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Abstract—In this paper, we implement a low-cost but effective
smoothing strategy to smooth estimated tracks returned by the
GLMB filter. While the forward filtering step is carried out via
the GLMB filtering procedure, the backward smoothing step is
recursively implemented from the final time step to the first time
step via a smoothing algorithm. In particular, the smoothing
algorithm is based on the Rauch-Tung-Striebel (RTS) of fixed-
interval smoother. We demonstrate our smoothing strategy on
a linear Gaussian model and the experimental results show
consistent improved tracking performance over 100 Monte Carlo
runs.

Index Terms—Random finite sets, linear smoother, Rauch-
Tung-Striebel smoother, generalized labeled multi-Bernoulli filter,
multi-object tracking.

I. INTRODUCTION

Filtering refers to the task of using all measurements up
to the current instance to infer the state of the system while
smoothing considers measurements up to some time in the
future to infer the current state. Filtering can give online
updates to the state while smoothing requires a “lagging” time
for future measurements to smooth the current estimate. Given
this constraint, the application of the smoother in real time
problems is limited, however, for tasks where a time delay is
allowed, smoothing procedure can significantly improve the
estimation.

While single-object filtering is extensively studied in the
literature with the Kalman filter [1], particle filter [2] and their
variations, multi-object filtering is much more challenging
with the presence of clutter, miss-detection and the variation
in the cardinality of the objects set. Several frameworks have
been proposed to tackle this problem such as the Joint Prob-
abilistic Data Association (JPDA) [3], Multiple Hypotheses
Tracking [4] and recently the Random Finite Sets (RFS) [4].
RFS forms the mathematical foundation for many modern
multi-object tracking filters such as Probability Hypothesis
Density (PHD) filter [5], Cardinalized PHD filter [6], the
Generalized Labeled Multi-Bernoulli (GLMB) filter [7], [8]
and the Labeled Multi-Bernoulli (LMB) filter [9].

Especially, the GLMB filter has recently gained attention
from many researchers. The efficient GLMB filter is proposed
in [10] via the combination of prediction and update step as
well as the introduction of the Gibbs sampler to solve the
tracks to measurements data association problem. The GLMB
filter is reported to be able to track up to one million objects
in [11]. This filter is also applied to track extended objects
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in [12] or objects with merged measurements in [13]. The
spawning model is also incorporated into the GLMB filter in
[14]. GLMB filter can also track objects in the conditions when
clutter rate and detection profile are not available [15], [16].
Recently, GLMB filter is applied in practical applications such
as people tracking in [17], [15] and biological cells tracking
in [18], [19].

On the other hand, the development of practical smoothing
algorithms for linear model dates back to the works of Bryson
and Frazier [20] and Rauch, Tung and Striebel (RTS) [21]
which are interpreted as the correction procedures for Kalman
filter estimates. Based on the original smoothing concept,
Fraser and Potter proposed the two filter smoothing method
in [22]. For non-linear state-space model, Kitagawa [23]
has developed the smoothing-while-filtering technique via the
Sequential Monte Carlo (SMC) method while the same SMC
technique is also implemented for forward backward smoother
in [24] and [25]. The original two filter smoother is extended
to the non-linear case via SMC method in [26] and [27].
The unscented transform is applied to the RTS Smoother
framework in [28] for non-linear systems. Recently, [29]
derived closed form solution of forward backward smoothing
for Gaussian mixture models. One step fixed lag smoother for
maneuvering object has been proposed in [30] then later the
multi-sensor fixed lag smoother in [31].

In the context of multi-object tracking, smoothing tech-
niques for the PHD filter has been proposed in [32] and [33]
while smoothing for CPHD filter is proposed in [34]. Multi-
Bernoulli smoothing is also proposed in [35]. Interacting Mul-
tiple Model (IMM) with fixed-lag smoothing has been applied
to track multiple objects in [36]. However, the drawback of
the mentioned smoothers is that the labels of objects are not
included; therefore, objects trajectories cannot be constructed
directly.

Recently, closed form forward-backward propagation for
the GLMB filter has been put forward in the literature. The
first mathematical derivation is introduced in [37] and further
developed to the so called Multi-scan GLMB technique in
[38]. The results show improvements in tracking performance
but the computational effort is high due to the large smoothing
state-space of the GLMB density. As the multi-scan GLMB
smoother provides objects labels, smoothed objects trajectories
can be inferred easily.

In this paper, we introduce the RTS smoothing algorithm
into the multi-object GLMB filtering framework. In this ap-
proach, we do not attempt to smooth on the entire GLMB state
space but we rather focus on smoothing the estimated trajec-



tories given by the GLMB filter. Our method is implemented
as a backward smoother to smooth individual track from the
GLMB estimate. In particular, we apply the RTS smoother in
[39] to smooth the trajectories of objects in a linear Gaussian
tracking scenario.

The rest of the paper is organized as follow: in Section II, we
provide background knowledge on multi-object tracking and
the single object RTS smoothing algorithms for linear and non-
linear models. Section III details our implementation of the
smoothing algorithm within the GLMB filtering framework.
In Section IV, we provide experimental results for both linear
and non-linear models.

II. BACKGROUND

A. Multi-object system and the GLMB filter

1) Notations: To facilitate our discussions, we adhere to
the following notations. The set exponential is denoted as
h()¥X = HweX (x) and the inner product notation is
denoted as (f,g) = [ f(z

The generalization of the Kronecker delta is written as
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while set inclusion function is denoted as
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X denotes the labeled set of objects while x = (x,1)
denotes a single labeled object. Specifically, z € X and [ € L
where X and L are respectively the kinematic state space and
the discrete labels space at current time step. £ is a label
extraction function, i.e. £(x) = [ and F(X) denotes sets of
finite subsets of X. The “+” sign is used to indicate the next
time step.

2) The measurement model: In the RFS multi-object track-
ing framework, we have a standard point measurement model
of the form [40]
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k() is the clutter intensity, pp(x,l) and g¢p(x,l) are
respectively the detection and miss-detection probabilities,
g(z|x,1) is the likelihood that (x,l) generates measurement
z.0:L — {0:|Z]|} is a positive 1-1 map and O is the entire
set of such mappings.

3) The GLMB filter: In this subsection, we outline the
standard procedure to track a set of objects with the efficient
GLMB filter.

Given a GLMB prior [10]:
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and the LMB births of the form [10]

fp(Xpy) = AXp)wp(L(Xpy))pe %50 (3)

WS (LX) @

wp(L(Xp4)) = 1+ (L(Xp+))

[1 _ TB’+]B+—£(XB+) [TB,+]L(XB+)

where rp 1 is the probability of birth and pp 4 is the
density of the birth kinematic state, the joint predicted and
updated density is given by [10]
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where I € F(L), (£ € 2, I1 € F(Ly), 04+ € ©4 with £ is
tracks to measurements association history and Z is the entire
space of &,
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Ps(-,14) is the survival probability of track with label I
and fi(xzy],ly) is the single object transition density. In
this efficient implementation of the GLMB filter, the highly
feasible tracks to measurements associations are sampled via
Gibbs sampler which is cheaper than the original Murty
algorithm implemented in [8].

The GLMB filter estimate is the maximum a posteriori esti-
mate of the cardinality and the mean of the multi-object state
given the estimated cardinality. The cardinality distribution of
the objects can be calculated as:
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where F,,(LL) denotes the sets of finite subset of L with
exact n elements.
The estimated cardinality is calculated as:
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Following that, the estimated hypothesis is given by:
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Finally, the estimated labeled multi-object state can be
written as:

R = {(x.l):1eTO o= / WO Ddy} (6

B. The single object RTS smoother

First introduced in [21], the RTS smoother corrects the
covariance matrices and means to smooth the estimated states.
Given a linear model of the form

zye =Fr+q

z=Hx+r

with z is the system state, F' is the linear transformation
matrix, H is the linear observation matrix, ¢ and r are
respectively the process and observation Gaussian noise and
z is the current time step measurement; while the forward
filtering process can be carried out via a standard Kalman filter
[1], the state can be smoothed over a fixed interval from initial
time step to time step N < K (where K is the total number
of tracking time steps) via the RTS smoother. The steps of
the RTS smoothing procedure is given in Algorithm 1. The
detailed discussion on the algorithm can be found in [21].
It should be noted that superscript s indicated the smoothed
results.

Algorithm 1 Single object RTS smoother

Input: The filtered mean and covariance {xj, Py }r=1.n,
F,Q
Output:  The
{z}, P k=18
Initialization: z3, = xx and Py, = Py
for k=N —1downto 1

Tp+1 = Fay

Ppy1 = FPFT +Q

D = Py 1 F(Prya) ™"

xy, = o — D(x 4y — Trpa)

P = Po — D(Py., — Pis1) D"
end

smoothed mean and covariance

III. THE RTS SMOOTHER FOR GLMB FILTER

From the GLMB estimate procedure (given in (4), (5) and
(6)), it is possible that the correct hypothesis might not be
chosen at one or several time steps due to miss-detection
and false measurements. It increases the localization error
and creates discontinuity in the trajectories. Our proposed
method tackles these issues via a backward smoothing process
from the end of the tracking interval to the initial time
step. For each estimated track from the GLMB estimate, the
RTS smoother, first, interpolates discontinuity point (hole)
or consecutive discontinuity points (holes sequence) in each
trajectory by applying single object filtering algorithm within
the missing interval. The initial state of such filtering process
is the state of the object right before discontinuity happens
and the measurement(s) during discontinuity is given by the
association history of the track right after the discontinuity
(The readers are reminded here that each GLMB estimation of
a track labeled [ at time k provides the indices of the associated
measurements from time &£ down to the time when the track
firstly comes into existence, hence from the indices and the
measurements set we can extract the required measurements
for the interpolating process). Subsequently, single object
RTS smoother is applied for each interpolated trajectory. The
details of our proposed smoother is given in Algorithm 3.
The complexity of our algorithm depends only on the number
of discontinuity points in the trajectories, the length of the
trajectories and the number of estimated trajectories. It does
not depend on the number of hypotheses of the GLMB density,
hence given its the low-cost characteristic.

Algorithm 2 RTS smoother for GLMB filter
Input:  Estimated  tracks  from

(s T, 195 (1)} 7, Hom1:k
Output: Smoothed and interpolated estimated tracks

{ik’ {ﬁgk (xl)}lefk}k:LK
fork=1:N

GLMB filter

for (€7
Detect birth time k)
Detect death time klen d
for k =k} : kL,
Detect hole/holes sequences
Fill hole/holes sequences with standard filtering
technique
Update the estimated labels set fk = fk ul
end
Run single object smoothing for track [ from £k = Ko
o down to k = kf to obtain {p** (1) }popi .




IV. EXPERIMENTAL RESULTS

In this experiment, we use constant velocity model for
the dynamic of the system. The state vector consists of the
information regarding the planar position and the velocity
of the objects which is xzx = [ps, Py, s py]T; while the
measurement vector contains the position of the object which
is z = [24,2,)7. The transition and observation models are
given respectively as:

fr(@i]z) = N(2y; Fz, Q)

h(z|lz) = N(z; Hz, R)

where . .
A A
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H = [ I, 09 ], R = ‘752]2- Particularly, in this experiment

we set 0, = 5m and o, = 15 m.

The surveillance region is set to [—1000,1000] m X
[—1000, 1000] m and the total time step is K = 100. The sur-
viving probability is set to pg = 0.99 and the detection prob-
ability is pp = 0.95. Clutter rate is set to 66 false alarms per
scan. The birth probability is set to rp = 0.03. The location of
births are m{3) = [0.1,0,0.1,0]7, m'? = [400,0, —600,0]7 ,
m$ = [~800,0,-200,0]7 , m} = [~200,0,800,0]7. The
covariance matrix at birth is Pp = diag([10, 10, 10, 10]). The
number of hypotheses for GLMB filter is capped at 20000
components. In this experiment we smooth the entire tracking
interval from k=1 to k = K.

From visual inspection of Figure 1, it is observed that
smoother trajectories are obtained for the smoothed results
comparing to the filtered-only results. In terms of OSPA1 [41]
(cut off at 100) and OSPA2 [42] (cut off at 100 and window
length is 10) tracking errors, Figure 2 and Figure 3 show the
improvement for the smoothed results over 100 Monte Carlo
runs. However, at around ¢ = 40 and ¢t = 60, when the tracks
crossings occur, the uncertainty of OSPA Localization errors
increase due to the tracks fragmentation effect in the filtered
estimate. As the tracks identities are switched, the smoother
diverges the tracks away from the correct paths hence it
increases the localization error. Figure 4 shows the smoothed
estimates have higher values of the cardinality compared to the
standard filtered estimates due to the interpolation process.

V. CONCLUSION

In this paper, we have implemented RTS smoothing tech-
nique to smooth the trajectories returned by the GLMB filter
estimation. We demonstrate our implementation on a linear
Gaussian model. The results show improvements in tracking
results in terms of OSPA errors and by visual inspection
of the trajectories. The possible disadvantage of this method
is when the filtering results are incorrect in terms of tracks
identities (tracks fragmentation), the smoother might diverge
the tracks away from the true paths which indeed increases
the localization error.
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Fig. 1. Filtered-only trajectories (left) and smoothed trajectories (right)
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