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Summary
Background Artificial intelligence (AI) has been proposed to reduce false-positive screens, increase cancer detection
rates (CDRs), and address resourcing challenges faced by breast screening programs. We compared the accuracy of
AI versus radiologists in real-world population breast cancer screening, and estimated potential impacts on CDR,
recall and workload for simulated AI-radiologist reading.

Methods External validation of a commercially-available AI algorithm in a retrospective cohort of 108,970 consecutive
mammograms from a population-based screening program, with ascertained outcomes (including interval cancers by
registry linkage). Area under the ROC curve (AUC), sensitivity and specificity for AI were compared with radiologists
who interpreted the screens in practice. CDR and recall were estimated for simulated AI-radiologist reading (with
arbitration) and compared with program metrics.

Findings The AUC for AI was 0.83 compared with 0.93 for radiologists. At a prospective threshold, sensitivity for AI
(0.67; 95% CI: 0.64–0.70) was comparable to radiologists (0.68; 95% CI: 0.66–0.71) with lower specificity (0.81 [95%
CI: 0.81–0.81] versus 0.97 [95% CI: 0.97–0.97]). Recall rate for AI-radiologist reading (3.14%) was significantly lower
than for the BSWA program (3.38%) (−0.25%; 95% CI: −0.31 to −0.18; P < 0.001). CDR was also lower (6.37 versus
6.97 per 1000) (−0.61; 95% CI: −0.77 to −0.44; P < 0.001); however, AI detected interval cancers that were not found by
radiologists (0.72 per 1000; 95% CI: 0.57–0.90). AI-radiologist reading increased arbitration but decreased overall
screen-reading volume by 41.4% (95% CI: 41.2–41.6).

Interpretation Replacement of one radiologist by AI (with arbitration) resulted in lower recall and overall screen-
reading volume. There was a small reduction in CDR for AI-radiologist reading. AI detected interval cases that
were not identified by radiologists, suggesting potentially higher CDR if radiologists were unblinded to AI
findings. These results indicate AI’s potential role as a screen-reader of mammograms, but prospective trials are
required to determine whether CDR could improve if AI detection was actioned in double-reading with arbitration.
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Introduction
Population-based breast cancer screening programs
have been shown to reduce breast cancer-specific mor-
tality through early cancer detection.1,2 Breast screening
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involves the interpretation of digital mammograms to
identify suspicious abnormalities that warrant further
investigation (“recall to assessment”). However, screen-
reading is a subjective process that can not only detect
oint Venture with Cancer Council NSW, Sydney, NSW, Australia.
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Research in context

Evidence before this study
We searched Medline between January 1, 2010, and October
31, 2018 using the MeSH term ‘breast neoplasms’, combined
with a title search for ‘artificial intelligence’, ‘deep learning’,
‘machine’ or ‘neural’, to inform our research plan. We found
23 relevant papers reporting a wide range of areas under the
ROC curve for AI interpretation of mammograms (0.69–98,
median 0.88). Studies were predominantly small,
retrospective, and used cancer-enriched datasets. There were
few studies comparing the accuracy of AI with radiologists
and limited validation of AI using external datasets. A
methodological review of independent validation studies to
December 10, 2020 found a high risk of bias through
selection of non-consecutive patient cohorts, and a lack of
linkage to cancer registry data to identify interval cancers.

Added value of this study
This is an external validation study of a commercially available
AI algorithm in a retrospective, consecutive cohort of
screening mammograms from a population breast screening
program, with linkage to cancer registry data for
ascertainment of interval cancers. Standalone accuracy of the
AI was lower than that of radiologists who interpreted the
mammograms in practice. At the summary sensitivity for

radiologists, the AI had lower specificity. However, in
simulated AI-radiologist reading where discordance between
AI and radiologist results was arbitrated by a second
radiologists’ read, lower specificity did not translate to an
increase in recall compared with double-reading in practice.
Although there was a small reduction in cancer detection rate
for simulated AI-radiologist reading, the AI detected some
interval cases that were not identified by radiologists. The
interval cancer detection rate in simulated AI-radiologist
reading may have been underestimated by our retrospective
design where radiologists were blinded to AI findings.

Implications of all the available evidence
We have shown that the high accuracy of AI observed in
selected, cancer-enriched datasets may have limited
applicability to real-world breast cancer population screening.
However, lower AI specificity does not necessarily translate to
increased recall when integrating AI into a reading work-flow
including arbitration. Prospective trials are required to
determine whether slightly lower cancer detection rates from
simulated AI-radiologist reading could potentially improve if
AI detection was actioned in a reading strategy including
arbitration to maximise cancer detection while minimising
unnecessary recall.
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cancer but also yield false-positive results or miss can-
cers that are not perceptible to the screen-reader. False-
positive recall is a downside of screening, potentially
causing anxiety and unnecessary investigations.2 Can-
cers that are not detected at screening often present
symptomatically in the interval between screening
rounds (“interval cancers”), and may be more fast-
growing and aggressive than screen-detected cancer.3,4

Automated reading of mammograms by artificial intel-
ligence (AI) algorithms has been proposed to reduce
false-positive recall, increase cancer detection through
earlier identification of interval cancers,5–8 and reduce
workforce challenges faced by screening programs.9–11

Screening programs in Australia, Europe and the
United Kingdom (UK) use double-reading, imple-
mented as two independent screen-readings, with
discordance typically resolved by arbitration or addi-
tional reads. Replacing one of the initial two human
readers with an accurate AI algorithm has the poten-
tial to improve cancer detection and recall metrics.
However, studies that have evaluated AI for breast
cancer screening have commonly employed cancer-
enriched datasets that are likely to be unrepresenta-
tive of disease spectrum in screening populations, and
may lead to estimates of accuracy that are not gen-
eralisable to real-world screening.12–14 External valida-
tion studies, in which AI is evaluated in datasets that
are independent of those used to train the algorithm,
are uncommon and have suffered from
methodological shortcomings in cohort selection and
outcome ascertainment.15,16 Currently, the European
Commission Initiatives on Breast and Colorectal
Cancer recommends against the use of AI as second
reader due to very low certainty of the evidence on test
accuracy.17 There is therefore a need to generate
robust evidence of AI performance that is general-
isable to routine screening practice to inform de-
cisions about adopting the technology.12,18

In this cohort study, we compare AI reading of dig-
ital mammograms with human reading in a real-world,
population breast cancer screening setting using
consecutive screening mammograms. We aim firstly to
compare the accuracy of AI with single human reading,
and secondly to compare cancer detection and recall
rates for simulated AI-human screen-reading with hu-
man double-reading (standard practice in most breast
screening programs).
Methods
We conducted a retrospective independent validation of
a commercially-available AI algorithm in a consecutive
cohort of screening participants from the population
breast screening program in Western Australia (WA),
BreastScreen WA (BSWA), for whom screening data
and outcomes were prospectively collected. Detailed
methods are described in the previously-published
protocol.19
www.thelancet.com Vol 90 April, 2023
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Ethics
The study had ethical approval from the Women and
Newborn Health Service Ethics Committee (EC00350).
The committee provided a waiver of consent for this
study. Participants in the BSWA programme provide
written consent for their data to be used for research
purposes each time they screen.

Study cohort
Consecutive mammography screens between 1
November 2015 and 31 December 2016 were identified
from BSWA. Full-field digital mammograms were ac-
quired with Siemens systems (MAMMOMAT Inspira-
tion). Women were eligible if aged 50–74 years, aligning
with the invited age range for breast cancer screening in
Australia.20 For women with multiple screening epi-
sodes, only the most recent was included. Deaths within
24 months of screening and out-of-state relocations
were excluded to ensure a minimum follow-up period of
24 months for ascertaining interval cancers. Women
with a previous mastectomy, implants, or an incomplete
screening examination were excluded to ensure
completeness of images for interpretation by the AI
algorithm.

Measurement
For each woman, demographic characteristics and risk
factors (age; screening round; personal history of breast
and ovarian cancers; first degree family history of breast
cancer; hormone replacement therapy in previous six
months) were extracted from the Mammographic
Screening Registry. Breast density was not available for
the full the cohort because BSWA records density only
for women not recalled to assessment. The final
screening outcome (recall or not recall) and findings
from each radiologist were also extracted, along with
data on screen-detected cancers (date of diagnosis; his-
tological type; tumour size). Screen-detected cancers
were defined as invasive cancer or ductal carcinoma in
situ (DCIS) detected at the index screening episode.21

Interval cancers, defined as invasive cancers diagnosed
after a negative index screen and before the next
scheduled screening episode (i.e. within 24 months for
biennial screeners, and 12 months for a minority of
women scheduled for annual screening)21 were identi-
fied through data linkage to the WA Cancer Registry.

Interpretation of mammograms by AI algorithm
The DeepHealth AI model used in this study underlies a
triage product (Saige-Q v2.0.0) that is Food and Drug
Administration (FDA)-cleared and commercially avail-
able in the United States (US). Development of the AI
model has been described previously.5 Training data sets
from the US and UK (with images acquired using
General Electric and Hologic systems) were indepen-
dent of the Australian data set used for this external
validation study. The algorithm evaluates each image in
www.thelancet.com Vol 90 April, 2023
a mammographic study independently and aggregates
all potential regions of interest to compute a single
study-level score ranging from 0 to 1.

In processing a mammographic study, the com-
mercial algorithm consists of the following steps: 1)
checking each image and the entire study for accept-
ability for processing; 2) pre-processing the pixel data for
input into the AI model; and 3) evaluation of the AI
model on the pre-processed pixels. To enable processing
of Siemens images for which the algorithm had not
been previously validated or FDA-cleared, modifications
were performed for steps 1 and 2 (majority of accept-
ability checks were removed, as well as a pre-processing
step that crops out the image background), whereas the
AI model (step 3) remained fixed.

Integration of AI and radiologist findings
The BSWA program uses double-reading, implemented
as independent screen-readings by two radiologists with
arbitration for discordance.20 The integration of AI into
double-reading was simulated by analytically pairing the
first radiologists’ read (Reader 1) per screen with the AI
result. Recall to assessment was based on results of AI-
radiologist reading, where agreement between Reader 1
and AI resulted in a decision to recall or not recall. In
the case of disagreement, a new arbitrating read was not
performed; rather, disagreement was arbitrated by the
second radiologist read (Reader 2) that occurred in
practice (“simulated AI-radiologist reading”). A sensi-
tivity analysis resolved disagreement by Reader 3 when
arbitration occurred in practice (and by Reader 2 when it
did not). Strategies that did not include arbitration
(recall when either Reader 1 or AI was positive for
suspicious abnormality; recall when both Reader 1 and
AI were positive) were also investigated.

Statistics
Detailed statistical methods are described in
Supplementary Method S1. Sample size calculations are
available in the published protocol.19 Descriptive char-
acteristics of the cohort were summarised by the mean
and standard deviation (SD) for age and percentages for
categorical variables. All tests of statistical significance
were two-sided. The level chosen for statistical signifi-
cance was P < 0.05; P < 0.10 was considered to indicate
weak evidence of a difference. Analyses were under-
taken in R 4.0.4 and SAS 9.4.

Accuracy measures
For each radiologist, sensitivity and specificity for
detection of cancer were computed and the summary
receiver operating characteristic (ROC) curve, area un-
der the ROC curve (AUC), and summary sensitivity and
specificity were estimated.22 For the AI algorithm, the
empirical ROC curve and AUC were derived. Partial
AUCs were also estimated.23 Sensitivity and specificity
for AI were computed at a prospectively-defined
3
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threshold (Threshold 1) predicted to generate a 4%
positivity rate (a priori expected recall rate for double-
reading in BSWA20) based on DeepHealth’s indepen-
dent US validation data.

Screening detection measures
The cancer detection rate (CDR, per 1000 screens) and
recall rate (percentage) were computed for double-
reading by radiologists and compared with simulated
AI-radiologist reading using Threshold 1 (McNemar’s
test). Retrospective thresholds generating a positivity
rate for the AI algorithm alone that equalled the BSWA
program recall rate observed in our study data
(Threshold 2), and a recall rate for simulated AI-
radiologist reading (with arbitration) that equalled the
observed BSWA program recall rate (Threshold 3) were
also explored. The proportion of AI-positive screen-
detected cancers was stratified by age, screening round,
pathologic type and tumour size. The proportion of AI-
positive interval cancers was stratified by age, screening
round, and time-to-diagnosis. Strata were compared
with Chi-squared or Fisher’s exact tests.

Role of funders
The study sponsors had no role in study design; in
the collection, analysis, and interpretation of data; in the
writing of the report; and in the decision to submit the
paper for publication.
Results
Cohort characteristics
A total of 113,818 women contributing unique,
consecutive screening examinations were identified.
After applying exclusion criteria, 109,000 women
(95.8%) were eligible. A further 30 (<0.1%) were
excluded due to mammograms that could not be
retrieved, resulting in 108,970 women included in the
analytic cohort (Supplementary Figure S1).

Descriptive characteristics and screening metrics are
presented in Table 1. The mean age of participants was
61.0 (SD 6.9) years. There were 9071 baseline (incident)
screens (8.3%); the remainder were subsequent (repeat)
screens. A majority of women (87.2%) had a biennial
screening interval (n = 95,017). There were 760 screen-
detected breast cancers (605 invasive, 155 DCIS) and
235 interval cancers.

Accuracy of AI algorithm versus radiologists
During the study period, 27 radiologists interpreted
mammograms as first or second readers. Each radiolo-
gist interpreted a subset of the mammograms
comprising the study cohort (mean 8072, range
3066–15,938). Pairs of (sensitivity, 1-specificity) for each
radiologist are plotted in Fig. 1A, along with the sum-
mary ROC curve and empirical ROC curve for the AI
algorithm. Sensitivities and 1-specificities for
radiologists lie above the algorithm ROC curve. The
AUC for radiologists was 0.93 compared with 0.83 for
the AI; pAUCs over the 1-specificity range for radiolo-
gists were 0.86 and 0.71, respectively. The AI algorithm
AUC was 0.87 for screen-detected cancers and 0.67 for
interval cancers (Supplementary Figure S2).

Fig. 1B plots the same ROC curves overlaid with
summary sensitivity and specificity for radiologists and
the AI. For radiologists, summary sensitivity was 0.68
(95% CI 0.66–0.71) and specificity was 0.97 (95% CI
0.97–0.97). At Threshold 1, the AI algorithm sensitivity
(0.67; 95% CI 0.64–0.70) was comparable to summary
sensitivity for radiologists but with lower specificity
(0.81; 95% CI 0.81–0.81). The AI positivity rate at
Threshold 1 was 19.5%. At AI sensitivity of 0.68 (95% CI
0.65–0.71) (i.e. equal to radiologist sensitivity), speci-
ficity was 0.80 (95% CI 0.80–0.80; estimates not shown
in Fig. 1B). At AI specificity of 0.97 (95% CI 0.97–0.97)
(i.e. equal to radiologist specificity), sensitivity was 0.40
(95% CI 0.37–0.43).

In a sensitivity analysis applying 12-month follow-up
for ascertaining interval cancers (Supplementary
Figure S3), AUCs were higher for both radiologists
(0.96) and the algorithm (0.85), but the absolute differ-
ence (−0.11) was consistent with the primary analysis.

Cancer detection rates
Table 2 reports CDRs for double-reading in the BSWA
program, and for simulated AI-radiologist reading with
arbitration (AI-radiologist reading without arbitration
shown in Supplementary Table S1). CDR for the BSWA
program was 6.97 per 1000 (95% CI 6.49–7.49). CDRs at
each AI threshold were statistically significantly lower
than the BSWA CDR. Absolute differences between
CDRs were −0.61 per 1000 (95% CI −0.77 to −0.44;
P < 0.001 McNemar’s) at Threshold 1; −0.97 per 1000
(95% CI −1.16 to −0.78; P < 0.001 McNemar’s) at
Threshold 2; and −0.51 per 1000 (95% CI −0.67 to −0.36;
P < 0.001 McNemar’s) at Threshold 3. In a sensitivity
analysis incorporating Reader 3 in arbitration (when
available), CDRs were generally comparable to the main
analysis (Supplementary Table S2). Slightly higher
CDRs are attributable to a small increase in the number
of screen-detected cancers.

Simulated AI-radiologist reading detected 90.4%
(95% CI 88.1–92.4) of screen-detected cancers at
Threshold 1; 85.8% (95% CI 83.1–88.2) at Threshold 2;
and 91.6% (95% CI 89.4–93.5) at Threshold 3 (Table 2).
The proportions of screen-detected cancers that were AI
true-positive (i.e. algorithm sensitivity for screen-
detected cancers) were 76.8% (95% CI 73.7–79.8) at
Threshold 1; 49.6% (95% CI 46.0–53.2) at Threshold 2;
and 83.0% (95% CI 80.2–85.6) at Threshold 3. AI
sensitivity was consistently higher for younger women,
with a statistically significant trend for decreasing
sensitivity with increasing age (Table 3). AI sensitivity
was higher for incident than repeat screens. At
www.thelancet.com Vol 90 April, 2023
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N % from all
screened
women

Cohort characteristics

Age-group, years

50–59 48,389 44.4%

60–69 45,616 41.9%

70–74 14,965 13.7%

Personal history of breast cancer

Yes 3351 3.1%

No 105,618 96.9%

No response 1 <0.1%

Personal history of ovarian cancer

Yes 631 0.6%

No 108,339 99.4%

First degree family history of breast cancer

Yes 10,197 9.4%

No 98,773 90.6%

Hormone replacement therapy (past 6
months)

Yes 12,497 11.5%

No 96,465 88.5%

No response 7 <0.1%

Screening round

First 9071 8.3%

Repeat 99,899 91.7%

Recommended screening interval

Annual 13,951 12.8%

Biennial 95,019 87.2%

Screening metrics

Recalled to assessment 3684 3.4%

Screen-detected cancer 760 0.7%

Pathologic type

Invasive 605 0.6%

DCIS 155 0.1%

Size

≤15 mm 419 0.4%

>15 mm 340 0.3%

Missing 1 <0.1%

Interval cancer 235 0.2%

≤12 months post-screen 94 <0.1%

>12–24 months post-screen 141 0.1%

Table 1: Cohort characteristics and screening metrics for 108,970
women screened by BreastScreen WA, November 2015 to
December 2016.

Articles
Threshold 2, there was weak evidence for higher
sensitivity for invasive cancer than DCIS, but no evi-
dence of this difference at other thresholds. The pro-
portion of invasive screen-detected cancers detected by
the AI was greater for large (>15 mm) than small
(≤15 mm) cancers at all thresholds. There was weak
evidence for this difference in screen-detected DCIS for
Threshold 2 only, but these comparisons have reduced
statistical power due to lower numbers of DCIS
(Table 3).
www.thelancet.com Vol 90 April, 2023
The proportion of interval cancers detected by the AI
(i.e. algorithm sensitivity for interval cancers) was 36.6%
(95% CI 30.4–43.1) at Threshold 1; 10.2% (95% CI
6.7–14.8) at Threshold 2; and 45.5% (95% CI 39.0–52.1)
at Threshold 3. There were no statistically significant
differences by age, screening round and time-to-
diagnosis (Table 3). Relatively small numbers of inter-
val cancers were identified by simulated AI-radiologist
reading (range 0.02–0.07 per 1000; Table 2); those
strategies required positive findings by AI and one
radiologist. A larger number of interval cancers were
detected by the AI algorithm but not by either radiolo-
gist (range 0.20–0.91 per 1000), and hence were not
recalled in simulated arbitration. To simulate a scenario
in which the AI result was made available to aid radi-
ologist interpretation, the maximum possible CDR
(including interval cancers detected only by AI) was
estimated (Table 2). At Threshold 1, the maximum CDR
was not different to the BSWA CDR (difference 0.12 per
1000; 95% CI −0.11 to 0.35; P = 0.30 McNemar’s). The
maximum CDR was statistically significantly less than
the BSWA CDR at Threshold 2 (−0.77 per 1000; 95%
CI −0.98 to −0.56; P < 0.001 McNemar’s), and statisti-
cally significantly greater at Threshold 3 (0.39 per 1000;
95% CI 0.16–0.63; P = 0.001 McNemar’s).

Recall rates
Table 2 presents recall rates for simulated AI-radiologist
reading (with arbitration) compared with the BSWA
recall rate (AI-radiologist reading without arbitration is
described in Supplementary Table S1). The BSWA
program recall rate was 3.38% (95% CI 3.27–3.49). The
simulated AI-radiologist reading recall rate was signifi-
cantly lower than the BSWA recall rate for both
Threshold 1 (difference −0.25%; 95% CI −0.31 to −0.18;
P < 0.001 McNemar’s) and Threshold 2 (−0.81%; 95%
CI −0.87 to −0.75; P < 0.001 McNemar’s). By definition,
recall rates were equal for Threshold 3. In a sensitivity
analysis incorporating Reader 3 in arbitration (when
available), recall rates for Thresholds 1 and 2 increased
slightly but were generally comparable to the main
analysis (Supplementary Table S2).

Recall rates associated with potential maximum
CDRs were estimated as a range of values. “Low” esti-
mates assumed that only AI true positives for interval
cancers were recalled; “high” estimates assumed that all
AI positives were recalled. “Low” estimates were
significantly lower than the BSWA recall rate except at
Threshold 3, which resulted in a small increase in recall
(difference 0.09%; 95% CI 0.03–0.16; P = 0.006 McNe-
mar’s). Large increases in recall rates were evident in all
“high” estimate scenarios.

Screen-reading volume
Table 4 reports the number of first, second and arbi-
trating radiologist reads in the BSWA program
compared with simulated AI-radiologist reading. For
5
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Fig. 1: Summary ROC curve for radiologists (N = 27) and empirical ROC curve for AI algorithm showing A) AUCs and partial AUCs, and
B) sensitivity and specificity for radiologists (summary) and AI algorithm (at prospective threshold and at radiologist specificity).
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simulated AI-radiologist reading, the number of arbi-
trating reads increased at all AI thresholds, but
replacement of the second radiologist read by the AI
algorithm resulted in a reduction in the total number of
reads of between 37.7% and 48.4%. For strategies
combining radiologists and AI with no arbitration, the
estimated reduction in the number of radiologist reads
was 51.2% (Supplementary Table S3).
Discussion
Population mammography screening is the main cancer
control strategy for female breast cancer. The develop-
ment and validation of AI algorithms for automated
reading of mammograms has been the subject of
intensive research aiming to improve screening metrics
and address resourcing of screen-readings in population
screening programs.5–8 Despite this effort, there remains
substantial uncertainty about the accuracy of AI in real-
world screening and the transferability of evidence be-
tween settings due to limited external validation, the use
of selected (non-consecutive) subjects and incomplete
ascertainment of interval cancers leading to a high risk
of bias.12,15,16 In our study, we assembled a well-defined
cohort of consecutive mammograms from a
population-based screening program with ascertained
outcomes (ensuring all interval cancers were included).
Unlike the selected, cancer-enriched datasets commonly
reported in the literature, our cohort was highly repre-
sentative of screening participants in Australia. Our
methods also represent a stringent test of transferability
by applying an AI algorithm that was trained and
validated using independent, non-Australian data, and
with images acquired by different hardware vendors to
that used by the screening program.24 The accuracy of
the algorithm observed in our study (AUC 0.83 for all
cancers; AUC 0.87 for screen-detected cancers) was
lower than previously found when tested using a cancer-
enriched, US dataset (AUC 0.94 for screen-detected
cancers).5

Several factors may have contributed to this per-
formance difference, including the consecutive cohort
versus cancer-enriched selection, and differences in
screening populations, mammography vendors, and
criteria for defining ground truth (confirmation of
non-cancer status; inclusion of interval cancers;
consideration of “misses” that are identified on sub-
sequent screens). Notably, an earlier study reported
lower performance for a UK-trained and validated al-
gorithm when tested in a (cancer-enriched) US
setting.6 Although the difference in performance be-
tween countries is consistent with our results (albeit
with a smaller magnitude of difference in our study),
that earlier comparison may itself be confounded by a
difference in cohort selection. Recognising and
further exploring these factors and how they
contribute to transferability of AI are important lines
of research to inform translation into screening
practice.

Our study reports various comparisons of AI relative
to human readers to judge its potential for further
evaluation or application in breast cancer screening. In
contrast to a previous report in which AI accuracy was
non-inferior to radiologists in a selected, cancer-
www.thelancet.com Vol 90 April, 2023
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enriched dataset assembled from multiple screening
settings in different countries,7 our study using a well-
defined, consecutive cohort found that the algorithm
exhibited lower overall accuracy (AUC 0.83) than radi-
ologists who interpreted the screens in practice (AUC
0.93). However, at a prospectively-defined positivity
threshold, the algorithm’s sensitivity (0.67) was compa-
rable to the summary sensitivity for radiologists (0.68),
but with lower specificity (0.81 versus 0.97). This
threshold was selected a priori to produce a relative low
algorithm positivity rate of 4% (based on independent,
non-Australian validation data), and hence an expected
specificity of approximately 0.96. This difference be-
tween expected and observed AI positivity rates and
resulting specificity highlights the inherent difficulties
of threshold selection using independent datasets.
Applying an optimal threshold is likely to remain chal-
lenging where calibration of algorithms to local condi-
tions is not feasible, and emphasises the importance of
better understanding factors potentially affecting
transferability.

In simulated AI-radiologist reading, where the AI
and human reads were analytically integrated with
arbitration for discordance, the AI’s lower specificity
increased the arbitration rate but did not translate to an
increase in the recall rate. This suggests that arbitration
by a radiologist can mitigate additional AI false-positives.
The increase in arbitrating reads partially offset a
reduction in reading workload from using AI as one
reader, but this strategy still resulted in an overall
reduction in reading volume of between 37.7% and
48.4%. A similar increase in arbitration coupled with a
reduction in overall screen-reading volume was observed
in previous studies simulating integrated AI-radiologist
reading,25 preprint,26 highlighting the potential effi-
ciencies from using AI in screen-reading in the context
of arbitrated double-reading.

At the prospective threshold, the AI algorithm was
positive for 76.8% of cancers that were screen-detected
in BSWA practice and 36.6% of interval cancers; at a
lower (retrospective) threshold, sensitivity (83.0% for
screen detected, 45.5% for interval cancers) was com-
parable to that found in external validation of a different
AI system in a Norwegian screening program (86.8%
and 44.9%; small differences in estimates may reflect
age differences between cohorts).27 Consistent with ex-
pectations, the AI sensitivity for screen-detected cancers
was higher for incident screens20 and larger cancers.28

Our data did not allow stratification of results by
breast density classification; future work should address
this limitation by providing AI accuracy by density.
However, we presented comparisons by age as a po-
tential proxy for density,29 and found evidence of a
decreasing proportion of detection of screen-detected
cancers with increasing age (i.e. the AI was more sen-
sitive in younger age groups). Given that mammography
sensitivity increases with age,20 a relationship also
www.thelancet.com Vol 90 April, 2023 7
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Stratification variable Category N cancers Threshold 1 (prospective) Threshold 2 Threshold 3

AI true positive
proportion
(95% CI)

P-valuea AI true positive
proportion
(95% CI)

P-valuea AI true positive
proportion
(95% CI)

P-valuea

Screen-detected cancers N/A 760 76.8% (73.7–79.8) N/A 49.6% (46.0–53.2) N/A 83.0% (80.2–85.6) N/A

Age 50–59 267 81.7% (76.5–86.1) 0.07
(0.03 for trend)

56.9% (50.7–62.9) 0.01
(0.002 for trend)

86.1% (81.4–90.1) 0.06
(0.02 for trend)60–69 335 74.6% (69.6–79.2) 46.3% (40.8–51.8) 83.3% (78.9–87.1)

70–74 158 73.4% (65.8–80.1) 44.3% (36.4–52.4) 77.2% (69.9–83.5)

Screening round First 113 85.8% (78.0–91.7) 0.01 62.8% (53.2–71.7) 0.002 88.5% (81.1–93.7) 0.09

Repeat 647 75.3% (71.8–78.5) 47.3% (43.4–51.2) 82.1% (78.9–84.9)

Pathologic type DCIS 155 76.8% (69.3–83.2) 0.98 42.6% (34.7–50.8) 0.05 82.6% (75.7–88.2) 0.87

Invasive 605 76.9% (73.3–80.2) 51.4% (47.3–55.5) 83.1% (79.9–86.0)

Tumor size

Invasivec ≤15 mm 350 72.9% (67.9–77.5) 0.005 43.7% (38.5–49.1) <0.001 80.9% (76.3–84.9) 0.06

>15 mm 254 82.7% (77.5–87.1) 62.2% (55.9–68.2) 86.6% (81.8–90.5)

DCIS ≤15 mm 69 71.0% (58.8–81.3) 0.13 34.8% (23.7–47.2) 0.08 79.7% (68.3–88.4) 0.40

>15 mm 86 81.4% (71.5–89.0) 48.8% (37.9–59.9) 84.9% (75.5–91.7)

Interval cancersd N/A 235 36.6% (30.4–43.1) N/A 10.2% (6.7–14.8) N/A 45.5% (39.0–52.1) N/A

Age 50–59 99 40.4% (30.7–50.7) 0.45 8.1% (3.6–15.3) 0.63b 49.5% (39.3–59.7) 0.51

60–69 97 32.0% (22.9–42.2) 12.4% (6.6–20.6) 41.2% (31.3–51.7)

70–74 39 38.5% (23.4–55.4) 10.3% (2.9–24.4) 46.1% (30.1–62.8)

Screening round First 27 37.0% (19.4–57.6) 0.96 3.7% (0.1–19.0) 0.33b 44.4% (25.5–64.7) 0.90

Repeat 208 36.5% (30.0–43.5) 11.1% (7.1–16.1) 45.7% (38.8–52.7)

Time to diagnosis ≤12
months

94 39.0% (30.9–47.6) 0.35 9.9% (5.5–16.1) 0.86 45.4% (37.2–53.6) 0.96

>12–24
months

141 33.0% (23.6–43.4) 10.6% (5.2–18.7) 45.7% (35.4–56.3)

Abbreviations: AI, artificial intelligence; CI, confidence interval; DCIS, ductal carcinoma in situ; N/A, not applicable. aChi-squared test; Wald Chi-squared test for trend in parentheses. bFisher’s exact test.
cN = 1 invasive screen-detected cancer with missing size data. dInvasive only, consistent with the BreastScreen Australia definition.21 Tumour size was not recorded for interval cancers.

Table 3: Proportion of screen-detected and interval cancers that were positive on AI, stratified by age, screening round, pathologic type and tumour size.
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observed in previous reports of AI sensitivity,30 this new
finding was unexpected and warrants further explora-
tion, noting however that this was not observed for the
interval cancers.

Cancer screening programs may be reluctant to adopt
new technologies if cancer detection is not at least
equivalent to current practice, regardless of potential
benefits to recall and workflow. A study of simulated AI-
radiologist reading in the Norwegian screening program
found a small reduction in CDR relative to program
metrics; however, the estimates do not include detection
of interval cancers as arbitration was not applied to cases
that were not recalled in practice.26 Similarly, a previous
study with incomplete interval cancer ascertainment
found that the CDR for integrated AI-radiologist reading
did not exceed that of double-reading by radiologists.25
preprint In our study including all interval cancers, the
CDR for simulated AI-radiologist reading with arbitra-
tion was lower compared with the BSWA program,
although the difference was relatively small (−0.61 per
1000). However, it is possible that the CDRs observed for
simulated AI-radiologist reading are an underestimation
of what might be observed in a prospective study, where
all AI-radiologist recalled cases would undergo assess-
ment and additional (non-interval) cancers may be
detected.6 Also, the use of Reader 2 reads for arbitration
in our study may have underestimated CDR due to likely
performance differences of real-world arbitrating
readers and initial readers. Our sensitivity analyses
suggested that both CDR and recall may increase with
real-world arbitration, although the observed improve-
ment in CDR was attributable to recall of screen-detected
(not interval) cancers.

Furthermore, we found that radiologist arbitration
corrected AI false-positives but also “arbitrated out”
most interval cancers detected by AI. Radiologists were
blinded to AI findings, but it is possible that some
Reader 2 (arbitrating) reads were not conducted inde-
pendently from Reader 1. This may bias arbitration in
favour of agreement with Reader 1 rather than with AI.
It is therefore possible that a larger number of interval
cancers may be detected in a prospective setting where
arbitrating radiologists are not blinded to AI findings,
and our simulation showed the potential for unblinding
to result in increases in CDR. An earlier study, using the
same algorithm with a cancer-enriched dataset, also
www.thelancet.com Vol 90 April, 2023
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Screen reading strategy Threshold for AI algorithm Number of radiologist reads Reduction relative to
BSWA practice (%)
(95% CI)

First read Second read Arbitrating reads Total

BSWA screening practice: Radiologist double-reading,
disagreement arbitrated by additional read/s

N/A 108,970 108,970 5415 223,355 N/A

Simulated double-reading: Reader 1 paired with
AI algorithm, disagreement arbitrated by Reader 2

Threshold 1 (prospective) 108,970 0 21,960 130,930 ↓ 41.4% (41.2–41.6)

Threshold 2 108,970 0 6303 115,273 ↓ 48.4% (48.2–48.6)

Threshold 3 108,970 0 30,100 139,070 ↓ 37.7% (37.5–37.9)

Abbreviations: AI, artificial intelligence; BSWA, BreastScreen WA; CI, confidence interval; N/A, not applicable.

Table 4: Number of radiologist reads for BSWA program and simulated AI-radiologist reading (N = 108,970 screens).

Articles
showed that the AI could detect cancers that had not
been detected by radiologists in real-world screening,5

and the potential for interval cancer detection has
been highlighted in a previous retrospective study
without arbitration of additional AI findings.26 However,
our analysis was case-based and correlation of AI find-
ings with subsequently diagnosed interval cancer
(lesion) location was not undertaken. Our simulation
showed probable increases in recall associated with any
increase in CDR from additional interval cancer detec-
tion. Prospective trials would provide the strongest evi-
dence about the true magnitude of changes in CDR and
recall; however, extensions of retrospective studies in
which all AI-radiologist discordant cases are subject to
new third reader arbitration are possible, and could
elucidate this impact in shorter timeframes.

In this external validation cohort study, using
consecutive screening mammograms, we found that the
accuracy of AI observed in selected, cancer-enriched
datasets may not be directly applicable to real-world
breast cancer population screening. Differences in
screening participants, mammography vendors and
ground truth criteria may have also impacted the
transferability of the AI’s performance. However, the
lower AI specificity compared with radiologists observed
in our study does not necessarily translate to increased
recall when integrating AI into double-reading, where
additional arbitration may mitigate false positives while
still resulting in reductions in overall screen-reading
volume. The evidence from our study suggests a po-
tential role for AI in automated reading of breast cancer
screening mammograms; however, prospective trials
are required to determine whether the slightly lower
CDR from simulated AI-radiologist reading could
improve if AI detection was actioned in a reading work-
flow including arbitration to minimise unnecessary
recall while maximising cancer detection to improve
screening outcomes for women.
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