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Abstract

Cosmological transients such as fast radio bursts (FRBs) are the most angularly

compact sources observed to date. As a result, they are potentially sensitive

to propagation effects from matter distributed on scales that are otherwise in-

accessible. By understanding the propagation effects caused by these matter

distributions, cosmological transients can be used to probe unexplored regimes of

the Universe’s fine-scale structure, over cosmological volumes.

In this thesis, I primarily explore how the nature of dark matter can be inves-

tigated by observing signatures of gravitational lensing in FRBs. A fundamental

question within the study of dark matter is whether its distribution is similar

to that of a gas of microscopic particles, or an ensemble of macroscopic clumps,

such as primordial black holes (PBHs). I investigate two potential ways in which

future FRB surveys will be able to form constraints on the parameter space of

PBHs. First, I discuss searching for images of strongly gravitationally lensed

FRBs in the temporal domain of individual bursts, and update previous forecasts

with limits informed by improved FRB data quality. I conclude that based on

existing constraints approximately 130 FRBs would need to be observed before

a lensing signal could be expected. Second, I derive the effect of gravitational

lensing on the expected ensemble rate of observed FRBs, and introduce a novel

method for simultaneously constraining the entire range of PBHs capable of lens-

ing FRBs. Both investigations conclude that the large FRB samples expected

from future surveys will be sufficient to form constraints that will dominate over

existing limits.
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In addition to exploring FRB gravitational lensing, I consider how observa-

tions of plasma scattering in FRBs can be used to constrain their progenitor

scenarios and check the validity of Galactic electron distribution models. To do

so I develop existing models for two-screen scattering in FRBs and apply them

to localise scattering media in a sample of Commensal Real-time ASKAP Fast

Transient survey (CRAFT) FRBs observed using the Australian Square Kilome-

tre Array Pathfinder (ASKAP). The results suggest that the dominant contri-

bution to extragalactic scattering in FRBs comes from within each FRB’s host

galaxy and that Galactic scattering models may over-predict observed scattering

times.
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Chapter 1

Introduction

From gentle beach waves to violent gamma-ray bursts (GRBs), all transient sig-

nals are shaped by the environments through which they propagate. By under-

standing how these environments affect the signals we observe, not only can we

correct for them, improving our understanding of a signals’ source, but we can

use them to measure properties of an environment without the need for direct

observation. Such a technique is invaluable to astronomers, who often have little

recourse in the face of observational barriers. This thesis aims to add to our

understanding of how matter in our Universe influences the propagation of cos-

mological transients, and in doing so contribute to our understanding of both

their emission and the structure of our Universe.

1.1 Our Universe

Within the bounds of the Milky Way the Universe is well described by a Eu-

clidean geometry. Prior to the 20th century the dominant picture of our Universe

extended this simple geometry to infinity in all directions, describing a static Uni-

verse. Early spectroscopic studies showed, however, that almost all distant galax-

ies (termed nebulae at the time) are receding away from the observer (Slipher,

1917)— behaviour that is difficult to reconcile with a static model. To resolve this

1



apparent tension, Lemâıtre (1927) derived an alternate model for the Universe’s

geometry known as the Friedmann-Lemaitre-Robertson-Walker metric (FLRW;

termed to include earlier and subsequent contributions to its development). The

FLRW metric is an exact solution to the field equations of Einstein’s theory of

general relativity (Einstein, 1916), found by assuming the Universe is homoge-

neous and isotropic. These assumptions follow from the Copernican principle,

that we as observers do not occupy a special vantage point in the Universe. The

FLRW metric describes a Universe that is not only homogeneous and isotropic,

but also expanding uniformly, such that every point in the Universe is receding

from every other point. Furthermore, Lemâıtre (1931) proposed that tracing this

behaviour backward in time implies that the Universe expanded out from an in-

finitely dense singularity which we term the Big Bang and mark as the origin of

our Universe.

The expansion of the Universe proposed by Lemaitre was subsequently con-

firmed by Hubble (1929), providing a natural explanation for the observed reces-

sion of extragalactic objects. Moreover, the distance to an object is proportional

to its recessional velocity following Hubble’s law v = H0d where v and d are

proper velocity and distance (i.e. they are quantities measured between points at

constant cosmic time) and H0 is Hubble’s constant describing the rate of the Uni-

verse’s expansion in the current epoch. At cosmological distances the observed

motion of a galaxy is dominated by its recession due to expansion, allowing its

distance to be estimated from the redshift of its spectrum. Physically, this cos-

mological redshift is caused by the expansion of the Universe. The finite speed

of light means that observations of distant sources were emitted at earlier times

when the scale factor of the Universe was smaller (i.e. the Universe was contracted

relative to the present). As this light propagates its wavelength expands with the

Universe. As shown in Eq. 1.1 the ratio of the observed to emitted wavelength

of light corresponds to (1+ z), where z denotes cosmological redshift. The factor

(1+z) is also equivalent to the ratio of the scale factor at the time of observation,

2



a(tobs), to the time of emission, a(temit) i.e.

λobs
λemit

= (1 + z) =
a(tobs)

a(temit)
. (1.1)

Therefore, both distance and the timeline of the Universe’s evolution can be

expressed as a function of redshift, with z = 0 being the local Universe at the

present time and z = ∞ being the distant Universe at the time of the Big Bang.

From the singularity of the Big Bang the Universe is thought to have gone

through a period of rapid inflation, where the scale factor of the Universe grew

exponentially. This expansion causes the Universe to cool adiabatically from its

initial hot and dense state (Peebles, 1993). Once the Universe cools sufficiently

such that high energy collisions no longer disrupt the strong force bonds between

quarks and gluons, matter and antimatter form. The subsequent annihilation

between the matter and anti-matter results in most of the formed particles being

destroyed. However, small excesses of leptons and quarks over anti-leptons and

anti-quarks leaves a remainder of matter that dominates over anti-matter in the

Universe today.

Further cooling leads to the formation of the light nuclei, namely hydrogen,

helium and trace amounts lithium and beryllium in a process known as big bang

nucleosynthesis (Alpher et al., 1948). All heavier elements are formed through the

fusion of these light nuclei in other processes such as stellar nucleosynthesis. The

relative abundances of each nuclear species depend sensitively on the conditions of

the early Universe, including the total density in baryons. As the early Universe

is relatively homogeneous we expect these relative abundances to be consistent

across the Universe at the time of their formation. Therefore, by measuring the

ratios of light elements in environments uncontaminated by stellar evolution the

total density of baryons in the Universe can be measured (Cooke et al., 2018).

Following this first three minutes of the evolution the Universe exists as a hot

plasma. Due to the plasma’s large density of free charges light can only travel

a short distance through the plasma before it is Thompson scattered by an ion.
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Figure 1.1: Sky map of CMB temperature anisotropies compared to mean tem-
perature of ∼ 2.73K. Adapted from (Ade et al., 2014).

As a result of this the plasma is opaque and the ions and photons are in thermal

equilibrium. The high energy black-body spectrum of the photons, corresponding

to the high temperatures prevents the synthesised nuclei from becoming neutral

atoms and keeps the photons and ions thermally coupled. As expansion cools

the Universe the photon spectrum decreases in energy and nuclei begin to cap-

ture electrons and form neutral atoms in a process known as recombination. The

heavier nuclei with their deeper coulomb potentials capture electrons first, with

hydrogen recombination being the last to occur at around ∼ 400 000 years after

the big bang (Peebles & Yu, 1970). After recombination the Universe is effec-

tively neutral causing photons to decouple from matter and propagate through

the Universe unimpeded. These photons which peaked in the visible and infrared

spectrum at the time of recombination constitute the Cosmic Microwave Back-

ground (CMB) radiation, which today has been cosmologically redshifted by a

factor of z ∼ 1000 to microwave frequencies.

Often referred to as the afterglow of the Big Bang, the CMB provides strong

evidence that the Universe existed in the extreme state predicted by the Big Bang
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model. Furthermore, the observed spectrum of the CMB can be used to calculate

the temperature of the surface of last scattering and in doing so reveal properties

of the Universe at the time of recombination. Fig. 1.1 shows this temperature

calculated from the latest Planck data (Ade et al., 2014). It shows that the

temperature of the pre-recombination plasma was exceptionally uniform across

the sky, with a root-mean-square (RMS) variation of approximately 17µK(Ade

et al., 2014). The observed homogeneity across the CMB is difficult to explain as

regions separated by more than approximately 2◦ in Fig. 1.1 cannot be causally

connected at the time of recombination. This horizon problem (Rindler, 1956)

is a primary motivation for the theorised inflationary epoch described earlier,

as rapid expansion of the Universe can cause regions in thermal equilibrium to

appear causally disconnected at later times.

In the time since recombination the Universe has continued to expand and

cool. The anisotropies seen in the CMB become the seeds of large scale structure

formation and within these structures the pressure of gravitational collapse births

stars from the neutral gas (Peebles, 1980). High energy radiation emitted by these

stars and other compact objects such as active galactic nuclei ionises most of the

remaining neutral gas in the Universe during the epoch of reionisation (Kogut

et al., 2003). This is the last major evolution of the Universe, leaving it in the

familiar, transparent state we observe today.

Throughout all the above epochs, the evolution of the Universe is driven

primarily by its expansion. The rate at which the Universe expands depends on

the densities of each component of the Universe at a given redshift, as given by

(Hogg, 2000)

H(z) = H0E(z)

E(z) =
√

ΩM(z) + ΩR(z) + Ωk(z) + ΩΛ (1.2)

where H(z) is the value of Hubble’s constant at redshift z and each ΩX represents

the average density in the Universe of matter, radiation, curvature and dark
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energy respectively, at redshift z with respect to the critical density of the FLRW

universe. The critical density, given by

ρcrit =
3H2

0

8πG
, (1.3)

is the density required for a Universe to be completely flat, i.e. have Ωk = 0. This

leads to the curvature often being expressed separately from the other density

paramaters in the following general relation

Ω(z) = ΩM(z) + ΩR(z) + ΩΛ = 1− Ωk(z). (1.4)

Because a universe described by the FLRW metric must be everywhere isotropic

and homogeneous there are only three possible curvatures it may have; positive

(k = +1), negative (k = −1) and flat (k = 0). In each case the curvature

contributes a density given in units of the critical density by

Ωk(z) =
−kc2

a2(z)H(z)2
, (1.5)

which evolves with redshift as (1+z)2. These curvatures dictate the ultimate fate

of our Universe with positively curved Universes eventually recollapsing, whereas

negatively curved and flat Universes continue to expand indefinitely.

The remaining density parameters each evolve with redshift at their own rate.

The energy density of matter (ΩM(z)) decreases as the volume of space increases

and hence evolves with redshift as (1 + z)3. Whereas, the energy density of

radiation (ΩR(z)) will decrease more quickly as its wavelength is also dilated by

expansion resulting in a (1+z)4 redshift evolution. Finally the dark energy, which

drives the expansion of the Universe is most commonly modelled as a cosmological

constant Λ, the density of which (ΩΛ) does not evolve with redshift. Using these

evolutionary behaviours the density parameters can be expressed in terms of their
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density in the present epoch (ΩX,0) yielding

E(z) =
H(z)

H0

=
√

ΩM,0(1 + z)3 + ΩR,0(1 + z)4 + Ωk,0(1 + z)2 + ΩΛ (1.6)

Observations of the CMB also provide a way to measure these densities in our

Universe. As seen in Fig. 1.1 the near perfect black body of the CMB at ≈ 2.73 K

shows small intrinsic temperature fluctuations on the scale of 1 part in 100000

(Smoot et al., 1992; Fixsen et al., 1996). These temperature anisotropies come

from two processes associated with matter-energy density inhomogeneities in the

Universe prior to recombination. The first is the Sachs-Wolfe effect; a result of the

gravitational redshift predicted by Einstein’s theory of general relativity (Sachs

& Wolfe, 1967). Gravitational redshift causes photons escaping a gravitational

potential well to be shifted to lower frequencies, and therefore energies. At the

time of recombination the matter-density inhomogeneities in the Universe setup

inhomogeneous gravitational potentials. Therefore, as the CMB photons are de-

flected off the surface of last scattering towards the observer, they undergo a

non-uniform amount of gravitational redshift across the sky, manifesting as CMB

temperature fluctuations.

The second effect comes from the dynamics of the photo-baryon fluid that

permeates the Universe prior to recombination. During this epoch the ionised

baryons are drawn by gravity into the inhomogeneous potential wells, compress-

ing the fluid. The increased pressure pushes back against gravity, causing the

fluid to expand. The decreased pressure from expansion then allows gravity to

dominate once more and the cycle continues, leading to an acoustic oscillation

in the plasma (Peebles & Yu, 1970; Sunyaev & Zeldovich, 1970). Similar to an

image of rain over the surface of a pond, many oscillations, at various phases were

frozen-in to the CMB signal after recombination when matter became neutral and

photons decoupled from baryons. These are the smaller scale temperature fluc-

tuations observed in the CMB. They can also be seen in the modern Universe’s

large scale structure in the excess probability for galaxies to be separated at the
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characteristic oscillation length (Eisenstein et al., 2005). This confirms that the

density fluctuations in the Universe’s pre-recombination plasma responsible for

temperature anisotropies in the CMB seeded the formation of structure in our

Universe today. However, it also presents a significant issue, as insufficient time

has elapsed in the Universe since recombination for those small amplitude den-

sity fluctuations to have evolved into the structures of the present day Universe

(Smoot et al., 1992). A proposed solution to this issue is the presence of non-

baryonic matter that does not interact strongly with the electromagnetic field

(Davis et al., 1985). Without the pressure of electromagnetic forces opposing

gravity this matter can form the necessary structures before recombination, giv-

ing today’s structures the necessary time to form. Through the use of simulations

a forward model can be built which takes in fundamental properties of the Uni-

verse such as the total matter density and the baryon density and calculates the

resulting CMB signal. By matching these simulated expectations to the observed

CMB the density parameters for our Universe can be calculated. The most recent

Planck results estimate that matter comprises roughly a third of the Universe’s

energy budget, with ΩM,0 = 0.31. Conversely, radiation contributes negligibly to

the Universe’s total density and therefore is often set ΩR,0 = 0 for calculations

restricted to the present epoch. The curvature as measured from the CMB is

consistent with a flat Universe (Ωk = k = 0), these results are consistent with in-

dependent estimates from observations of type 1a SNe. Assuming zero curvature

and therefore Ω(z) = 1 as per Eq. 1.4, the remaining energy density is attributed

to dark energy giving ΩΛ = 0.69.

Within the matter density the CMB also constrains the baryonic density to be

Ωb,0 = 0.049, consistent with estimates of baryonic matter abundance from Big

Bang Nucleosynthesis analysis (Planck Collaboration et al., 2018). The remaining

84% of the matter density is attributed to the structure forming non-baryonic

matter. This theoretical substance is termed dark matter due to the expectation

that it does not interact strongly with the electromagnetic field, and evidence for
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its existence was discovered long before the CMB was observed.

1.1.1 Dark Matter

Dark matter refers to theoretical matter in our Universe which is non-luminous

and therefore undetectable by direct observation. Typically, it is hypothesised

to be matter that does not interact electromagnetically and therefore does not

emit, reflect or absorb any light. The existence of dark matter was theorised to

explain discrepancies between the expected and observed behaviours of luminous

matter distributions in our Universe. The first evidence for dark matter came

from the velocity dispersion of stars in gravitationally bound structures such as

the Milky Way (Zwicky, 1933). On galactic scales stars are point-like, and their

great number allows them to be treated like the particles of a gravitationally

bound gas. If a system of stars is pressure/velocity dispersion supported such

as a galaxy cluster, elliptical galaxy or the central region of a spiral galaxy (i.e.

it is not rotationally supported like a galactic disk), then the system’s mass can

be determined using the virial theorem (Zwicky, 1933). Velocity dispersion mea-

surements from the broadening of spectral line emission can be used to determine

a system’s average total kinetic energy, which then through the virial theorem

yields the system’s total gravitational potential energy and therefore its mass.

Efforts dating back over a century have used similar techniques to measure the

mass of the Milky Way (Kelvin, 1904; Battaglia et al., 2005) and on an even

greater scale, the mass of extragalactic galaxy clusters (Zwicky, 1933). In each

case the results suggest that the mass of the system inferred from its dynam-

ics was far greater than that expected from its luminosity, i.e. each contains a

significant amount of non-luminous or dark matter.

Later studies of the rotation curves of galaxies similarly revealed that the

rotational velocities of almost all galaxies continue to increase up to the edge

of their optical disks, contrary to the Keplerian expectation (Rubin et al., 1980;

Rubin, 1983; Bosma, 1981). A natural conclusion of these observations is that
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galaxies contain a substantial amount of dark matter beyond the extent of their

optical disks. Today we term this the dark matter halo of a galaxy. Early simu-

lations of dark matter halos suggested their density profiles had a common shape

for all galaxies, given by the Navarro Frenk and White (NFW) profile (Navarro

et al., 1996). While this model survives today as a simple description of halo

shapes (especially at large galactic radii), more recent, higher resolution simu-

lations have shown that the more complicated, mass dependent Einasto profile

provides a better fit for the inner-most regions of dark matter halos (Navarro

et al., 2010; Klypin et al., 2016).

Perhaps the most convincing piece of evidence for dark matter comes from the

interacting cluster 1E 0657–558. The Bullet cluster, as it is known, is so-called

because the smaller of the two colliding galaxy clusters has passed through the

larger causing a prominent bow-shock to be seen in the x-ray (Clowe et al., 2004).

The shock front is caused by the fluid-like electromagnetic interaction between

the hot gas which dominates the baryonic content of each cluster. Conversely,

the cluster galaxies are relatively collisionless and so pass through each other

unimpeded. Measurements of gravitational lensing of sources background to the

cluster indicate that each cluster’s centre of mass is coincident with the position

of its galaxies, rather than the interacting gas which dominates its visible mass.

Again, this indicates the presence of non-luminous matter causing the lensing

that has a small electromagnetic interaction cross section (i.e. a small probability

of interacting) (Markevitch et al., 2004) allowing it to follow the collisionless path

of the galaxies. Furthermore, recent simulations of dark matter and baryonic gas

interactions in Bullet-cluster-like mergers indicate that the observed shapes of

their bow shocks cannot occur from baryonic gas alone (Keshet et al., 2021).

Instead, these properties correspond precisely to our expectation of dark matter,

providing strong evidence for its existence.

Despite knowing its abundance throughout the Universe, the identity and

precise nature of dark matter remains one of the largest unsolved problems in
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astrophysics and cosmology. Theories of dark matter are broadly categorised as

hot, warm or cold based on the speed at which the dark matter particles are

theorised to travel (see Bertone et al., 2005, for a review). Cold dark matter

forms structure in our Universe from the bottom up, with small perturbations

accreting matter and merging over time to yield the galaxies and clusters we

observe today. Conversely, hot dark matter forms structure from the top down,

with large structures being the first to fragment from the uniformity of the early

Universe. Finally, warm dark matter labels theories which combine behaviours

from both hot and cold types. The top down structure formation scenario intrinsic

to a hot dark matter dominated universe is disfavoured by studies which show

that super-clusters (combinations of galaxy clusters) would have to form after

z = 2 (Dekel, 1983; Frenk et al., 1983; Kaiser, 1983; Dekel et al., 1984), in

conflict with observations of galaxies as early as z = 11.5 (Adams et al., 2023).

Data informed simulations of structure formation instead dictate that the matter

component of the Universe is comprised mostly of non-relativistic or “cold” dark

matter (Navarro et al., 1996; Springel et al., 2005). Furthermore, observations of

Type Ia supernovae show that the Universe’s energy budget is dominated by dark

energy which drives universal expansion, labelled as the cosmological constant Λ

(Riess et al., 1998; Perlmutter et al., 1999; Abbott et al., 2019). Together these

components form the standard cosmological model, known as ΛCDM (see Springel

et al., 2006, for a review).

ΛCDM has been very successful at reproducing the evolution of large scale

structure in the Universe, however, on scales below 1Mpc several problems have

been identified (Bullock & Boylan-Kolchin, 2017). Foremost among these have

been the missing satellite and core-cusp problems. The missing satellite problem

refers to the over-prediction of galactic satellites by ΛCDM N-body simulations

compared to observations (Moore et al., 1999; Klypin et al., 1999). This problem

can be considered solved, as more recent simulations including baryonic physics

in their galaxy evolution show a number of satellites consistent with observa-

11



tions (Sawala et al., 2016). The core-cusp problem, which persists today, is the

discrepancy in the predicted density profile of dark matter halos compared with

observations, with the simulated profiles having systematically denser and cuspier

cores than observations imply (Flores & Primack, 1994).

Amongst others (see Del Popolo & Le Delliou, 2021, for a review), a pro-

posed solution to these small scale problems is to modify cold dark matter to

smooth over structures below some critical scale (Bullock & Boylan-Kolchin,

2017). Warm dark matter achieves this by increasing the characteristic tem-

perature of its particles. As the temperature of the particles increases so does

their average kinetic energy, and therefore minimum mass required to keep a

dark matter structure gravitationally bound is greater. This minimum mass is

known as the free streaming mass, as below it all structures are smoothed by

the free streaming of the warm dark matter particles. Therefore, on large scales,

warm dark matter behaves identically to cold dark matter, but on small scales

structures are suppressed, resolving the aforementioned small scale discrepancies

(Bode et al., 2001). Observations indicate that dark matter may only be warm

enough to smooth very small scales and cannot resolve the tension between the-

oretical predictions and observations (Viel et al., 2013) but a consensus in this

field is yet to be reached (see Perivolaropoulos & Skara, 2022, for a review).

On smaller scales still the behaviour of dark matter is an almost complete

mystery, however differences between macroscopic and microscopic dark matter

candidates begin to emerge below stellar mass scales. Microscopic refers to dark

matter candidates that take the form of exotic particles such as weakly inter-

acting massive particles (WIMPs) or axions which are the currently favoured

candidates for cold dark matter. Conversely, macroscopic dark matter candi-

dates are non-luminous celestial bodies such as rogue planets. One of the few

remaining macroscopic dark matter matter candidates that could constitute the

majority of dark matter is primordial black holes (PBHs).

There are several theories for how PBHs form, from the nucleation of vac-
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uum bubbles (Garriga et al., 2016) to the collapse of cosmic strings (Hawking,

1989). The most natural channel stems from the gravitational collapse of large

overdensities in the Universe shortly after inflation (Zel’dovich & Novikov, 1966;

Hawking, 1971). Regardless of the precise nature of their formation, PBHs evolve

separately to stellar evolution channels. As a result of this PBHs can have a much

greater range in mass, from 10−5g to comparable with the mass of our Universe

(Carr & Hawking, 1974). Several decades of theoretical consideration and obser-

vational searches for PBHs has led to tight constraints on the fraction of dark

matter which may be comprised of PBHs over a wide range of masses. I’ll briefly

review some of these constraints now, but for a more complete discussion see Carr

et al. (2016); Carr & Kühnel (2020).

All black holes, primordial or otherwise are expected to emit Hawking radi-

ation, due to quantum effects in the relativistic region of a black hole’s event

horizon (Hawking, 1974). The black hole will emit Hawking radiation as a black

body, with a characteristic temperature inversely proportional to the black hole’s

mass (Hawking, 1974). To fuel the emission the mass of the black hole itself is

lost causing it to shrink over time. This evaporation has a negligible impact on

the mass of large black holes, with the timescale for complete evaporation of a

stellar mass black hole being greater than the Universe’s age. For small, higher

temperature black holes however, the evaporation can be dramatic, accelerat-

ing until the object vanishes completely in a γ-ray explosion (Hawking, 1974).

Therefore, low mass PBHs are expected to emit an observable flux of x-rays

and γ-rays. Fig. 1.2’s INTEGRAL constraint corresponds to limits on the x-ray

flux from evaporation of PBHs in the centre of the Milky Way as observed by

the INTEGRAL satellite observatory (Laha et al., 2020). The EGRB constraint

corresponds to the extragalactic γ-ray background that PBH evaporation would

emit and the dissociative effect it would have on light element formation during

big-bang nucleosynthesis (Carr et al., 2010). Finally, the Voyager limits in Fig.

1.2 come from constraints on the electron and positron flux expected from PBH
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Figure 1.2: PBH mass constraint diagram. The fraction of dark matter com-
prised of monochromatic mass distribution of PBHs of mass MPBH. Shaded
regions represent areas of the parameter space currently ruled out by obser-
vations. Blue shaded regions are excluded by observations in or local to the
Milky Way. Conversely, red shaded regions are excluded by observations which
sample a cosmological volume of our Universe. INTEGRAL, EGRB and Voy-
ager are related to the evaporation of low mass PBHs; HSC, OGLE EROS and
SNe are derived from gravitational lensing phenomena; LIGO constraints come
from observations of gravitational waves and CMB from the expected effect of
PBH accretion on the CMB signal. This plot was made using code from the
github repo https://github.com/bradkav/PBHbounds (Kavanagh, 2019, and
references therein). For an extended version of this plot see Carr & Kühnel
(2020)

.
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evaporation in the Milky Way that can only be observed now that the Voyager

1 probe is no longer shielded by the Sun’s magnetic field (Boudaud & Cirelli,

2019). The probes I consider within this thesis primarily constrain the range of

stellar mass black holes 0.1M⊙ ≲ ML ≲ 100M⊙, however in §6 we also consider

novel methods that may allow much smaller and larger scales to be investigated

simultaneously.

As we shall detail further in §2 gravitational fields can cause the deflection of

incident light in a phenomenon known as gravitational lensing. This lensing can

result in the magnification of background sources through the focusing caused by

the lens. Stronger gravitational fields cause greater deflections and therefore com-

pact objects such as PBHs can effect large magnifications. If a significant fraction

of dark matter in our Galaxy is comprised of PBHs then we expect to observe

background stars undergoing short periods of increased brightness due to magni-

fication from intervening PBHs passing through the line of sight. The MACHO,

EROS, OGLE and HSC constraints are derived from long term observational

projects to monitor the variability of millions of stars to look for magnification

from compact dark matter such as PBHs. The mass range constrained by each

experiment corresponds to the variability time scales which it was sensitive to,

with larger mass lenses causing longer timescale lensing variability (Tisserand

et al., 2007). MACHO and EROS limits come from observations of the Magel-

lanic clouds (Bennett, 1993; Tisserand et al., 2007), OGLE also observes stars in

the Galactic bulge (Niikura et al., 2019), and lastly HSC observes the stars of our

nearest neighbour, the Andromeda galaxy (Croon et al., 2020). While thousands

of magnification events have been observed, Fig. 1.2 shows that together these

experiments place tight constraints on the fraction of nearby dark matter that can

be comprised of PBHs in the lunar to stellar mass range. The abundance of stel-

lar mass PBHs is also constrained over cosmological volumes by observations of

type 1a supernovae (Zumalacárregui & Seljak, 2018). Dark matter concentrated

in clumps such as PBHs on stellar mass scales would result in a distribution of
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magnifications and therefore inferred energies that is not observed in the narrow,

standard candle distribution of SNe Ia energies, resulting in the limits on PBH

abundance seen in Fig. 1.2.

Constraints on larger mass PBHs on the right hand side of Fig. 1.2 come from

signals associated with the accretion and merging of PBHs. During the early

Universe, shortly after their formation PBHs would begin to accrete matter from

the surrounding Universe. This process generates high energy radiation which,

after recombination, would ionise matter in the Universe which had cooled to

neutrality. As detailed by Ricotti et al. (2008) this would have a measurable

effect on the anisotropies and polarisation of the CMB, which are not observed,

allowing limits to be placed on the abundance of high mass PBHs (Serpico et al.,

2020).

In the Universe today we would expect the mutual gravitational attraction be-

tween PBHs to cause merger events. The changing quadrupole moment associated

with the non-circularly symmetric mass distribution of the merging system causes

the emission of gravitational waves (Thorne, 1980) as observed by LIGO (LIGO

Scientific Collaboration and Virgo Collaboration et al., 2016). The observation

of several merger events in the stellar mass regime initially caused significant in-

terest in the possibility of PBHs in this mass range, however the rate of merger

events restricts any associated PBH distribution from comprising a majority of

dark matter as seen in Fig. 1.2 (Kavanagh et al., 2018; Nitz & Wang, 2022).

As seen in Fig. 1.2 there are broad areas of the PBH parameter space that

remain either completely unconstrained or only probed in the nearby Universe.

This thesis aims to contribute to constraints on sub-stellar mass PBHs by making

use of the lensing effect they would introduce into observations of extragalactic

transients such as FRBs and GRBs. These would sample a cosmological volume

and so would be complementary to current lensing constraints. In the following

section we will introduce these extragalactic fast transients.
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Chapter 2

Propagation Effects

As light propagates through the Universe its speed and direction are affected by

the matter it travels through. To understand these effects there are two important

properties of light to consider, namely, group and phase velocities. The group

velocity (vG) denotes the speed of the light, which will be less than c in a non-

vacuum environment. The group velocity is given by the partial derivative of the

wave’s angular frequency (ω) with respect to its angular wavenumber (k)

vG =
∂ω

∂k
. (2.1)

Whereas, the phase velocity vp denotes the speed with which a crest or trough

propagates within the envelope of the light. Generally, vp may be greater than,

less than or even in the reverse direction to the light’s group velocity and is

defined as

vp =
ω

k
. (2.2)

The phase velocity is crucial to understanding the direction of light propagation

as all waves propagate perpendicular to their surface of constant phase. The

refractive index of light may therefore be defined as

n =
c

vp
. (2.3)
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In the following sections we shall use the above properties of light to introduce

various propagation effects likely to be encountered by astrophysical sources.

2.1 Dispersion

Cold plasma is a typical form of matter encountered by light propagating through

the Universe. A characteristic property of any plasma is its plasma frequency

ωp
2π

= νp =

√
nee2

4π2meε0
, (2.4)

where ne is the density of free electrons within the plasma, e is the charge of

an electron, me is the rest mass of an electron and ε0 is the permittivity of free

space. From the plasma frequency the refractive index of a cold plasma can be

calculated as (Bellan, 2006)

n(ω) =

√
1−

(ωp
ω

)2
, (2.5)

If a plane wave of light is normally incident upon a homogeneous cold plasma

the change in refractive index will not deflect the incident wave. However, because

the refractive index also changes as a function of the incident light’s frequency

(i.e. cold plasma is dispersive) it will have an effect on the group velocity. By

expressing the wavenumber in terms of the refractive index and partially differen-

tiating by the angular frequency, the group velocity may be generally expressed

in terms of the refractive index as

vG =
∂ω

∂k
=

c

n(ω) + ω ∂n(ω)
∂ω

. (2.6)

Substituting Eq. 2.5 and evaluating the group velocity reveals that for a cold

plasma Eq. 2.3 holds in terms of the group velocity as well with vG = cn. Using
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this relation, and assuming that ωp ≪ ω1 the time delay at frequency ω due to cold

plasma dispersion, with respect to propagation in a vacuum, can be calculated as

td =
e2

2cε0meω2
DM, (2.7)

where DM is the dispersion measure, representing the integrated column density

of free electrons along the length of the bursts path of propagation (ℓ) (Lorimer,

2005)

DM ≡
ℓ∫

0

nedℓ. (2.8)

For a delta function pulse this time delay manifests as a quadratic sweep in arrival

time with frequency, with lower frequencies of the signal arriving later than high

frequencies as seen in Fig. 2.1 which shows the recorded spectrum as a function

of time (dynamic spectrum) of the Lorimer burst (Lorimer et al., 2007).

The absolute time delays calculated by Eq. 2.7 are of little use to interpret-

ting observations such as Fig. 2.1, as they are relative to the arrival time of the

same signal in a vacuum, which cannot be observed. The quantity which can be

measured is the difference in time delay between two observed frequencies (νLo

and νHi) given by

(
∆td
ms

)
≈ 4.149

(
DM

pc cm−3

)[( νLo
GHz

)−2

−
( νHi

GHz

)−2
]
, (2.9)

where the constants have been simplified for convenience. High frequencies such

as optical and X-ray have negligible delays due to dispersion, whereas at radio

frequencies the time delay becomes large enough to be observed. Short pulse

radio signals such as pulsars and FRBs always show obvious dispersion due to

the width of their intrinsic pulses being much shorter than the typical dispersion

time delays. By measuring the time delay between two observed frequencies the

1Mean electron density in the Milky Way Galactic is ⟨ne⟩ = 0.03cm−3 (Davidson & Terzian,
1969), yielding ωp/2π = νp ≈ 1.5kHz, much less than typical radio observing frequencies
ω/2π = ν ∼GHz.
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Figure 2.1: Taken from Lorimer et al. (2007): Dynamic spectrum of the first
detected FRB, known as the Lorimer burst. The burst shows a quadratic sweep
in arrival time characteristic of cold plasma dispersion.The measured DM= 375±
1 pc cm−3. Accounting for the dispersion the burst has an approximately 15ms
width with intensity concentrated in a single peak as shown in the inset plot.

DM of a burst and therefore the integrated column density of electrons along that

line of sight can be determined. For the case of pulsars, which have been observed

across the Galactic plane, their dispersion measures can be used to reconstruct an

electron density profile for the Milky Way. This has been done by Cordes & Lazio

(2003) and more recently Yao et al. (2017) to develop the NE2001 and YMW16

Galactic electron density models respectively. The NE2001 distribution depicted

in Fig. 2.2 shows that the Galactic distribution of electrons is concentrated at

low latitudes in the disk of the Milky Way with a slightly elevated density in the

spiral arms as expected. These general results are consistent with YMW16.

2.2 Multi-path Propagation

Amore realistic scenario for light propagation will be that of a plane wave incident

upon an inhomogeneous medium with a refractive index that changes across its

20



5.0

4.5

4.0

3.5

3.0

2.5

2.0

lo
g 1

0n
e

(c
m

3 )

Galactic

NE2001

1.29637 3.36013log10DM

Figure 2.2: Top: NE2001 Galactic electron distribution modelled by Cordes &
Lazio (2003) from pulsar dispersion measures plotted across the spatial extent
of the Galaxy. Bottom: Associated DM of the NE2001 distribution integrated
over the complete extent of the Galaxy as observed from Earth, plotted across a
mollwide projection of Galactic coordinates.
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volume. However, modelling light propagation through an extended, inhomoge-

neous three dimensional medium is difficult. To make the problem more tractable

extended media are often approximated as a thin screen with changes in phase

velocity integrated over the line of sight to yield a total phase contribution from

the medium at each point across the screen. This predicts the true propagation

behaviour well when the thickness of the extended medium is much less than

the distance between the source and the observer, e.g. nebulae intervening an

interstellar source or a galaxy intervening an extragalactic source.

For plane waves from a point source incident upon a thin phase changing

screen with amplitude described by u(Dd; x⃗), the resulting amplitude in the plane

of the observer u(X⃗) can be calculated from the Fresnel-Kirchhoff integral as

(Born & Wolf, 2013)

u(X⃗) =
−i
2πr2F

∫ ∫
d2x⃗ u(Dd; x⃗) exp

[
i(x⃗− X⃗)2

2r2F
+ iϕ(x⃗)

]
, (2.10)

where ϕ(x⃗) is the phase change caused by the screen at point x⃗ on the screen and

X⃗ is the coordinate vector of the observer in the observers plane separated by Dd

from the screen as shown in Fig. 2.3. rF is the Fresnel scale given by

rF =

√
λDdDds

2πDs

=

√
Deff

k
, (2.11)

where λ is the wavelength of the incident light, Ds is the distance to the source

from the observer, and Dds is the distance to the source from the screen. For

convenience the ratio of these distances is labelled the effective distance (Deff).

Formally the source must be at Ds = ∞ for the incident wave to be truly pla-

nar, however given the large distances of interstellar and intergalactic sources we

assume that wave incident upon the screen is approximated well by a plane wave.

The integrand of Eq. 2.10 oscillates rapidly making analytical evaluation dif-

ficult2. The stationary phase approximation however indicates that the integral

2The recent application of Picard-Lefschetz theory to the Fresnel-Kirchhoff integral has made
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Figure 2.3: Geometry of the thin screen approximation.

will be dominated by points satisfying (Courant et al., 1924)

0 = ∇x⃗

[
(x⃗− X⃗)2

2r2F
+ ϕ(x⃗)

]
. (2.12)

At each of these points an image of the source will be observed. In the limit of

geometric optics, where the interference between waves is not considered, these

points of stationary phase are rays of light contributing to the total observed

intensity. This is analogous to Fermat’s principle that the path taken by a ray

between two points must be a local extremum in traversal time. In wave optics

each point of stationary phase contributes coherently to the incident wavefront,

with all other points oscillating in phase rapidly enough to cancel out their con-

tribution to the integral in Eq. 2.10.

By plotting the surface of constant phase of the incident plane wave we can

visualise the effect the screen has on the light’s propagation. We can do this

simply by plotting the geometric and screen phase contributions within the square

brackets of Eq. 2.12. The simple case of a homogeneous medium, i.e. ϕ(x⃗) = ϕ0

progress in this area (Feldbrugge et al., 2019).
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Figure 2.4: Propagation of light through a thin phase changing screen with a
constant phase contribution ϕ0. The red dotted line depicts a plane wave from
a point source incident upon the thin screen marked in black. The solid black
lines depict phase contributions from the screen and the surface of constant phase
containing both the geometric and screen phase contributions. Following Eq. 2.12
images of the source (shown as a red ray) are observed along lines of sight where
the surface of constant phase has a gradient of zero (shown as red dots).

is plotted in Fig. 2.4. In this case the solution to Eq. 2.12 occurs at x⃗ = X⃗, i.e.

the observer sees one image of the source along the optic axis as shown in Fig.

2.4.

If we neglect the phase contributions from the screen entirely we can see that as

|x⃗−X⃗| becomes comparable to the Fresnel scale the exponential term in Eq. 2.10

will begin to vary quickly and suppress the value of the integral. An observation

of the source in vacuo is therefore dominated by light from within rF of the optic

axis, known as the first Fresnel zone. Physically the first Fresnel zone defines

the region within which singularly deflected light paths have a geometric phase

delay less than 1 radian and therefore will add constructively to the observed

wave. The oscillatory nature of constructive and destructive interference means

that there are also higher order Fresnel zones which we shall not consider here.

Conversely, if the phase screen ϕ(x⃗) is inhomogeneous then there is a wide

variety of possible propagation behaviours. In the following sections we shall

review the cases of a turbulent plasma and a compact gravitational lens.
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Figure 2.5: Turbulence in the upper atmosphere of Jupiter, as imaged by
the NASA’s Juno spacecraft (Enhanced Image by Gerald Eichstädt and Sean
Doran (CC BY-NC-SA) based on images provided courtesy of NASA/JPL-
Caltech/SwRI/MSSS).

2.2.1 Turbulent Media

Turbulence is a common phenomenon in fluids, where a cascade of energy causes

self similar behaviour over a vast range of scales (Richardson, 1922). A striking

case of this can be seen in Fig. 2.5 which shows vortices in clouds of Jupiter.

In this case, energy input from the Sun and Jupiter’s rotation drives large scale

eddies that gradually break into successively smaller scale eddies until eventually

the energy is dissipated as heat. Continuous input of energy into the system then

results in eddies over all possible scales being present simultaneously as seen in

Fig. 2.5. We expect turbulent flows similar to the Jovian case to occur throughout

the Universe, including in the interstellar and intergalactic mediums as well as

Earth’s own atmosphere. Therefore the effect of a turbulent medium on signal

propagation represents an important case study.

By assuming that the turbulence is homogeneous, i.e. that its statistics are

spatially invariant we can derive the spectral index of its spatial power spectrum

from a dimensional argument. Beginning with a power law form in accordance

with the scale invariance of the eddies, the energy density per cubic wavenumber

(E) can be expressed as

E(k, ψ) = Ckαψβ, (2.13)

where C is some constant and ψ is the rate of energy dissipation. Considering
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only their temporal (T) and spatial dimensions (L), each of these components

can be decomposed as follows

k ∝ 1

L
E ∝ L5

T 2
ψ ∝ L2

T 3
. (2.14)

Substituting these into the initial form yields

L5

T 2
= L−α

(
L2

T 3

)β
, (2.15)

from which we can solve for β = 2/3 and α = −11/3. Because the kinetic energy

of the turbulence drives the density fluctuations in the medium, α also corre-

sponds to the power spectrum of density fluctuations. Therefore, ideal, spatially

homogeneous turbulence can be characterised by a density power spectrum with

α = −11/3, known as Kolmogorov turbulence (Hallbäck et al., 1996). Typically

the power law is bounded by an inner and outer scale corresponding to the min-

imum and maximum size of the eddies. The largest eddies occur on the scale at

which energy is injected into the fluid to drive turbulence. Whereas, the smallest

eddies occur on the scale where energy is dissipated as heat.

Within the Milky Way density fluctuations in the interstellar medium (ISM)

are broadly consistent with a Kolmogorov spectrum, with observations over nearly

twelve orders of magnitude in scale from 107m to 100 pc showing a spectral in-

dex α = −11/3 (Armstrong et al., 1981; Chepurnov & Lazarian, 2010). In detail

however, the ISM often contains significantly more structure than purely homoge-

neous turbulence. Examples of this can be found in studies such as Rickett et al.

(1997), Stinebring (2007), Oosterloo et al. (2020), Wang et al. (2021) and Main

et al. (2022) which show evidence for anomalous plasma, filamentary structures

and statistically anisotropic densities in the ISM. The extent of these complexities

within the ISM is not fully understood, however a Kolmogorov turbulence model

of density fluctuations serves as a useful fiducial model.

Using a Kolmogorov spectrum to model the density fluctuations in a cold
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plasma we can determine the corresponding phase fluctuations (∆ϕ(x⃗)) in its thin

screen approximation. Assuming that the true medium has a relatively constant

thickness, the difference in phase contribution between two points on a turbulent

phase screen will be proportional to their difference in phase velocity. The phase

velocity will be inversely proportional to the refractive index at each point (as per

Eq. 2.3), which, for a cold plasma is given by Eq. 2.5. Assuming once more that

the plasma frequency is much less than the observing frequency, the inverse of the

refractive index can be Taylor expanded to 1/n(ω) ≈ 1 + (ωp/ω)
2/2. Following

from this and Eq. 2.4, the difference in phase velocity between two points on the

screen, x⃗1 and x⃗2 is given by

∆vp(x⃗1, x⃗2) =
ce2

2ω2meε0
[ne(x⃗2)− ne(x⃗1)] (2.16)

where ne(x⃗) is the electron density in the medium at a point x⃗. The differ-

ence in phase contribution between two points separated by r⃗ = x⃗2 − x⃗1, is

then proportional to the difference in electron density between those two points

∆ϕ(r⃗) ∝ ∆ne(r⃗). Therefore, the phase fluctuations from a turbulent, cold plasma

medium with a Kolmogorov density power spectrum will follow

∆ϕ(r⃗) ∝ r11/3 (2.17)

where r is the scalar magnitude of r⃗. Normalising this relation and taking the

second order moment yields the phase structure function, describing the variance

of screen phase as a function of separation (Narayan, 1992)

Dϕ(r⃗) =

〈[
ϕ(r⃗′ + r⃗)− ϕ(r⃗′)

]2〉
=

(
r

rdiff

)β−2

, (2.18)

where β = 11/3 for Kolmogorov turbulence, the angular brackets denote the

ensemble average over all potential instances of the screen and the diffractive

scale (rdiff), is the scale over which the root-mean-square (RMS) phase difference
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is one radian.

The ratio of the diffractive scale to the Fresnel scale further characterises

the effect of the screen on light propagation. When rdiff ≫ rF , Eq. 2.18 yields

Dϕ(rF ) ≪ 1, indicating that the random phase fluctuations over the Fresnel scale

will be small. In this regime, known as weak scattering, an observation will be

approximately the same as the homogeneous case. Weak perturbations in phase

however, will cause small variations in observed intensity. For further discussion

on the behaviours of weak scattering see Narayan (1992).

When rdiff ≪ rF , Eq. 2.18 yields Dϕ(rF ) ≫ 1 indicating that phase fluctua-

tions from turbulence will dominate over path length variations on the Fresnel

scale. The position of points of stationary phase on the constant phase surface

described in Eq. 2.12 will therefore be dominated by the turbulent phase fluctua-

tions. Because the properties of the turbulence do not depend on the position on

the screen (i.e. the turbulence is statistically homogeneous) the constant phase

surface will contain a large randomly fluctuating component across its extent as

seen in Fig. 2.6. The screen will therefore have many points of stationary phase

across its surface where the phase surface gradient is randomly zero, as displayed

by the red rays in Fig. 2.6.

Previously, the size of a patch on the screen contributing coherently to the

observed intensity was limited by geometric path length variations on the Fresnel

scale. However, when rdiff ≪ rF the phase fluctuations from turbulence will begin

to suppress the integral in Eq. 2.10 on much smaller scales. Following from this,

rF ceases to be relevant in the strong scattering regime, with the size of a coherent

patch instead set by rdiff.

As in single slit diffraction, each coherent patch scatters radiation into a

diffraction cone with an angle θscatt ∼ λ/rdiff, where rdiff is analogous to the slit’s

width. An observer then sees radiation from all points of stationary phase within

a θscatt sized cone projected back onto the screen. For a point source this results

in the image being scatter broadened by θscatt. Furthermore, contributions from
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Figure 2.6: Propagation of light through a thin phase changing screen as described
in Fig. 2.4, but with a turbulent phase contribution resulting in multi-path prop-
agation.

points of stationary phase further from the optic axis will have a greater path

length and therefore the signal will arrive distributed in time. For time varying

signals the observed temporal profile will be the intrinsic profile convolved with

the impulse response function of the medium. For a two-dimensional screen with

a square law phase structure function the impulse response is an exponential

profile characterised by the scattering time (Macquart & Koay, 2013)

tscatt =
Deffθ

2
scatt

c
=

1

ck

r2F
r2diff

. (2.19)

This temporal smearing from multi-path scattering by a turbulent cold plasma

can be seen in Fig. 2.7 which depicts the frequency averaged profile of FRB20210320.

The FRB has a sharp rise time followed by the characteristic exponential decay

with tscatt = 0.233ms as per the best fit model shown in blue. In this case the

scattering is likely caused by the ISM in the FRB host galaxy as we explore

further in §7.

In the case of pulsars, the thickness of the turbulent ISM is comparable to
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Figure 2.7: Frequency averaged profile of FRB20210320 shown as black dots as
a function of arrival time. Best fit pulse profile shown in blue, modelled as an
intrinsic Gaussian convolved with the exponential profile of diffractive scattering
at tscatt = 0.233ms.

the distance between the observer and source, violating our assumption of a thin

screen. As seen in Eq. 2.19 however, the scattering time (tscatt) depends uponDeff.

The effective distance is maximised halfway between the observer and the source.

Following from this, for a statistically uniform medium, the observed scattering

time will be dominated by scattering occurring within a relatively small section

of the screen at the midpoint. By approximating the extended scattering medium

as a thin screen halfway between the observer and source we can still accurately

model the scattering effect with a thin screen model.

The phases at each point of stationary phase are effectively uncorrelated from

one another. An observer will therefore see a random interference pattern made

from the superposition of all contributing points just as in Young’s famous double

slit experiment. Both the interference pattern, as well as the underlying phase

contributions from the plasma are frequency dependent. Over large bandwidths

this leads to a pseudo-random frequency modulation of the burst as seen in Fig.

2.8, referred to as scintillation. The bright parts of the modulation, known as
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Figure 2.8: Dynamic spectrum of FRB20201124a.1 showing frequency modu-
lation consistent with diffractive scintillation with a decorrelation bandwidth
νDC ∼ 0.15MHz.

scintles, will be correlated in intensity over a small range in frequency known as

the decorrelation bandwidth νDC. The fractional decorrelation bandwidth is then

related to the screen properties through (Narayan, 1992)

δνDC

ν
≈
(
rdiff
rF

)2

, (2.20)

where for a thin screen and Kolmogorov turbulence the decorrelation bandwidth

and scattering time form a Fourier pair as (Lambert & Rickett, 1999)

2πνDCtscatt ≈ 1 (2.21)

Similarly to a changing frequency, any relative motion between the observer

and the screen will lead to intensity fluctuations in time as well. For continuous

sources such as quasars (Macquart & Bruyn, 2006) these modulations can be

observed simply in continued monitoring. However, in FRBs and pulsars these

temporal modulations normally occur on much longer time scales than individual
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bursts and so can only be observed by analysing changes over many repeat bursts

(Bhat et al., 1999; Main et al., 2022). In both the temporal and spectral cases the

modulation index of intensity fluctuations is one for a point source and decreases

for extended emissions (Narayan, 1992).

In addition to diffractive scattering, clumps of plasma the size of the angular

broadening scale ∼ Ddθscatt can result in strong refractive scattering (Narayan,

1992). By introducing a large scale phase change refractive scattering can cause

focussing or defocussing of the scattered image and an offset of its mean position.

Fig. 2.9 depicts this by showing two sets of scattering with and without a large

scale change in phase. The addition of a plasma over-density3, in this case offset

from the optic axis, caused a magnification of the scattered image (i.e. more

rays were seen by an observer) and deflected the mean position of the scattered

image as seen by an observer. These behaviours can also be described as plasma

lensing as discussed further in Clegg et al. (1998). In the following section we

investigate a simpler case of lensing, without the effects of diffractive scintillation

superimposed.

2.2.2 Gravitational Lensing

Similarly to plasma, gravity can also cause the deflection of incident light. This

property was initially derived from Newtonian mechanics following the expected

behaviour of a massive particle on a hyperbolic orbit (Soldner, 1804). In the limit

where the deflection angle (α̂) is small, Newtonian mechanics predicts

α̂N =
2GM

c2r
(2.22)

where G is the gravitational constant, M is the mass of the body causing the

deflection and r is the impact parameter of the incident particle. Prior to the

understanding that light was massless, Newtonian mechanics predicted that light

3As plasma causes the phase velocity of light to increase an over-density of plasma causes a
negative phase delay as depicted in Fig. 2.9.
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Figure 2.9: Visualisation of the effect of refractive scintillation from a large over-
density of plasma. Top: Diffractive scintillation for the case of homogeneous
turbulence. Bottom: Same turbulence as seen in top but with the addition of a
large scale plasma over-density causing inhomogeneity on the angular broadening
scale.
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would be deflected by the same amount as it is independent of the mass of the

incident particle.

Alternatively Einstein’s theory of general relativity predicted a deflection an-

gle of twice as much (Schneider et al., 1992)

α̂ ≈ 4GM

c2r
. (2.23)

Early in the 20th century Dyson et al. (1920) measured the deflection angle of

background stars during a solar eclipse as they were gravitationally lensed by the

Sun. Their results agreed with the value predicted by general relativity, invalidat-

ing the simpler Newtonian predictions. In retrospect this result is unsurprising

as photons have zero mass and hence are not acted upon by gravitational forces

under Newtonian mechanics. Conversely in general relativity gravity can still

affect massless particles.

In general relativity the deflection of light in a gravitational field is a natural

result of the strong equivalence principle. The strong equivalence principle states

that “the outcome of any local experiment in a free falling reference frame is inde-

pendent of the velocity of the frame and its location in space-time”. Where space-

time is the four-dimensional manifold of the theory of relativity which combines

the three spatial dimensions with the extra dimension of time to fully describe the

past, present and future space of our Universe with one geometry (Kenyon, 1990).

With this principle we can understand gravitational lensing with the following

scenario.

Consider the two reference laboratories depicted in Fig. 2.10, one in the vac-

uum of space, far from all matter and the other free falling in Earth’s gravitational

field. In each a LASER is pointed horizontally across the room and the difference

in height between its emission and impact point on the opposing wall is recorded.

Under the strong equivalence principle observers within each laboratory neces-

sarily record the same result of no height difference (the full lined images in Fig.

2.10). From the perspective of a third observer on the Earth’s surface however,
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Vacuum Laboratory Free Falling Laboratory

Figure 2.10: Diagram depicting the observed behaviour of a horizontal LASER
(red line) in a vacuum and free falling in Earth’s gravitational field respectively.
Solid line images show the results observed from within each laboratory. Dashed
line images show results as seen by an observer on the Earth’s surface.

the falling laboratory has moved in the time it takes the light to cross the room.

As the results observed from the Earth’s surface and from within the free falling

laboratory must be the same, the light must have fallen with the laboratory from

the perspective of the Earth’s surface. We can therefore conclude that light is

deflected by gravitational fields as shown by the dashed line in Fig. 2.10.

A subtlety of the above scenario is that the apparent deflection of light in a

gravitational field is a result of changing reference frames rather than an action

on the light itself. This reflects the theory of general relativity’s treatment of

gravity as a purely geometric effect (Misner et al., 2018). Within general rel-

ativity mass causes the curvature of space-time. As above, a reference frame

free-falling through the curvature will seem to be travelling in a locally straight

line (Schneider et al., 1992). To an observer external to the masses curvature

however, the free falling frame will appear to move under the influence of an ap-

parent gravitational field. Light is no exception to this phenomena and will follow

the space-time curvature defined by a mass. For regions where the space-time
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Figure 2.11: Edge on image of a black holes accretion disk simulated with a full
three dimensional general relativistic treatment. Credit: NASA’s Goddard Space
Flight Center/Jeremy Schnittman.

curvature is extreme, such as near the event horizon of a black hole the path of

light can become extremely warped as seen in observations of supermassive black

holes by the Event Horizon telescope (Event Horizon Telescope Collaboration

et al., 2019; The Event Horizon Telescope Collaboration, 2022). Fig. 2.11 shows

an example of this in the simulated image of the accretion disk around a black

hole. The simulation shows that both the top and bottom of the accretion disk

are visible due to the drastic curvature induced around the black hole. In this

case the propagation of light requires a fully relativistic treatment beyond the

scope of this work (for further reading on visualising strong field light propaga-

tion see James et al., 2015). Instead we shall restrict ourselves to light paths well

approximated by a single deflection. Below we shall expound upon the formalism

used to treat gravitational lensing as presented in Schneider et al. (1992).

As previously, light propagation characterised by a single deflection along the

line of sight can be modelled using a thin screen geometry. Fig. 2.12 depicts this
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Figure 2.12: Diagram representing the thin screen lensing goemetry. S is the
source, O the observer and I the image of the source seen byO.AO represents the
optic axis which is perpendicular to both the source and lens planes, intersecting
both at their respective origins.

geometry for the case of a gravitational lensing, from which we can infer

θDs = βDs + α̂Dds, (2.24)

where θ and β are respectively, the angles of the source and the image on sky. By

defining a reduced deflection angle α = α̂Dds/Ds we can then rearrange the above

and generalise the expression to angular vectors to arrive at the lens equation

α⃗ = θ⃗ − β⃗, (2.25)
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which maps the background source plane onto the lens plane viewed by an ob-

server.

This will approximate the true propagation behaviour well when the mass dis-

tribution is thin with respect to the Ds and the apparent gravitational potential4

|Φ| ≪ c2. In this weak field limit the deflection at the screen can be calculated

as the gradient of the deflection potential

∇⃗θψ = α⃗, (2.26)

where ψ is the Newtonian gravitational potential projected onto the screen

ψ(θ⃗) =
Dds

DdDs

2

c2

∫
Φ(r⃗)dℓ. (2.27)

For a non-rotating point mass potential this yields the deflection angle in Eq.

2.23 seen by Dyson et al. (1920). Unlike the case of a cold plasma in Eq. 2.5, the

deflection angle due to gravity is independent of the frequency of incident light.

Because gravitational lensing is achromatic it is typically modelled using geo-

metric optics to allow the derivation of general results for all frequencies of light

simultaneously. However, for wavelengths of light comparable to the Schwarschild

radius of the lens (Rs = 2GM/c2) diffraction effects will be significant and geo-

metric optics will be inadequate to model the observed behaviour.

In general the observed behaviour of a point on the lens screen can be described

under geometric optics using the Jacobian of the lens mapping which may be

expressed as

Aij =
∂βi
∂θj

= δij −
∂αi(θ⃗)

∂θj
= δij −

∂2ψ(θ⃗)

∂θi∂θj
, (2.28)

where δ is the identity matrix and i and j denote matrix elements. This expression

4While there is no physical gravitational field in the theory of General Relativity the apparent
field still provides a useful model.
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Figure 2.13: Illustration of the effects of convergence and shear on an image of a
source adapted from Umetsu (2010).

can be simplified through the following definitions

κ =
1

2
(ψ11 + ψ22) (2.29)

γ1(θ⃗) =
1

2
(ψ11 − ψ22) = γ(θ⃗) cos

[
2φ(θ⃗)

]
(2.30)

γ2(θ⃗) = ψ12 = ψ21 = γ(θ⃗) sin
[
2φ(θ⃗)

]
(2.31)

(2.32)

where ψij = ∂2ψ/∂θi∂θj and φ denotes the direction of α⃗ with respect to the

coordinate system. These definitions allow the Jacobian to be re-written as

A =

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

 (2.33)

where κ is the convergence of the mapping and γ1 and γ2 are the components of

the shear. Within a lensed image, convergence and shear cause different effects.

Convergence alone causes a uniform magnification of the source image, whereas

the addition of a shear component causes the image to be stretched into an ellipse,

as visualised for a circular source in Fig. 2.13.
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The exact magnification at any point on the lens plane can be calculated from

the determinant of the Jacobian as

µ =
1

det(A)
=

1

(1− κ)2 − γ2
, (2.34)

where physically, magnification comes from additional rays of light being focused

into the observers line of sight that causes an increase in the observed intensity

and apparent angular size of a source. From Eq. 2.34 we can see that formally

the magnification will diverge to µ = ∞ when (1 − κ)2 = γ2. For the special

case when γ = 0, infinite magnification will occur when κ = 1. From Eq. 2.29

the convergence can be derived from the Laplacian of the deflection potential. If

we make the simplifying assumption of a circularly symmetric mass distribution

creating a circularly symmetric deflection potential, Eq. 2.29 reduces to

κ =
1

2
(ψ11 + ψ22) = ψ11 = ψ22, (2.35)

as the second order derivatives will be the same in each lens plane direction.

From Eq. 2.28 the convergence is then equivalent to the partial derivative of

the deflection angle with θ, which neglecting the direction due to the circular

symmetry, is given by

κ =
∂α

∂θ
=

4GMDds

c2DsDd

1

θ2
. (2.36)

By setting κ = 1 we can then assert that for a circularly symmetric lens of mass

M the magnification will be infinite for images on the lens plane satisfying

θ = θE =

√
4GMDds

c2DsDd

, (2.37)

where θE is known as the Einstein radius. Substituting this value and the function
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Figure 2.14: A nearly complete Einstein ring observed by the Hubble space tele-
scope. By ESA/Hubble; NASA derivative work: Bulwersator (talk) Public Do-
main, https://commons.wikimedia.org/w/index.php?curid=17750437.

for α(θ) into the lens equation we can find the corresponding value of β:

β = θE − α(θE) (2.38)

β =

√
4GMDds

c2DsDd

− 4GMDds

c2DsDd

1

θE
(2.39)

β =

√
4GMDds

c2DsDd

−
√

4GMDds

c2DsDd

(2.40)

β = 0. (2.41)

Therefore for a circularly symmetric mass the magnification will be infinite in the

special case when the source and lens are perfectly aligned (β = 0). In this case

the action of the lens upon the incident light will be rotationally symmetric and

the net shear on the image of the source will be zero, consistent with our initial

assumption. Moreover, because of this symmetry the lens mapping α(θE) = θE

will be satisfied in all directions from the optic axis. As a result an observer will

see the source as a ring of infinite magnification known as an Einstein ring similar

to that depicted in Fig. 2.14.

As the circularly symmetric lens is an important approximation in many as-

trophysical cases the Einstein radius becomes a characteristic quantity in many

lensing treatments. In particular, by normalising the lens mass by the square
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of the Einstein radius we find that the mean surface density of mass within the

Einstein radius is independent of the mass of the lens

M

θ2ED
2
d

=
c2Ds

4πGDdsDd

= Σcr, (2.42)

where Σcr is known as the critical surface density. By rearranging Eq. 2.36 to be

in terms of the critical surface density we find,

κ =
M

θ2D2
d

=
Σ

Σcr

(2.43)

allowing for the interpretation of κ as the normalised surface density of the pro-

jected mass distribution. An important subtlety here is that M represents the

mass interior to θE and therefore κ is actually the mean normalised surface mass

density interior to θE.

In general points on the lens plane of infinite magnification such as the Einstein

ring, are known as critical curves, and their source plane equivalents, e.g. the

β = 0 point in the case of an Einstein ring, are known as caustics. Critical

curves and caustics are important as they demarcate regions of strong lensing

where there are more than one solution to the lens equation, i.e. the lensing

causes multi-path propagation. As a source crosses a caustic or an image crosses

a critical curve the number of images will change by two. To understand this

process we can track the position of images across the image plane.

Under Fermat’s principle images will be found at points on the lens plane

where the time delay is stationary with respect to image position, i.e. where the

gradient of the time delay surface is zero. Each image will have a geometric time

delay corresponding to the additional path length associated with its separation

from the source position (θ − β). Furthermore, each image will have a Shapiro

delay caused by its propagation through a gravitational field. Within the context

of General Relativity the Shapiro delay is caused by masses introducing a dilation

of space-time in addition to curvature. This gravitational time dilation, which
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can be reinterpreted to account for the gravitational redshift effects discussed in

§1.1, causes light propagating through a gravitational field to be delayed with

respect to light propagating in a vacuum.

Generally, the time delay for an image propagating through a gravitational

lens is given by

t(θ⃗, β⃗) =
(1 + z)

c

DdDs

Dds

[
1

2

(
θ⃗ − β⃗

)2
− ψ(θ⃗)

]
, (2.44)

where images will be found at positions satisfying

∇⃗θ

[
1

2

(
θ⃗ − β⃗

)2
− ψ(θ⃗)

]
= 0 (2.45)

which is equivalent to the stationary phase approximation in Eq. 2.12.

By interpreting these time delays as phase delays we can visualise strong

gravitational lensing in the same way as plasma scattering. Fig. 2.15 shows the

transition from weak to strong lensing for a generic gravitational field. Initially,

for a source far from the lens, the phase contribution from the lens’ gravitational

field is too small to cause a zero gradient point and the observer sees only a single,

mildly perturbed image along the optic axis. This corresponds to the weak lensing

regime. The second panel of Fig. 2.15 shows the scenario where the background

point source lies exactly on a caustic of the lens. Here an additional, infinitely

magnified image is formed, corresponding to the zero gradient saddle point in

the surface of constant phase. This marks the transition into the strong lensing

regime. Finally, as the source crosses the caustic and the Shapiro delay begins to

dominate over the geometric delay, the previously formed image divides into two

separate images of finite magnification. If the lens is transparent an observer in

this scenario will now see three images of the source distributed about the lens.

Typically however the central image will be obscured by the lens itself, leaving

two observable images of the source.

An effective way to identify whether gravitational lensing is causing multiple
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Figure 2.15: Visualisation of propagation through a phase-changing screen, as
described in Fig. 2.4, for a screen containing an extended lensing mass. From
top to bottom the lens is moved closer to the line of sight. Middle depicts the
geometry where the lens is on the caustic and the lensing is transitioning from
weak (top) to strong (bottom).
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Figure 2.16: Optical image of the Einstein cross, depicting four
images of the background quasar surrounding a central image of
the foreground lensing galaxy. By NASA, ESA, and STScI -
http://hubblesite.org/newscenter/archive/releases/1990/20/image/a/, Pub-
lic Domain, https://commons.wikimedia.org/w/index.php?curid=2237885.

images is to cross match the spectral properties between images. As gravitational

lensing is achromatic each image should share similar5 spectra. Indeed, the first

hints of strong gravitational lensing were detected in QSO0957+561 (quasi-stellar

object), where the spectra of two nearby images were found to be suspiciously

similar (Walsh et al., 1979). In the time since this first candidate many cases

of strong gravitational lensing have been found, including the Einstein cross de-

picted in Fig. 2.16. The cross serves as once of the clearest examples of strong

gravitational lensing, showing four images of a background quasar surrounding

an image of a foreground galaxy, which occludes a theoretical fifth image of the

source.

There are also many examples of weak lensing, especially given the long range

of gravitational forces (Dark Energy Survey Collaboration 1 et al., 2018; Lewis,

2020). However, within the weak lensing regime the thin screen approximation is

not always appropriate as low density regions can have extents comparable to Ds.

We will therefore restrict our considerations to the strong lensing regime where

5In theoretically ideal circumstances the spectral properties between images will be identical,
however because each image traverses a separate path, subsequent propagation effects such as
absorption can dilute spectral similarity.
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the large densities generally require the extent of the lens to be thin compared

to Ds (for a review of weak lensing theory and application see Bartelmann &

Schneider, 2001).

In the strong lensing regime an ideal case of interest is the point mass grav-

itational lens. To visualise lensing from a point mass we can approximate the

deflection potential as

ψ(θ⃗) ≈ 4GM

c2
ln

(
|θ⃗|
θE

)
, (2.46)

which will model the true potential well for θ < θE. Fig. 2.17 depicts this sce-

nario, showing that the surface of constant phase contains a singularity where the

deflection potential approaches infinity as the line of sight approaches the point

mass. Formally this means that point mass lenses always cause strong lensing

as there will always be a pair of zero gradient points either side of the phase

singularity. Furthermore, for a true singularity the phase surface will be unde-

fined for lines of sight coincident with the lens and so no third image will exist.

In the second panel of Fig. 2.17 we can see that in the case where the source is

aligned with the lens the geometry becomes circularly symmetric, with the two

zero gradient points combining to form a zero gradient loop associated with an

Einstein ring.

Lensing from a point mass is a useful case study as under Gauss’ law the

gravitational field from a spherically symmetric mass distribution interior to a

given point will be identical to that from a single point of the same mass. We

can therefore use the point mass behaviour to model lensing from any spherically

symmetric mass distributions. As many mass distributions in astronomy may be

accurately modelled as a sphere the point mass model is extremely useful.

For extended mass distributions there will be no phase surface singularity

as the mass interior to a given radius will decrease to zero with that radius.

This leads to a smooth peak in the surface of constant phase as depicted in Fig.

2.15. However, if the entire mass distribution is contained within the locus of

its Einstein ring then it will still create the zero gradient points predicted by a
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Figure 2.17: Visualisation of the effect of gravitational lensing from a point mass
off axis (top) and aligned with the source (bottom).
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point lens model. We can therefore restate the condition for strong lensing as a

requirement that the surface density of the lensing mass satisfies Σ > Σcr.

For compact lenses such as black holes and neutron stars, the mass interior

to a given radius will not decrease until within a few Schwarschild radii of the

lens. Here the weak field condition will be violated and a more complex treatment

required. Therefore, in the regime where a thin screen model is valid, gravitational

lensing from compact objects may be approximated with a point mass model.

Using the approximation in Eq. 2.46 the positions of the two images created

by a point mass are given by

θ± =
1

2

(
β ±

√
β2 + 4θ2E

)
(2.47)

each image has a magnification described by

µ± =

(
1−

[
θE
θ±

]4)−1

=
y2 + 2

y
√
y2 + 4

± 1

2
(2.48)

where is the normalised angular impact parameter of the source y = β/θE. No-

tably, the sign of the image magnifications corresponds to the parity of the images,

i.e. images with negative magnification are reflected with respect to the optic axis.

The difference between the signed image magnifications is unity, i.e. µ+−µ− = 1,

and the unsigned sum of their magnifications is given by

µ = |µ+|+ |µ−| =
y2 + 2

2y
√
y2 + 4

(2.49)

From the solutions given by Eq. 2.47 the difference in time delay between

these images is given by

∆t =
4GML

c3
(1 + zL)

[
y

2

√
y2 + 4 + ln

(√
y2 + 4 + y√
y2 + 4− y

)]
, (2.50)

where zL is the redshift of the lens.
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The different time delays for each image mean that time variable processes in

the intrinsic signal will appear echoed in the observed temporal profile. Each echo

will correspond to an image in the spatial domain and by measuring the delays

between echoes the lensing geometry may constrained. The larger the amplitude

of the intrinsic variation the more significant the echoes will be in the observed

profile. Transient signals are therefore the ideal probe of this effect, owing to the

full modulation of their signals with time.

From Eq. 2.50 we can see that the time delay increases linearly with the mass

of the lens. Therefore the minimum lens mass we can probe to with a given

transient depends on the minimum time delay which could be detected between

temporal echoes. Without considering wave optics effects at radio frequencies,

the minimum detectable time delay will be comparable to the duration of the

transient. Initial considerations of temporal echoes proposed looking for SNe

lensed by galaxies (Refsdal, 1964). However, the subsequent discovery of much

shorter transients such as FRBs and GRBs allows us to look for lensing by lower

mass objects such as the primordial black holes introduced in §1.1.

Strong lensing of a fast transient by a lower mass object has potentially al-

ready been observed in GRB950830 (Paynter et al., 2021). Fig. 2.18 displays the

temporal profile of the GRB, showing two peaks in the temporal profile consistent

with strong lensing by a ∼ 104M⊙ compact object. The key evidence for gravita-

tional lensing, in this case, is the achromatic time delay between the bursts and

their consistent spectra. This case provides strong evidence for the occurrence of

strong lensing in fast transients and motivates us to explore its impact on fast

cosmological transients.

FRBs (which are discussed in detail in §B) in particular would serve as an

excellent probe of strong lensing by PBHs, providing many advantages over GRBs

and SNe. The simplest among them is the short tens of µs to ms scales of FRB

widths and temporal substructures (Farah et al., 2018, see also Fig. 7.2) which

could allow temporal echoes from lenses on 0.1 – 10M⊙ scales, respectively, to
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LETTERSNATURE ASTRONOMY

The photons that travel a longer distance arrive first, as the shorter 
path traverses deeper into the gravitational potential well of the lens 
where time dilation is stronger. The gravitationally retarded image 
is dimmer than the first image. The observational signature of such 
an event is thus an initial γ-ray pulse followed by a duplicate ‘echo’. 
The duration of the time delay between the burst and the echo is 
predominantly determined by the mass of the gravitational lens, 
but also by the alignment of the γ-ray source with respect to the 
observer-lens line of sight. For a point-mass lens20–22

ð1þ zlÞM1 ¼
c3Δt
2G

r % 1ffiffi
r

p þ ln r
" #%1

: ð1Þ

Here Δt is the time delay, r is the ratio of the fluxes, zl is the lens 
redshift and (1 + zl)Ml is the redshifted lens mass. By measuring Δt 
and r we can infer the redshifted mass (1 + zl)Ml.

The total number of observed GRBs is of order 104. We anal-
yse the BATSE dataset as it is the largest available single dataset at 
~2,700 bursts. We include both long and short GRBs in our study. 
For a burst and echo to occur within the same BATSE light curve, 
we require a time delay of ≲240 s. The minimum detectable time 
delay is determined by the width of the γ-ray pulse; if the delay time 
is too short, the two images merge into one. For long GRBs, the 
minimum detectable time delay is ~1 s, and for short bursts, it is 
~40 ms. This range of time delays corresponds to a lens mass range 
of approximately 102–107 M⊙ (refs. 21,23).

We identify preliminary lensing candidates with an autocorre-
lation analysis7,24. We utilize the four available broadband energy 
channels of BATSE burst data independently. The equivalence 
principle dictates that all wavelengths of light are equally affected 
by gravitational fields. This implies two constraints: the time delay 
is independent of the photon energy and the gravitational magni-
fication of each image is identical for every wavelength. Once we 
have identified candidates, we employ Bayesian model selection to 
determine the Bayesian odds comparing the lensing hypothesis to 
the no-lensing hypothesis. Our unified framework simultaneously 
provides the detection significance while estimating the lensing 
parameters, which we use to infer the lens mass. To model GRB 
pulses, we employ the fast-rise exponential-decay (FRED) model25. 
Details are provided in Methods.

We uncover one statistically significant gravitational lensing can-
didate: GRB 950830 (BATSE trigger 3770)—a short γ-ray burst. The 
light curve for this burst is shown in Fig. 1 with the reconstructed 
curve of the best-fit model plotted in black. The black curve is cre-
ated by taking the mean of the curves drawn by each of the ≳60,000 
posterior sample sets at each time bin. We find that each individ-
ual pulse is best fit by a variation of the FRED pulse model plus a 
sine-Gaussian function. We analyse the four available energy chan-
nels independently and find that the lensing hypothesis is preferred 
in each channel with ln(Bayes factor) (ln(BF)) between 0.5 and 7.0. 
Adding the ln(BF) values from each of the channels, we find the 
total ln(BF) = 12.9 (log10BF = 5.6) in favour of lensing, indicating 
strong statistical support for the lensing hypothesis. A ln(BF) value 
of eight is considered ‘strong evidence’ in support of one model 
over the other26. Detailed fits are shown in Extended Data Figs. 1–6, 
including an example of a ’double’ burst that is not a lens (Extended 
Data Figs. 7 and 8).

Assuming a point-mass deflector, the marginalized posterior 
distributions for time delay and magnification ratio of this lensing 
event in Fig. 2 can be used in conjunction with equation (1) to infer 
a redshifted lens mass of (Fig. 3)

ð1þ zlÞMl $ 5:5þ1:7
%0:9 ´ 10

4 M&: ð2Þ

There are three astrophysical objects in this mass range, which 
might serve as a lens: globular clusters, dark matter halos and black 

holes. A gravitational lens is well approximated as a point mass if 
most of its mass is contained within the region bound by the two 
lensed images where they bisect the cosmological plane of the lens. 
Taking instead an isothermal mass distribution as the gravitational 
lens, and integrating over all zl, zs, where zs is the source redshift, we 
find a lens velocity dispersion of ~4 km s−1. From simulations, we 
can associate this dispersion with an Navarro–Frenk–White profile 
of mass ~105 M⊙ (S. Wyithe, personal communication). Globular 
clusters follow a similar mass–velocity dispersion scaling27. In either 
framework then, either a singular point mass or a self-gravitating 
isothermal sphere, we have a consistent measurement for the mass.

Dark-matter halos are numerous, and their number density can 
be calculated using the Press–Schechter formalism. However, each 
has a negligible contribution to lensing cross-section, as Navarro–
Frenk–White mass distributions typically have cores that are not 
sufficiently massive to produce multiple images. Globular clusters 
are compact enough to produce multiple images, but there are not 
many of them. Assuming that the Milky Way’s ~200 globular clus-
ters are typical, and that the Milky Way formed from an overdensity 

Fl
ux

 (×
10

3  co
un

ts 
pe

r s
ec

on
d)

0

5

10

15

20

25

30
a

b

c

d

e

Offset +0.0
Offset +4.0
Offset +8.0
Offset –3.0

0
2.5

0
2

0

5

0 0.2 0.4 0.6 0.8
Time since trigger (s)

0
2.5

Fig. 1 | The gravitationally lensed γ-ray burst, BATSE trigger 3770—GRB 
950830. a, The light curve is the pre-binned 5!ms tte BFITS data. Each 
colour indicates a different energy channel: red, 20–60!keV; yellow, 
60–110!keV; green, 110–320!keV; blue, 320–2,000!keV. The coloured 
shaded regions are the 1σ statistical errors of the γ-ray count data. 
The solid black curves are the posterior predictive curves, the mean of 
≳60,000 fits. As they are the mean of ≳60,000 fits, the burst and echo 
image fits need not be the same, even though the individual fits that make 
up the mean are identical. Over-plotted in fainter black are curves of 
100 random parameter draws from the ≳60,000 total posterior sample 
sets. b–e, The difference between the true light curve and the posterior 
predictive curve, with colours representing the same energy channels as 
above. The shaded regions have been transformed in the same fashion. 
Note that 68% of the peaks and troughs in the residual should lie within 
the corresponding shaded region for a good fit. The individual pulses 
that make up the combined fits are shown in Extended Data Figs. 1–4 for 
channels 1–4, respectively.
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Figure 2.18: Temporal profile at a range of frequencies for gravitationally lensed
GRB950830 taken from Paynter et al. (2021). Panel a shows the GRB light
curve at energies: 20-60 keV (red); 60-110 keV (yellow); 110-320 keV (green);
320-2000 keV (blue), with 1σ errors depicted by the shaded regions. To aid visual
distinction each energy has been offset on the y-axis by the amount specified in
the legend. Solid black lines show the best fits to the data, where each echo has
been fit independently. Panels b-e show the residuals to these fits at each energy.
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be distinguished using only the observed intensity temporal profile of the burst

(assuming a redshift of zL = 0.2 for the lens and y = 1). Whereas, the 0.1–

10 s scale of structure GRB temporal profiles (Gehrels et al., 2009) corresponds

to lensing from 103 – 105M⊙ objects (assuming zL = 1 and y = 1, where the

larger lens redshift corresponds to the greater mean redshift of GRB distributions

(Paynter et al., 2021)). In each of these cases the temporal separations of the

echoes correspond to image spatial separations well below the angular resolution

of typical observations. For context, with the ∼ 0.1 arcsecond resolution achieved

by ASKAP when localising FRBs (Bannister et al., 2017), a gravitational lens

would need to be ∼ 1010M⊙ in order for images separated by ∼ θE to have

distinct sky localisations (assuming a midpoint lens at zL = 0.2), a mass which

rises to 1015M⊙ in the case of GRB localisation with Swift-BAT to only arcminute

precision (Barthelmy et al., 2005)(assuming a midpoint lens at zL = 1).

Unlike type Ia SNe, neither GRBs nor FRBs are standardisable candles, and

therefore the determination of the distance to their sources is significantly more

difficult. For both FRBs and GRBs the redshift is often determined from spectro-

scopic or photometric analysis of the host galaxy associated with the burst itself

or the optical afterglow in the case of GRBs (D’Avanzo, 2015; Bannister et al.,

2017). The larger estimated mean redshift of the GRB population allows any

individual burst to probe a larger portion of the Universe, in some cases up to a

redshift z ∼ 9.4 (Cucchiara et al., 2011). However, as the lens mass can only be

determined from the time between temporal echoes to within a factor of (1+ zL)

(see Eq. 2.50), where zL can range from zero to the redshift of the source, the

greater range of potential GRB redshifts compared to FRBs also leads to higher

uncertainty in the mass of any lens along the line of sight. Furthermore, GRB

redshift determinations from the optical afterglows are somewhat model depen-

dent (Cucchiara et al., 2011), leading to greater uncertainty compared to FRBs

source redshifts which often boast many orders of magnitude higher relative pre-

cision (Bhandari et al., 2020). Therefore while any given GRB is likely a deeper
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probe, FRBs will constrain a lower and more precise range of lensing masses.

Another potential drawback of FRBs is the existence of complex sub-burst

temporal structures and in some cases, repeating sources, which create a source

of degeneracy that makes the identification of true lensed images more difficult.

In general, repeating sources and sub-burst structures are not expected to share

identical spectra, whereas, the achromatic nature of gravitational lensing should

produce nearly identical spectra for each lensed copy. Therefore, the spectral

information recorded along with FRB temporal profiles serves to break some of

the degeneracies created by potential repeaters and other complex morphologies.

Furthermore, many FRB observatories now routinely collect the raw voltage in-

formation associated with the observation of any burst. Using this information,

the wavefield of an FRB can be reconstructed, and lensed bursts identified un-

ambiguously from the correlation between gravitationally lensed images, which

are expected to have their coherence preserved by lensing (see Kader et al., 2022;

Leung et al., 2022, for a precise description of this method). A potential issue

with this method is that each image/echo propagates along a distinct path to the

observer, potentially encountering different plasma densities and turbulences that

may disrupt the coherence of the burst. As discussed in Leung et al. (2022), by

cross-correlating the wavefields associated with each image to search for coherent

gravitational lensing, we transform the strong gravitational lens into something

of an interferometer with a baseline on the order of the image separation scale. In

this context, whether scattering prior to the strong lensing suppresses this corre-

lation can be determined by considering whether the scatter-broadened image is

resolved out by the gravitational lens interferometer. Furthermore, by reversing

this scenario we can determine whether scattering after the strong lensing dis-

rupts the wavefield coherence between images by considering whether the dom-

inant scattering screen resolves the multiple images from the lens as considered

by Eichler (2017). In each of these contexts, smaller lens masses usually result in

the coherence between images being preserved, as these lenses have smaller im-

52



age separations, which are both more difficult to resolve and have lower resolving

power. Moreover, both Eichler (2017) and Leung et al. (2022) note that even

in the case where the relevant lensing/scattering screen is resolved, the correla-

tion may not be completely destroyed. Within this thesis I focus primarily on

the geometric effects of lensing and do not consider in-depth, wave-optics effects.

I, therefore, leave further consideration of decoherence of the wavefield between

strongly gravitationally lensed images to a future study and urge any intrepid

readers to see Eichler (2017); Leung et al. (2022); Kader et al. (2022) for further

discussion. In addition to disrupting coherence between images, variant scatter-

ing and dispersion between paths may lead to the burst profiles between images

being different. In principle, both of these effects can be accounted for using co-

herent dedispersion (Scott et al., 2023) and independent burst fitting (Qiu et al.,

2020) to recover the intrinsic shape of each temporal echo. In these cases, the dif-

ferences in DM, scattering, and perhaps even redshift can potentially be leveraged

for a greater understanding of the lensing geometry. Given we will be exploring

the small scale case in this thesis, and do not expect the paths of propagation

to be different enough to substantially change scattering, DM, or redshift we will

leave a more complete consideration of the interaction between lensing and these

observables to a future study (see also Er & Mao, 2014; Cordes et al., 2017; Er &

Mao, 2022, for additional plasma lensing effects not considered within the scope

of this thesis).
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Chapter 3

Cosmological Lensing

3.1 Cosmological Distances

In their most general form, distances measure the separation between events

along observed photon trajectories (Hogg, 2000). On human scales measuring

distances is trivial. As, on these scales, we do not expect environments to evolve

significantly over the light travel time, the travel time of observed photons corre-

sponds to the instantaneous distance (proper distance1) to a source. On Galactic

scales the travel time of light is significant. As a result, the observer-source dy-

namics can be important to precise determinations of proper distance, however,

in general, the light travel time corresponds closely to the proper distance as

the Galactic environment is isolated from the Hubble flow. Conversely, on cos-

mological scales, the Universe expands significantly over the time of flight of a

photon. As a result, the proper distance, in general, does not correspond to the

travel time of light. The separation of these quantities highlights the need for

specialised distance measures in cosmology. Described below are the cosmologi-

cal distance measures relevant to this work, following the formulae described by

Hogg (2000) and Harrison (1993).

Perhaps the most important distance measure is the comoving distance. As

1the proper distance is defined as the distance between two events in the frame where they
are simultaneous (Weinberg, 1972).
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the name suggests, the comoving distance is the distance measure that accounts

for cosmological expansion. Specifically, it is the proper distance to a source

divided by the ratio of scale factors at emission and observation, and therefore

it is constant regardless of expansion. An expression for the comoving distance

as a function of redshift can be derived by considering an infinitesimal proper

distance, equivalent to the light travel time

ℓ = c dt. (3.1)

Dividing by the scale factor at the current time yields an infinitesimal comoving

distance

dDc =
c dt

a(t)
. (3.2)

Integrating this quantity between emission (t1) and observation (t0)

Dc =

t0∫
t1

c dt

a(t)
, (3.3)

yields the total comoving distance. Cosmological redshift can then be expressed

as a function of the scale factor at different times

(1 + z) =
a(t0)

a(t)
. (3.4)

Defining the scale factor at the time of observation as a(t0) = 1 then implies

da = −a2dz. Using this and defining H(z) = ȧ/a, we can then express Dc as a

function of redshift, following

Dc =

t0∫
t1

c dt

a(t)
= −

a(t0)=1∫
a(t1)

c da

a2H(a)
=

z∫
0

c dz′

H(z′)
= dH

z∫
0

dz′

E(z′)
, (3.5)
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where dH = c/H0 and E(z) is given by Eq. 1.6. For a homogeneous universe, it

then becomes simple to transform the comoving distance into other useful distance

measures such as the luminosity distance and the angular diameter distance.

The luminosity distance (DL) describes the relationship between bolometric

luminosity (L) of a source and its observed flux (S):

L = 4πSD2
L. (3.6)

In the case of spectral luminosity and flux, the relation instead becomes

Lνe =
4πD2

LSν
(1 + z)

(3.7)

where the additional redshift factor accounts for the effect of cosmological ex-

pansion on the observed bandwidth. When working with transients, where the

observable of interest is fluence instead of flux, the above relation is divided by

another factor of (1 + z) to account for the cosmological time dilation of the

burst’s duration (Macquart & Ekers, 2018a).

The angular diameter distance (DA) describes the relationship between a

source’s physical transverse size (x) and the observed angular size it subtends

(θ):

DA =
x

θ
. (3.8)

DA can also be used to calculate DL via Etherington’s reciprocal relationship,

which asserts that, in any space-time (Etherington, 1933)

DL = (1 + z)2DA. (3.9)

In a flat homogeneous universe DA can also be expressed in terms of the

comoving distance as

DA =
DC

(1 + z)
(3.10)

and, furthermore, the angular diameter distance of a object at redshift z2 as
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Figure 3.1: Cosmological distance measures for a Planck cosmology.

observed from redshift z1, DA,12, can be expressed as

DA,12 =
1

(1 + z2)
[DC,2 −DC,1] , (3.11)

for a flat universe, whereDC,1 andDC,2 are the corresponding comoving distances.

For comparison the above three distance measures are plotted in Fig. 3.1 for a

range of redshifts using a Planck cosmology (Planck Collaboration et al., 2018).

As discussed in §2.2.2, gravitational lensing can affect the observed image of

a source. Therefore, in a universe with an inhomogeneous distribution of matter,

cosmological distance measures determined from observables, i.e angular diameter

(DA) and luminosity distances (DL), will be impacted by the matter distribution

over which they are measured (see Helbig, 2020, for a review). For DA this can be

understood by considering the beam received by an observer and subtended by

the source as seen in Fig. 3.2. In a universe with a homogeneous distribution of

matter a beam will contain matter at that universe’s average density and will have

zero convergence (magenta). Conversely, a beam in an inhomogeneous universe,

containing a void or a below-average matter density (black), will have a negative
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Figure 3.2: Visualisation of the effect of matter on a beam of light subtended
by the source. A below average density of matter within a beam causes a neg-
ative convergence of the light (black solid line). When compared to the average
density, zero convergence case of a filled beam (magenta solid line) this results
in a decreased angular source size (black dashed line) associated with the same
physical size (blue ellipse). This can be modelled as an apparently larger DA for
the under-dense beam.

convergence caused by that lower density. As found by Fleury et al. (2017),

only matter within the beam will contribute to the convergence. This negative

convergence presents as an apparently smaller angular size (θ) associated with

the same physical source size (x), resulting in an increase to DA = x/θ compared

to the homogeneous case.

In the context of DL, this difference manifests as a lower flux observed for

the case of an under-dense or empty beam. Etherington’s reciprocal relation

allows DL to be easily calculated from the corresponding DA. Consequently, it is

sufficient to discuss the effect of inhomogeneity in the context of DA
2.

The matter in any universe can be categorised as either homogeneous or inho-

mogeneous. By convention, we define the fraction of total matter that is homo-

geneously distributed as η. The two important instances of DA are then labeled

as the empty (Dη) and filled (D1) beam cases. An empty beam represents the

most extreme case of a void, where a beam contains no clumps of inhomogeneous

matter, corresponding to the maximal value of DA in a universe with a smooth

matter fraction η. A filled beam refers to the case where all matter in the uni-

2Etherington’s reciprocal relation holds in all metric theories of gravity (Schneider et al.,
1992), for modified theories of gravity this is not necessarily true. In this thesis, I do not consider
lensing in the context of modified gravitational theories, for an example of the potential impact
of Etherington relation violation in a non-metric theory of gravity, see Giesel et al. (2023).
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verse is distributed homogeneously (i.e. η = 1, hence D1), and hence the beam

contains matter at the average density. Finally, just as a void places sources ap-

parently further away, magnification associated with gravitational lensing from

an inhomogeneity within the beam can place the sources apparently closer.

Typically, we assume a homogeneous or ‘smooth’ universe, and therefore

DA = D1. In reality, our Universe is inhomogeneous on a vast range of scales,

from individual particles to galaxy clusters. As a result, a population of sources at

a constant redshift will have a complex distribution of DA depending upon the in-

tervening matter. This distribution will correspond to the probability distribution

of gravitational lensing magnifications such as those applied by Zumalacárregui

& Seljak (2018) and Garcia-Bellido et al. (2017) to supernova observations. The

results of Weinberg (1976); Kaiser & Peacock (2016) indicate that in a transpar-

ent universe3 D2
A averaged over direction is unaffected by inhomogeneity provided

that the total area of the surface of constant redshift is also unaffected, as found

by Breton & Fleury (2020). Therefore, the mean of the magnification distribution

must be the magnification corresponding to D2
1

4. Moreover, these magnification

distributions are often heavily skewed towards low magnifications with a mode

corresponding to Dη (Metcalf & Silk, 1999). As such, Dη and D1 are crucial to

characterising the macroscopic distribution of magnifications (Schneider & Weiss,

1988), with Dη containing information relevant to the bulk of the events, whereas

the small distances associated with high magnifications will only pertain to a

small fraction.

It is worth noting, however, that a beam will average over fluctuations on

scales that are small compared to the beam’s volume. Fig. 3.3 depicts this,

showing the distribution of DA in an inhomogeneous universe for both a large

(magenta) and small (black) source. The large beam volume associated with the

3Some fraction of the distant universe will be obscured by the opaque cross-section of our
lens, however as we are considering only compact lenses here and material opacities are generally
low for the radio and gamma-ray sources we are interested in, this fraction is likely to be low,
so we assume a transparent universe.

4Conversely, the directionally averaged value of DA will not be equivalent to its smooth
universe counterpart as DA is a non-linear function of D2

A.
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large source smooths over the small-scale inhomogeneities (grey dots), rendering

DA indistinguishable from that of a completely smooth universe (η = 1). Hence

as the solid angle subtended by a source increases the value of η will tend to

increase and DA will decrease towards D1. The minimum mass scale that a given

source will be sensitive to lensing from, can then be inferred from the volume of

the beam subtended by that source.

3.2 Probed Lens Masses

To derive this minimum mass scale inhomogeneity it is instructive to consider a

field of homogeneously distributed clumps of mass Mc composing some fraction

(f) of the Universe’s total matter density Ωc = fΩM,0. We can then characterise

the level of inhomogeneity by comparing Mc to Mbeam, the mass enclosed by the

beam. For the case of a smooth mass distribution (η = 1) in a flat universe (k=0),

Mbeam = ρcr,0d
3
H

A

D2
A(zs)

{
Ωc,0

zs∫
0

(1 + z)2D̃A
2
(z)

E(z)
dz

}
, (3.12)

as per the comoving volume equation in Hogg (2000). ρcr,0 is the critical density

at z = 0, A is the area of the source, dH is the Hubble distance, D̃ denotes a

distance normalised by dH , E(z) = H(z)/H0, and zs is the source redshift.

For a Mc ≪ Mbeam the expected number of clumps within the beam will be

⟨N⟩ ≫ 1. As our distribution of clumps has constant co-moving density, the

random fluctuations in N will follow Poisson noise with standard deviation of
√
N , making the fractional fluctuation in both N and the total convergence of

the beam small for large ⟨N⟩. It is therefore unlikely, in the case ofMc ≪Mbeam,

to observe DA significantly different from D1. As the value of Mc increases,

the fractional fluctuation in N also increases, eventually yielding a significant

probability of a beam containing no clumps. For the case of Mc ≫ Mbeam, a

beam is most likely to contain no clumps in which case Dη will apply.
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Figure 3.3: Visualisation of the smoothing effect of large source sizes. Grey
dots represent clumped matter in an inhomogeneous universe. The magenta
solid line is DA to the magenta source at a constant redshift. The solid black
line represents DA to the compact black source at a constant redshift and the
blue sphere represents the observer. To an observer of the extended magenta
source, the universe appears smooth as the matter within the large beam volume
(magenta dotted lines) remains relatively constant. To an observer of the compact
black source the same inhomogeneities cause the DA to the source to change with
the source’s position according to how much matter is within the compact beam
(black dotted line). As a result, the black curve is noisy following the large
random variation of matter within the beam as a function of direction.

62



3.2.1 Magnification of Extended Sources

The exception to our Mbeam criteria would be when many clumps lie within the

beam and each causes a significant magnification of the source. This scenario may

be observationally distinct from the smooth matter case and hence the require-

ment of Mc ≪ Mbeam is a necessary but not sufficient condition for smoothness.

In order to treat a matter distribution as though it were smooth we must also

require that the maximum magnification by any lenses within its volume be low.

Because the size of lensing masses (Mc) in question are exceedingly low it is

appropriate to consider the finite size of even our most compact sources.

Extended sources can be significantly magnified if their angular size (θS) is

comparable to the Einstein angle of the lens (θE). As shown by Schneider et al.

(1992), the maximum magnification (µmax) from an extended source is given by,

µmax =

√
4 + r2

r
, (3.13)

where r = θS/θE. If these two angles are equal (r = 1) then µmax ≈ 2.24, dropping

approximately linearly with r. Using this equivalence, we can determine the mass

of clumps, below which only small magnifications will be observed,

Mlens = ρcr,0d
3
H

A

D2
s

{
2

3

D̃dD̃s

D̃ds

}
. (3.14)

Uniform mass distributions with clump masses that are then below both

Mbeam and Mlens will have clumps both numerous within the beam and able

to affect only a low maximum magnification of the source. Such distributions

will be largely indistinguishable from a smooth matter distribution.

The linear density field associated with a uniform distribution of clumps has

a vanishing shear due to matter outside the beam (Nakamura, 1997). As such,

for Mc ≫ min[Mlens,Mbeam] the assumptions of the ZKDR distance model are

satisfied and we can calculate DA for a beam without clumps using the method
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of Kayser et al. (1997) (i.e. DA = Dη, with f = η). We then expect a source

averaged magnification with respect to the empty beam ⟨µ⟩ = D2
η

D2
1
and the most

likely line of sight to a source to be characterised by Dη.

In the left panel of Fig. 3.4 we visualise the range of clump masses which

should and should not be considered smooth by plotting Mbeam (full lines) and

Mlens (dotted lines) for various sources. We have used the canonical source sizes

for SN Ia, GRBs and FRBs (100 AU, 104 km and 10 km, respectively) to calculate

each criteria. For SN Ia this canonical size is derived by assuming a ∼ 19 day

period to reach maximum light (Firth et al., 2015; Riess et al., 1999). For a

typical type Ia supernova (SN Ia) expanding uniformly at the canonical velocity

of 104 km/s (Maoz et al., 2014) this rise time will correspond to a radius of ∼ 100

AU and subtend a cosmological volume of ∼ 1000 pc3 at z ≈ 1 (Fleury et al.,

2013). For FRBs the extent of their sources are canonically inferred from the

duration of their bursts to be as low as 10 km (corresponding to 10−16 pc3 ≈ 1

AU3 at z ∼ 0.5; Farah et al., 2018; Cho et al., 2020), and for short GRBs it may

be as low as 104 km (corresponding to 10−10 pc3 at z ∼ 0.5; D’Avanzo, 2015).

Additionally, for the calculation of Mlens we assume that Dds = Dd as this will

capture the region of lens geometry with the highest contribution to the lensing

optical depth (Turner et al., 1984).

As expected from the similarity of equations (3.12) and (3.14), the value of

each criteria is relatively similar over the vast range of masses we are considering.

For each source Mbeam is shown to be the dominating criteria over much of the

redshift space of interest. Our interest is restricted to source redshifts 1.0 < zs <

3.0 as the difference between D0 and D1 for z < 1 is small as per Fig. C.1 and

we expect few sources to be observed at higher redshifts.

We note that a caveat of this model is that as the convergence of the beam

fluctuates with N , the apparent angular size of the source will also fluctuate.

This leads to changes in both the beam’s volume and consequently in N . We

do not account for this second order effect, however qualitatively the resulting
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Figure 3.4: Mbeam and Mlens limits to clump mass plotted with full and dot-
ted lines respectively. For Mc ≫ min[Mbeam,Mlens] the mass will appear inho-
mogeneous and Dη will describe the most likely line of sight to a source. For
Mc ≪ min[Mbeam,Mlens] the mass will appear homogeneous and all lines of sight
will be described by D1. Left : Constraints are calculated in the limit of geometric
optics for source size representing SN Ia (100 AU), GRBs (104 km) and FRBs
(10 km), using equations (3.12) and (3.14). The shaded region gives the range of
PBH masses that are observationally unconstrained Right : Limits are calculated
considering physical optics for wavelengths representing SN Ia, GRBs and FRBs,
using equations (3.15) and (3.16). A mass distribution may be considered smooth
ifMc ≪ min[Mbeam,Mlens] for either of the geometric or wave optics limits, hence
wave optics will be the dominant limit for FRBs observed at radio frequencies.
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change to N will be in the same direction as the original fluctuation. This will

cause an increase to the standard deviation of the distribution of N and therefore

an increase in the level of inhomogeneity. By neglecting this second order effect

our conclusions on the mass range of inhomogeneities each source is sensitive to

will be conservative.

Any objects having masses in the stellar range constitute inhomogeneities

for SN Ia, GRBs and FRBs, as can be seen from Fig 3.4 (left), and for that

reason a large population of such objects is already excluded by the SN Ia data

(Helbig, 2015). Visible stars themselves amount to only a small fraction of the

average matter density, Ωstars/ΩMatter ∼ 0.01 (Fukugita & Peebles, 2004), and a

uniformly distributed population at this low level would not have a substantial

effect on the angular diameter distances; this case would be well approximated

by the η = 1 calculations shown in Figure 3. In fact visible stars are far from

uniformly distributed; they are concentrated in the central regions of galaxies and

so can play a major role as gravitational lenses on some particular lines-of-sight,

but have little influence on the background geometry.

The shaded region in Fig. 3.4 (left) corresponds to the range of PBH masses

which could theoretically still constitute 100 % of our Universe’s dark matter.

Notably, this region lies well below Mbeam for SN Ia, meaning that current obser-

vational constraints are insensitive to PBHs in the asteroid to sub-lunar range.

Conversely, the region lies far above Mbeam for FRBs, with a majority being far

above Mbeam for GRBs as well. Thus, if dark matter were comprised mostly of

PBHs in the unconstrained range, DA for FRBs and GRBs would be affected.

This suggests that compact cosmological transient such as FRBs and GRBs could

provide a new way to constrain dark matter in this unexplored range.

3.2.2 Diffraction Limitations

As suggested by several authors Oguri (2019); Jow et al. (2020) wave effects

may also be important to the lensing of FRBs. In the context of our previous
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two constraints given by equations (3.12) and (3.14), considering physical optics

will have two effects: it will set a minimum probed volume corresponding to the

Fresnel scale, and it will set a maximum amplification as described below.

Under wave optics, radiation from the source will sample a transverse area

corresponding to the Fresnel scale. Hence, the volume probed by a source cannot

be smaller than the Fresnel zone integrated over the line of sight. Using this

volume we can recalculate Mbeam as

Mbeam = ρcr,0 λd
2
H

{
Ωc

∫
D̃dsD̃d

D̃s

(1 + z)2

E(z)
dz

}
(3.15)

where λ is the wavelength of the radiation.

Diffraction around a lens will also set the maximum amplification5 we can

observe from a lens’ magnification. When the Schwarzschild radius is equivalent

to the wavelength of the emitted radiation the maximum amplification will be

Imax ≈ 3.28 (Nakamura, 1997). As we did earlier for extended sources we can

use this as a fiducial point and calculate the mass below which diffraction will

significantly restrict amplification,

Mlens =
c2λ

8πG
. (3.16)

Just as for our previous constraints, clump mass Mc ≪ min[Mbeam,Mlens] will

be numerous within the Fresnel volume and have low maximum magnifications

allowing their distribution to be effectively treated as smooth for the purpose of

calculating distance measures.

The right panel of Fig. 3.4 shows the Mbeam (full lines) and Mlens (dotted

lines) criteria calculated for a range of representative wavelengths for the prompt

emission from each of the sources in the left panel (500 nm = optical = SN

Ia, 0.3Å= gamma-ray = GRB, 21 cm = radio = FRB). Between the two limits

we can see that in the redshift range of interest Mbeam ≫ Mlens. Consequently,

5We note that amplification here refers directly to wave amplitude rather than magnification
which is defined with respect to the angular size of the image.
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for these redshifts it is sufficient to say that if the uniformly distributed clumps

are numerous within the Fresnel volume then they may be treated as a smooth

distribution of matter. Comparing the results between panels we can see that the

mass limits calculated in the geometric optics limit dominate over their physical

optics counterparts for both SN Ia and GRBs, i.e. small inhomogeneities will be

smoothed over by the source sizes before wave effects become important. For

FRBs however, diffraction will smooth over inhomogeneities far larger than what

could be probed on the basis of their source size alone. This leaves only a narrow

range of possible inhomogeneites they could probe that are not already ruled out

from SN Ia observations.

However, despite their curtailed potential in the radio, the results obtained for

FRBs in the geometric optics case further motivate multi-wavelength observations

of FRBs. Observations of the so called Galactic FRB have shown coincident x-ray

emission with the prompt radio burst (Ridnaia et al., 2021; The CHIME/FRB

Collaboration, 2020). Such a high frequency counterpart would drastically reduce

the diffraction limit associated with FRB observations at 21 cm, allowing FRBs

to probe a similar range of inhomogeneities as GRBs.

As shown above, the beam volume for sources at similar redshifts is largely

dependent on physical source size. The remaining question is then, for which

sources may the matter distribution in the Universe be considered homogeneous?

Evidence from SN Ia observations has proved under reasonable conditions that

DA to sources subtending a beam of volume greater than the typical SN Ia is

equal to D1 (Helbig, 2015; Kaiser & Peacock, 2016; Breton & Fleury, 2020).

As a relatively compact source, this validates the assumption of homogeneity in

many astrophysical cases. Hence, inhomogeneous evaluations of DA are generally

disregarded.

However, as shown in Fig. 3.2, FRBs and GRBs will be sensitive to compact

inhomogeneities on scales below that ruled out by SN Ia observations (for an ex-

tended discussion on the advantages of FRBs in probing more complex lens mass
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distributions see Wagner et al., 2019). Of particular interest in this mass range

are sub-stellar mass primordial black holes (PBHs) which, as discussed in §1.1.1,

have only been constrained in the nearby Universe. FRBs and GRBs could there-

fore provide complementary constraints on cosmological scales, thus providing a

specific motivation for considering small-scale, macroscopic inhomogeneities. Fur-

thermore, as demonstrated by Kayser et al. (1997) there is a significant difference

between D1 and Dη for η = 0 at high redshift. This difference could have dra-

matic effects on the inferred properties of GRBs and FRBs at redshifts above

one, as we consider in §6.

3.3 Lensing Probabilities

In order to determine the impact of gravitational lensing on the observed popula-

tion of a type of cosmological transient, we must determine the probability that

a given transient will be lensed. To do so, we will make use of the concept of

optical depth.

Optical depth is a dimensionless value that describes the effective thickness

of a medium to light. Specifically, it is the natural log of the fraction of incident

intensity that is successfully transmitted through a medium (Maoz, 2016). To

derive this quantity we must first consider that media of any type are comprised

of particles. To characterise the interaction between the incident light and the

particles of a medium we need to know the number density of medium particles

(n), and how close a photon can be to a particle of the medium before it is

absorbed. Typically, the latter is quantified using the absorption cross-section (σ),

i.e. the area around a medium particle where a photon would be absorbed. The

average distance a photon can travel through the medium before being absorbed

is then given by

λ =
1

nσ
(3.17)

where λ is referred to as the mean free path of the photon and is linearly pro-
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portional to the fraction of incident light that is absorbed by the medium. To

derive the transmitted intensity, It, consider a beam of intensity I0 incident upon

a medium with a mean free path λ. For propagation through the medium over a

small path length dℓ the decrease in intensity, −dI, will be given by the product

of the intensity at that position, I, and the path length in units of the mean free

path

−dI = I
dℓ

λ
. (3.18)

Integrating over all path lengths yields

−
It∫

I0

dI

I
=

ℓ∫
0

dℓ

λ
, (3.19)

where ℓ is the total path length through the medium. Assuming a homogeneous

medium, i.e. the mean free path is not a function of ℓ, allows for simple evaluation

of this equation as

ln
I

I0
= − ℓ

λ
= −nℓσ = −τ. (3.20)

As per the previous definition, this is the optical depth (τ), which we can see

can also be represented as the length of the medium in units of the mean free

path. Following from this, the probability of a photon being transmitted through

a medium (pt) can be expressed as

pt =
It
I0

= e−τ = (1− pi), (3.21)

where pi is the probability of interception. As expected, this form is consistent

with a Poisson probability of a given photon being intercepted a single time for

a mean interception rate given by τ . Furthermore, when τ ≪ 1, these can be
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Taylor expanded to yield

pt ≈ 1− τ, (3.22)

pi ≈ τ. (3.23)

The concept of optical depth can be abstracted to interactions beyond the

absorption of light in a medium. By using the number density of lenses in the

Universe as n, and the cross-section for significant gravitational lensing as σ, the

optical depth of gravitational lensing can be determined. Furthermore, it can

be used to evaluate the probability that a given source will be lensed (Schneider

et al., 1992). The gravitational lensing cross-section is often defined as the area

of the lens plane (see Fig. 2.12 for reference) where a background source would

be magnified by greater than some threshold value, µmin (where µ is the total

magnification of all observed images). Where previous studies such as Muñoz

et al. (2016) consider the ratio of magnifications between images to avoid the

degeneracy between magnification and intrinsic brightness, we will consider the

total magnification of both images and later derive observables that take the

luminosity function of our sources into account. To calculate the angle around a

lens associated with magnifications greater than µmin Eq. 2.49 can be inverted to

yield (Schneider et al., 1992)

y(µmin) =

√√√√2

(
µmin√
µ2
min − 1

− 1

)
, (3.24)

where y = β/θE is the normalised angular impact parameter of the source back-

ground to the lens. This angle can then be converted into the physical area

around the lens as

σ(µmin) = πy(µmin)
2θ2ED

2
d, (3.25)

where Dd is the angular diameter distance of the lens plane.

As per the definition in Hogg (2000) (see also Schneider et al., 1992) the
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optical depth for a cosmological distribution of objects may be represented as

τ =

zs∫
0

dχ(zd)(1 + zd)
2nσ(µmin), (3.26)

which is analogous to the form expressed in Eq. 3.20, where zs is the redshift of

the source, zd is the redshift of the lens, χ(zs) is the comoving distance associated

with a redshift of zs and n is the average comoving number density of lenses over

the cosmological volume out to zs. Following the derivation in B.1, equations

3.24, 3.25 and 3.26 can be combined to express the optical depth as

τ =

zs∫
0

dzd
2ΩLρcr
Σcr

c

H(zd)
(1 + zd)

2

×
∞∫

µmin

1

(µ2 − 1)3/2
µ, (3.27)

which is equivalent to the form found by Turner et al. (1984), where ΩL is the

average density of lenses in the Universe in units of the critical density ρcr and

Σcr is the critical surface density for strong lensing discussed in §2.2.2, expressed

in terms of Dη, discussed in §3.1. Notably, for a circularly symmetric lens mass,

the squared Einstein radius is proportional to the enclosed mass, resulting in

the optical depth to lensing being independent of the mass of individual lenses.

Instead, it depends only on the total mass of lenses in the Universe. Implicitly, this

derivation assumes a uniform distribution of point mass lenses in comoving space

(Turner et al., 1984). A natural question to arise from the lack of dependence on

individual lens mass is, what is the minimum threshold for something to count as

a lens? In the greater context of arbitrary density perturbations in an evolving

universe, this question becomes complicated significantly beyond the scope of this

thesis, requiring the degeneracies between different lens mass distributions to be

considered (Wagner, 2018) and the gauge problem to be addressed (Ellis & Bruni,

1989). Here I make only simple considerations of what minimum point mass will

72



contribute to the lensing optical depth. These considerations are addressed in

3.2, resulting in the conclusion that a clump of mass greater than the mass that

would be contained within a cone subtended, at the observer, by the source in

a completely homogeneous universe will be counted as a lens for the purpose of

determining ΩL.

3.3.1 Correction for an Inhomogeneous Universe

From τ the probability of gravitational lensing can be derived using Eq. 3.21.

However, as Ehlers & Schneider (1986) detail, this derivation implicitly assumes

that all lines of sight have equal statistical weight. While this assumption holds

in a homogeneous universe (which by definition has no gravitational lenses), in

an inhomogeneous universe the distribution of sky magnifications violates this as-

sumption. Ehlers & Schneider (1986) re-derive Eq. 3.20 taking an inhomogeneous

universe into account, finding

τ = ⟨µ(zs)⟩a
zs∫
0

dzd
1

⟨µ(zd)⟩a
2ΩLρcr
Σcr

c

H(zd)
(1 + zd)

2

×
∞∫

µmin

1

(µ2 − 1)3/2
dµ. (3.28)

The expression is different by a factor of ⟨µ(zs)⟩a/⟨µ(zd)⟩a, where ⟨µ(z)⟩a is

the area averaged magnification with respect to the empty beam introduced in

§3.1 at a redshift z. This average can be determined analytically as (Schneider

& Weiss, 1988)

⟨µ⟩a =
D2
η

D2
1

, (3.29)

where D1 is the conventional angular diameter distance, or equivalently Dη for

η = 1. The area-averaged quantity is distinct from the directionally averaged

version, which by the definition of magnification is precisely unity (Breton &
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Fleury, 2020)

⟨µ̄−1⟩Ω ≡ 1

4π

∫
4π

d2θ
d2β

d2θ
=

1

4π

∫
4π

d2β = 1, (3.30)

corresponding to the necessity that all background rays are mapped somewhere

into the foreground by the lens, i.e. that total flux is conserved (Weinberg, 1976).

3.3.2 Shear Inclusion

So far only the convergence associated with an individual lens has been con-

sidered when calculating the probability of lensing above a given magnification.

However, in an ensemble population of lenses the shear from other nearby lenses

will be non-negligible, especially as the minimum considered magnification is re-

duced. As seen in Fig. 2.13 shear can change the shape of the observed image,

it can also affect the lensing cross-section and therefore the probability of lens-

ing above a given magnification. In a field of lenses these effects are non-linear,

however, they are also analytically soluble for a thin screen of lenses as presented

by Schneider (1987). This prescription is excellent for describing the lensing ef-

fect of an ensemble of compact lenses within an intervening galaxy’s halo where

the thin screen model is a good approximation. For an extended distribution of

lens objects, however, the treatment is inadequate, failing to capture the effect of

multiple shears at different redshifts. To fully capture this non-linear behaviour

we would require numerical simulations. However, we can model the linear terms

in the shear by treating our extended distribution of lenses as an infinite number

of 2D lens planes, within each of which the shear is analytically calculable. This

calculation is developed in Schneider & Weiss (1988) and we will make use of

their work here.

The method of Schneider & Weiss (1988) calculates the probability of a light

ray propagating through an extended distribution of point-mass lenses having

magnification µ. This subsequently leads to the probability of a source having

a given magnification. They derive the following expression for the probability
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density of the magnification of a light ray:

PR(µ) =
⟨µ⟩a
2µ2

Y (zs)

[Y (zs)2 + ⟨µ⟩a (1− 1/µ)]3/2
(3.31)

where Y (zs) is referred to as the effective optical depth and is calculated from

the following Volterra integral equation of the 2nd type

Y (zs) =
Dη(zs)

D1(zs)
− 1 +

zs∫
0

dzd κ
′(zd)

Dη,ds(zd, zs)

Dη(zs)
Y (zd), (3.32)

where κ′ is given by

κ′(zd) =
3H2

0

2cH(zd)
D1(zd)ΩL(1 + zd)

2 (3.33)

closely resembling optical depth. To solve for Y the integral can be approximated

as a sum over n small intervals in redshift

Yn = K +
n−1∑
i=0

CiYi∆x

where K and C are constants. This relation can be generalised as

Yn = Yn−1 + Cn−1Yn−1∆x

which can be solved easily using an iterative algorithm such as a for loop. As

seen in Fig. 3.5 which is duplicated from Schneider & Weiss (1988).

3.3.3 Probability of Source Magnification

As seen in Fig. 2.16, a single source can be associated with multiple images

of varying magnifications. For the random field of point masses considered here,

there is no way to analytically predict the number of images that will be observed.

As a result, there is no general way to relate the probability (PR) of ray magni-
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Figure 3.5: Y (zs) evaluated as a function of source redshift for varying choices
of total energy density Ω and smoothness parameter η = α̃, duplicated from
Schneider & Weiss (1988). In each case the cosmologies are modelled assuming
Λ = 0.

fication (µ) with the probability (PS) of source magnification (µs) (Schneider &

Weiss, 1988). In the simple case modelled by Eq. 3.20 the lenses are considered

in isolation and hence this model will only be valid at low optical depths where

only one lens needs to be considered (Turner et al., 1984). Similarly, the lin-

ear shear inclusive model will only be useful for calculating the expected source

magnification in the limit where the number of images and their magnifications

are well defined. Specifically, we follow Schneider & Weiss (1988), by adopting

the hypothesis that in the limit of high magnification (µ ≫ 1), images occur

in pairs (Refsdal, 1970) with µ1 = −µ2. As a result, the probability of source

magnification can be calculated as

PS(µs) =
⟨µ⟩a
µs

P ′
R

(
µ =

µs
2

)
(3.34)

PS(µs) =
2⟨µ⟩2a
µ3
s

Y (zs)

[Y (zs)2 + ⟨µ⟩a (1− 2/µs)]
3/2

(3.35)

76



however this will only be valid for magnifications µ≫ 1, corresponding to optical

depths τ ≪ 1.

3.3.4 High Optical Depths

For a distribution of many lenses, such as the scenario of microlensing in a clus-

ter considered by Diego et al. (2018), as the minimum considered magnification

decreases towards one, the size of any given cross-section will increase towards

infinity, and the optical depth to gravitational lensing will become large (τ ≳ 1).

At high optical depths, the distribution of magnifications associated with source

positions is a caustic network similar to that shown in Fig. 3.6. In this regime, an

observer is likely to see images associated with more than one lens, and therefore

the simple analytical relations between source and ray magnification used above

will no longer be valid (Schneider et al., 1992). Moreover, conversely to regular

absorption, where an absorbed photon is effectively removed from the medium,

a ray that has been gravitationally lensed continues to propagate through the

medium and can be lensed again. This multiple lensing is a highly non-linear pro-

cess, the general outcomes of which are difficult to predict analytically (Schneider

et al., 1992). Recent works, however, have made significant progress towards the

analytical treatment of these complex scenarios. Fleury et al. (2015) have shown

that stochastic gravitational lensing may be more effectively modelled by treating

the lensing matter density fields as white noise and modelling small scale lensing

as a diffusion process; a generalised formalism to model the non-linear effects of

multiple lensing has been developed by Schneider (2019); furthermore, the impact

of finite beam effects in high optical depth scenarios, which could be important

when considering lensing on the very small scales considered here, has been in-

vestigated in works by Fleury et al. (2017, 2019). These extensions are beyond

the scope of this thesis and therefore I do not consider them further, but note

that future considerations of small scale lensing may benefit from their consider-

ation. Instead of the significantly more complicated analytical route, numerical
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simulations can be used to create accurate empirical models of the magnifica-

tion probability distribution associated with a caustic network, that can be easily

applied.

From the above discussion we conclude that in the case of large magnifications,

such as determining the optical depth to strong lensing for cosmological transients

dominated by two images, the above equations should be sufficient. Whereas, for

treating the effect of gravitational lensing on an ensemble population, a proba-

bility distribution valid for all magnifications is needed. In these cases, empirical

definitions of the gravitational lensing probabilities from numerical simulations

are more suitable as they implicitly handle much of the difficulty associated with

the number of images per source and non-linear multiple lensing of those im-

ages. To further understand how lensing will affect these populations we must

first understand the basics of cosmological populations and their observed source

counts.
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Microlensing Time delays 3

Figure 1. The results of the computational approach outlined in Section 2.3 for the case where ⇤ = 0.5, s = 0 and � = 0 which

corresponds two two positive eigen vectors of the magnification of the macroimage and so represents a minimum of the time arrival

surface. The left-hand panel presented the map of the magnification over the source plane with the � symbol denoting the location of
the source under consideration. The right-hand panel presents the location of the lensing masses in the lens plane, denoted as grey stars,

whereas the coloured filled circles corresponds to the location of the microimages for the source location noted in the left-hand panel.

Each circle is coloured with time delay, in normalised units (see Equation 6), relative to the minimum of the time arrival surface.

Figure 2. The magnification of the microimages as a function

of time for the minimum of the time arrival of the macroimage
displayed in Figure 1. The inset box shows a zoom-in of the region

around the brightest images.

mass is completely smooth appearing bright, surrounded by
a halo of fainter images (Katz et al. 1986).

For the purposes of this study, we will consider a single

”bursty” point-like source, with a delta-function emission,
reminiscent of the cosmologically compact emission from an
FRB. Considering the topology of the time arrival surface
described above, we can make some general predictions of
the expected signature of the time delay between the ob-
served images of this burst-like source. For the three poten-
tial macroimage time arrival topologies considered above:

• Minimum: Remembering the picture of a few bright im-
ages surrounded by a halo of fainter images, in this situation
we can expect that the burst of emission is seen firstly in
the central bright image, and then, as time advances, is seen
progressing through the fainter images as the signal moves
outwards and climbs the time arrival surface; this behaviour
can be seen in Figure 1 of Williams & Wijers (1997).

• Maximum: This will exhibit the reverse behaviour of the
minimum point, with the signal of the burst first appearing
in distant faint images, then moving to progressively brighter
images as the signal climbs the time arrival surface, with the
appearance in the brightest microimages, at the centre of the
image distribution, at the latest times.

• Saddle-Point: Clearly, this represents a point intermedi-
ary between the two above cases. Here, the signal will appear
in distant images along one axis, climbing out of the topo-
logical valleys before arriving that the bright images located
at the saddle-point, before moving again to fainter images
as the signal ascends the sides out of the saddle-point to-
wards the topological peaks. We note that Williams & Wi-
jers (1997) did consider a case with of an image configuration
representing a saddle point of the time arrival surface, they

MNRAS 000, 1–8 (2020)

Figure 3.6: Map of source magnification showing the caustic network associated
with gravitational lensing by a thin screen of randomly distributed point masses
as simulated by Lewis (2020).
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Chapter 4

Cosmological Populations

4.1 Source Counts

Source counts are one of the most fundamental observables in cosmology. In their

integral form, they are simply the cumulative number of sources (N) observed

above a given flux S. The differential form (dN/dS), however, is widely preferred,

as the integral counts tend to wash out structure and are not statistically inde-

pendent from one flux level to the next (Crawford et al., 1970; Jauncey, 1975).

Source counts reflect both the intrinsic population of sources and the geometry

of the Universe containing them and are thus potentially useful for constraining

both (Ellis & Baldwin, 1984; Condon, 1988; Dam et al., 2023).

For the simple case of a Euclidean Universe populated by a uniform density

of standard candle sources with luminosity L, the sources will be visible above

some limiting flux S out to a distance D. The number of observed sources will be

proportional toD3, and as the observed flux of a source is inversely proportional to

its distance squared, the relationship between the observed number and observed

flux becomes N ∝ S−3/2 for the integral counts, and dN/dS ∝ S−5/2 in the

differential case (von Hoerner, 1973).

For the considerably more complex case of a source population with an in-

trinsic distribution of luminosities in an expanding, homogeneous Universe, the

81



differential source counts can be expressed as

dN

dS
=

∫
16π2D4

c (1 + z)2 ϕ(L, z)
dDc

dz
dz, (4.1)

as per §A.1.1, where ϕ(L, z) is known as the luminosity function of the population,

describing the number density per unit luminosity as a function of both luminosity

and redshift, to allow for an evolving population.

For the case of a non-evolving, standard candle population, the form of Eq.

4.1 can be reduced further to (see §A.1.1.2 for derivation)

dN

dS
= 16π2D4

c (z0)(1 + z0)
2N0

c

H(z0)

1

dL(z0)/dz
, (4.2)

where z0 is the redshift corresponding to a flux S observed from a source of

luminosity L, and N0 represents the local spatial density of sources. For high

S observations, where the corresponding z0 is small, dN/dS ∝ S−5/2 just as

in the Euclidean case (von Hoerner, 1973). For lower S observations, which

probe higher z0 however, the counts will depend only on the Universe’s geometry,

allowing cosmological parameters such as H0 and Ω to be determined.

Prior to the determination of cosmological parameters through other means,

this was one of the main goals of measuring extragalactic radio source counts

(von Hoerner, 1973). In practice, however, the luminosity function and its evo-

lution with redshift are difficult to distinguish from varying choices of cosmology

and hence a precise determination of cosmological parameters from radio source

counts was never made (Peacock, 1985; Kellermann & Wall, 1987). Extragalactic

source counts have also been used to probe cosmic isotropy by measuring the am-

plitude and direction of the source count dipole. In an isotropic and homogeneous

universe, any peculiar motion of the observer relative to the cosmic rest frame will

induce a dipole in frequency dependent observables via Doppler shifting (Siewert

et al., 2021). Such an effect is thought to be responsible for the prominent dipole

observed in the CMB temperature, and a similar dipole was predicted to occur in
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radio source counts due to their frequency dependent luminosity function (Ellis

& Baldwin, 1984). Current estimates of the source count dipole (Colin et al.,

2017; Dam et al., 2023) show it to be in the same direction as the CMB dipole,

as predicted, but with a much higher amplitude. The cause of this discrepancy

is an area of active research, see (Dam et al., 2023) for further discussion.

With the Universe’s cosmology independently determined, source counts can

also be used to study the luminosity functions and redshift distributions of source

populations in their own right. The redshift and luminosity dependence of ϕ(L, z)

are typically considered separately as ϕL(L) and ϕz(z). ϕL(L) is often assumed

to have a power law form with an index γ, and is referred to as shallow or steep

depending on whether γ > −2.5 or γ < −2.5 respectively. This division is made

due to the qualitatively different behaviour expected for shallow and steep pop-

ulations in a Euclidean geometry. Assuming no upper or lower luminosities, for

γ > −2.5, observations of dN/dS will be dominated by observing fewer luminous

sources at large distances as S increases. Conversely, for steep ϕL, dN/dS will be

dominated by observing fewer weak sources nearby as S is increased. For a crit-

ical dependence of γ = −2.5, every S will be comprised of the same distribution

of source luminosities and redshifts. These same conclusions apply locally for

a non-Euclidean Universe, with the critical, γ = −2.5, limit changing at higher

redshifts (Kellermann & Wall, 1987; Wall & Peacock, 1985).

For sources born through a stellar evolution channel, such as SNe, GRBs

and FRBs, ϕz is often expressed with respect to the cosmic star formation rate

(CSFR), ψ (Dahlén & Fransson, 1999; D’Avanzo, 2015; James et al., 2021b).

Modelled in depth in Madau & Dickinson (2014), the CSFR is the functional

form describing the average star formation rate over a cosmological volume as

a function of redshift. Plotted in Fig. 4.1, the rate climbs from the present

until approximately redshift z ∼ 2, referred to as cosmic noon, before slowly

decreasing towards earlier times. Physically, the relation between ϕz and ψ can

be an indication of how the source evolved and how long it is expected to live.
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Figure 4.1: CSFR as a function of redshift and lookback time as plotted in Madau
& Dickinson (2014). Data points are far ultraviolet and infrared measurements
used to fit the model. For more discussion see associated paper. A tabular legend
can be found in §A.1.

For ϕz ∝
∫
ψ, the density of sources is proportional to the total number of stars

created over cosmic time, suggesting that the progenitor must be extremely long-

lived, such as a black hole (Fishbach et al., 2018). Alternatively, if ϕz ∝ ψ the

source must be short-lived and evolve swiftly from its stellar progenitor, such as

core-collapse SNe evolving from a massive, short-lived star (Strolger et al., 2015).

By measuring the number of sources using source counts we can constrain both

ϕL and ϕz, and therefore investigate the intrinsic nature of the source population.

This is particularly important for sources such as FRBs whose progenitors are

unknown. While the above is discussed for continuous sources, the same treat-

ments apply to transient sources by simply replacing the total source count with

the observed rate R as done in (Macquart & Ekers, 2018a). In order to make

the correct inferences about the underlying population using the source counts,

propagation effects such as gravitational lensing must also be taken into account.

We discuss the impact of lensing on the observed event rate of transients such as
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FRBs in §6, but first, we shall use the proceeding chapter to introduce FRBs.

4.2 Fast Radio Bursts

Fast radio bursts (FRBs) are bright, millisecond duration signals observed at radio

wavelengths, originating from outside the Galaxy. Discovered in archival pulsar

survey data by Lorimer et al. (2007), the first FRB (depicted in Fig. 2.1) displayed

a DM more than ten times larger than the predicted Galactic DM value for this

line of sight (Cordes & Lazio, 2003). As we discussed in §2.1, DM is equivalent

to the integrated column density of electrons along the line of sight. Therefore,

by assuming that the distribution of electrons is relatively uniform, DM can be

used as a proxy for distance. Evidence in favour of this interpretation can be

found in Shannon et al. (2018), where the authors note a relationship between

DM and the fluence of bursts as shown in Fig. 4.2. Where flux is the relevant

observable for continuous sources, fluence is the relevant observable for transient

sources, representing the power per unit area, integrated over the duration of the

burst. For FRBs, the fluence per unit bandwidth is a typical measurement, often

reported in units of Jansky milliseconds (where a Jansky = Jy = 10−26W m−2

Hz−1). Fig. 4.2 shows that on average, lower fluence bursts tend to have large

DMs. Also shown are two obvious groups of bursts, the blue bursts observed by

ASKAP (Australian Square Kilometre Array Pathfinder) and the black bursts

observed by Murriyang. The burst groups are separated in fluence due to the

differing sensitivities and fields of view between the instruments. Dashed lines of

constant spectral energy inferred from the ASKAP FRBs overlap with the bursts

observed by Murriyang. This suggests that the Murriyang bursts have a similar

distribution of intrinsic energies, but are observed at greater distances, leading to

their lower observed fluence (Shannon et al., 2018). There is, therefore, a positive

correlation between distance and DM.

The Lorimer burst was detected with a DM far in excess of other Galactic

sources at similar positions. Therefore, Lorimer et al. (2007) contended that the
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Figure 4.2: Estimated extragalactic DM, redshift (z), and observed fluence of
all published FRBs at the time of publication (∼ 50)(adapted from Shannon
et al., 2018). FRBs are shown as dots and colour coded according to the instru-
ment that observed them: ASKAP (blue), Murriyang/Parkes (black), UTMOST
(red), GBT (magenta), Arecibo (green)(the repeater). The remainder are also
observed by Murriyang, grey points are those where an instrumental correction
displaced their position and the cyan point is suspected to be a Galactic source.
Black contours depict lines of constant spectral energy. Blue dashed lines trace
constant spectral energy for ASKAP FRBs. The dash-dotted lines show the con-
stant fluence 10σ detection thresholds for ASKAP and Murriyang, including a
cosmological time dilation correction for extreme distances associated with large
dispersion measures.

86



burst likely originated from outside our Galaxy. Subsequent detections of other

FRBs by Thornton et al. (2013) supported this claim, with their similarly large

DMs and a seemingly isotropic sky distribution being inconsistent with a Galactic

population. Both Lorimer et al. (2007) and Thornton et al. (2013) also posited

that if FRBs were extragalactic, they may constitute an important probe of our

Universe’s baryonic content.

All of these initial FRB detections (Lorimer, 1998; Thornton et al., 2013) were

made using the multi-beam system on Murriyang (Parkes), until FRB20121102,

which was observed by Spitler et al. (2014) using Arecibo. Confirmation of mea-

surement at a separate observing site allayed any remaining concerns of a terres-

trial signal origin, and subsequent study of this source revealed that FRBs can

repeat, with the observation of 10 additional bursts (Spitler et al., 2016). Unlike

the previous, apparently non-repeating, FRBs which were found using single dish

instruments, the repeater (FRB20121102) could be followed up with an interfer-

ometer, allowing it to be localised unambiguously to a host galaxy at a redshift

of z = 0.19273 (Chatterjee et al., 2017; Tendulkar et al., 2017). This association

confirmed the extragalactic nature of FRBs and associated the repeater with a

persistent radio source (PRS) thought to be consistent with emission from the

environment surrounding a compact object (Chatterjee et al., 2017; Chatterjee,

2021).

In the years following these initial discoveries, many FRB detections have

been made. At the time of writing over 660 FRBs have been observed, with 50

known to repeat and 27 localised to host galaxies (Nimmo & Chatterjee, 2023).

The largest single sample of FRB sources has been observed by the CHIME radio

telescope (The CHIME/FRB Collaboration et al., 2021), which benefits from a

large field of view at the cost of poor localisation on the sky. Identified repeaters

have since been followed up by sensitive single-dish instruments such as Arecibo

(Hewitt et al., 2021) and FAST (Xu et al., 2022) as well as very long baseline

interferometers (VLBI) like the European VLBI network (EVN) (Nimmo et al.,
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2022b), resulting in some repeaters being localised to sub-arcsecond precision,

with hundreds of recorded bursts. For once-off bursts, similar localisations have

been made by ASKAP, which boasts both a 31 deg2 field of view and arcsecond

localisation (Hotan et al., 2021; Bannister, 2018). This allows for a high rate of

FRBs to be observed and for each to be localised precisely from a single obser-

vation. As a result ASKAP has provided the greatest number of localised FRBs,

most of which are apparently non-repeating (Petroff et al., 2022; Chatterjee,

2021).

By following up FRB host galaxies with spectroscopic instruments the red-

shifts of FRBs can be determined independently of the distance inferred from their

DM. This allows the DM–redshift relationship, hereafter known as the Macquart

relation, to be quantified and the fraction of ionised matter present in the IGM

to be constrained (Macquart et al., 2020). More than 75% of the Universe’s bary-

onic content was thought to exist in the IGM in a hot diffuse state, however, the

diffuse nature of this matter made this hypothesis difficult to confirm (Fukugita

& Peebles, 2004). As DM measurements are equally sensitive to all free electrons

along the line of sight, regardless of their position or energy, it was the ideal

probe to resolve this missing baryon problem. Using a sample of FRBs localised

by CRAFT, Macquart et al. (2020) constrained the fraction of baryons in the

IGM, resolving a significant problem in cosmology and demonstrating the poten-

tial of FRBs as a cosmological probe (see Cordes & Chatterjee, 2019; Chatterjee,

2021, for a review of the potential of FRBs as cosmological probes).

Subsequent studies of the Macquart relation have found that the contribution

to DM from host galaxies is a significant source of error when estimating redshifts

from DM (James et al., 2021a). As discussed in §2.1, the DM is simply the

integrated electron column density along the line of sight, and therefore the total

observed DM can be thought of as a summation of each major contribution

DM = DMMW +DMIGM +DMHost, (4.3)
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where these sub-components denote the Milky-Way, IGM and host galaxy con-

tributions respectively. Within the Milky-Way, measurements of DM have been

made from pulsar observations (Cordes & Lazio, 2003) allowing this component

to be estimated for any given FRB line of sight. As FRBs are often found at

high Galactic latitudes this is often only a moderate contribution in the range

of 10–100 pc cm−31. From the Macquart relation the contribution from the DM

is to first order expected to increase linearly, with a rough rule of thumb yield-

ing DMIGM ∼ 1000 zS (where zS is the source redshift). As measurements of

local galactic DM cannot be made in the host galaxy, this contribution is often

more difficult to constrain, leading some studies to include it with DMIGM as a

total extragalactic DM term. Fig. 4.3 shows relative detection rates for FRBs

as a function of extragalactic DM and source redshift, estimated from localised

and unlocalised FRBs observed by both ASKAP and Murriyang (James et al.,

2021a). The figure highlights the wide range of possible extragalactic DMs that

correspond to any given redshift, and hence the difficulty in inferring a redshift

from DM measurements.

Measuring the redshifts of FRBs directly from their host galaxies is a resource-

intensive process that becomes increasingly difficult at large distances where

FRBs are most useful for cosmological applications such as constraining H0

(Hagstotz et al., 2022; James et al., 2022; Wu et al., 2022). Therefore, understand-

ing host galaxy electron distributions and how they contribute to extragalactic

DM is an active area of research that could allow for better redshift estimation of

distant FRBs without host galaxy localisations. A potential avenue to improve

estimates of DMhost is by constraining the position of the dominant scattering

screens which contribute to the temporal broadening of FRBs. As described in

§2.2, the scattering time induced by multi-path scattering through an extended,

statistically uniform medium, will peak in at its geometric centre. Therefore it

may be reasonable to expect that most of the observed scattering in FRBs comes

1Although for low Galactic latitudes the contirbution can be significantly greater.
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Figure 4.3: z–DM relation reproduced from James et al. (2021a). Depicted is
the relative rate of FRB detections as a function of redshift z and extragalactic
dispersion measure DMEG. Contours delineate 99% (dashed), 90% (dash-dotted)
and 50% (dotted) of the observed population. Overplotted in blue is the linear
Macquart relation (Macquart et al., 2020). This determination does not account
for observational biases such as the effect of beam shape and burst width, and
uses the best fit population parameters described in James et al. (2021a).
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from the middle of the path, somewhere in the IGM. However, generally the IGM

is expected to have very low plasma densities and therefore contribute negligibly

to the scattering observed in FRBs (Macquart & Koay, 2013). Instead the domi-

nant contribution may come from the host galaxy’s ISM. This can be useful as, if

the same plasma that contributes to DMhost causes the observed temporal broad-

ening in an FRB, measurements of its scattering time could be used to constrain

DMhost (Cordes et al., 2022). Recent studies suggest however that the dominant

scattering observed in FRBs may come from much closer to the burst’s source,

and therefore are not useful for constraining the host galaxies ISM (Chawla et al.,

2022; Ocker et al., 2022c,b). I investigate the position of FRB scattering screens

further in §7.

Deriving the distance to an FRB also allows its intrinsic energy to be estimated

from its fluence which is important to modelling the FRB progenitor population.

From the energies inferred in Fig. 4.2, the population of FRBs must have a

distribution of intrinsic energies analogous to the luminosity functions described

in §4.1 (Petroff et al., 2022). However, inferring the intrinsic energy distribution

from the observed fluences is non-trivial as the distribution of fluences we observe

is affected by many biases (Connor, 2019). Early on, Macquart & Ekers (2018b)

highlighted the discovery bias associated with including the initial Lorimer burst

in statistical samples and discussed the detrimental effect of correcting for beam

attenuation only in the brightest FRBs. Currently, using the model of Connor

(2019), James et al. (2021b) and Luo et al. (2020) provide the most thorough

estimates of the population parameters governing the luminosity function and

redshift distribution of FRBs. Assuming a power law form, James et al. (2021b)

find the distribution of intrinsic FRB energies is best fit by an index of γ ≈ −2,

in agreement with Luo et al. (2020), and they find the redshift distribution to be

consistent with the CSFR, or a distribution that evolves faster with redshift.

As discussed in §4.1, a redshift distribution that follows the CSFR indicates

that FRB sources must form quickly and be relatively short-lived. The currently
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favoured FRB progenitor, the magnetar, is thought to be consistent with this

picture (Zhang, 2022). A magnetar is a variation of a neutron star with an ex-

treme magnetic field, typically defined as ≳ 1014G (Zhang, 2022). Magnetars

are expected to form quickly from massive stars, and their magnetic fields are

thought to decay a short duration after their birth (104 yrs) (Colpi et al., 1999).

As such the magnetar redshift distribution is expected to match the CSFR (Zhang

et al., 2021), consistent with current constraints on the FRB progenitor popula-

tion (James et al., 2021b). Along with many other potential progenitors (Platts

et al., 2019; Cordes & Chatterjee, 2019; Chatterjee, 2021), magnetars were pro-

posed early (Popov & Postnov, 2010), with their extreme magnetic fields provid-

ing the large energy required to generate an FRB (Lyubarsky, 2014; Beloborodov,

2017; Metzger et al., 2019). However, interest in the candidate progenitor was

renewed in late 2020 with the detection of the so-called Galactic FRB (The

CHIME/FRB Collaboration, 2020; Bochenek et al., 2020). While not as ener-

getic as an extragalactic FRB, it has remarkably similar burst morphology and,

notably, was detected coincident with x-ray emission from the Galactic magnetar

SGR 1935+2154 (Ridnaia et al., 2021).

Another consistency with the magnetar picture is the presence of strong mag-

netic fields along the line of sight to some FRBs, inferred from their rotation

measures (RM). Similarly to DM, RM is a measure of the product of the density

of electrons with the parallel magnetic field component integrated along the line

of sight, i.e. (Lyne & Graham-Smith, 2012)

RM =

∫
neB||dℓ, (4.4)

where B|| represents the magnetic field strength parallel to the line of sight inte-

gration element dℓ.

RM results from differential Faraday rotation of a signal’s polarisation with

frequency due to propagation in a magnetic field, and therefore manifests as a
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Figure 4.4: Stokes I dynamic spectra of five high-time resolution FRBs observed
by CRAFT. Reproduced from Day et al. (2020).

varying linear polarisation angle in a signal’s spectrum,

RM =
θp
λ2
, (4.5)

where θp is the angle of polarisation rotation. More than 10 FRBs have been

observed to have RMs significantly in excess of the expectation for their lines of

sight (Petroff et al., 2022), including both repeating (Marcote et al., 2020) and

non-repeating (Masui et al., 2015; Day et al., 2020) sources. Moreover, the RMs of

several repeating FRBs have been seen to fluctuate strongly on short time periods,

indicating a dynamic local environment (Hilmarsson et al., 2021), or in some cases

the re-orientation of local magnetic fields (Anna-Thomas et al., 2022). These

cases suggest that the circum-burst environment of FRBs sometimes contains a

high density of turbulent magneto-ionic material, consistent with what would be

expected for a nebula-embedded magnetar (Margalit & Metzger, 2018). However,

despite the aforementioned consistencies, there remains insufficient evidence to

conclude that magnetars are dominantly responsible for the extragalactic FRB

emission we detect (Zhang, 2022).

FRBs display a wide variety of observed pulse morphologies. As shown in

Fig. 4.4, FRBs burst widths can range from several 10s of microseconds to sev-

eral 10s of milliseconds, and they can be a single pulse or comprised of several

overlapping components of various shapes and sizes in time and frequency space.

A significant complexity when interpreting an observed dynamic spectrum is in

the attribution of these complex behaviours to intrinsic phenomena associated
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with the emission process or to propagation effects. By understanding the signa-

ture of propagation effects such as dispersion, its effect can often be accounted

for, such as in dedispersion, leaving only the emission-relevant behaviours behind.

The observed propagation effects also often carry information about the interven-

ing medium, such as the baryonic content of the IGM, in the case of dispersion

(Macquart et al., 2020). Furthermore, this information can also be of indirect use

to constraining FRB progenitors, by constraining the kinds of environments to

host them, e.g. observations of high RM hinting at a strongly magnetised source

environment (Masui et al., 2015). At every turn, it is clear that understanding

the propagation of FRBs is crucial to identifying their progenitors and probing

new astrophysical regimes. Therefore, in this work, we aim to further explore

the effect of lensing, scattering, and scintillation as they pertain to cosmological

transients such as FRBs.

4.3 ASKAP Data Acquisition

To study the effects of propagation on FRBs we analyse FRBs observed by the

CRAFT (Commensal Real-time ASKAP Fast Transient; Macquart et al., 2010)

survey using ASKAP. ASKAP is a 36-element interferometer located at Inayar-

rimanha Ilgari Bundara, the CSIRO Murchison Radioastronomy Observatory in

Western Australia. Each element of the interferometer is a 12m dish capable of

observing 31 square degrees of the sky simultaneously by using a phased array

feed (PAF) to form 36 digital beams across the focal plane (Hotan et al., 2021).

FRBs are initially detected in real-time by searching intensity dynamic spec-

tra summed incoherently over each of the two polarisations and each antenna

(Bannister et al., 2019b). The dynamic spectra are comprised of 336 one MHz

channels. The search algorithm, FREDDA (Bannister et al., 2019a), trials 4096

dispersion measures, up to a maximum of ∼ 4000 pc cm−32. For each trial, the

2DMs of several hundred are typical for FRBs, with the largest DM for published ASKAP
FRBs being 1457.624 pc cm−3 (Ryder et al., 2022).
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result is integrated over frequency and FREDDA calculates the S/N ratio for

convolutions of the de-dispersed time series with boxcars of lengths between 1

and 32 time samples. Instances with S/N ratio greater than 9 are treated as

FRB candidates and trigger a download of the 3.1 s of voltage data immediately

preceding the trigger, as saved by the ring buffer on each antenna for each of the

two orthogonal polarisations (Bannister et al., 2019b). Only the voltages for the

beam on each antenna containing the FRB candidate are saved.

The voltage data allow for both precision localisation (Bannister et al., 2019b;

Prochaska et al., 2019a; Day et al., 2021; Ryder et al., 2022) of the FRB source

and high-resolution analysis of burst morphology (Cho et al., 2020; Day et al.,

2020). To localise an FRB the voltages are cross-correlated between antennas, flux

calibrated against voltage data of a well-known calibrator source, and interfero-

metrically imaged as described by Scott et al. (2023). Natively, the voltages are

stored as coarse channel dynamic spectra with 336MHz of bandwidth at 1MHz

resolution (Scott et al., 2023). To access high-resolution dynamic spectra, the

voltage data from each antenna are beamformed towards the FRB’s apparent po-

sition and the coarse channelisation of the voltages is undone through polyphase

filterbank inversion (for technical details on PFB inversion see Cho et al., 2020).

During the PFB inversion process, the data are also calibrated and coherently

de-dispersed. Conversely to incoherent de-dispersion, which is the simple shifting

of frequency channels by discrete time steps to account for dispersion (Zackay &

Ofek, 2017), coherent de-dispersion rotates the complex voltages as a function of

frequency to perfectly compensate for the dispersion introduced into the signal by

cold plasma along the line of sight as detailed in §2.1. The ultimate result of the

above processes is 3.1 s of complex-valued, de-dispersed time series, sampled at

the inverse bandwidth (336MHz)−1≈ 3 ns, for the two orthogonal polarisations.

From this complex time series, intensity dynamic spectra containing the FRB can

be formed at any time (∆t) and frequency (∆ν) resolution such that ∆ν∆t = 1.

In addition to the FRB, the rendered dynamic spectra often contain frequency-
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Figure 4.5: Dynamic spectra of FRB20190608B rendered at a time and frequency
resolution labeled in the top right-hand corner of each plot. Top sub-panels show
the dynamic spectra integrated over the bandwidth, right hand sub-panels show
the dynamic spectra integrated in time.Left : Unnormalised intensities containing
RFI, seen as bright spectral channels which are stationary in time.Right : Inten-
sities normalised by off-pulse spectrum.

dependent instrumental effects and radio frequency interference (RFI) from artifi-

cial sources which contaminate the astrophysical signal. To mitigate these effects

we measure the mean and variance in intensity within each spectral channel in

an off-pulse region that does not contain the FRB and then normalise the entire

measurement by these values, subtracting the off-pulse mean and dividing by

the off-pulse standard deviation. As shown in Fig. 4.5, this process removes any

unwanted contamination in the measured burst spectra and converts the mea-

sured intensities to S/N for ease of interpretation. An implicit assumption in

this method is that any instrumental effect or RFI signal is stationary in time,

which can easily be verified by inspecting the unnormalised dynamic spectra. The

normalised dynamic spectra constitute the final data product analysed in §5 & 7.
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Chapter 5

First Constraints on Compact

Dark Matter From Fast Radio

Burst Microstructure

This chapter is comprised of a pre-copyedited, author-produced version of an ar-

ticle accepted for publication in The Astrophysical Journal following peer review.

The version of record: Mawson W. Sammons, Jean-Pierre Macquart, Ron D. Ek-

ers, Ryan M. Shannon, Hyerin Cho, J. Xavier Prochaska, Adam T. Deller and

Cherie K. Day, First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure, The Astrophysical Journal, Volume 900, Issue 2, id. 122, Decem-

ber 2022, is available online at: https://doi.org/10.3847/1538-4357/aba7bb.

This work was motivated and supervised by A/Prof. Jean-Pierre Macquart.

Initial calibration and pre-processing of data, including PFB inversion and de-

dispersion, was performed by Prof. Adam Deller, Dr Cherie Day and Ms. Hyerin

Cho. I performed all analyses of the processed data, making use of code writ-

ten by Prof. J. Xavier Prochaska to evaluate Galactic intersection probabilities.

Prof. Ron Ekers and A/Prof. Ryan Shannon motivated sections on clumpy dark

matter. Apart from Figure 3, which was generated for publication by Ms. Hyerin

Cho, the draft manuscript was written by me and distributed to co-authors for

97

https://doi.org/10.3847/1538-4357/aba7bb


critique. All co-authors provided input over several iterations of feedback until

the manuscript was complete.

5.1 Abstract

Despite existing constraints, it remains possible that up to 35% of all dark matter

is comprised of compact objects, such as the black holes in the 10-100M⊙ range

whose existence has been confirmed by LIGO. The strong gravitational lensing

of transients such as FRBs and GRBs has been suggested as a more sensitive

probe for compact dark matter than intensity fluctuations observed in microlens-

ing experiments. Recently ASKAP has reported burst substructure down to 15µs

timescales in FRBs in the redshift range 0.3 − 0.5. We investigate here the im-

plications of this for the detectability of compact dark matter by FRBs. We find

that a sample size of ∼ 130 FRBs would be required to constrain compact dark

matter to less than the existing 35% limit with 95% confidence, if it were dis-

tributed along ≳ 1Gpc-long FRB sightlines through the cosmic web. Conversely,

existing constraints on the fraction of compact dark matter permit as many as

1 in ≈ 40 of all z ≲ 0.4 FRBs to exhibit micro-lensed burst structure. Approxi-

mately 170 FRBs intercepting halos within ∼ 50 kpc would be required to exclude

the fraction of compact dark matter in each intercepted halo to a similar level.

Furthermore, we consider the cumulative effects of lensing of the FRB signal by a

macroscopic dark matter distribution. We conclude that lensing from a uniform

distribution of compact objects is likely not observable, but suggest that FRBs

may set meaningful limits on power-law distributions of dark matter.

5.2 Introduction

Dark matter comprises 24% of the energy density of the Universe (Bennett et al.,

2013), yet its indeterminate form represents one of the largest unsolved problems

in astrophysics. Exotic particles from outside the standard model, such as Weakly
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Interacting Massive Particles (WIMPs) or axions have been invoked as possible

explanations (see Bertone et al. (2005) for a review). However, some fraction of

dark matter could reside in the Universe as compact objects, such as black holes

or neutron stars.

Decades of extensive research has constrained the fraction of dark matter

present in compact objects over a range of masses. Low mass objects (10−7M⊙ ≲

M ≲ 10M⊙) are excluded as the dominant form of dark matter in the Milky Way

and environs based on the absence of stellar variability caused by gravitational

microlensing (Tisserand et al., 2007; Wyrzykowski et al., 2011; Alcock et al.,

1997). High mass objects (≳ 100M⊙) are excluded by the lack of expected kine-

matic perturbations to wide binary orbits and ultra faint dwarf galaxies (Quinn

et al., 2009; Brandt, 2016).

The only population of compact objects that are not well constrained lie in

the range of 10 to 100M⊙. There is a known population of black holes in this

mass range; gravitational wave observations by LIGO have detected several merg-

ers of these black holes (LIGO Scientific Collaboration and Virgo Collaboration

et al., 2019). Subsequent theories suggest that dark matter composed of ∼ 30M⊙

primordial black holes could explain the merger event rates observed by LIGO

(Bird et al., 2016; Clesse & Garćıa-Bellido, 2017; Sasaki et al., 2016). Better

constraints on the fraction of compact dark matter within the 10-100M⊙ range

could therefore be key in identifying some fraction of dark matter.

The strong gravitational lensing of extragalactic transients provides a way

to either detect or to place more stringent constraints on dark matter. The

strong lensing of type Ia supernovae has been used to limit the compact dark

matter fraction to less than 35% for all objects more massive than 0.01M⊙

(Zumalacárregui & Seljak, 2018). Recently, it has been realised that cosmological

transients such as Gamma Ray Bursts (GRBs) and Fast Radio Bursts (FRBs)

will allow constraints to be placed at a much higher significance (Ji et al., 2018;

Laha, 2020).
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In both cases strong lensing creates multiple images of the source. Unlike the

gravitational lensing of quasars by foreground galaxies (Wong et al., 2019), the

images formed by a compact object would be too close to be spatially resolved.

However, the images of the source will arrive separated in time due to different

gravitational and geometric time delays along each path. This temporal separa-

tion (∆t) is linearly dependent upon the lens mass, whereas the magnification

ratio is mass independent. The lens mass and geometry can be constrained us-

ing these two observables. Due to the achromatic nature of gravitational lensing

the same formalism initially suggested by Muñoz et al. (2016) for FRBs can be

applied at all wavelengths. The formalism ignores the effect of physical optics,

which becomes important when the Einstein radius of the lens is smaller than

the Fresnel scale, ∼
√
Deffλ/2π, where Deff is the effective distance to the lens.

This occurs for lens masses less than ∼ 10−5M⊙ at a frequency of 1GHz, and is

well below the masses considered here; hence a full wave optics treatment, such

as that explored by Jow et al. (2020), is not yet warranted.

Several thousands of GRBs have been discovered at redshifts z ∼ 1 by ded-

icated GRB observatories such as Swift, BATSE, and Fermi. The cosmological

distances they traverse allow them to probe a large volume of the Universe for

compact dark matter. GRBs have a broad temporal profile ranging from millisec-

onds to minutes (Ji et al., 2018), and as a result, distinguishing multiple images

is more difficult as the time delay between signals lensed by a 10M⊙ compact

object will be less than the duration of the GRB. Ji et al. (2018) have proposed

auto-correlating the light curve as a method of detecting lensing. They conclude,

however, that current GRB observatories would need to reduce their noise power

by at least an order of magnitude to be able to detect lensing in the 10-100M⊙

mass range.

In contrast, FRBs have temporal profiles ranging from tens of microseconds

(Cho et al., 2020) to several milliseconds, which is often shorter than the antic-

ipated delay (∼ 1ms) for lensing by compact objects in the mass range under
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consideration here. This enables multiple images to be clearly distinguished,

hence rendering FRBs considerably cleaner probes of compact structure along

their sightlines. FRBs are highly luminous, extragalactic radio pulses, and those

such as FRB181112 (Cho et al., 2020) with substructure on timescales of a few

tens of microseconds provide, to date, the finest timescale probe of sightlines at

cosmological distances. Moreover, a unique capability of radio interferometric

observations of such bursts is their ability to directly capture the wavefield of the

each FRB at extremely high time resolution (3 ns; see Cho et al., 2020). This

affords a powerful new diagnostic of the presence of gravitational lensing. The

wavefield, which is directly observable at radio wavelengths, of any pair of paths

in the lensed signal should be correlated, whereas burst substructure intrinsic to

the FRB would not.

Of the FRBs localised to host galaxies so far, all have been at redshifts z <

1, placing the current sample generally closer in the Universe than GRBs (Ji

et al., 2018; Coward et al., 2013; Bannister et al., 2019b; Prochaska et al., 2019a).

However, this limitation can be overcome by inferring source redshifts from the

dispersion measures of non-localised FRBs (Macquart et al., 2020); the existence

of FRBs with dispersion measures exceeding 2000 pc cm−3 (e.g. Bhandari et al.,

2018) ostensibly places some fraction of the population at z > 2.

To detect strong lensing, the temporal separation must be sufficiently large

to allow each image to be distinguished. This is constrained by the shortest dis-

tinct temporal structure in the signal. In this paper we examine the implications

of the high-time resolution structure observed in the FRBs 180924 and 181112.

In FRB180924 the shortest timescale corresponds to its rise time of only 30µs

(Farah, 2020). FRB181112 has recognisable temporal structure on the scale of

15µs, the shortest structure observed in an extragalactic radio signal (Cho et al.,

2020). The resolution of temporal structures of ∼ 10µs enables searches for lens-

ing at temporal separations an order of magnitude below those considered in pre-

vious treatments (0.1ms; Muñoz et al., 2016; Laha, 2020). The S/N of recorded

101



FRBs allows us to consider magnification ratios an order of magnitude above pre-

vious treatments (<5; Muñoz et al., 2016; Laha, 2020). Additionally, if the FRB

passes close to an intervening galaxy, as it did for FRB181112 (Prochaska et al.,

2019a), it opens up the possibility of examining lensing attributable to a specific

galaxy along the burst sightline, other than the host galaxy or the Milky Way.

Muñoz et al. (2016) and Laha (2020) report that a sample of 104 FRBs would be

required to exclude the compact dark matter fraction to less than 1%. Assuming

a ΛCDM cosmology, we apply the same formalism to estimate the constraining

potential of detected high time resolution FRBs comparable to FRBs 181112 and

180924.

5.3 Theory

In the weak field limit, where the gravitational potential |Φ| ≪ c2, gravitational

lensing can be modelled as an achromatic deflection of incident light by a thin

screen. Under this treatment, a point mass lens will produce two images on

the lens plane. The temporal separation, magnification ratio and position of

these images are determined by the angular impact parameter of the source (β)

normalised by the characteristic Einstein radius of the lens (y = β/θE).

Here we briefly review previous theory as expounded by Muñoz et al. (2016)

and Laha (2020). Following this formalism, the difference in arrival time between

the images (∆t) and the ratio of each magnification (Rf ) correspond to unique

normalised angular impact parameters of the source y∆t and yRf
, respectively.

The relation between yRf
and Rf can be expressed analytically as (Muñoz et al.,

2016),

yRf
=

√
Rf + 1√

Rf

− 2, (5.1)

which is notably independent of the lens mass. Conversely, y∆t cannot be derived
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analytically and is found numerically from Muñoz et al. (2016):

∆t =
4GML

c3
(1 + zL)

[
y

2

√
y2 + 4 + ln

(√
y2 + 4 + y√
y2 + 4− y

)]
, (5.2)

where ML and zL are the mass and redshift of the lens, respectively.

To detect gravitational lensing, we require the normalised angular impact

parameter to be within the observable range (ymin–ymax). This range is defined

by two conditions: (1) The associated time delay calculated from Eq. 5.2 must

be less than the maximum observable time delay ∆tmax and greater than the

minimum distinguishable separation ∆tmin. The length of the observation sets

∆tmax, and ∆tmin is set by the structure in the pulse profile (Muñoz et al., 2016).

(2) The magnification ratio must be below the maximum (R̄f ) set by the detection

threshold (Muñoz et al., 2016).

For the thin screen approximation to be valid, the gravitational field at the

impact parameter must also satisfy the weak field condition:

ymin ≫ RS

DLθE
(5.3)

where RS and DL are respectively, the Schwarzschild radius and angular diameter

distance of the lens. ymin and ymax define the annulus of the cross section to

observable lensing. This cross section can then be used to calculate the observable

lensing optical depth. Details on this calculation are provided in the following

subsections for different environments. If the fraction of all dark matter that

is compact (fDM) is assumed to be constant over redshift, the probability of

observing lensing (PL) at least once in a set of N FRBs can then be calculated

as

PL = 1− exp

[
−

N∑
i

τi

]
. (5.4)

where τi is the optical depth of the ith FRB in the set. To exclude compact dark

matter fractions of ≥ fDM with 95% confidence, we require a null observation
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of lensing in a set of FRBs with a cumulative observable lensing optical depth

of 3.0. If lensing is rare we expect τi ≪ 1, however, a precise evaluation of the

observable lensing optical depth probed by an FRB depends on our assumptions

of where the lenses are distributed.

5.3.1 Lensing in Galaxy Halos

If we assume that compact dark matter takes the form of MACHOs (MAssive

Compact Halo Objects), the only contribution to the lensing optical depth will

come from the intervening galactic halos. In the local potential of a galaxy, the

Hubble flow can be ignored and the optical depth calculated simply as

τ =
fDMΣhalo

ML

σ

=
4πGfDMΣhalo

c2
DLDLS

DS

[
y2max − y2min

]
(5.5)

where Σhalo is the halo mass surface density, which will determine the number

density ofML mass compact lensing objects within the halo; DL, DLS, andDS are

the angular diameter distances from the observer to the lens, from the lens to the

source and from the observer to the source respectively; and σ is the observable

lensing cross section, as described by Laha (2020). We assume a Navarro-Frenk

White (NFW) dark matter distribution (Navarro et al., 1996) for which Σhalo has

been derived by Bartelmann (1996). Implicitly this method assumes that the

cross section of an individual lens is unaltered by the potential of the galaxy,

given we are considering images separated by at most ∼ 1 second, we find this to

be a reasonable assumption.

5.3.2 Lensing in the Intergalactic Medium

Stellar remnants unbound from their host galaxies via natal kicks or gravita-

tional interactions present a possible source of lensing in the intergalactic medium

(IGM)(Atri et al., 2019), as do primordial black holes. Here, the effects of the
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Hubble flow cannot be ignored. As derived in Muñoz et al. (2016) and Laha

(2020), the optical depth to lensing of a single source by a single compact object

in the IGM is

τ =

zs∫
0

dχ(zL)(1 + zL)
2nIGMσ

=
3

2
fDMΩc

zs∫
0

dzL
H2

0

cH(zL)

DLDLS

DS

(1 + zL)
2[y2max − y2min], (5.6)

where χ is the co-moving distance, nIGM is the average co-moving number density

of the lens, H(zL) is Hubble’s constant at the lens redshift and Ωc is the current

density of dark matter.

Both the halo and IGM lensing optical depths are separated into magnification

and time-delay-limited domains over which ymax is limited by the corresponding

condition. At low masses, ymin increases until ymin = ymax, and the optical depth

to lensing becomes zero. The halo and IGM lensing optical depths are mass inde-

pendent over a large range of lens masses. This can be understood by considering

equations 5.5 and 5.6, respectively. The product of the Einstein radius squared

and the projected number density is mass independent1. Hence, by expressing

the cross section in terms of the normalised angular impact parameters ymin and

ymax, the source of the mass dependence in each optical depth becomes isolated

to ymin and ymax. In the magnification-limited domain, ymax is given by yRf
and

will be independent of the mass (Eq. 5.1). If ymax is also much greater than ymin,

then the optical depth to observable lensing in either the halo or IGM case will

be effectively mass independent. The domain of this mass independent regime is

determined by the minimum and maximum temporal separations.

1We highlight that this relies strongly on the assumption of a circularly symmetric lens
potential, and therefore, in this work, we restrict ourselves to this case.
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FRB ∆tmin(µs)
1 ∆tmax(µs) R̄f

2 zs
3

1811124 15 1.369 73.3 0.47550
180924 30 1.445 64.7 0.3214

Table 5.1: Observational parameters for localised
high time resolution FRBs. ∆tmin and ∆tmax are
defined respectively as the minimum and maxi-
mum observable time delays. R̄f is defined as the
maximum magnification ratio, set by the detection
threshold. zS is the source redshift. We highlight
that FRB181112 intercepted a foreground galaxy
at z = 0.3674.

5.4 Results

The determination of the redshift of an FRB, either by localisation or by inference

from its dispersion measure (Macquart et al., 2020), allows the formalism outlined

in Section 5.3 to be applied. Here, we calculate the halo and IGM lensing optical

depth for localised FRBs 181112 (Prochaska et al., 2019a) and 180924 (Bannister

et al., 2019b). The temporal microstructure of these bursts has been resolved,

enabling us to probe to the minimum value of ymin allowed by the burst structure.

FRBs 181112 and 180924 probe a similar range of masses (0.1M⊙ ≲M≲ 104M⊙)

due to their similar minimum and maximum temporal separations (Table 5.1).

Over this range of masses, Eq. 5.3 is satisfied, and the strong field region is orders

of magnitude smaller than the spatial scale probed by a temporal separation

of 10µs. This is the scale of the smallest distinguishable temporal separation

amongst known FRBs; therefore, the weak field approximation is valid for all

cases considered here.

The spectra of FRB181112 shown in Fig. 5.1 (see also Cho et al., 2020) ex-

hibits multi-peaked structure that could potentially be explained by gravitational

lensing. Indeed, if the two major peaks are assumed to be two images, the tem-

poral profile is consistent with gravitational lensing by a ∼ 10M⊙ compact object

in the halo of the foreground galaxy (hence referred to as FG181112). Cho et al.

(2020) test for the presence of microlensing by searching for correlations in the
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burst wavefield with time; in the case of FRB181112 no fringes between sub-

pulses were seen, suggesting the pulse multiplicity is more likely intrinsic to the

burst, rather than multiple lensed copies of the same burst. However, the absence

of a correlation is not definitive since other effects, notably due to differences in

any turbulent cold plasma encountered along the slightly separated sightlines of

the lensed images, could scatter the radiation in different manners, and thus de-

stroy the phase coherence between the lensed signals. However, in the present

instance Cho et al. (2020) also find that the polarization properties of the sub-

bursts differ in detail, particularly in their circular polarization, an effect which

is difficult to attribute to lensing 2.

As recorded in Table 5.1, FRB181112 had an extremely narrow pulse profile,

with its shortest temporal structure being 15 µs. FRB180924 had an extended

scattering timescale of 580µs but a short rise-time of 30µs. Were any delayed

lensed signal present, it would also have a sharp 30µs rise time which would

have been detectable within the tail of the overall pulse envelope. The maximum

magnification ratios (R̄f ) and redshifts are similar for each burst. To calculate

R̄f , the S/N (signal-to-noise ratio) of the primary peak is divided by the detec-

tion threshold (3σ). A key difference between the two is that FRB181112 passed

within 29kpc of FG181112, allowing it to probe a longer path through a galactic

halo. In the following optical depth calculations these parameters are used to de-

termine ymin and ymax from the equations defined in Section 5.3. For all following

calculations, we use values for H0 and the cosmological density parameters from

the Planck 2018 results (Planck Collaboration et al., 2018).

2We can exclude circular polarization differences due to the existence of any relativistic
plasma from a neutron star along the sightline, except at the source (where its presence would
be irrelevant for the present argument). The lens mass of 10M⊙ required to explain the sub-burst
time delays is significantly above the largest observed neutron star mass of 2.14M⊙ (Cromartie
et al., 2020), ruling out neutron stars as potential lens candidates, and the effects of any
relativistic plasma associated with them.
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Figure 5.1: The pulse profile (top) and dynamic spectrum (bottom) of
FRB181112 at 16µs and 8MHz temporal and spectral resolution respectively
(This representation is smoothed to 16µs to optimise the S/N, it is not the in-
strumental resolution). The pulse is seen to consist of two bright sub-pulses, at
t = 0.25ms and 1.1ms, and two weaker sub-pulses at t = 0.75ms and 1.50ms, as
indicated by the blue arrows.
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5.4.1 Halo Lensing Optical Depth

The observable lensing cross section peaks approximately midway between the

source and the observer and is minimal in both the host galaxy and the Milky

way. Using the code of Prochaska et al. (2019b) we expect approximately one in

20 FRBs to intercept a foreground halo larger than 1012M⊙ within 50 kpc. This

is consistent with recent optical followups of arcsecond-localised FRBs, including

FRB180924, which do not intercept massive galaxy halos within ∼ 50 kpc (Ban-

nister et al., 2019b; Chatterjee et al., 2017; Marcote et al., 2020). Consequently,

these FRBs are of negligible value in constraining the dark matter halos of specific

galaxies. FRB181112, however, passes through a foreground galaxy where the

cross section to lensing is much greater, making it an ideal candidate to constrain

halo lensing.

Fig. 5.2 displays the optical depth to observable lensing by MACHOs probed

by FRB181112. This optical depth is dominated by the contribution from the

halo of FG181112. FG181112 is classified as a Seyfert galaxy with an old

1010.69M⊙ stellar population (Prochaska et al., 2019a).

The white dotted line in Fig. 5.2 marks where the cross section to lensing be-

comes zero (ymin = ymax). Between this cutoff and a lens mass of ∼ 1M⊙, ymin and

ymax are comparable, and the optical depth to observing lensing depends on the

mass of the lens. Above a lens mass of ∼ 1M⊙, ymax ≫ ymin and the optical depth

in the magnification-limited domain is approximately independent of mass. In

the time-delay-limited domain, the optical depth decreases sharply as a function

of mass. We estimate that to conclude with 95% confidence that the MACHO

dark matter fraction is less than 35%, we require ∼ 170 FRBs that intersect a

foreground galaxy similar to FRB181112. This estimate is projected from the

optical depth τ ≈ 0.018 probed by FRB181112 at fDM = 0.35. Additionally,

we can conclude with 90% confidence that the total mass, in the halo of the FG

galaxy of FRB181112, contained in uniformly distributed compact objects may

be no more than 4.5×1013M⊙. Prochaska et al. (2019a) estimate the halo mass of
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Figure 5.2: Optical depth to observable strong gravitational lensing by a point
mass compact object of mass ML probed by FRB181112. For masses below the
black dotted line ymax is limited by the maximum magnification ratio, above ymax

is limited by the maximum time delay. The white dotted line marks the mass
where ymin=ymax and σ = 0. This calculation assumes an NFW distribution of
compact objects of a single mass ML, comprising a fraction fDM of the host,
Milky Way and foreground galaxies. FG181112 is modelled to have a halo virial
mass Mhalo = 1012M⊙ (Prochaska et al., 2019a) and a concentration parameter
of c ∼ 7.

FG 181112 to be Mhalo ≈ 1012.3M⊙, and therefore this limit is not constraining.

Alternatively stated, a single burst probes an insufficient lensing optical depth to

be informative.

5.4.2 Lensing by Structure in the Cosmic Web

Fig. 5.3 displays the optical depth to lensing by a compact object due to any

compact dark matter present throughout the cosmic web by FRB181112 and

FRB180924, assuming that the dark matter density along their sightlines are

representative of the mean cosmological dark matter density ΩDM. This case

shows the same trends as the halo lensing case, albeit with a much higher overall

optical depth. Unlike in the halo lensing case, compact objects can be encountered
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Figure 5.3: Cumulative optical Depth to observable strong gravitational lensing
by a point mass compact object of mass ML in the IGM probed by FRB181112
and FRB180924. We assume a uniform distribution ofML mass compact objects
in co-moving space comprising a fraction fDM of the total dark matter of the
Universe.

anywhere in the path of an FRB. As a result, FRBs probe a much greater optical

depth to lensing in this scenario. We estimate that to exclude compact dark

matter fractions above 35% with 95% confidence, a comparatively smaller sample

of ∼ 130 FRBs would be required. Furthermore, this sample may be comprised

of any observed FRBs. This estimate is projected from the average optical depth

τ ≈ 0.024 probed by FRB181112 or FRB180924 at fDM = 0.35. Under a different

assumed FRB redshift distribution, Laha (2020) and Muñoz et al. (2016) estimate

that to exclude fDM ≥ 1% with 99% confidence, 104 FRBs would be required.

5.4.3 Gravitational Scattering

So far our treatment has been restricted to lensing by a single point mass. How-

ever, it is possible in principle that an ensemble of low mass clumps could col-

lectively lens an FRB signal, characterising it with an achromatic, exponential

scattering tail (Macquart, 2004).
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We are thus motivated to examine whether gravitational scattering, caused

by a cloud of substructure within a dark matter halo is observable. Within

FRB181112, we do not observe a clear exponentially decaying scattering tail,

placing an upper limit to the scattering timescale ∼ 20µs (Cho et al., 2020).

The lack of this feature was interpreted as a lack of turbulent plasma along the

line of sight, as discussed in Prochaska et al. (2019a). However, it also places

a constraint on the mass of lensing substructure in the intervening halo. Here

we introduce the relevant theory and present some cursory constraints, leaving a

more exhaustive treatment to a future paper. In the limit where a large number

of lenses exist within the coherence area, a statistical approach is mandated, and

the characteristic delay timescale is, analogous to scattering in an inhomogeneous

plasma (Macquart, 2004),

tscatt =
1

2πν

r2F
r2diff

, (5.7)

where rF is the Fresnel radius given by

r2F =
cDLDLS

2πνDS(1 + zL)
(5.8)

and rdiff is the length scale over which the mass density fluctuations cause the

gravitational phase delay to fluctuate by one radian RMS.

To solve for the diffractive scale we must consider the RMS phase difference

in the fluctuations over varying scales of the mass distribution. This quantity can

be calculated from phase structure function (Macquart, 2004)

Dψ(r) = ⟨[ψ(r⃗′ − r⃗)− ψ(r⃗′)]2⟩ = 2K2

∫
d2q⃗
[
1− eiq⃗·r⃗

]
q−4ΦΣ(q⃗), (5.9)

which is the means square difference in phase fluctuations as a function of the sep-

aration (r⃗), spatial wavevector (q⃗) and the mass surface density power spectrum

(ΦΣ(q⃗)), in keeping with our thin screen approximation.

In a simple model, where we assume a Poisson distribution of clumps (i.e. the

number of clumps in any given area will be sampled from a Poisson distribution
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with an average density of Σ), Eq. 5.9 gives (see, e.g., Macquart, 2004)

rdiff = 2.2× 102(1 + zL)
−1ν−1

(
M

1M⊙

)−1(
Σ

100 clusters pc−2

)−1/2

pc, (5.10)

where Σ is the projected number density of clusters, assumed to be locally

uniform. To achieve a smooth scattering tail, the number of lenses must ex-

ceed unity within the coherence area ∼ πr2F , to the point where the discrete

contributions of individual lenses would be indiscernible. Assuming that the

halo of FG181112 obeys a NFW profile with a scale radius Rs = 24 kpc and

a virial mass 1012M⊙(Prochaska et al., 2019a), this would require a lens mass

ML ≪ Σπr2F ≈ 3.7 × 10−8M⊙ for a Fresnel scale of ∼ 3AU and an impact pa-

rameter of 29 kpc (even if all the matter were contained in clumps of this size).

The characteristic time delay for gravitational scattering at 1.2GHz would there-

fore be much less than ∼ 3.3 × 10−14s (from Eq. 5.7). Thus, we do not expect

to observe any scattering tail associated with the lensing from a distribution of

compact objects with a uniform density.

Under a CDM/WDM treatment, it is plausible that galactic dark matter could

cluster following a spatial power law (Macquart, 2004), similarly to turbulent

distributions of neutral gas and ionised plasma, which have been observed to

have spectral indexes of 3 ≲ β ≲ 4 (Armstrong et al., 1995; Dickey et al., 2001;

Stanimirović & Lazarian, 2001; Macquart, 2004). A power law spectrum of mass

density fluctuations can be projected onto a screen of thickness ∆L to give the

mass surface density power spectrum required in Eq. 5.9. Following the derivation

of the phase structure function in Macquart (2004), for a power spectrum with an

index β, between some inner (l0 = 1/qmax) and outer (L0 = 1/qmin) scales gives:

Dψ(r) ≈
4π2(3− β)K2∆LM2

σ

β
r2 ×

L
−3
0

(
L0

l0

)β−3

β < 3

−L−3
0 β > 3

(5.11)

where K = −8π(1 + zL)G/(λc
2) and Mσ is the RMS of the matter fluctuations
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within a cell of size L3
0.

If β > 3, as suggested by Macquart (2004), the mass variance is dominated

by fluctuations at the outer scale, rendering a diffraction length of (Macquart,

2004)

rdiff = 1.29× 10−11

(
β − 3

β

)−1/2

(1 + zL)
−1
( ν

1GHz

)−1

×
(

Mσ

109M⊙

)−1(
∆L

10kpc

)−1/2(
L0

10kpc

)3/2

pc. (5.12)

We calculate Mσ from the average density within the cell at a radius equal to

the FRB’s galactic impact parameter. The screen thickness (∆L) is set such

that the product, Mσ∆L/L0 is equal to the RMS mass along the FRB’s path,

Mσ∆L/L0 ≈ 5.7 × 109M⊙. Assuming again that the halo of FG181112 obeys a

NFW profile with a scale radius Rs = 24 kpc and a virial mass 1012M⊙ (Prochaska

et al., 2019a), Eq. 5.12 yields a diffractive scale of 1.0× 10−10pc and a scattering

timescale of tscatt = 280s for β = 3.5 and L0 = 10 kpc. The scattering timescale

has a shallower than linear dependence upon the index β (note that the singularity

at β = 3 ) and is linearly proportional to L3
0. The absence of an exponential

scattering tail longer than ∼ 20µs allows us to exclude, in the halo of FG181112,

the presence of hierarchically clustered dark matter of a power law index 3 < β <

4 with an outer scale L0 ≳ 70 pc.

For a value of beta 0 < β < 3 fluctuations at the outer scale no longer dominate

the variance in the phase difference across the scattering screen and we must

account for contributions at the inner scale. A derivation of the diffractive scale

equation yields

rdiff = 1.29× 10−510−2β

(
3− β

β

)−1/2

(1 + zL)
−1
( ν

1GHz

)−1

×
(

Mσ

109M⊙

)−1(
∆L

10kpc

)−1/2(
l0
pc

)β−3
2
(

L0

10kpc

) 6−β
2

pc. (5.13)

This derivation is outlined by Macquart (2004), however his result is incorrect by
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a factor of l20/L
2
0 (algebraic error). For the case of FG181112, Eq. 5.13 yields a

diffractive scale of 3.8 × 10−9 pc and a scattering timescale of tscatt = 1.9ms for

β = 1.5, L0 = 10 kpc and l0 = 1pc. In this regime the scattering time has a steep,

non-linear dependence on β, with scale dependence shifting slowly from the inner

to the outer scale as β increases from zero to three. Clearly the scattering time is

degenerate with the choice of inner (l0) and outer (L0) scales and the index of the

power law distribution (β), reducing the possible inferences which can be made

regarding the hierarchically distributed dark matter in FG181112. However, from

the observation of FRB181112 and Eq. 5.13 we can form a bounding surface to

constrain the possible values of L0, l0 and β, as given by:

l0 <

(
88.14× 10−2β

(
3− β

β

)−1/2(
L0

10 kpc

)−β/2
)2/(3−β)

pc. (5.14)

Crucially, for a warm dark matter model, the inner scale is the free streaming

scale, below which all structure is suppressed by the dynamics of a collisionless

dark matter fluid. The free-streaming scale has been related to the particle mass

of some dark matter candidates (Padmanabhan, 2000), opening the door for FRBs

to directly constrain particle mass in select dark matter models.

5.5 Discussion

As a consequence of the greatly improved temporal resolution of FRBs 181112 and

180924 we have been able to probe to much smaller mass scales than considered in

previous treatments. Longer observation of FRBs would allow greater maximum

temporal separations to be observed, extending the mass independent regime of

any constraints to higher masses. Improvements to sensitivity will boost S/N and

increase ymax in the magnification-limited regime. A larger ymax yields a larger

cross section and consequently a greater observable lensing optical depth, thus

providing a more sensitive probe to small scale structure.

FRBs captured at high time resolution represent an opportunity to explore
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fine structure of galaxy halos and clusters on unprecedented scales. We have

focused here on the potential for FRBs to detect compact objects and derived

simple constraints on non-baryonic dark matter models. The favoured ΛCDM

cosmology is well known for its success describing the large scale structure of

our Universe, but it faces a number of challenges on length scales below 1 Mpc

(Bullock & Boylan-Kolchin, 2017). To meet these challenges, the substructure

of dark halos must be understood, and, as shown, high time resolution FRBs

provide us with the means to do so by directly constraining the inner scale of

hierarchically clustered dark matter.

To exclude lensing with 95% confidence, a cumulative optical depth of 3.0 is

required. From Figures 5.2 and 5.3, we estimate the optical depth probed by an

FRB similar to those considered here at a range of compact dark matter fractions.

The cumulative optical depth probed by a set of FRBs is simply the summation of

their individual optical depths as per Eq. 5.4. Hence, we can predict the number of

FRBs that would be required to make a desired constraint. The number required

varies with fDM, the desired confidence level and the assumed distribution (e.g. in

halos or distributed throughout the cosmic web). The cumulative optical depth

required is non–linear with the desired level of confidence, and, hence, a lesser

constraint of 80-90% would require a sample of 54-77% the size, respectively.

Conversely, the cumulative optical depth required, is linear with the compact

dark matter fraction, i.e. to exclude the compact dark matter fraction with the

same confidence to below 0.5fDM requires a sample twice the size.

In summary, recent FRBs detections, made at high time resolution, have re-

vealed the potential of FRBs to probe dark matter within our Universe. The fact

that FRBs have narrower temporal structure than previously assumed in gravi-

tational lensing studies, allows searches for smaller lens masses than previously

considered. The probability of observing halo lensing, in an FRB similar to FRB

181112, is ∼ 0.017 (assuming fDM ≤0.35). To exclude fDM ≥ 0.35, in galaxy

halos, would require a sample of ∼ 170 FRBs like FRB181112. The probability of

116



observing lensing anywhere along the sightline, in an FRB similar to FRB181112

or FRB180924, is ∼ 0.023 (assuming fDM ≤0.35). This is a lower limit, in the

sense that a large fraction of FRBs have dispersion measures that place them

at higher redshifts than these two bursts and it ignores the possibility that the

sample of already detected bursts favours lensed events through magnification

bias. Thus, it is possible that a significant number of the sample of > 100 FRBs

known to date have been lensed, although the lower time resolution and lower

S/N of a large fraction of these previous detections would substantially hinder

the discoverability of any lensing signal. To exclude fDM ≥ 0.35, in the IGM,

would require detection of ∼ 130 FRBs similar to FRB181112 or FRB180924.

Compared to similar constraints made recently by Paynter et al. (2021) using a

sample of ∼ 2700 GRBs, a sample of FRBs similar to those measured here would

need to be approximately six times larger in size to yield comparable limits for

the range of PBH masses considered here. This difference is due mostly to the

mean GRB redshift assumed by Paynter et al. (2021) being substantially higher,

at ⟨z⟩ ≈ 2, than the mean of our sample ⟨z⟩ ≈ 0.4. Conversely, the number of

FRBs required to form limits competitive with those from type Ia supernovae is

approximately an order of magnitude lower (Zumalacárregui & Seljak, 2018), al-

though the fundamental differences in methodology make a direct comparison of

the value of individual events difficult. Finally, we conclude that when distributed

as a uniform field of compact objects, the volume filling factor of dark matter in

FG181112 is likely insufficient to contribute to the temporal scatter-broadening

of FRBs on nanosecond to microsecond timescales. However, the gravitational

scattering of FRBs does present a promising probe of hierarchically clustered dark

matter.
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Chapter 6

The Effect of Gravitational

Lensing on Fast Transient Event

Rates

This chapter is comprised of a pre-copyedited, author-produced version of an

article accepted for publication in Monthly Notices of the Royal Astronomical

Society following peer review. The version of record: Mawson W Sammons,

C W James, C M Trott, M Walker, The effect of gravitational lensing on fast

transient event rates, Monthly Notices of the Royal Astronomical Society, Volume

517, Issue 4, December 2022, Pages 5216–5231 is available online at: https:

//doi.org/10.1093/mnras/stac3013. Its contents are my own work, except for

the input and supervision from Prof. Cathryn Trott, Dr. Clancy James and Dr.

Mark Walker during the modelling of lensing probabilities and implementation

of numerical integration routines. I wrote the draft of the paper and distributed

copies to all co-authors for critique. All co-authors provided input over several

iterations of feedback until the manuscript was complete.
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6.1 Abstract

Fast cosmological transients such as fast radio bursts (FRBs) and gamma-ray

bursts (GRBs) represent a class of sources more compact than any other cosmo-

logical object. As such they are sensitive to significant magnification via gravita-

tional lensing from a class of lenses which are not well-constrained by observations

today. Low-mass primordial black holes are one such candidate which may con-

stitute a significant fraction of the Universe’s dark matter. Current observations

only constrain their density in the nearby Universe, giving fast transients from

cosmological distances the potential to form complementary constraints. Moti-

vated by this, we calculate the effect that gravitational lensing from a cosmological

distribution of compact objects would have on the observed rates of FRBs and

GRBs. For static lensing geometries, we rule out the prospect that all FRBs are

gravitationally lensed for a range of lens masses and show that lens masses greater

than 10−5M⊙ can be constrained with 8000 un-localised high fluence FRBs at

1.4GHz, as might be detected by the next generation of FRB-finding telescopes.

6.2 Introduction

The observed number of sources as a function of flux (the ‘logN–logS’ relation) is

perhaps the most fundamental quantity to population studies across astronomy.

Encoded within them are the properties of the source population: luminosity

function, spectra and redshift distribution (Longair & Scheuer, 1966). Constrain-

ing the population functions of fast radio bursts (FRBs) and gamma-ray bursts

(GRBs) has been an area of particular interest in modern astronomy (Macquart

& Ekers, 2018a; Sun et al., 2015). These bursts are often produced in exotic sys-

tems or cataclysmic circumstances(Abbott et al., 2017; Woosley & Bloom, 2006;

Platts et al., 2019) and therefore represent an important tracer of rare systems.

Propagation effects can however serve to obfuscate the intrinsic behaviours

of a transient source. For higher energy transients such as GRBs and super-
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novae, influential propagation effects include absorption (Frontera et al., 2000)

and extinction (Riess et al., 1998). Whereas for radio transients, scattering, and

dispersion are more relevant (Ocker et al., 2022a; Macquart & Koay, 2013; Mac-

quart & Ekers, 2018a). In order to correctly model the population functions from

the observations, these propagation effects must be taken into account. Due to

the achromatic nature of its effect, gravitational lensing is one such propagation

effect that is relevant for both high and low-energy transients.

Gravitational lensing is important to consider because it can magnify source

objects, significantly amplifying their observed flux, potentially resulting in er-

roneously inferred luminosities. Many examples of lenses magnifying, distorting

or even multiply imaging individual sources have been recorded, including for

quasars (Walsh et al., 1979), GRBs (Paynter et al., 2021) and supernovae (SNe)

(Kelly et al., 2015). However, the influence of gravitational lensing on the source

counts of a population is typically slight; the fraction of quasars undergoing strong

lensing is expected to be only a few percent of quasars beyond redshift six (Pacucci

& Loeb, 2019; Yue et al., 2022) and for SNe (Porciani & Madau, 2000; Jönsson

et al., 2010) the fraction of lensed bursts is constrained to be small.

The lack of observed gravitational lensing can be used to infer constraints

on the population of lenses. Zumalacárregui & Seljak (2018) placed strong con-

straints on the fraction of dark matter in primordial black holes (PBHs) using

type Ia SNe. The authors model the probability of magnification convolved with

the spread in supernova magnitudes and compare with the observed spread to

constrain the population of lenses at cosmological distances. They find that the

observations are inconsistent with a large population of lenses and therefore re-

strict the fraction of dark matter in PBHs to be less than 0.3 for PBH masses

greater than 0.01M⊙. Strong constraints can be placed in the case of SNe Ia

observations because of the narrow distribution of intrinsic SNe Ia energies (i.e.

because SNe Ia are standardisable candles).

These results do not mean that lensing will be unimportant for FRB and GRB
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source counts. The smaller angular size of GRBs and FRBs compared to SNe

Ia makes them sensitive to even lower mass lenses. The uncertainty surrounding

the emission mechanism of most fast transients, however, makes it difficult to

separate potential propagation effects from potential emission mechanism effects.

For example, it is difficult to distinguish a highly magnified event from an intrin-

sically luminous burst. Thus, lensing searches have been restricted to searches

for multiple source images, be it in the spatial or temporal domain (Muñoz et al.,

2016; Wagner et al., 2019; Laha, 2020; Oguri, 2019; Sammons et al., 2020; Paynter

et al., 2021; Leung et al., 2022; Kader et al., 2022; Connor & Ravi, 2022).

As we shall show, the luminosity of GRBs and FRBs are sensitive to lens

masses much too small to produce resolvable multiple images: as small as 10−15M⊙

and 10−5M⊙ respectively, and there is little evidence to rule out the presence of

a cosmological population of lenses on these low mass scales. Constraints on pri-

mordial black holes (PBHs) still allow for 100% of dark matter to be comprised

of PBHs in the asteroid to sub-lunar mass regime (10−15M⊙ ≤ ML ≥ 10−10M⊙;

Carr & Kühnel, 2020). The sub-lunar to sub-stellar (10−10M⊙ ≤ML ≥ 10−2M⊙)

regime is also of interest as it is only constrained for our own galaxy halo, with

∼ 10−5M⊙ lenses potentially existing locally in appreciable density.

To account for lensing effects on the source counts of fast transients, and

estimate how this may be used to constrain the number of PBHs, we create a

generic model for differential rates of fast transients with fluence, dR/dF , in

an inhomogeneous universe and compare it to its smooth universe counterpart,

considering only the total magnification caused by inhomogeneity.

This paper is structured as follows: §6.3.1 & §6.3.2 introduce the lensing

theory, §6.3.3 & 6.3.4 introduce the differential event rates formalism, §6.3.5 dis-

cusses our numerical method and justifies our model’s assumptions, in §6.5 we

characterise the response of our model to variation of the input parameters, §6.6

explores the possibility that all FRBs are highly magnified, §6.7 contains explicit

calculations of the changes to FRB and GRB event rates in universes of varying
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inhomogeneity and finally, we discuss the implications of these results in §6.8

and explore how many FRBs would be needed to place constraints on the PBH

parameter space.

6.3 Method

6.3.1 Lensing Basics

Gravitational lensing is a result of perturbations in the mass of a smooth universe

deflecting the emission of background sources. By convention we define the frac-

tion of matter in the Universe which may be considered as smoothly distributed

as η. A completely homogeneous universe (η = 1) will be devoid of any gravita-

tional lensing, i.e. the flux from a source at a given redshift will be constant for

every line of sight. Whereas, an inhomogeneous universe will have a fraction of its

total energy density (1−η)ΩM in lensing objects and a corresponding distribution

of possible magnifications associated with a given redshift.

In general lensing causes a rich variety of effects on source images and tem-

poral profiles of transients (for a detailed review of which we refer the reader to

Schneider et al., 1992). In this work we restrict ourselves to consideration only

of the total magnification of a source by a lens,

µ =
F

F0

, (6.1)

where F is the sum of the fluence from all images and F0 is the fluence observed

from a source along an ‘empty beam’. The empty beam is defined as the path of

propagation which lies far from all clumps of inhomogeneous matter. Dη is the

value of angular diameter distance DA along the empty beam and it represents

the background value (µ = 1) of DA in a universe with a smooth matter fraction

η. Following the method outlined by Kayser et al. (1997), Dη can be calculated

numerically for a general choice of both cosmology and η (see appendix C.1 for
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extended discussion).

A critical quantity of the magnification distribution is the mean source mag-

nification at a given redshift,

⟨µ⟩ = D2
η(z)

D2
1(z)

, (6.2)

where D1 represents the typical angular diameter distance of a smooth universe

(η = 1). As η is increased and the universe becomes homogeneous, Dη tends

towards D1 and we recover the smooth universe behaviour of ⟨µ⟩=1. The mean

magnification determines the shape of the magnification probability density func-

tion (PDF) we apply from Rauch (1991).

6.3.2 Magnification Probability Density Function

To determine the effects of gravitational lensing on observed fast transient event

rates, we require a functional form for the magnification PDF. In this work we

make use of the analytical approximation detailed in Rauch (1991),

p(µ) = 2σeff

[
1− e−b(µ−1)

µ2 − 1

]1.5
, (6.3)

where parameters σeff and b are chosen such that the PDF is normalised and

has a mean magnification ⟨µ⟩ as given by 6.2. The form of the PDF is derived

empirically by fitting to simulations of lensing rather than being motivated phys-

ically. However, by doing so it implicitly accounts for multiple lensing and shear

which are significant complexities to hurdle when deriving a more physical model

(Schneider & Weiss, 1988).

As stated in Rauch (1991) this approximation is only valid for low mean

magnifications and point sources (⟨µ⟩ ≲ 1.2, corresponding to z ∼ 1.2 in a Planck

cosmology with η = 0). However, even for large mean magnifications where the

lensing enters the complex regime associated with an intricate caustic network,

the approximation by Rauch provides a simple way to capture broad behaviour of

the magnification probability distributions found by numerical simulations (e.g.
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Fleury & Garćıa-Bellido, 2020). Given the relative uncertainties associated with

both FRB and GRB luminosity functions (James et al., 2021b; Banerjee et al.,

2021) particularly FRBs as their progenitor/s remain unknown, we will make

use of this simple empirical model as opposed to vastly more computationally

intensive numerical simulations. Finally, we note that this model is only valid for

static lensing geometries. If the magnification of a source can change significantly

over time due to its motion relative to the lens then the probability of a given

magnification must be reconsidered under a different formalism. We assume that

both lenses and sources are stationary relative to the observer for the remainder

of this work.

6.3.3 Rates in a Smooth Universe

The impulsive nature of fast transient events means that burst rates rather than

source counts are the fundamental quantity to consider when characterising the

population. Furthermore, the observable directly relevant to transient events

is fluence rather than flux which is typical for continuous sources. We use the

fluence–energy relation outlined in Macquart & Ekers (2018a).

The observed rate of a transient population is primarily governed by the in-

trinsic event rate energy function which depends on the redshift of the burst as

well as its spectral energy and frequency in the emission frame ΘE(z, Eνe , νe).

This function yields the event rate per spectral energy per co-moving volume.

Assuming that the redshift, spectral energy and emission frequency of a burst are

independent, it can be separated into the population functions describing each

dimension,

ΘE(z, Eνe , νe) = ϕz(z) ϕE(Eνe , Eνe,max, γ) ϕνe(νe, α), (6.4)

allowing us to motivate the form of the ϕx functions separately, depending on

which transient we are considering. Above we have labelled each of the functions
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with their typical arguments. Generally, the source evolution function, ϕz, will

depend only on z; the energy analogue to the luminosity function, ϕE, will have a

power law dependence on Eνe described by index γ (where broken power laws are

used, γ is subscripted accordingly) up to a hard cutoff at the maximum spectral

energy Eνe,max; and the spectrum, ϕνe , will have a power law dependence on νe

described by index α (and β where broken power laws are used).

Following the work of Macquart & Ekers (2018a), the intrinsic event rate

energy function can be related to the differential observed rate with fluence via

dR

dF
=

∫
dz 16π2D2

cD
2
L

1

(1 + z)3
dDc

dz
ΘE(z, Eνe , νe), (6.5)

where DL and Dc are the comoving and luminosity distances respectively — for

a complete derivation see appendix C.3.1.

6.3.4 Rates in a Clumpy Universe

In an inhomogeneous universe the relation between observed fluence and emitted

energy is more complicated. Naturally it is dependent on the total magnifica-

tion of the source. However as our magnification is with respect to the empty

beam case, the luminosity distance cannot be calculated for a smooth universe

as in §6.3.3. Instead it must be expressed as a function of Dη via Etherington’s

reciprocal relationship (DL = Dη(1 + z)2) (Etherington, 1933).

The probability of any given line of sight to a source at redshift z having

magnification µ is given by the PDF described in Eq. 6.3. For most of our

calculations we assume the lensing is well characterised by geometric optics. At

radio wavelengths this assumption may break down as we show in §C.2 (see also

Grillo & Cordes, 2018, for more discussion on the breakdown of geometric optics).

Combining these elements as elaborated in the derivation in appendix C.3.2

the differential rate with fluence for transients in an inhomogeneous universe with
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a smooth matter fraction η is

dR

dF
=

∫
dz 16π2D2

c

(
Dη(1 + z)2

)2 1

(1 + z)3
dDc

dz

×
∫
dµ p(µ, z)ΘE(z, Eνe , νe)

1

µ
. (6.6)

6.3.5 Numerical Implementation

To evaluate the differential rates we used SciPy’s implementation of the fortran

quad pack numerical integration. For the smooth universe calculation of dR/dF

we integrate in log space over the domain [zmin, zmax]. In our physical picture the

calculated value dR/dF then corresponds to a hollow sphere between redshifts

[zmin, zmax].

In line with the expectations in a ΛCDM universe, we assume that on large

scales the Universe is homogeneous, hence we set a minimum redshift condition

of zmin = 0.001 (D∼ 4 Mpc), corresponding to the scale between galaxies. We do

not model the contribution to the event rate from below this scale, as the local

structure of our Universe would need to be accounted for. Even with zmin set at

0.001, our hollow sphere still well approximates the volume of filled sphere out to

zmax.

The upper redshift boundary corresponds to the designated spatial distribu-

tion, e.g. for ϕz ∝ cosmic star formation rate (CSFR; throughout this paper we

make use of the CSFR outlined in Madau & Dickinson, 2014) we set zmax = 100

where star formation is negligible.

In the case of a clumpy universe our redshift integration must be restricted to

a higher minimum, zmin, lensed, to ensure stable integration. As seen in Eq. (6.2),

⟨µ⟩ is dependent upon redshift and the smooth matter fraction, η. For high

values of η and low redshifts ⟨µ⟩ − 1 will be small. To have a magnification PDF

of the form of Eq. (6.3) with a small mean magnification requires that the PDF

be extremely concentrated around ⟨µ⟩. For mean magnifications ⟨µ⟩ − 1 ≲ 10−5

this peak can be missed in the integration domain, destroying the validity of the
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result. For inhomogeneous universes (η < 1) we set zmin, lensed ≥ zmin = 0.001 to

ensure a valid result. For lower values of η, zmin, lensed is decreased such that the

minimum ⟨µ⟩ remains constant. Given the extremely low mean magnification in

this low redshift regime the clumpy and smooth universe results are unlikely to

vary significantly. Therefore, when zmin, lensed > zmin we add the smooth universe

result over the domain [zmin, zmin, lensed] to the clumpy integral result to keep the

smooth and clumpy dR/dF results consistent.

For the clumpy universe calculation the inner integral in Eq. 6.6 is performed

in log space over the transformed domain of ∆µ = µ − 1 to aid numerical in-

tegration by spreading out the sharply varying behaviour of the magnification

PDF over a greater dynamic range. This integration is performed over the do-

main [∆µmin, ∆µmax], where ∆µmin = 10−15 as restricted by float precision 1 and

µmax = 1020, beyond which we expect negligible contribution to the integration.

6.4 Fractional Change Due to Lensing

Here and in following sections we illustrate dR/dF using plausible values of the

population functions for FRBs (James et al., 2021b; Luo et al., 2020), and vary

individual parameters over a broad range of typical values.

Fig. 6.1 plots dR/df as a function of f for a smooth universe, where f is the

observed fluence normalised to what would be observed for an Eνe,max burst at

redshift z = 1 in a smooth universe. We normalise the rates to the expected

dR/df for a Euclidean universe, R0f
−2.5 where R0 is the rate density in the local

universe.

Fig. 6.1 shows that dR/df in a smooth universe has roughly two fluence do-

mains of behaviour for event rate energy functions with γ > −2.5. We define

these regions about a break fluence fb,1 = 10−1.16 which is the fluence correspond-

ing to Eνe,max at zmax. At the high fluence end (f > fb,1 = 10−1.16) the maximum

1Technically the float precision of the exponential term in Eq. (6.3) is violated significantly
before ∆µ = 10−15, however the impact on the accuracy of the result is negligible.
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Figure 6.1: Observed differential event rate as a function of normalised flu-
ence in a smooth universe for an event rate energy function with α = −1.0,
Eνe,max = 1033erg/Hz, a uniform comoving spatial density and a range of γ values
given in the legend and zmax = 100.0. We normalise the result to the Euclidean
expectation given by R0f

−2.5.
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redshift is determined by Eνe,max. Because the power law index of the energy

function, γ > −2.5 is shallower than the expected Euclidean evolution ∝ f−2.5

the change in rate with fluence is dominated by the change in sources due to a

restricted redshift, as opposed to having fewer bursts at higher energies. There-

fore dR/df in a smooth universe has a power law index at the high fluence end

approaching the Euclidean expectation.

On the low fluence end (f < fb,1 = 10−1.16), where zmax is instead restricted

by the spatial distribution ϕz, a change in the observed fluence does not affect

zmax and the change in the observed rate is dominated by seeing fewer bursts at

higher energies. Therefore at the low fluence end dR/df adopts the power law

index seen in the energy function of γ. If the energy function has a steeper index,

γ ≤ −2.5 then for a uniform spatial distribution the change in the number of

bursts due to the energetics will dominate across all fluences and the Euclidean

behaviour will never be recovered.

In a clumpy universe dR/df depends on the convolution of the intrinsic energy

function with p(µ)/µ as per Eq. 6.6. For gravitational lensing this convolution

kernel is generally ∝ µ−4 in the high magnification limit. Therefore, for all energy

functions with γ > −42 this convolution will be dominated by the intrinsic energy

function, and the behaviour of dR/df will be well approximated by the smooth

universe behaviour described above. The exception will be the case where all

events are highly magnified as we shall discuss in §6.6 and the edge effects we

describe below.

To discern the effect of lensing we express our results as the differential event

rate (dR/df) in a clumpy universe with a smooth matter fraction η < 1, nor-

malised by the differential event rate in a smooth universe (η = 1). Fig. 6.2

shows the η = 0 case, depicting a 1 − 10% fractional change in dR/df due to

lensing that has a characteristic shape common to all values of γ.

2We only calculate dR/df in a clumpy universe for γ > −4. Because p(µ)/µ ∝ µ−4 at high
µ, for γ ≤ −4, the inner integral of Eq. 6.6 would not converge, as described later, none of the
intrinsic energy functions for source populations we consider have γ ≤ −4.
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Fig. 6.2 shows the low fluence regime for all values of γ and all fluences for

γ ≤ −2.5 to have approximately constant fractional difference between the lensed

and unlensed differential rates. dR/df in these regions are dominated by the

energetics and hence show similar behaviour despite any lensing, consistent with

our expectation.

The fluctuation structure is comprised of an initial decrease, before a sharp

increase which then tends back towards unity. To understand why this structure

appears we must look to the break fluence fb. For f > fb, the maximum redshift

becomes restricted by Emax and dR/df becomes dominated by a reduction of the

volume out to which sources can be observed as discussed previously. In a smooth

universe this occurs at fb,1 = 10−1.16, shown as a dotted line in Fig. 6.2. In a

clumpy universe however this occurs at a lower fluence of fb,η = 10−3.69, shown as

a dashed line in Fig. 6.2. The lower fluence is due to a demagnification of 1/⟨µ⟩
(from Eq. (6.2), D2

1(zmax = 100)/D2
0(zmax = 100) = 0.00295 ≈ 10−3.39/10−1.16)

associated with viewing along an empty beam in a clumpy universe compared to

a smooth one. Therefore, as we increase fluence dR/df becomes dominated by

the reduction to zmax in a clumpy universe before it does so for a smooth universe,

resulting in the dip. Once we hit f = 10−1.16, the smooth universe also becomes

dominated by reduction to zmax resulting in an inflection point in the fractional

change in accordance with zmax decreasing faster in a smooth universe. As the

fluence increases and the maximum redshift approaches the nearby universe, the

mean magnification decreases and clumpy and smooth universes become indis-

tinguishable, resulting in dR/df values that converge as seen on the high fluence

end of Fig. 6.2.

6.5 Intrinsic Parameter Variation

Apart from γ, our model takes in a number of input parameters as discussed

in §6.3.3. Below we characterise the response of dR/df to variation of these

parameters.
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Figure 6.2: Differential rates for a clumpy universe from Fig. 6.1 normalised by
the corresponding values in a smooth universe. Dashed and dotted lines denote
the break fluences fb,η and fb,1 for clumpy and smooth universes respectively.
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Figure 6.3: Differential rates for a clumpy universe normalised by their smooth
universe equivalents for a selection of spatial distributions ϕz. Other parameters
of the population functions are identical to those in Fig. 6.1 with γ = −2.0.

6.5.1 Spatial Distributions

Our calculations so far have been restricted to an intrinsic rate with a uniform

comoving spatial distribution. More realistically ϕz is likely to be proportional

to some integral over the CSFR, owing to the stellar origin of the extreme en-

vironments that produce (or are candidate progenitors for) many extragalactic

transients (Gehrels et al., 2009; Platts et al., 2019). For progenitors that are short

lived this integral will be over a small portion of the CSFR and hence the result

proportional to the CSFR itself. Conversely, progenitors that emit bursts over a

time period comparable to the age of the universe will have ϕz proportional to

the current number of stars, i.e. the CSFR integrated over all redshifts above z.

Taking γ = −2.0 we plot dR/df for these spatial distributions in Fig. 6.3.

Fig. 6.3 shows that for spatial distributions proportional to the CSFR or its
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integral, the minimum fractional change occurs at a higher fluence than for a

uniform spatial distribution. This is because the CSFR shows a gradual decline

beyond z ∼ 2 rather than a hard edge at z ∼ 100. Also of note is that the

fractional increase in dR/df from lensing is much larger for the case of ϕz ∝
CSFR than other spatial distributions.

To see why, it is informative to decompose the fractional change due to lensing

for a uniform spatial distribution into its components in redshift space. Fig. 6.4

shows that in the case of a ϕz which is uniform in comoving space, a majority

of the fractional increase due to lensing comes from the z = 0.72− 3.728 region.

This is the same region in redshift space where the CSFR peaks and hence for

ϕz ∝ CSFR the rate of bursts coincidentally peaks where the fractional change

due to lensing is greatest, enhancing the effect of lensing.

6.5.2 Spectral Indices

Fig. 6.5 shows that the fractional change due to lensing varies with the spectral

index α similarly to the energy index γ. Steep, negative spectral indices rapidly

decrease the burst rate at high frequencies which suppresses the burst rate at

higher redshifts where the emission frequency associated with any given observed

frequency is higher by a factor of (1+z). Because all significant lensing effects oc-

cur in the distant universe where the mean magnification is higher, a suppression

to the intrinsic rate at high redshifts restricts the effect of lensing as shown.

6.5.3 Emax

The maximum energy of a burst Eνe,max defines where fb will lie and so will affect

where the structure in the above figures will be in fluence. As shown in Fig. 6.6

increasing or decreasing Eνe,max shifts the fluctuations in fractional change linearly

with f . Apart from translation, the impact of changing Eνe,max is negligible.

The shape of the structures seen in Fig. 6.6 is caused somewhat by the sharp-

ness of the hard cutoff at Eνe,max. Because a hard cutoff is a rather unrealistic
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redshift bins. Number of bins is chosen to show a range of redshift behaviours
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feature of an energy function we have also calculated Fig. 6.6 for an exponential

cutoff at the same boundary. The results of this calculation are also contained in

Fig. 6.6 as the dotted lines. The figure shows only mild differences from a hard

cutoff, including a short rise before deeper decreases, each structure is also shifted

to higher fluences. The small scale of these changes shows that the hard cutoff

in energy we use is a good approximation for a more realistic sharp decrease in

rate beyond Eνe,max.

6.5.4 Cosmology

Our results will also depend upon the choice of cosmology used in the model.

To demonstrate how changes in cosmology will affect the results we compare

the Planck cosmology to the extreme case of an Einstein De-Sitter cosmology

that has zero cosmological constant and all of its energy density contained in

matter (Ωm = 1). The Hubble constant for each is that given by the Planck

constraints. Both are calculated for the case where η = 0, giving a density in

lenses of ΩL=Ωm (we highlight that ΩL = Ωm is not inconsistent with a macro-

scopically homogeneous universe, as the small scale inhomogeneities, which cause

lensing and comprise this density, will be homogeneous on large scales). Fig. 6.7

shows the fractional change due to lensing for each of these choices. It shows

only a mild difference between the two cosmologies, with the Einstein De-Sitter

universe having a greater peak. Fig. 6.7 also shows that the fractional fluctuation

in dR/df due to lensing in an Einstein De-Sitter universe is shifted to a higher

fluence. This is expected as an Ω = 1 universe has a lower luminosity distance

at a given redshift, giving a commensurately higher fb in both the lensed and

unlensed case.
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1). Other parameter choices are as seen in Fig. 6.1 with γ = −2.0.
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6.6 Are All FRBs Lensed ?

Above we have describe the scenario where a burst population which could be

observed in a smooth universe is altered by lensing. However, an alternative

scenario which has been discussed in the FRB community is the possibility that

bursts are only observed because of gravitational lensing, i.e. all observed bursts

are intrinsically low energy but highly magnified. In such a situation the minimum

redshift becomes important. We define fmax as the largest fluence where an

observer will see a burst with µ = 1, corresponding to Eνe,max at zmin. For f >

fmax only magnified bursts are observed, and because the entire spatial domain

contributes, the behaviour of dR/df with fluence will be determined entirely by

the inner integral over magnification in Eq. (6.6). As f increases, the intrinsic

energy required at each magnification will increase and the observed rate will

decrease following ϕE with index γ (fewer bursts at higher energies). Additionally,

the minimum observed magnification will increase with f , resulting in a decrease

to dR/df . For a general PDF with a factor 1/µ that behaves as a power law

p(µ)/µ ∝ µξ−1 (as it does in the high magnification limit) the integration from

[µmin,∞] will vary with µmin following an arbitrary negative power law of index

ξ. Therefore as f increases and µmin increases, dR/df will also vary with index ξ.

These behaviours will occur simultaneously, however if one is significantly steeper

we expect that it will dominate the change to dR/df , e.g. for ξ ≪ γ, dR/df will

be approximately ∝ f ξ, and vice versa.

Given that in the geometric optics limit for static lensing geometries our

chosen PDF varies as p(µ) ∝ µ−3, the expected behaviour for all γ ≥ −3 is

to have dR/df vary with a power law index of −3. This is precisely what we

find when calculating dR/df for the same selection of ϕE functions used earlier

but with Eνe,max = 1026 erg/Hz, which is more in line with the spectral energy

observed for the Galactic FRB (The CHIME/FRB Collaboration, 2020).

If all FRBs were highly magnified in a static lensing geometry, the behaviour of

dR/df would be consistent with a γ = −3 intrinsic energy function in a smooth
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universe. Estimates of γ outside the context of lensing would therefore yield

γ = −3. Best estimates of γ from observed FRBs give γ ≈ −2 (James et al.,

2021b; Luo et al., 2020), which never has dR/df behaviour consistent with a

γ = −3 model and therefore allows us to refute a scenario where FRBs are only

observable due to high magnifications from stationary gravitational lenses.

In appendix C.2 we show that as a result of wave optics low mass lenses

may not follow p(µ) ∝ µ−3. Given this potential departure from the p(µ) ∝ µ−3

behaviour we can only use γ ̸= −3 to refute that all FRBs are highly magnified by

lenses of certain mass. The range of masses which are constrained depends on the

magnification required to make the bursts observable, i.e. the maximum apparent

energy normalised by the maximum intrinsic energy µmax = Emax, obs/Emax, int.

For low lens masses the maximum magnification will be insufficient to make

low intrinsic energy bursts observable, allowing us to rule them out by default.

For higher intrinsic energies and higher lens masses the lensing behaviour will

approach the geometric expectation, p(µ) ∝ µ−3, which are then ruled out as

FRB γ ̸= −3. We plot these conditions in Fig. 6.8, assuming that magnifications

µ < µmax/10
1.5 have p(µ) ∝ µ−3 as describe in appendix C.2. The figure shows

the excluded regions for FRBs, with the intermediate region in grey. Here lensing

is of sufficient magnification to make bursts observable but close enough to the

maximummagnification to have prominent fringes in the cross section that change

the behaviour from p(µ) ∝ µ−3. In this region of the parameter space, we cannot

rule out that all FRBs are highly magnified on the basis of γ alone.

6.7 How Does Lensing Affect Fast Transient Rates

Assuming that both FRB and GRB populations are intrinsically transient, and

not all highly magnified, we have shown in §6.4 that any effect on their differential

rates from lensing will be small. Therefore, estimates of their intrinsic param-

eters, i.e. γ, α and ϕz, made without accounting for the possibility of lensing

will approximate the true population parameters well even if all of the Universe’s
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Figure 6.8: Range of lens masses excluded from highly magnifying all FRBs. Blue
line is set by the maximum magnification under wave optics for a 1GHz FRB
lensed by an ML mass point lens. Orange line corresponds to the magnification
1.5 orders of magnitude below the maximum. Orange and blue regions highlight
parts of the parameter space excluded by observed γ or required magnification
respectively. Gray region highlights the unconstrained area of the parameter
space associated with prominent intereference fringers in the cross section.
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matter were to be contained in lenses3. It is therefore appropriate to use the

observed population parameters as inputs to our model when calculating the ex-

pected dR/df for transient populations in a clumpy universe. In this section we

calculate dR/df specific to each transient class for universes with varying η. We

display these rates normalised to what a uniform spatial distribution at the local

rate would yield, as well as the fractional differences due to lensing.

We model the effect of lensing on FRBs, long GRBs and short GRBs. We

use literature values to build fiducial event rate energy functions in each case as

discussed in the following sections. We stress that these models are simplified for

the purpose of demonstrating the effect of lensing.

6.7.1 Short GRBs

To model SGRBs we use the empirical redshift distribution of Sun et al. (2015, see

Eq. (21)) as our ϕz. For consistency we’ll also make use of the best fit luminosity

and spectral functions from Sun et al. (2015), i.e. a single power law with γ =

−1.6, and a Band energy function (Band et al., 1993) with α = −0.5 and β = −2.3

for ϕν . Sun et al. (2015) takes these luminosities to be isotropic and bolometric,

using a 1− 104 keV bandwidth. We also impose a hard maximum luminosity at

Lmax = 1051 erg/s which corresponds to the upper bound of the typical energy

range for SGRBs (D’Avanzo, 2015). To convert these luminosity conditions to

spectral energies consistent with our model we divide these luminosities by the

assumed ≃ 104 keV bandwidth and assume that as the peak spectral luminosity

at a frequency corresponding to a photon energy of 200 keV. Furthermore, we

assume all GRBs to have a duration given by the mode of the Swift burst width

distribution (SGRBs = 0.1s, LGRBs = 20s; Gehrels et al., 2009).

Fig. 6.9 shows dR/df calculated for the above SGRB event rate energy func-

tion. The top panel normalises the result to dR/df for the same ϕE and ϕν but

a uniform ϕz, whereas the bottom panel shows the result normalised to dR/df

3With the exception of Emax which may be drastically affected by lensing but has little
impact on the inferred value other parameters.
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Figure 6.9: Top panel: dR/df normalised to the differential rate expected for a
uniform spatial distribution. Bottom Panel: Fractional change in dR/df due to
lensing, i.e. normalised by dR/df in an η = 1 universe. Both panels show results
for η values of 0, 0.16 and 0.5 the middle of which corresponds to ΩL = ΩDM in
a Planck cosmology.
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for the same ΘE in a smooth universe η = 1.0. In both panels we see the high

fluence end tending towards 1.0, in line with our expectation for the local rate,

which should be the same regardless of the choice of universe or spatial evolution.

Moreover the results shown in the top panel can be easily scaled to any choice of

normalisation corresponding to different estimates of the local rate of SGRBs (or

indeed any of the other transients which we will display similarly). The top panel

of Fig. 6.9 shows the differential rate falling at higher fluences, in accordance with

the CSFR decreasing towards lower redshifts.

Fig. 6.9 shows that the observed dR/df for our representative SGRB model

can fluctuate up to ≈ 10% due to lensing with the scale of these fluctuations

decreasing linearly with increasing η.

6.7.2 Long GRBs

Those GRBs with a duration above ∼ 2s are categorised as long (LGRB) and

originate from core collapse supernovae explosions (ccSNe). Given the short life-

time of stars which produce ccSNe, LGRBs should trace star formation closely

and hence we model ϕz ∝ CSFR. Observations of LGRBs constrain their lumi-

nosity function to be a triple power law with indices γ1 = −1.7, γ2 = −1.0 and

γ3 = −2.0 in the respective zones between two break luminosities Lb,1 = 1051

erg/s and Lb,2 = 7.8 × 1052 erg/s (Sun et al., 2015). We also impose a hard

maximum luminosity at Lmax = 1054 erg/s which corresponds to the highest lu-

minosity LGRB observed (Frederiks et al., 2013). We convert these bolometric

luminosities into spectral energies as per the method for SGRBs (with the LGRB

width). We also assume all LGRBs to have a spectrum given by the Band energy

function with indices α = −1 and β = −2.3.

Fig. 6.10 shows dR/df calculated for the LGRB event rate energy function

described above. Similarly to the case of SGRBs, the absolute rate decreases

towards higher fluences in line with the CSFR decreasing at lower redshifts, how-

ever the LGRB rate does not decrease as significantly towards lower fluences. The
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Figure 6.10: Same as Fig. 6.9 but computed for LGRBs.

effect of lensing on the observed LGRB differential rate is similar to SGRBs at a

maximum of ≈ 10%. The fractional change shows slightly more structure for the

case of LGRBs due to the triple power law of ϕE but this does not substantially

influence the effect from lensing, with any relative differences capped at a few

percent.

6.7.3 FRBs

For FRBs we assume that both ϕE and ϕν have single power law form described by

indices γ and α respectively. ϕE is also bounded by a hard cutoff at the maximum

spectral energy Eνe,max. Leading theories for FRB progenitors (Platts et al., 2019)

suggest that the central engine of FRBs is a compact stellar remnant such as a

young magnetar. Such objects are also connected to massive star formation and

hence, similarly to long GRBs, FRBs are expected to follow the CSFR.

From James et al. (2021b) the best fit values of these parameters are γ =
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−2.16+0.11
−0.12, α = −1.5 and Eνe,max = 1032.84 erg/Hz. James et al. (2021b) also

allow for a redshift evolution on top of star formation by scaling the CSFR to

the power of n. They find the best fit value of n = 1.77 under the assumption

that ϕν describes the change in energy of FRB bursts with frequency and not a

change in the rate of bursts with frequency. Others within the field find differing

model parameters. Luo et al. (2020) assume a flat spectral distribution, and

find γ = −1.79+0.31
−0.35, neglecting evolution (i.e. n = 1) and Shin et al. (2022)

find a shallower γ = −1.3+0.7
−0.4. Both James et al. (2021a) and Shin et al. (2022)

use a similar model to calculate their values, which improves upon the model of

Luo et al. (2020) by using an unbiased sample of FRBs, accounting for the full

telescope beam shape, including the cosmological variance of DM, making use of

the measured S/N of bursts and allowing the FRB event rate density to evolve

with redshift. Shin et al. (2022) uses the first CHIME catalog of FRBs, making

it the largest and only homogeneous sample among them. James et al. (2021a)

treatment yields more precise results however, owing to the greater number of

localised bursts with associated redshifts. Despite these differences, the results of

all three are in broad agreement, for simplicity and to capture the small differences

between them, our fiducial model will be γ = −2.0, α = −1.0, n = 1.0 and

Eνe,max = 1033 erg/Hz.

The dR/df values resulting from the above calculations are depicted in Fig.

6.11. The results show behaviour very similar to that of the GRB calculations,

with a slightly higher minimum in the fractional change due to lensing. This

similarity is unsurprising because we have assumed that both types of transient

are related to star formation.

6.8 Discussion

Understanding the effects of gravitational lensing on dR/df is crucial if the in-

creasing number of recorded bursts with no redshift information are to be used

to constrain ΘE. Most of the lensing effects we have derived here are small. In
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Figure 6.11: Sam as Fig. 6.9 but computed for FRBs.

the current context of observational constraints on ΘE, for any of the transients

mentioned here, the lensing effects are negligible compared to other sources of

uncertainty. Hence, lensing may in most cases be ignored when calculating the

expected differential rates from a ΘE model.

Provided that there is a sharp4 cutoff in the intrinsic rate at some critical

energy Eνe,max, lensing will cause a fluctuation in dR/df relative to what is ex-

pected in a smooth universe, effectively independent of the transients underlying

ΘE. This fluctuation, seen in figures 6.9, 6.10 and 6.11, is a unique effect of

lensing and could be used to constrain the value of η which affects its scale. Such

constraints on η and the corresponding fluctuation in dR/df relative to a smooth

universe would be of direct relevance to current cosmological problems, such as

the anomalous amplitude of the cosmic matter dipole found in QSOs (quasi-stellar

4We take sharp to mean steeper than the power law dependence (ξ) of the magnification
PDF with µ. In the geometric limit ξ ≈= −3.
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objects), SN Ia and radio galaxies (see Aluri et al., 2023, for a review), for which

the effect of lensing has not been explored in great detail.

A comparison between the figures in §6.5 shows that the scale of the fluctu-

ation is also dependent on ϕz, α and γ. Due to this degeneracy, the intrinsic

population parameters must be well known if η is to be constrained from the

observed rates. Given the strong dependence of the absolute rates on these pa-

rameters however, they will require far fewer transients to be well constrained.

To avoid lensing effects when constraining the intrinsic parameters of ΘE, they

should be modelled from low fluence bursts where the effect of lensing is negligible.

To define a low fluence we require fb,η, the break fluence defined in §6.4. With-

out knowing Eνe,max this becomes more difficult, however we can approximate a

minimum value of Eνe,max and fb by considering the magnification decomposition

of the fractional change in dR/df due to lensing. For the FRB case shown in Fig.

6.11 this magnification decomposition is plotted in Fig. 6.12. It shows that across

all fluences there is very little contribution from magnifications above µ = 102.

A lack of high magnification bursts means that Eνe,max is unlikely to be lower

than 1/102 the apparent maximum. By establishing a lower limit on Eνe,max and

setting fb,η to correspond to this approximate maximum at a redshift of negligible

star formation in a universe η = 0 we can safely assume f < fb,η to be in the low

fluence regime.

Assuming that the population parameters are well constrained by these low

fluence bursts, the intrinsic model could be extrapolated to the high fluence

regime for the case of a smooth universe and compared to the observed differential

event rates to place a lower limit of the value of η. Averaging over the expected

fluctuation for all fluences higher than fb,η, and below the fluence for a maxi-

mum energy burst at z = 0.001, we can determine the number of high fluence

bursts that would be required to statistically distinguish the expected average

fluctuation. We plot this number for FRBs for varying values of η and varying

intrinsic γ and α values in Fig. 6.13. We assume that the observed bursts are dis-
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Figure 6.12: Fractional change in dR/df due to lensing, as plotted in Fig. 6.11
decomposed into components of varying magnification. Upper and lower bounds
correspond to the limits of our numerical method as described in §6.3.5.

tributed log-uniformly and calculate the relative error on the observed number as

1/
√
N . We then calculate the number that would be required for the average of

the absolute value of the fluctuation to be significant at the 95% confidence level

for a normal distribution (given the large number of bursts required we expect

normality in the uncertainty).

As expected from Fig. 6.2 and Fig. 6.5 the number of bursts required to dis-

tinguish a universe with a smooth matter fraction η from a completely homoge-

neous universe η = 1 generally increases with decreasing γ and α with smoother

universes naturally requiring more bursts. For the fiducial FRB population of

γ = −2.0, and α = −1.0 a universe comprised entirely of lenses can be ruled out

using 8000 high fluence FRBs. Conversely a nearly smooth universe with 5% of

its matter in lenses would require some 3.5 × 105 FRBs to distinguish from the

smooth case.

Planned instruments such as CHORD or the proposed coherent all sky monitor
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Figure 6.13: Number of high fluence FRBs required to distinguish a universe with
a smooth matter fraction η from the η = 1 case with 95% confidence, assuming
the intrinsic population parameters ϕz, α and γ are known. Top: Plotted for
varying values of γ with an α = −1.0 and ϕz ∝ CSFR. Bottom: Plotted for
varying values of α with an γ = −2.0 and ϕz ∝ CSFR.
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(CASM) BURSTT (Lin et al., 2022) have predicted detection rates of ∼ 104 per

year (Connor & Ravi, 2022). Several such instruments observing over the course

of ten years could reasonably achieve our desired 3.5 × 105 high fluence FRBs,

especially given the low-sensitivity – high field of view mode of operation for

CASMs. This would allow formation of broad and stringent constraints over

parts of the PBH space that have only been probed locally. To show which

masses the constraints apply over we must consider both source extension and

wave optics effects as detailed in appendix 3.2. Doing so we calculate the PBH

dark matter fraction constraints shown in Fig. 6.14 for 3.5 × 105 high fluence

FRBs observed at 1.4GHz. We highlight that the only observables required for

each of these FRBs are the booleans f > fb,η and ν > νmin
5; a precise fluence

measurement is not required, neither is a localisation or redshift. If these FRBs

are observed at higher frequencies, these constraints will extend down to lower

masses, with an infinite frequency FRB counterpart extending all the way down

to 10−22M⊙. Assuming a FRB-like functional form for the GRB intrinsic ΘE, a

similar number of GRBs could constrain PBHs down to 10−15M⊙ as displayed in

the figure.

Constraining Eνe,max is an area of particular import in an inhomogeneous

universe as lensing can have a large effect on the apparent maximum energy of a

burst. Eνe,max is often taken to be the greatest apparent energy amongst observed

bursts, which in an inhomogeneous universe can be a large overestimation. The

compact nature of fast transient sources means they are susceptible to lensing by

low mass objects. Such objects may leave no observational trace of the magnifi-

cation they are causing. This makes it impossible to know the magnification of

an individual burst and thus impossible to confidently approximate the intrinsic

Eνe,max based on the largest apparent energy. Variation of Eνe,max however, is not

degenerate with η and hence may be constrained if sufficient data are collected

to distinguish a fluctuation in dR/df due to lensing.

5where this minimum frequency is used the establish the minimum probed lens mass.
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Figure 6.14: Current and potential constraints on the allowed fraction of dark
matter in PBHs with a monochromatic mass function centred on MPBH . Con-
straints based on measurements from our local galactic environment are shaded
blue. Constraints that are cosmological in origin are shaded red. Our proposed
constraints from 3.5×105 high fluence transients are shown in grey. These extend
to varying lower mass limits based on observed frequency and source extent as de-
tailed in appendix 3.2. We note that η = 0.95 corresponds to a maximum fPBH
of ≈ 6% (for a Planck cosmology). This plot was made using code from the
github repo https://github.com/bradkav/PBHbounds (Kavanagh, 2019, and
references therein).
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6.9 Conclusion

Gravitational lensing is one possible propagation effect to consider when mod-

elling the differential events rate of fast transients from their intrinsic population

functions. In doing so we have shown that, for static lensing geometries:

1. Except for the mass-energy range with prominent fringes shown in Fig. 6.8,

FRBs are not all intrinsically low luminosity events highly magnified by

gravitational lensing from point masses.

2. Given current observational uncertainties, intrinsic population function pa-

rameters (other than Eν,max) inferred from observations without accounting

for lensing will not significantly differ in a completely inhomogeneous uni-

verse (η = 0)

3. Wave optics may cause magnification PDFs to differ from the familiar µ−3

behaviour at high magnifications.

4. For masses above 0.01 solar masses geometric optics will suffice for mod-

elling the dR/df of FRBs in an η = 0 universe.

5. Using low fluence (< fb,η) observations of dR/df to estimate ΘE will be

free from the effects of lensing. A further comparison with high fluence ob-

servations can be used to extract the influence of gravitational lensing. In

this way the compactness of FRBs and GRBs can be exploited to constrain

unexplored regions of dark matter parameter space such as low mass pri-

mordial black holes. We expect that 8000 high fluence, unlocalised FRBs

would be required to rule out a completely clumpy universe, with 3.5× 105

required to exclude more than 6% of dark matter being in PBHs in the

relevant mass range.
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Chapter 7

Two-Screen Scattering in

CRAFT FRBs
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T. Deller, Marcin Glowacki, Kelly Gourdji, C. W. James, J. Xavier Prochaska,

Hao Qiu, Danica R. Scott, R. M. Shannon and C. M. Trott, Two-Screen Scat-

tering in CRAFT FRBs, Monthly Notices of the Royal Astronomical Society, is

available online at: https://doi.org/10.1093/mnras/stad2631. I motivated

this work, which was supervised by Prof. Cathryn Trott and Dr Clancy James.
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over several iterations of feedback until the manuscript was complete.

157

https://doi.org/10.1093/mnras/stad2631


7.1 Abstract

Temporal broadening is a commonly observed property of fast radio bursts (FRBs),

associated with turbulent media which cause radiowave scattering. Similarly to

dispersion, scattering is an important probe of the media along the line of sight

to an FRB source, such as the circum-burst or circum-galactic mediums (CGM).

Measurements of characteristic scattering times alone are insufficient to constrain

the position of the dominant scattering media along the line of sight. However,

where more than one scattering screen exists, Galactic scintillation can be lever-

aged to form strong constraints. We quantify the scattering and scintillation in

10 FRBs with 1) known host galaxies and redshifts and 2) captured voltage data

enabling high-time resolution analysis. We find strong evidence for two screens in

three cases. For FRBs 20190608B and 20210320C, we find evidence for scattering

screens less than approximately 16.7 and 3000 kpc respectively, from their sources,

consistent with the scattering occurring in the circum-burst environment, the host

ISM (inter-stellar medium) or the CGM. For FRB20201124A we find a low mod-

ulation index that evolves over the burst’s scattering tail, indicating the presence

of a scattering screen ≈ 9 kpc from the host, and excluding the circum-burst

environment from potential scattering sites. By assuming that pulse broadening

is contributed by the host galaxy ISM or circum-burst environment, the lack of

observed scintillation in four FRBs in our sample suggests that existing models

may be poor estimators of scattering times associated with the Milky Way’s ISM,

similar to the anomalously low scattering observed for FRB20201124A.

7.2 Introduction

Fast radio bursts (FRBs) are short duration (µs – ms), extragalactic, radio fre-

quency bursts (Lorimer et al., 2007; Thornton et al., 2013). In addition to intrinsic

time-frequency structure, FRBs are dispersed and often contain the hallmarks of

multi-path propagation, arising from propagation through a turbulent medium.
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While the intergalactic medium (IGM) is often responsible for a sizeable portion

of FRB dispersion (Macquart et al., 2020), due to its tenuous density, it is not

expected to contribute significantly to the scattering, with estimates typically as

low as ∼ 10µs at 1GHz (Macquart & Koay, 2013; Cordes et al., 2022). This con-

clusion is supported by the observed lack of correlation between FRB dispersion

measures (DM) and scattering times (Chawla et al., 2022; Gupta et al., 2022).

Similarly, the Milky Way interstellar medium (ISM) is not expected to domi-

nate the scattering observed in FRBs at high Galactic latitudes, with scattering

times inferred from pulsars (Cordes & Lazio, 2003) being ≲ 10µs for lines of sight

more than 30◦ away from the Galactic plane. Assuming that the host galaxies

of FRBs are similar to the Milky Way, the symmetry of the scattering process

leads to the conclusion that, on average, host galaxy ISMs are also unlikely to

be singularly responsible for the observed FRB scattering (Simha et al., 2020;

Chawla et al., 2022).

Due to their large geometric leverage, intervening galaxies are a potential

source of large scattering in FRBs. For a high redshift population (z ∼ 5), inter-

vening galaxies have been forecast to be the dominant source of scattering (Ocker

et al., 2022b). For FRBs with z ≲ 1, however, the probability of intersecting a

foreground galaxy is insufficient for them to be the dominant source of scatter-

ing in the population (Macquart & Koay, 2013; Prochaska & Neeleman, 2018;

Chawla et al., 2022; Ocker et al., 2022b).

A potentially important scattering region is within the circum-burst environ-

ment, which has long been suggested as the site of the ≳ms scattering times

and ≳ 100 radm2 rotation measures (RMs) observed in some FRBs (Masui

et al., 2015). Measurements of RM variability in some repeating FRBs have

supported this scenario, with large variations over short durations requiring a

dense, magnetised medium near the source (Michilli et al., 2018; Hilmarsson et al.,

2021; Anna-Thomas et al., 2022). Recent measurements of scattering variabil-

ity in FRB20190520B provide the tightest limits yet, with variation on minute
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timescales requiring the dominant scattering media to be within at most 0.4AU

of the source, and potentially within ∼ 104 km (Ocker et al., 2022b). In this sce-

nario, scattering serves as an important probe of the circum-burst region which

would inform our understanding of FRB progenitors, favouring formation chan-

nels where the central engine evolves in a dense turbulent magnetised medium,

such as a magnetar embedded within a nebula (Margalit & Metzger, 2018).

Another region of interest is the circum-galactic media (CGM) of foreground

galaxies. To date, observations of FRBs passing through the CGM/halos of

intervening galaxies have shown very little scattering, with only as much as ∼
80µs recorded at 1.4GHz (Prochaska et al., 2019a; Connor et al., 2020, 2023).

The possible presence, however, of cloudlets of cold gas in the CGM, inferred

from quasar absorption spectra (McCourt et al., 2018), has the potential to cause

scattering consistent with that observed in the FRB population (Vedantham &

Phinney, 2019, see Prochaska et al. (2019a) for a corrected description). If this

model is correct then FRBs could serve as an important probe of the CGM. As

discussed by Vedantham & Phinney (2019), distinguishing between scattering in

the CGM and circum-burst media will be crucial.

For scattering that is well approximated by a thin screen model, the de-

generacy between the angular broadening and screen distance makes it difficult

to directly constrain where the scattering is occurring based only on the pulse-

broadening time. For repeating FRBs, a direct constraint can be made by ob-

serving the variation of decorrelation bandwidth (νDC) or temporal broadening

over time (tscatt) (Ocker et al., 2022b; Main et al., 2022). For FRBs that are not

seen to repeat, a variability study cannot be conducted; however, in cases where

scattering and scintillation have been contributed by separate screens, the scat-

tering geometry can be constrained using the observation of only a single burst

(Masui et al., 2015; Farah et al., 2018; Ocker et al., 2022c). This can allow not

only for the distinction between host and intervening scattering screens, but also

constrain the level of scatter-broadening in the Milky Way, for independent com-
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parison with electron distribution models such as NE2001 and YMW16 (Cordes

& Lazio, 2003; Yang & Zhang, 2017, respectively).

Where previously Day et al. (2020) relied on lower time resolutions and image-

plane-based techniques, it is now routinely possible to conduct detailed burst

morphology analysis, of the type undertaken by Cho et al. (2020), for all CRAFT

FRBs with the advent of the CELEBI post-processing pipeline (Scott et al., 2023).

This allows for the high-precision estimates of νDC and tscatt, required to robustly

identify scintillation and scattering. We are therefore motivated to search for

evidence of two-screen scattering within CRAFT FRBs.

In this work we greatly expand the sample of FRBs analysed for two-screen

scattering. We measure the level of scattering and scintillation in 10 CRAFT

FRBs with high spectro-temporal resolution and apply the two-screen model

developed by Masui et al. (2015) and Ocker et al. (2022c) to place constraints

on the distances to their respective scattering screens. In §7.3 we detail the data

and our methodology. In §7.4 we present the results, and in §7.5 we discuss their

implications.

7.3 Method

The scattering and scintillation resulting from multi-path propagation through

the same medium will be related via a Fourier uncertainty relationship,

2πνDCtscatt = C. (7.1)

The precise value of C depends on the geometry and the density fluctuations in

the scattering media, however, it typically ranges between 0.5 and 2 (Lambert &

Rickett, 1999). As observed previously by Masui et al. (2015) and Ocker et al.

(2022c), this is not always the case for FRBs, with discrepancies indicating that a

single scattering medium is a poor model for propagation along the line of sight.

In these cases, a two-screen model can provide a natural explanation for the
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Figure 7.1: Diagram of the two screen scattering geometry.

differences. Under this model, a relatively large tscatt and νDC are contributed

by separate screens, allowing them to be observed simultaneously for a given

line of sight without violating the uncertainty relationship within a single screen.

The geometry is often described as shown in Fig. 7.1, using Lx, the distance

between the source and the first screen, and Lg, the distance between the observer

and the second screen, labeled according to the expectation that the first screen

is extragalactic and the second Galactic. In order for both screens to cause

diffractive scintillation, the scattered image formed by the first screen must be

unresolved by the second. Assuming that the distance between the scattering

screens is much larger than either Lx or Lg (i.e. (Lx + Lg)/Ds ≪ 1), this leads

to the following constraint on the geometry (Ocker et al., 2022c)

LxLg ≲
D2
s

2πν2(1 + zs)

νDC

tscatt
. (7.2)

The factor of (1+z), where zs is the redshift of the source, results from estimating

θscatt from the observed tscatt, as derived in Macquart & Koay (2013). This

allows the position of scattering media to be constrained directly using once-off

FRBs, allowing mediums such as a diffuse IGM to be ruled out as the dominant

source of scattering (Masui et al., 2015). In the case of FRB201905020b, a

reasonable assumption of Lg places the extragalactic screen within 100 pc of the

FRB progenitor, suggesting that the scattering could be occurring in the circum-
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burst environment (Ocker et al., 2022c).

Our data comprise 10 localised FRBs which had been processed through the

CELEBI post-processing pipeline (Scott et al., 2023) at the time of writing. These

bursts were detected in real-time searches of the incoherent sum of intensities of

each antenna in each of the 36 beams formed digitally using ASKAP’s phased-

array receivers (Bannister et al., 2017, 2019b). Each detection triggered the

download of the 3.1 s voltage buffers channelised using an oversampled polyphase

filterbank (PFB). To localise the FRB, the voltage data are correlated, calibrated

and imaged as detailed by Day et al. (2021) and exemplified in Ryder et al. (2022).

To study the burst morphology, as we shall here, the PFB is inverted to recover

the full ∼ 3 ns time resolution of the voltage data, which are then beamformed

and dedispersed as outlined in Scott et al. (2023), with the dispersion measure

(DM) chosen to optimise the sharpness of temporal structures within the bursts

as detailed in Sutinjo et al. (2023). We identify the bursts within the ∼ 3 s of

voltage data sampled at ∼ 3 ns resolution and form dynamic spectra using a Fast

Fourier Transform of the four Stokes parameters. By default the resolution is

chosen to be 0.1MHz and 10µs. However, when temporal or spectral structures

were found to be unresolved, respective scales as small as 1µs or 10 kHz were

explored independently1. Here we analyse only the Stokes I data associated with

each burst; a more complete polarimetric study of each burst is reserved for a

future work.

From the dynamic spectra formed, we select on and off-pulse (pre-burst) re-

gions to account for the shape of the bandpass and to mitigate any radio frequency

interference (RFI). To do this, the time-averaged spectrum in the off-pulse region

is subtracted from the burst and each spectral channel in the burst is divided

by the standard deviation of the corresponding off-pulse channel. The resulting

burst dynamic spectrum has a noise that is normally distributed with a mean of

zero and a standard deviation of unity. Furthermore, the burst intensity is now

1In these cases where greater resolution was required the spectral and temporal analyses were
performed on separate data sets formed from the same voltages at independent resolutions.
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represented in units of per-channel signal-to-noise ratio (S/N).

The level of spectral modulation in a burst is calculated from the lowest,

non-zero frequency lag in the mean normalised spectral auto-covariance, as per

Macquart et al. (2019). Bursts with a high modulation index (m) or obvious

scintillation in their dynamic spectra are then investigated further. Following

other studies (Nimmo et al., 2022a; Ocker et al., 2022c), we fit a Lorentzian to

the auto-correlation of the mean-subtracted, time-integrated, normalised burst

spectra and we measure the νDC to be the half-width-half-maximum (HWHM) of

the best-fit case.

In cases where significant RFI is present in the unnormalised burst dynamic

spectrum, we investigate the impact of RFI subtraction on the auto-correlation

function (ACF) of normalised bursts. To do so, a fake FRB with a uniform

spectral profile is injected into the off-pulse noise and then normalised via the

same method. If a significant excess is found in the ACF of this normalised fake

FRB then the RFI is deemed too significant to compensate for, and the FRB in

question (or at least the section of bandwidth containing the RFI) are discarded

from the sample. To avoid large Poisson noise associated with measuring only a

small number of scintles (the finite scintle effect) (Cordes et al., 1990), we require

the retained bandwidth to be much larger than νDC.

To distinguish scintillation from frequency structures intrinsic to the burst

such as self-noise2, we split the normalised FRB into four even sub-bands and

fit a Lorentzian to the ACF of each band’s spectra. Due to the large number of

scintles in each sub-band we expect the effect of re-binning on the results will be

minimal. If νDC is observed to increase with frequency, as expected for multi-path

propagation through a cold plasma, we assume the spectral structures are caused

by scintillation. We characterise the minimum scintillation bandwidth we are

sensitive to (νmin) using simulations as described in Appendix C.4, we highlight

that this quantity is distinct from the spectral resolution of the data set.

2Following Ocker et al. (2022b), we refer to frequency structures on the reciprocal scale of
FRB temporal sub-structures as self-noise.
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We also fitted for tscatt in each burst’s frequency-integrated pulse profile. By

default we assume a scattered Gaussian pulse profile, however, we allow intrinsic

burst profiles to comprise multiple Gaussians when necessary. All burst morphol-

ogy and auto-correlation fitting are performed using a nested sampling technique

outlined in Qiu et al. (2020). The frequency evolution of scattering is measured

using independent fits to burst sub-bands as done for νDC, with tscatt expected

to decrease at higher frequencies. We expect that tscatt and νDC will evolve in

frequency following a power law with indices αt ≈ −4 and αν = 4 for scattering

and scintillation respectively. These indices correspond to the expectation for

very strong scattering in a Kolmogorov turbulence with an inner scale (Cordes &

Lazio, 1991; Cordes & Rickett, 1998). We fit for these spectral indices in every

burst where data permits. In cases where only two sub-bands are used these

spectral indices have no measured uncertainty.

We compare our measurements of scintillation or lack thereof with the ex-

pected Galactic scintillation (νNE2001) using the NE2001 electron density model

(Cordes & Lazio, 2003). We note that there can be order of magnitude differences

in scatter broadening and scintillation bandwidths for Galactic lines of sight with

the same DM (Bhat et al., 2004). Moreover, we use the best fit νDC and tscatt

to compute C as per Eq. 7.1. Finally, when C ≫ 1 we derive the two-screen

distance product LxLg as expressed in Eq. 7.2.

7.4 Results

The properties of each burst in our sample can be found in Table C.1, where a ‘–’

denotes parameters that could not be measured or derived. Within our sample,

we find three FRBs with convincing evidence of spectral scintillation, from which

two-screen constraints can be formed. Of the remaining FRBs, four FRBs were

found to contain no spectral scintillation, two contained evidence of spectral

structure that could not be confirmed as scintillation and one, FRB20191228A,

contained instrumental effects for which we could not adequately compensate. In
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the following sub-sections, we will describe each of these cases in greater detail,

with the exception of FRB20191228A, which is not analysed further.

7.4.1 FRB20190608B

The dynamic spectrum of FRB20190608B is shown in Fig. 7.2 at a reduced time

and frequency resolution of 0.2ms and 2MHz to improve visual distinction. The

burst has the lowest integrated S/N in our sample, however, obvious bands of

intensity can still be seen in the dynamic spectrum of the burst. The unnormalised

spectrum contains negligible RFI effects and therefore we use all 336MHz of

the observed bandwidth centred at 1271.5MHz. Analysing the time-integrated

spectra at 0.1MHz resolution, we measure a high modulation index of m = 0.78

and νDC = 1.4 ± 0.1MHz for the whole band as shown in Fig. 7.3. Integrating

over frequency, we find a scattering time of tscatt = 4.0± 0.4ms, as shown in Fig.

7.4.

Dividing the observation into four subbands we measure the spectral indices

of νdc and tscatt to be αν = 5.8±0.5 and αt = −3±1, as shown in Fig. 7.5 top and

bottom, respectively. The frequency evolution of the tscatt is consistent within 1σ

with tscatt ∝ ν−4 as expected. Conversely, the evolution of νDC is steeper than

the Kolmogorov expectation at a marginal significance of 3.6σ.

Given the high modulation index and the positive slope of νDC evolution

in frequency, we assume the spectral modulation in this burst is the result of

diffractive scintillation of a point-like source. Similarly, the negatively sloped

frequency evolution of tscatt is consistent with multi-path scattering. Combining

the measurements of each over the full bandwidth we find 2πνDCtscatt = C ≈
35000, indicating that a single thin screen is insufficient to describe the scattering

medium along the line of sight to FRB20190608B. Using Eq. 7.2 we find an upper

limit on the two-screen distance product of LxLg ≲ 6± 1 kpc2.
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Figure 7.2: Dedispersed dynamic spectrum of all analysed FRBs. FRB names and
spectral and temporal resolutions corresponding to the shown dynamic spectra
are labelled in the top right corner of each plot. The top panels of each dynamic
spectra show the burst profiles integrated over frequency, and the right-hand
panels are integrated over time.
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Figure 7.3: Scintillation fits of FRBs 20190608B, 20210320C and 20201124A from
top to bottom. Black points show the ACF of the time-integrated burst spectra
at 0.1MHz, 0.1MHz and 0.01MHz resolution respectively. Blue lines show the
best-fit model Lorentzians. The maximum amplitude of the ACF represents the
square of the modulation index m2.
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Figure 7.4: Scattering fits of FRBs 20190608B, 20210320C and 20201124A from
top to bottom. Black points show the frequency-integrated pulse profiles at 10µs
resolution. The blue lines show the best-fit scattered Gaussian models.
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7.4.2 FRB20210320C

The dynamic spectrum of FRB20210320C is shown in Fig. 7.2. The burst has

S/N = 113 and a high modulation index of m = 0.83, consistent with the obvious

intensity bands in the burst spectra. The de-dispersion and localisation analysis

of this burst will be presented in Shannon et al. (in preparation). Due to the

dispersive sweep of ∼ 1.8s across the 336MHz ASKAP bandwidth and the ∼ 1.6 s

latency of the detection system, some of the FRB was lost from the voltage

buffer before it was downloaded. As a result the burst emission is only found

in 257MHz of bandwidth around a central frequency 824.2MHz. The spectral

ACF is particularly well fit by a Lorentzian profile with νDC = 0.91± 0.03MHz,

as seen in Fig. 7.3. Fig. 7.4 shows the best-fit model of the pulse profile, with

tscatt = 0.247± 0.004ms.

Fitting to four sub-bands, we find αν = 2 ± 1 and αt = −3.30 ± 0.01, as per

Fig. 7.5, top and bottom respectively. Each of these parameters evolves with the

sign expected for multi-path propagation and are within the ranges observed for

pulsars (Bhat et al., 2004). Hence we assume they are caused by scintillation and

scattering respectively. Measurements over the whole band yield C = 1410 with

an upper limit on the two-screen distance product of LxLg ≲ 550± 30 kpc2.

7.4.3 FRB20201124A

The dynamic spectrum of FRB20201124A is shown in Fig. 7.2. The burst

appears as a bright narrow-bandwidth pulse, with a S/N = 172.

The measured modulation index of the burst is somewhat low at only m =

0.59, however, the intensity banding in its spectrum motivates us to search for

scintillation. To probe the fine spectral structure observed in the burst we analyse

the spectrum at 0.01MHz resolution. The Lorentzian structure expected for

scintillation provides a good fit to the spectral ACF as plotted in Fig. 7.3, with

a best fit νDC = 0.136± 0.005MHz.

Despite the narrow bandwidth the burst occupies, its high S/N allows us to
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measure αν = 10 ± 3 across four sub-bands as shown in the top of Fig. 7.5.

This spectral index is consistent with expectations at the 2σ level. The value of

the decorrelation bandwidth is also consistent with the average of other measure-

ments made for FRB20201124A (Main et al., 2021, 2022) assuming αν = 4. We,

therefore, assume that the frequency structures are caused by scintillation.

We measure the scattering time to be 4.03 ± 0.09ms over the whole band,

with a αt = −7.3± 0.9 measured over four sub-bands as shown in Figs. 7.4 and

7.5. This measurement is steeper than the expectation at 3.7σ, however, we note

that for this FRB the dynamic range in frequency is extremely limited. Assuming

αt = −4, this measurement is consistent with previously measured upper limits

on the scattering time for this source (Marthi et al., 2022).

Combined νDC and tscatt over the used bandwidth yields C ≈ 3450, indicating

that a single screen is a poor model for the scattering media along the line of

sight. If we assume that the initial scattering screen is unresolved by the first we

constrain LxLg ≲ 1.43± 0.08 kpc2, however, we note that in this case, we would

expect the observed FRB spectrum to be fully modulated. In §7.5 we consider

the case of a partially resolved initial scattering screen which could explain the

low modulation index.

7.4.4 No Observed Scintillation

For four FRBs within our sample, we observe no spectral scintillation. These are

FRBs 20181112A, 20200430A, 20210117A, and 20210407E. As shown in Fig. 7.2,

the dynamic spectra of these bursts appear spectrally smooth corresponding to

relatively constant ACFs, as shown in Fig. C.6 contained in the Appendix. As

a result, each of these FRBs has a low modulation index, with the exception of

FRB20200430A which has a modulation index of m = 0.45, presumably caused

by the broad spectral structure in its time-integrated spectrum which we do not

attribute to scintillation. Moreover, no significant excess was seen in the spectral

ACFs of these bursts at lower resolutions. We are therefore confident in the
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absence of spectral scintillation on frequency scales above νmin for each of these

FRBs, as reported in Table C.1.

7.4.5 Anomalous

We characterise two FRBs within our sample as anomalous. These FRBs, 20190102C

and 20190711A, show low spectral modulation indices associated with small ex-

cesses in their spectral ACFs. In the case of FRB20190102C the ACF of the

whole band shows a broad spectral structure which we do not associate with

scintillation, and a sharper ACF peak at low spectral lags (< 5MHz), as shown

in Fig. C.8, which is potentially consistent with scintillation. We fail to find an

ACF excess when we decompose the burst into four sub-bands, however, reducing

the division to two sub-bands yields a reasonable fit as shown in Fig. C.8. De-

rived νDC values evolve in the expected direction for scintillation, however, given

the low number of sub-bands we are unable to estimate the error on the spectral

index of αν = 10.

In the case of FRB20190711A the ACF is well fit by the expected lorentzian

form of scintillation, as shown in Fig. C.7. Analysis of the sub-bands measures

αν = −10 ± 5, contrary to the expectation for scintillation decorrelation band-

widths to increase in size with frequency. We highlight however the low fractional

bandwidth (≈ 0.06) over which these data are measured.

Both FRBs show complex pulse profiles, with multiple components. Owing to

the computational load associated with multi-component fitting we only model

the temporal properties of each of these bursts with two sub-bands. In each case

the short timescale structure of each of these bursts could also cause intrinsic

spectral structure on the reciprocal scale (Nimmo et al., 2022a). Given the un-

certainty associated with their measurements and the low C values, which can

indicate the consistency of spectral structures with self-noise, we conclude that

there is insufficient evidence to prove scintillation in these cases.
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7.5 Discussion

For the cases where we find convincing evidence for scintillation and pulse broad-

ening, i.e. FRBs 20190608B, 20201124A, and 20210320C, the scattering geometry

is constrained by the LxLg product upper limit. FRBs 20190608B and 20201124A

provide particularly tight constraints.

7.5.1 FRB20190608B

Due to limitations in spectral resolution, the presence of diffractive scintillation

was unable to be confirmed in a previous analysis of FRB20190608B (Day et al.,

2020). Without the presence of this scintillation the position of the screen causing

temporal scattering in the burst had to be inferred indirectly from estimates of the

host galaxy properties (Chittidi et al., 2021) and the properties of the cosmic web

along the FRB line of sight (Simha et al., 2020). The joint conclusion of these

studies is that the temporal scattering in FRB20190608B is likely contributed

by a region within the host galaxy as there are no cosmic web structures or

foreground galaxies intersecting the line of sight sufficiently to explain the large

scattering time.

By confirming scintillation and placing an upper limit of LxLg ≲ 6 ± 1 kpc2

our results provide a direct constraint on the scattering geometry. For similar

values Lx ≃ Lg, the screens must be contained within the host and Milky Way

galaxies respectively.

By measuring the angular broadening extent of an FRB using VLBI the ef-

fective distance to the relevant scattering screen can be determined (Ocker et al.,

2021). This has been done for FRB20121102 using the European VLBI network

(Marcote et al., 2017), the effective distance to its Galactic scattering screen is

constrained to be consistent with a peak in differential scattering measure asso-

ciated with a sharp change in electron density predicted by the NE2001 model

Ocker et al. (2021). Fig. 7.6 shows the C2
n and differential DM estimated for each

of our scintillating FRB lines of sight. Using the peak in C2
n, corresponding to
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a sharp change in differential DM, we estimate Lg ≈ 0.36 kpc , corresponding to

Lx ≲ 16.7 kpc. This region corresponds to the host galaxy of FRB20190608B and

therefore our direct constraints support the conclusions of Simha et al. (2020);

Chittidi et al. (2021). Additionally, by assuming Lg ≈ 0.36 kpc, νDC and the fully

modulate version of Eq. C.30 can be used to constrain the product

tscatt(1 + zd)
Dds,x

Dd,x

≲
νDCDs

2πν2Lg
(7.3)

where Dd,x is the distance to the extragalactic scattering screen at redshift zd, and

Dds,x is the distance between the screen and the host. From this constraint, we

place an upper limit on the amount of scattering caused by the IGM. In the case

of FRB20190608B, we find tscatt(1 + zd)Dds,x/Dd,x ≲ 1.7× 10−7 s, corresponding

to less than 0.43µs of scattering at 1GHz (assuming a ν−4 scaling), for a screen

at redshift z ≈ 0.056, where Dds,x/Dd,s ≈ 1 and the scattering time associated

with a given scattering measure is maximised (Macquart & Koay, 2013).

7.5.2 FRB20210320C

FRB20210320C provides perhaps our sample’s best example of scattering and

scintillation, with the burst morphologies presented in Fig. 7.3 and Fig. 7.4

showing good agreement with the expected shapes and frequency evolutions for

diffractive scintillation and pulse broadening. The small amount of observed

scattering in this case, however, results in only a loose constraint on the scattering

geometry of LxLg ≲ 550±30 kpc2. From Fig. 7.6 the peak in turbulence strength

is close to the observer at a distance of 0.18 kpc, which corresponds to Lx ≲

3000 kpc. As such, the scattering cannot be definitively constrained to the host

galaxy. We note however, that the observed scattering must still be occurring

within the first ≈ 0.3% of the total path length from the host and so cannot be

due to some diffuse component of the IGM as its contribution to the scattering

would characteristically peak halfway between the source and the observer. For
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IGM scattering in general, by assuming Lg ≈ 0.18 kpc, we find tscattDds,x/Dd,x ≲

1.1 × 10−6 s, using Eq. 7.3. This corresponds to less than 0.44µs of scattering

at 1GHz (assuming a ν−4 scaling), for a screen at redshift z ≈ 0.126, where

Dds,x/Dd,s ≈ 1.

The host galaxy localisation image of FRB20210320C, shows a faint object

nearby to the line of sight. The redshift of this object has yet to be determined,

however, if it lies foreground to the host galaxy at a similar redshift it may be

the source of the observed scatter broadening.

7.5.3 FRB20201124A

Conversely to the other scintillating FRBs in our sample, FRB20201124A is

a closely studied repeating FRB with existing measurements for its scattering

time and decorrelation bandwidth. Analysis by Main et al. (2021) measured

νDC ≈ 0.1MHz and tscatt ≈ 11ms at a central frequency of 575MHz. Substituting

these values into Eq. 7.2 yields LxLg ≲ 0.6 kpc2, which is tighter than the limit

we derive, LxLg ≲ 1.43± 0.08 kpc2, consistent with the expected steep frequency

dependence of the constraints (Main et al., 2021).

Despite the evidence for scintillation, the observed modulation index of FRB20201124A

remains too low to be consistent with the full modulation expected for diffractive

scintillation of a point-like source. In this context, a source will be considered

point-like if it satisfies Eq. C.33. If the equation is violated, we enter the regime of

diffractive scintillation of an extended source. Here, the modulation index of the

spectral scintillation will begin to decrease as the angular extent of the scattering

disk of the first screen increases (Narayan, 1992). Within the temporal profile

of scattered bursts, later times are associated with larger angular extents in the

scattering disk. Similarly to the analysis of Masui et al. (2015), we can analyse

the modulation index of the burst as a function of time to identify whether the

entire angular extent of the scattered image undergoes the same scintillation. If

the scattered image associated with the observed temporal broadening is respon-
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Figure 7.7: Modulation index of FRB20201124A as a function of time. Scatter
points show the modulation index calculated for the burst spectrum at a reso-
lution of 0.01MHz integrated over 1ms of the bursts time profile (shown by the
blue line) beginning at the time marked by the point. The dotted black lines
depict the area of integration in time. The linear model of modulation index
decay is shown by the orange line. The points used in the fit are shown in black.

sible for the suppression of Galactic scintillation, we expect that the later parts of

the burst, with larger angular extents, will show lower modulation indices. Fig.

7.7 shows the evolution of the modulation index over the duration of the burst

in increments of 0.1ms. At each increment a 1ms wide boxcar of the burst’s

dynamic spectrum is used to calculate the modulation index, effectively smooth-

ing the result to boost S/N. As seen in Fig. 7.7 the modulation index shows

a small decrease of ∼ 0.2 over the main component of the burst profile with a

large variance in mg displayed on either side of the burst as S/N decreases. A

linear model shows reasonable agreement with the data, as would be expected

for a circularly symmetric scattered image, where separation in time is linearly

proportional to angular offset. The low modulation index of spectral scintillation

in FRB20201124A may, therefore, indicate that the scattering screen at the host

is partially resolved by the Milky Way scattering screen.
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For the fully modulated case, the coherence length of a wave incident on the

second screen can only be constrained to be larger than the projected scattering

angle length. In the partially resolved case, however, it can be solved for exactly

using the modulation index. This, in turn, allows the two-screen distance product

to be specified exactly, as, (see C.5 for derivation)

LxLg ≈
D2
s

2πν2(1 + z)m2

νDC
tscatt

, (7.4)

where m is the modulation index. Solving this for the case of FRB20201124A

indicates that the two-screen distance product should be equal to LxLg ≈ 4 kpc2.

A recent study of the annual variation of scintillation in FRB20201124A has

revealed that the scattering screen contributing the observed Galactic scintillation

is much closer than the peak in C2
n at ∼ 2 kpc suggests, located at around Lg =

0.40− 0.46 kpc, depending on the isotropy of the screen (Main et al., 2022). We

discuss the potential impact of screen anisotropy in appendix C.6. Taking the

case of the uniform two-dimensional screen, Lg = 0.46 kpc, we can approximate

the distance between the source and host screen to be Lx ≈ 9 kpc, which is greater

than the optical extent of the host galaxy (Xu et al., 2022). This indicates that, if

the angular broadening associated with the measured scattering tail is suppressing

the observed Galactic scintillation, that scattering is likely occurring in the halo

of the galaxy, rather than in the circum-burst environment or the host ISM.

The low modulation index of the burst could also be caused by angular broad-

ening from a third screen along the line of sight which contributes negligibly to

the observed scattering and scintillation of the burst. This is precisely the in-

verse of the case discussed in §7.5.1 regarding limits on IGM scattering. The two

possible locations for this potential third screen are within the Milky Way or the

IGM. The case where the third screen is also within the host galaxy is captured

implicitly by the above discussion. Already, some motivation for a third screen

within the Milky Way exists, in the form of the peak in C2
n at ≈ 2 kpc shown in

Fig. 7.6, which we know is not associated with the observed scintillation. The
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scattering time required from the third screen to reduce the modulation index of

the Galactic scintillation is given by

tscatt ≈
νDCDd,x

2πν2m2
gLg

, (7.5)

adapted from Eq. 7.3. Solving for mg = 0.59 yields tscatt ≈ 1.3×10−7 µs at 1GHz

(assuming a ν−4 scaling), showing that the foreground Galactic scintillation can

be suppressed with very little additional scattering from a third screen in the

Milky Way. From this result, we conclude that while it is possible for such a

scenario to be true, it is more likely that any third screen in the Milky Way would

completely suppress the scintillation from the foreground screen at 0.46 kpc and

is therefore inconsistent with our observations.

If the third screen is instead placed within the IGM, we can use the inverse of

Eq. 7.3, dividing the right-hand side by m2
g to take the partial modulation into

account. This yields tscatt(1+ zd)Dds,x/Dd,x ≈ 0.027µs at 1GHz (assuming a ν−4

scaling). We plot this result as a function of Dd,x in Fig. C.9. The scattering

times required to cause mg = 0.59 are reasonable expectations for scattering

from the IGM (Macquart & Koay, 2013) and would be invisible in the temporal

profile of the burst. The range of decorrelation bandwidths corresponding to the

spectral scintillation also imposed by an IGM screen, however, falls mostly within

our detectable range and therefore should appear in our observations. As a result

we find it unlikely that angular broadening from a third screen in the IGM can

adequately explain the observed scintillation modulation. We note however that

for IGM screens closer than 50Mpc the decorrelation bandwidth would be greater

than our observed bandwidth, and therefore undetectable.

Given the issues outlined above with a third screen interpretation, coupled

with the observed evolution of the modulation index over the burst, we tentatively

conclude that the most likely scenario is that the Galactic scintillation observed in

the burst is suppressed by the angular broadening corresponding to the observed

temporal broadening. As such FRB20201124A is a potential candidate of interest
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for probing the CGM, and we recommend its modulation index and scattering

times be studied in detail in future statistical studies of its repeating bursts.

7.5.4 Circum-burst Scattering

Given the localisation of the scattering to within 0.4AU of the source for FRB20190520B

(Ocker et al., 2022b), it is prudent to consider the ramifications if this were typical

for all FRBs. The extremely low value of Lx in each case would leave Lg ≲ Ds,

and hence the position of the screen responsible for the spectral scintillation

would be unbounded. While the diffuse IGM is not expected to cause sufficient

scattering to account for FRB temporal broadening, it is expected to be able to

cause the microsecond level scattering required to see scintillation on megahertz

scales (Macquart & Koay, 2013). It is, therefore, possible, if the screen causing

the observed temporal broadening of FRBs is associated with the circum-burst

environment, that the observed spectral scintillation could come from the IGM,

invalidating the previous IGM scattering constraints in §7.5.1 and 7.5.2. How-

ever, in order for no additional scintillation from the Milky Way to be observed,

consistent with our observations, which show only one scale of frequency modu-

lation, the angular broadening from the IGM must be such that any subsequent

Milky Way scintillation is suppressed.

The two-screen interaction between the IGM and the Milky Way, can be

considered using Eq. 7.3 where tscatt = 1/2πνDC and Dds,x = Dd,x, and assuming

that the Milky Way scintillates as expected by NE2001, Galactic scintillation will

be suppressed for all

Lg ≳
Ds

ν2(1 + zd)
νDCνNE2001, (7.6)

where zd is the redshift of the IGM screen. For FRBs 20190608B and 20210320C,

Eq. 7.6 yields Lg ≳ 1 kpc. Fig. 7.6 shows that for both FRBs, the Galactic

scattering screens are expected to be closer than 1 kpc, and therefore would still

cause visible scintillation in each, in addition to the IGM scintillation. This is

inconsistent with our observations, and therefore we find it unlikely that the ob-
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served scintillation comes from the IGM. This agrees with the observed correlation

between FRB scintillation and expectations from Galactic electron distribution

models (Schoen et al., 2021). We highlight, however, that scintillation from the

IGM is a reasonable possibility for FRBs that appear sufficiently point-like. To

investigate this possibility further we recommend a statistical study that measures

the correlation between FRB redshift and νDC. The use of redshift is preferable to

dispersion measure as the host contribution to dispersion is difficult to separate

from the IGM contribution. If a significant fraction of FRBs contain scintillation

from the IGM, we expect that an anti-correlation between redshift and νDC will

be present.

7.5.5 Galactic Scintillation

Galactic electron distribution models such as NE2001 and YMW16 are widely

used to determine the expected Galactic scintillation along a given line of sight.

While a correlation between observed scintillation and model expectations has

been established (Schoen et al., 2021), it has also been shown that Galactic scin-

tillation can be dominated by extremely small scale features (Stinebring, 2006;

Trang & Rickett, 2007; Brisken et al., 2010). Existing models are therefore not

expected to satisfactorily map the distribution of Galactic scintillation, due to

their limited number of components (Yang & Zhang, 2017). FRB20201124A is a

prime example of this, demonstrating significantly less scattering than expected

for its line of sight (Main et al., 2022, 2021). Motivated by this we compare our

measured Galactic scintillation to expectations.

We plot the scintillation measured for FRBs in our sample against the ex-

pected Galactic scattering from these models in Fig. 7.8, scaling all measures

to 1GHz using a ν4 scaling relation. While our observations of FRB20201124A

also show anomalously low scattering (∼ 1/20NE2001 and ∼ 1/1000YMW16),

consistent with previous observations (Main et al., 2021), scintillation in FRBs

20190608B and 20210320C agrees with estimates from both YMW16 and NE2001
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Figure 7.8: FRB localisations superimposed on Galactic electron distribution
models and measured Hα intensities. Cyan points represent FRBs confirmed to
scintillate. Red points represent FRBs confirmed to not scintillate. Green points
represent FRBs where evidence of scintillation was inconclusive. The grey point
represents FRB20191228A, where data was corrupted. Around each cyan point
on the Galactic electron density maps (top and middle) we change the region
colour to represent the FRBs measured Galactic scintillation time for comparison
with the model estimates. To aid visual distinction scattering times greater than
or equal to 10−3 s are shown as the same colour. Top: Ne2001 model (Cordes &
Lazio, 2003). Middle: YMW16 model, which uses DM and the Bhat relationship
to predict scattering (Bhat et al., 2004; Yang & Zhang, 2017). Bottom: The
Finkbeiner (2003) Hα all-sky intensity map.
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to within a factor of ≈ 2. FRBs 20190608B and 20201124A show very similar

levels, however, FRB20210320C has a much lower Galactic scattering time as

expected for higher Galactic latitudes.

The four non-scintillating FRBs within our sample are distributed over a range

of Galactic latitudes where we have observed FRB scintillation, as shown in Fig.

7.8. Given the smoothness of the expected Galactic electron distributions, we

expect to observe similar Galactic scintillation in each of these cases. The lack of

apparent scintillation could suggest that either the Galactic electron distribution

models fail to capture coarse variations in the expected scattering or that angular

broadening from another screen is suppressing Galactic scintillation. For the three

non-scintillating FRBs with confirmed redshifts, we can use Eq. 7.2 to calculate

the distance an extragalactic scattering screen would need to be from the host, in

order to suppress the expected Galactic scintillation. Using NE2001 we find that,

in each case, the screen causing the temporal broadening of these FRBs would

need to be greater than ∼ 10 kpc away from the source (in some cases several

Mpc further) in order to suppress the expected Galactic scintillation.

Scintillation could also be suppressed by a third scattering screen contained

within the IGM. In this case Eq. 7.3 can be inverted to determine the minimum

value of tscatt(1 + zd)Dds,x/Dd,x for an IGM screen to begin suppressing the ex-

pected Galactic scintillation. For FRBs 20181112A, 20200430A and 20210117A,

respectively, we find that the IGM would need to cause scattering well in excess3

of 3.3µs, 0.11µs and 5.0µs at 1GHz (assuming a ν−4 scaling) for screens at red-

shifts 0.198, 0.076 and 0.099 (where Dds,x/Dd,x ≈ 1, resulting in the maximum

scattering time for a given scattering measure).

From Macquart & Koay (2013), observed scattering times are related to the

effective scattering measure (SMeff) via

tscatt(1 + zd) ∝ ν−4

(
Dd,xDds,x

Ds

)
SMeff, (7.7)

3For scattering times, exactly equal to the limit the modulation index will be one, and will
decrease as

√
tscatt/tlimit.
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for scattering dominated by diffractive scales below a constant inner turbulence

scale. Using the redshifts associated with each source and midpoint, the limits

on the IGM scattering times derived for both scintillating and non-scintillating

FRBs can then be converted to limits proportional to SMeff. For the case of a

diffuse IGM, Macquart & Koay (2013) show that SMeff should be a monoton-

ically increasing function of redshift, which is inconsistent with the limits we

derive, as shown in Fig. C.10. As a result, a diffuse IGM component cannot

be responsible for suppressing Galactic scintillation expected from NE2001 in

our non-scintillating bursts given our observations of scintillation in others. We,

therefore, suggest that it is unlikely that angular broadening associated with scat-

tering from the diffuse IGM, or regions within the host galaxy of each burst is

suppressing the Galactic scintillation of the non-scintillating FRBs in our sample.

Rather, it is more likely that either 1) the true scintillation bandwidths are dif-

ferent from that predicted under the NE2001 and YMW16 models, similar to the

case of FRB20201124A, or 2) significant structures in the IGM, such as a galaxy

halo, are intervening between the source and the observer, resulting in significant

angular broadening. In the case of FRB20181112A such a structure exists in the

form of a foreground galaxy intervening at z = 0.36738 (Prochaska et al., 2019a).

However, at this redshift a screen contributing the maximum amount of scatter-

ing allowed for this burst (0.0278 ,ms, as per Table C.1) results in a modulation

index of mg = 0.46 and should be visible in its ACF (see Fig. C.6).

As demonstrated in Morgan et al. (2022), there exists a strong correlation be-

tween the angular broadening of extragalactic point sources and the intensity of

Galactic Hα emissions. Angular broadening of extragalactic sources is weighted

approximately uniformly with distance for Galactic scattering screens (Cordes

& Lazio, 2003), and therefore, ionised regions, shown by Galactic Hα observa-

tions, are expected to contribute significantly to angular broadening by the ISM.

Conversely, the scintillation bandwidths and scattering times associated with the

ISM are weighted more heavily towards the middle of the path length (Cordes &
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Lazio, 2003), allowing background regions of lower Hα intensity to cause greater

scattering times than more intense foreground regions, confusing any correlation.

Moreover, close to the Galactic plane the ionised region responsible for the ob-

served scattering may not be visible in Hα, due to extinction (Finkbeiner, 2003).

As such, we do not necessarily expect to observe a strong correlation between

FRB νDC and Hα. The association of scintillation in FRB20201124A to a more

local screen, however, does provide some motivation to search for scintillation

screens locally, where extinction should be relatively low. Thus, we also compare

scintillation in our sample to a Galactic map of Hα intensity (Finkbeiner, 2003)

as shown in Fig. 7.8. We find no obvious relation between scintillating and non-

scintillating FRBs and Hα intensity or variance in 2.5◦ × 2.5◦ area surrounding

each FRB line of sight. We note, however, that the size of a reasonable scattering

disk lies well below the resolution of data used to compose this map and therefore

may show correlation with smaller scale Hα structures.

7.6 Conclusion

The location of the dominant scattering screens contributing to the temporal

broadening and spectral scintillation of FRBs has important ramifications for

many areas of astrophysics. Scattering near the host galaxy or circum-burst

environments, such as FRB20190520B affects our understanding of progenitor

evolution; scattering in intervening galaxies could constrain the presence of cold

cloudlets in the CGM; finally, scattering in our own Galaxy could inform models of

the Galactic electron distribution. For apparently non-repeating FRBs scattering

can be difficult to localise, but if bursts are observed to scatter and scintillate

independently then a two-screen model can be used to make direct constraints.

In this work, we have measured the level of scattering and scintillation in 10

CRAFT FRBs with high spectro-temporal resolution and applied the two-screen

model developed by Masui et al. (2015) and Ocker et al. (2022c) to place con-

straints on the distances to their respective scattering screens. We find strong
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evidence for scattering and scintillation in three FRBs, and strong evidence for

no spectral modulation in four FRBs. The remaining are indeterminate. Of

the scintillating FRBs the scattering in FRB20190608B is robustly associated

with the host galaxy in agreement with previous estimates; the scattering in

FRB20210320C must occur within 3Mpc of the host; finally, we find that the

scattering in FRB20201124A is likely associated with its host galaxy environ-

ment, however, the low modulation index of its Galactic scintillation suggests the

dominant scattering region may be in the halo rather than the host ISM. The

Galactic scintillation of FRBs 20190608B and 20210320C are in general agreement

with the scintillation expected from Galactic models YMW16 (Yang & Zhang,

2017) and NE2001 (Cordes & Lazio, 2003). However, the anomalously low scat-

tering of FRB20201124A and the definitive lack of scintillation in four FRBs

indicates that, if the observed pulse broadening is contributed by host galaxy

ISMs or circum-burst environments, existing models may be poor estimators of

the scattering times associated with the Milky Way’s ISM, as has been noted

already by Ocker et al. (2021) in the case of YMW16. Additionally, we find

no obvious relationship with the large-scale mean and variance of surrounding

Galactic Hα emission. We leave a statistical comparison of scintillation quan-

tities with other burst and host galaxy properties to a future study, once the

sample of high-resolution bursts has been expanded.

With the automated CELEBI post-processing pipeline now operational and

the CRAFT Coherent upgrade expected soon we expect that the number of ob-

served scintillating FRBs will grow, allowing for a statistical study of their Galac-

tic and extragalactic screen properties. Furthermore, we highlight that targeting

low Galactic latitudes for FRB searches may further increase the number of ob-

served, strongly scintillating FRBs, allowing for the stronger constraint of their

extragalactic counterparts and Galactic electron distribution models.
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Chapter 8

Summary and Conclusion

The study of cosmological transients lies at the frontier of modern astrophysics.

In particular, the burgeoning field of FRB research has already contributed to

long-standing issues, such as the missing baryon problem, and may hold the

key to unravelling other cosmological mysteries such as the H0 tension. The

methods in each of these cases rely upon understanding the phenomena which

affect FRB propagation, e.g. dispersion, which can be measured to quantify the

baryonic content of the IGM. By understanding how FRBs propagate through

various distributions of matter we can infer properties about those distributions.

Furthermore, because FRBs are the most angularly compact sources known, we

can infer properties on scales that are inaccessible via other methods. Over the

cosmological scales FRBs propagate, there are many media of interest, however,

in this thesis, I have primarily investigated how gravitational lensing can allow

FRBs to constrain the fraction of dark matter in compact objects. Secondarily,

I have investigated how to constrain the position of turbulent plasmas along an

FRBs path, by measuring the scattering and scintillation which result from their

intervention.

191



8.1 First Constraints on Compact Dark Matter

From Fast Radio Burst Microstructure

In §5 I investigated how FRBs observed by CRAFT could be used to inform

forecasts of FRB constraints on compact dark matter. The identity of dark

matter is one of the biggest unsolved problems in modern cosmology, with many

forms proposed, from beyond-the-standard-model particles such as axions, to

PBHs formed in the early Universe. PBHs are a candidate of particular interest

as a population of black holes in the poorly constrained stellar mass (10−100M⊙)

region could also explain the merger event rates inferred from gravitational waves

observed by LIGO.

Strong gravitational lensing results in multiple images in the spatial domain,

corresponding to multiple temporal echoes in the time domain. By searching for

echoes of transient signals, the population of gravitational lenses between the ob-

server and the transient source can be constrained. As FRBs have extremely short

durations they make ideal probes of the stellar mass range of interest. Previous

treatments assumed minimum temporal separations of 0.1ms and magnification

ratios ≲ 5. More recent observations of FRBs at high time resolution, however,

have shown FRB temporal structures on the scale of tens of microseconds, at

much higher S/N ratios than previously achieved. This allows for the consid-

eration of temporal separations an order of magnitude lower, and magnification

ratios an order of magnitude higher than in previous cases. Using the previously

established formalism, I modelled the optical depth to strong lensing probed by

two high-time resolution FRBs and found that ∼ 130 FRBs would be required

to improve upon current constraints if lenses were distributed homogeneously

throughout the cosmic web. Furthermore, FRB20181112A had been observed to

pass within 20 kpc of a foreground galaxy, allowing it to directly probe the dense

dark matter halo surrounding that galaxy. Motivated by this I derived similar

constraints for the more physically accurate case where dark matter is concen-
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trated within galaxy halos. I predicted that ∼ 170 FRBs, that similarly probe

foreground halos, could improve upon existing limits that assume dark matter

to be homogeneous throughout the Universe. Finally, I derive limits that could

be placed on non-compact dark matter following a power-law distribution. By

measuring the size of the gravitational scattering tail that would result from prop-

agating through such a distribution, FRBs provide a way to potentially constrain

the mass of exotic dark matter particles as well as the compact PBHs.

8.2 Effect of Gravitational Lensing on Fast Tran-

sient Event Rates

The constraints formed in §5 require the temporal echoes associated with each

gravitationally lensed image to be distinguishable within an observation. Nat-

urally, this places a lower limit on the time delays that can be observed, cor-

responding to a lower limit on the lens masses that FRBs can probe. In §5 the

minimum temporal delays were given by the smallest temporal substructures that

could be resolved within a burst’s profile, ≈ 10µs. This corresponds to a mini-

mum detectable lens mass of 0.1M⊙. In more recent works (Kader et al., 2022;

Leung et al., 2022), that search the electric field data for coherent gravitational

lensing, the minimum time delay is much smaller at 1.25 ns, allowing strong lens-

ing from lens masses ≳ 10−4M⊙ to be detected in FRB temporal profiles. Below

these scales, the temporal echoes from the lensing will not be distinguishable and

therefore lensing will not be detectable. However, gravitational lensing can still

occur below these detection thresholds, potentially affecting our inferences of in-

trinsic FRB properties. In §6 I derived the minimum lens masses which could

cause a significant magnification of FRBs using a wave optics treatment. Further-

more, I derived the effect that lenses above this mass would have the observed

differential event rate of FRBs over all fluences. By considering the cumulative

effects of lensing on the observed population of FRBs, I demonstrated how the en-
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tire population of compact objects capable of lensing FRBs could be constrained,

regardless of whether lensing can be detected in individual FRBs using the afore-

mentioned methods. I find that 8000 unlocalised, high fluence FRBs at 1.4GHz

would be required to rule out a Universe comprised entirely of FRB lenses, with

3.5 × 105 required to exclude more than 6% of dark matter being comprised of

PBHs ≳ 10−5M⊙. Additionally, I also rule out the prospect of all FRBs being

highly magnified, intrinsically low-energy phenomena for static lensing geome-

tries, which had been a scenario of interest within the FRB community.

8.3 Two-Screen Scattering in CRAFT FRBs

Where gravitational lensing can be used to investigate the properties of dark

matter along the line of sight, plasma propagation effects such as scattering and

scintillation can be used to constrain the density and turbulence of baryonic mat-

ter. Of particular interest are the circum-galactic and circum-burst regions, as

little is known about these media and their properties have important implica-

tions for the evolution of galaxies and FRB sources respectively. In general, the

position of the baryonic media responsible for such multi-path propagation effects

is difficult to ascertain. However, in cases where both Galactic and extragalac-

tic scattering are observed, previous works have shown that the positions of the

relevant scattering screens can be constrained. In §7 I applied these methods to

a greatly expanded sample of high-resolution FRB dynamic spectra rendered by

the CRAFT’s CELEBI pipeline, and found three FRBs where such limits can be

placed. For FRBs 20190608B and 20210320C I found that the extragalactic scat-

tering media are likely within 16.7 kpc and 3000 kpc of their sources, respectively.

In the case of FRB20201124A I derived a new method and used the scintillation’s

low modulation index to infer an exact extragalactic scattering media position of

≈ 9 kpc. Each of these results are consistent with scattering occurring within the

FRB’s host galaxy ISM or CGM. If this holds true for all FRBs then the defini-

tive lack of Milky Way scintillation for four other FRBs in my sample suggests
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that models of the Galactic electron distribution may be poor estimators of the

scattering times associated with the Milky Way’s ISM, similar to the well-known

case of FRB20201124A, which I also confirm here. Such discrepancies could have

important implications for many fields of FRB and pulsar research which reg-

ularly make use of these models. Furthermore, I found no correlation between

the measured Galactic scintillation decorrelation bandwidths and the mean or

variance of large-scale Hα intensities surrounding each burst line of sight, which

have been shown to be correlated with Galactic angular broadening.

8.4 Conclusion and Outlook

The gravitational and plasma lensing of FRBs provides a way to constrain both

the baryonic and non-baryonic matter distributions in our Universe over cosmo-

logical scales. By constraining these distributions we gain insight not only into

the long-standing question of the nature of dark matter, but also into the nature

of FRB progenitors, by constraining the properties of the media in which they

are embedded.

The methods demonstrated within this thesis allow for these constraints to be

formed, provided that a statistical sample of FRBs can be observed. Specifically,

I have shown that FRBs can probe a wider range of the PBH parameter space

than any previously established limit and that the presence of turbulent, ionic

media along the line of sight to an FRB source may be localised precisely with

respect to the total length of its propagation path.

A caveat common to all the methods derived in this thesis is that currently,

the samples of localised and unlocalised FRBs are not large enough to support a

meaningful improvement upon existing limits. In the coming years, the number of

localised and unlocalised FRBs is expected to increase drastically with the advent

of new instruments such as BURSTT (Lin et al., 2022) and DSA-2000 (Hallinan

et al., 2021), and upcoming upgrades to existing FRB detectors, such as CHIME’s

outriggers (Sanghavi et al., 2023) or the coherent upgrade to CRAFT.
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As the number of localised FRBs grows, so will the number that are confirmed

to intersect foreground halos, allowing the current constraints on compact dark

matter to be improved and potentially non-compact dark matter distributions

to be constrained. As the total number of observed FRBs grows, the fraction of

observed FRBs with measured host galaxy redshifts may actually decline, owing

to the resource-intensive nature of spectroscopic follow-up observations. Through

measurements of the differential event rates of FRBs, the remaining sample of un-

localised FRBs can also be used to form constraints on the population of PBHs,

allowing for an additional consistency check on the limits derived from the lo-

calised bursts.

As CRAFT and other surveys continue to render more high-resolution dy-

namic spectra from captured voltage data, scattering and scintillation analysis

similar to that outlined in this thesis will be possible on a statistical scale. This

will allow stronger constraints on the IGM and host galaxy ISMs and CGMs

to be formed. In turn, this may potentially allow for better estimates of host

DM contributions, which currently inhibit FRB constraints on other cosmologi-

cal parameters such as H0 (James et al., 2022). Comparing scattering properties

between repeating and apparently non-repeating bursts may also provide evidence

for or against a single population of bursts.

The treatments contained within this thesis could be improved by expanding

the complexity of some models to capture more realistic propagation behaviours.

In estimating the optical depth of high magnification transients a wave optics

treatment could be deployed to better estimate the cross sections involved. When

determining the effect of lensing on the observed differential event rate of FRBs,

the magnification probability distribution for lensing in dynamic geometries could

be considered. In considering the interference between separate FRB images in

a wave optics treatment I make no attempt to include boundary wave diffraction

effects that emerge when the time delay between signals is comparable to the

signal length. Such a description would provide a more complete wave optics
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treatment. Finally, throughout this thesis, I have neglected the effect of lensing

(gravitational or plasma) on the observed polarisation properties of a burst, which

provides an additional dimension of information that should be considered in the

future. These additional complexities provide a way forward to improving existing

models of FRB propagation. At present however, the methods to place sweeping

constraints on the baryonic and non-baryonic matter distributions in our Universe

have been established, what remains is to simply measure more bursts.

8.5 Closing Remarks

FRBs have demonstrated that they are extremely powerful probes of our Universe,

and 16 years after their discovery, there remains no shortage of compelling new

applications propounded for them. With the flood of proposed FRB detectors

promising a drastic increase in the sample size, it is doubtless that there are

exciting discoveries in the future of transient science and cosmology. It is my

hope that fuelled by these future detections, the works contained within this

thesis will provide a strong foundation upon which future constraints on dark

matter and FRB progenitors can be made.
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Appendix A

Cosmological Populations

A.1 Derivations

A.1.1 Bolometric General Luminosity-Function Source Counts

for Constant Flux Sources in a Flat Universe

The luminosity function yields a number density per unit luminosity. A small

number of sources dN can be expressed as (Carroll et al., 1992):

dN = ϕ(L, z)dL dV (A.1)

The volume associated with the density from the luminosity function is the co-

moving volume, expressed generally as

dVc = R3
0

r2

(1− kr2)1/2
drdΩ (A.2)

=
d2M

(1 + ΩKH2
0d

2
M)1/2

d(dM)dΩ (A.3)
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These forms are analytically integrable, giving (Hogg, 2000)

Vc =



(
4πD3

H

2Ωk

)[
DM

DH

√
1 + Ωk

D2
M

D2
H
− 1√

|Ωk|
arcsinh

(√
|Ωk|DM

DH

)]
Ωk > 0

4π
3
D3
M Ωk = 0(

4πD3
H

2Ωk

)[
DM

DH

√
1 + Ωk

D2
M

D2
H
− 1√

|Ωk|
arcsin

(√
|Ωk|DM

DH

)]
Ωk < 0

(A.4)

where DM is the transverse comoving distance, given by (Hogg, 2000):

DM =


DH

1√
|Ωk|

sinh
[√

Ωk
Dc

DH

]
Ωk > 0

Dc Ωk = 0

DH
1√
|Ωk|

sin
[√

Ωk
Dc

DH

]
Ωk < 0

(A.5)

For the case of Ωk = 0

A.1.1.1 Replacing dV with dz and dL with dS

Vc =
4

3
πD3

c (A.6)

differentiating with respect to redshift

dVc
dz

= 4πDc(z)
2dDc(z)

dz
(A.7)

dVc = 4πDc(z)
2dDc(z)

dz
dz (A.8)

Considering the bolometric relation between flux and luminosity

L = 4πD2
LS (A.9)

dL = 4πD2
LdS (A.10)
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whereDL is the luminosity distance and is given by: (DA is the angular diameter distance)

DL = (1 + z)DM (A.11)

Therefore, in our case of Ωk = 0

dL = 4πD2
M(1 + z)2dS (A.12)

dL = 4πD2
c (1 + z)2dS (A.13)

Substituting these expression into A.1 yields

dN = 16π2D4
c (1 + z)2 ϕ(L, z)

dDc

dz
dz dS (A.14)

Therefore, the differential source counts are

dN

dS
=

∫
16π2D4

c (1 + z)2 ϕ(L, z)
dDc

dz
dz (A.15)

A.1.1.2 δ-Luminosity-Function

This is the desired result for a generic luminosity function, however if we as-

sume the luminosity function is a delta function in luminosity, then additional

simplification is possible. A delta function is defined as

∫ ∞

−∞
δ(x)dx = 1 (A.16)

generalising x to a monotonically increasing 1-1 function u = f(x) we can derive

the effect of composition of a delta function with another function g(x)

∫
δ(f(x))g(x)dx (A.17)
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the delta function has non-zero value at the roots of f(x), i.e. when f(x)=0. Be-

cause we are considering a monotonic function f(x), we need only integrate a

negligible ε amount around its single root

∫
δ(f(x))g(x)dx =

x0+ε∫
x0−ε

δ(f(x))g(x)dx (A.18)

As our function is also 1-1 we can express x as the inverse function f−1 of u

=

x0+ε∫
x0−ε

δ(u)g(f−1(u))df−1(u) (A.19)

under the chain rule

df−1(u) =
df−1(u)

df(f−1(u))
df(f−1(u)) (A.20)

substituting in

=

f(x0+ε)∫
f(x0−ε)

δ(u)g(f−1(u))
df−1(u)

df(f−1(u))
df(f−1(u)) (A.21)

=

f(x0+ε)∫
f(x0−ε)

δ(u)
g(f−1(u))

f ′(f−1(u))
du (A.22)

the delta function has non-zero value at u = f(x0) so the RHS integral evaluates

as

=
g(f−1(f(x0)))

f ′(f−1(f(x0)))
(A.23)
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simplifying to

∫
δ(f(x))g(x)dx =

g(x0)

f ′(x0)
(A.24)

g(f(x)) =
g(x0)

f ′(x0)
(A.25)

from which we can infer

δ(f(x)) =
δ(x)

f ′(x0)
(A.26)

This allows the delta function in our luminosity to be converted to a delta function

in redshift as follows

δ(L(z)) = δ(z)
dz

dL(z)
(A.27)

L(z) = 4πD2
c (z)(1 + z)2S (A.28)

dL(z)

dz
= 8πDc(z)

dDc(z)

dz
(1 + z)2S + 8πD2

c (1 + z)S (A.29)

= 8πDc(1 + z)S

(
(1 + z)

dDc(z)

dz
+Dc(z)

)
(A.30)

where, using Eq. 3.5, dDc(z)/dz is given by

dDc(z)

dz
=

dH
E(z)

(A.31)

dDc(z)

dz
=

c

H0

H0

H(z)
=

c

H(z)
(A.32)

removing the delta function in luminosity in the luminosity function ϕ converts

the remainder into a number density function that takes in only redshift

dN

dS
=

∫
16π2D4

c (z)(1 + z)2n(z)
c

H(z)

δ(z)

dL(z)/dz
dz (A.33)
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evaluating at the non-zero value of the delta function z0

dN

dS
= 16π2D4

c (z0)(1 + z0)
2n(z0)

c

H(z0)

1

dL(z0)/dz
(A.34)

where z0 is determined by the observed flux and considered luminosity. Further-

more, for a non-evolving population, the z0 dependence of the number density

can be dropped to yield

dN

dS
= 16π2D4

c (z0)(1 + z0)
2N0

c

H(z0)

1

dL(z0)/dz
, (A.35)

where N0 is the local number density of sources.

A.2 Tables
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Figure A.1: Tabular legend corresponding to Fig. 4.1 reproduced from Madau &
Dickinson (2014).
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Appendix B

Methods

B.1 Derivations

As discussed in §3.3, the optical depth for a cosmological population is given by

τ =

zs∫
0

dχ(zd)(1 + zd)
2nσ(µ), (B.1)

where n is the number density of lenses with cross-section σ, zd is the redshift of

the lens plane, zs is the redshift of the source and χ is the comoving distance. As

discussed §3.1, comoving distance can be expressed as an integral over redshift

(Hogg, 2000)

χ = dH

z∫
0

dz′

E(z′)
(B.2)

where dH = c/H0 is the Hubble distance and

E(z) =
H(z)

H0

. (B.3)
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Therefore the element dχ is given by

dχ =
dχ

dz
dz =

dH
E(z)

dz (B.4)

dχ =
c

H0

H0

H(z)
dz (B.5)

dχ =
c

H(z)
(B.6)

Substituting into Eq. B.1 converts the optical depth into an integral over lens

redshift

τ =

zs∫
0

dzd
c

H(zd)
(1 + zd)

2nσ (B.7)

to relate the number density of lensing objects to the Universe’s density of matter

the number density can be expressed in terms of critical density (ρcr

τ =

zs∫
0

dzd
ΩLρcr
ML

c

H(zd)
(1 + zd)

2σ (B.8)

where ML is the mass of an individual lens.

The cross-section to lensing above a magnification of µ is given by

σ = πy(µ)2θ2ED
2
d (B.9)

where Dd is the angular diameter distance of the lens from the observer and y is

the angular impact parameter of the source with respect to the lens in units of

the Einstein radius (θE), given by

y(µ) =

√√√√2

(
µ√
µ2 − 1

− 1

)
. (B.10)
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The differential cross section as a function of the magnification is given by

dσ

dµ
= 2πy

dy

dµ
θ2ED

2
d, (B.11)

where the gradient of y with respect to µ is given by

dy

dµ
=

(
2µ√
µ2 − 1

− 2

)−1/2
−1

(µ2 − 1)3/2
, (B.12)

which yields

dσ

dµ
=

−2π

(µ2 − 1)3/2
(θEDd)

2 . (B.13)

An infinitesimal area dσ
dµ
dµ corresponds to an infinitesimal optical depth dτ to

lensing at a magnification between µ and µ+ dµ given by

dτ =

zs∫
0

dzd
ΩLρcr
ML

c

H(zd)
(1 + zd)

2 dσ

dµ
dµ (B.14)

dτ =

zs∫
0

dzd
ΩLρcr
ML

c

H(zd)
(1 + zd)

2

2π

(µ2 − 1)3/2
(θEDd)

2 dµ (B.15)

This form can be simplified by recognising that θ2E has a linear dependence on

the mass of the lensing object that can be cancelled with the ML term in the

wider expression, yielding

dτ =

zs∫
0

dzd
ΩLρcr
Σcr

c

H(zd)
(1 + zd)

2

2

(µ2 − 1)3/2
µ (B.16)
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where

Σcr =
c2Ds

4πGDdsDd

(B.17)

which when integrated over µ yields Eq. 3.20
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Appendix C

The Effect of Gravitational

Lensing on Fast Transient Event

Rates

C.1 Dη

There are many models available for calculating cosmological distances in an

inhomogeneous universe. We have opted here to use the ZKDR distance equa-

tion (Zel’dovich, Kantowski, Dyer/Dashevskii, Roeder, also known as the Dyer-

Roeder distance), principally for its simplicity as an effective model rather than

a full space-time description. More complicated models such as Swiss-cheese

space-times are computationally limited to treating galaxy scale inhomogeneities

(Fleury et al., 2013) and so are inadequate for addressing the scales we wish to

consider here. Despite questions of the ZKDR distance’s validity (e.g. Clarkson

et al., 2012) the model has been shown analytically to be consistent with certain

Swiss-cheese models (Fleury, 2014) which are exact solutions to Einstein’s field

equations and achieves good agreement with more generalised models such as

Holz & Wald (1998) and Bergström et al. (2000).

The ZKDR distance equation calculates the value of DA for propagation
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through a void in an inhomogeneous, but on-average Friedmann-Lemaitre dust

universe (dust refers to cold/non-relativistic matter) which we refer to as Dη.

The equation, its derivation and the relevant boundary conditions can be found

in Kayser et al. (1997). The authors also present a general numerical method to

solve for the ZKDR angular diameter distance (Dη) in an arbitrary cosmology.

Their treatment makes three key assumptions.

1. The distribution of matter in the Universe can be divided into clumpy

(inhomogeneous) and smooth categories, described by η, the fraction of the

mass which is smooth.

2. The beam subtended by the source contains no clumps.

3. The light propagates far from all clumps, i.e. there is vanishing shear on

the beam.

Following their method we provide a simple numerical implementation for cal-

culating the Dη in the Python programming language (Rossum & Drake, 2011).

Dη can be solved for by considering the following system of coupled ordinary

differential equations (Kayser et al., 1997):

D′
η(z) =

1

(1 + z)
√
Q(z)

(C.1)

D′′
η(z) =

−
(

2Q(z)

(1+z)+
Q′(z)

2

)
D′ − 3

2
ηΩM,0(1 + z)D

Q(z)
(C.2)

Q(z) = ΩM,0(1 + z)3 − (ΩM,0 + Λ0 − 1)(1 + z)2 + Λ0 (C.3)

Q′(z) = 3ΩM,0(1 + z)2 − 2(ΩM,0 + Λ0 − 1), (C.4)

where primes denote derivatives with respect to redshift and ΩM,0 & Λ0 are the

matter density parameter and cosmological constant respectively at z = 0.

To solve the system we implement a numerical routine using SOLVE IVP

(Virtanen et al., 2020). The source code for our implmentation can be found here

: https://github.com/MWSammons/ZKDRDistance.
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Also implemented in our function set is the generalised Dyer-Roeder model

of Linder (1988). This solution includes a treatment of relativistic matter and

radiation densities in the universe. However, we note that results of this method

achieve a worse agreement with the analytic solutions for a smooth universe in

the case of a Planck cosmology compared to the forced-flat Kayser model.

The results of our numerical approach are presented in Fig. C.1, which com-

pares Dη in a completely inhomogeneous universe (η = 0) and D1, for a Planck

cosmology (Planck Collaboration et al., 2018). For the remainder of this work

Dη will be calculated assuming this cosmology. To demonstrate the fidelity of

our numeric method we also plot the residuals of D1 with its analytic solution in

the bottom panel of Fig. C.1. Our results show good agreement with the analytic

solution. Moreover, we reproduce the large difference between D1 and Dη for

η = 0 at high redshift seen in Fig. 1 of Kayser et al. (1997). One short-coming

of the Kayser model is that any density not in cold matter ΩM or dark energy

Λ implicitly contributes to the universe’s curvature. Considering this, relativistic

and radiation density in the Planck cosmology have been amalgamated into ΩM,0

to force a flat universe within the boundaries of the Kayser model.

C.2 The Effect of Wave Optics

Formally, geometric optics describes the behaviour of emission with an infinite

frequency. In reality however, geometric optics provides an adequate description

of gravitational lensing for all emission wavelengths much shorter than the gravi-

tational radius of the lens. For the case of point mass lenses, Oguri (2019) defines

a dimensionless parameter w from this condition,

w = 2πf
4GM(1 + zd)

c3
, (C.5)

where zd is the redshift of the lens.

The magnification for a point mass lens as a function of the source’s angular
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Figure C.1: (Top panel) Comparison of D1 and Dη for a completely inhomoge-
neous universe (η = 0) in a Planck cosmology. Upper plots are for an observer at
z = 0, lower plots are for an observer at z = 2. (Bottom panel) The log residuals
between the analytic solution to D1 (Hogg, 2000) and our numerical result for a
Planck cosmology.
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Figure C.2: Behaviour of magnification in wave optics. (Top left/right) mag-
nification/log magnification of the source as a function of the source’s angular
impact parameter with respect to the optic axis centred on the lens, normalised
by the einstein radius of the lens θE, plotted for various dimensionless w param-
eter choices. (Bottom) Maximum magnification as a function of dimensionless
parameter w, calculated using Eq. (45) in (Oguri, 2019).

impact parameter β can then be defined for a wave optics regime as 1.

µ =
πw

1− e−πw

∣∣∣∣∣1F1

(
i

2
w, 1;

i

2
w

(
β

θE

)2
)∣∣∣∣∣

2

, (C.6)

where 1F1 is the confluent hypergeometric function.

Fig. C.2 shows this for a variety of w values as well as the geometric case. For

1We note this treatment is only valid when the geometric time delay along paths contributing
to the interference pattern are much less than the pulses duration. Otherwise the boundary
diffraction wave should be modelled explicitly (Born & Wolf, 2013).
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a w value approaching infinity the wave and geometric optics results will agree,

with a finite extent source smoothing over the infinitely compressed oscillations.

As w decreases so does the maximum possible magnification. Additionally, fringe

spacing increases allowing sources of greater extent to exhibit an oscillatory mag-

nification with β.

If the optical depth to lensing is low, the magnification cumulative probability

distribution function (CDF; P (> µ)) will be proportional to the cross section of

normalised angular impact (β/θE) greater than a magnification µ (Turner et al.,

1984). In the case of geometric optics, evaluating the cross section becomes simply

σ = π

(
βµ
θE

)2

(C.7)

where βµ is the angular impact parameter of the source at a magnification µ. βµ

can be determined from the black line on Fig. C.2, which is governed by Eq. (2.5)

in Turner et al. (1984). Ultimately this yields the conventional dP/dµ ≡ p(µ) ∝
µ−3 behaviour.

As can be intuited from Fig. C.2, the cross section to lensing above µ for

lower values of w is significantly more complicated. By integrating the ring el-

ement 2πβdβ for all magnifications above µ we can determine the cross section

corresponding to P (> µ) for any w. We plot this cross section in Fig. C.3, nor-

malised by its geometric counterpart to provide a comparison between the results

of geometric and wave optics.

Fig. C.3 shows that the normalised cross section over the range of µ and w

values plotted is often significantly above 1. This means that P (> µ) is often

greater in the wave optics regime than the geometric regime. This is in agreement

with wave optics results derived by Jow et al. (2020).

For high values of w, the low magnifications behave very similarly to the geo-

metric case (i.e. the normalised cross section is flat with µ). As the magnification

increases however, the scale of cross section oscillation increases and subsections

of the magnification space begin to deviate significantly from the flat geometric
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Figure C.3: Cross section to lensing above a magnification µ calculated from the
wave optics magnifications shown in Fig. C.2, normalised by the corresponding
cross section derived using geometric optics (Eq. (C.7)). w values are calculated
from Eq. (C.5). Cross sections are directly proportional to the magnification
CDF.
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behaviour until the maximum magnification is reached. Decreasing w, either by

decreasing the emission frequency or decreasing lens mass then effectively trans-

lates the normalised cross section to lower magnification.

If the frequency of emission or lens mass is low enough such that regions of

significant oscillation in normalised cross section are present at observed magni-

fications, then geometric optics should not be applied to calculate the expected

effects of lensing. For an FRB emitted at 1 GHz, at redshift 0.1, lensed by a 0.01

M⊙ point mass, w ∼ 103 and the maximum magnification will be ≈ 103.5. From

Fig. C.3 we can see that for the w = 100 case, magnifications a factor of 101.5

below the maximum (at around log10µ = 1.0) have geometric like behaviour. Ap-

plying this same condition to our canonical FRB case, it is reasonable to assume

that magnifications below ∼ 102(103.5/101.5) will have p(µ) ∝ µ−3. Taking the

results of our lensed dR/df calculation shown in Fig. 6.11 and decomposing it into

its components in magnification space we get Fig. 6.12. From this figure we can

see that the fractional change in dR/df due to lensing is dominated by low mag-

nifications. Specifically, more than 98% of the total comes from magnifications

less than 100 at all fluences. This suggests that the fraction of observed sources

at magnifications above 102 will be negligible and therefore that our results for

FRB lensing, using the geometric p(µ) ∝ µ−3 should apply for lens masses greater

than 0.01M⊙
2.

If observed bursts are dominated by lensing at magnifications where the cross

section to lensing shows prominent fringes, e.g. µ = [10 − 300] for w = 100, the

true lensing PDF could have behaviour significantly different from p(µ) ∝ µ−3.

In this context, counter to the discussion in §6.6, all observed bursts could be

highly magnified, despite an observed γ ̸= −3. The associated decrease in µmax

however restricts the parameter space where this could occur. Using w = 100, a

potential example could be FRBs at an emission frequency of 1 GHz requiring a

magnification above ∼ 10 but below ∼ 300 to be observed in a universe populated

2We have not accounted for the increased cross section size in the case of a wave optics and
so our results will underestimate the effect of lensing.
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by ∼ 10−3M⊙ mass lenses (w ≈ 100). In such a scenario all observed FRBs would

be lensed but the energy index γ could differ from the expected −3 value. These

FRBs would also only be observable above ∼ 30 MHz, at which point µmax ≈ 10.

C.3 Derivations

C.3.1 Differential Rates in a Smooth Universe

A small observed rate can be expressed using the event rate energy function of

the fast transient population ΘE as,

dR = ΘE(Eνe , z, νe)dE dVc (C.8)

the comoving volume element is given by

Vc =
4

3
πD3

c (z) (C.9)

differentiating with respect to redshift gives

dVc
dz

= 4πD2
c (z)

dDc

dz
(C.10)

Intrinsic spectral energy (Eνe) is given by

Eνe = 4πD2
L(z)

Fν
(1 + z)2

(C.11)
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where Fν is the observed fluence of the transient at observation frequency ν, the

factor of 1/(1+ z)2 accounts for bandwidth compression by cosmological redshift

as well as the dilation of the bursts duration in time, differentiating with respect

to observed fluence and holding redshift constant gives us

∂Eνe
∂Fν

= 4πD2
L(z)

1

(1 + z)2
(C.12)

putting these components into a integration over redshift transforms our partial

differential equation into a full differential equation, yielding

dR

dFν
=

∫
dz 16π2D2

L(z)D
2
c (z)

1

(1 + z)3
dDc

dz
ΘE(Eνe , z, νe) (C.13)

where νe can be expressed as νe = (1+z)ν, sampling from the emission frequency

region of the energy function as opposed to the observation frequency implicitly

handles the required k-correction. The additional factor of 1/(1+ z) accounts for

the redshift of the burst rate itself.

dR

dFν
=

∫
dz 16π2D2

L(z)D
2
c (z)

1

(1 + z)3
dDc

dz
ΘE(Eνe , z, (1 + z)ν) (C.14)

C.3.2 Differential Rates in a Clumpy Universe

Similarly to above, a small observed rate of fast trasnients can be expressed for

an inhomogeneous universe using the event rate energy function of the transient

population and the probability of magnification by a factor µ from gravitational

lensing as,

dR = p(µ, z)ΘE(Eνe , z, νe)dE dVc (C.15)
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the comoving volume element is given by

Vc =
4

3
πD3

c (z) (C.16)

differentiating with respect to redshift gives

dVc
dz

= 4πD2
c (z)

dDc

dz
(C.17)

Intrinsic spectral energy (Eνe) is given by

Eνe = 4π(Dη(1 + z)2)2
Fν

µ(1 + z)2
(C.18)

where Fν is the observed fluence of the transient at observation frequency ν,

Dη(1+z)
2 is the luminosity distance in an inhomogeneous universe with a smooth

matter fraction η and the factor of 1/(1+z)2 accounts for bandwidth compression

by cosmological redshift as well as the dilation of the bursts duration in time.

Differentiating with respect to observed fluence and holding redshift constant

gives us

∂Eνe
∂Fν

= 4π(Dη(1 + z)2)2
1

µ(1 + z)2
(C.19)

putting these components into a integration over redshift transforms our partial

differential equation into a full differential equation, yielding

dR

dFν
=

∫
dz16π2(Dη(1 + z)2)2D2

c (z)
1

(1 + z)3
dDc

dz
(C.20)

×
∫

dµ
1

µ
p(µ, z)ΘE(Eνe , z, νe) (C.21)
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where νe can be expressed as νe = (1+z)ν, sampling from the emission frequency

region of the energy function as opposed to the observation frequency implicitly

handles the required k-correction. The additional factor of 1/(1+ z) accounts for

the redshift of the burst rate itself.

dR

dFν
=

∫
dz16π2(Dη(1 + z)2)2)D2

c (z)
1

(1 + z)3
dDc

dz
(C.22)

×
∫

dµ
1

µ
p(µ, z)ΘE(Eνe , z, (1 + z)ν) (C.23)
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FRB S/N m νc (MHz) νDC (MHz) tscatt (ms) C αν αt νNe2001 (MHz) νmin (MHz) LxLg (kpc
2)

20181112A 143 0.1 1297.5 - .0278± 0.0008 - - −0.8± 0.6 2.82 0.001 -
20190102C 124 0.41 1271.5 0.6± 0.3 0.046± 0.001 170 10 -4 1.26 0.001 -
20190608B 32.9 0.78 1271.5 1.4± 0.1 4.0± 0.4 35000 5.8± 0.5 −4± 1 3.08 1 6± 1
20190711A 89.3 0.64 1136.9 0.11± 0.01 0.008± 0.003 6 −10± 5 -10 0.837 0.0001
20191228A 51.1 0.77 1340.3 - 5.5± 0.2 - - - 5.47 0.1 -
20200430A 56.7 0.45 864.5 - 7.7± 0.5 - - −3.0± 0.3 0.973 0.1 -
20201124A 172 0.59 713.9 .136± 0.005 4.04± 0.07 3450 10± 3 −7.3± 0.9 0.00721 1× 10−4 1.43± 0.08
20210117A 43.9 0.0 1364.2 - 0.14± 0.6 - - 1± 4 5.82 0.1 -
20210320C 113 0.83 824.2 0.91± 0.03 0.247± 0.006 1410 2± 1 −3.30± 0.01 1.03 0.1 550± 30
20210407E 49.7 0.0 1220.2 - 0.090± 0.010 - - 3.01 1 -

Table C.1: Measured scintillation parameters for a sample of localised CRAFT FRBs.
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C.4 Simulating spectral scintillation detection

threshold

We create blank spectra with 336MHz of bandwidth around a central frequency

of 1271.5MHz at 0.1MHz resolution. We then populate it with N = f×336/νDC,0

scintles, where the filling fraction f is 0.5, a typical assumption for pulsar scin-

tillation (Bhat et al., 1999; Nicastro et al., 2001) and νDC,0 is the decorrelation

bandwidth of the simulated burst at 1GHz. The amplitude of the scintles is set

such that the sum of the noiseless spectra is equal to the simulated burst’s S/N

and their positions in frequency (νp) are drawn randomly from a uniform distri-

bution. The scintles are Lorentzian in shape with a HWHM of 2νDC (Bartel et al.,

2022), corresponding to a decorrelation bandwidth of νDC = (νDC,0(νp)/1000)
4.

These arrays represent the noise-free signal (S) of a burst. We also construct

noise arrays (N) filled with white noise following a N(0, 1/
√
3360) distribution.

We simulate 1000 signal and noise arrays for each of a range of combinations

of S/N and νDC values. For each, we calculate the ACF signal and noise as

ACFS(j) =
3360∑
i=0

S(i)S(i+ j) (C.24)

ACFN(j) =
3360∑
i=0

S(i)N(i+ j) + S(i+ j)N(i) +N(i)N(i+ j). (C.25)

The χ2 value for the significance of the burst ACF at a given S/N and νDC is

then calculated as

χ2 =
3360∑
j=0

ACFS(j)− ACFN(j)

σ(j)
, (C.26)

where the bar represents the mean over the 1000 simulated instances and σ(j)

is the standard deviation of ACFN(j). Due to the high degree of freedom of the

χ2 distribution (roughly equal to the number of channels, 3360) the probability

of chance significance (p = 1 − CDF(χ2)) also transitions sharply from ≈ 1 to

≈ 0 and hence we set the detection threshold at this transition at χ2 value of
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Figure C.4: log10 χ
2 values for the significance of scintillation structure in the

burst ACF as a function of burst S/N and νDC. Red line represents the detection
threshold, fit to χ2 values of ≈ 3360, where the CDF of the χ2 distribution is
≈ 0.5.

≈ 3360. Fig. C.4 depicts the simulated χ2 values and over-plots the detection

threshold from linear fit in log space to the χ2 ≈ 3360 values in red. For values

of νDC greater than the threshold at a given S/N the scintillation should be

detectable. By extrapolating the threshold relationship we calculate the minimum

detectable scintillation bandwidths νmin using the observed burst S/N . Given the

assumptions used in this model we round νmin to the nearest order of magnitude.

C.5 Derivation of Eq. 3

As per Narayan (1992) the modulation index of an extended source is given by

m =
θdiff
θS

(C.27)
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where θdiff is the angle subtended by the diffractive scale rdiff/Dd, and θS is the

apparent angle of the source. In the case where light scattered by an extragalactic

screen into an angle θscatt,x is incident upon a Galactic screen characterised by

rdiff,g, the modulation index of scintillation from the Galactic screen (mg) will be

given by

mg =
rdiff,g

Dd,gθscatt,x
(C.28)

where Dd,g is the distance to the Galactic screen from the observer. The diffrac-

tive scale the Galactic screen may also be approximated as rdiff,g ∼ λ/2πθscatt,g

(Narayan, 1992), yielding

mg =
λ

2πθscatt,gθscatt,xDd,g

(C.29)

where λ is the observed wavelength. As per Macquart & Koay (2013) scattering

angles can be expressed as scattering times following tscatt = DdDsθ
2
scatt/[cDds(1+

zd)], where zd is the redshift at the screen. Substituting the scattering angles for

scattering times gives

tscatt,gtscatt,x =
1

(2πν)2m2
g(1 + zx)

Ds,xDd,x

Dds,x

Ds,g

Dds,gDd,g

(C.30)

When mg = 1, the left hand side becomes ≲ the right hand side, and the general

form of Eq. 7.2 is recovered. By assuming that the screens are close to their

respective ends of the path length (i.e. they are associated with the Milky Way

and host galaxies), we can approximate Dd,x ≈ Dds,g, and Ds,x ≈ Ds,g ≈ Ds,

reducing the above expression to

tscatt,gtscatt,x ≈
D2
s

(2πν)2m2
g

1

Dd,gDds,x

(C.31)
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Exchanging tscatt,g for 1/2πνDC via Eq. 7.1 and recognising that Dd,g and Dds,x

are Lg and Lx respectively yields Eq. 7.4

LxLg ≈
D2
s

2πν2(1 + zx)

νDC

tscatt
(C.32)

C.6 Anisotropic Scattering Screens

The constraints on the LxLg product are derived from the condition, that to have

fully modulated diffractive scintillation at the second screen, the coherence length

set by the diffractive scale of the first scattering screen (rdiff,1) must be greater

than the scattering angle of the second screen projected back onto that screen

(Ocker et al., 2022c), i.e.

rdiff,1 ≥ θscatt,2Dd. (C.33)

The implicit assumption within this condition is that the thin screens are two-

dimensional and isotropic. Under this assumption the extent of angular broad-

ening caused by the first screen is equivalent to the extent of the source as seen

by the second screen. If however, the screens were anisotropic, the direction of

angular broadening will also be important. In the extreme case where each screen

is one dimensional, e.g. scattering by a filament or tidal stream similar to that

observed by Wang et al. (2021), then the angular extent of the source seen by

the second screen will be given by the projection of the image scattered by the

first screen onto the second. The condition to observe fully modulated diffractive

scintillation at the second screen then becomes

rdiff,1 ≥ θscatt,2Dd cosϕ, (C.34)

where ϕ would be the angle between the one-dimensional screens if they were

projected onto a plane perpendicular to the optic axis, as depicted in Fig. C.5.

For parallel, one-dimensional screens the constraints will remain unchanged.

Conversely, for perfectly orthogonal screens, the second screen will always observe
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FRB

Observer

𝜙

Figure C.5: Depiction of two-screen scattering for two anisotropic screens. The
observer is shown as a black dot and the FRB source as a large green dot. The
smaller green dots on each screen represent the images comprising the angularly
broadened image seen by an observer. Blue dots show the interception point of
the optic axis for each screen. By projecting each screen onto a plane perpendic-
ular to the optic axis the angle between the dominant directions of each screens
anisotropy can be described by the angle ϕ.
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the source to be point-like, regardless of the extent of angular broadening from

the first screen. In this case, the scattering in each dimension will be completely

independent and we will be unable to constrain the scattering geometry. Con-

straints on the two-screen distance product are therefore completely degenerate

with the anisotropy of the scattering screens.

We highlight, however, that in the case of anisotropic scattering screens, it

is expected that the shapes of both the temporal impulse response function (i.e.

the temporal broadening profile) and the spectral auto-correlation function of the

scattered pulse will differ from those used here. Specifically, in the case of the

temporal impulse response function, anisotropic screens are expected to show a

greater fraction of intensity at larger time delays (Cordes & Lazio, 2001; Rickett,

2006). The more one-dimensional these screens become, the greater the difference

in expected pulse morphology will be. Within our sample, the observed pulses

are well described by the pulse morphology expected for scattering through an

isotropic, two-dimensional thin screen, particularly FRB20210320C. We, there-

fore, conclude that significant anisotropy in the scattering screens associated with

our observations is unlikely, and we leave a rigorous treatment of the expected

FRB morphology for scattering through anisotropic screens to a future work.

C.7 Additional Figures
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Figure C.6: Time-integrated spectral ACFs for FRBs within the sample confirmed
not to scintillate. Each panel is labelled with the relevant FRB name.
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Figure C.7: Time-integrated spectral ACF for FRB20190711A, for which we
found insufficient evidence to prove scintillation.
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Figure C.8: Time-integrated spectral ACFs for FRB20190102C, for which we
found insufficient evidence to prove scintillation. Left : ACF over the full used
bandwidth. Right : ACFs for the top and bottom sub-bands respectively.

233



0 50 100 150 200 250 300 350 400
Dd,x (Mpc)

−4

−3

−2

−1

0

t sc
at

t
(µ

s)

mg = 0.59
mg = 0.39
mg = 0.79

−1

0

1

2

3
ν D

C
(M

H
z)

Figure C.9: Scattering timescale and corresponding decorrelation bandwidths
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would be responsible for suppressing the modulation of spectral scintillation in
FRB20201124A through angular broadening. The blue line corresponds to the
calculation for the measured modulation index of mg = 0.59, additional dotted
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as discussed in §7.5.1 and 7.5.2 and §7.5.5 respectively.

235





Appendix D

Copyright Information

237



AMERICAN ASTRONOMICAL SOCIETY

This agreement must be electronically signed before the American Astronomical Society (AAS) can publish your
paper. In the event the article is not judged acceptable for publication in the journal you will be notified in writing and
the copyright and all rights conferred by this agreement shall revert to you.

PUBLICATION AND TRANSFER OF COPYRIGHT AGREEMENT    Manuscript number: AAS23144

Article title: First Constraints on Compact Dark Matter from Fast Radio Burst Microstructure

Names of authors: Mawson Sammons Jean-Pierre Macquart Ron Ekers Ryan Shannon Hyerin Cho Jason
Prochaska Adam Deller Cherie Day 

Author Rights: AAS grants to the author(s) (or their below-named employers, in the case of works made for hire) the
following rights. All copies of the Article made under any of these rights shall include notice of the AAS copyright. 

(1) All proprietary and statutory rights other than copyright, such as patent rights.

(2) The right after publication by the AAS to grant or refuse permission to third parties to republish all or part of the
Article or a translation thereof. In the case of whole articles only, third parties must first obtain permission from the
AAS before any right of further publication is granted. The AAS may choose to publish an abstract or portions of the
Article before the AAS publishes it in a journal.

(3) The right to use all or part of the Article in future works and derivative works of their own of any type, and to make
copies of all or part of the Article for the authors' use for educational or research purposes.

(4) In the case of a work made for hire, the right of the employer to make copies of the Article for the employer's
internal use, but not for resale.

Copyright Assignment: Copyright in the Article is hereby transferred to the AAS for the full term of copyright
throughout the world, effective as of date of acceptance of the Article for publication in a journal of the AAS. The
copyright consists of all rights protected by copyright laws of the United States and of all foreign countries, in all
languages and forms of communication, and includes all material to be published as part of the Article in any format
or medium. The AAS shall have the right to register copyright to the Article in its name as claimant, whether
separately or as part of the journal issue or other medium in which the Article is included and the right to sue,
counterclaim, and recover for past, present and future infringement of the rights assigned under this agreement.

This Agreement shall be controlled, construed and enforced in accordance with the laws of the District of Columbia
without reference to the conflict of laws provisions thereof. The Parties consent to jurisdiction of the state and federal
courts located in the District of Columbia in connection with any proceeding related to this Agreement or its
enforcement.

Authorized Signature: Mawson Sammons Date: 29/02/2020

Certification of Government Employment: An article prepared by a government officer or employee as part of his or
her official duties may not be eligible for copyright, if the authors are all employed by one of the governments of
Australia, Canada, New Zealand, the UK, or the US. If all the authors of the article are such government employees,
one of the authors should sign here. If any of the authors is not such a government employee, do not sign in this
box.

Authorized Signature: 
Date: 

 
local_p_id: 773502
t ime: 1582952755
ip address: 49.196.6.51

238



09/05/2023, 17:13 Self Archiving Policy P | Journals | Oxford Academic

https://academic.oup.com/pages/self_archiving_policy_p 1/3

RAS Journals - Author self-
archiving policy

Authorʼs original version

The author’s original version is de ned here as the un-refereed

author version of an article that is considered by the author to

be of su cient quality to be submitted for formal peer review

by a second party. The author accepts full responsibility for the

article, which may have a version number or date stamp and the

content and layout is set out by the author.

Prior to acceptance for publication in the journal, authors retain

the right to make their original version of the article available

on their own personal website and/or that of their employer

and/or in free public servers of original version articles in their

subject area, provided that, upon acceptance, they acknowledge

that the article has been accepted for publication as follows:

This article has been accepted for publication in [Journal Title]

Published by Oxford University Press on behalf of the Royal

Astronomical Society.

Authors may replace their author’s original version with the

accepted manuscript or the version of record when their article

is accepted for publication or upon publication in the journal

(respectively). However, there is no obligation to do so and

authors may continue to post their original version.

Accepted manuscript

The accepted manuscript is de ned here as the nal draft

author manuscript, as accepted for publication by a journal,

including modi cations based on referees’ suggestions, before

it has undergone copyediting and proof correction.

Authors may upload a PDF of the accepted manuscript to

institutional and/or centrally organized repositories and/or in

09/05/2023, 17:13 Self Archiving Policy P | Journals | Oxford Academic

https://academic.oup.com/pages/self_archiving_policy_p 2/3

free public servers, upon acceptance for publication in the

journal.

When uploading an accepted manuscript, authors should

include the following acknowledgment with complete citation

information as well as a link to the version of record once these

are available. This will guarantee that the version of record is

readily available to those accessing the article from public

repositories, and means that the article is more likely to be cited

correctly.

This is a pre-copyedited, author-produced PDF of an article

accepted for publication in [insert journal title] following peer

review. The version of record [insert complete citation

information here] is available online at: xxxxxxx [insert URL that

the author will receive upon publication here].

Version of record

The version of record is de ned here as a xed version of the

journal article that has been made available by OUP by formally

and exclusively declaring the article “published”.

Authors may upload the version of record to institutional

and/or centrally organized repositories and/or in free public

servers, upon publication in the journal.

When uploading the version of record, authors should include a

credit line and a link to the article on the OUP website. This will

guarantee that the de nitive version is readily available to

those accessing your article from public repositories, and

means that your article is more likely to be cited correctly.

Authors should include the following credit line when

depositing the version of record.

This article has been accepted for publication in [Journal Title] ©:

[year] [owner as speci ed on the article] Published by Oxford

University Press on behalf of the Royal Astronomical Society. All

rights reserved.

239





Appendix E

Co-Authorship Agreements

Below are the co-author responses to the originality statements included at the

beginning of each chapter comprised of an accepted of submitted publication.

The originality statements are also repeated here.

Chapter 5 is comprised of a pre-copyedited, author-produced version of an ar-

ticle accepted for publication in The Astrophysical Journal following peer review.

The version of record: Mawson W. Sammons, Jean-Pierre Macquart, Ron D. Ek-

ers, Ryan M. Shannon, Hyerin Cho, J. Xavier Prochaska, Adam T. Deller and

Cherie K. Day, First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure, The Astrophysical Journal, Volume 900, Issue 2, id. 122, Decem-

ber 2022, is available online at: https://doi.org/10.3847/1538-4357/aba7bb.

This work was motivated and supervised by A/Prof. Jean-Pierre Macquart.

Initial calibration and pre-processing of data, including PFB inversion and de-

dispersion, was performed by Prof. Adam Deller, Dr Cherie Day and Ms. Hyerin

Cho. I performed all analyses of the processed data, making use of code writ-

ten by Prof. J. Xavier Prochaska to evaluate Galactic intersection probabilities.

Prof. Ron Ekers and A/Prof. Ryan Shannon motivated sections on clumpy dark

matter. Apart from Figure 3, which was generated for publication by Ms. Hyerin

Cho, the draft manuscript was written by me and distributed to co-authors for

critique. All co-authors provided input over several iterations of feedback until

241

https://doi.org/10.3847/1538-4357/aba7bb


the manuscript was complete.

Chapter 6 is comprised of a pre-copyedited, author-produced version of an

article accepted for publication in Monthly Notices of the Royal Astronomical

Society following peer review. The version of record: Mawson W Sammons,

C W James, C M Trott, M Walker, The effect of gravitational lensing on fast

transient event rates, Monthly Notices of the Royal Astronomical Society, Volume

517, Issue 4, December 2022, Pages 5216–5231 is available online at: https:

//doi.org/10.1093/mnras/stac3013. Its contents are my own work, except for

the input and supervision from Prof. Cathryn Trott, Dr. Clancy James and Dr.

Mark Walker during the modelling of lensing probabilities and implementation

of numerical integration routines. I wrote the draft of the paper and distributed

copies to all co-authors for critique. All co-authors provided input over several

iterations of feedback until the manuscript was complete.

Chapter 7 is comprised of a pre-copyedited, author-produced version of an

article accepted for publication in Monthly Notices of the Royal Astronomical So-

ciety following peer review. The version of record: Mawson W Sammons, Adam

T. Deller, Marcin Glowacki, Kelly Gourdji, C. W. James, J. Xavier Prochaska,

Hao Qiu, Danica R. Scott, R. M. Shannon and C. M. Trott, Two-Screen Scat-

tering in CRAFT FRBs, Monthly Notices of the Royal Astronomical Society, is

available online at: https://doi.org/10.1093/mnras/stad2631. I motivated

this work, which was supervised by Prof. Cathryn Trott and Dr Clancy James.

A/Prof. Ryan Shannon contributed to the initial discovery of the FRBs used in

the analysis. Initial calibration and pre-processing of data was performed by Ms.

Danica R. Scott, Prof. Adam Deller, Dr Kelly Gourdji and Dr Marcin Glowacki.

I performed all analyses of the processed data, making use of code written by Dr

Hao Qiu to characterise burst morphology. Prof. J. Xavier Prochaska motivated

additional extragalactic scattering constraints. The draft manuscript was written

by me and distributed to co-authors for critique. All co-authors provided input

over several iterations of feedback until the manuscript was complete.

242

https://doi.org/10.1093/mnras/stac3013
https://doi.org/10.1093/mnras/stac3013
https://doi.org/10.1093/mnras/stad2631


Below are the signed statements from co-authors, acknowledging that they

concur with the above statements.

243



May 9, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, ”First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, ”The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, ”Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

Cathryn Margaret Trott



May 9, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, ”First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, ”The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, ”Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

Clancy William James



May 11, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, “First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, “The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, “Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

Hyerin Cho



May 11, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, “First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, “The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, “Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

Danica Scott



May 11, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, “First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, “The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, “Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

Kelly Gourdji



May 11, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, “First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, “The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, “Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

Cherie Day



May 11, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, “First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, “The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, “Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

 

MARKANDREWWALKER



May 11, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, “First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, “The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, “Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

Marcin Glowacki









May 11, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, “First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, “The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, “Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

Ryan M. Shannon



May 11, 2023

Mawson William Sammons

Email: mawson.sammons@postgrad.curtin.edu.au

1 Turner Ave

Bentley, WA, 6102, Australia

To whom it may concern,

I, Mawson William Sammons, have outlined my contributions and the contributions of co-

authors to the chapters in this thesis that have been adapted from published or submitted

papers (Chapter 5, “First Constraints on Compact Dark Matter from Fast Radio Burst

Microstructure”; Chapter 6, “The e↵ect of gravitational lensing on fast transient event

rates”; and Chapter 7, “Two-Screen Scattering in CRAFT FRBs”)

(Signature of candidate)

(Full name of co-author) (Signature of co-author)

J. Xavier Prochaska



Bibliography

B. P. Abbott, et al. (2017). ‘Gravitational Waves and Gamma-Rays from a Bi-

nary Neutron Star Merger: GW170817 and GRB 170817A’. The Astrophysical

Journal 848(2):L13. Publisher: American Astronomical Society.

T. M. C. Abbott, et al. (2019). ‘First Cosmology Results using Type Ia Super-

novae from the Dark Energy Survey: Constraints on Cosmological Parameters’.

The Astrophysical Journal Letters 872(2):L30. Publisher: The American As-

tronomical Society.

N. J. Adams, et al. (2023). ‘Discovery and properties of ultra-high redshift galax-

ies (9 < z < 12) in the JWST ERO SMACS 0723 Field’. Monthly Notices

of the Royal Astronomical Society 518:4755–4766. ADS Bibcode: 2023MN-

RAS.518.4755A.

P. a. R. Ade, et al. (2014). ‘Planck 2013 results. I. Overview of products and

scientific results’. Astronomy & Astrophysics 571:A1. Publisher: EDP Sciences.

C. Alcock, et al. (1997). ‘The Macho Project: 45 Candidate Microlensing

Events from the First Year Galactic Bulge Data’. The Astrophysical Journal

479(1):119.

R. A. Alpher, et al. (1948). ‘The Origin of Chemical Elements’. Physical Review

73(7):803–804. Publisher: American Physical Society.

P. K. Aluri, et al. (2023). ‘Is the observable Universe consistent with the cosmo-

257



logical principle?’. Classical and Quantum Gravity 40(9):094001. Publisher:

IOP Publishing.

R. Anna-Thomas, et al. (2022). ‘A Highly Variable Magnetized Environment

in a Fast Radio Burst Source’. Number: arXiv:2202.11112 arXiv:2202.11112

[astro-ph].

J. W. Armstrong, et al. (1981). ‘Density power spectrum in the local interstel-

lar medium’. Nature 291(5816):561–564. Number: 5816 Publisher: Nature

Publishing Group.

J. W. Armstrong, et al. (1995). ‘Electron density power spectrum in the local

interstellar medium’. The Astrophysical Journal 443:209–221.

P. Atri, et al. (2019). ‘Potential Kick Velocity distribution of black hole X-ray

binaries and implications for natal kicks’. arXiv:1908.07199 [astro-ph] arXiv:

1908.07199.

D. Band, et al. (1993). ‘BATSE Observations of Gamma-Ray Burst Spectra.

I. Spectral Diversity’. The Astrophysical Journal 413:281. ADS Bibcode:

1993ApJ...413..281B.

S. Banerjee, et al. (2021). ‘Differential Source Count for Gamma-Ray Bursts’.

The Astrophysical Journal 921(1):79. Publisher: IOP Publishing.

K. Bannister, et al. (2017). ‘The detection of an extremely bright fast radio burst

in a phased array feed survey’. The Astrophysical Journal 841(1):L12. arXiv:

1705.07581.

K. Bannister, et al. (2019a). ‘FREDDA: A fast, real-time engine for de-dispersing

amplitudes’. Astrophysics Source Code Library p. ascl:1906.003. ADS Bibcode:

2019ascl.soft06003B.

258



K. W. Bannister (2018). ‘Australia’s game-changing fast radio burst hunter’.

Nature Astronomy 2(11):922–922. Number: 11 Publisher: Nature Publishing

Group.

K. W. Bannister, et al. (2019b). ‘A single fast radio burst localized to a massive

galaxy at cosmological distance’. Science 365(6453):565–570.

N. Bartel, et al. (2022). ‘Electron Density Variations in the Interstellar Medium

and the Average Frequency Profile of a Scintle from Pulsar Scintillation Spec-

tra’. The Astrophysical Journal 941(2):112. Publisher: The American Astro-

nomical Society.

M. Bartelmann (1996). ‘Arcs from a Universal Dark-Matter Halo Profile’.

arXiv:astro-ph/9602053 arXiv: astro-ph/9602053.

M. Bartelmann & P. Schneider (2001). ‘Weak gravitational lensing’. Physics

Reports 340(4):291–472.

S. D. Barthelmy, et al. (2005). ‘The Burst Alert Telescope (BAT) on the SWIFT

Midex Mission’. Space Science Reviews 120(3):143–164.

G. Battaglia, et al. (2005). ‘The radial velocity dispersion profile of the Galactic

halo: constraining the density profile of the dark halo of the Milky Way’.

Monthly Notices of the Royal Astronomical Society 364(2):433–442.

P. M. Bellan (2006). ‘Cold plasma waves in a magnetized plasma’. In Fundamen-

tals of Plasma Physics, pp. 206–241. Cambridge University Press, Cambridge.

A. M. Beloborodov (2017). ‘A Flaring Magnetar in FRB 121102?’. The Astro-

physical Journal Letters 843(2):L26. Publisher: The American Astronomical

Society.

C. L. Bennett, et al. (2013). ‘Nine-year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Final Maps and Results’. The Astrophysical Journal

Supplement Series 208(2):20.

259



D. P. Bennett (1993). ‘The First Data from the MACHO Experiment’. Annals of

the New York Academy of Sciences 688(1):612–618. arXiv: astro-ph/9304014.

L. Bergström, et al. (2000). ‘Lensing effects in an inhomogeneous universe’.

Astronomy and Astrophysics 358:13–29.

G. Bertone, et al. (2005). ‘Particle Dark Matter: Evidence, Candidates and

Constraints’. Physics Reports 405(5-6):279–390. arXiv: hep-ph/0404175.

S. Bhandari, et al. (2018). ‘The SUrvey for Pulsars and Extragalactic Radio

Bursts – II. New FRB discoveries and their follow-up’. Monthly Notices of the

Royal Astronomical Society 475(2):1427–1446.

S. Bhandari, et al. (2020). ‘The host galaxies and progenitors of Fast Radio

Bursts localized with the Australian Square Kilometre Array Pathfinder’. The

Astrophysical Journal 895(2):L37. arXiv: 2005.13160.

N. D. R. Bhat, et al. (2004). ‘Multifrequency Observations of Radio Pulse Broad-

ening and Constraints on Interstellar Electron Density Microstructure’. The

Astrophysical Journal 605(2):759. Publisher: IOP Publishing.

N. D. R. Bhat, et al. (1999). ‘Long-Term Scintillation Studies of Pulsars. I.

Observations and Basic Results’. The Astrophysical Journal Supplement Series

121(2):483. Publisher: IOP Publishing.

S. Bird, et al. (2016). ‘Did LIGO Detect Dark Matter?’. Physical Review Letters

116(20):201301.

C. D. Bochenek, et al. (2020). ‘A fast radio burst associated with a Galactic

magnetar’. arXiv e-prints 2005:arXiv:2005.10828.

P. Bode, et al. (2001). ‘Halo Formation in Warm Dark Matter Models’. The

Astrophysical Journal 556:93–107. ADS Bibcode: 2001ApJ...556...93B.

M. Born & E. Wolf (2013). Principles of Optics: Electromagnetic Theory of

Propagation, Interference and Diffraction of Light. Elsevier.

260



A. Bosma (1981). ‘21-cm line studies of spiral galaxies. II. The distribu-

tion and kinematics of neutral hydrogen in spiral galaxies of various mor-

phological types.’. The Astronomical Journal 86:1825–1846. ADS Bibcode:

1981AJ.....86.1825B.

M. Boudaud & M. Cirelli (2019). ‘Voyager 1

${e}ˆ{\ifmmode\pm\else\textpm\fi{}}$ Further Constrain Primordial

Black Holes as Dark Matter’. Physical Review Letters 122(4):041104.

Publisher: American Physical Society.

T. D. Brandt (2016). ‘Constraints on MACHO Dark Matter in Compact Stellar

Systems in Ultra-Faint Dwarf Galaxies’. The Astrophysical Journal 824(2):L31.

M.-A. Breton & P. Fleury (2020). ‘Theoretical and numerical perspectives on

cosmic distance averages’. arXiv:2012.07802 [astro-ph, physics:gr-qc] arXiv:

2012.07802.

W. F. Brisken, et al. (2010). ‘100 uas resolution VLBI imaging of Anisotropic

Interstellar Scattering Toward Pulsar B0834+06’. The Astrophysical Journal

708(1):232. Publisher: The American Astronomical Society.

J. S. Bullock & M. Boylan-Kolchin (2017). ‘Small-Scale Challenges to the

$\Lambda$CDM Paradigm’. Annual Review of Astronomy and Astrophysics

55(1):343–387. arXiv: 1707.04256.

B. Carr & F. Kühnel (2020). ‘Primordial Black Holes as Dark Matter: Recent

Developments’. Annual Review of Nuclear and Particle Science 70:355–394.

B. Carr, et al. (2016). ‘Primordial black holes as dark matter’. Physical Review

D 94:083504.

B. J. Carr & S. W. Hawking (1974). ‘Black Holes in the Early Universe’. Monthly

Notices of the Royal Astronomical Society 168(2):399–415.

261



B. J. Carr, et al. (2010). ‘New cosmological constraints on primordial black holes’.

Physical Review D 81(10):104019. Publisher: American Physical Society.

S. M. Carroll, et al. (1992). ‘The cosmological constant’. Annual Review of

Astronomy and Astrophysics 30:499–542.

S. Chatterjee (2021). ‘Fast radio bursts’. Astronomy & Geophysics 62(1):1.29–

1.35.

S. Chatterjee, et al. (2017). ‘A direct localization of a fast radio burst and its

host’. Nature 541:58–61. ADS Bibcode: 2017Natur.541...58C.

P. Chawla, et al. (2022). ‘Modeling Fast Radio Burst Dispersion and Scatter-

ing Properties in the First CHIME/FRB Catalog’. The Astrophysical Journal

927(1):35. Publisher: The American Astronomical Society.

A. Chepurnov & A. Lazarian (2010). ‘Extending the Big Power in the Sky With

Turbulence Spectra From Wisconsin Halpha Mapper Data’. The Astrophysical

Journal 710(1):853. Publisher: The American Astronomical Society.

J. S. Chittidi, et al. (2021). ‘Dissecting the Local Environment of FRB 190608

in the Spiral Arm of its Host Galaxy’. The Astrophysical Journal 922(2):173.

Publisher: American Astronomical Society.

H. Cho, et al. (2020). ‘Spectropolarimetric Analysis of FRB 181112 at Microsec-

ond Resolution: Implications for Fast Radio Burst Emission Mechanism’. The

Astrophysical Journal 891(2):L38. Publisher: American Astronomical Society.

C. Clarkson, et al. (2012). ‘(Mis)interpreting supernovae observations in a lumpy

universe’. Monthly Notices of the Royal Astronomical Society 426:1121–1136.

A. W. Clegg, et al. (1998). ‘The Gaussian Plasma Lens in Astrophysics: Refrac-

tion’. The Astrophysical Journal 496(1):253–266.

262
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J. B. Muñoz, et al. (2016). ‘Lensing of Fast Radio Bursts as a Probe of Compact

Dark Matter’. Physical Review Letters 117(9):091301. arXiv: 1605.00008.

T. T. Nakamura (1997). ‘Effect of Shear on the Cosmological Distance and Image

Amplification: Power Spectrum Approach’. Publications of the Astronomical

Society of Japan 49:151–157.

R. Narayan (1992). ‘The Physics of Pulsar Scintillation’. Philosophical Transac-

tions of the Royal Society of London Series A 341:151–165.

J. F. Navarro, et al. (1996). ‘The Structure of Cold Dark Matter Halos’. The

Astrophysical Journal 462:563.

J. F. Navarro, et al. (2010). ‘The diversity and similarity of simulated cold dark

matter haloes’. Monthly Notices of the Royal Astronomical Society 402(1):21–

34.

L. Nicastro, et al. (2001). ‘Scintillation measurements of the millisecond pul-

sar PSR J0030+0451 and pulsar space velocities’. Astronomy & Astrophysics

368(3):1055–1062. Number: 3 Publisher: EDP Sciences.

H. Niikura, et al. (2019). ‘Constraints on Earth-mass primordial black holes from

OGLE 5-year microlensing events’. Physical Review D 99(8):083503. Publisher:

American Physical Society.

K. Nimmo & S. Chatterjee (2023). ‘Fast Radio Burst Community Newsletter -

Volume 4, Issue 03’ Accepted: 2023-04-03T16:32:44Z.

K. Nimmo, et al. (2022a). ‘Burst timescales and luminosities as links between

young pulsars and fast radio bursts’. Nature Astronomy 6(3):393–401. Number:

3 Publisher: Nature Publishing Group.

K. Nimmo, et al. (2022b). ‘Milliarcsecond Localization of the Repeating FRB

20201124A’. The Astrophysical Journal Letters 927(1):L3. Publisher: The

American Astronomical Society.

279



A. H. Nitz & Y.-F. Wang (2022). ‘Broad search for gravitational waves from

subsolar-mass binaries through LIGO and Virgo’s third observing run’. Physical

Review D 106(2):023024. Publisher: American Physical Society.

S. K. Ocker, et al. (2021). ‘Constraining Galaxy Halos from the Dispersion

and Scattering of Fast Radio Bursts and Pulsars’. The Astrophysical Jour-

nal 911(2):102. Publisher: The American Astronomical Society.

S. K. Ocker, et al. (2022a). ‘Radio Scattering Horizons for Galactic and Extra-

galactic Transients’. The Astrophysical Journal 934(1):71. arXiv:2203.16716

[astro-ph].

S. K. Ocker, et al. (2022b). ‘Scattering variability detected from the circumsource

medium of FRB 20190520B’. arXiv:2210.01975 [astro-ph].

S. K. Ocker, et al. (2022c). ‘The Large Dispersion and Scattering of FRB

20190520B Are Dominated by the Host Galaxy’. The Astrophysical Journal

931(2):87. Publisher: The American Astronomical Society.

M. Oguri (2019). ‘Strong gravitational lensing of explosive transients’. Reports

on Progress in Physics 82(12):126901. Publisher: IOP Publishing.

T. A. Oosterloo, et al. (2020). ‘Extreme intra-hour variability of the radio source

J1402+5347 discovered with Apertif’. Astronomy & Astrophysics 641:L4. Pub-

lisher: EDP Sciences.

F. Pacucci & A. Loeb (2019). ‘Most Lensed Quasars at z $\greater$ 6 are Missed

by Current Surveys’. The Astrophysical Journal 870(2):L12. Publisher: Amer-

ican Astronomical Society.

T. Padmanabhan (2000). Theoretical Astrophysics: Volume 1: Astrophysical

Processes, vol. 1. Cambridge University Press, Cambridge.

280



J. Paynter, et al. (2021). ‘Evidence for an intermediate-mass black hole from

a gravitationally lensed gamma-ray burst’. Nature Astronomy 5(6):560–568.

Number: 6 Publisher: Nature Publishing Group.

J. A. Peacock (1985). ‘The high-redshift evolution of radio galaxies and quasars’.

Monthly Notices of the Royal Astronomical Society 217(3):601–631.

P. J. E. Peebles (1980). The large-scale structure of the universe. Publication

Title: Large-Scale Structure of the Universe by Phillip James Edwin Peebles.

Princeton University Press ADS Bibcode: 1980lssu.book.....P.

P. J. E. Peebles (1993). Principles of Physical Cosmology. Publication Title:

Principles of physical cosmology ADS Bibcode: 1993ppc..book.....P.

P. J. E. Peebles & J. T. Yu (1970). ‘Primeval Adiabatic Perturbation in an

Expanding Universe’. The Astrophysical Journal 162:815. ADS Bibcode:

1970ApJ...162..815P.

L. Perivolaropoulos & F. Skara (2022). ‘Challenges for $\Lambda$CDM: An

update’. New Astronomy Reviews 95:101659.

S. Perlmutter, et al. (1999). ‘Measurements of $\Omega$ and $\Lambda$ from 42

High-Redshift Supernovae’. The Astrophysical Journal 517(2):565. Publisher:

IOP Publishing.

E. Petroff, et al. (2022). ‘Fast radio bursts at the dawn of the 2020s’. The

Astronomy and Astrophysics Review 30(1):2.

Planck Collaboration, et al. (2018). ‘Planck 2018 results. VI. Cosmological pa-

rameters’. arXiv:1807.06209 [astro-ph] arXiv: 1807.06209.

E. Platts, et al. (2019). ‘A living theory catalogue for fast radio bursts’. Physics

Reports 821:1–27.

281



S. B. Popov & K. A. Postnov (2010). Hyperflares of SGRs as an engine for

millisecond extragalactic radio bursts. eprint: arXiv:0710.2006. Conference

Name: Evolution of Cosmic Objects through their Physical Activity Pages:

129-132 ADS Bibcode: 2010vaoa.conf..129P.

C. Porciani & P. Madau (2000). ‘Gravitational Lensing of Distant Supernovae in

Cold Dark Matter Universes’. The Astrophysical Journal 532:679–693. ADS

Bibcode: 2000ApJ...532..679P.

J. X. Prochaska, et al. (2019a). ‘The low density and magnetization of a massive

galaxy halo exposed by a fast radio burst’. arXiv:1909.11681 [astro-ph] arXiv:

1909.11681.

J. X. Prochaska & M. Neeleman (2018). ‘The astrophysical consequences of

intervening galaxy gas on fast radio bursts’. Monthly Notices of the Royal

Astronomical Society 474(1):318–325.

J. X. Prochaska, et al. (2019b). ‘FRBs/FRB: First DOI release of this repository’.

zndo .

H. Qiu, et al. (2020). ‘A population analysis of pulse broadening in ASKAP fast

radio bursts’. Monthly Notices of the Royal Astronomical Society 497(2):1382–

1390.

D. P. Quinn, et al. (2009). ‘On the Reported Death of the MACHO Era’. Monthly

Notices of the Royal Astronomical Society: Letters 396(1):L11–L15. arXiv:

0903.1644.

K. P. Rauch (1991). ‘Gravitational Microlensing of High-Redshift Supernovae

by Compact Objects’. The Astrophysical Journal 374:83. ADS Bibcode:

1991ApJ...374...83R.

S. Refsdal (1964). ‘On the Possibility of Determining Hubble’s Parameter and

282



the Masses of Galaxies from the Gravitational Lens Effect’. Monthly Notices

of the Royal Astronomical Society 128(4):307–310.

S. Refsdal (1970). ‘On the Propagation of Light in Universes with Inhomogeneous

Mass Distribution’. The Astrophysical Journal 159:357.

L. F. Richardson (1922). Weather prediction by numerical process. Cambridge,

The University press.

B. Rickett (2006). ‘Anisotropy in Pulsar Interstellar Scattering’. Chinese Journal

of Astronomy and Astrophysics 6(S2):197.

B. J. Rickett, et al. (1997). ‘Interstellar fringes from pulsar B0834+06’. Monthly

Notices of the Royal Astronomical Society 287(4):739–752.

M. Ricotti, et al. (2008). ‘Effect of Primordial Black Holes on the Cosmic Mi-

crowave Background and Cosmological Parameter Estimates’. The Astrophys-

ical Journal 680(2):829. Publisher: IOP Publishing.

A. Ridnaia, et al. (2021). ‘A peculiar hard X-ray counterpart of a Galactic fast

radio burst’. Nature Astronomy 5(4):372–377. Number: 4 Publisher: Nature

Publishing Group.

A. G. Riess, et al. (1998). ‘Observational Evidence from Supernovae for an Ac-

celerating Universe and a Cosmological Constant’. The Astronomical Journal

116(3):1009. Publisher: IOP Publishing.

A. G. Riess, et al. (1999). ‘The Rise Time of Nearby Type IA Supernovae’. The

Astronomical Journal 118:2675–2688.

W. Rindler (1956). ‘Visual Horizons in World Models’. Monthly Notices of the

Royal Astronomical Society 116(6):662–677.

G. V. Rossum & F. L. J. Drake (2011). The Python Language Reference Manual.

Network Theory Ltd., Bristol.

283



V. C. Rubin (1983). ‘The Rotation of Spiral Galaxies’. Science 220(4604):1339–

1344. Publisher: American Association for the Advancement of Science Section:

Articles.

V. C. Rubin, et al. (1980). ‘Rotational properties of 21 SC galaxies with a

large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC

2885 (R=122kpc).’. The Astrophysical Journal 238:471–487. ADS Bibcode:

1980ApJ...238..471R.

S. D. Ryder, et al. (2022). ‘Probing the distant universe with a very luminous

fast radio burst at redshift 1’. arXiv:2210.04680 [astro-ph].

R. K. Sachs & A. M. Wolfe (1967). ‘Perturbations of a Cosmological Model and

Angular Variations of the Microwave Background’. The Astrophysical Journal

147:73. ADS Bibcode: 1967ApJ...147...73S.

M. W. Sammons, et al. (2020). ‘First Constraints on Compact Dark Matter

from Fast Radio Burst Microstructure’. The Astrophysical Journal 900(2):122.

Publisher: IOP Publishing.

P. Sanghavi, et al. (2023). ‘TONE: A CHIME/FRB Outrigger Pathfinder for

localizations of Fast Radio Bursts using Very Long Baseline Interferometry’.

arXiv:2304.10534 [astro-ph].

M. Sasaki, et al. (2016). ‘Primordial Black Hole Scenario for the Gravitational-

Wave Event GW150914’. Physical Review Letters 117(6):061101. Publisher:

American Physical Society.

T. Sawala, et al. (2016). ‘The APOSTLE simulations: solutions to the Local

Group’s cosmic puzzles’. Monthly Notices of the Royal Astronomical Society

457(2):1931–1943.

P. Schneider (1987). ‘An analytically soluble problem in fully nonlinear statistical

gravitational lensing’. The Astrophysical Journal 319:9–13.

284



P. Schneider (2019). ‘Generalized multi-plane gravitational lensing: time delays,

recursive lens equation, and the mass-sheet transformation’. Astronomy &

Astrophysics 624:A54. Publisher: EDP Sciences.

P. Schneider, et al. (1992). Gravitational Lenses. Astronomy and Astrophysics

Library. Springer, Berlin, Heidelberg.

P. Schneider & A. Weiss (1988). ‘Light propagation in inhomogeneous universes’.

The Astrophysical Journal 327:526–543.

E. Schoen, et al. (2021). ‘Scintillation Timescales of Bright FRBs Detected by

CHIME/FRB’. Research Notes of the AAS 5(11):271. Publisher: The Ameri-

can Astronomical Society.

D. R. Scott, et al. (2023). ‘CELEBI: The CRAFT Effortless Localisation and

Enhanced Burst Inspection Pipeline’ .

P. D. Serpico, et al. (2020). ‘Cosmic microwave background bounds on primordial

black holes including dark matter halo accretion’. Physical Review Research

2(2):023204. Publisher: American Physical Society.

R. M. Shannon, et al. (2018). ‘The dispersion–brightness relation for fast radio

bursts from a wide-field survey’. Nature 562(7727):386–390.

K. Shin, et al. (2022). ‘Inferring the Energy and Distance Distributions of Fast

Radio Bursts using the First CHIME/FRB Catalog’. arXiv:2207.14316 [astro-

ph].

T. M. Siewert, et al. (2021). ‘Cosmic radio dipole: Estimators and frequency

dependence’. Astronomy & Astrophysics 653:A9. Publisher: EDP Sciences.

S. Simha, et al. (2020). ‘Disentangling the Cosmic Web toward FRB 190608’.

The Astrophysical Journal 901(2):134. Publisher: The American Astronomical

Society.

285



V. M. Slipher (1917). ‘Nebulae’. Proceedings of the American Philosophical So-

ciety 56:403–409. ADS Bibcode: 1917PAPhS..56..403S.

G. F. Smoot, et al. (1992). ‘Structure in the COBE Differential Microwave Ra-

diometer First-Year Maps’. The Astrophysical Journal 396:L1. ADS Bibcode:

1992ApJ...396L...1S.

J. G. v. Soldner (1804). ‘Ueber die Ablenkung eines Lichtstrals von seiner ger-

adlinigen Bewegung’. Berliner Astronomisches Jahrbuch pp. 161–172.

L. G. Spitler, et al. (2014). ‘Fast Radio Burst Discovered in the Arecibo Pulsar

ALFA Survey’. The Astrophysical Journal 790(2):101.

L. G. Spitler, et al. (2016). ‘A repeating fast radio burst’. Nature 531(7593):202–

205.

V. Springel, et al. (2006). ‘The large-scale structure of the Universe’. Nature

440(7088):1137–1144. Number: 7088 Publisher: Nature Publishing Group.

V. Springel, et al. (2005). ‘Simulations of the formation, evolution and clustering

of galaxies and quasars’. Nature 435(7042):629–636. Number: 7042 Publisher:

Nature Publishing Group.
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