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Abstract 23 

Obtaining the gridded precipitation data with a high resolution in mountainous area is 24 

of importance in hydrology, meteorology, and ecology. However, rain gauge 25 

observations and satellite - based precipitation products have its own shortcomings. 26 

Precipitation in mountainous area has correlation with variables like elevation, slope, 27 

and temperature. In this study, we applied a downscaled algorithm called 28 

Geographically Weighted Regression (GWR) to obtain a fine resolution (1km) 29 

gridded precipitation data from the Tropical Rainfall Measuring Mission (TRMM) 30 

data at 0.25° resolution based on an assumption that precipitation in mountainous area 31 

has correlation with some orographic factors (elevation, slope, and aspect) and 32 

climatic factors (temperature, wind velocity, and humidity). The results indicated that 33 

(1) GWR improved the accuracy of TRMM data in the Qinling Mountains (r = 0.86, 34 

BIAS = - 2.77 %, and RMSE = 93.24 mm for annual downscaled precipitation during 35 

2013 - 2015 periods, and r = 0.71, BIAS = - 3.60 %, and RMSE = 99.31 mm for 36 

annual TRMM data during 2013 - 2015 periods). (2) GWR showed a good 37 

performance in the southern part of the Qinling Mountains, while showed a worse 38 

performance in the northeast part of the Qinling Mountains. (3) Not only orographic 39 

factors but climatic factors were all essential in downscaling precipitation in 40 

mountainous areas. The more input factors, the more accurate downscaled result 41 

derived from GWR.  42 
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Introduction 45 

As one of the crucial climatic factors, precipitation not only participates in water 46 

cycle for material and energy exchange, but also is the main source of surface fresh 47 

water and the basic material basis for crop growth. Precipitation may also induce 48 

drought and flood disasters and secondary geological disasters caused by it. Gridded 49 

precipitation data with a high spatial and temporal resolution is one of the initial 50 

inputs for hydrological models, climate prediction, and drought monitoring 51 

(Spracklen et al., 2012; Mou Leong TanVivien P et al., 2018). Point measurement 52 

could not reflect the actual temporal and spatial changes of precipitation in 53 

mountainous area because of instrumental limitations, sparse and uneven gauge 54 

distributions (Tang et al., 2018).  55 

At present, spatial interpolation and satellite detection are effective ways to 56 

obtain gridded precipitation data. However, different interpolation methods could get 57 

different results, and usually the error is relatively large. With the advance in remote 58 

sensing technology, there are diverse range of satellite products, such as the Tropical 59 

Rainfall Measurement Mission (TRMM) Multi - satellite Precipitation Analysis 60 

(Huffman et al., 2007), the Climate Prediction Center (CPC) morphing technique 61 

(Joyce et al., 2004), Precipitation Estimation from Remotely Sensed Information 62 

using Artificial Neural Network (Sorooshian et al., 2000). TRMM have been widely 63 

used with a better performance which is favored for the development of the 64 

methodology as it is an operational product (Dinku et al., 2007; Li and Shao, 2010; 65 

Gefei et al., 2017; Hunink et al., 2014; Chen et al., 2018; Yueyuan et al., 2018; Ma et 66 



al., 2017; Jian et al., 2013). The accuracy of TRMM data is in good agreement with 67 

the measured stations at low altitudes, especially at high altitudes is uncertain 68 

(Stampoulis and Anagnostou, 2012; Tian and Peters - Lidard, 2010). Although these 69 

current satellite precipitation products span a wide range, the resolution is relatively 70 

coarse. This makes to acquire the accurate precipitation grid data with a high temporal 71 

and spatial resolution a key challenge currently, especially in data - lacking 72 

mountainous area, which has a complicated terrain condition. In addition, satellite - 73 

based precipitation datasets contain inherent uncertainty derived from retrieval 74 

algorithms, topographic errors, and clouds (Adhikary et al., 2015; Chen, 2013). 75 

Precipitation changes in mountainous areas are often related to topography, slope, 76 

aspect and other micro - topographical characteristics, which can deform the wind 77 

fluxes and perturbation and make accuracy of satellite precipitation products not 78 

guaranteed (Wang and Georgakakos, 2003). Terrain conditions are also considered to 79 

be a significant factor in correcting precipitation accuracy in many studies (Shaofeng 80 

et al., 2011; Duan and Bastiaanssen, 2013). Theoretically, the higher elevation, the 81 

more humid of air masses, result in precipitation. Also, aspect could alter the direction 82 

of airflow, thus determining the excess or deficit of precipitation. As for slope, a 83 

gradient of vertical airflow may control the intensity and area of precipitation (Badas 84 

et al., 2005). Therefore, it is necessary and urgent to downscale satellite precipitation 85 

products in mountainous areas considering orographic factors. Jian et al. (2013) 86 

downscale precipitation based on the correlations between observed precipitation and 87 

orographic factors, such as slope, aspect and terrain roughness, as well as humidity 88 



and temperature. Shaofeng et al. (2011) improved downscaling result by adding 89 

elevation data. Meanwhile, a lot of efforts have been made to obtain high resolution 90 

grid precipitation data (Lu et al., 2019; Xu et al., 2015). Immerzeel et al. (2009) 91 

corrected the satellite precipitation product by adding normalized difference 92 

vegetation index (NDVI). Different statistical methods could be applied to downscale 93 

satellite precipitation products to a high resolution and get better correction results. 94 

Duan and Bastiaanssen (2013) adopted geographical differential analysis (GDA) and 95 

geographical ratio analysis (GRA) to generate a monthly TRMM data at 1 km 96 

resolution. Geographically weighted regression (GWR) was proposed by Xu et al. 97 

(2015) and Lu et al. (2019) to downscale the satellite precipitation data over the 98 

Tianshan Mountains, and results showed GWR method outperformed other statistical 99 

methods. Quadratic parabolic profile (QPP) model for downscaling TRMM data was 100 

introduced by Yueyuan (2018), which had higher accuracies than other commonly 101 

used methods. Ma et al. (2017) implemented a spatial data mining algorithm called 102 

Cubist to downscale the TRMM data from 0.25° to 1 km resolution over the Qinghai - 103 

Tibet Plateau. Although prior researches were based on vegetation and terrain factors 104 

when downscaling, some scholars pointed out that other factors such as land use and 105 

temperature could also affect precipitation when downscaling the satellite data (Chen 106 

et al. 2015; Immerzeel et al., 2009; Shaofeng et al., 2011; Foody, 2003; Yang G et al., 107 

2012).  108 

Although there are many downscaling methods to obtain a specific and higher 109 

resolution precipitation data based on different satellite sources of data, challenges 110 



also exist in downscaling in mountainous areas due to lack of observations and with 111 

complicated terrain and variation in precipitation. As a transitional zone in China, it is 112 

the geographical boundary of south China and north China, sub - humid and sub - dry 113 

regions, warm and sub - tropical regions, it’s also famous for large altitude difference, 114 

with a peak altitude is as high as 3771.2 m. In this study, we applied geographically 115 

weighted regression (GWR) which was designed to deal with spatial heterogeneity 116 

and widely used in downscaling satellite precipitation product (Brunsdon et al,. 1996; 117 

Xu et al., 2015; Chen et al., 2018.) to downscale the TRMM 3B43 V7 data from 0.25° 118 

to 1 km resolution considering the impacts of topographical and climatic factors on 119 

precipitation. NDVI was omitted in our study as some studies showed that the effect 120 

of vegetation on precipitation has time lag about 2 - 3 months (Immerzeel et al., 2005; 121 

Heidinger et al., 2012). The specific aims of this study are to downscale satellite 122 

precipitation into a higher resolution (1km) using GWR method, considering not only 123 

topographic factors like elevation, slope and aspect but climatic factors like 124 

temperature, humidity and wind velocity. 125 

 126 

1. Study area and data 127 

1.1 Study area 128 

The Qinling Mountains (32°54′ - 34°35′N, 105°30′ - 111°3′E) occupies the 129 

southern part of Shaanxi Province in central China. Carrying a total area of 61,900 130 

km2 (Fig. 1). The elevation of the Qinling Mountains ranges from 195 m to 3771.2 m. 131 

It stretches as far as 400 - 500 km from east to west and 120 - 180 km from south to 132 



north. As a transitional zone in China, it is the geographical boundary of south China 133 

and north China, sub - humid and sub - dry regions, warm and sub - tropical regions. 134 

The south region receives the highest annual precipitation of 1156 mm, while the 135 

northern region receives 545 mm average precipitation annually. The average annual 136 

precipitation is approximately 825 mm. More than 70% of the annual precipitation 137 

observed from May to September in the Qinling Mountains, and more precipitation is 138 

detected in the south and less in the north (Shaozhuang et al., 2018)  139 

1.2 Data 140 

1.2.1 TRMM dataset 141 

TRMM is a joint project of the National Aeronautics and Space Administration 142 

(NASA) and Japan Aerospace Exploration Agency (JAXA) launched on 27 November 143 

1997, with the aim of monitoring and studying rainfall in tropical and subtropical 144 

regions between 50° N and 50°S globally (Kummerow et al., 1998). TRMM carries 145 

several precipitation measuring instruments, including the Precipitation Radar (PR), 146 

the TRMM Microwave Imager (TMI) and the Visible & Infrared Scanner (VIRS). 147 

Several algorithms have been developed to retrieve precipitation using information 148 

from these instruments and has provided valuable information on rainfall and easy to 149 

obtain (Haddad, 1997; Iguchi et al., 2016; Huffman et al., 2007). The Tropical 150 

Rainfall Measuring Mission (TRMM) 3B43 Version 7 with a resolution of 0.25° is a 151 

standard monthly precipitation dataset from 2013 to 2015 and was obtained from 152 

NASA. 153 

1.2.2 Digital Elevation Model data (DEM) 154 



The DEM used in this study was collected from Shaanxi Bureau of Surveying, 155 

Mapping and Geoinformation at 25 m spatial resolution. For further study, it was 156 

resampled to 1 km by Bi - linear method. Other input layers of the model like slope 157 

(Slo) and aspect (Asp) were all derived from DEM, and these orographic variables 158 

were transformed into the same resolution of 1 km. 159 

1.2.3 In situ meteorological data 160 

Monthly precipitation data (Pre), humidity data (Hum), temperature data (Tem) 161 

and wind velocity (Win) data from December to February of 32 meteorological 162 

stations from 2013 to 2015 used in this study. In order to prepare for the next step, all 163 

these climatic data were interpolated by Ordinary Kriging method and resampled into 164 

the same spatial resolution of 1 km by Bi - linear method. 165 

2. Methodology 166 

2.1 Geographical Weighted Regression (GWR) 167 

GWR is a regression method that can be used to solve location - related issues on 168 

Tobler’s first law of geography that is “everything is related to everything else, but 169 

near things are more related than distant things”. In this study, we use GWR 4.0 170 

software to run GWR model. The model is established by generating parameters for 171 

the independent variable and explanatory variable of each given cell. The following 172 

equation can express the GWR: 173 

( ) ( )0
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where Yj represent the dependent variable observations precipitation, Xkj represent the 175 

kth independent variable. 0β  (uj, yj) and kβ  (uj, yj) denote the intercept and slope 176 



estimated at the jth point. Parameter jε  denotes the residual of this model. The 177 

coefficients in Eq. (1) are estimated from the neighboring observations of the point j, 178 

with a weighted function based on an assumption that the closer observations are to 179 

point j, the more influenced weight by the point j. The coefficients can be calculated 180 

by the following Eq. (2) 181 
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where 𝛽̂𝛽  (uj, vj) represents the local coefficient estimated at point j, X and P 183 

represents the independent and dependent variables, respectively. W  (uj, vj) is the 184 

weight matrix. In this study, this weight value can be express by the following Eq. (3) 185 
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where dij is the distance between point j and the neighboring observation i. b is 187 

the bandwith threshold. 188 

2.2 Main steps of downscaling algorithm  189 

(1) Interpolated all the in situ observations layers by Ordinary Kriging method. 190 

Resampled TRMM data, precipitation observations and all climatic (temperature, 191 

humidity, wind velocity) and orographic (elevation, slope, aspect) factors into the 192 

same resolution of 1 km by Bi - linear method, and then converted them into a point 193 

data from the raster format to enable extraction of values from every layer at the same 194 

location. These 8 layers were all set the projection coordinate system. The flowchart 195 

of downscaling algorithm of GWR in this study was shown in Fig. 2. 196 

(2) Treated TRMM data, climatic (temperature, humidity, wind velocity) and 197 



orographic (elevation, slope, aspect) factors as independent variables, precipitation 198 

observations as dependent variable. To study which factors could better simulated the 199 

TRMM data, we experimented 6 models which consider different factors in GWR as 200 

shown in Table 1.  201 

(3) In GWR, two parameters are critical: the kernel function and the selection 202 

criteria. There are four kernel functions (Fixed Gaussian, Fixed bi - square, Adaptive 203 

bi - square and Adaptive Gaussian) and four selection criteria (Akaike information 204 

criterion (AIC), small sample bias corrected (AICc), Bayesian information criterion 205 

(BIC), and cross validation (CV)). Adaptive could produce more concrete result than 206 

Fixed method, that is why Adaptive bi - square and Adaptive Gaussian were chosen as 207 

the Kernel type in this study, respectively. Selection Criteria of CV designed only 208 

match for Gaussian. So, we tested four kinds of Kernel type and Selection Criteria in 209 

this study. Eventually, Adaptive bi - square and AICc was tested to get the best 210 

estimations and we use these two indices in GWR. 211 

2.3 Validation 212 

The following three validation indices were chosen to compare the accuracy of 213 

downscaling model in this study. They are Pearson correlation coefficient (r), root 214 

mean square error (RMSE), and relative bias (Bias). These indicators are calculated 215 

by Eqs. as follows, respectively: 216 
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where x and y represent the original precipitation and estimated precipitation, 220 

respectively. They were calculated based on the original precipitation values and 221 

estimated precipitation values to evaluate the GWR method. When r is approaching 1 222 

representing the relationship is better. An RMSE and BIAS approximately 0 223 

representing the estimated value approach the original value. 224 

3. Results and Discussion 225 

3.1 Spatial distribution of original and downscaled precipitation  226 

The observed annual mean precipitation and annual TRMM 3B43 data during 227 

2013 - 2015 periods in the Qinling Mountains are compared to check the variations.  228 

As shown in Fig. 3, original TRMM 3B43 apparently overestimated the observation 229 

precipitation (OBS) in 2014 and 2015, but underestimated in 2013. Hence, we 230 

compared the downscaled annual precipitation in the Qinling Mountains during 2013 231 

- 2015 periods with observation and TRMM data. 232 

The spatial patterns of precipitation obtained from original TRMM data, 233 

observed precipitation, and downscaled precipitation by GWR in the Qingling 234 

Mountains from 2013 - 2015 periods are showed in Fig. 4. The spatial patterns are 235 

basically the same for all three sources. Precipitation ranged 350 to 1200 mm and 236 

high precipitation occurred at the southern part of the Qinling Mountains, while the 237 



northern part of the Qinling Mountains received low precipitation. Otherwise, we 238 

could see that downscaled precipitation were more smoothly than other two 239 

precipitation data. Comparing with other two precipitation results from Fig. 4    240 

downscaled precipitation avoided “Bull Eye” phenomenon because of considered 241 

orographic and climatic factors. Thus, it had less error with original precipitation. 242 

Fig. 5 showed the spatial distribution of evaluation indices between original 243 

TRMM data and downscaled precipitation over the Qinling Mountains. Original 244 

TRMM data showed a good performance in the western part of the Qinling Mountains. 245 

In contrast, downscaled results showed a better performance in the southern part the 246 

Qinling Mountains, but showed a worse performance in the northeast part.  247 

3.2 Validation 248 

Table 2 shows the maximum, minimum, and mean precipitation of TRMM, OBS, 249 

and GWR. It could be found that maximum, minimum, and mean precipitation of 250 

GWR were closer to the observed data in every year compared with TRMM data; 251 

TRMM maximum precipitation in 2014 was 1020.74 mm, OBS and GWR were 252 

947.85 mm and 931.81 mm, respectively. Overall, GWR introduced orographic and 253 

climatic factors influencing precipitation could improve the overestimated 254 

precipitation detected by TRMM.       255 

For evaluating the effect of downscaling algorithm quantitatively, three 256 

evaluation indices of TRMM and GWR from 2013 to 2015 periods in the Qinling 257 

Mountains are shown in Table 3. It could found that GWR has improved the TRMM 258 

data; Pearson correlation coefficient (r) has increased from 0.71 to 0.86; relative bias 259 



(Bias) reduced from - 3.60 to - 2.77; RMSE also decreased from 99.31 to 93.24. 260 

Scatter plots in Fig. 6 depicted the TRMM and GWR model against the OBS in 261 

2013, 2014, and 2015. GWR were the closest to 1:1 line, and TRMM data were the 262 

most dispersed distribution during these three years, which also reflected precipitation 263 

accuracy can be simulated more accurately by GWR downscaled model. GWR 264 

improved r from 0.89 to 0.94 in 2013, especially in 2014 and 2015, GWR were more 265 

correlated with observed precipitation than TRMM, with r from 0.56 to 0.77, and 266 

from 0.67 to 0.87, respectively. 267 

Many geostatistical techniques were used to downscale precipitation in 268 

mountainous areas. For example, Regression Kriging has been found useful for 269 

downscaling low resolution precipitation datasets (Zhang et al., 2018) for its 270 

advantage to extend to a border range of regression techniques and allow separate 271 

interpolation of the two interpolated components (Hengl et al., 2007). The satellite 272 

precipitation datasets were predicted using global regression, which had not 273 

thoroughly considered the relationship between precipitation and environmental 274 

variables were spatially varying and scale-dependent (Xu et al., 2015). GWR has the 275 

advantage of investigating the non-stationary and scale-dependent characteristics of 276 

the relationship between the variables (Xu et al., 2015; Foody, 2003) and is suitable 277 

for detecting complex relationships between precipitation and other environmental 278 

variables (Chen et al., 2014). In the future, some new techniques like artificial 279 

intelligence machine learning, and data mining could be applied in this field. 280 

3.3 Performances of different GWR models 281 



 For detecting which influencing factor is the most important when downscaling 282 

annual precipitation in the Qinling mountainous area, we designed different 283 

downscaling models considering different influencing factors as shown in Table 1. 284 

Model 1 to model 3 considered orographic (elevation, slope, aspect) factors, and 285 

model 4 to model 6 considered climatic (temperature, humidity, wind velocity) factors, 286 

separately. Fig. 7 depicted the bar plot of downscaled precipitation and TRMM during 287 

2013 - 2015 periods and Table 4 showed the comparison between different models of 288 

GWR from 2013 to 2015 periods in the Qinling Mountains. From model 1 to model 6, 289 

the r is 0.85, 0.85, 0.85, 0.85, 0.86, 0.86, respectively, indicating that these 6 models 290 

have strong linear correlation with the observed precipitation. The BIAS from model 291 

1 to model 6 were - 3.23, - 3.27, - 3.27, - 3.15, - 2.93, - 2.77, respectively, and the 292 

RMSE were 94.05, 93.97, 93.84, 93.78, 93.41, 93.24, respectively, which all 293 

indicating that model 6 which considered all the orographic and climatic factors 294 

showed the best performance, with the highest r (0.86), lowest RMSE (- 2.77) and 295 

BIAS (93.24). This result explained the downscaled algorithm which considered all 296 

the orographic and climatic factors could get the best downscaling performance, 297 

indicating that these factors all are well - related to precipitation in mountainous area. 298 

Fig. 8 showed the Taylor diagrams of different downscaled models with 299 

observed and TRMM data. Taylor diagram can show the correlation coefficient, 300 

standard deviation (SD) and RMSE in the same figure. The closer the point of 301 

downscaled precipitation to the point of observed precipitation, the better the accuracy 302 

of the downscaled precipitation. Fig. 8 all showed point H (Model 6) is the closet to 303 



the point A (Observed precipitation). Especially in 2014, the SD of observed 304 

precipitation was 89.96mm, while the SD of model 6 was 77.32 mm. The model 6 305 

was 0.77, and the RMSE was the lowest. 306 

NDVI was designed as a vital element in downscaling precipitation for its 307 

responses in past research (Wang et al., 2001; Barbosa and Kumar, 2016; Immerzeel 308 

et al., 2009; Wenlong et al., 2016; Duan et al., 2013), but some scholars pointed out 309 

that there is at least three month of lag time between vegetation and precipitation. 310 

Furthermore, a higher NDVI does not represent heavy precipitation in humid zone 311 

because of saturated NDVI (Shi and Song, 2015; Shi et al., 2015). In some cases, 312 

different land use could change the NDVI, such as water, snow, and barren. Thus, we 313 

should detect these NDVI anomalies and eliminate during data processing in the 314 

future. Generally, vegetation was nourished by precipitation. Thus, introducing NDVI 315 

in downscaling precipitation need to be further studied. 316 

The orographic effect is regarded as a vital aspect in shaping precipitation in 317 

mountainous areas. Lot of researchers have studied orographic effect in downscaling 318 

precipitation (Jia et al., 2011; Guan et al., 2009; Badas et al., 2005; Reid, 1973; Smith, 319 

1979). Furthermore, the temp - spatial variation of precipitation is influenced by other 320 

land factors. For example, Schultz and Halpert (1995) found that incorporated land 321 

surface temperature with the NDVI in projecting precipitation, the accuracy is more 322 

precise when compared with using NDVI alone at a global scale. Many scholars 323 

implemented better downscaled precipitation results after incorporated temperature 324 

factor (Jing et al., 2016; Ma et al., 2017). Thus, we not only incorporated elevation, 325 



aspect, and slope, but also temperature, wind velocity, and humidity into the 326 

downscaled scheme in our study. 327 

3.4 Precipitation variations in the Qinling Mountains of 14 years based on GWR 328 

  From the above research, it can be seen that the precipitation grid data obtained 329 

on the annual scale of the Qinling Mountains based on the geographical weighted 330 

regression method has a certain degree of reliability. Therefore, the long - term 331 

precipitation data from 2002 to 2015 are verified and applied. The results are shown 332 

in Fig. 9. From the figure, it can be seen that the average annual precipitation in the 333 

Qinling Mountains over the past 14 years has ranged from 565.6 to 872.6 mm, with an 334 

average precipitation of 759.7 mm. The average precipitation in spring, summer, 335 

autumn, and winter in the Qinling Mountains from 2002 to 2015 was 113.6 to 236.4 336 

mm, 233.5 to 433.2 mm, 123.7 to 275.7 mm, and 11.9 to 36.2 mm. The average 337 

precipitation in four seasons is in the order of summer (366.1 mm), autumn (221.8 338 

mm), spring (146.4 mm), and winter (25.3 mm). Fig. 10 shows the distribution map of 339 

monthly average precipitation in the Qinling Mountains over the past 14 years. From 340 

the figure, it can be seen that July has the most precipitation in the Qinling Mountains, 341 

with a precipitation of 88.7 ~ 180.6 mm and an average precipitation of 141.9 mm, 342 

especially in the southern slope area. 343 

In order to further test the scientificity and accuracy of the precipitation grid data of 344 

the Qinling Mountains over the past 14 years, the results are hereby verified. The 345 

results are shown in Tables 5 and 6. From the table, it can be seen that the 346 

precipitation grid data set of the Qinling Mountains from 2002 to 2015 is relatively 347 



close to the measured meteorological station data with high accuracy, indicating that 348 

its grid data set has high reliability and can be used as input parameters for 349 

hydrological and ecological models. 350 

4. Conclusions 351 

In this study, combined with rain gauge observations and satellite - based 352 

precipitation product, using orographic factors (elevation, slope, and aspect) and 353 

climatic factors (temperature, wind velocity, and humidity), a gridded precipitation 354 

with a 1 km resolution in mountainous area was downscaled by means of GWR at an 355 

annual scale. The main conclusions are as follows: 356 

(1) The spatial distribution of original TRMM data, rain gauge observation, and 357 

downscaled precipitation were totally the same in the Qinling Mountains. 358 

Precipitation ranged from 350 mm to 1200 mm and high values all occurred at the 359 

southern part of the Qinling Mountains, while low values located at the northern part 360 

of the Qinling Mountains. TRMM data showed a good performance in the western 361 

part of the Qinling Mountains. GWR showed a better performance in the southern part 362 

of this area, while showed a worse performance in the northeast part of this area.  363 

(2) Downscaled precipitation improved the accuracy of original TRMM data 364 

obviously at annually scale from 2013 to 2015 periods in the Qinling Mountains. It 365 

increased r from 0.71 to 0.86, and decreased BIAS from - 3.60% to - 2.77%, and 366 

decreased RMSE from 99.24 mm to 93.24 mm.  367 

(3) 6 GWR models were developed, considering 6 different orographic and 368 

climatic factors. The more factors input, the more accurate the downscaled result 369 



derived. Precipitation in mountainous area is related with not only orographic factors 370 

(elevation, slope, and aspect) but climatic factors (temperature, wind velocity, and 371 

humidity). 372 

  373 



Acknowledgments: We would also like to thank Prof. Christian Bernhofer (Editor) 374 

and the anonymous reviewers for their invaluable comments and constructive 375 

suggestions used to improve the quality of the manuscript. The meteorological data 376 

were provided by Shaanxi Meteorological Bureau. The Tropical Rainfall Measuring 377 

Mission (TRMM) 3B43 Version 7 with a resolution of 0.25°is a standard monthly 378 

precipitation dataset from 2013 to 2015 and was obtained from NASA 379 

(https://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?project=TRMM380 

&tree=project). 381 

 382 

 383 

Funding: This study was funded by the China Scholarship Council (CSC).  384 

 385 

 386 

Conflicts of interest/Competing interests: There is no conflict of interest. 387 

 388 

 389 

Author Contributions：Qing Meng and Guan Wang contributed to the study 390 

conception and design. Material preparation, data collection and analysis were 391 

performed by Qing Meng and Hongying Bai. The first draft of the manuscript was 392 

written by Qing Meng and all authors commented on previous versions of the 393 

manuscript. All authors read and approved the final manuscript. 394 

  395 



Data Availability: The datasets generated and analyzed during the current study 396 

are not publicly available due to privacy and restrictions. 397 

  398 



References 399 

Adhikary S K, Yilmaz A G, Muttil N. Optimal design of rain gauge network in the 400 

Middle Yarra River catchment, Australia[J]. Hydrological Processes, 2015, 29, 2582–401 

2599. 402 

Badas M G, Deidda R, Piga E. Rainfall downscaling in montainous regions[J]. 403 

Geophysical Research Abstract, 2005, 7, 08974. 404 

Barbosa H A, Kumar T. Influence of rainfall variability on the vegetation dynamics 405 

over Northeastern Brazil[J]. Journal of Arid Environments, 2016, 124(JAN.):377-387. 406 

Brunsdon C, Fotheringham A S, Charlton M E. Geographically Weighted Regression: 407 

A Method for Exploring Spatial Nonstationarity[J]. Geograpgical Analysis, 1996, 28 408 

(4),281–298. 409 

Chen F, Yu L, Qiang L, et al. Spatial downscaling of TRMM 3B43 precipitation 410 

considering spatial heterogeneity[J]. International Journal of Remote Sensing, 2014, 411 

35(9-10):3074-3093. 412 

Chen Y. Evaluation of TRMM 3B42 daily precipitation estimates of tropical cyclones 413 

rainfall over the Pacific and Australia region[C]. 2013, 2184–2196. 414 

Chena Y, Huanga J, Shengd S, et al. A new downscaling-integration framework for 415 

high-resolution monthly precipitation estimates: Combining rain gauge observations, 416 

satellite-derived precipitation data and geographical ancillary data[J]. Remote Sensing 417 

of Environment, 2018, 214:154-172. 418 

Dinku T, Ceccato P E. Grover㎏opec, et al. Validation of satellite rainfall products 419 

over East Africa's complex topography[J]. International Journal of Remote Sensing, 420 



2007, 28(7):1503-1526. 421 

Duan Z, Bastiaanssen W. First results from Version 7 TRMM 3B43 precipitation 422 

product in combination with a new downscaling–calibration procedure[J]. Remote 423 

Sensing of Environment, 2013, 131:1-13. 424 

Foody G M. Geographical weighting as a further refinement to regression modelling: 425 

An example focused on the NDVI– rainfall relationship[J]. Remote Sensing of 426 

Environment, 2003, 88(3):283-293. 427 

Gefei W, Peiyun Z, Liwen L, et al. Evaluation of precipitation from CMORPH, 428 

GPCP-2, TRMM 3B43, GPCC, and ITPCAS with ground-based measurements in the 429 

Qinling-Daba Mountains, China[J]. Plos One, 2017, 12(10):e0185147. 430 

Guan H, Wilson J L, Xie H. A cluster-optimizing regression-based approach for 431 

precipitation spatial downscaling in mountainous terrain[J]. Journal of Hydrology, 432 

2009, 375(3-4):578-588. 433 

Haddad Z S. The TRMM 'Day-1' Radar/Radiometer Combined Rain-Profiling 434 

Algorithm[J]. Journal of the Meteorological Society of Japan, 1997, 75(4):799-809. 435 

Heidinger H, Yarlequé, Christian, Posadas A, et al. TRMM rainfall correction over 436 

the Andean Plateau using wavelet multi-resolution analysis[J]. International Journal 437 

of Remote Sensing, 2012, 33(14):4583-4602. 438 

Hengl T, Heuvelink G, Rossiter D G. About regression-kriging: From equations to 439 

case studies[J]. Computers & Geosciences, 2007, 33(10):1301-1315. 440 

Huffman G J, Adler R F, Bolvin D T, et al. The TRMM Multisatellite Precipitation 441 

Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation 442 



Estimates at Fine Scales[J]. Journal of Hydrometeorology, 2007, 8(1):38–55. 443 

Hunink J E, Immerzeel W W, Droogers P. A High-resolution Precipitation 2-step 444 

mapping Procedure (HiP2P): Development and application to a tropical mountainous 445 

area[J]. Remote Sensing of Environment, 2014, 140:179-188. 446 

Iguchi T, Kozu T, Meneghini R, et al. Rain-Profiling Algorithm for the TRMM 447 

Precipitation Radar[C]// Geoscience and Remote Sensing, 1997. IGARSS '97. Remote 448 

Sensing - A Scientific Vision for Sustainable Development.  1997 IEEE 449 

International. IEEE, 2016. 450 

Immerzeel W W, Quiroz R A, De Jong S M. Understanding precipitation patterns and 451 

land use interaction in Tibet using harmonic analysis of SPOT VGT-S10 NDVI time 452 

series[J]. International Journal of Remote Sensing, 2005, 26(11):2281-2296. 453 

Immerzeel W W, Rutten M M, Droogers P. Spatial downscaling of TRMM 454 

precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing 455 

of Environment, 2009, 113(2):362-370. 456 

Jian F, Du J, Wei X, et al. Spatial downscaling of TRMM precipitation data based on 457 

the orographical effect and meteorological conditions in a mountainous area[J]. 458 

Advances in Water Resources, 2013, 61(nov.):42-50. 459 

Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A Method that Produces Global 460 

Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial 461 

and Temporal Resolution[J]. Journal of Hydrometeorology, 2004, 5(3):287-296. 462 

Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission 463 

(TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998, 464 



15(3):809-817. 465 

Li M, Shao Q. An improved statistical approach to merge satellite rainfall estimates 466 

and raingauge data[J]. Journal of Hydrology, 2010, 385(1-4): 51–64. 467 

Lu X, Tang G, Wang X, et al. Correcting GPM IMERG precipitation data over the 468 

Tianshan Mountains in China[J]. Journal of Hydrology, 2019, 575: 1239–1252. 469 

Ma Z, Shi Z, Zhou Y, et al. A spatial data mining algorithm for downscaling TMPA 470 

3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies 471 

removed[J]. Remote Sensing of Environment, 2017, 200: 378–395. 472 

Mou Leong TanVivien P. ChuaKok Chooi TanK. Brindha. Evaluation of TMPA 473 

3B43 and NCEP-CFSR precipitation products in drought monitoring over 474 

Singapore[J]. International Journal of Remote Sensing, 2018, 39(8), 2089–2104. 475 

Reid I. The influence of slope aspect on precipitation receipt. Weather, 1973, 28, 490–476 

494.  477 

Schultz P A, Halpert M S. Global analysis of the relationships among a vegetation 478 

index, precipitation and land surface temperature[J]. International Journal of Remote 479 

Sensing, 1995, 16(15):2755-2777. 480 

Shaofeng Jia, and, et al. A statistical spatial downscaling algorithm of TRMM 481 

precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote 482 

Sensing of Environment, 2011, 115, 3069–3079. 483 

Shaozhuang G, et al. Landscape pattern change and its response to anthropogenic 484 

disturbance in the Qinling Mountains during 1980 to 2015.[J]. Ying yong sheng tai 485 

xue bao = The journal of applied ecology, 2018, 29(12):4080-4088. 486 



Shi Y, Song L, Xia Z, et al. Mapping Annual Precipitation across Mainland China in 487 

the Period 2001 – 2010 from TRMM3B43 Product Using Spatial Downscaling 488 

Approach[J]. Remote Sensing, 2015, 7(5):5849-5878. 489 

Smith R B. The Influence of Mountains on the Atmosphere[J]. Advances in 490 

Geophysics, 1979, 21:87-230. 491 

Sorooshian S, Hsu K L, Gao X, et al. Evaluation of PERSIANN system 492 

satellite-based estimates of tropical rainfall[J]. Bull.amer.meteor.soc, 2000, 81(9), 493 

2035–2046. 494 

Spracklen D V, Arnold S R, Taylor C M. Observations of increased tropical rainfall 495 

preceded by air passage over forests[J]. Nature, 2012, 489(7415):282-285. 496 

Stampoulis D, Anagnostou E N. Evaluation of Global Satellite Rainfall Products over 497 

Continental Europe[J]. Journal of Hydrometeorology, 2012, 13(2):588-603. 498 

Tang G, Behrangi A, Long D, et al. Accounting for spatiotemporal errors of gauges: 499 

A critical step to evaluate gridded precipitation products[J]. Journal of Hydrology, 500 

2018, 559, 294-306. 501 

Tian Y, CD Peters‐Lidard. A global map of uncertainties in satellite‐based 502 

precipitation measurements[J]. Geophysical Research Letters, 2010, 37(24). 503 

Wang J, Georgakakos K P. Validation and Sensitivities of Dynamic Precipitation 504 

Simulation for Winter Events Over the Folsom Lake Watershed: 1964-99[J]. Monthly 505 

Weather Review, 2003, 133(1):3-19. 506 

Wang J, Price K P, Rich P M. Spatial patterns of NDVI in response to precipitation 507 

and temperature in the central Great Plains[J]. International Journal of Remote 508 



Sensing, 2001, 22(18):3827-3844. 509 

Wenlong J, Yaping Y, Xiafang Y, et al. A Comparison of Different Regression 510 

Algorithms for Downscaling Monthly Satellite-Based Precipitation over North 511 

China[J]. Remote Sensing, 2016, 8(10):1-17. 512 

Xu S, Wu C, Wang L, et al. A new satellite-based monthly precipitation downscaling 513 

algorithm with non-stationary relationship between precipitation and land surface 514 

characteristics[J]. Remote Sensing of Environment, 2015, 162:119-140. 515 

Yang G, Jiao H, Shuang L, et al. Spatial pattern of non-stationarity and 516 

scale-dependent relationships between NDVI and climatic factors—A case study in 517 

Qinghai-Tibet Plateau, China[J]. Ecological Indicators, 2012, 20:170-176. 518 

Yueyuan Z, Yungang L, Xuan J, et al. Fine-Resolution Precipitation Mapping in a 519 

Mountainous Watershed: Geostatistical Downscaling of TRMM Products Based on 520 

Environmental Variables[J]. Remote Sensing, 2018, 10(1):119. 521 

Zhang T, Li B, Yuan Y, et al. Spatial downscaling of TRMM precipitation data 522 

considering the impacts of macro-geographical factors and local elevation in the 523 

Three-River Check for updates Headwaters Region[J]. Remote Sensing of 524 

Environment: An Interdisciplinary Journal, 2018(215):109–127. 525 

 526 



 527 

Fig.1 Study Area 528 

  529 



 530 

Fig.2 Flowchart of downscaling algorithm of GWR in this study 531 

  532 



Table 1 Different models consider different parameters in GWR 533 

Model 

 

   Parameters   

Elevation Aspect Slope Temperature Wind speed Humidity 

1       

2       

3       

4       

5       

6       

 534 
  535 



 536 

Fig.3 Comparison between the observed annual precipitation and annual TRMM 537 

3B43 data during 2013 - 2015 periods in the Qinling Mountains 538 
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 540 

Fig.4 Spatial distribution of annual precipitation from 2013 - 2015 periods in the 541 

Qinling Mountains. The subscripts TRMM, OBS, and COR_GWR denote original 542 

TRMM data, interpolated observed precipitation data, and downscaled precipitation 543 

data by GWR. 544 

  545 



 546 

Fig.5 Spatial distribution of evaluation indices between original TRMM data and 547 

downscaled precipitation from 2013 - 2015 periods in the Qinling Mountains. The 548 

subscripts TRMM, and COR_GWR denote original TRMM data and downscaled 549 

precipitation data by GWR. 550 

551 



Table 2 Comparison between the observed precipitation and annual TRMM from 552 
2013 to 2015 periods in the Qinling Mountains 553 

Product Year Max (mm) Min (mm) Mean (mm) 

 

TRMM  

2013 1001.52 490.29 741.07 

2014 1020.74 560.81 754.95 

2015 1027.90 578.98 791.28 

 

OBS 

2013 1136.38 554.55 802.56 

2014 947.85 366.08 740.30 

2015 992.88 400.78 738.75 

 

GWR 

2013 1077.95 591.40 801.80 

2014 931.81 372.37 739.22 

2015 977.28 524.83 742.97 

 554 

  555 



Table 3 Evaluation indices for annual TRMM and GWR from 2013 to 2015 periods  556 

in the Qinling Mountains. 557 

Product r BIAS (%) RMSE (mm) 

TRMM 0.71 -3.60 99.31 

GWR 0.86 -2.77 93.24 

 558 

  559 



  560 

 561 

Fig.6 Scatter plots of annual TRMM and GWR model against the OBS. 562 

(a) in 2013, (b) in 2014, and (c) in 2015. 563 
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Table 4 Comparison between different models of GWR from 2013 to 2015 periods 565 

in the Qinling Mountains 566 

 r BIAS (%) RMSE (mm) 

TRMM 0.71 -3.60 99.31 

Model1 0.85 -3.23 94.05 

Model2 0.85 -3.27 93.97 

Model3 0.85 -3.27 93.84 

Model4 0.85 -3.15 93.78 

Model5 0.86 -2.93 93.41 

Model6 0.86 -2.77 93.24 

 567 

  568 



  569 

 570 

Fig.7 Bar plot of downscaled precipitation and TRMM data during 2013 - 2015 571 

periods. (a) r, (b) BIAS, and (c) RMSE. 572 
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 574 

 575 

Fig.8 Taylor diagrams of different downscaled models with observed and TRMM. 576 

(a) - (c) denote in 2013, 2014, and 2015, respectively. Point A represents observed 577 

precipitation, and B represents TRMM data, C represents model 1, D - H represents 578 

model 2 - model 6, respectively. 579 

580 



581 

582 

 583 
Fig. 9 Spatial Distribution of Annual and Seasonal Average Precipitation in the 584 

Qinling Mountains from 2002 to 2015 (a) Spring, (b) Summer, (c) Autumn, and (d) 585 
Winter 586 
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592 

593 

Fig. 10 Spatial distribution of monthly average precipitation in the Qinling Mountains 594 
from 2002 to 2015 (a) - (l) is from January to December, respectively 595 
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Table 5 Error testing of grid data sets of annual and seasonal average precipitation in 598 

the Qinling Mountains from 2002 to 2015 599 

validation 

indices 

Annual Spring Summer Autumn Winter 

RMSE 

(mm) 

78.24 19.05 39.87 31.60 6.66 

r 0.79 0.85 0.83 0.59 0.17 

BIAS (%) -2.85 -7.94 1.65 -6.42 -0.97 

 600 

  601 



Table 6 Error testing of monthly average precipitation grid dataset in the Qinling 602 

Mountains from 2002 to 2015 603 

Validation 

indices 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

RMSE 

(mm) 

1.46 2.78 5.57 6.53 12.38 13.56 18.48 18.30 22.45 8.80 16.42 5.57 

r 0.69 0.45 0.46 0.90 0.80 0.83 0.84 0.61 0.37 0.73 0.18 -0.03 

BIAS (%) -0.45 -0.26 1.07 -12.10 -8.38 8.67 -2.03 1.26 -9.76 -2.03 0.50 -2.85 

 604 


