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Abstract: Generative artificial intelligence, especially with regard to the generative adversarial
network (GAN), is an important research area in radiology as evidenced by a number of literature
reviews on the role of GAN in radiology published in the last few years. However, no review
article about GAN in pediatric radiology has been published yet. The purpose of this paper is to
systematically review applications of GAN in pediatric radiology, their performances, and methods
for their performance evaluation. Electronic databases were used for a literature search on 6 April
2023. Thirty-seven papers met the selection criteria and were included. This review reveals that
the GAN can be applied to magnetic resonance imaging, X-ray, computed tomography, ultrasound
and positron emission tomography for image translation, segmentation, reconstruction, quality
assessment, synthesis and data augmentation, and disease diagnosis. About 80% of the included
studies compared their GAN model performances with those of other approaches and indicated that
their GAN models outperformed the others by 0.1–158.6%. However, these study findings should
be used with caution because of a number of methodological weaknesses. For future GAN studies,
more robust methods will be essential for addressing these issues. Otherwise, this would affect the
clinical adoption of the GAN-based applications in pediatric radiology and the potential advantages
of GAN could not be realized widely.

Keywords: computer-aided diagnosis; data augmentation; deep learning; dose reduction; image
reconstruction; image segmentation; image translation; machine learning; medical imaging; noise

1. Introduction

Artificial intelligence (AI) is a popular topic in radiology such as for rapid disease
(e.g., COVID-19) detection on various platforms including mobile devices [1–12]. Addition-
ally, the number of AI research articles in radiology has grown exponentially over recent
years [1,2]. Various commercial AI products have been available for applications in clinical
practice such as radiological examination dose optimization [13–26], computer-aided detec-
tion and diagnosis (CAD) [27–48], and medical image segmentation [49–53]. Predominantly,
these applications in radiology are based on deductive AI techniques [1,13–54]. However,
generative AI, especially the generative adversarial network (GAN) which focuses on
the creation of new and original content, has started attracting the attention of radiology
researchers and clinicians as evidenced by a number of literature reviews on the role of
GAN in radiology published in the last few years [54–62].

The GAN was devised by Goodfellow et al. in 2014 [56,59,62,63]. Its basic form (also
known as Vanilla GAN) consists of two models, a generator and a discriminator. Develop-
ment of this GAN model requires training the generator to produce fake images while the
discriminator is responsible for determining whether the image produced by the generator
is fake or real. The training is completed upon the discriminator unable to indicate the gener-
ator’s output images are fake, and hence the generator becomes capable of producing high-
quality fake images close to the real ones [56,59,62–65]. This capability is highly relevant to
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medical imaging and therefore radiology [64,65]. Its current applications in radiology in-
clude image synthesis and data augmentation [1,55–57,59–62], image translation (e.g., from
one modality to another one [1,55,56,58–62], from normal to abnormal [1,55,62], etc.), image
reconstruction (e.g., denoising [1,55,59–61], artifact removal [1,56,58,61], super-resolution
(image spatial resolution improvement) [1,55–57,59,61,64,65], motion unsharpness correc-
tion [61], etc.), image feature extraction [55,57,60,61], image segmentation [1,55–57,60–62],
anomaly detection [55,56,60], disease diagnosis [55,57,60], prediction [55,56,61] and prog-
nosis [55,57,60,61], and image registration [1,55,60,61].

Pediatric radiology is a subset of radiology [26,28,29,66,67]. The aforementioned re-
view findings may not be applicable to pediatric radiology [28,29,55–62,67]. For example,
the application of GAN for prostate cancer segmentation appears not relevant to chil-
dren [60,68]. Although several literature reviews about AI in pediatric radiology have
been published, none of them focused on the GAN [26,28,29,67]. Given that the GAN
is an important topic area in radiology and the recent literature reviews focused on its
applications in this discipline, it is timely to conduct a systematic review of its applications
in pediatric radiology [29,55–62]. The purpose of this article is to systematically review
published original studies to answer the question “What are the applications of GAN in
pediatric radiology, their performances, and methods for their performance evaluation?”.

2. Materials and Methods

This systematic review of the GAN in pediatric radiology was carried out according
to the PRISMA guidelines and patient/population, intervention, comparison, and outcome
(PICO) model (Table 1) [26,29,69]. Four major processes, literature search, article selection,
and data extraction and synthesis were involved [26,29].

Table 1. Patient/population, intervention, comparison, and outcome table for the systematic review
of the generative adversarial network (GAN) in pediatric radiology.

Patient/Population Pediatric patients aged from 0 to 21 years

Intervention Use of GAN to accomplish tasks involved in
pediatric radiology

Comparison GAN versus other approaches to accomplish the
same task in pediatric radiology

Outcome Performance of task accomplishment

2.1. Literature Search

The electronic scholarly publication databases, EBSCOhost/Cumulative Index of Nursing
and Allied Health Literature (CINAHL) Ultimate, Ovid/Embase, PubMed/Medline, ScienceDirect,
Scopus, SpringerLink, Web of Science, and Wiley Online Library were used for literature search
on 6 April 2023 to identify articles about the GAN in pediatric radiology and publica-
tion year was not restricted. The search statement, (“Generative Adversarial Network”
OR “Generative Artificial Intelligence”) AND (“Pediatric” OR “Children”) AND (“Radiol-
ogy” OR “Medical Imaging”) was used. The review focus was used to derive the search
keywords [26,29].

2.2. Article Selection

Article selection was conducted by one reviewer with a literature review experience
of more than 20 years [26,29,70]. Table 2 shows the article’s inclusion and exclusion criteria.



Children 2023, 10, 1372 3 of 26

Table 2. Article inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

1. Peer-reviewed original research article
2. Written in English
3. Focused on the use of generative

adversarial networks in
pediatric radiology

1. Grey literature
2. Conference abstract
3. Editorial
4. Review
5. Perspective
6. Opinion
7. Commentary
8. Non-peer-reviewed article (e.g., paper on

the arXiv platform)

The exclusion criteria of Table 2 were established because of: 1. unavailability
of well-developed methodological guidelines for appropriate grey literature selection;
2. Incomplete study information given in conference abstracts; 3. a lack of primary evi-
dence in editorials, reviews, perspectives, opinions, and commentary; and 4. unsubstanti-
ated information given in non-peer-reviewed papers [26,29,62,71]. The detailed process of
the article selection is shown in Figure 1 [26,29,69]. Duplicate papers were first removed
from the database search results. Subsequently, article titles, abstracts, and full texts were
assessed against the selection criteria. Each non-duplicate paper in the search results was
kept unless a decision on its exclusion could be made. Additionally, relevant articles were
identified by checking reference lists of the included papers [26,29,71].
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2.3. Data Extraction and Synthesis

Three systematic reviews on the GAN for image classification and segmentation in
radiology [62], AI for radiation dose optimization [26] and CAD in pediatric radiology [29],
and one narrative review about the GAN in adult brain imaging [56] were used to develop
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a data extraction form (Table 3). The data, author name and country, publication year,
imaging modality, GAN architecture (such as cycle-consistent GAN (CycleGAN)), study
design (either prospective or retrospective), patient/population (e.g., 0–10-year-old chil-
dren), dataset source (such as public cardiac magnetic resonance imaging (MRI) dataset by
Children’s Hospital Los Angeles, USA) and size (e.g., total: 33 scans-training: 25; validation:
4; testing: 4, etc.), any sample size calculation, application area (such as image synthesis
and data augmentation), model commercial availability, model internal validation type
(e.g., 4-fold cross-validation, etc.), any model external validation (i.e., any testing of model
based on dataset not used in internal validation and obtained from different setting), refer-
ence standard for establishing ground truth (such as expert consensus), any comparison of
performance of model with clinician, and key findings of model performance (e.g., area
under receiver operating characteristic curve (AUC), sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), accuracy, and F1 score, etc.) were
extracted from every article included [26,29,56,62]. For facilitating GAN model perfor-
mance comparison, improvement figures such as improvement percentages when the GAN
was used were synthesized (if not reported) based on the available absolute figures (if
feasible) [26]. When a study reported performances for more than one GAN model, only
the best-performing model performance values were shown [29,72]. Meta-analysis was
not performed as this systematic review included a range of GAN applications, resulting
in high study heterogeneity which would affect its usefulness [29,73–75]. The quality
assessment tool for studies with diverse designs (QATSDD) was used to determine quality
percentages for all included papers [26,71,76]. <50%, 50–70%, and >70% represented low,
moderate, and high qualities of study, respectively [26,71].

3. Results

Thirty-seven papers that met the selection criteria were included in this review. These study
characteristics are shown in Table 3. All identified articles were published over the last five years
and the publication number increased every year with the highest number in 2022 [77–113].
This increasing trend was in line with the one in radiology [1,77–113]. About half of the articles
(n = 17) were journal papers [77,78,82,84,87,90,92,97–103,105,109,111]. Around two-thirds of
these (n = 11) were determined as being of high quality [82,84,87,90,92,97,102,103,105,109,111].
All low-quality ones were conference papers (n = 12) [79–81,83,85,86,91,93–95,104,108]. The
GAN was commonly applied to MRI (n = 18) [77,78,83,84,87,90,97,101,103–106,108–113]
and X-ray (n = 13) [79,80,89,91,92,94–96,98–100,102,107], and the others included computed
tomography (CT) (n = 4) [82,86,93,97], ultrasound (n = 2) [85,88] and positron emission
tomography (PET) (n = 1) [81]. Although the basic GAN architecture was still popular
among the included studies (n = 11) [77,78,80,82–84,89,94,97,99,106], its variant, cycle-
consistent GAN (CycleGAN), was the second most common (n = 10) [101–104,107–112].
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Table 3. Characteristics of generative adversarial network (GAN) studies in pediatric radiology (grouped by their applications).

Author, Year &
Country Modality GAN Ar-

chitecture
Study

Design Patient/Population Dataset
Source Dataset Size Sample Size

Calculation
Application

Area
Commercial
Availability

Internal
Validation

Type
External

Validation
Reference
Standard

AI VS
Clinician Key Findings

Disease Diagnosis

Kuttala et al.
(2022)—Australia,

India, and the
United Arab
Emirates [77]

MRI GAN Retrospective

Children (median
ages: 12.6

(baseline) and 15.0
(follow-up) years

Public brain
MRI dataset

(Autism
Brain

Imaging Data
Exchange II)

Total: 70
scans-

training: 24;
testing: 46

No

Autism
diagnosis
based on

brain
MRI images

No NR No NR No

158.6% accuracy
(U-Net: 0.370; GAN:

0.957) and 114.3%
AUC (U-Net: 0.420;

GAN: 0.900)
improvements for

autism
diagnoses, respectively

Kuttala et al.
(2022)—Australia,

India, and the
United Arab
Emirates [78]

MRI GAN Retrospective

Children (median
ages: 12 (baseline)

and 15
(follow-up) years

Public brain
MRI datasets
(ADHD-200
and Autism

Brain
Imaging Data
Exchange II)

Total: 265
scans-

training: 48;
testing: 217

No

ADHA and
autism

diagnosis
based on

brain
MRI images

No NR No NR No

29.6% and 39.7%
accuracy

improvements for
ADHD and autism

diagnoses (3D CNN:
0.659 and 0.700;
GAN: 0.854 and

0.978), respectively.
GAN AUC: 0.850

(ADHD) and
0.910 (autism)

Motamed and
Khalvati

(2021)—Canada [79]
X-ray DCGAN Retrospective 1–5-year-

old children

Public CXR
dataset by

Guangzhou
Women and
Children’s

Medical
Center, China

Total: 4875
images-
training:

3875;
testing: 1000

No

Pneumonia
diagnosis

based
on CXR

No NR No NR No
3.5% AUC

improvement (Deep
SVDD: 0.86;

DCGAN: 0.89)

Image Reconstruction

Dittimi and
Suen

(2020)—Canada [80]
X-ray GAN Retrospective 1–5-year-

old children

Public CXR
dataset by

Guangzhou
Women and
Children’s

Medical
Center, China

Total:
5863 images No

CXR image
reconstruc-

tion
(super-resolution)

No 70:30
random split No Original

CXR images No

19.1% SSIM (SRCNN:
0.832; SRCNN-GAN:

0.991) and 46.5%
PSNR (SRCNN:

26.18; SRCNN-GAN:
38.36 dB) improvements

Fu et al.
(2022)—China [81] PET TransGAN Retrospective Children

Private brain
PET dataset

by Hangzhou
Universal
Medical
Imaging

Diagnostic
Center, China

Total:
45 scans No

Brain PET
image recon-

struction
(denoising)

No 10-fold
cross-validation No

Original
full-dose

PET images
No

10.3% SSIM
(U-Net: 0.861;

TransGAN-SDAM:
0.950) and 29.9%

PSNR (U-Net: 26.1;
TransGAN-

SDAM: 33.9 dB)
improvements with

67.7% VSMD
reduction (U-Net:
0.133; TransGAN-

SDAM: 0.043)
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Table 3. Cont.

Author, Year &
Country Modality GAN Ar-

chitecture
Study

Design Patient/Population Dataset
Source Dataset Size Sample Size

Calculation
Application

Area
Commercial
Availability

Internal
Validation

Type
External

Validation
Reference
Standard

AI VS
Clinician Key Findings

Park et al.
(2022)—

Republic of
Korea [82]

CT GAN Retrospective

3 groups of
children (mean

ages (years):
6.2 ± 2.2; 7.2 ± 2.5;

7.4 ± 2.2)

Private
abdominal
CT dataset

Total: 3160
images-
training:

1680;
validation:

820;
testing: 660

No

Low-dose
abdominal

CT image re-
construction
(denoising)

No NR Yes

Consensus
of 1

pediatric
and 1

abdominal
radiologist

(6 and 8
years’ ex-

periences),
respec-
tively.

Yes

42.7% noise
reduction (LDCT:

12.4 ± 5.0; SAFIRE:
9.5 ± 4.0; GAN:

7.1 ± 2.7), and 39.3%
(portal vein) and
45.8% (liver) SNR
(LDCT: 22.9 ± 9.3

and 13.1 ± 5.7;
SAFIRE: 30.1 ± 12.2
and 17.3 ± 7.6; GAN:

31.9 ± 13.0 and
19.1 ± 7.9) and 30.9%

(portal vein) and
32.8% (liver) CNR
(LDCT: 16.2 ± 7.5

and 6.4 ± 3.7;
SAFIRE: 21.2 ± 9.8
and 8.5 ± 5.0; GAN:

21.2 ± 10.1 and
8.5 ± 4.3)

improvements when
compared with
LDCT images,
respectively.

Pham et al.
(2019)—France [83] MRI 3D GAN Retrospective Neonates

Public
(Developing

Human
Connectome
Project) and
private brain
MRI datasets

by Reims
Hospital, France

Total: 40
images-

training: 30;
testing: 10

No

Brain MRI
image recon-

struction
(super-

resolution)
and segmentation

No NR Yes NR No

1.39% SSIM (non-DL:
0.9492; SRCNN:

0.9739; GAN: 0.9624)
and 3.42% PSNR

(non-DL: 30.70 dB;
SRCNN: 35.84 dB;

GAN: 31.75 dB)
improvements for

super-resolution and
12.4% DSC

improvement for
segmentation

(atlas-based: 0.788;
intensity-based:

0.818; GAN: 0.886)
when compared with

non-DL
approaches, respectively

Image Segmentation

Decourt and
Duong

(2020)—Canada
and France [84]

MRI GAN Retrospective 2–18-year-
old children

Private
cardiac MRI
dataset by

Hospital for
Sick Children

in
Toronto, Canada

Total: 33
scans-

training: 25;
validation: 4;

testing: 4

No Cardiac MRI
image segmentation No Cross-

validation Yes
Manual

segmenta-
tion

by clinicians
No

2.4% mean DSC
improvement

(U-Net: 0.85; GAN:
0.87) with 3.8% mean

HD reduction
(U-Net: 2.55 mm;
GAN: 2.46 mm)
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Table 3. Cont.

Author, Year &
Country Modality GAN Ar-

chitecture
Study

Design Patient/Population Dataset
Source Dataset Size Sample Size

Calculation
Application

Area
Commercial
Availability

Internal
Validation

Type
External

Validation
Reference
Standard

AI VS
Clinician Key Findings

Guo et al.
(2019)—China [85] US DNGAN NR 0–10-year-

old children

Private
echocardiog-

raphy dataset
by a

Chinese hospital

Total: 87
scans-

training: 1765
images;
testing:

451 images

No
Echocardiography

image
segmentation

No NR No NR No

4.6% mean DSC
(U-Net: 0.88;

DNGAN: 0.92), 7.6%
mean Jaccard index

(U-Net: 0.80;
DNGAN: 0.86) and

8.5% mean PPV
(U-Net: 0.86;

DNGAN: 0.94)
improvements but

with 0.9% mean
sensitivity reduction

(U-Net: 0.93;
DNGAN: 0.92)

Kan et al.
(2021)—USA [86] CT AC-GAN NR 1–17-year-

old children

Private
abdominal

CT dataset by
Medical

College of
Wisconsin,

USA

Total:
64 scans No

Abdominal
CT image

segmentation
No 4-fold cross-

validation No NR No

3.9% and 0.7% mean
DSC improvements
(U-Net: 0.697 and
0.923; GAN: 0.724

and 0.929) with
35.0% and 13.3%

mean HD reductions
(U-Net: 1.090 and
0.390 mm; GAN:

0.709 and 0.338 mm)
for uterus and

prostate
segmentations,

respectively
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Table 3. Cont.

Author, Year &
Country Modality GAN Ar-

chitecture
Study

Design Patient/Population Dataset
Source Dataset Size Sample Size

Calculation
Application

Area
Commercial
Availability

Internal
Validation

Type
External

Validation
Reference
Standard

AI VS
Clinician Key Findings

Karimi-
Bidhendi et al.

(2020)—USA [87]
MRI DCGAN Retrospective 2–18-year-

old children

Public
cardiac MRI
datasets by
Children’s

Hospital Los
Angeles,

USA,
and ACDC

Total: 159
scans-

training: 41;
testing: 118

No
Cardiac MRI

image
segmentation

No 80:20
random split Yes

Manual
image seg-
mentation

by a
pediatric
cardiolo-

gist
sub-

specialized
in

cardiac MRI

No

34.5% mean DSC
(cvi42: 0.631; U-Net:

0.782; DCGAN:
0.848), 38.5% Jaccard
index (cvi42: 0.556;

U-Net: 0.702;
DCGAN: 0.770),
53.2% R2 (cvi42:

0.629; U-Net: 0.871;
DCGAN: 0.963),
30.8% sensitivity

(cvi42: 0.666; U-Net:
0.775; DCGAN:

0.872), 0.1%
specificity (cvi42:

0.997; U-Net: 0.998;
DCGAN: 0.998),

34.0% PPV (cvi42:
0.636; U-Net: 0.839;
DCGAN: 0.852) and

0.4% NPV (cvi42:
0.995; U-Net: 0.997;

DCGAN: 0.998)
improvements with

24.7% mean HD
(cvi42: 11.0 mm;
U-Net: 11.0 mm;

DCGAN: 8.3 mm)
and 31.6% MCD
reductions (cvi42:

4.4 mm; U-Net: 4.5
mm; DCGAN:
3.0 mm) when

compared with cvi42

Zhou et al.
(2022)—Canada [88] US pix2pix

GAN Prospective Children

Private wrist
US dataset by
University of

Alberta
Hospital, Canada

Total: 57
scans-

training: 47;
testing: 10

No
Wrist US

image
segmentation

No NR No

Manual
segmenta-

tion by
radiologist
and sonog-

rapher
with 18
and 7
years’

experience,
respec-
tively

No

7.5% sensitivity
improvement

(U-Net: 0.642; GAN:
0.690) but with 5.6%
DSC (U-Net: 0.698;
GAN: 0.659), 8.6%

Jaccard index (U-Net:
0.548; GAN: 0.501)

and 17.8% PPV
(U-Net: 0.783; GAN:

0.644) reductions
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Table 3. Cont.

Author, Year &
Country Modality GAN Ar-

chitecture
Study

Design Patient/Population Dataset
Source Dataset Size Sample Size

Calculation
Application

Area
Commercial
Availability

Internal
Validation

Type
External

Validation
Reference
Standard

AI VS
Clinician Key Findings

Image Synthesis and Data Augmentation

Banerjee et al.
(2021)—India [89] X-ray GAN Retrospective 1–5-year-

old children

Public CXR
dataset by

Guangzhou
Women and
Children’s

Medical
Center, China

Total:
5863 images No

CXR image
synthesis and
data augmen-

tation for
DL-CAD

model training

No NR No NR No

13,921 images were
generated for

training the DL-CAD
model for

pneumonia with
6.3% accuracy

improvement (with
and without GAN:

0.986 and
0.928), respectively

Diller et al.
(2020)—Germany [90] MRI PG-GAN Retrospective

Children with a
median age of
15 years (IQR:

12.8–19.3 years)

Private
cardiac MRI
dataset by
German

Competence
Network for
Congenital

Heart Defects

Total:
303 scans No

Cardiac MRI
image

synthesis and
data augmen-

tation

No NR No

Ground
truth deter-
mined by

researchers

Yes

Mean rates of
PG-GAN generated
images identified by
clinicians being fake:

70.5%
(3 cardiologists) and

86.7% (2 cardiac
MRI experts)

Guo et al.
(2021)—China [91] X-ray AC-GAN Retrospective 1–5-year-

old children

Public CXR
dataset by

Guangzhou
Women and
Children’s

Medical
Center, China

Total: 5856
images-
training:

1500;
testing: 4356

No

CXR image
synthesis and
data augmen-

tation for
DL-CAD

model training

No NR No NR No

250 pneumonia and
250 normal images

generated for
DL-CAD model

training with 0.6%
accuracy

improvement (with
and without

AC-GAN: 0.913 and
0.907), respectively
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Table 3. Cont.

Author, Year &
Country Modality GAN Ar-

chitecture
Study

Design Patient/Population Dataset
Source Dataset Size Sample Size

Calculation
Application

Area
Commercial
Availability

Internal
Validation

Type
External

Validation
Reference
Standard

AI VS
Clinician Key Findings

Guo et al.
(2022)—China [92] X-ray AC-GAN Prospective 2–14-year-

old children

Private CXR
dataset by
Quanzhou

Women’s and
Children’s

Hospital, China

Total: 6442
images-

training: 3600
No

CXR image
synthesis and
data augmen-

tation for
DL-CAD

model training

No NR No NR No

2000 images
generated with 7.7%

and 13.5%
differences between

ground truth (IS:
2.08) and AC-GAN

generated normal (IS:
1.92) and pneumonia

(IS: 1.80) images,
respectively. The use
of AC-GAN images

for training the
DL-CAD model

improved sensitivity
(with and without
AC-GAN: 0.86 and

0.62), specificity
(with and without
AC-GAN: 0.97 and
0.90), and accuracy
(with and without
AC-GAN: 0.91 and

0.76) by 38.7%, 7.8%,
and

19.7%, respectively

Kan et al.
(2020)-USA [93] CT AC-GAN NR 1–18-year-

old children NR Total: 5 scans No

Pancreatic CT
image

synthesis and
data augmen-

tation

No NR No NR No

AC-GAN was able to
generate

high-resolution
pancreas images

with fine details and
without any streak

artifact and irregular
pancreas contour
when compared

with DCGAN

Khalifa et al.
(2022)-Egypt [94] X-ray GAN Retrospective 1–5-year-

old children

Public CXR
dataset by

Guangzhou
Women and
Children’s

Medical
Center, China

Total:
624 images No

CXR image
synthesis and
data augmen-

tation for
DL-CAD

model training

No 80:20
random split No Specialist

consensus No

5616 images
generated for

training the DL-CAD
model for

pneumonia with
6.7% accuracy

improvement (with
and without GAN:

0.990 and
0.928), respectively
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Table 3. Cont.
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AI VS
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Kora Venu
(2021)-USA [95] X-ray DCGAN Retrospective 1–5 years

old children

Public CXR
dataset by

Guangzhou
Women and
Children’s

Medical
Center, China

Total: 5856
images-
training:

4684;
testing: 1172

No

CXR image
synthesis and
data augmen-

tation for
DL-CAD

model training

No 80:20
random split No NR No

2152 images
generated for

training DL-CAD
model for

pneumonia with
2.6% AUC (with and

without DCGAN:
0.993 and 0.968),
6.5% sensitivity

(with and without
DCGAN: 0.993 and
0.932), 13.5% PPV
(with and without
DCGAN: 0.990 and

0.872), 6.4% accuracy
(with and without
DCGAN: 0.987 and
0.928) and 10.0% F1
score improvements
(with and without
DCGAN: 0.991 and
0.901), respectively

Li and Ke
(2022)-USA [96] X-ray DCGAN Retrospective 1–5 years

old children

Public CXR
dataset by

Guangzhou
Women and
Children’s

Medical
Center, China

Total: 5910
images-
training:

4300;
validation:

724;
testing: 886

No

CXR image
synthesis and
data augmen-

tation for
DL-CAD

model training

No 90:10
random split No NR No

2700 images
generated for

training DL-CAD
model for

pneumonia with
13.7% accuracy (with

and without
DCGAN: 0.960 and

0.844) and 1.1% AUC
(with and without
DCGAN: 0.994 and

0.983)
improvements, respectively

Prince et al.
(2020)-Canada
and USA [97]

CT
and MRI GAN Retrospective Children

Public (ATPC
Consortium)
and private

brain
CT-MRI

datasets by
Children’s
Hospital

Colorado and
St. Jude

Children’s
Research

Hospital, USA

Total: 86
CT-MRI

scans-
training: 53;
testing: 33

No

Brain
CT-MRI
image

synthesis and
data augmen-

tation for
DL-CAD

model training

No

60:40 random
split and

5-fold
cross-validation

No Histology Yes

2000 CT and 2000
MRI images

generated for
training DL-CAD

model for
adamantinomatous
craniopharyngioma
with 0.890 (CT) and
0.974 (MRI) accuracy.

17.0% AUC
improvement for
MRI (radiologists:
0.833; GAN: 0.975)

but 1.6% AUC
reduction for CT

(radiologists: 0.894;
GAN: 0.880).
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Su et al.
(2021)-China [98] X-ray WGAN Retrospective 1–19 years

old children

Public hand
X-ray dataset

(RSNA
Pediatric

Bone
Age Challenge)

Total: 14,236
images-
training:
12,611;

validation:
1425;

testing: 200

No

Hand X-ray
image

synthesis and
data augmen-

tation, and
bone

age assessment

No NR No

Manual
assessment

by
expert clinicians

No

11,350 images
generated with 7.9 IS,
17.3 FID and 20.0%

MAE reduction
(CNN: 5.29 months;

WGAN:
4.23 months)

Szepesi and
Szilágyi

(2022)-Hungary
and

Romania [99]

X-ray GAN Retrospective 1–5 years
old children

Public CXR
dataset by

Guangzhou
Women and
Children’s

Medical
Center, China

Total: 5856
images-
training:

4099;
validation:

586;
testing: 1171

No

CXR image
synthesis and
data augmen-

tation for
DL-CAD

model training

No 10-fold
cross-validation No Expert

clinicians No

2152 images
generated for

training DL-CAD
model for

pneumonia with
0.9820 AUC, 0.9734

sensitivity,
0.9740 PPV, 0.9721
accuracy, and 3.9%

F1 score
improvement
(CNN: 0.9375;
GAN: 0.9740)

Vetrimani et al.
(2023)-India [100] X-ray DCGAN Retrospective 1–8 years

old children

Public CXR
datasets by
Guangzhou
Women and
Children’s

Medical
Center, China

and from
various

websites such
as Radiopaedia

Total: 987
images-

training: 645;
validation: 342

No

CXR image
synthesis and
data augmen-

tation for
DL-CAD

model training

No NR No NR No

Additional images
generated by

DCGAN for training
DL-CAD model for
laryngotracheobron-

chitis with 0.8791
sensitivity, 0.854 PPV,
0.8832 accuracy and

0.8666 F1 score.

Image Translation

Chen et al.
(2021)-China

and USA [101]
MRI 3D

CycleGAN Retrospective Neonates

Private brain
MRI datasets

by Xi’an
Jiaotong

University,
China and

University of
North

Carolina, USA

Total:
40 images No

Image
translation

(for domain
adaptation in

brain MRI
image seg-
mentation)

No NR No NR No

1.2% mean DSC
improvement (with

and without 3D
CycleGAN: 0.86 and

0.85) with 12.8%
mean HD (with and

without 3D
CycleGAN: 13.03

and 14.94 mm) and
16.0% MSD (with
and without 3D

CycleGAN: 0.23 and
0.27 mm)

reductions, respectively
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Hržić et al.
(2021)-Austria,

Croatia and
Germany [102]

X-ray CycleGAN Retrospective Children (mean
age: 11 ± 4 years)

Private wrist
X-ray dataset
by Medical

University of
Graz, Austria

Total: 9672
images-
training:

7600;
validation:

636;
testing: 1436

No

Wrist X-ray
image

translation
(cast suppression)

No NR No
Real

castless
wrist

X-ray images
No

Real castless and
CycleGAN

generated cast
suppressed image

histogram similarity
scores: 0.998

(correlation) and
222,503 (intersection)

with difference
values: 59,451

(chi-square distance)
and 0.147

(Hellinger distance)

Kaplan et al.
(2022)-USA and
Germany [103]

MRI 3D
CycleGAN Prospective

Neonates (mean
PMA: 41.1 ± 1.5

weeks) and infants
(mean age:

41.2 ± 1.9 weeks)

Private brain
MRI datasets

by
Washington
University
and ECHO

Program, USA

Total: 137
scans-

training: 107;
testing: 30

No

Brain MRI
image

translation
(T1w-to-T2w)

No NR Yes

Real T2w
MRI

images
acquired

from
same patients

No

9.7% and 7.9% SSIM
and DSC

improvements
(Kaplan-T2w: 0.72

and 0.76; CycleGAN:
0.79 and 0.82) with
18.8% relative MAE

reduction
(Kaplan-T2w: 6.9;

CycleGAN: 5.6) and
no statistically

significant CNR
difference

(Kaplan-T2w: 0.76;
CycleGAN: 0.63;
original images:

0.62), respectively

Khalili et al.
(2019)-The

Netherlands [104]
MRI CycleGAN NR

Neonates (mean
PMA:

30.7 ± 1.0 weeks)

Private brain
MRI dataset

by University
Medical
Center
Utrecht,

The Netherlands

Total: 80
scans-

training: 35;
testing: 45

No

Brain MRI
image

translation
between
motion

blurred and
blurless ones
for training

DL-
segmentation

model

No NR No NR No

6.7% DSC
improvement (with

and without
CycleGAN: 0.80 and
0.75) with 32.4% HD
(with and without

CycleGAN: 25.0 and
37.0 mm) and 60.5%

MSD reductions
(with and without
CycleGAN: 0.5 and

1.3 mm) for
segmentation,

respectively. Median
subjective image

quality and
segmentation

accuracy ratings
(scale 1–5): before (2

and 3) and after
motion unsharpness

correction (3 and
4), respectively
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Maspero et al.
(2020)-

The Netherlands
[105]

MRI 2D CGAN Retrospective
2.6–19 (mean:
10 ± 5) years
old children

Private brain
CT and T1w
MRI dataset

by University
Medical
Center
Utrecht,

The Netherlands

Total: 60 CT
and MRI

scans-
training: 30;
validation:

10; testing: 20

No

Brain MRI
image

translation to
CT for

radiation
therapy

planning

No 4-fold cross-
validation No

Real CT
images

acquired
from

same patients

No

DSC: 0.92; MAE: 61
HU for CT images

generated from MRI
images by CGAN

Peng et al.
(2020)-China,

Japan and
USA [106]

MRI 3D GAN Retrospective 6–12 months
old children

Public brain
MRI dataset
(Infant Brain
Imaging Study)

Total: 578
scans-

training: 462;
validation:

58; testing: 58

No

Brain MRI
image

translation
between
images

acquired 6
months apart

No NR No

Real MRI
images

acquired
from same
patient 6

months apart

No

1.5% DSC
improvement

(U-Net: 0.809; GAN:
0.821) and 7.5% MSD

reduction (U-Net:
0.577 mm; GAN:

0.534 mm) but with
16.8% RVD increase

(U-Net: 0.0424;
GAN: 0.0495)

Tang et al.
(2019)-China

and USA [107]
X-ray CycleGAN Retrospective 1–5 years old

children and adult

Public CXR
datasets by
Guangzhou
Women and
Children’s

Medical
Center, China

and from
RSNA

Pneumonia
Detection
Challenge

Total: 17,508
images-
training:
16,884;

testing: 624

No

Image
translation

(for domain
adaptation of

DL-CAD)

No 5-fold
cross-validation No NR No

7.8% AUC (with and
without CycleGAN:

0.963 and 0.893),
11.1% sensitivity

(with and without
CycleGAN: 0.929
and 0.836), 12.7%

specificity (with and
without CycleGAN:

0.911 and 0.808),
12.8% accuracy (with

and without
CycleGAN: 0.931

and 0.825) and 8.1%
F1 score (with and

without CycleGAN:
0.930 and 0.860)
improvements,

respectively

Tor-Diez et al.
(2020)-

USA [108]
MRI CycleGAN NR Children

Private brain
MRI datasets
by Children’s

National
Hospital,

Children’s
Hospital of

Philadelphia
and

Children’s
Hospital of

Colorado, USA

Total:
18 scans No

Image
translation

(for domain
adaptation in

brain MRI
image seg-
mentation)

No
Leave-one-

out
cross-validation

No NR No

18.3% DSC
improvement for

anterior visual
pathway

segmentation
(U-Net: 0.509;

CycleGAN: 0.602)
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Wang et al.
(2021)-

USA [109]
MRI CycleGAN Retrospective

2 groups of
children (median
ages: 8.3 and 6.4

years; ranges: 1–20
and 2–14 years),

respectively

Private brain
CT and T1w
MRI datasets

by St Jude
Children’s
Research

Hospital, USA

Total: 132 CT
and MRI

scans-
training: 125;

testing: 7

No

Brain MRI
image

translation to
CT for

radiation
therapy planning

No NR No

Real CT
images

acquired
from

same patients

No

SSIM: 0.90; DSC of
air/bone: 0.86/0.81;

MAE: 65.3 HU;
PSNR: 28.5 dB for CT

images generated
from MRI images

by CycleGAN

Wang et al.
(2021)-

USA [110]
MRI CycleGAN Retrospective 1.1–21.3 years old

children and adult

Private brain
and pelvic

CT and MRI
datasets by St

Jude
Children’s
Research

Hospital, USA

Total: 141 CT
and MRI

scans;
training: 136;

testing: 5

No

Pelvic MRI
image

translation to
CT for

radiation
therapy planning

No NR No

Real CT
images

acquired
from

same patients

No

Mean SSIM: 0.93 and
0.93; MAE: 52.4 and
85.4 HU; ME: −3.4

and −6.6 HU; PSNR:
30.6 and 29.2 dB for

CT images generated
from T1w and T2w

MRI images by
CycleGAN,
respectively

Wang et al.
(2022)-

USA [111]
MRI CycleGAN Retrospective

1.1–20.3 (median:
9.0) years old

children and adult

Private brain
CT and MRI
datasets by

St. Jude
Children’s
Research

Hospital, USA

Total: 195 CT
and MRI

scans-
training: 150;

testing: 45

No

Brain MRI
image

translation to
CT and RPSP

images for
radiation

therapy planning

No NR No

Real CT
images

acquired
from

same patients

No

SSIM: 0.92 and 0.91;
DSC of air/bone:

0.98/0.83 and
0.97/0.85 MAE: 44.1
and 42.4 HU; ME: 8.6
and 18.8 HU; PSNR:
32.6 and 31.5 dB for

CT images generated
from T1w and T2w

MRI images by
CycleGAN, respectively

Zhao et al.
(2019)-China

and USA [112]
MRI CycleGAN Retrospective 0–2 years

old children

Public brain
MRI dataset
(UNC/UMN

Baby
Connectome

Project)

Total: 360
scans-

training: 252;
testing: 108

No

Image
translation

(for
domain adaptation)

No NR No Original
MRI images No

14.1% PSNR
improvement

(non-DL: 29.00 dB;
CycleGAN: 33.09 dB)

and 33.9% MAE
reduction (non-DL:
0.124; CycleGAN:

0.082) for
domain adaptation
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Other

Mostapha et al.
(2019)-

USA [113]
MRI 3D

DCGAN Retrospective 1–6-year-
old children

Public brain
MRI datasets
(UNC/UMN

Baby
Connectome
Project and
UNC Early

Brain
Development

Study)

Total:
2187 scans No

Automatic
brain MRI

image quality
assessment

No 80:20
random split No

Manual
image
quality

assessment
by

MRI experts

No

92.9% sensitivity
(VAE: 0.42; DCGAN:
0.81), 2.2% specificity
(VAE: 0.93; DCGAN:

0.95), and 47.6%
accuracy (VAE: 0.63;

DCGAN: 0.93)
improvements for
automatic image

quality
assessment, respectively

2D, two-dimensional; 3D, three-dimensional; AC-GAN, auxiliary classifier generative adversarial network; ACDC, Automated Cardiac Diagnosis Challenge of 2017 Medical Image
Computing and Computer Assisted Intervention; ADHD, attention deficit hyperactivity disorder; AI, artificial intelligence; AIGAN, attention-encoding integrated generative adversarial
network; ATPC, Advancing Treatment for Pediatric Craniopharyngioma; AUC, area under the receiver operating characteristic curve; CAD, computer-aided detection and diagnosis;
CGAN, conditional generative adversarial network; CNN, convolutional neural network; CNR, contrast-to-noise ratio; cvi42, a commercial deep learning-based segmentation product
(Circle Cardiovascular Imaging, Calgary, Alberta, Canada); CT, computed tomography; CXR, chest X-ray; CycleGAN, cycle-consistent generative adversarial network; DCGAN, deep
convolutional generative adversarial network; DL, deep learning; DNGAN, dual network generative adversarial network; DSC, Dice similarity coefficient; ECHO, Environmental
Influences on Child Health Outcomes; FID, Fréchet inception distance; HD, Hausdorff distance; HU, Hounsfield unit; IQR, interquartile range; IS, inception score; Kaplan-T2w, a
registration-based method for T1w-to-T2w translation; LDCT, low-dose computed tomography; MAE, mean absolute error; MCD, mean contour distance; ME, voxel-based mean error;
MRI, magnetic resonance imaging; MSD, mean surface distance; NPV, negative predictive value; NR, not reported; PET, positron emission tomography; PG-GAN, progressive generative
adversarial network; PMA, postmenstrual age; PPV, positive predictive value; PSNR, peak signal to noise ratio; R2, coefficient of determination; RPSP, relative proton stopping power;
RSNA, Radiological Society of North America; RVD, relative volume difference; SAFIRE, sinogram affirmed iterative reconstruction; SDAM, spatial deformable aggregation module;
SNR, signal-to-noise ratio; SRCNN, super-resolution convolutional neural network; SSIM, structural index similarity; SVDD, support vector data description; T1w, T1-weighted; T2w,
T2-weighted; TransGAN, transformer-based generative adversarial network; UMN, University of Minnesota; UNC, University of North Carolina; US, ultrasound; VAE, variational
autoencoder; VSMD, voxel-scale metabolic difference; WGAN, Wasserstein generative adversarial network.
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Both image synthesis and data augmentation (n = 12) [89–100], and image translation
(n = 12) [101–112] were the commonest application areas of GAN in pediatric radiology.
Other GAN application areas included image segmentation (n = 5) [84–88], image recon-
struction (n = 4) [80–83], disease diagnosis (n = 3) [77–79], and image quality assessment
(n = 1) [113]. However, none of the GAN models involved in these studies were com-
mercially available [77–113]. For the twenty-nine studies which compared their GAN
model performances with those of other approaches, all of them outperformed the others
by 0.1–158.6% [77–89,91,92,94–99,101,103,104,106–108,112,113]. The highest accuracy and
AUC of GAN-based disease diagnosis were 0.978 [78] and 0.900 [79] for brain MRI-based
autism diagnosis, respectively. The performances of GAN-based image reconstruction
were as far as 0.991 structural index similarity (SSIM) and 38.36 dB peak signal-to-noise
ratio (PSNR) for super-resolution in chest X-ray (CXR) [80], and 31.9 signal-to-noise ratio
(SNR) and 21.2 contrast-to-noise ratio (CNR) for abdominal CT denoising [82]. For the top
performing GAN-based image segmentation models, 0.929 Dice similarity coefficient (DSC)
and 0.338 mm Hausdorff distance (HD) for prostate CT segmentation [86], 0.86 Jaccard
index, 0.92 sensitivity and 0.94 PPV for echocardiography segmentation [85], and 0.998
specificity and NPV for cardiac MRI segmentation were achieved [87]. The GAN-based
image synthesis and data augmentation for training models of DL-CAD of pneumonia
based on CXR boosted the AUC, sensitivity, PPV, F1 score, specificity, and accuracy up to
0.994 [96], 0.993, 0.990, 0.991, [95], 0.97 [92] and 0.990 [94], respectively. The use of GAN
for image translation from brain MRI to CT images achieved as far as 0.93 SSIM [110],
0.98 DSC, 32.6 dB PSNR and 42.4 Hounsfield unit (HU) mean absolute error (MAE) [111].
For GAN-based domain adaptation (image translation) in brain MRI segmentation, up to
0.86 DSC, 13.03 mm HD, and 0.23 mm MSD were attained [101]. The application of GAN
in automatic image quality assessment yielded 0.81 sensitivity, 0.95 specificity, and 0.93
accuracy [113]. Table 4 summarizes these key findings.

Table 4. Absolute performance figures of best-performing generative adversarial network (GAN)
models for various applications in pediatric radiology.

GAN Application Best Model Performance

Disease diagnosis 0.978 accuracy and 0.900 AUC

Image quality assessment 0.81 sensitivity, 0.95 specificity, and 0.93 accuracy

Image reconstruction 0.991 SSIM, 38.36 dB PSNR, 31.9 SNR and 21.2 CNR

Image segmentation 0.929 DSC, 0.338 mm HD, 0.86 Jaccard index, 0.92
sensitivity, 0.998 specificity and NPV, and 0.94 PPV

Image synthesis and data
augmentation for DL-CAD
performance enhancement

0.994 AUC, 0.993 sensitivity, 0.990 PPV, 0.991 F1 score,
0.97 specificity, and 0.990 accuracy

Image translation 0.93 SSIM, 0.98 DSC, 32.6 dB PSNR, 42.4 HU MAE,
13.03 mm HD and 0.23 mm MSD

AUC, area under the receiver operating characteristic curve; CAD, computer-aided detection and diagnosis; CNR,
contrast-to-noise ratio; DL, deep learning; DSC, Dice similarity coefficient; HD, Hausdorff distance; MAE, mean
absolute error; MSD, mean surface distance; NPV, negative predictive value; PPV, positive predictive value; PSNR,
peak signal to noise ratio; SNR, signal-to-noise ratio; SSIM, structural index similarity.

Collectively, the included studies covered pediatric patients aged from 0 to
21 years [77–114]. Their average dataset size for GAN model development was 5799
images (range: 40–17,508 images) [79,80,82,83,89,91,92,94–96,98–102,107]/241 scans (range:
5–2187 scans) [77,78,81,84–88,90,93,97,103–106,108–113]. However, no study calculated the
required sample size [77–113]. Except for two studies that collected both public and private
datasets [83,97], and one not reporting the dataset source [93], half of the rest (n = 17) used
public datasets [77–80,87,89,91,94–96,98–100,106,107,112,113], and the other half (n = 17)
collected their own data [81,82,84–86,88,90,92,101–105,108–111]. The most popular public
dataset was the chest X-ray dataset consisting of 1741 normal and 4346 pneumonia im-
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ages of 6087 1–5-year-old children collected from the Guangzhou Women and Children’s
Medical Center, China which was used in 10 studies [79,80,89,91,94–96,99,100,107].

Nonetheless, about 80% of the included studies (n = 29) were
retrospective [77–84,87,89–91,94–102,105–107,109–113], and only three were prospective [88,92,103]
with the other five not reporting the study design [85,86,93,104,108]. Additionally, about
two-thirds of the studies (n = 23) did not report the approach for their model internal vali-
dation [77–79,82,83,85,88–93,98,100–104,106,109–112], and just more than one-fifth (n = 8)
used the cross-validation to address the small sample size issue [81,84,86,97,99,105,107,108].
Around 90% of studies did not conduct external validation for their models
(n = 32) [77–81,85,86,88–102,104–113], and compare their model performances with those
of clinicians (n = 34) [77–81,83–89,91–96,98–113]. Besides, the reference standard for
ground truth establishment was not stated in around half of the included papers
(n = 17) [77–79,83,85,86,89,91–93,95,96,100,101,104,107,108].

4. Discussion

This article is the first systematic review of the generative AI framework, GAN in
pediatric radiology covering MRI [77,78,83,84,87,90,97,101,103–106,108–113],
X-ray [79,80,89,91,92,94–96,98–100,102,107], CT [82,86,93,97], ultrasound [85,88], and PET [81].
Hence, it advances the previous literature reviews about general AI applications [67], and
specific uses in radiation dose optimization [26], CAD [29], and chest imaging [28] in
pediatric radiology published between 2021 and 2023 which did not focus on the GAN.
Unsurprisingly, more than 80% of the studies applied the GAN to MRI and X-ray due
to multiplanar imaging capability and excellent soft-tissue contrast of MRI, and less op-
erator dependent and no/low radiation dose for both, resulting in their popularity in
pediatric radiology [26,115,116]. Also, it is within expectation that the basic GAN architec-
ture was the most commonly used architecture because it became available earlier than its
variants [56,59,63]. The commonest use of basic GAN was for image synthesis and data
augmentation [77–113], which was also one of the most popular GAN applications in the
included studies [89–100]. These align with the original purpose of the basic GAN which
was for the creation of new and original images [63]. CycleGAN was the second most
common GAN architecture used in the included studies as the strength of CycleGAN is
for image translation without the use of a paired training dataset [62,101,102,109]. A closer
look at the findings presented in Table 3 reveals all but two image translation studies used
the CycleGAN [101–104,107–112]. It is always challenging to obtain paired datasets to train
GAN models for various image translation tasks [102,109]. For example, it is often unreal-
istic to perform both MRI and CT examinations on the same pediatric patients, resulting
in the unavailability of a paired MRI-CT dataset required for training the basic GAN to
achieve the image translation from MRI to CT. However, CycleGAN overcomes this issue
by using two generators and two discriminators to convert MRI to CT images and vice
versa (known as inverse transformation) for creating pseudo image pairs to accomplish
the image translation training. In this way, the data collection task becomes easier as only
individual MRI and CT images from different patients are required [62,109].

About 80% of the included studies compared their GAN model performances with
those of other approaches for benchmarking and indicated that their GAN models out-
performed the others [77–89,91,92,94–99,101,103,104,106–108,112,113]. Additionally, the
absolute performance figures of the best-performing GAN models appear competitive with
the other state-of-the-art approaches [77,78,80,82,85–87,92,94–96,101,110,111,113]. How-
ever, the findings from these studies should be used with caution because of the fol-
lowing methodological weaknesses [29]. No study calculated the required sample size
for the GAN model development [77–113]. The sizes of the datasets used were as low
as 40 images [83,101]/5 scans [93]. Although the cross-validation internal validation ap-
proach can address the small dataset issue to some extent [29], only one-fifth of them
used this approach [81,84,86,97,99,105,107,108]. Additionally, just a quarter of the studies
covered a wide age range of pediatric patients [84,86,87,93,98,105,109–111]. It is well
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known that there is a lack of generalization ability of many existing DL models be-
cause they are only trained by a limited number and variety of patient data [26,50,117].
The variety issue of the included studies was compounded by the retrospective nature
of about 80% of them [77–84,87,89–91,94–102,105–107,109–113], and around 60% of
these retrospective studies used public datasets which further limited the data
variation [77–80,87,89,91,94–96,98–100,106,107,112,113]. The most popular public dataset
used in the included studies was the one from the Guangzhou Women and Children’s
Medical Center, China [79,80,89,91,94–96,99,100,107]. However, it is important to note
that this public dataset has several image quality issues that could affect the DL model
training and hence the eventual performance [118,119]. Hence, the performances of the
GAN models covered in this review might not be realized in other settings [26,50,117].

It is noted that no GAN model of the included studies was commercially available [77–113].
Again, it is within expectation because the GAN has only emerged for 10 years. In contrast,
another common DL architecture in medical imaging, convolutional neural network (CNN)
which is a deductive AI technique has been available since the 1980s and hence some
commercial companies have already used it for developing various products such as Canon
Medical Systems Advanced Intelligent Clear-IQ Engine (AiCE) (Tochigi, Japan), General
Electric Healthcare TrueFidelity (Chicago, IL, USA), ClariPI ClariCT.AI (Seoul, Republic of
Korea), Samsung Electronics Co., Ltd. SimGrid (Suwon-si, Republic of Korea) and Subtle
Medical SubtlePET 1.3 (Menlo Park, CA, USA) for radiation dose optimization (denoising)
in pediatric CT, X-ray and PET, respectively [1,26].

As a result of the increasing number of GAN publications in pediatric radiology and
the popularity of another generative AI application, Chat Generative Pre-Trained Trans-
former (ChatGPT), it is expected that the GAN would attract the attention of commercial
companies to consider using it to develop various applications in pediatric radiology in the
future [54,77–113]. However, based on the previous trend of CNN-based commercial prod-
uct development for pediatric radiology, such GAN-based commercial solutions should
not be available in the coming few years [1,26].

Even when the GAN-based applications are on the market, after several years, develop-
ers should disclose their model external validation results, reference standards used for the
validation, and their model performances against those of the clinicians on the same tasks for
attracting potential customers [29,73,74,120]. According to Table 3, around 90% of the included
studies did not conduct external validation for their models [77–81,85,86,88–102,104–113] and
compare their model performances with those of clinicians [77–81,83–89,91–96,98–113].
Besides, the reference standard for ground truth establishment was not stated in around
half of the included papers [77–79,83,85,86,89,91–93,95,96,100,101,104,107,108]. Hence, it
would be difficult to earn the pediatric clinicians’ trust in the GAN-based applications for
image translation, segmentation, reconstruction, quality assessment, synthesis and data
augmentation, and disease diagnosis as there is a lack of trustworthy findings to convince
them [77–113].

There are two major limitations in this systematic review. A single author, despite hav-
ing experience in performing literature reviews for more than 20 years, selected articles, and
extracted and synthesized data [26,29]. As per a recent methodological systematic review,
this arrangement is appropriate as the single reviewer is experienced [26,29,70,121–123]. Ad-
ditionally, the potential bias would be addressed to a certain degree due to the use of
PRISMA guidelines, data extraction form (Table 3) developed based on the recent system-
atic reviews on GAN for image classification and segmentation in radiology, and AI for
radiation dose optimization and CAD in pediatric radiology, and one narrative review
about GAN in adult brain imaging, and QATSDD [26,29,56,62,69,76]. In addition, only
English papers were included and this could potentially affect the systematic review com-
prehensiveness [26,29,72,124–126]. Nevertheless, a wider range of applications of GAN
in pediatric radiology has been covered in this review when compared with the previous
review papers [26,28,29,67].
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5. Conclusions

This systematic review shows that the GAN can be applied to pediatric MRI, X-ray,
CT, ultrasound, and PET for image translation, segmentation, reconstruction, quality
assessment, synthesis and data augmentation, and disease diagnosis. About 80% of the
included studies compared their GAN model performances with those of other approaches
and indicated that their GAN models outperformed the others by 0.1–158.6%. Also, the
absolute performance figures of the best-performing models appear competitive with
the other state-of-the-art approaches. However, these study findings should be used
with caution because of a number of methodological weaknesses including no sample
size calculation, small dataset size, narrow data variety, limited use of cross-validation,
patient cohort coverage and disclosure of reference standards, retrospective data collection,
overreliance on public dataset, lack of model external validation and model performance
comparison with pediatric clinicians. More robust methods will be necessary in future GAN
studies for addressing the aforementioned methodological issues. Otherwise, trustworthy
findings for the commercialization of these models could not be obtained. Additionally,
this would affect the clinical adoption of the GAN-based applications in pediatric radiology
and the potential advantages of GAN would not be realized widely.
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