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Mammalian fluorescence has been reported from numerous
species of monotreme, marsupial and placental mammal.
However, it is unknown how widespread this phenomenon
is among mammals, it is unclear for many species if these
observations of ‘glowing’ are true fluorescence and the
biological function of fluorescence remains undetermined.
We examined a wide range of mammal species held in a
museum collection for the presence of apparent
fluorescence using UV light, and then analysed a subset of
preserved and non-preserved specimens by fluorescent
spectroscopy at three different excitation wavelengths to
assess whether the observations were fluorescence or
optical scatter, and the impact of specimen preservation.
We also evaluated if fluorescence was related to biological
traits. We found that fluorescence is widespread in
mammalian taxa; we identified examples of the phenomena
among 125 species representing all 27 living mammalian
orders and 79 families. For a number of model species,
there was no evidence of a corresponding shift in the
emission spectra when the wavelength of excitation was
shifted, suggesting that observations of ‘glowing’ mammals
were indeed fluorescence. Preservation method impacted
the intensity of fluorescence. Fluorescence was most
common and most intense among nocturnal species and
those with terrestrial, arboreal and fossorial habits, with
more of their body being more fluorescent. It remains
unclear if fluorescence has any specific biological role for
mammals. It appears to be a ubiquitous property of
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unpigmented fur and skin but may function to make these areas appear brighter and therefore
enhance visual signalling, especially for nocturnal species.
lsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230325
1. Introduction
Fluorescence is the process by which a chemical (e.g. protein, carotenoid) on the surface of an organism
absorbs light and then emits the light at longer and lower-energy wavelengths [1]. One example is when
an animal’s surface absorbs high-energy, short-wavelength ultraviolet (UV) light and emits the
fluorescence as a lower-energy coloured, often pink, green or blue, glow. Fluorescence can make the
previously invisible UV light visible by shifting it within the range of white light, so an animal does
not necessarily have to see into the UV spectrum to detect fluorescence [2]. Numerous organisms
have been reported to fluoresce including plants [3], corals [4], insects [5], spiders [6], scorpions [7],
crustaceans [8], molluscs [9], fish [10], amphibians [11], reptiles [12] and birds [13]. Fluorescent
compounds have been identified in a variety of animal materials including bone, teeth, claws, fur,
feathers, carapace and skin, and the visible fluorescent colours observed include red, yellow, green,
blue and pink [2,12–18]. The reported evolutionary functions for this fluorescence are varied and
include the enhanced camouflage [19], signalling to conspecifics including mate signalling [9,13],
threat displays to predators and conspecifics [8], enhanced photosynthesis [4] and environmental
marking [20].

Among mammals, the first published reports of fluorescence were in leporids (e.g. rabbits) and
hominids (humans) by Stübel [21] with more recent published observations of fluorescence for New
World flying squirrels [22], springhares [23], platypus [24], dormice [25] and a variety of other rodents
[26], as well as an array of other mammalian species [2,18,27]. There is also a plethora of anecdotal
reports of mammals glowing under UV light [e.g. 28–31]. The occurrence of fluorescence across the
three major subdivisions of mammal (monotreme, marsupial and placental mammals) suggests it may
be an ancestral trait [24]. To date, the majority of mammals with reported fluorescence are nocturnal,
and fluorescence was not observed among some diurnal sciurids [2,22], leading to the hypothesis that
fluorescence might be useful at night [22–24] or that fluorescent pigments of diurnal species might
photodegrade [18]. There may be other functions for this trait yet to be explored for mammals, as has
been proposed for other organisms, or fluorescence may have no specific biological function, being
simply a consequence of pigment or other surface structural characteristics [1,26]. The reddish UV
photoluminescence (= fluorescence) found in nocturnal mammals is thought to be caused by the
presence of free-base porphyrins, which are photodegradable and are unlikely to have a specific
function, but rather a by-product of physiological processes [18]. To address these hypotheses
regarding the evolutionary history and potential biological role of mammalian fluorescence it is
necessary to examine the presence of fluorescence over a large number of mammalian species
representing the major families and a variety of ecological niches.

Fluorescence spectroscopy is one of the main techniques used to study fluorescence in mammals. For
example, fluorescence spectra of apparently fluorescent body regions of some mammals, including
springhare and platypus [18,23,24] have been reported. One factor that needs to be considered when
interpreting fluorescence spectra is the phenomenon of light scattering, which can produce similar
spectra [32]. Light scattering generally involves the interaction of the irradiated incident light with
particles (molecules, atoms) of the sample, deflecting the incident light, and in some cases, the
scattered light is emitted at a longer and lower energy wavelength [32]. Because both fluorescence and
light scattering involve irradiation of the sample and emission of light at a lower energy, this can lead
to interference between the two phenomena. Consequently, when carrying out fluorescent
spectroscopy measurements, it is important to establish whether the signal observed is due to
fluorescence or light scattering. Apart from Toussaint et al. [18] there are few/no studies confirming
the origin of the apparent ‘glow’ in mammals is from fluorescence and not from scattering. Another
potential source of the apparent fluorescence are the chemicals used to preserve museum specimens.
The impact of preservation chemicals was discounted by some as fluorescence was also observed in
living specimens [22,23] and for dormice was more intense for living than for dead or preserved
specimens [25], but it remains unclear if different museum preservation techniques impact apparent
fluorescence for other species.

Here we examine the phenomenon of mammalian fluorescence to determine the extent of apparent
fluorescence among mammals and to identify the anatomical regions most likely to fluoresce. We
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evaluate if the observed ‘glow’ from several apparently fluorescent mammals is actual fluorescence as
opposed to optical scatter and assess the likelihood of past (use of arsenic) and present (use of borax)
museum specimen preservation techniques contributing to these observations. We interpret our results
in an evolutionary and ecological context and consider possible roles of fluorescence among mammals.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230325
2. Material and methods
Both preserved and frozen mammal specimens were obtained from the Western Australian Museum
collection, with additional freshly frozen specimens of platypus (Ornithorhynchus anatinus) and
Tasmanian devil (Sarcophilus harrisii) obtained from the Tasmanian Museum and Art Gallery, and
koala (Phascolarctos cinereus) and echidna (Tachyglossus aculeatus) from Yanchep in Perth, Western
Australia. Phase 1 of the study, the forensic light source and fluorescence spectroscopy, was conducted
at Curtin University, while phase 2, the wide-ranging survey of fluorescence, was conducted at the
Western Australian Museum. Details of specific species and sample sizes involved in each phase are
as indicated below. Note that the museum has kept no records of fumigation history, arsenic soap was
used in old specimens pre-1980s, and borax was used in more recent specimens post-1980s.

2.1. Phase 1: preliminary considerations, forensic light source studies and fluorescence
spectroscopy

The first phase of our study aimed to (a) identify if we could reproduce the findings of previous studies
e.g. Anich et al. [24] and Toussaint et al. [18], (b) determine if apparent fluorescence is truly fluorescence
and not light scattering, (c) identify the anatomical regions most likely to fluoresce, and (d) identify if
preservation method impacts on fluorescence.

2.1.1. Material for preliminary considerations

The specimens used for phase 1 consisted of two monotreme species, the platypus (one specimen
preserved with arsenic powder and a frozen specimen which was analysed, preserved with borax and
then re-analysed) and short-beaked echidna (one preserved and one frozen), five marsupials, the koala
(one preserved and one frozen), Tasmanian devil (one preserved and one frozen), greater bilby
(Macrotis lagotis; one preserved and one frozen), quenda (Isoodon fusciventer; one preserved) and
southern hairy-nosed wombat (Lasiorhinus latifrons; one preserved) and a placental mammal, a cat
(Felis catus; one frozen). Preserved specimens had generally been prepared with arsenic soap and
powder (on the inside of the skin), but we included platypus specimens prepared with arsenic and
with borax (sodium borate), and the quenda was preserved only with borax, allowing for comparison
between the main dry preservation methods. Frozen specimens (freshly dead animals that were not
yet preserved with chemicals) were thawed to room temperature and the fur dried with a hair dryer
before measurement. Note that preservatives were only used on the inside of the specimens, not on
the outside and no insecticides have been used on any specimen.

2.1.2. Forensic light source studies

The specimens involved in phase 1 were examined using a forensic light source (Rofin Polilight PL500) at
350 nm excitation wavelength and photographed using a Nikon D300 camera, fitted with a 60 mm lens,
on manual exposure mode (settings of ISO-200 and a range of f-stops from f11 to f20 and shutter speeds
of 3–5 s, due to the difference in specimen size). Photographs were taken with (figure 1) and without
(figure 2) with longpass viewing filters (Schott glass 515, 550 and 613 nm placed in front of the
camera); the best result was obtained without the filter. The photographs were used to identify likely
fluorescent and non-fluorescent regions for subsequent fluorescence spectroscopy analysis (see figure 1).

2.1.3. Fluorescence spectroscopy

Fluorescence spectroscopy experiments were performed using a Cary Eclipse Fluorescence
Spectrophotometer (Agilent) combined with a fibre optic probe for in situ measurements. For each
specimen, spectra were collected from body regions that appeared to fluoresce under UV light and at
least one non-fluorescing area, including the dorsal, lateral and ventral fur/spines, any light-coloured
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Figure 1. Fluorescence spectra for preserved and frozen specimens of platypus (a), koala (b) and Tasmanian devil (c) at 350 nm
exposure, unless stated otherwise. Photo shows frozen specimens under UV light, using a filter.
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areas (e.g. white patches of the Tasmanian devil and koala) and areas of exposed skin on the face, ears or
feet. A small (approx. 5 mm2) area of each region was excited at 350 nm, and the mean of 10 replicates of
the fluorescence spectra collected between 400 and 550 nm with a slit width of 5 nm was recorded. To
examine whether the glowing regions were fluorescence or light scatter, spectra were also collected at
300 and 325 nm excitation wavelength for each region. For fluorescence, no shift is expected in the
fluorescence spectrum when the excitation wavelength is varied, since the emission wavelength is
independent of the excitation wavelength. However, for light scattering, a corresponding shift is
expected in the emission peak if the excitation wavelength is changed, since the wavelength of the
scattered photons is proportional to the excitation wavelength [32]. A borax sample was also
examined under similar conditions.

2.2. Phase 2: wide-range survey of fluorescence from specimens in a museum collection
The second phase of our study aimed to (a) identify how widespread fluorescence is in mammals and (b)
identify if there are correlations between (i) which part of the animals fluoresce and (ii) their ecology as
there have been suggestions that fluorescence may be related to ecological traits such as microhabitat use
and activity patterns [18,26].

2.2.1. Material for wide-range survey of fluorescence

We included both dry preserved and frozen unprepared specimens from the Western Australian
Museum collection. A total of 146 specimens from 125 species of mammal were examined,
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Figure 2. Unfiltered photography of mammal taxidermy under UV light. (a) polar bear, (b) southern marsupial mole, (c) greater
bilby, (d) mountain zebra, (e) bare-nosed wombat, ( f ) six-banded armadillo, (g) orange leaf-nosed bat, (h) quenda, (i) leopard, ( j)
Asian palm civet, (k) red fox, (l) dwarf spinner dolphin.
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representing 79 families and 27 orders from all three mammalian subdivisions (monotremes, marsupials
and placentals; specimens examined are listed in electronic supplementary material, tables S1 and S2).
Kohler et al. [22] found little intraspecific variation between 109 individuals of flying squirrel
specimens, so we did not expect a level of intraspecific variation great enough to affect the results of
the species we studied. In most cases we did shine the UV lights on many specimens of the same
species to check this, and since we saw no difference between specimens, we recorded only a few
specimens as exemplars of their species for this study. Sexual dimorphism in fur fluorescence also
seems to be uncommon. Therefore, we do not expect other members of the species to differ
significantly from the representative specimen we examined.
2.2.2. Photography and observation

All specimens in phase 2 were photographed (see figure 2) under 390 nm UV light from a Crime Scene
Tools light source (Xenopus Electronix; XeLED-Cr7UV-390-K). For each specimen, we recorded the
occurrence of fluorescence, which part of the specimen fluoresced and the colour (electronic
supplementary material, table S1). The anatomical area of the apparent fluorescence on each specimen
was recorded in a presence (1) or absence (0) matrix (electronic supplementary material, table S2). The
anatomical regions and features examined were facial fur, dorsal fur, dorsal fur pattern (spots or
stripes) if present, lateral fur, ventral fur, tail fur, claws, inside of ears, underside of feet and other
exposed skin (naked tail, naked skin, pouch, etc.).
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2.2.3. Analysis of the fluorescence presence

Ecological traits, including activity period (diurnal, n = 71 or nocturnal, n = 54), locomotion/habitat
(terrestrial, n = 62; arboreal, n = 42; flying, n = 10; burrowing, n = 4; aquatic, n = 7) and diet (carnivore,
n = 46; omnivore, n = 26; herbivore, n = 53), were identified for each specimen after Van Dyck &
Strahan [33] and Wilson & Reeder [34]. Potential differences in the frequency of occurrence of the
fluorescence for various body parts and of various florescent colours was assessed with a uniform
goodness of fit test conducted with statistiXL v. 2.2 (www.statistiXL.com, Nedlands, WA). A principal
coordinates analysis (PCO), with Dice similarity index, was performed on the fluorescence matrix
(electronic supplementary material, table S2) for each of the biological traits using the software PAST
(v. 4.10; [35]), and then a linear discriminant analysis (achieved using statistiXL) was conducted with
the resulting PCO values to test the statistical significance of separation of fluorescence characteristics
of species with varying ecological traits.
R.Soc.Open
Sci.10:230325
3. Results
3.1. Phase 1: preliminary considerations, forensic light source studies and fluorescence

spectroscopy
For the platypus, koala and Tasmanian devil the areas with the highest degree of fluorescence were
the pale and white fur on the ventral surface (platypus and koala) or neck and rump (Tasmanian
devil) with little to no fluorescence for areas with dark fur (figure 1, electronic supplementary
material, figures S1–S3). When excited at 350 nm, the spectra of the fluorescing areas peaked at
around 450 nm, which correlated with the blue fluorescence observed in the photographs illuminated
by the forensic light source. When excited at 325 or 300 nm, the peak remained at 450 nm but the
intensity dropped. The overall intensity of the fluorescence was also higher for the koala and
Tasmanian devil compared with the platypus. There was no difference in the wavelength of the
spectra peaks for frozen compared with preserved specimens for the koala although the intensity was
higher for preserved specimens. For the platypus, both preservation methods (arsenic versus borax)
produced similar results of higher intensity fluorescence compared with the frozen specimen
(electronic supplementary material, figure S3). The white quills and the skin of the pouch of the short-
beaked echidna were fluorescent (electronic supplementary figure S4). The pale fur of the southern
hairy-nosed wombat (dorsal side) and quenda (ventral side) had the highest intensity fluorescence
detected (over 700 arb. units) of the preserved specimens examined (electronic supplementary
material, figure S5). The preserved greater bilby specimen (electronic supplementary figure S6) had
similar low-intensity fluorescence to the platypus for its skin and white fur, but when exposed to
600 nm, it had much higher fluorescence intensity (over 400 arb. units). This differed for the frozen
bilby specimen with much higher fluorescence intensity (up to 600 arb. units) than the preserved
bilby. The dark fur on the cat was not fluorescent, but the white fur was, with similar intensity
(approx. 200 arb. units) to the platypus (electronic supplementary material, figure S7). Borax powder
was fluorescent with a maximum intensity above 400 arb. units, but the intensity dropped when
subjected to 325 nm, with two high-intensity peaks at 440 and 540 nm (electronic supplementary
material, figure S8).

3.2. Phase 2: wide-range survey of fluorescence from specimens in the Western Australian
Museum collection

3.2.1. Photography and observation

Apparent fluorescence (our visual analysis of fluorescence was confirmed by spectroscopy for a subset of
mammals in phase 1) was observed in all the mammal specimens investigated (figures 2 and 3, electronic
supplementary material, tables S1 and S2). White fur was commonly fluorescent, along with lighter
coloured fur (e.g. yellow, light brown; 107 out of 125 species). Naked skin inside the pinnae, around
the eyes and mouth, inside marsupial pouches and on the feet was also fluorescent for many species
(47 out of 125 species). Claws that contained pigment also appeared to fluoresce in some species
(68 out of 125 species). The most fluorescent mammals were typically all white or pale yellow, such as

http://www.statistiXL.com
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Figure 3. (Caption overleaf.)
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Figure 3. (Overleaf.) Phylogeny of mammalian families from Timetree.org [36]. A red square indicates those families for which we
observed fluorescent species. The absence of a red squares indicates that fluorescence was not tested in this study. royalsocietypublishing.org/journa
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the polar bear (Ursus maritimus), southern marsupial mole (Notoryctes typhlops) and an albino wallaby
(Notamacropus sp.). Only one mammal had no external fluorescence, being the dwarf spinner dolphin
(Stenella longirostris roseiventris) where only the teeth fluoresced. The frequency by which different
body parts fluoresced was not uniform (x27 ¼ 162, p < 0.001), with white fur over-represented among
fluorescent regions (1.75×), skin represented as expected (1.1×) and the other regions occurring at
lower frequencies (0.23–0.89×). Our dataset had no clear phylogenetic bias (figure 3), indicating that
fluorescence is common throughout the mammalian phylogeny.
l/rsos
R.Soc.Open

Sci.10:230325
3.2.2. Analysis of the fluorescence presence

The frequency of occurrence of different fluorescent colours was not uniform among mammals
(x25 ¼ 126, p < 0.001). White (2.5×) and yellow (1.3×) colours occurred more frequently than expected
while blue (0.5×), orange (0.3×) and pink (0.03×) occurred less frequency than expected (figure 2,
electronic supplementary material, tables S1 and S2). Specimens with more regions of fluorescence
were likely to be closer to the centre of the PCO plot, with least fluorescent specimens further from
the centre. There was overlap between the plots for diurnal and nocturnal mammals (figure 4a; axis
1 = 23.57% of variance; axis 2 = 11.30% of variance) at the centre of the PCO plot, but there was less
overlap at the extremities and only diurnal mammals were present at the top of the PCO (least
fluorescent). Discriminant analysis of all 10 PCO scores for fluorescence achieved a highly
significant separation between nocturnal (centroid −0.414) and diurnal (centroid 0.545) species with
a single discriminate function incorporating 100% of the variance and with a canonical correlation
score greater than or equal to 0.43 (χ10 = 24.4, p = 0.007).

For feeding guild (carnivore, omnivore, herbivores; figure 4b; axis 1 = 23.57% of variance; axis 2 =
11.30% of variance), both carnivores and omnivores occupy the centre of the PCO (more fluorescent),
while herbivores were more widespread. Discriminate analysis of PCO scores for diet created two
discriminate functions explaining 100% of the variance and with canonical correlation scores greater
than or equal to 0.278; these functions could not significantly separate species of different diet (χ9-20≤
21, p≥ 0.396).

There was a lot of overlap between locomotor mode (figure 4c; axis 1 = 23.57% of variance; axis 2 =
11.30% of variance), but the centre (more fluorescent) of the PCO was mostly terrestrial, arboreal and
fossorial mammals, while all locomotory modes occur in the upper half including aquatic and flying
mammals. Discriminate analysis of PCO scores for locomotion types found three significant
discriminate functions incorporating 97% of the variance and canonical correlation scores greater than
or equal to 0.49 (χ16-40≥ 37.5, p≤ 0.002). Aquatic species had the highest centroid for function one
(3.32; less fluorescent), flying species function two (1.93; less fluorescent) and terrestrial species for
function three (0.469; more fluorescent).
4. Discussion
To date, reports of fluorescence among mammals have been limited to a relatively small number of
species [2,15,16,18,22–25,27]. Here, we were able to reproduce the results of these previous studies and
observe apparent fluorescence in additional species; we report fluorescence for 125 mammal species,
from half of all mammalian families and representing almost all clades in the mammalian phylogeny
(figure 3). The only major mammalian clade missing from our dataset is the lemurs, a group that
requires further investigation for the occurrence of luminescence; we predict, based on the prevalence
of white fur, that this clade will also contain fluorescent species. While the amount and location of
fluorescence varied between species, all exhibited some form of apparent fluorescence. Areas of
fluorescence included white and light fur, quills, whiskers, claws, teeth and some naked skin. For
some species (e.g. dwarf spinner dolphin) fluorescence was limited to the teeth, for which structural
fluorescence is well known [37]. Likewise, white hair has previously been reported to fluoresce as a
consequence of tryptophan or unpigmented keratin fibres [38–40]. It is therefore not surprising that
pale-coloured quills, whiskers and claws also fluoresce, as they also consist of keratin. Porphyrin is
associated with the red fluorescence in some mammals [18]. We observed red fluorescence in one
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quenda specimen (figure 2h), but not the other quenda examined. This corroborates the suggestion
of Sobral and Souza-Gudinho [26] and Toussaint et al. [18] that red fluorescence was a result of a
by-product of physiological processes unless it was faded out, but this requires further analysis.
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Fluorescence of mammalian skin has not been widely reported, although Nummert et al. [25]
observed florescence of dormouse skin. Mammalian skin is keratinized and so it is not surprising that
we, Reinhold [41] and Nummert et al. [25] observed fluorescence on unpigmented skin of pinnae,
face, marsupial and monotreme pouches, manus and pes. Nevertheless, we also observed fluorescence
of pigmented regions of mammalian fur, suggesting that mammalian fluorescence is not just a
consequence of the structural properties of unpigmented keratin, teeth and bone but the presence of
fluorophores within the hair shaft as well as tryptophan residues in keratin [42].

The spectral curves we produced for glowing areas of a subsample of mammals representing
monotremes, marsupials and placental mammals allow us to evaluate the apparent fluorescence and
determine if the coloured ‘glow’ observed under UV light was probably fluorescence or the results of
light scatter. Shifting the excitation wavelength did not produce a corresponding shift in the peak of
these reflectance curves, indicating that the observed phenomena is indeed fluorescence and not just
scatter [32]. The concurrent observed drop in intensity is expected, as the excitation is no longer at the
optimal wavelength, depending on the fluorophore targeted. Consequently, we directly confirm
previous observations of the presence of fluorescence for the platypus [24] and, based on the
taxonomic and ecological diversity of our mammalian subset, suggest that other reports of fluorescent
mammals are likely to be a consequence of actual fluorescence and not light scatter.

Previous studies have demonstrated that the fluorescence observed for some preserved museum
specimens also occurred in live animals [2,22,23,25], but fluorescence was not quantified in these
studies. Our spectral curves, especially for the platypus, where we explored two forms of preservation
and a frozen specimen, provide quantitative evidence that both preserved and non-preserved
specimens fluoresce, and that for all three light scatter is not the cause of the coloured ‘glow’
observed under UV light. However, borax itself also fluoresces, suggesting that preservation may play
a part in the intensity of the fluorescence observed for some specimens. Indeed, the fluorescent
property of borax is one reason it is widely used as a cleaning agent to brighten white clothing and
other materials. Interestingly, Pine et al. [16], Olson et al. [23] and Nummert et al. [25] reported a
decrease in fluorescence intensity for preserved compared with live dormice while Kohler et al. [22]
reported a similar degree of fluorescence for live and preserved flying squirrels, but they were tested
in different conditions. Storage conditions over the life of preserved specimens may impact the
intensity of fluorescence observed; newer specimens protected from light may retain fluorescent
characteristics if fluorescent molecules are photodegradable [16,18].

There is some debate as to whether fluorescence in mammals, and indeed other animals, has an actual
biological function, or if it is simply a consequence of the nature of their surface chemistry (e.g. [1,43,44]).
Marshall and Johnsen [1] suggested that assigning a biological function to observations of fluorescence
requires five criteria: that the absorption spectra of fluorescent pigments absorb available light
wavelengths, under what natural lighting condition it is, emitted wavelengths contrast against typical
backgrounds, fluorescent areas of animals are visible, and intended observers have an appropriate
spectral sensitivity. They concluded that it can be rarely demonstrated that all these criteria are met
for most examples of fluorescence, and so there was little evidence that most of the fluorescence
described has a biological function. For most fluorescent mammals there is insufficient information to
evaluate if they conform to these five criteria, so we can only hypothesize about potential roles, if any,
of mammalian fluorescence with the aim to stimulate further investigation into the potential functions
of what we now understand is a widespread phenomenon.

The presence of white or light fur, which we found was more likely to fluoresce, was a major driver
for the extent of fluorescence in our broad mammalian dataset. The evolution of coloration in mammals
is complex, with many drivers of colour and pattern including camouflage, signalling and physiology
[45]. It is likely that much of the fluorescence we recorded is the result of tryptophan metabolite
fluorophores that are otherwise masked by melanin in darker fur [42]. The interaction between day/
night use, feeding guild and locomotion is probably important for determining the extent of white
fur in mammals, and fluorescence is likely to be simply a consequence of unpigmented fur for
many species.

Previous studies have suggested a link between mammalian fluorescence and nocturnality [2,22–24].
Our results support this suggestion with the extent of fluorescence discriminating between nocturnal and
diurnal mammals. As very few of the mammals in our dataset had pink-, orange- or red-coloured
fluorescence, it is unlikely that a predominance of glandular secretions, such as might be associated
with a greater reliance on olfactory communication, explains a predominance of fluorescing nocturnal
species. However, degradation of pigments which produce these reddish colours over time for our
museum specimen dataset (e.g. [16,18]) may account for the significant under-representation of these
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fluorescent colours in our dataset. Despite fluorescence being more widespread for nocturnal species,
fluorescence was not restricted to these species and we identified some 52 diurnal mammals that also
fluoresce, albeit typically in fewer body regions.

For nocturnal mammals, white or light-coloured areas may allow for intra- and inter-specific
communication [46,47]; fluorescence of these areas increases brightness, enhancing visibility and
therefore presumably value as visual signals especially as the moon becomes fuller, reflecting more
sunlight. During twilight, there is a shift to shorter wavelength ambient light due to attenuation by
the atmosphere of medium wavelengths from a low solar angle [48], so during these low-light
periods, areas that emit light at longer wavelength (i.e. that fluoresce) are likely to be more visible.
Penteriani and Delgado [47] suggest that visual signalling among nocturnal and crepuscular
mammals is more important than previously recognized and our observations of widespread
fluorescence, particularly among nocturnal species, supports this conclusion.

In terms of locomotion, we found the broadest occurrence of fluorescence within terrestrial,
arboreal and fossorial mammals, with flying and aquatic mammals less likely to fluoresce. Although
the platypus had been reported as fluorescing [24], our results indicate that the intensity of
fluorescence in a fresh specimen was lower than for preserved specimens, suggesting a minor, if
any, functional role. Platypus hunt for aquatic prey underwater with their eyes closed [33], so their
ventral fluorescence, if it has any functional purpose, is unlikely to be a visual cue, as it is only
likely to be visible when they are in the water in a three-dimensional environment. It may provide
some benefit in brightening the ventral surface to provide counter shading in water, as is common
for many aquatic or marine species [49]. It is also unlikely that fluorescence plays a functional role
for fossorial mammals. The southern marsupial mole (Notoryctes typhlops) is one of the most
fluorescent mammals, covered in yellow-white fur, but it is also blind [33]. Its fluorescence is
probably a result of reduced pigmentation that occurs in many fossorial and subterranean species
[50] or of increased structural keratin to protect against abrasive soil particles, as hypothesized for
the golden mole [51]. Fluorescence is unlikely to be important for some flying mammals such as
microbats that use echolocation to navigate and locate prey.
5. Conclusion
In this study, we have demonstrated widespread fluorescence among mammals, by confirming the
phenomenon using spectral analysis and subsequently examining observable fluorescence throughout
the phylogeny of mammals. We have identified many candidate species for further examination by
spectral analysis, and present evidence that preservation methods could impact these results by
increasing or decreasing the intensity of the fluorescence. We would suggest that further studies
should focus on non-preserved animals, e.g. live or freshly dead, as these would not be impacted by
potential degradation of fluorescent materials or by preservation chemicals. Species of interest would
include those with highly patterned pelts, which may be important for visual signalling or
camouflage, and those with highly specialized life-histories.
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