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Abstract: High-accuracy Low Earth Orbit (LEO) satellite clock and orbital products are preconditions
to realize LEO augmentation for high-accuracy GNSS-based positioning on the ground. There is a
high correlation between the orbit and clock parameters in the kinematic Precise Orbit Determination
(POD) process. While future LEO satellites are planned to be equipped with better clocks, the benefits
of modeling high-stability LEO satellite clocks are not yet thoroughly investigated, particularly
when mid- to long-term systematic effects induced by the complex LEO relativistic effects and
the external environment remain in the clocks. Through clock modeling, this study attempts to
reduce not only the short-term noise of radial kinematic orbits, but also mis-modeled effects caused
by, e.g., real-time GNSS orbital and clock errors. To explore the benefits of clock modeling, the clocks
need to be first detrended by the mid- to long-term systematic effects. While over-detrending limits
the orbital improvements, weak detrending would also hamper strong clock modeling and easily
lead to performance degradations. A balance between the strengths of the detrending and the model
thus needs to be investigated for different clock types. In this study, the Piece-Wise Linear (PWL)
model of different time lengths and a 2.5-state filter with different strengths (h values) are tested
using real data from GRACE FO-1 with an Ultra-Stable Oscillator (USO) on board. Using the CNES
real-time GPS products, it was found that when detrending the clocks with a smoothing window of
300 to 500 s, one could generally expect an improvement larger than 10% in the estimation of radial
orbits when applying a PWL model with a length from 300 to 1200 s. Improvements of this size can
also be expected when using the 2.5-state model with h−1 (for Flicker Frequency Noise) from 10−28

to 10−30.

Keywords: Low Earth Orbit (LEO); clock modeling; Precise Orbit Determination (POD); USO

1. Introduction

In the next decade, tens of thousands of Low Earth Orbit (LEO) satellites will form
a dense network at an orbital height of hundreds of kilometers to over 1000 km above
the Earth. This includes satellites launched by companies such as SpaceX and OneWeb
primarily for communication/Internet purposes [1]. Other LEO satellite missions such as
the Gravity Recovery and Climate Experiment (GRACE) and Sentinel have also existed
for decades for scientific and research purposes. In recent years, LEO satellites have been
proposed to form new constellations that can augment the positioning service. Moreover,
the Kepler system proposed by the German Aerospace Center is planned to comprise 6 LEO
satellites and 24 Medium Earth Orbit (MEO) satellites in its constellation [2].

The rapidly increasing number of LEO satellites will benefit Positioning, Navigation
and Timing (PNT) service on the ground. It will improve satellite geometry, and, thus,
positioning precision. The much stronger signal strength of LEO satellites would possibly
enable indoor positioning in the future [3]. The high satellite speed would shorten the
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convergence time of Precise Point Positioning [4], and may whiten the multipath effects
that have been a bottleneck for users in complicated environments [5].

Like GNSS, producing precise orbital and clock products is a precondition to realizing
high-accuracy positioning for ground users employing LEO satellites. While the orbital
and clock parameters are often estimated together in the least-squares adjustment, the
high correlation between them requires further de-correlation through better modeling to
separate the two products [6,7]. In the last decades, dynamic models of LEO satellite orbits
have been intensively studied [8–10]. The reduced-dynamic Precise Orbit Determination
(POD) process de-correlates the clocks and the radial orbits, leading to significant precision
improvement in the radial orbital component. For the kinematic POD, the radial orbits can
be improved by modeling clock errors. Modeling has been attempted for the Ultra-Stable
Oscillators (USOs) that were equipped on LEO satellites from missions such as GRACE [11],
the GRACE Follow-On (GRACE-FO) [12], and the Sentinel-3 [13]. Yang et al. [7] improved
the GRACE B orbits by modeling the USO clock as two-states and three-states in a Kalman
filter designed for real-time processing. Zhou et al. [14] improved the GRACE orbits
by applying relative constraints between clock errors of subsequent epochs. Weinbach
and Schön [15] used the Piece-Wise Linear (PWL) model with a length of 60 s to USO to
benefit from its good short-term stability. There, significant improvement was identified in
high-pass filtered radial orbits, i.e., in the short-term noise of the orbits.

The LEO clock estimates, however, could suffer from mis-modeled effects such as
errors in the GNSS orbits and clocks used for processing. These effects are enlarged in the
kinematic mode due to the high correlation between the orbits and clocks. For example,
high-precision real-time GNSS products are often used for near-real-time LEO POD [16],
introducing mis-modeled effects caused by the estimated real-time GNSS satellite orbital
and clock errors. These mid- to long-term effects can be reduced when, e.g., longer PWL
can be applied in the clock model. However, the following issues hamper the utilization of
such a strong clock model:

â The clock stability might not be stable enough for a strong clock model. This problem
is partially solved when clocks of better stability, e.g., Hydrogen-Maser (H-Maser) or
optical clocks [2], can be used in LEO satellites in the future.

â Complex once- and twice-per-revolution effects remain in the LEO clocks due to the
low altitude of LEO satellites. These effects cannot be perfectly corrected with the
extended formula of the relativistic effects for LEO satellites [17].

â Significant long-term systematic effects of a few meters could exist in LEO clocks,
suspected to be induced by the external environment. These effects were observed in
satellites of GRACE Follow-On, Sentinel 3B and Sentinel-6A [18–20].

In many of the previous studies using GRACE data mentioned above, no significant
systematic effects were observed in the clocks, as the pre-processed Level 1B observations
were used instead of the raw Level 1A observations [21]. The Level 1B observations,
however, have a priori corrected the observations with the clock errors obtained in the
reduced-dynamic POD (CLK1B). In such a case, one can model, for example, the 24 h clock
errors as a linear polynomial and obtain the orbits at the reduced-dynamic level. Figure 1
shows the radial orbital errors of GRACE FO-1 on 14 August 2018 compared to the reference
orbits provided by the Jet Propulsion Laboratory (JPL). The final GPS products from the
Center for Orbit Determination (CODE) were used for processing [22]. Using Level 1A
observations, the red and blue lines illustrate the radial orbital errors in the kinematic (KN)
and reduced-dynamic (RD) modes with epoch-wise clock estimation, resulting in Root
Mean Square (RMS) of about 3.5 and 1.2 cm, respectively. Using the Level 1B observations,
as shown by the green lines, the kinematic orbital errors are reduced to the level of the blue
line (RMS: 1.6 cm) by estimating the 24 h clocks just as a linear polynomial, only with the
short-term noise increased a bit. In this study, we perform the kinematic POD starting from
the raw observations (Level 1A).
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Figure 1. Radial orbital errors in three modes: kinematic (KN) mode using 1A observations, KN mode
with linear model using 1B observations, and Reduced-dynamic (RD) mode using 1A observations,
compared to the JPL reference orbits. The data from GRACE FO-1 on 14 August 2018 and CODE final
products were used.

2. Research Goal

To explore the benefit of clock modeling, this contribution proposes to detrend the
clock estimates first with their mid- to long-term pattern that can be captured by the GNSS
estimation. These mid- to long-term patterns include not only the relativistic effects, the
significant systematic effects induced by external environments, and the mis-modeled
errors induced by the GNSS satellite products, but also the mid- to long-term trend of the
frequency oscillator itself. A too-weak detrending would limit the possibility of applying
effective clock models, or would easily push different non-clock systematic effects into the
orbits. At the same time, a too-strong detrending would remove the systematic behaviors of
the frequency oscillator itself and lead to very little improvement through clock modeling.
A balance between the strength of the detrending and the clock model is, therefore, to be
investigated. In a nutshell, this paper deals with LEO satellite clock modeling for clock
estimates containing unignorable systematic effects. This paper attempts to propose reason-
able strategies to benefit from the clock stabilities in the presence of these systematic effects
and explore improvements in the kinematic orbits using different clock modeling methods.

Different methods were used for clock detrending in previous studies, although not
all for LEO satellite clocks. Examples are the detrending of the polynomial and harmonic
terms [23], the Lomb-Scargle power spectrum and the continuous wavelet transform
used for GNSS satellite clock analysis [24]. In this study, mean values within different
lengths of smoothing windows are removed to detrend LEO satellite clocks. In such a
way, the strength of the detrending effects can be controlled by varying the length of the
smoothing windows.

Two clock models are used for the investigation in this study, i.e., the PWL model
of different lengths and a 2.5-state model realized in sequential least-squares adjustment
considering different system noise between subsequent epochs of clocks. Real data analysis
is performed for the USO clock in GRACE FO-1. In this study, clock modeling is applied
to ambiguity-float kinematic POD using real-time GNSS products. The real-time GNSS
products were used, as the filter-based clock modeling typically applies to a (near)-real-time
POD process. The ambiguity-float kinematic POD is investigated when applying the clock
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models due to the high correlations between the clocks, the float ambiguities and the radial
kinematic orbits. The clock modeling helps with the de-correlation and improves the radial
orbits that exhibit the worst accuracy in the three directions within a kinematic POD. In the
reduced-dynamic POD, the radial orbits are already largely de-correlated with the clocks
by applying dynamic models. In such a case, the clock modeling of, e.g., a USO would
have less significant improvements in the radial orbits, especially under the existence of
diverse systematic effects.

This paper starts with introducing the processing strategies without and with LEO
satellite clock modeling. The potential of kinematic orbital improvement is discussed for
different strengths of the clock detrending and clock models, followed by the conclusions.

3. Processing Methods

In this section, the kinematic and reduced-dynamic POD process with epoch-wise clock
estimation and applying the PWL and the 2.5-state clock models with relative constraints
are introduced.

3.1. POD without Clock Modeling

The LEO satellites can use dual-frequency code and phase GNSS observations assumed
to be collected by a receiver on board to compute the satellite position. The Ionosphere-Free
(IF) combination is formed to remove first-order ionospheric delays. Considering the fact
that the LEO satellites are flying above the troposphere, only the LEO satellite positions
(or parameters to derive LEO satellite positions), the LEO satellite clock offsets ∆t and the
float ambiguity terms (e.g., Ns

IF for satellite s) are to be estimated as unknowns. As such,
the expectations of the IF code (∆ps

IF) and phase (∆ϕs
IF) Observed-minus-Computed (O-C)

terms can be expressed as:

E(∆ps
IF) = As

K/RD rK/RD + c× ∆t;σ2
p,IF =

f 4
1 + f 4

2(
f 2
1 − f 2

2
)2 σ2

p (1)

E(∆ϕs
IF) = As

K/RD rK/RD + c× ∆t + λIF Ns
IF;σ2

ϕ,IF =
f 4
1 + f 4

2(
f 2
1 − f 2

2
)2 σ2

ϕ (2)

where E(·) is the expectation operator and the variances are given on the right-hand side.
The POD process is considered here in two modes: the kinematic and the reduced-dynamic
modes. In the former case, rK/RD contains the 3-dimensional (3D) coordinates of the LEO
satellite, denoted as rK, and the corresponding design matrix As

K/RD (As
K) contains the

unit vector from the GNSS satellite s to the LEO satellite. c denotes the speed of light.
λIF is c/( f1 + f2) with f j (j = 1, 2) denoting the frequency j. λIF and Ns

IF denote the IF
wavelength and the ambiguity (of satellite s), respectively. The ∆t denotes the estimable
LEO satellite clock offset. The standard deviations of the IF code (σp,IF) and phase (σϕ,IF)
observations are amplified due to the use of IF combination compared to the case when
using individual observations, such as the L1-referenced code (σp) and phase standard
deviations

(
σϕ

)
, which amount to about 0.1 m and 1 mm. An equal weighting is applied

in the POD process due to the relatively simple measurement environment of the LEO
satellite and the absence of tropospheric delays, as done for the Sentinel satellite [25], the
Medium Earth Orbit (MEO) and the Inclined Geosynchronous Orbit (IGSO) satellites of the
BeiDou Navigation Satellite System (BDS) [26,27]. The antenna sensor offsets, their phase
center offsets and variations of the GNSS and LEO satellites, the phase windups and the
general relativistic effects have been corrected in the O-C terms. Note that only the GPS
constellation is considered in this study, where the GPS IF code biases are contained in its
satellite clock products. By forming the IF combination, 99% of the ionospheric delays that
represent its first-order term are removed [28]. High-order terms of the ionospheric delays
are ignored in the processing. They are to be considered in the integrity monitoring of the
LEO satellite POD [29].
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Although the clock modeling is only applied to the kinematic POD in this study, for
the reason of comparison, the reduced-dynamic orbits and clocks are computed. In the
reduced-dynamic mode, a series of orbital elements are estimated in rK/RD, denoted in this
case as rRD. It contains the six Keplerian elements at the initial state, three time-constant
dynamic parameters in the radial (R), along-track (A) and cross-track (C) directions, and
a series of stochastic piece-wise constant accelerations within pre-defined time intervals,
taken in this study as 6 min each. The stochastic accelerations are constrained to zeros with
a standard deviation of 5× 10−9 m/s2. Perturbations such as air drag and solar radiation
pressure are largely compensated by time-constant dynamic parameters and stochastic
accelerations [30,31]. The design matrix in such a case is denoted as As

RD and contains
the partial derivatives of the observations with respect to rRD, which can be numerically
integrated based on the variational equations [8]. Based on existing dynamic models used
for perturbation terms—summarized in Table 1—and the estimated orbital elements, the
orbital positions can then be computed at each epoch with numerical integration in the
reduced-dynamic mode. The clock offsets of the LEO satellite are typically estimated as
independent parameters at each epoch.

Table 1. Dynamic models used for the perturbation terms in the POD.

Perturbation Model

Gravitational attraction of the Earth (Earth’s non-sphericity
and non-homogeneous mass distribution) EGM2008 [32]

Gravitational attractions of other planets JPL DE405 [33]

Solid Earth tides and pole tides IERS Conventions 2010 [34]

Ocean tides FES2004 [35]

3.2. POD with Clock Modeling

For clocks of good stabilities, e.g., the USOs, atomic clocks, or optical clocks that might
be installed on future LEO satellites, modeling the clocks is helpful to de-correlate the clock
parameters and kinematic radial orbits [7,15], thus improving the orbital accuracy. In this
study, two clock models (i.e., the 2.5-state model and the PWL model) are used during the
kinematic POD process, which will be described in the following two sections.

3.2.1. 2.5-State Model

As described by Wang and Rothacher [36], the receiver clock biases can be described
by a low-order polynomial and a stochastic clock parameter. In this study, a quadratic
polynomial consisting of an initial clock offset a0, a frequency offset a1 and a frequency drift
a2 is used to describe the deterministic part of the LEO satellite clock, while a stochastic
clock offset p(ti) is used to capture the remaining stochastic clock behaviors at time point ti.
In the observation model (see Equations (1) and (2)), the LEO satellite clock bias can thus
be expressed as follows:

∆tL(ti) = a0 + a1(ti − t0) + a2(ti − t0)
2 + p(ti) (3)

where t0 indicates the time at the start of processing. For simplicity, ti − t0 is expressed
as ∆t in the following contexts. The IF LEO satellite code bias that is contained in the
estimable LEO satellite clock parameter is assumed constant over the processing period.

The one-state relative constraint, as discussed in Wang and Rothacher [36], however,
assumes a White Frequency Noise (WFN) of the clocks with the variance of the between-
epoch relative constraint linearly increasing with the sampling interval. For other noise
types, a two-state model, having both the stochastic clock offset (a0) and a frequency offset
(a1) estimated and constrained, would be more appropriate. The frequency drift term
a2 (see Equation (3)) is estimated as a constant in the deterministic clock model. This
is equivalent to a three-state model with the variance of the relative constraint between
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frequency drifts of subsequent epochs set to zero. As such, the model introduced in this
study is termed a “2.5”-state model. In a least-squares form, the relative constraints can be
formulated as:

p(ti+1)− p(ti)− ∆t× .
p(ti) = 0 (4)

.
p(ti+1)−

.
p(ti) = 0 (5)

where
.
p denotes the time derivative of p. To avoid singularity between a0 and p(ti) in

Equation (3), a weak absolute constraint (set to zero) is additionally applied to p(ti) with a
large standard deviation σp, e.g., 1 m:

p(ti) = 0 (6)

As a constant frequency offset a1 is previously estimated, the initial value
.
p(t0) is also

constrained to zero with a standard deviation σ .
p, such that:

.
p(t0) = 0 (7)

The variance–covariance matrix for constraint Equations (6)–(9) is given as:

Qc =

(
Qr(∆t) 0

0 diag
(

σ2
p , σ2.

p

)) (8)

where diag(·) forms a diagonal matrix using the elements contained in (·). At epoch
i > 0, σ2.

p is set to ∞. The variance–covariance matrix of the relative constraints Qr(∆t) is a
function of the noise type, size, and sampling interval ∆t. This will be explained later in
this section.

Adding the clock constraints is the same as adding the following term to the normal
equation matrix for the stochastic clock parameters of epoch ti and ti+1 :

Nc = σ2
0 × (FTQ−1

c F) (9)

where σ0 represents the a priori standard deviation of unit weight (on L1), assumed here 1
mm. Based on Equations (4)–(7), the matrix F is expressed as:

F =

(
D I2
I2 0

)
, D =

(
−1 −∆t
0 −1

)
(10)

where I2 denotes the identity matrix with a size of 2. To improve the computational ef-
ficiency when solving using the batch least-squares adjustment, a pre-elimination and
back-substitution strategy is applied for the epoch-wise clock and orbit parameters consid-
ering the relative constraints between subsequent epochs. The case for the one-state clock
model [37] is extended here to a two-state model.

As shown in van Dierendonck et al. [38] and Krawinkel and Schön [6], the system
noise to be applied between subsequent clock parameters within a Kalman filter differs for
different noise types. The Kalman filter, at the same time, can be equivalently expressed in
the form of a sequential least-squares adjustment [39] with:

E
[

lO−C(ti+1)
Φu∆x̂u(ti)

]
=

[
g(∆x(ti+1))
∆xu(ti+1)

]
, Qall =

[
Ql(ti+1) 0

0 ΦuQu(ti)ΦT
u + Su

]
(11)

where lO−C(ti+1) represents all the O-C terms at epoch ti+1, including any absolute con-
straints on the estimable parameters, e.g., the weak absolute constraints on the stochastic
clock parameters (Equations (6) and (7)). g(∆x(ti+1)) describes the observation model of
all estimable parameters at epoch ti+1, and the corresponding variance–covariance matrix
of the observations is denoted as Ql(ti+1). Among all the estimable parameters, the ones to
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be temporally updated are contained in the vector ∆xu. The estimated ∆x̂u at ti, multiplied
by the transition matrix Φu, are treated as pseudo-observations for these parameters at
ti+1. Qu(ti) denotes the variance–covariance matrix of ∆x̂u at ti, which is a fully populated
variance–covariance matrix for all the time-updated unknowns. Su is the system noise for
updating ∆xu from epoch ti to ti+1. In ∆xu, one distinguishes further between the clock
parameters (∆xc) and other parameters to be updated (∆xo), e.g., the phase ambiguities.
The clock parameters ∆xc contain, in our case, the three polynomial coefficients that are
constrained as constants in time, and the stochastic clock offset p and frequency offset

.
p,

which need to be updated with their clock system noise Sc. The transition matrix Φu and
the variance–covariance matrix for the total system noise Su can thus be expressed as:

Φu =


Φo 0 0 0
0 I3 0 0
0 0 1 ∆t
0 0 0 1

, Su =


So 0 0 0
0 0 0 0
0 0 Sc11 Sc12
0 0 Sc21 Sc22

 (12)

for which Φo and So denote the transition matrix and process noise matrix for xo, respec-
tively. Sckj denotes the (k, j)-th element of the matrix for clock system noise Sc, where
Sc12 = Sc21 here. As the sequential least-squares adjustment can also be formulated in
the form of a batch least-squares [40], the matrix Sc for the clock system noise replaces
Qr(∆t) in Equation (8). The standard deviation for the initial absolute constraint of the
frequency offset, i.e., σ .

p at t0 (see Equation (7)), is set to
√

Sc22. The clock model can thus
be realized using a batch least-squares adjustment or a real-time filter based on sequential
least-squares. In this study, the former case is applied for the tests presented due to the
clock detrending method that will be discussed in Section 4. It is noted that Gaussian
distribution, as assumed in this study, may not perfectly describe the observation noise and
the estimation errors. This should be considered in the integrity monitoring of the POD of
LEO satellites.

Taking the WFN, the Flicker Frequency Noise (FFN), and the Random-Walk Frequency
Noise (RWFN) for the LEO satellite clocks as examples, Table 2 gives their slopes in terms
of the Allan deviation [41] and the elements in the variance–covariance matrix for the
relative constraints (Sc11, Sc12 and Sc22), as well as the hα (α = 0,−1,−2) coefficients in Sc11,
Sc12 and Sc22. The hα coefficients are constant, where their amplitudes are related to the
clock stabilities.

Table 2. Characteristics of clock noise types (WFN, FFN, RWFN).

Noise Type Slope in ADEV Sc11 Sc12 Sc22 hα

WFN −0.5 h0
2 ∆t 0 h0

2∆t 2τσ2
y (τ)

FFN 0 2h−1∆t2 h−1∆t 4h−1
σ2

y (τ)

2 ln 2

RWFN 0.5 2
3 π2h−2∆t3 π2h−2∆t2 8

3 π2h−2∆t 3σ2
y (τ)

2π2τ

To give an example of the effects when applying the 2.5-state model of different
strengths, Figure 2 shows simulation test results for the clock errors estimated in the
kinematic POD for two cases when applying and not applying the given clock model. The
observation geometry of GRACE FO-1 on 14 August 2018 was used for the simulations.
Only the noise and real-time GPS orbital and clock errors are considered in the O-C terms.
The latter term was obtained by comparing the real-time GPS products between the French
National Centre for Space Studies (CNES) [42] and the final products from the CODE,
with the clock products re-referenced to those of the final CODE products. The standard
deviation of the phase and code noise is set to 0.001 m and 0.1 m, respectively. The clock
model for a WFN is applied, with h0 (see Figure 2) varying from 10−22 to 10−30 s. The
increasing strength in the clock model directly leads to an increasing smoothing effect of
the clock errors. The peak in the green line at around 00:51 and 17:22 are caused by data
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gaps and looser constraints. After applying the clock models, the short-term stability in the
Modified Allan Deviation (MDEV) is reduced, with the reduction extended to the mid-term
stability when further decreasing the h0 value.
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3.2.2. Piece-Wise Linear Model

The PWL model estimates the clocks with linear polynomials of a pre-defined time
interval ∆T [15]. It can be expressed as follows:

E(∆tL(ti)) = αi,m +
αi,p − αi,m

∆T
× ∆Tm =

∆T − ∆Tm

∆T
αi,m +

∆Tm

∆T
αi,p (13)

where αi,m and αi,p denote the clock bias at the knot point in the PWL model before and
after ti, respectively. ∆Tm is the time interval from the knot point before ti to the epoch
ti. The estimable parameters are clocks at a series of knot points separated by ∆T. The
determined factor of the PWL model is the time interval ∆T.

Using the same satellite geometry as in Section 3.2.1 and considering the same noise
and mis-modeled effects, Figure 3 illustrates the smoothing effect in the kinematic clock es-
timates, applying the PWL model of different lengths. It can be observed that an increasing
PWL length corresponds to a reduced h-value in the 2.5-state model as shown in Figure 2.
Unlike the 2.5-state model that constrains the clocks, also weakly in the long term, the PWL
model puts infinitely strong constraints on clocks (above the linear polynomial) within each
pre-defined ∆T. Applying the PWL model reduces the short-term stability of the estimated
clock errors by adding an infinitely strong constraint for each PWL interval, i.e., estimated
as linear polynomials.

To illustrate the different effects of the PWL model and the 2.5-state model, Figure 4
shows the estimated clock errors when applying the 2.5-state model with h0 = 10−30 s
and the PWL model with ∆T of 2000 s. Similar to Figures 2 and 3, the satellite geometry
of GRACE FO-1 on 14 August 2018 was used for the simulations, considering only the
observation noise and the GPS orbital errors. As shown in Figure 4, a small h value (h0 as
an example) in the 2.5-state model smooths the clock estimates in the long term, while a
long PWL length ∆T extends the length of each period with infinite strong constraint, i.e.,
the length of the piece-wise linear polynomials. In other words, the small h value, i.e., a
strong 2.5-state model, constrains and smooths the clock estimates from the short to long
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term. In contrast, a strong PWL model, i.e., a long PWL length ∆T, assumes the clocks
within each PWL interval to be a linear polynomial but limits these constraints within each
PWL interval.
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4. Test Results

Real data are used for the POD and clock modeling of the USO onboard LEO satellite
(the GRACE Follow-on satellites). This section starts with the introduction of the test de-
scription, followed by the POD results using the two investigated clock modeling methods.
A summary is given at the end of the section.
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4.1. Test Description

Using real observation data from GRACE Follow-on satellites as an example, this
section explores the benefits of the two clock modeling approaches (the 2.5-state and the
PWL) on orbital improvements. Compared with most LEO satellites equipped with Oven-
Controlled Crystal Oscillators (OCXOs) and Temperature-Controlled Crystal Oscillators
(TCXOs), the GRACE Follow-on satellites are equipped with USOs that have good short- to
mid-term stabilities. This is helpful for analyzing the external systematic effects contained
in the clock estimates, as well as the corresponding effects of the detrending and the clock
modelling.

The CNES real-time GPS products are used for processing, which also introduces
mis-modeled effects into the observations. The CNES real-time GPS products were used as
a “quicker” option compared to the final products from different analysis centers, which
normally have a latency of about two weeks. In this section, the need for clock detrending
will be discussed, and proper model strength will be employed when considering the USO
clocks to ensure significant orbital improvements.

As mentioned earlier, the clock and orbital parameters are highly correlated with each
other in the estimation process, and one can benefit from better clock stability. However,
in addition to clock stability, the onboard LEO satellite clocks are influenced by other
systematic effects, which could hamper strong clock modeling. Relativistic effects in the
LEO satellites, for example, are more complex than those of the GNSS satellites due to the
much lower altitudes of LEO satellites. As shown in Larson et al. [17], even with the J2
effects of the Earth oblateness considered in the model, the once-per-revolution (1/rev)
and twice-per-revolution (2/rev) terms still could not be perfectly corrected, leading to
increased power in the 1/rev term using GRACE A and B, as examples. Moreover, large
half-day and quarter-day systematic effects from a few meters up to ten meters are also
observed in satellites such as GRACE Follow-on and Sentinel-3B [18] with slightly varying
periods and amplitudes that could be related to external effects such as temperature.

Using the raw data from GRACE FO-1 on 14 August 2018 from the JPL at Level
1A [21], the MDEVs of the clock estimates in the kinematic and reduced-dynamic modes
are illustrated in the left panel of Figure 5, applying epoch-wise clock estimation. The
MDEV presents the stability of the clock estimates at different averaging times, with detailed
explanations given in [43]. A quadratic polynomial was detrended before the calculation of
MDEVs. The epochs having less than five IF phase/code observations were not considered,
as these will not typically result in good positioning. To guarantee a stable time reference,
the GPS clocks of the CNES real-time products are re-referenced to a stable time scale, e.g.,
by using a selected H-Maser in the CODE final clocks on the same day here or directly using
a reference receiver linked to a highly stable time reference [44]. Compared to the expected
lab behavior of a good USO, as shown by the green dashed line, the short-term noise
(before about 100 s) of the blue and red lines are mainly driven by the GNSS observations
noise, while the mid- to long-term behaviors are overlapped effects of the clock instability
itself, the mis-modeled real-time GPS orbital and clock errors, the relativistic effects and
the significant systematic effects caused by the external environment [18].

Correspondingly, the MDEVs of the orbital errors using the CNES real-time products
are illustrated in the right panel of Figure 5 in the radial I, along-track (A) and cross-
track (C) directions for both the kinematic (KN) and reduced-dynamic (RD) modes. For
model consistency, the reduced-dynamic orbits computed using the CODE final products,
applying the model described in Section 3.1, were taken as the reference orbits. The mis-
modeled effects of the real-time GNSS products are visible in the right panel of Figure 5 as
the arches from about 100 s to a few thousand seconds, which are caused by the real-time
GPS orbital and clock errors, as well as possible model deficiencies in the reduced-dynamic
mode. From the right panel of Figure 5, it can also be observed that the differences between
the kinematic orbits (solid lines) and the reduced-dynamic orbits (dashed lines) are not
only reflected in the increased short-term noise, but also in the enlarged projection of the
mis-modeled effects on the orbits. In the kinematic mode, the radial orbital errors (solid
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black line) are higher than those in the other two directions due to the higher correlation
between the radial orbits and the clocks in the estimation process.
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Figure 5. MDEVs of the clock estimates (left) and the orbital errors (right) in the kinematic (KN)
and reduced-dynamic (RD) modes using the data from GRACE FO-1 and the CNES real-time GNSS
products on 14 August 2018. Quadratic polynomial was detrended before calculating the MDEVs.

As it is challenging to perfectly correct the 1/rev and 2/rev effects and the significant
systematic effects induced by the external environment based on existing physical models,
and to possibly explore the benefits of the clock modeling, the mid- to long-term clock
trends that can be captured by POD and clock estimation using the GNSS observations
are a priori corrected in the O-C terms. Figure 6 shows the kinematic clocks detrended
first with only a quadratic polynomial (red lines) and next with smoothed trends using
mean values within a smoothing window T. From Figure 6 it can be observed that the
mid- to long-term systematic effects can be stepwise removed by decreasing the smoothing
windows. However, it should be noted that the detrended term also includes the projection
of the mis-modeled effects, which influence not only the clocks but also the orbital estimates.
Decreasing the smoothing window could allow for applying a stronger clock model, but it
does not necessarily benefit the estimated orbits more, as the correlated clock errors might
be partially removed by the detrending process as well. As such, a balance needs to be
investigated to maximize the actual improvement in the orbit estimation.
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In this section, the CNES real-time products and the USO in the GRACE FO-1 are
used as an example to explore the benefits of the two different clock models (PWL and the
2.5-states models) in the kinematic POD.

4.2. PWL Model

Applying the PWL clock model with different lengths from 300 to 3000 s (for each
linear polynomial), the Root Mean Square (RMS) of the radial orbital errors is shown
in Figure 7, detrended using different smoothing windows ∆T. From Figure 7 it can
be observed that when detrending only with a quadratic polynomial (the yellow lines),
applying the PWL model with a length longer than 400 s easily leads to large degradations
in the orbital elements. When detrended with more systematic effects, as shown by the
other colored lines, there is a potential to improve the orbital elements further. In general,
a smoothing window of 500 s (see the magenta lines) provides a proper solution for the
modelling without large degradation, even at a PWL length of 1400 s, and, at the same time,
delivers significant improvement in the radial orbits, e.g., 16% at a PWL length of 1000 s.
It is noted that the 3–4 cm RMS of the radial orbital was achieved in the ambiguity-float
kinematic POD method using real-time GNSS products.
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The MDEVs of the radial orbital errors are shown in the left panel of Figure 8 for a
smoothing window of 500 s, as an example, and PWL lengths of 400 s, 1000 s and 1400 s.
Despite the reduced short-term noise for all three PWL lengths, slight differences can be
observed in the medium to long term around an averaging time of 1000 s. While the
benefits in orbital improvement are not yet fully shown when applying a PWL of 400 s
(the yellow line), a too-strong constraint with a PWL of 1400 s begins to degrade the orbits
around 1000 s (the black line). In the right panel of Figure 8, the PWL model of 1000 s is
applied when detrending the clocks with a smoothing window (∆T) of 300 s, 500 s and
1000 s. It can be observed that detrending the clocks using a smoothing window (∆T) of
1000 s does not allow for a PWL (∆T) of 1000 s and pushes the remaining mid-term clock
systematic effects into the orbits. Further smoothing the clocks with a window of 500 s
(or less) allows for such a PWL length. However, over-smoothing with, e.g., a window of
300 s also removes too many mis-modeled effects in the clocks, which offers less chance to
improve the orbits through de-correlation (see the yellow line above the green line in the
right panel of Figure 8).
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Figure 8. MDEV of the radial orbital errors for a smoothing window of 500 s in the clock detrending
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Figure 9 illustrates the orbital errors when not applying (shown in red) and applying
the PWL clock model that delivers the largest improvement in each direction (in yellow).
For comparison purposes, the reduced-dynamic orbits are illustrated with blue lines as
well. It can be observed that applying the PWL does not only reduce the noise but also
helps to reduce the enlarged mis-modeled effects in the kinematic mode.
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The RIS improvemeIts in the orbits are liIted in Table 3 for different smoothing win-
dows and PWL lengths. It can be observed that a smoothing window of 300 to 500 s
generally allows for improvements of radial orbits of more than 10% by applying a PWL
length from 400 to 1200 s. Increasing the smoothing window to over 1000 s allows for only
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a small PWL length, and degradations (see negative values) could be resulted in large PWL
lengths above 1000 s. A summary will be given in Section 4.4, together with the results of
the 2.5-state model.

Table 3. Orbital improvements (in percentages) for different smoothing windows and PWL lengths
for USO. The improvements in the radial, along-track and cross-track directions are separated by “/”.

Smoothing
Window [s]

Orbital Improvement [%] at PWL Length of

200 s 400 s 600 s 800 s 1000 s 1200 s 1400 s

300 8/4/3 10/6/7 11/7/9 12/8/7 12/7/6 11/7/7 9/6/5

500 8/4/3 12/9/11 14/11/16 16/13/13 16/13/8 13/12/10 8/10/8

1000 8/4/3 12/11/17 11/16/21 9/15/17 1/12/−3 −20/7/−9 −42/1/−3

2000 8/4/3 11/11/14 −1/11/14 −15/4/4 −73/−28/−62 −161/−58/−88 −263/−112/−69

3000 8/4/3 9/10/14 −4/9/9 −27/3/6 −117/−53/−74 −264/−117/−142 −467/−237/−112

4.3. 2.5-State Model

Following the model described in Section 3.2.1, the 2.5-state clock model using FFN
is applied to the USO clock used in GRACE FO-1. For the short-term stability of 10−13,
according to the last column of Table 2, the h−1 should amount to about 7× 10−27. After
the detrending with different smoothing windows, the h−1 is tested from 10−26 down to a
small value of 10−32, and the influence of this change on the orbits is assessed.

Taking the radial direction as an example, Figure 10 shows the RMS of the orbital errors
applying the 2.5-state model for FFN with different values of h−1, after being detrended
with clocks of different smoothing windows. It can be observed that a rather significant
improvement of about 19% can be obtained in the radial direction for a smoothing window
of 1000 s at h−1 of 5× 10−30 (see the red line). Further decreasing the smoothing window
would lead to smaller improvement and give a “safer” solution to avoid large degradations,
even with a very small h−1.
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Figure 10. RMS of the radial kinematic orbital errors applying the 2.5-state model for FFN with
different h−1 values. The ∞ on the x-axis represents the case of epoch-wise clock estimation.

Figure 11 shows the MDEVs of the orbital errors with and without the 2.5-state model
for FFN having an h−1 of 5× 10−30. The clocks were detrended with a smoothing window
of 1000 s. For the radial components (see the red and magenta lines), it can be observed
that the clocks are stabilized in both the short and the long term, namely with both the
noise and mis-modeled effects reduced. In the along-track and cross-track directions, the
improvement in the short-term noise is limited. In the long term, however, we observe
stabilized mis-modeled effects compared to the case of epoch-wise clock estimation.
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Figure 11. MDEVs of the orbital errors without clock model and with the 2.5-state model for FFN with
an h−1 of 5× 10−30. The clocks were detrended with a smoothing window of 1000 s before modeling.

The orbital improvements applying different h−1 values and smoothing windows are
listed in Table 4. In general, by applying the 2.5-state model with an h−1 value of 10−28 to
10−30 after detrending the clocks with a window of 300 to 500 s, one could improve the radial
orbits by about 10% or more. After applying a smoothing window equal or larger than 2000 s,
degradations could be resulted in the orbits when the h−1 value is smaller than 10−29.

Table 4. Orbital improvements (in percentages) for different smoothing windows and h−1 for USO.
The improvements in the radial, along-track and cross-track directions are separated by “/”.

Smoothing
Window [s]

Orbital Improvement [%] with h−1 of

10−26 10−27 10−28 10−29 10−30 10−31 10−32

300 6/2/2 7/3/2 9/5/4 10/6/6 11/7/6 9/5/6 6/1/6

500 6/2/2 8/4/3 10/6/5 13/10/9 15/12/11 9/8/10 0/0/10

1000 6/2/2 8/4/3 11/7/6 17/15/14 11/19/12 −25/5/5 −62/−32/−13

2000 5/2/2 7/4/3 9/7/6 14/15/11 −36/8/−10 −200/−94/−67 −336/−265/−245

3000 5/2/2 3/3/2 3/5/5 2/13/10 −76/−14/−16 −377/−238/−166 −648/−616/−622

4.4. Summary for Improvement in the Radial Orbits

Figure 12 shows the improvements in the radial orbits for between 0% and 5% (grey),
between 5% and 10% (yellow), between 10% and 15% (green) and around or above 15%
(red), applying the PWL and the 2.5-state models. Data from GRACE FO-1 on 14 August
2018 were used for the analysis. In general, by detrending the clocks with a smoothing
window of 300 s to 500 s, improvement around or over 10% can be expected in the radial
orbits when applying the PWL model with a length of 300 s to 1200 s, or using the 2.5-state
model (for FFN) with a h−1 from 10−28 to 10−30. The RMS of the radial orbital errors before
and after applying the clock models are given in Tables 5 and 6.
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Figure 12. Improvements in the radial orbits when applying (a) the PWL model and (b) the 2.5-state
model to the USO in GRACE FO-1 on 14 August 2018 using the CNES real-time products. The grey
areas denote improvement between 0% and 5%, the yellow areas between 5% and 10%, the green
areas between 10% and 15%, and red areas around or above 15%.

Table 5. RMS of the radial orbital errors for the suggested smoothing windows and PWL lengths.

Smoothing
Window [s]

RMS [cm] at PWL Length of

No Model 300 s 400 s 600 s 800 s 1000 s 1200 s

300 3.7 3.4 3.4 3.3 3.3 3.3 3.3

400 3.7 3.4 3.3 3.3 3.2 3.2 3.3

500 3.7 3.4 3.3 3.2 3.1 3.1 3.3
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Table 6. RMS of the radial orbital errors for the suggested smoothing windows and h−1.

Smoothing
Window [s]

RMS [cm] with h−1 of

No Model 10−28 5×10−29 10−29 5×10−30 10−30

300 3.7 3.4 3.4 3.4 3.3 3.3

400 3.7 3.4 3.3 3.3 3.3 3.3

500 3.7 3.4 3.3 3.2 3.2 3.2

If the projected mis-modeled effects are of different sizes, the orbital improvements could
exhibit slight differences even when applying the same clock models. As examples, real data
from GRACE FO-1 and another satellite GRACE FO-2 on 3 December 2019, i.e., more than
one year after the test day above, are processed, also using the CNES real-time GPS orbits
and clocks. The slight differences in the radial orbital errors without applying any clock
models, as shown in Figure 13, could be caused by the different mis-modeled effects and
their different projections on the orbits. These could be attributed to comprehensive effects
caused by the different real-time GPS orbital and clock errors, different satellite geometry,
and the different mis-modeled effects induced by the model deficiencies in the reference
reduced-dynamic orbits.
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Figure 13. MDEV of the radial orbital errors of GRACE FO-1 and GRACE FO-2 on different test days
without applying any clock models.

For GRACE FO-1 on 3 December 2019, the reduced mis-modeled effects lead to smaller
improvements in the radial orbits. Figure 14 illustrates the improvement areas for the radial
orbits, applying the same clock models as in Figure 12. Although the red areas with large
improvements around or above 15% disappear, the general patterns remain similar to those
in Figure 12. A smoothing window of 300 s to 500 s appears to be a good solution when
applying the PWL model with a PWL length from 300 s to 1200 s, or using the 2.5-state
model with h−1 from 10−28 to 10−30.
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Figure 14. Improvements in the radial orbits when applying (a) the PWL model and (b) the 2.5-state
model to the USO in GRACE FO-1 on 3 December 2019 using the CNES real-time products. The grey
areas denote improvement between 0% and 5%, the yellow areas between 5% and 10%, and the green
areas between 10% and 15%.

The conclusions above do not change when testing on another satellite, GRACE FO-2,
on 3 December 2019 (see Figure 15). With the improvements increased to above 15% in
this case, a smoothing window of 300 s to 500 s still appears to be a proper solution when
applying the PWL model with a PWL length from 300 s to 1200 s, or using the 2.5-state
model with h−1 from 10−28 to 10−30.

It should be noted that the conclusions apply only to LEO satellites equipped with
USOs. Moreover, for LEO satellite clocks containing dramatically different external sys-
tematic effects, it is suggested to use the proposed strategy to first search for appropriate
model values before applying the clock models.
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Figure 15. Improvements in the radial orbits when applying (a) the PWL model and (b) the 2.5-state
model to the USO in GRACE FO-2 on 3 December 2019 using the CNES real-time products. The grey
areas denote improvement between 0% and 5%, the yellow areas between 5% and 10%, the green
areas between 10% and 15%, and red areas around or above 15%.

In this study, clock modeling is performed for the GPS-only scenario due to the limited
signals tracked on board the tested LEO satellites. When multi-GNSS signals are received
by the LEO satellites, a better measurement geometry can be provided, which enables
higher precision of the radial orbits and lower sensitivity of the orbits to the correlations
between the orbital and clock parameters. In such case, the improvements in the radial
orbits induced by clock modeling could be smaller. In contrast, for small satellites such as
CubeSats with less stable and continuous data tracking, the improvements in the radial
orbits could be greater when modeling clocks of the same type.
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5. Conclusions

This contribution studies the benefits of LEO clock modeling in the kinematic LEO
POD. Real data from LEO satellites equipped with USOs were tested for clock modeling in
the kinematic POD process. This study aims not only to reduce the short-term noise in the
kinematic orbits, but also the mis-modeled effects induced by, e.g., real-time GNSS orbital
and clock errors, which are often enlarged in the kinematic POD mode due to the strong
correlation between the orbits and the clocks in the estimation process.

To benefit from the good clock stability in current and future LEO satellites, the mid- to
long-term systematic effects caused by relativistic effects and the external environment are
suggested to be a priori corrected in the O-C terms. In this study, these trends are captured
by the epoch-wise clock estimates, and are obtained by smoothing using different windows.
Too-strong smoothing would limit the orbital improvement, and too-weak smoothing
would hamper the clock modeling and easily lead to degradations in the orbit estimation.
A balance is thus investigated in this contribution.

Two different clock models were applied in the POD processing, i.e., the PWL model
with different time lengths and the 2.5-state model with different h values for different
noise types. Using real data from GRACE FO-1 and the CNES real-time GPS products, it
was found that detrending with a smoothing window of 300 to 500 s and applying the PWL
model with lengths from 300 to 1200 s, or using the 2.5-state model with h−1 (for FFN) from
10−28 to 10−30, one could expect improvements larger than 10% in the radial orbits.
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