝑏௟ + 𝑏௟

ᇱ 2⁄ )𝑉௜
ଶ +  𝑉௜𝑉௝൫𝑔௟ sin 𝜃௜௝ − 𝑏௟ cos 𝜃௜௝൯ ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸 (5.55) 

 

Subsequently, the line power flow equations can be linearised using the Taylor series 

expansion at operating point, assuming 𝑉௜ = 𝑉௝ ≈ 1 and 𝜃௜௝ ≈ 0 [15].  This enables the 

power flows to be obtained from the following equations: 

𝑃௟ = 𝑧௟ൣ−𝑔௟൫𝑉௜ − 𝑉௝൯ + 𝑏௟൫𝜃௜ − 𝜃௝൯൧   ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸  (5.56) 

𝑄௟ = 𝑧௟ൣ(𝑏௟ + 𝑏௟
ᇱ)𝑉௜ − 𝑏௟𝑉௝ + 𝑔௟൫𝜃௜ − 𝜃௝൯ − 𝑏௟

ᇱ 2⁄ ൧    ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸 (5.57) 

 
The equations above use a binary variable zl to approximate the amount of power flows 

and eliminate the flow of lines in the solution cutset. However, this introduces a 

quadratic term to the constraint equations. To linearize Equations (5.56) and (5.57), the 

following equations are used: 

𝑧௟𝑃௠௜௡ ≤ 𝑃௟ ≤ 𝑧௟𝑃௠௔௫     ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸 (5.58) 

𝑏௟൫𝜃௜ − 𝜃௝൯ − 𝑃௠௔௫(1 − 𝑧௟)  ≤ 𝑃௟ ≤ 𝑏௟൫𝜃௜ − 𝜃௝൯ − 𝑃௠௜௡(1 − 𝑧௟)     ∀ 𝑙 ∈ 𝐸 (5.59) 

𝑧௟𝑄௠௜௡ ≤ 𝑄௟ ≤ 𝑧௟𝑄௠௔௫     ∀ 𝑙: (𝑖, 𝑗) ∈ 𝐸 (5.60) 

𝑔௟൫𝜃௜ − 𝜃௝൯ + 𝑏௟
ᇱ 2⁄ − 𝑄௠௔௫(1 − 𝑧௟)  ≤ 𝑄௟

≤ 𝑔௟൫𝜃௜ − 𝜃௝൯ + 𝑏௟
ᇱ 2⁄ − 𝑄௠௜௡(1 − 𝑧௟)   

(5.61) 

 

To ensure steady-state voltage and frequency stability in the formed islands, it is 

necessary to maintain active and reactive power balance within each resulting island:  

𝑃 ௜ + ∆𝑃 ௜ + ෍ 𝑃௟

௟∈௅ಶ೔

= 𝑃௅௜ − ∆𝑃௅௜ + ෍ 𝑃௟

௟∈௅ೀ೔

      ∀𝑖 ∈ 𝑉 (5.62) 

𝑄ீ௜ + ∆𝑄ீ௜ + ෍ 𝑄௟

௟∈௅ಶ೔

= 𝑄௅௜ − ∆𝑄௅௜ + ෍ 𝑄௟

௟∈௅ೀ೔

   ∀𝑖 ∈ 𝑉 (5.63) 

∆𝑄௅௜ = tan 𝜑௜ ∆𝑃௅௜     ∀𝑖 ∈ 𝑉௅ (5.64) 
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Equation (5.64) is used to maintain the power factor during load shedding. 

Additionally, other equations define the operational constraints of network components 

such as lines, generator buses, and load buses as expressed by (5.65)-(5.72). 

𝑉௠௜௡ ≤ 𝑉௜ ≤  𝑉௠௔௫    ∀𝑖 ∈ 𝑉 (5.65) 

𝜃௠௜௡ ≤ 𝜃௜ ≤  𝜃௠௔௫    ∀𝑖 ∈ 𝑉 (5.66) 

−𝑃௠௔௫ ≤ 𝑃௟ ≤  𝑃௠௔௫    ∀𝑙 ∈ 𝐸 (5.67) 

−𝑄௠௔௫ ≤ 𝑄௟ ≤  𝑄௠௔௫    ∀𝑙 ∈ 𝐸 (5.68) 

∆𝑃 ௠௜௡ ≤ ∆𝑃 ௜ ≤  ∆𝑃 ௠௔௫    ∀𝑙 ∈ 𝐸 (5.69) 

∆𝑄ீ௠௜௡ ≤ ∆𝑄ீ௜ ≤  ∆𝑄ீ௠௔௫    ∀𝑙 ∈ 𝐸 (5.70) 

0 ≤ ∆𝑃௅௜ ≤  𝑃௅௠௔௫    ∀𝑖 ∈ 𝑉௅ (5.71) 

0 ≤ ∆𝑄௅௜ ≤  𝑄௅௠௔௫     ∀𝑖 ∈ 𝑉௅ (5.72) 

 

To prevent frequency instability of a network separation resulting from generation-

load imbalance immediately following the separation, the ICI problem includes 

dynamic frequency stability of the islanding. This is achieved by replacing all 

generators in an island, which are coherent, with an equivalent synchronous machine 

that shares a common frequency. Additionally, wind generators are included in the 

analysis using their equivalent virtual synchronous generator. To do this, the discretised 

equivalent frequency response of each island is incorporated into the constraints for a 

duration of ΔT with n time steps of Δt [103].  

The dynamic frequency stability constraints are crucial to ensure that the frequency 

of each island remains within safe limits, which are specified by equations (5.78) and 

(5.79). Equations (5.73) and (5.74) represent the discrete form of the swing equation 

for the equivalent synchronous machine of the CGGs. The variable Δf denotes the 

frequency deviation of each island from the nominal frequency fs following the power 

system separation, and Hk represents the inertia constant of island k. The variable ∆𝑟௡
௞ 

calculated using equation (5.75), represents the governor response of the kth island over 

the nth time step, where Rk and Tg refer to the generator droop and governor time 

constant, respectively. The variables Pimb0
k and Pshed

k in equations (5.76) and (5.77) 

represent the initial power imbalance of island k following the islanding and the amount 

of load shedding in island k due to under-frequency relaying action, respectively. It is 



124 
 

assumed in this study that the load shedding occurs at t=0.2 s following the power 

system separation, which accounts for the time delay between the line switching and 

load shedding. 

 ∆𝑓௡
௞ = ∆𝑓௡ିଵ

௞ + 𝐴௡ିଵ
௞ ∆𝑡      ∀ 𝑘 ∈ 𝐾 (5.73) 

 𝐴௡
௞ =

𝑓௦

2𝐻௞
൫∆𝑟௡

௞ + 𝑃𝑖𝑚𝑏0௞ + 𝑃𝑠ℎ𝑒𝑑௞ − 𝐷௞∆𝑓௡
௞൯      ∀ 𝑘 ∈ 𝐾 (5.74) 

∆𝑟௡
௞ = ∆𝑟௡ିଵ

௞ −
∆𝑡

𝑇
ቆ

∆𝑓௡
௞

𝑅௞
+ ∆𝑟௡ିଵ

௞ ቇ      ∀ 𝑘 ∈ 𝐾 (5.75) 

𝑃𝑖𝑚𝑏0௞ = ෍ 𝑥௜,௞(𝑃 ௜ − 𝑃௅௜)

ே

௜ୀଵ

      ∀ 𝑘 ∈ 𝐾 (5.76) 

𝑃𝑠ℎ𝑒𝑑௞ = ෍ 𝑃𝑠ℎ𝑒𝑑௜,௞

ே

௜ୀଵ

= ෍ 𝑥௜,௞∆𝑃௅௜

ே

௜ୀଵ

 ∀ 𝑘 ∈ 𝐾 (5.77) 

𝑓௡
௞ = 𝑓௦ + 𝑓௦ × ∆𝑓௡

௞ ≤ 𝑓௠௔௫      ∀ 𝑘 ∈ 𝐾 (5.78) 

𝑓௡
௞ = 𝑓௦ + 𝑓௦ × ∆𝑓௡

௞ ≥ 𝑓௡௔ௗ௜௥      ∀ 𝑘 ∈ 𝐾 (5.79) 

Since (5.77) contains a quadratic term, it is linearised to obtain constraints (5.80) and 

(5.81), which can be included in the MILP formulation. 

    0 ≤ 𝑃𝑠ℎ𝑒𝑑௜,௞ ≤ 𝑃௅௜𝑥௜,௞   ∀ 𝑘 ∈ 𝐾 (5.80) 

−𝑀൫1 − 𝑥௜,௞൯ ≤ 𝑃𝑠ℎ𝑒𝑑௜,௞ − ∆𝑃௅௜ ≤ 𝑀൫1 − 𝑥௜,௞൯ ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (5.81) 

 

The equivalent parameters for the inertia, damping factor, governor droop and time 

constant of each island are derived from the below equation.  

  𝐻௞ = ෍
𝐻௜𝑆௜

𝑆
௜∈௏ೖ

ಸ

   (5.82) 

𝐷௞ = ෍
𝐷௜𝑆௜

𝑆
௜∈௏ೖ

ಸ

   (5.83) 

1

𝑅௞
= ෍

𝑆௜

𝑅௜𝑆
௜∈௏ೖ

ಸ

 (5.84) 

1

𝑇
=

∑
ଵ

ோ೔்ಸ೔
௜∈௏ೖ

ಸ

∑
ଵ

ோ೔ ಸ்೔
మ௜∈௏ೖ

ಸ

   (5.85) 
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The optimal islanding solution is obtained by solving the MILP problem with the 

objective of minimizing (5.37), subject to the constraints given by equations (5.38), 

(5.40)-(5.48), (5.50)-(5.53), (5.58)-(5.76), and (5.78)-(5.81). 

 

5.5 Simulation results 

 
The ICI algorithm proposed in the study for WPP integrated power systems was 

evaluated using the New England 39-bus and IEEE 118-bus test systems. In the first 

stage of the algorithm, the coherency of all generators, including WTGs, was analysed 

based on the equivalent virtual synchronous generators model of WTGs. The outcome 

of the coherency analysis is used as a constraint in the second stage of the ICI algorithm, 

which employed a Mixed-Integer Linear Programming (MILP) model of the ICI 

problem. The simulation used a Type-3 generic wind turbine model. DFIG was chosen 

because it is partially decoupled from the grid and inherently provides a limited amount 

of inertia. The principles presented in this chapter for coherency of generators are also 

valid for full-scale converter wind turbines (Type-4). However, the required virtual 

inertia should be provided by a Battery Energy Storage System (BESS) instead of the 

inertia of rotating components of DFIGs. 

In each test case, some synchronous generators were replaced with WPPs to assess 

the effectiveness of the proposed ICI algorithm in WPP integrated power systems.  The 

parameters in this study were set as Ki˙pll = 100, Kp˙pll = 50, Kvic = 50, and Tf = 0.5 s.  

5.5.1 IEEE 39-bus modified system with large scale WPPs 

The test system is mostly similar to the original 39-bus system except for the 

replacement of original SGs in bus 33 and 38 with WPPs having capacities of 630 MW 

and 830 MW, respectively. The total capacity of the WPPs is now 1460 MW, resulting 

in a penetration rate of 23.8% in this system. Figure 5.11  depicts the single line diagram 

of the modified IEEE 39-bus system where WPPs G4 and G9 are highlighted in green, 

and synchronous generators are represented as black circles.    
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Figure 5.11 Modified IEEE 39-bus system with WPPs, highlighted in green 

 
In this section, we present a scenario that results in a widespread blackout if the ICI 

algorithm is not applied. First, we evaluate the scenario without Virtual Inertia Control 

(VIC) for the WPPs (Case A1), and then we reassess the same case with VIC (Case 

A2). At t=1 s, a three-phase to ground short circuit is created at the middle of line 17-

18 and cleared at t=1.2 s by opening the faulted line. From (5.25), the equivalent inertia 

constants of the WPPs at G04 and G09 are H4=0.028 and H9=0.046, respectively, which 

are lower than the inertia constants of the other synchronous generators in the system: 

H1=50, H2=3.03, H5=4.33, H6=3.48, H7=2.64, H8=2.43, H10=4.2. The generator 

coherency analysis involves constructing a distance matrix based on the dynamic 

coupling of all generators, including the WPPs, which is then used to embed the data 

points, representing the generators, in the Euclidean space. In this new space, three 

Principal Components of the dynamic couplings are identified which are shown in 

Figure 5.12 . The SVC clustering algorithm is applied to the embedded data points to 

cluster the generators with the optimal number of CGGs. For the first time window, the 

optimal number of coherent groups is found to be four. As shown in Figure 5.12 , the 

clustering procedure initially groups the generators into {G1}, {G2, G3}, {G4, G5, G6, 

G7, G9}, and {G8, G10}. To validate the results of generator coherency analysis, the 

rotor speeds of all generators, including the PLL output of generators G04 and G09, are 

presented in Figure 5.13  for the case without VIC (Kvic=0) is presented. The coherent 
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groups of generator obtained from the SVC clustering are shown in the same colour, 

which is consistent with the clustering outcome. 

 

 

Figure 5.12 Principle components of dynamic coupling between generators in modified 39-bus system 
with normal DFIGs without controlled islanding — Case A1 

 

Figure 5.13 Rotor speed of generators in modified 39-bus system with normal DFIGs without controlled 
islanding — Case A1 

 

In contrast, when VIC is implemented, the equivalent inertia constants of WPPs at 

G04 and G09 are changed to H4=3.05 and H9=4.13 respectively, which are comparable 

to the inertia constants of other synchronous generators in the system. The generator 

coherency analysis for the first two time windows following the disturbance identifies 

the coherent groups of {G1}, {G2, G3}, {G4, G5, G6, G7}, and {G8, G9, G10}. As 

S
p

e
e

d
 (

p
u

)

G4, G5, G6, G7, G9 

G2, G3 

G1 

G8, G10 

PC3 

PC2 PC1 



128 
 

shown in Figure 5.14 , it is observed that in the case with VIC equipped WPPs, 

generators G9 loses its strong dynamic coupling with generators {G4, G5, G6, G7} and 

joins G8 and G9 to create a coherent groups for this time window. The rotor speed of 

all generators and PLL output of generators G04 and G09 for the case with VIC (Kvic 

=50) is displayed in Figure 5.15  with coherent groups in the same groups marked in 

the same colour. The outcome of SVC clustering algorithm aligns with the post-fault 

rotor speed trajectories and PLL measured frequencies of the generators in Figure 5.15   

 

 

Figure 5.14 Principle components of dynamic coupling between generators in modified 39-bus system 
with VIC equipped DFIGs without controlled islanding — Case A2 
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Figure 5.15 Rotor speed of generators in modified 39-bus system with VIC equipped DFIGs without 
controlled islanding — Case A2 

 

Assuming that the TSA component of the ICI algorithm identified the need for 

controlled islanding, the islanding was executed at t=1.4 s for both cases with and 

without VIC. Load shedding was then performed at t=1.6 s. The results of the islanding 

strategy for all simulation cases are presented in Table 5.1 . The splitting boundary 

obtained using the proposed ICI-VSM algorithm in the modified 39-bus test system 

with normal DFIGs and VIC-equipped DFIGs is displayed in Figure 5.16  and Figure 

5.18 , respectively. Figure 5.17  and Figure 5.19  show the rotor speed trajectories of 

synchronous machines and the measured frequency of PLL in 39-bus system with both 

normal and VIC-type DFIG cases, respectively, after implementing the islanding 

strategy. These figures demonstrate that the stability of the system was maintained 

using this strategy.  
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As shown in Figure 5.17 , the implementing of controlled islanding in the power 

system with normal DFIGs, resulted in generators G4 and G9 remaining in the same 

coherent group as other synchronous generators G5, G6, G7, and G9. However, in the 

case of WPPs operating with VIC-equipped DFIGs, as seen in Figure 5.19 , generator 

G4 remained coherent with G5, G6 and G7, while G9 shifted to the coherent group of 

G8 and G10. The reason for the change in coherent grouping of generators is that, in 

the case of higher equivalent inertia constant of generators, the effect of electrical 

distance between generators become more dominant in determining the dynamic 

coupling between generators as compared to the case with low virtual inertia. As per 

(5.37), the dynamic coupling between a pair of generators is proportional to the 

electrical distance or impedance between generators and to the inverse of inertia 

constants.  

The time domain simulation of the controlled islanding presented in Figure 5.17  and 

Figure 5.19 also verified that the inclusion of dynamic frequency stability constraints, 

(5.73)- (5.79) in the ICI algorithm can ensure the maintenance of dynamic frequency 

stability during power system separation. The results demonstrate that the ICI algorithm 

can successfully create stable islands with acceptable steady-state frequencies. In both 

cases with low and high equivalent inertia, the controlled islands were settled at 

frequencies within the range of 0.99fs to 1.01fs, as shown in Figure 5.17  and Figure 

5.19 .        
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Figure 5.16 Controlled islands in modified 39-bus system with normal DFIGs — Case A1 

 

 

Figure 5.17 Rotor speed of generators in modified 39-bus system with normal DFIGs after controlled 
islanding— Case A1  
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Figure 5.18 Controlled islands in modified 39-bus system with VIC equipped DFIGs— Case A2 

 

 

Figure 5.19 Rotor speed of generators in modified 39-bus system with VIC equipped DFIGs after 
controlled islanding — Case A2 

 

 

 



133 
 

 
The result of the ICI-VSM algorithm for the simulation cases are presented in Table 

5.1 . In the case with a normal DFIG in the 39-bus system (Case A1), opening  lines 1-

39, 9-39, 3-4, 14-15, 17-18, and 25-26 result in a loss of six lines that carry 480.6 MW. 

Despite this loss, the stability of the islands is maintained by dividing the system into 

four separate islands and adjusting generation and load at tLS = 1.6 s. The total amount 

of load shedding required to maintain stability is 357.1 MW, as illustrated in Figure 

5.17 .  

The boundary of controlled islands 1 and 2 in the case with VIC-equipped DFIGs 

(Case A2) is the same as the case with normal DFIGs. However, in Case A2, islands 4 

expands to include generator G9 as a generator that swings coherently with G8 and 

G10. The ICI-VSM algorithm identified five lines, namely 1-39, 9-39, 3-4, 14-15, 16-

17 to be disconnected to create four islands. This results in a total disrupted power of 

575.1 MW, which is lower than the amount of PFD in Case A1. A total load of 326.3 

MW needs to be shed as part of remedial actions necessary to stabilise the formed 

islands.  

To compare the effectiveness of the proposed islanding strategy, the results of 

islanding with the ICI methodology are also presented in Table 5.1 , referred to as Case 

A0. In this case, DFIGs-connected buses are treated as load buses in the implemented 

ICI algorithm, as DFIGs are not synchronously coupled to the grid. The coherent groups 

are identified the same as in Case A1, except that generators G4 and G9 are not present 

in the coherent groups. However, the boundary of islands is the same as in Case A1. 

Therefore, the amount of load shedding is the same as in the case with low inertia 

DFIGs in ICI-VSM method.   
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Table 5.1 Results of islanding strategy (ICI-VSM) in simulated cases 

Simulation case 
Islanding 
strategy 

Groups of CGGs Splitting lines 
PFD 
(MW) 

Total 
LS 
(MW) 

Case A0: Modified IEEE 39-
bus system with decoupled 
DFIGs 

ICI 
{G1}, {G2, G3}, 
{G5, G6, G7}, 
{G8, G10} 

1-39, 9-39, 3-4, 
15-16, 17-18, 25-
26 

621.6 357.1 

Case A1: Modified IEEE 39-
bus system with normal DFIGs 
(Kvic=0) 

ICI-VSM 
{G1}, {G2, G3}, 
{G4, G5, G6, G7, 
G9}, {G8, G10} 

1-39, 9-39, 3-4, 
14-15, 17-18, 25-
26 

621.6 357.1 

Case A2: Modified IEEE 39-
bus system with DFIG-VIC 
(Kvic =50) 

ICI-VSM 

{G1}, {G2, G3}, 
{G4, G5, G6, 
G7}, {G8, G9, 
G10} 

1-39, 9-39, 3-4, 
14-15, 16-17 

575.1 326.3 

Case B0: Modified IEEE 118-
bus system with decoupled 
DFIGs 

ICI 
{G1-G5}, {G6-
G19} 

15-33, 19-34, 30-
38, 23-24 

 82.5 251.3 

Case B1: Modified IEEE 118-
bus system with normal DFIGs 
(Kvic =0) 

ICI-VSM 
{G1-G5}, {G6-
G19} 

15-33, 19-34, 30-
38, 23-24 

 82.5 251.3 

Case B2: Modified IEEE 118-
bus system with DFIG-VIC 
(Kvic =50) 

ICI-VSM 
{G1-G5}, {G6-
G14}, {G15-
G19} 

15-33, 19-34, 30-
38, 23-24, 77–82, 
96–97, 80–96, 
98–100, 80–99 

137.8 214.6 

 

 

5.5.2 IEEE 118-bus system modified with large scale WPPs 

 
In this section, the impact of the VIC on the coherency and islanding procedure is 

analysed using the ICI-VSM algorithm when applied to the modified IEEE 118-bus test 

system. The test system consists of 19 numbered generators, 177 transmission lines, 9 

transformers and 91 constant power loads. The simplified topological diagram of the 

modified IEEE 118-Bus test system is shown in Figure 5.20 . To investigate the effect 

of VIC, the original 118-bus system was modified by replacing the generators at buses 

89, 100, 103 (G16, G17 & G18) with WPPs that generate the same power output as 

synchronous generators. In the modified test system, the DFIGs are highlighted in 

green, as shown in Figure 5.20 .      
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Figure 5.20 Modified IEEE 118-bus with WPPs, highlighted in green 

A three-phase to ground short circuit occurred at t=1 s, in the middle of line 38-65, 

and it was cleared at t=1.2 s by tripping the faulty line. After disconnecting the faulted 

line, subsequent tripping of the lines 69-75, 49-66, 64-65, and 62-66 occurred at t=2, 3, 

4, 5 s, respectively, due to thermal overloading. The equivalent inertia constants of 

WPPs at buses 89, 100 and 103 are H16=0.043, H17=0.041 and H18=0.036, respectively, 

as calculated using (5.25). Similar to the defined scenario in the IEEE 39-bus system, 

to verify the coherency and islanding analysis, time domain simulations are performed 

for two cases: Case B1, where the synchronous generators are replaced by normal 

DFIGs, and Case B2, with VIC-equipped DFIGs. 

In the first stage of the ICI-VSM algorithm for the study case with normal DFIGs, 

the coherent groups of generators are identified by obtaining the dynamic coupling of 

generators over specified time windows following the disturbance. Three Principal 

Components of the dynamic coupling between generator pairs, after being embedded 

in Euclidean space, are shown in Figure 5.21 . The SVC clustering algorithm identified 

two CGGs as the optimal number of groups of generators for the first time window. As 

shown in Figure 5.21 , the clustering procedure initially grouped the generators into 
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two groups of {G1-G5} and {G6-G19}. To validate the results of generator coherency 

analysis, the rotor speed of all generators, including the PLL output of generators G16, 

G17 and G18, for the case without VIC (Kvic=0), is presented in Figure 5.22 . The CGGs 

obtained from the SVC clustering are shown in the same colour, which is consistent 

with the clustering outcome.  

 

 

Figure 5.21 Principle components of dynamic coupling between generators in modified 118-bus system 
with normal DFIGs without controlled islanding—Case B1 

 

 

 

Figure 5.22 Rotor speed of generators in modified 118-bus system with normal DFIGs without 
controlled islanding — Case B1 
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When the VIC is utilised, WPPs at buses 89, 100 and 103 have equivalent inertia 

constants of H16=3.21, H17=3.02 and H18=2.95, which are similar to other synchronous 

generators in the system. The original IEEE 118-Bus test system typically displays three 

separate CGGs, identified as Group1 {G1-G5}, Group2 {G6-G14}, and Group3 {G15-

G19}, according to [23]. Figure 5.23  shows the three Principal Components of rotor 

speed of all generators and the PLL output of generators G16-G18 for the case with 

VIC (Kvic =50) with coherent groups circled in the group. The results of the SVC 

clustering algorithm correspond to the post-fault rotor speed trajectories and PLL 

frequencies of the generators in Figure 5.24 . 

The generator coherency analysis conducted over the first two consecutive time 

windows following the last defined disturbance indicates that the generators are split 

into three separate CGGs: {G1-G5}, {G6-G14} and {G15-G19}. As displayed in 

Figure 5.23  and Figure 5.24 , the implementation of VIC in WPPs causes the coherent 

group of {G6-G19}, observed in the case with low inertia, to divide into two groups of 

coherent generators. In the case with VIC, the inertia of generators in Group3 is 

comparable to that of synchronous generators, and the power systems tends to exhibit 

three separate coherent groups, similar to the behaviour of the power system in the 

original 118-bus system.    

Based on the generator coherency analysis, it was found that when the WPPs in 

Group3 have low inertia and those in Group1 and Group2 have high inertia, the 

principal components of Groups1 are away from Group2 and Groups3, and the CGGs  

are {G1-G5} and {G6-G19}. When the WPPs in both Group1 and Group3 have high 

inertia, Group1, Group2, and Group3 remain separated from each other, and the CGGs 

are {G1-G5}, {G6-G14}, and {G15-G19}. 
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Figure 5.23 Principle components of dynamic coupling between generators in modified 118-bus grid 
with VIC equipped DFIGs without controlled islanding — Case B2 

 

 

 

Figure 5.24 Rotor speed of generators in modified 118-bus grid with VIC equipped DFIGs without 
controlled islanding — Case B2 

 

 
Figure 5.25  and Figure 5.27  illustrate the island boundaries identified by the 

proposed ICI-VSM algorithm in the modified 118-bus test system with low-inertia 

DFIGs (Case B1) and high-inertia DFIGs (Case B2), respectively. In addition, Figure 

5.26  and Figure 5.28  display the rotor speed trajectories of synchronous machines and 

the measured frequency of PLL in the 118-bus system with both Case B1 and Case B2, 
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respectively, after implementing the islanding strategy. The figures show that the 

proposed islanding strategy maintains system stability.  

Using the TSA algorithm of the ICI-VSM, the power system was split at t=6.5 s, and 

load shedding was assumed to occur at t=6.7 s for both case B1 and Case B2. The results 

of islanding strategy for all simulation cases are presented in Table 5.1. In the case with 

low inertia in generators of Groups3, opening lines 15-33, 19-34, 30-38, and 23-24 

creates two islands. Figure 5.25  shows that with the controlled islanding in the power 

system with normal DFIGs, generators G16, G17 and G18 remain in the same island 

with other synchronous generators of Group2 (G6-G14) and Group3 (G15 and G19). 

However, as seen in Figure 5.27 , when the WPPs operate with high-inertia DFIGs, 

generators G16-G18 join G15 and G19 to form a separate island in the power system. 

The change in the coherent grouping of generators is due to the variation of the Principal 

Components of the dynamic coupling of generators with the change in the inertia of 

generators in different groups of generators, as shown in Figure 5.23 .  

In the case with high-inertia DFIGs, the islands are formed by opening lines 15-33, 

19-34, 30-38, 23-24, 77–82, 96–97, 80–96, 98–100, and 80–99. The created islands are 

stabilised by shedding 214.6 MW of load from the total 3668 MW load of the power 

system, which is smaller than the amount of load shedding in the case with low-inertia 

DFIGs, which was 251.3 MW as presented in Table 5.1.  

To validate the islanding results of the ICI-VSM algorithm, Figure 5.26  and Figure 

5.28  compare the rotor speed of synchronous generators and PLL measured 

frequencies in both cases with low-inertia and high-inertia DFIGs in time domain 

simulation. It was observed that the frequency of islands in both cases settled in the 

acceptable frequency range enforced by the MILP formulation.    

Similar to the modified 39-bus system, the simulation results in Table 5.1  also 

confirm that the ICI-VSM method in the case with low-inertia DFIGs leads to the same 

islanding results as the case where ICI is implemented in decoupled WTGs.     
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Figure 5.25 Controlled islands in modified 118-bus grid with normal DFIGs —Case B1 

 

 

 

 

Figure 5.26 Rotor speed of generators in modified 118-bus grid with normal DFIGs with controlled 
islanding — Case B1 
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Figure 5.27 Controlled islands in modified 118-bus grid with VIC-equipped DFIGs —Case B2 

 

 

 

Figure 5.28 Rotor speed of generators in modified 118-bus grid with VIC equipped DFIGs with 
controlled islanding — Case B2 
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5.6 Summary 

In this chapter, a new strategy for ICI was introduced to account for the impact of 

WPPs on generator coherency groupings and islanding strategies in power systems. The 

proposed algorithm employed the Virtual Synchronous Motion Equation (VSME) 

model of asynchronous generators to replace WPPs in power system, and grouped all 

generators including WPPs based on their dynamic coupling. The dynamic coupling 

between generator pairs depends on the actual inertia of synchronous generators and 

virtual inertia of WTGs. The virtual synchronous generator model of WTGs provided 

a convenient way to construct a similarity matrix for the SVC clustering technique 

utilized to determine CGGs in a WPP-integrated power system. From the results of this 

chapter, it can be inferred that changes in inertia of generators can either enhance or 

weaken the coherency of a group of generators, and even alter the grouping depending 

on the location and magnitude of the change.  

In this approach, the results obtained from the generator coherency analysis were 

used to develop an MILP optimisation problem for the ICI procedure, with the objective 

of minimizing generation-load imbalance in each island after the power system 

separation. The generator coherency groups identified in the first stage of ICI-VSM 

algorithm were used as constraints in the MILP formulation for the ICI problem. 

Dynamic frequency stability of islanding was also included in the MILP problem by 

formulising the linearised swing equation for each island. Simulation results 

demonstrated that this dynamic frequency stability constraint guaranteed that each 

island settles within the acceptable frequency range after the islanding operation is 

executed.  

Additionally, a Virtual Inertia Controller was introduced to capture the available 

inertia of rotating components of DFIGs as generators which are partially coupled to 

the network. Simulation results on modified 39-bus and 118-bus test power systems 

demonstrated that integrating the VIC into the power systems with wind turbine 

generators resulted in a low-inertia power system that behaved similarly to a 

conventional power system with only synchronous generators during the islanding 

procedure.            
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Conclusions and Recommendations 
 

In this chapter, the general conclusions of the thesis and possible future research 

directions are presented. 

 

6.1 Conclusions 

The main conclusions of this thesis are summarised as below: 

 It has been observed that several ICI techniques in existing literature may not 

yield stable islanding outcomes because of the dependency of their clustering 

algorithms, utilized in generator coherency analyses, on a predefined number of 

partitions. The behavior of generators in response to significant power system 

disturbances indicates that a generator coherency analysis that can flexibly 

identify the appropriate number of partitions is necessary to produce stable 

islands while implementing an ICI algorithm. 

 The proposed generator coherency analysis framework had a notable advantage 

of determining the optimal number of clusters. Unlike other clustering 

techniques, it didn't rely on any prior information regarding the number of 

clusters, and it could systematically choose the best alternative from all feasible 

clustering structures. 

 The coherency analysis presented in the thesis is resistant to noise and outliers. 

The embedding stage of the proposed method removes noise, and the soft 

constraint parameter of SVC can be modified to manage the existence of 

outliers. 

 The simulation results indicated that the proposed method for generator 

coherency analysis based on the dynamic coupling of generators was effective 

in identifying rapid changes in coherent groupings following a disturbance, and 

it performed better than other coherency detection methods in accurately 
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clustering generators based on their stronger dynamic coupling, rather than just 

the similarity of their rotor speed. 

 The proposed algorithm for generator coherency analysis was evaluated for its 

computational efficiency and found to be appropriate for real-time 

implementation. 

 The research findings have emphasized the significance of the embedding 

strategy used in the clustering algorithm, which can transform an intrinsic non-

metric distance measure, like dynamic coupling of generators, into a metric 

distance that can be utilised in clustering techniques. Typically, clustering 

algorithms cannot be applied to datasets with non-metric distance, but this 

concept can have wider applicability beyond coherency analysis. It can also be 

extended to other clustering applications in various engineering fields, including 

power systems, as long as an appropriate dissimilarity measure is used, even if 

it is not a metric distance measure. 

 The thesis proposed a two-stage LP-based optimization problem for solving the 

ICI problem in traditional power systems. The first stage involved solving the 

"where" problem by minimizing PFD through an MILP formulation, while the 

second stage involved solving the "what after" problem by a multi-stage LP 

formulation with the objective of minimizing load shedding. The simulation 

results showed that the proposed algorithm successfully achieved different 

forms of stability, including rotor angle, voltage, and frequency stability. 

 The thesis evaluated the time sequence of the required steps to implement the 

ICI process and the computation times of the MILP and LP models. It was 

demonstrated that the proposed ICI algorithm was effective in preventing power 

system collapse in real-time applications 

 The comparison of the proposed ICI algorithm with another commonly used ICI 

approach based on minimal power imbalance in each island indicated that the 

proposed method can generate more stable islands, although at the cost of 

slightly higher total load shedding. 
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 A new approach was introduced in this study to solve the ICI problem in power 

systems that have a large-scale WPP presence. The proposed method considered 

the impact of low-inertia WTGs on the generator grouping in the islanding 

strategy. To achieve this, the proposed algorithm utilized the Virtual 

Synchronous Motion Equation (VSME) model of WTGs to replace WPPs in the 

power system, and grouped all generators, including SGs and WPPs, based on 

their dynamic coupling. The VSME model of WTGs provided a convenient way 

to construct a similarity matrix for the SVC clustering technique, which 

identified CGGs in a WPP-integrated power system. Simulation results showed 

that changes in the inertia of generators can either enhance or weaken the 

coherency of a group of generators, and even alter the grouping depending on 

the location and magnitude of the change. 

 The ICI problem for power systems with WPPs was modified to account for the 

criticality of frequency stability in such systems. The MILP model was updated 

by integrating a dynamic frequency stability constraint and an objective 

function of minimal load shedding. The dynamic frequency stability of 

islanding was modelled using the linearised swing equation for each island. 

Simulation results showed that the dynamic frequency stability constraint 

ensured that each island settled within an acceptable frequency range after the 

islanding operation was executed 

 The thesis proposed a Virtual Inertia Controller (VIC) to address the issue of 

low inertia in power systems with WPPs. The VIC captures the available inertia 

of the rotating components of WTGs. Simulation results on a modified 39-bus 

and 118-bus test power systems showed that integrating the VIC into the power 

systems with wind turbine generators resulted in a low-inertia power system 

that behaved similarly to a conventional power system with only synchronous 

generators during the islanding procedure 
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6.2 Recommendations for future research  

This research work could be extended in further by considering the following 

recommendations 

 The research results presented in this thesis were validated through time-domain 

simulations conducted on the New England 39-bus and IEEE 118-bus systems. 

However, it would have been preferable to validate the proposed theory in a 

real-time platform. Unfortunately, this was not possible due to the lack of 

necessary hardware for implementing wide-area protection and control schemes 

at Curtin University. It is suggested that future research should focus on 

studying intentional controlled islanding on larger power systems such as the 

Australian South Western Interconnection System (SWIS) or the National 

Electricity Market (NEM) grid, if the power system data is available. Another 

recommended approach is to implement the ICI in a real-time digital simulator 

such as RTDS [146] or OPAL-RT [147].   

 The study focused on the ICI problem for power systems integrated with Type-

3 WTGs or Doubly Fed Induction Generators. These generators were chosen 

because they can provide a limited amount of inertia to the power system. 

However, future research could extend the proposed algorithm to include full-

scale converter WTGs (Type-4) and solar farms using similar principles. In 

these cases, other types of RES are fully decoupled from the grid, and the inertia 

must be provided by battery energy storage systems (BESS) and appropriate 

control schemes. Investigating these control schemes could be a fruitful topic 

for future studies 

 Further exploration is needed to study the coordination between intentional 

controlled islanding and existing wide area protection schemes such as under 

frequency load shedding, in order to optimize the post-islanding load shedding. 

 The current study assumed that synchronized measurements were available at 

all generator buses to obtain rotor angles and voltage magnitudes for all 

generators, which were then used to create the input dataset for the generator 

coherency algorithm. However, it is not currently feasible to have synchronized 

measurements at all buses in an actual power system, and phasor measurement 
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units (PMUs) have not been installed at every bus in the grid. Therefore, it may 

be worthwhile to investigate the ICI problem while considering an additional 

constraint of optimal placement of PMUs in the grid 

 As the fast implementation of islanding is critical, time delays in wide area 

communication systems may be a major concern for network operators in the 

central control room. The time delay of signal transmission systems may vary 

from tens to hundreds of milliseconds, depending on the computation times, 

communication distance, and protocols. Therefore, the negative effects of time 

delays on the performance of the ICI scheme could be further studied in future 

research 
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Appendix A 
 

In this study, it was assumed that the rotor angles of generators were ideally 

calculated and recorded by a reliable and timely method since they are not directly 

measured by PMUs. The actual angles were obtained from time domain simulations in 

DIgSILENT Powerfactory software. However, it was proposed in section 2 that the 

angles can be computed using (4.4) from the measured variables. To assess the accuracy 

of this assumption, the obtained results of the ICI problem were compared against a 

case where rotor angles were calculated using (4.4). 

To identify the critical time of controlled islanding scheme, an area-based transient 

stability index [37, 75] was employed. The centre of inertia (COI) of each coherent area 

and the entire power system were calculated, and the area-based COI referred to the 

rotor angle of each area was derived. If the referred rotor angle of an area goes out of 

step after a disturbance, different areas fall apart and create uncontrolled islands.  

To investigate the error between the actual and estimated COI-referred rotor angle of 

each area, the results of the ICI problem with estimated angle for the simulation case of 

39-bus system studied in Section 4.5.1.1 are repeated and compared with the presented 

results in Section 4.5. The rotor angle is estimated using the equivalent vector diagram 

of synchronous generator and measured data, which consists of the quadrature axis 

reactance, terminal current, terminal voltage, and power factor angle of generators. 

Figure A1 illustrates the variation of the COI- referred equivalent rotor angle of each 

island for both the estimated and measured cases. The percentage error of the calculated 

rotor angle index of island 1 compared to the actual values is presented in Figure A2. It 

is observed that the error for the initial period following the disturbance is relatively 

high, and at the instant of islanding decision (tcri), it reaches almost 4%. After t=1.5 s, 

this error becomes less than 1%.  

The ICI problem utilises the rotor angle estimation process for both generator 

coherency analysis and transient stability assessment of CGGs. It is worth noting that 

the coherency analysis is a lengthy process involving rotor angles over a time window 

of approximately 10 seconds. Hence, the error in rotor angle estimation is not a 

significant concern within this time frame, but it becomes a concern when making 

decisions regarding the islanding time. The simulated case with the estimated rotor 
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angle indicates that the islanding decision was made at tcri =0.98 s, which is 0.2 s earlier 

than the case with actual angles. The network is then separated into two islands by 

opening the designated lines at tisl =1.1 s and is subsequently stabilised by implementing 

generation changes and load shedding at tLS =1.2 s while considering the delays. Figure 

A3 shows the rotor angle stability of generators after the network was split.    

     
 

Figure A1. Area-based COI referred rotor angle of islands, case 1, 39-bus system 
 

       
 

Figure A2. Percentage error for estimation of COI-referred angle of island 1with respect to slack bus 
 

 

        
 

Figure A3. Rotor angles after islanding, 39-bus system, case 1 with estimated angles 
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Figure A4. Load changes in 39-bus system, case 1 
 

 

 

Processing the calculated rotor angle reveals that an error of 4% in estimating the 

area-based COI-referred equivalent rotor angle of islands leads to an increase of 7% 

and 9% in the amount of active and reactive power load shedding respectively. As 

shown in Figure A4, the active power load shedding increases from 391.8 MW to 

420.36 MW, while the reactive power shedding increases from 79.8 MVar to 87.3 

MVar. It is noticed that the proposed islanding scheme was still able to stabilise the 

rotor angle of generators, however it was achieved with a larger amount of load 

shedding.  

Although the simulated case with estimated rotor angles by (4.4) produced errors in 

the amount of load shedding and separation timing, it does not necessarily mean that 

estimating angles in ICI problems will always lead to such errors in amount of load 

shedding or separation timing. While the direct method of computing rotor angles from 

the vector diagram of the generator circuit diagram is fast, it may not be accurate for 

dynamic studies. To address this, several studies [148, 149] have focused on devising 

fast and accurate methods for estimating rotor angles of generators based on measurable 

variables. As reported in [148], the proposed method can achieve a maximum error of 

less than 5%. Incorporating these accurate methods in the ICI problem could result in 

more precise islanding schemes.   
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