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ABSTRACT

Automatic cell tracking has long been a challenging problem
due to the uncertainty of cell dynamic and observation process,
where detection probability and clutter rate are unknown and
time-varying. This is compounded when cell lineages are also
to be inferred. In this paper, we propose a novel biological
cell tracking method based on the Labeled Random Finite
Set (RFS) approach to study cell migration patterns. Our
method tracks cells with lineage by using a Generalised Label
Multi-Bernoulli (GLMB) filter with objects spawning, and a
robust Cardinalised Probability Hypothesis Density (CPHD) to
address unknown and time-varying detection probability and
clutter rate. The proposed method is capable of quantifying the
certainty level of the tracking solutions. The capability of the
algorithm on population dynamic inference is demonstrated
on a migration sequence of breast cancer cells.

Index Terms— Cell Tracking, Cell Lineage Inference,
Track-By-Detection, Random Finite Set.

1. INTRODUCTION

Cell migration patterns are crucial in the study of cell reactions
to certain conditions such as drug injections or changes in
biochemical activities. Also, research on cell division gives
insights into the developments of embryonic or tumors [1,2].
Well-known approaches for tackling the cell tracking problem
in the literature are track-by-detection [3—5] and model-based
tracking [6—8]. On the other hand, from estimation perspective,
the level of confidence governs the meaningfulness of tracking
results. Hence it is necessary that a tracking framework can
provide the uncertainty level together with the inferred results
in order to fully characterise the tracking solution.

Cell tracking is an important practical applications of the
multi-object tracking problem. The recent introduction of RFS
theory [9] has opened up new pathways to address the prob-
lem from a rigorous mathematical perspective. Indeed, pop-
ular multi-object filters such as the CPHD, Multi-Bernoulli,
GLMB, and Labeled Multi-Bernoulli (LMB) were derived
from the RFS framework [9] and have been applied to track
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cells in [10-13]. In particular, the GLMB/LMB filters were
developed to estimate objects trajectories via labeled RFS [14]
and lineage of objects is also considered in [15]. Addition-
ally, amongst the many approaches to multi-object tracking,
the labeled RFS approach has demonstrated the capability
for characterising confidence/uncertainty on the inferred re-
sults [16]. Furthermore, RFS-based filters can be formulated
to handle tracking problems with unknown clutter rate and
detection probability [17-19].

In this work, we propose a novel track-by-detection algo-
rithm to study the migration pattern of cells where the clutter
rate and detection probability of objects are unknown. In
particular, this information is estimated via the robust CPHD
filter [18] and then bootstrapped into the GLMB filter with
objects spawning [15] to produce the posterior density of the
multi-object state. This GLMB density provides statistics on
the cell dynamic as well as the estimated trajectories with
ancestral information via the GLMB trajectory estimator [20].

2. RFS-BASED CELL TRACKER

2.1. Multi-object Bayes Filter

We model an entire multi-object state as a random variable.
Specifically, the set of objects is represented as a labeled RFS
as X = {(z1,41), ..., (®n, €n)} with 2, € X and ¢, € L,
where X is the object state-space and L is a discrete label
space. Similarly, Z = {z1, ..., 2, } denotes a measurement set
with z,, € Z, where Z is the measurements space.

For a generic multi-object state X, f(X|X) and g(Z|X)
represent the multi-object transition and measurement mod-
els, whereupon the posterior density p(X|Z) of X can be
computed via the Bayes filter as:

p(X) = / POS(XLX)6X, (1)

_ (X4 )g(Z4]Xy)
PUX+|Z4) = fp(X+;9(Z+J|rX+;5X+7 @

where ‘+° denotes the next time step.
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Fig. 1. Schematic of the proposed algorithm.

2.2. Estimating Clutter Rate and Detection Probability

Direct computation of the multi-object Bayes filter is pro-
hibitively expensive, whereas the CPHD filter is the approxi-
mation of the Bayes filter via propagating the probability hy-
pothesis density (PHD) and the cardinality distribution of the
multi-object state. In this work, we adopt a robust CPHD filter
for estimating the clutter rate and average detection probability.
Then the estimated results are bootstrapped into a GLMB filter.
The structure of the proposed algorithm is depicted in Fig. 1.

To accommodate unknown clutter rate, we follow the ap-
proach in [18], which considers objects of interest (cells) and
clutter as two separate types of objects. Specifically, the filter
uses X1 and X(© as the kinematic state-spaces of cells and
clutter. A new hybrid state-space X(*) of cell and clutter is
defined as

x(h) — (Xu) % X(A)) W (Xm) % X(A)) ’ 3)

where X(4) = [0, 1] is the space of detection probability.
The multi-object state at the current time step evolves
to a new set of objects, which consist of both new objects
and survival objects at the next time step. Also, the birth
rate and survival probability are related to how likely new
births exist and objects survive. Especially, the probability
density functions (PDFs) of new object state are proposed
through the measurements from the previous time step, i.e.,
an adaptive birth model [21], while the PDFs of surviving
objects are computed via single-object transition density. We
assume cells follow the constant turn rate motion and the
measurement model takes the form as in [18]. Moreover, the
dynamic and measurement noises are modeled with Gaussian
distributions, which are standard choices in practice. The
detection probability of cells is modeled with Beta distribution
and clutter is uniformly distributed over the entire image.
Given these models, the PHD and cardinality distribution
on X then can be propagated recursively via Propositions 11
and 12 in [18]. Moreover, the cells and clutter are assumed to
be statistically independent, from which the clutter rate < and
average detection probability of cells pp can be extracted to be
bootstrapped into GLMB filter being described subsequently.

2.3. Tracking Cells with the GLMB Filter

The GLMB filter in this step is based on the labeled RFS to
estimate cell trajectories and lineage information. Given a set

of cells at the current time step, the next (time step) new set of
cells comprises of the independent births, surviving, and split-
ting cells. While the existing probability of independent births
and survivals are governed by the birth rate and surviving
probability, the probability of mitosis is governed by splitting
probability. The PDFs of independent births are proposed via
the measurements from the previous time step [21]. The PDFs
of the surviving and splitting cells are computed from the cur-
rent PDFs of the cells via the single-object transition densities.
We also apply the standard multi-object measurement model
in [15] and the noises are also assumed to be Gaussian.

The label of i*" birth cells appearing at time step k takes
the form (k, ), and that of cells surviving at each time step is
unchanged. Following the convention in [15], the number of
new cell from division is only one and its label is denoted as
(¢, k, 1), whereupon we can estimate the lineage in principle
manner. Assuming that, the GLMB filter is to propagate the
GLMB density [14]

pX)=AX) > wTO5LX)POr, @)

(I,6)eF(L)xE

where A(-) is the distinct label operator to ensure all labels of
cells in X being unique, F () is a collection of all finite subsets
of the set in its argument, and 0x(Y) is 1if X = Y and 0
otherwise. Moreover, £ € = is a history of association maps,
ie, & = (01,...,0;), where 6; is a function mapping track
labels at time 7 to measurements indices at time 4, and w(/:¢)
is the weight of hypothesis (I, ¢). Additionally, p() (z, £) is
the single-object PDF and [p{&)]* = [ ex p&(x,0) .

The filter propagates the GLMB density in time via multi-
object Bayes filter. The estimated clutter rate x and the average
detection probability pp from the robust CPHD filter are used
in the multi-object measurement model to compute the poste-
rior density. The details on implementation is described in [15]
which involve the uses of Gibbs sampler and a proposal density
to select only significant hypotheses.

The time complexity of our method depends on those of
CPHD and GLMB filters. Specifically, the CPHD filter with
unknown clutter rate has O(M) time [18], and the GLMB filter
mainly contributed by the Gibbs sampler entails O (T P? M)
time, where M is the number of received measurements, 7" is
the number of requested hypotheses, and P is the number of
available assignments. Readers are referred to [22] and [15]
for more details of the GLMB filter complexity.

2.4. Statistical Inference on Cell Population

In this work, we use the trajectory estimator based on the
association maps & of the estimated hypothesis at current time
step k as proposed in [20] to provide estimation of the whole
trajectories. In addition, given a GLMB density at current time
step, the statistics of the cells population can be inferred via
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Fig. 2. (a) Snapshot of cells and (b) estimated cell trajectories.

the following equations [23]

Pr(total cells=n) = Z Z Sn [[TNL_|] wBO - (5)
€€= ICL

Pr(independent births =n) = Z Z O [[INB]] w(I’g), 6)
€= ICL

Pr(mitotic events =n) = Z Z on [|[INS]] w7
¢e= ICL

where IL_ is the labels space at the previous time step, and B C
L and S C L are the label spaces of independent births and
splitting cells, respectively. On the other hand, the intensity of
cell in the kinematic space is calculated as [23]

v(z, 0) =Y pO(z,0)> 10w, ®)

te= ICL

where 1;(¢) = 1if ¢ € I and 0 otherwise.

3. EXPERIMENTAL RESULTS

The proposed tracker is applied to a time-lapse image sequence
of cancer cells with 90 frames (one frame per 15 minutes). The
number of cells is time-varying due to births, cell division and
deaths. A snapshot of the sequence is shown in Fig. 2(a). We
focus on tracking the centroid of the cells and use the mitotic
model in [24]. The parameters for the models and filters are
set based on the characteristics of the dataset, the detection
quality, and they are presented in Table 1.

In this experiment, we evaluate our method in comparison
with the Viterbi linking [4], the conservation tracking [7] via
ilastik software [25], and an RFS-based method in [24]. All
approaches utilised the same detection set except for the con-
servation tracking; where, instead, we trained the classifiers for

Table 1. Parameters for the models and filters.

Parameters Values
Surviving probability 0.999
Expected number of births per time step 4
Birth rate 0.03
Splitting probability 0.035
Standard deviation of process turn rate noise /90
Standard deviation of process velocity noise 5
Maximum number of GLMB components 10,000
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Fig. 3. OSPA® error for different methods.

cell detection and division by using ilastik object detection and
tracking pipelines. We adopted OSPA® metric (cut-off of 100
and window-length of 10) to measure errors between the esti-
mated results and human annotations. This is a well-developed
metric in the field of the multi-object tracking and can be in-
terpreted as the time-averaged per-track error. We refer the
reader to [26] for more details on the metric. Furthermore, we
show statistical tracking solution, which can only be extracted
by RFS-based methods. The estimated cell trajectories from
our method are shown in Fig. 2(b).

In Fig. 3, the OSPA® errors indicate that the overall result
of our method generally outweighs state-of-the-art algorithms.
Specifically, the proposed method is superior to the method
in [24] thanks to the trajectories estimator and the capability
to estimate the unknown and time-varying clutter rate and
detection probability. Although the conservation tracking al-
gorithm performs relatively well, it cannot recover tracks after
mis-detection hence worse performance than our approach.
The Viterbi performance is competitive to our method given
its capability to link the tracks via solving optimal paths prob-
lem and a state-space model. However, it cannot generate
probabilistic inference on the tracking solution as in Bayesian
approaches.

Fig. 4 depicts the estimation of cell population. Note
that we omit the results of [24] due to the large performance
gap comparing to those of other methods. Fig. 4(i) shows
the estimated number of cells. Our algorithm provides the
best cardinality estimation though all trackers inaccurately
estimate the number of cells at around time steps 40 to 60
due to severe mis-detection. The differences between esti-
mated number of division events and human annotations, the
ground truth, are plotted in Fig. 4(ii). Here, positive/negative
number indicates over/underestimate respectively. When cells
clump (mis-detected) then split up, occasionally, our algorithm
declares missed cells to be dead then it estimates additional
division events to explain the extra measurements when cells
are separated again. The conservation tracking tends to declare
cells are dead when they are mis-detected then it declares false
division events to explain new measurements. Meanwhile, the
Viterbi algorithm tends to declare mis-detected cells to be dead
hence low estimated cardinality but it provides better division
detection. From this observation, it is shown that our algo-
rithm has the balance of handling mis-detection and estimating
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Fig. 4. The estimation of cell population.

0.3
0.25
02
0.15
0.1
0.05
0

Fig. 5. Average cell intensity in location space.

division events to explain the measurements set. In details, Fig.

4(iii) shows the estimated number of division events at each
time step provided by our method. The 1 sigma-bound curve
is also shown to describe the uncertainty of the estimation,
which can be quantified in Bayesian approach only.

We then demonstrate other capabilities of our approach in
inferring the dynamic of the cell population. The average cell
intensity in terms of location and velocity spaces are given in
Figs. 5 and 6. These are calculated by summing cell intensities

over all frames and then dividing by the number of frames.

This probabilistic inference gives significant insights to cells
migration pattern, in turn, their behaviours. For example,
the intensity of the cells in velocity space shown in Fig. 6
indicated that there is no net drift in the x or y direction, i.e.,
no net migration of the cells. This observation cannot be
made with the cell estimated trajectories. On the other hand,
the properties such as stiffness of the environment [13] and
overall motion direction of cells are reflected in Figs. 5 and
6. Also, Fig. 7 describes the cell lineage with that each color
indicates a distinct family and the vertical connected lines
indicate direct ancestral relationship. We assumed that cells
are all independent new births at the first frame, i.e., there is no
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Fig. 6. Average cell intensity in velocity space.
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Fig. 7. Estimated cell lineage from our method.

initial ancestral relationship between cells. From this lineage
map, the time and frequency of mitotic events can be inferred.

4. CONCLUSION

In this paper, we have proposed an RFS-based algorithm to
estimate the cell trajectories with lineage in an environment
where the clutter rate and detection probability of the cells are
unknown and time-varying. The capability of the proposed
approach in quantifying the certainty level of the tracking
results has been also demonstrated. This study is one of a
few first works on application of labeled RFS to cell tracking
and the potential of this approach mainly remains unexplored.
Future research directions are to extend the tracking capability
using multi-sensor GLMB filtering to accommodate additional
measurements sources, or by adapting the multi-scan GLMB
filter to cell division model to enhance the estimation.
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