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making it desirous over traditional soil cementation 
agents for erosion control due to the limited inter-
vention to natural groundwater flow. However, the 
scientific design and findings of the previous labo-
ratory-scale and pilot-scale research are still incon-
sistent for standardising biocementation techniques 
to transition towards upscaling. This study presents 
critical insights to the researchers of the environmen-
tal, geotechnical and geoenvironmental engineering 
domains to design their upcoming studies to tackle 
the challenges required for upscaling biocementation 
technology.

Keywords Soil erosion control · Bio-mediated 
soil improvement · MICP · Aeolian erosion · Coastal 
erosion · Riverbank erosion

1 Introduction

Preserving our terrestrial ecosystem against degrada-
tion and desertification is identified as one of the most 
challenging sustainable development goals (SDG15) 
by the United Nations (Economic and Social Coun-
cil; United Nations 2022). Soil is one of the most 
vital resources for life in conjunction with air and 
water (García-Ruiz et  al. 2015). A drastic soil loss 
of greater than 24 billion tonnes per year is reported 
around the globe (United Nations 2019). Aeolian, 
coastal and riverbank erosion are caused by natural 
and anthropogenic processes.

Abstract Soil erosion is a complex natural process 
that occurs by either individual or combined actions 
of wind, hydraulic currents, waves, and rain. This 
study comprehensively reviews biocementation-based 
soil stabilisation techniques for developing erosion-
resilient landforms through an ecologically conscious 
strategy. The different pathways for biocementation 
occurring in nature are discussed with a focused 
view on the microbially induced carbonate precipi-
tation (MICP) technique. MICP relies on biogenic 
calcium carbonate  (CaCO3) precipitation via the urea 
hydrolysis route to bind the soil grains. The kinetics 
and factors affecting MICP are succinctly discussed 
to highlight the practical challenges associated with 
biocementation. This study emphasises the influence 
of MICP on erosion resistance (aeolian and hydrau-
lic) and geotechnical properties of soils. The criti-
cal assessment of the previous studies revealed that 
aeolian and hydraulic erosion can be effectively con-
trolled with a small to moderate quantity of biogenic 
 CaCO3 (2% to 10% of soil weight). MICP marginally 
influences the hydraulic conductivity of soils with a 
substantial improvement in compressive strength, 
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The majority of the deserts around the globe 
are vulnerable to aeolian erosion (D’Odorico et  al. 
2013). Around 12% of the dryland is found vulner-
able to degradation, accounting for an area of around 
5 million square kilometres (Burrell et  al. 2020). 
The desert soil consists chiefly of dry and cohesion-
less loose sand and silts, which are subjected to sur-
face erosion due to high-velocity winds. The aeolian 
processes are also liable to the formation of some of 
the majestic aeolian landforms such as crescent sand 
dunes and pinnacle Karst. In Fig.  1a, the pinnacle 
karst of Nambung National Park, Western Australia, 
is shown. The pinnacles have formed in the lime-
stones due to cyclic aeolian erosion processes (Lipar 
and Webb 2015). However, the dust and sand parti-
cles released into the air due to the aeolian erosion 
adversely impact human health and essential infra-
structural services such as transportation, telecommu-
nication, and electricity.

On the other hand, around 40% of the global 
population is impacted by coastal erosion, and 
Mentaschi et  al. (2017) recorded  an overall sur-
face loss of 28,000 square kilometres over a period 
of 32  years (1984–2015). The coasts are enduring 
severe erosion, leading to loss of land and infra-
structure. One such coastal bank is situated near 
Eagle Bay, Rottnest Island, Australia. The photo of 
the beach is shown in Fig. 1b. The marks of erosion 
induced by the sea waves can be observed clearly 

in the photograph. Riverbank erosion also contrib-
utes significantly to global land degradation. The 
majority of the banks along the mega rivers lose 
substantial land due to erosion (Latrubesse 2008). 
One such mega river is the Brahmaputra, which has 
caused a land loss of around 2400 square kilometres 
in the Assam valley in eight decades (1912 to 1996) 
in India (Sarma 2005). The mega rivers around 
the world contribute significantly to land loss (Das 
et al. 2014).

Aeolian, riverbank, or coastal erosion initiates 
with the detachment of soil particles from the sur-
face. Figure  2 demonstrates the micro-mechanics of 
surficial erosion initiation. The detached particles are 
entrained and transported by wind or water. Typically, 
the constitutive relationship between erosion rate (Ź) 
and shear stress (τ) is represented as illustrated in 
Eq. (1). Erosion at the soil surface initiates when the 
erosive stress (τ) applied on the soil–water or soil-air 
interface by flowing water or wind exceeds the criti-
cal stress, as illustrated in Eq. (2). Critical stress (τc) 
is the threshold stress that the granular material can 
withhold in its innate state. The critical stress of soil 
grains majorly depends on the interparticle electrical 
forces  (fe), interparticle contact forces  (fc), pore water 
pressure (-uw), and weight of the particles (Briaud 
2008). Therefore, soil erosion can be controlled either 
by minimising the erosive stress or improving the 
critical stress of the soil particles. 

Fig. 1  a Aeolian erosion-induced pinnacles karst in Nambung National Park, Western Australia; and b Coastal erosion at Eagle Bay, 
Rottnest Island, Australia. (Photographs taken by Authors)
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The surficial detachment of soil grains can pro-
gress to different erosion modes depending upon 
the type of soil and angle of slope (bank or flat 
land) of the different terrestrial landforms (deserts, 
riverbanks, coasts and farmlands) against the ero-
sive forces induced by rainfall, wind, river currents, 
coastal waves, or groundwater motion. The flatlands 
are expected to undergo scour (localised erosion), 
surficial erosion, internal erosion or piping and sink-
hole formation. On the other hand, soil slopes, such 
as riverbanks and seashores near water bodies, can 
also undergo sudden collapse due to mass/slab fail-
ure caused by shear and tension apart from scour 
and surficial erosion (Nardi et al. 2012). The wet-dry 
cycle near water bodies leads to loss of matrix suc-
tion, resulting in erosion and collapse (Nardi et  al. 
2012). The different modes of soil erosion are illus-
trated in Fig. 3.

Consequently, erosion control measures can be 
classified broadly into two categories, including- 1. 
Deviating/attenuating the erosive stresses with rigid 
structures; or 2. Improving the soil erosion resistance 
by chemical binders/mechanical compaction. The 

(1)Ż = f (τ)

(2)Ż > 0ifτ ≥ τc

existing erosion control engineering practices, includ-
ing mechanical compaction, cement-based rigid 
structures, chemical-based synthetic binders and soil 
replenishment techniques, are barely viable in terms 
of their environmental impact and cost-effectiveness.

The attenuation of erosive forces such as wind, 
river currents and hydraulic waves is accomplished by 
means of cement-based rigid structures. These coun-
termeasures are costly and counterproductive as they 
lead to sediment imbalance and harm the ecology 
(Florsheim et  al. 2008; D’Odorico et  al. 2013). The 
cement industry contributes more than 7% to global 
anthropogenic  CO2 emissions, which are increas-
ing rapidly (Ali et  al. 2011). Around 0.92 tonnes of 
 CO2 is emitted into the environment for each tonne 
of clinker produced in the cement-making process 
(Habert et  al. 2010). With the target of controlling 
global warming, the United Nations has proposed a 
"net zero" carbon footprint by 2050 (Intergovernmen-
tal Panel on Climate Changes; United Nations 2018). 
Therefore, an alternative erosion mitigation strategy 
with an ecologically conscious approach is urgently 
required.

The other method to improve soil resilience 
includes chemical and cementitious binders that 
improve the critical stress of the sediments. However, 
it is to be noted that artificial grout materials, includ-
ing lime, micro-fine cement, silicates, and epoxy, 

Fig. 2  Schematics demon-
strating micro-mechanics of 
surficial erosion initiation



 Rev Environ Sci Biotechnol

1 3
Vol:. (1234567890)

have been reported to be toxic to the geo-environment 
(Karol 2003; DeJong et al. 2010) and, hence, they can 
adversely impact the flora, fauna, and crop productiv-
ity of the soil. River embankments (artificial banks to 
prevent flooding-induced erosion) made with alterna-
tive materials such as slag to improve their strength 
and resilience against erosion can impart irretrievable 
damage to river ecology due to their hyperalkalinity 
(Dubey et  al. 2022d). Therefore, there is a critical 
need to find next-gen sustainable materials that per-
form not only superior but also impart minimal eco-
logical harm.

Extensive research is ongoing on different bio-
stabilisation techniques in pursuit of sustainability, 
including biocementation,  biopolymerisation,   phy-
tostabilisation and enzyme-induced cementation. 
Phytostabilisation (vegetation-based soil stabilisa-
tion) techniques are known to be the most appreciable 
sustainable erosion mitigation technique (Zhu and 
Zhang 2016; Bordoloi and Ng 2020). However, their 
influence on the erodibility of soil is too complex 
to predict due to its uncertain life cycle and dense 
root structures, which are dependent on the type of 
vegetation, available nutrition, and climatic condi-
tions (van Dijk et al. 2013; Krzeminska et al. 2019). 

Enzyme-induced carbonate precipitation (EICP) and 
algae/cyanobacteria-based biocrust formation tech-
niques are also getting attention due to their consid-
erable potential in soil stabilisation with minimal 
environmental impact (Chandra and Ravi 2020; Fat-
tahi et  al. 2020; Patil et  al. 2021, 2023). EICP is a 
comparatively convenient technique in terms of con-
trol over treatment strategy due to water-like con-
sistency and straightforward application. However, 
purified enzyme (urease) is expensive and current 
research is extending towards finding cheaper sources 
from native plants (Rahman et al. 2023). Biocrust is 
a shallow (in millimetres) plant-promoting biologi-
cal layer for antidesertification purposes; However, 
the biocrust formation has a slower growth rate and 
is easily disturbed with human intervention (Patil 
et al. 2023). Biopolymer treatment is not suitable for 
wet environment  as the treated soils  lose substan-
tial strength upon moisture interaction  due to the 
hydrophilic nature of biopolymers (Ramachandran 
2022; Patwa et al. 2023).

On the other hand, biocementation involves mim-
icking microbial mineralisation techniques that 
occur in nature (De Muynck et  al. 2010; Dhami 
et al. 2013a). Biocementation technique has shown 

Fig. 3  Different erosion modes for flat land and banks
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potential in their geotechnical applications because- 
1. Soil is rich in microbial diversity (Mitchell and 
Santamarina 2005), 2. Biocementation solution has 
water-like consistency, ensuring easy and control-
lable in-depth penetration (Ivanov and Chu 2008), 
and 3. Biocementation has the healing capacity 
upon the availability of nutrients (Castro-Alonso 
et  al. 2019; Kaur et  al. 2023). The recent work 
has demonstrated the potential of biocementation 
in erosion control in diverse environments such 
as deserts, riverbanks, and seashores (Salifu et  al. 
2016; Bibi et  al. 2018; Nayanthara et  al. 2019; 
Zomorodian et al. 2019; Shahin et al. 2020; Behzad-
ipour and Sadrekarimi 2021; Dubey et  al. 2021b, 
2022b). Moreover, biocementation is reported to 
be effective in mitigating various types of erosion, 
such as rainfall-induced erosion, internal erosion, 
and tangential-flow/current-induced erosion (Amin 
et al. 2017; Jiang and Soga 2017; Jiang et al. 2019; 
Devrani et  al. 2021; Clarà Saracho et  al. 2021a). 
Although extensive studies have been conducted, 
the upscaling and field-scale application is limitedly 
explored due to challenges such as difficulty in con-
trolling the microbial viability/efficiency, uniform-
ity of precipitation, by-product ammonia generation 
and cost. Therefore, this study is aimed to consoli-
date and critically assess the gained knowledge in 
erosion control via biocementation techniques and 
challenges to direct future research.

2  Biocementation as a potential erosion control 
solution

Nature has been forming biominerals and cemented 
aggregates for millions of years, as discovered by 
previous researchers in the case of anthills, cave 
speleothems, beach rocks and corals (Baskar et  al. 
2009; Dhami et al. 2013a). A few of such mesmeris-
ing nature-forming structures have been illustrated in 
Fig. 4. Figure 4a demonstrates a natural beach rock at 
Eagle-bay of the Rottenest Island, Western Australia, 
withstanding the wave-induced erosion forces. Fig-
ure 4b shows an anthill formed near the Department 
of Civil Engineering, which withholds against heavy 
rains, while Fig.  4c illustrates speleothems from 
Mawsmai Caves, Meghalaya, India.

Naturally formed karsts and beach rocks are 
observed to resist the erosive actions of wind and 
water up to a great extent when compared with nat-
urally available loose soil. Emulating these tech-
niques in the laboratory could provide the key to an 
eco-friendly technique for controlling soil erosion. 
Previous literature has discovered the biogenic and 
abiogenic cementation processes occurring in nature 
and mimicked them in the laboratory (van Paassen 
et al. 2010a; Gomez et al. 2017; Ramachandran et al. 
2020).

The biominerals present in nature are classified as 
biologically induced mineralisation and biologically 
controlled mineralisation (Lowenstam 1981). The 

(a) (b) (c)

Fig. 4  Example of naturally formed minerals, a Erosion-resil-
ient beach rock at Eagle Bays of Rottenest Island, Australia; b 
Anthills near the Civil Engineering Department, IIT Guwahati 

campus; and c Speleothems from Mawsmai Caves, Meghalaya, 
India. (Photos taken by Authors)
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biologically induced minerals are developed extracel-
lularly through the metabolic activities of the micro-
organisms, while the biologically controlled minerals 
are precipitated inside or around their cells. In nature, 
several chemical reactions govern the biologically 
induced mineralisation process that demonstrate 
potential for engineering applications, as illustrated in 
Table 1. The commonly observed natural biocementa-
tion pathways can be subdivided into autotrophic and 
heterotrophic pathways. Autotrophic microorganisms 
do not require external sources for their nutrition and 
energy, and these reactions are observed to be slow. 
Through one of such autotrophic pathways, i.e., pho-
tosynthesis, Nature has been forming stromatolites for 
billions of years using cyanobacteria (Arp et al. 1999; 
Altermann et  al. 2006; Rodríguez-Martínez et  al. 
2012). On the other hand, the heterotrophic pathways 
require external sources for nutrition. It is to be noted 
that in Table  1, calcium sources have been consid-
ered for the precipitation. However, these chemical 
reactions can be harnessed to precipitate most of the 
divalent metal ions. Several studies have reported the 
application of biologically induced mineralisation 
for the bioremediation of soil by immobilising heavy 
metals such as  Pb2+,  Sr2+, and  As2+(Fujita et al. 2010; 
Achal et  al. 2012; Yang et  al. 2017). It is critical to 
comprehend their advantages and limitations to select 
the most favourable biocementation pathway for engi-
neering applications.

The autotrophic pathways are underexplored 
for engineering applications due to the challenges 
observed during the laboratory simulations. The 
major reason for the limited studies on photosynthesis 
pathway for biocementation can be attributed to the 
substantially slow rate of precipitation along with the 
continuous requirement of light and  CO2 for the met-
abolic activity of cyanobacteria. However, it is to be 
noted that almost three-quarters (70%) of the carbon-
ate rocks of the earth’s crust are formed via photosyn-
thesis (Altermann et al. 2006). On the other hand, in 
the methane oxidation pathway, complex microbial/
enzymatic activity results in the production of for-
mate  (HCOO−), which eventually leads to the genera-
tion of  CO3

2− in alkaline conditions (Ganendra et al. 
2014; Caesar et al. 2019). The  CO3

2− ions precipitate 
with  Ca2+ and  Mg2+. Further research in a controlled 
environment is required to determine the most suit-
able strategies for their emulation for in situ engineer-
ing applications.

The most common heterotrophic pathways, urea 
hydrolysis and denitrification, have particular advan-
tages and limitations. Urea hydrolysis is quicker than 
the other heterotrophic biocementation pathways but 
leads to generation of  harmful ammonia/ammonium   
(Keykha et al. 2019; Lee et al. 2019; Yu et al. 2022). 
The denitrification pathway is largely anaerobic, and 
therefore, it is viable for deep geotechnical applica-
tions; however, denitrification is a multi-step process 
utilising four kinds of enzymes, and the intermedi-
ate products such as nitric oxide  (NO2

−) and nitrous 
oxide  (NO2) are toxic (DeJong et al. 2010; van Paas-
sen et al. 2010a). Moreover, the accumulation of the 
intermediate products must be carefully managed by 
maintaining lower concentrations of reagents. In the 
case of denitrification, calcium acetate and calcium 
nitrate are considerably soluble and have a similar 
precipitation rate and yield in comparison to the urea 
hydrolysis pathway; however, there are only a few 
studies based on denitrification (van Paassen et  al. 
2010a; Gao et  al. 2022). In a recent study by Gao 
et  al. 2022, a large-volume circulation strategy was 
used following the denitrification pathway and the 
formation of cavities due to gas bubbles was reported. 
The other heterotrophic pathways, including Sulphate 
reduction, aerobic oxidation and ammonification, are 
not recommended for ground improvement due to the 
poor solubility of reagents (van Paassen et al. 2010a; 
Jain et al. 2021).

Therefore, the urea hydrolysis pathway is recom-
mended as the most suitable candidate for erosion 
control applications, as oxygen availability is not a 
concern at shallow depths. In aerobic conditions, the 
urea hydrolysis path has been established for its high 
precipitation rate, carbonate yield and ease of control 
(DeJong et al. 2010; van Paassen et al. 2010a).

3  Biocementation via urea hydrolysis and its 
potential in erosion control

The principle of biocementation via urea hydrol-
ysis is to catalyse calcium carbonate  (CaCO3) 
precipitation with the help of microbial urease 
(Stocks-Fischer et  al. 1999). Therefore, the urea-
hydrolysis-based biocementation process is often 
termed microbially induced calcium carbonate pre-
cipitation (MICP). Over 5,000 microbial species are 
reported to possess urease enzyme and are capable of 
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biocementation (Tamayo-Figueroa et al. 2019). Most 
of these microbes are abundantly available in the soil 
(Hammes et al. 2003; Burbank et al. 2011).

It is to be noted that for the engineering application 
of MICP, the strategy for employing exogenous ureo-
lytic microbes in soil is termed bio-augmentation, 
while stimulating the indigenous microbial commu-
nity for biocementation is known as bio-stimulation. 
One of the most popular bacteria used for bio-aug-
mentation-based MICP is Sporosarcina pasteurii 
(SP).

The mechanism of soil binding is demonstrated 
in Fig.  5. The ureolytic microbes get attached to 
soil particles due to their surface-charge character-
istics and extracellular polymeric substances (Jain 
and Arnepalli 2020; Datta et al. 2022). The attached 
microbes activate upon the availability of nutrients. 
In the presence of a cementation media (urea and cal-
cium source), the microbes precipitate  CaCO3 crys-
tals on the surface of the soil or in the pores of the 
soil.

The binding of the soil usually occurs with surface 
coating, particle bonding/bridging and pore filling 
(Xiao et  al. 2022). With surface coating, the inter-
locking and friction between soil particles improve, 
which provides resistance against movement and 

deformation. Apparent cohesion is induced with the 
grain bridging, and the soil densifies with pore fill-
ing, increasing the critical stress of the soil grains. 
Therefore, the erodibility of soil is expected to be 
controlled against the flow of the wind/water with 
biocementation treatment. Figure  6 demonstrates 
the micrographs from recent studies highlighting the 
microbes producing  CaCO3 crystals and soil aggrega-
tion through MICP on a micro-scale.

The efficiency of the MICP process is assessed 
with- 1. The rate of urea hydrolysis (ku); 2. The rate 
of  CaCO3 precipitation (Quantity) along with their 
quality; and 3. Urease activity of microbe. The rate 
of urea hydrolysis is evaluated with a first-order dif-
ferential equation, assuming that the biomass (bacte-
rial density) doesn’t vary during the urea hydrolysis 
as illustrated in Eq.  (3) (Ferris et  al. 2004; Mitchell 
et al. 2019).

Here [CO(NH2)2] implies the concentration of 
urea, ku denotes the first-order rate coefficient, and 
[B] is the concentration of biomass (bacterial den-
sity). It is necessary that the saturation index (SI) 

(3)
d
[

CO
(

NH
2

)

2

]

dt
= −kU

[

CO
(

NH
2

)

2

]

[B]

Fig. 5  Soil stabilisation with MICP
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is greater than 1 for  CaCO3 precipitation (Arp et al. 
1999; Dhami et  al. 2013a). The saturation index is 
defined in Eq. (4).

IAP stands for ionic activity product, and  Ks stands 
for solubility product.

The rate of  CaCO3 precipitation relies on the 
threshold activation energy required to move the 
chemical reaction forward. The rate and quantity 
of  CaCO3 precipitation is evaluated with titration 
method, acid washing, thermogravimetric analysis, 
inductively coupled plasma (ICP), X-ray diffrac-
tion (XRD), thermogravimetric analysis (TGA) and 
ASTM method (Choi et al. 2017). The quality of pre-
cipitates implies their morphology, microstructure, 
and strength. Biogenic precipitation of calcite, vater-
ite and aragonite polymorphs is recorded (Cizer et al. 
2012; Rodriguez-Navarro et al. 2012). Calcite is iden-
tified with rhombohedral shape and epitaxial growth 
(Hammes et  al. 2003; Cizer et  al. 2012; Cuthbert 
et  al. 2012). Vaterite is often found in cauliflower-
like spheroid and is a relatively less stable polymorph 
than calcite (Dubey et al. 2022c). In contrast, morn-
ing-star-shaped aragonite, identified with curved pris-
matic faces (Mayorga et al. 2019), is rarely reported 
with MICP.

Ureolytic microbes reduce the threshold energy 
barrier through the excreted “urease enzyme” out 
of their cell membrane or cytoplasm. The microbial 
activity increases the rate of reaction up to  1020 times 

(4)SI = logΩ = log
IAP

Ks

by reducing the energy barrier (Mitchell and San-
tamarina 2005). The reduction in the energy barrier 
is primarily because of the (a). metabolic activity of 
microbes that secretes enzymes and catalyse the reac-
tion, and (b). the negatively charged cell walls, lead-
ing the microbes to act as nucleation sites. Urease 
activity is defined as the quantity of enzyme hydro-
lysing unit micromole of urea per minute per milli-
litres (Dhami et al. 2013b; Dubey et al. 2022a). Ure-
ase activity is assessed by evaluating the quantity of 
generated ammonia by phenol-hypochlorite  method, 
Nessler method and electric conductivity method 
(Whiffin 2004; Whiffin et  al. 2007; Dhami et  al. 
2013b).

The factors influencing the MICP process in terms 
of the rate of urea hydrolysis, quantity and quality of 
precipitates are summarised in Table 2.

The key findings from the literature recommend 
that MICP has the potential to work well in coarse-
grained soil (0.075 mm to 4.75 mm) in environments 
in a pH range varying from 6 to 10 and temperature 
10 °C to 50 °C. The types of microbes and their spe-
cific urease must be assessed before their application 
in the soil to predict their efficiency in  CaCO3 precip-
itation. However, the MICP application strategy can 
be strategised according to the type of soil, desired 
depth of penetration and rate of precipitation to over-
come the limitation of geometric incompatibility of 
the soils with the microbes.

The majority of the proposed strategies for MICP 
application include injection/grouting and surface 
percolation/spraying for coarse-grained soils. Soon 
et  al. (2014) investigated injection strategies with 

Fig. 6  Soil grain bridging 
with MICP (Extended from 
Dubey et al. 2021a, b)

(a) (b)
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different pressures (0.2, 1.1 and 2 bar) for sandy soils 
and proposed a 1.1 bar pressure for 0.5 M cementa-
tion reagent flow for 48  h for uniform precipitation. 
At lower pressure, the precipitation is reported to 
occur close to the inlet and prohibits the flow of the 
reagents. Surface percolation is another method for 
the application of bacteria to the soil without disturb-
ing the soil matrix. Cheng and Cord-Ruwisch (2014) 
reported with large-scale laboratory experiments that 
the surface percolation strategy is suitable for coarse-
grained soil  (D50 > 0.3 mm) due to its high permeabil-
ity, which leads to uniform precipitation for shallow 
target depth. In contrast, there are limited studies on 
spraying strategies (Wang et  al. 2018b; Zomorodian 
et al. 2019; Jiang et al. 2019; Chek et al. 2021) that 
have shown potential in mitigating the surficial ero-
sion against wind and rainfall.

Contrarily, most of the studies on fine-clayey soil 
have considered a mixing strategy for the application 
of MICP. The field application of mixing techniques 
tends to be costly and non-feasible as the soil is dis-
turbed. Cheng and Shahin (2016) utilised the bacterial 
suspension with urea and calcium sources and formed 
a bio-slurry. A high amount (more than 95%) of bio-
slurry was reported to be retained in the soil, pro-
viding uniform precipitation. In a recent study, Won 
et al. (2021) demonstrated that a kaolinite suspension 
along with a biocementation solution facilitates uni-
form precipitation of  CaCO3 as the kaolinite acts as 
a nucleation site. Similar observations were reported 
with bentonite-assisted MICP (Ma et  al. 2021). It is 
to be noted that both of the above-mentioned stud-
ies have proposed injecting clay suspension along 
with bacterial and cementation solutions to enhance 
MICP; however, that will reduce the soil hydraulic 
conductivity continuously with treatment, leading 
to clogging in the upper layers. Moreover, it is to be 
noted that soil is heterogeneous in nature, containing 
different proportions of sand, clay, and gravel. There-
fore, further studies on potential strategies of MICP 
on fine-grained soils are necessitated.

Extensive reviews capturing the key findings and 
processes involved in biocementation for engineer-
ing applications such as soil strength improvement, 
antidesertification, liquefaction control, recycling 
construction and demolition wastes aggregates, mine 
tailing stabilisation, and metal inhibition are available 
in the literature (Mitchell and Santamarina 2005; De 
Muynck et  al. 2010; DeJong et  al. 2010; Barkouki 

et al. 2011; Phillips et al. 2013; Dhami et al. 2013a; 
Anbu et al. 2016; Shashank et al. 2016; Mujah et al. 
2017; Tamayo-Figueroa et al. 2019; Terzis and Laloui 
2019a; Castro-Alonso et al. 2019; Mistri et al. 2020; 
Patil et  al. 2021, 2023; Sharma et  al. 2021a; Jain 
et al. 2021; Jha 2022; Jimenez-Martinez et al. 2022; 
Zúñiga-Barra et  al. 2022; Xiao et  al. 2022; Maha-
bub et al. 2023; Omoregie et al. 2023; Fu et al. 2023; 
Harran et al. 2023; Carter et al. 2023). These review 
papers are brilliant in capturing up-to-date informa-
tion in the field of biocementation. However, a com-
prehensive review specifically focussing on soil ero-
sion control is largely unexplored. In this paper, the 
key findings from recent studies on soil erosion con-
trol via biocementation techniques are discussed.

3.1  Influence of MICP on wind erosion resistance of 
soil

In the past few years, several studies have investigated 
the potential of biocementation to control aeolian ero-
sion in the laboratory-scale wind tunnel (Maleki et al. 
2016; Duo et al. 2018; Tian et al. 2018; Zomorodian 
et al. 2019; Devrani et al. 2021; Dubey et al. 2021a; 
Dagliya et al. 2022). One certain advantage of MICP 
over conventional cementation practices is easy per-
meation through soil media due to the water-like 
viscosity of the cementation solution (DeJong et  al. 
2010; Dhami et  al. 2013a; Ivanov and Stabnikov 
2017). The key findings on aeolian erosion mitigation 
with MICP in literature are summarised in Table 3.

The erosive stresses ( τ ) on the soil due to wind 
action can be calculated in Eq. (5) (Bagnold 1984)-

Here, ρa is the density of air, and  vD is the drag 
velocity. The critical wind velocity  (vc), often termed 
threshold wind velocity (in m/s), that induces stresses 
equivalent to Critical stresses (τc) can be estimated 
for cohesionless soils from Eq. (6) (Bagnold 1984; 
Ravi et al. 2006; Hamdan and Kavazanjian 2016).

For cohesive soil, the critical wind velocity (Ravi 
et al. 2006) is proposed as follows-

(5)τ = ρa
(

vD
)2

(6)vC = A

√

(�s − �a)

�a
gd
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Here, ρs and ρa denote the density of sand parti-
cles and air (in kg/m3), g is the gravitational accel-
eration (9.81 m/s2), and "d" stands for the diameter of 
the particles in Eq. (7). A is a dimensionless param-
eter that depends on the shape factor, drag coefficient 
and ratio of the moment arm lengths to the soil grain 
diameter.  Fc stands for interparticle cohesive forces, 
and B is a parameter depending on the shape factor of 
the particles. These equations can be useful to simu-
late the aeolian erosion in a wind tunnel and compre-
hend the mechanics of erosion control. With bioce-
mentation, the soil grains are bridged together, as 
illustrated in Figs. 5 and 6b. Therefore, the effective 
diameter of the soil grains enlarges, and the threshold 
detachment velocity improves. Apart from this, MICP 
treatment also imparts interparticle binding forces.

The threshold frictional velocity for fine desert 
sandy soil is reported to be around 20 km/h (Dubey 
et  al. 2021a), which matches the theoretical value 
estimated from Eq.  5. Chen et  al. (2016) reported 
that the desert soil from North Xinjiang, China, was 
able to withstand wind erosion even after 12-day 
exposure to freeze–thaw cycles. The existing stud-
ies have suggested that a low  CaCO3 content of up 
to 4% can cease erosion against wind velocity of up 
to 45–55 km/h (Zomorodian et al. 2019; Dubey et al. 
2021a). However, the threshold frictional velocity is 
difficult to determine for heavily biocemented soil 
due to the instrumental limitation of the generation of 
higher wind velocities (Dubey et al. 2021a). Nonethe-
less, there are several challenges associated with the 
filed-scale implementation and durability of MICP 
treatment for aeolian erosion mitigation.

With a large-scale experiment, Gomez et al. (2015) 
reported no deterioration after 44  days and moder-
ate degradation after 298 days, withstanding a harsh 
winter season in the biocemented crust containing 
2.1%  CaCO3 content formed with low-concentra-
tion cementation solution  (108 cells/litre SP, 15  g/l 
urea and 13.875 g/l  CaCl2) in a mine site in dryland 
of the province of Saskatchewan, Canada. In other 
field-scale trials conducted in the Ulan Buh Desert 
of China, Meng et al. (2021a, b) reported that a soil 
crust of 1.25 cm and  CaCO3 content of 0.57% with-
stood a wind velocity of 30  m/s and the depth of 

(7)vC = A

√

(ρs − ρa)

ρa
gd.

√

1 +
Fc.B

(ρs − ρa)gd
3

erosion was almost zero even after 30 days of expo-
sure to the harsh local desert environment. They 
reported a 0.2 M equimolar urea and  CaCl2 treatment 
with an application rate of 4 L/m2 for optimum plant 
growth. A deteriorating influence of higher concen-
tration cementation media is observed, and therefore, 
plant-growth-promoting rhizobacteria (PGPR) must 
be investigated (Coban et  al. 2022) for biocementa-
tion applications. However, it is to be noted that the 
water requirement for biocementation in deserts and 
drylands is a formidable concern apart from the harsh 
weather.

It is worth noting that the total water requirement 
for one cycle of 1 M biocementation treatment can be 
as high as 48 L/m2, resulting in 1.75%  CaCO3 content 
and a 3.5  cm crust depth (Dubey et  al. 2021a). The 
formed crust could withstand a wind velocity of up 
to 55 km/h without any detachment. Extensive future 
research is required to standardise the treatment pro-
cedures for design purposes considering these factors.

The key learning from the literature on aeolian 
erosion control with biocementation is as follows-

• A biocemented soil crust of 2 to 3 cm containing 
 CaCO3 content in the range of 2% to 4% is capable 
of controlling soil erosion against wind velocity 
up to 55 km/h.

• A major challenge in the desert environment for 
biocementation treatment is the harsh environ-
ment for microbes and water scarcity. Therefore, 
the local microbial community’s adaptability to 
desert environments and protocols with low-water 
demands must be investigated.

• The studies have not considered the disastrous 
case of dust storms where wind velocities can rise 
up to 150 km/h due to instrumental limitations of 
the wind tunnel. These events must be investigated 
in future studies in the field via pilot-scale investi-
gations.

3.2  Influence of MICP on hydraulic-erosion 
resistance of soil

Similar to aeolian erosion, the detachment of soil 
particles with water occurs when the applied ero-
sive stress exceeds the critical stress of the soil. 
Briaud (2008) proposed that the critical velocity of 
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cohesionless soil is dependent on particle diameter 
and can be estimated from Eq. (8).

vc (m/s) stands for critical flow velocity, and  D50 is 
the mean diameter of cohesionless soils (in mm). In 
the case of the cohesive soils of particle size lesser 
than 100 microns, the following Eqs. (9 and 10) 
are proposed by Briaud (2008) as lower and upper 
bounds-

The erosive stresses (τ) on the wall of an open 
channel, such as a flume, can be calculated from Eq. 
(11) (Briaud 2013; Clarà Saracho et al. 2021a).

Here, φ (friction factor) is a function of the flow 
regime and can be estimated with the help of pipe 
roughness, and Reynolds number and v is the veloc-
ity of the hydraulic flume. These equations can be 
used in designing the experimental flow velocity to 
simulate natural conditions in the hydraulic flume. 
Biocementation improves interparticle locking, and 
the effective particle diameter enlarges with bridging. 
Therefore, erosion can be controlled with biocemen-
tation. The key findings from the literature on hydrau-
lic erosion mitigation via biocementation have been 
summarised in Table 4.

The soil erosion for riverlike tangential flow-
induced erosion is usually investigated in an erosion 
function apparatus (EFA) or hydraulic flume. Amin 
et al. (2017) demonstrated the different injection strat-
egies with and without aeration to ensure uniform-
ity in calcium carbonate precipitation and reported 
that the critical shear stress increased five-fold upon 
MICP treatment with aeration in an EFA. Wang et al. 
(2018a, b) have investigated the efficiency of polyvi-
nyl alcohol-modified MICP treatment and reported 
that the synthetic polymer is useful in anchoring the 
 CaCO3 crystals and, thus, provides better control 
over erosion. Clarà Saracho et  al.  (2021a) reported 
that although biocementation can cease soil erosion 
against the tangential flow with ten cycles of 0.08 M 

(8)vC = 0.35(D
50
)0.45

(9)vC = 0.1(D
50
)−0.2

(10)vC = 0.03(D
50
)−1

(11)τ =
1

8
�.ρwv

2

cementation solution, the treated specimen cracks 
along with the tangential flow due to brittleness.

The above-discussed studies have considered the 
bio-augmentation approach for soil treatment. Trans-
porting the microbes to the site following the pro-
posed strategies might be a challenge. On the other 
hand, the bio-stimulation-based approach employ-
ing indigenous soil microbes can tackle the chal-
lenge of bacteria transport; however, this domain is 
relatively underexplored in the context of mitigating 
riverbank/coastal erosion. Behzadipour and Sad-
rekarimi (2021) have investigated the direct shear 
strength characteristics of the sand from the Karoon 
riverbank of southwest Iran upon biochar-assisted 
MICP via native strains without identification of the 
microbial diversity. In another study, six biocemen-
tation potent strains were isolated from the banks 
of the Brahmaputra River of Assam Valley of India 
(Dubey et al. 2021c, b). The strains shared significant 
genomics similar to the conventionally used microbe 
SP. The studies concluded that soil erosion could be 
reduced significantly with a biostimulation approach. 
The stimulation approach minimises the risk of bio-
diversity contamination with external microbes and 
can be helpful in reducing the transportation cost of 
microbes.

The coastal erosion scenario is often  investigated 
in a hydraulic flume. The biocemented soil speci-
mens are tested against hydraulic waves of a spe-
cific frequency and amplitude. Shahin et  al. (2020) 
observed that less than 5% erosion occurs for a sam-
ple containing 1.52%  CaCO3 content withstanding 
erosional waves of height 6.9  cm and wavelength 
23 cm for two hours. Contrastingly, Kou et al. (2020) 
demonstrated erosion ceases for a soil specimen hav-
ing 30.1%  CaCO3 content against the waves of 4 cm 
amplitude and frequency of 1 cycle per minute for a 
30-min test. Interestingly, Liu et  al. (2021) reported 
that two cycles of MICP treatment were inefficient 
in preventing erosion for a 2-h test duration without 
quantifying the precipitated calcite content. Behzadi-
pour and Sadrekarimi (2021) reported that negligi-
ble erosion occurred in a physical riverbank model 
treated with 20 cycles of biochar-assisted biocemen-
tation treatment against 600 strong waves. It is evi-
dent from these studies that the number of cycles of 
biocementation treatment, i.e., the quantity of  CaCO3 
precipitates, is one of the deciding factors in control-
ling erosion. Moreover, these studies have reported 
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the erosion characteristics against the wave features 
such as dimension, frequency and test duration. In 
a recent study by Dubey et al. (2022a), it was deter-
mined that the tangential and perpendicular waves 
to the shoreline have different responses in terms of 
erosion. While a  CaCO3 content of 98 mg/g-sand was 
sufficient to cease erosion against the wave energy 
density of 6 J/cm2, in the case of tangential waves, an 
equivalent biocemented sand eroded more than 40% 
at the wave energy density of 5.3 J/cm2. For upscaling 
the laboratory results to the field, further studies con-
sidering natural wave energy at coasts, temperatures 
and saline environement are needed.

Biocemented soil slopes have also been inves-
tigated in the case of rainfall-induced soil erosion 
(Jiang et  al. 2019; Sun et  al. 2022a;  Chung et  al. 
2021; Wang et  al. 2023). A rainfall simulator is 
used to investigate the resiliency of biocemented 
soil against erosion. Jiang et al. (2019) reported that 
a high concentration of cementation solution (2  M) 
could be detrimental to the  CaCO3 precipitation. At 
the same time, Chung et al. (2021) demonstrated that 
in the presence of high organic content in soils, the 
MICP treatment for erosion mitigation is less effec-
tive compared to sandy soil with lower organic con-
tent. Although several attempts have been made to 
investigate the efficiency of biocementation in the 
mitigation of hydraulic-induced erosion, there is a 
large gap to fill to come up with datasets that can be 
useful for standardising the treatment process similar 
to concrete design standards.

The key learning from the literature on hydraulic-
erosion control studies with biocementation can be 
encapsulated as follows-

• The erosion tests on biocemented soils reveal 
notable improvements in the erodibility param-
eters (erosion rate and critical stress) with the 
biocementation treatment. A  CaCO3 content in 
the range of 2–12% in the shallow depth of soils 
around 10 to 20 cm is suggested in the above-dis-
cussed studies to mitigate the hydraulic-induced 
erosion by different environmental events such as 
rain, tangential flow (rivers) and coastal waves.

• However, the studies in the literature are broad 
and fundamental quantification and mechanism of 
erosion parameters for different types of soils, dif-
ferent erosive forces and different levels of bioce-
mentation are still obscure.Ta
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• Application of biopolymer to assist biocementa-
tion is recommended to tackle the challenge of 
non-uniform  CaCO3 precipitation in heterogene-
ous soil matrix to the desired depth. Moreover, the 
application of biocementation is only possible in 
dry conditions in the wetlands to avoid the dilu-
tion of bacteria and cementation media that could 
result in insufficient precipitation.

3.3  Influence of MICP on permeability and strength 
of soil

Although a direct relationship between the strength of 
soils and erosion resistance is not established, the ero-
sion resistance of the soil is assumed to be improving 
with an increase in the strength of the soil, primarily 
because both the parameters improve with soil bind-
ing. Nevertheless, it is critical to assess the behaviour 
of soils upon biocementation in terms of the funda-
mental parameters such as permeability and strength 
for their geotechnical applications. The key findings 
from the literature have been summarised in Table 5.

It is to be noted that a one to two-order decrease in 
hydraulic conductivity of soil (specifically fine sand) 
has been reported in literature upon MICP treatment 
(Al Qabany and Soga 2013; Chu et al. 2014; Cheng 
and Shahin 2016; Ma et al. 2021). With a high calcite 
content of 14% and unconfined compressive strength 
of around 1000 kPa, the maximum reduction reported 
in the literature is less than one order (Cheng et  al. 
2013; Jain and Das 2023), indicating that biocementa-
tion treatment is capable of retaining the high perme-
ability of granular material while imparting strength. 
It is an obvious advantage over the traditional soil 
stabilisation methods such as lime or cement-based 
soil improvement, which clog the pores, resulting in 
a minimum reduction of 2–3 orders of permeability 
(Karol 2003; Cheng et al. 2013). Enhancement in soil 
strength without clogging the soil pores is one of the 
desirous as allowing drainage of pore liquid (Mujah 
et al. 2017) limits the generation of excess pore water 
pressure and risks of soil and foundation failure.

Several studies have reported substantial improve-
ment in soil strength via MICP, as mentioned in 
Table 5. Most of these studies have utilised injection 
strategy for treatment and evaluated soil strength via 
UCS and triaxial tests. An unconfined compressive 
strength in the range of 1 to 5 MPa is reported in the 

literature, with  CaCO3 content in the range of 5–10%, 
with a few exceptions (Al Qabany and Soga 2013; 
Terzis and Laloui 2019a; Mori and Venkata Uday 
2022). The disparity in the UCS findings is attrib-
uted to the location of  CaCO3 precipitates, mineral-
ogy of soils and precipitates, degree of saturation and 
the density of the soils. The maximum UCS strength 
is around 12  MPa with 27%  CaCO3 content in fine 
sands of a mean diameter of 0.17 mm (van Paassen 
et  al. 2010b). On the other hand, Terzis and Laloui 
(2018) reported a UCS strength of up to 11.3 MPa for 
fine sands of a mean diameter of 0.3 mm. Primarily, 
it was assumed that the strength of MICP-treated soil 
is dependent on the quantity and mineralogy of pre-
cipitates. However, Cheng and Shahin 2016 reported 
that the location of precipitate in the soil matrix plays 
a vital role in the development of strength. They 
reported that treating specimens with 30% pore vol-
umes of biocementation treatment may result in opti-
mum strength.

Drained and undrained triaxial tests have also been 
conducted extensively for biocemented soils. Both 
friction angle and cohesion are reported to improve 
substantially with biocementation. In a recent study, 
Wu et  al. (2021) proposed that the effective friction 
angle of the biocemented soil improves only up to 5% 
 CaCO3 precipitation. While investigating fine sand in 
 CaCO3 precipitation ranging from 0 to 14.25%, it was 
reported that the shear strength of biocemented sand 
above 5%  CaCO3 content rises only due to enhance-
ment in cohesion. The study also reported an increase 
in the dilatancy behaviour of sand with the increase in 
 CaCO3 content. The improvement in the shear modu-
lus of soil can also be measured non-destructively 
with bender elements, which could also be installed 
in triaxial instruments. In one of the studies, the 
shear wave velocity (vs) was found to improve from 
107 to 395 m/s when  CaCO3 content varies from 12 
to 27% (van Paassen et al. 2010b). In another study, 
Montoya and DeJong (2015) reported that the shear 
wave velocity of MICP-treated fine sand improved 
from 190 to 1400  m/s for heavy cementation with 
5.31% calcite content. The differences in their find-
ings are influenced by the confinement conditions 
and type of soil. In a large-scale test on biocementa-
tion with stimulation and augmentation approaches, 
Gomez et  al. (2017) reported that the shear wave 
velocity improved from 107 to 1028  m/s for MICP-
treated sand and a maximum  CaCO3 content of 5.3%. 
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Although researchers have demonstrated that the 
MICP treatment can be monitored through bender 
elements, more insights are required for predicting 
the relationship between shear wave velocity,  CaCO3 
content, strength parameters and intrinsic properties 
of soil.

Another approach for measuring the magnitude 
of improvement in soil strength upon biocementa-
tion is determining the local strength at various points 
of the formed crust of soil is the needle penetration 
test (Ulusay et  al. 2014; Dipova 2018; Sun et  al. 
2022b;  Dubey et  al. 2021c, 2021b, 2022b; Chung 
et  al. 2021; Ramachandran et  al. 2022). The benefit 
of using needle penetration tests is that they can be 
conducted on various points to measure the deviation 
in the improvement in soil properties upon bioce-
mentation, specifically in the case of spraying strat-
egy. The existing studies established that the needle 
penetration index (NPI) improves to around 25 N/
mm for 54.5 ± 3.6 mg  CaCO3 per gram of sand before 
plateauing for 150–500 µm sand (Chung et al. 2021). 
However, a linear relationship between  CaCO3 con-
tent and needle penetration index was observed up 
to 100  mg of  CaCO3 per gram of 75–425  µm sand 
(Dubey et  al. 2021c, 2022b). The disparity in the 
findings is expected due to the different gradation of 
soils and treatment strategies used. Bender elements 
are relatively costly alternatives for non-destructively 
evaluating soil strength. The needle penetrometer 
can provide a cheaper, non-destructive alternative for 
monitoring the soil strength of the developed crust. 
Therefore, further research to establish a correlation 
between needle penetration index and  CaCO3 content 
is necessary.

The key findings from the literature on the per-
meability and strength of biocemented soils are as 
follows-

• Biocementation treatment is capable of retain-
ing the high permeability of granular materials 
while improving the strength substantially. This is 
a clear advantage as it minimally intervenes with 
the natural groundwater flow paths and allows 
easy release of excess pore pressure, limiting the 
risks of soil failure.

• The UCS of soil is reported in the range of 
1–5 MPa, corresponding to  CaCO3 content in the 
range of 5–10%, with a small number of excep-
tions. The inconsistency in the UCS findings is 

attributed to the location of  CaCO3 precipitates, 
mineralogy of soils and precipitates, degree of 
saturation and the density of the soils.

• The cohesion and friction angle of soils improves 
substantially upon biocementation. Overall, the 
friction angle is reported to improve from 33° to 
44° upon a 5%  CaCO3 precipitation in fine sand 
(Montoya and DeJong 2015; Wu et al. 2021). The 
increase in the strength above 5%  CaCO3 content 
is attributed to an increase in cohesion value only.

• Other tools, such as bender elements and nee-
dle penetration tests, are found to be promis-
ing for the measurement of strength improve-
ment of biocemented soils non-destructively. 
The transition of soils from granular materials 
(100 m/s < vs < 200 m/s and almost no needle pen-
etration resistance) to a soft-rock-like behaviour 
(vs > 1000 m/s and NPI of 25 N/mm) can be cap-
tured with the real-time monitoring of biocemen-
tation treatment.

4  Challenges in upscaling and future perspective 
of biocementation technique 

Extending laboratory knowledge of biocementa-
tion techniques to the field is the most formidable 
challenge. Many peers consider that biocementation 
can never replace the conventional grouting system 
(DeJong et al. 2013), which is rational as, in the cur-
rent state of knowledge, there is uncertainty over 
its service life, monitoring tools and durability. The 
upscaling concerns are due to (a). The by-product 
ammonia/ammonium; (b). Non-uniform distribution; 
(c). Durability; (d). The possible interaction of bioce-
mentation media with pore fluid/organic matter; (e). 
Actual carbon footprint; and (f). High cost of MICP 
due to chemical grade pure reagents. The challenges 
with the upscaling of biocementation and the recent 
advances for tackling them are discussed in Table 6.

In summary, there is ongoing research to reduce 
ammonia by zeolites, struvite precipitation and 
urea replacement with asparaginase (Li et  al. 2015; 
Keykha et  al. 2019; Gowthaman et  al. 2022). Non-
uniform precipitation could be tackled with polymer 
composite treatment (Wang et al. 2018a; Dubey et al. 
2021c, 2022b) and low-concentration cementation 
solutions  (Al Qabany and Soga 2013; Cheng et  al. 
2019; Mujah et  al. 2019). The existing pore liquid 
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and organic matter present in the soil matrix can 
hinder the precipitation, and therefore, there might 
be a need to investigate and pump them out (Patil 
et al. 2021; Chung et al. 2021). A promising perma-
nence of biocement treatment was reported through 
freeze–thaw and acid rain tests (Cheng et  al. 2013; 
Sharma et  al. 2021b); however, its service life has 
not been quantified yet. In addition, it  is established 
that MICP is not a net-zero carbon footprint tech-
nique due to the  inherent  CO2 associated with the 
chemical-grade urea and  CaCl2 in lab-scale inves-
tigations (Porter et  al. 2021). Therefore, it is critical 
to investigate natural sources and waste resources as 
an alternative for chemical reagents that are  used in 
MICP (Choi et al. 2016; Røyne et al. 2019; Gowtha-
man et al. 2021; Meng et al. 2021b).

Furthermore, the most obvious cause limiting the 
upscaling of MICP is the associated cost. Ivanov 
and Chu (2008) reported that the cost of materials 
for biocementation treatment could vary from 0.5 to 
9 US$/m3, which is competitive with the cost of exist-
ing grout material (2–72  US$/m3) such as sodium 
silicates, polyurethane, and acrylamides. In contrast, 
the estimates are also reported in a wide range of 
25–500  US$/m3 (DeJong et  al. 2013). These esti-
mated  costs are in vast range due to the uncertainty 
in labour, electricity and transport  costs. A recent 
study revealed that biopolymer-biocement composite 
material cost could vary from US$4.6 to US$9 for a 
5 cm target depth depending upon the concentration 
of cementation reagents and biopolymer (Dubey et al. 
2022b). The material cost could be further brought 
down by the recommended strategy in Table 6. How-
ever, to establish a fair estimation and optimisation 
of cost, a collaborative interdisciplinary field-scale 
investigation must be conducted.

Developing an end-user standard procedure is of 
critical importance for the unanimous acceptance of 
biocementation technique by policymakers and the 
public. Unlike the mixed design of concrete with the 
standard grades of cement used in retaining walls/
abutment that prevents erosion, the proposed bioce-
mentation technique has many discords in application 
parameters and strategies such as (a). The ratio of the 
volume of bacterial solution to cementation solution, 
(b). The optimum concentration of bacterial solution/
urease and cementation media, (c). The number of 
treatments, (d). The retention time for each cycle, and 
(e). Different application strategies. It must also be 

noted that proper safety training must be provided to 
the students and researchers working in the biostimu-
lation field, as many pathogenic ureolytic  microbes, 
such as Mycobacterium tuberculosis, are abundantly 
available in the soil (Velayati et  al. 2015). Further-
more, it is recommended that the final end-user 
product for employing the biocementation technique 
should be designed in a non-hazardous powder or liq-
uid form with conveniently transportable packaging 
to the end users.

In the context of erosion control with biocementa-
tion technique, there are several practical challenges 
against upscaling in different terrestrial environ-
ments such as deserts, riverbanks, and seashores, as 
illustrated in Fig. 7. They key aspects learnt from lit-
erature review to effectively mitigate erosion has also 
been captured in Fig. 7 in terms of cementation media 
concentration (Urea/Ca2+) and recommended  CaCO3 
content. Future studies must consider these chal-
lenges to devise a strategic approach for the different 
terrestrial environments.

The parameters such as suitable range of cemen-
tation media concentration, target depth of treatment, 
target range of  CaCO3 content and number of treat-
ment cycles have been summarised in Table  7. It is 
to be noted that the recommended range is based on 
previous literature, and they might be refined further 
based on future research. The common recommenda-
tion for all the landforms is to work with plant-pro-
moting microbes, strategies for ammonia reduction, 
and cost optimisation for field application.

There is very limited literature on field-
scale  investigations based on biocementation. van 
Paassen (2011) reported the first pilot study for the 
stabilisation of gravel to support horizontal direc-
tional drilling for a gas pipeline in the Netherlands 
in collaboration with contractors Visser & Smit 
Hanab. Despite several flushes, the calcite precipi-
tation was heterogeneous; however, improvement 
in shear strength was significant, and the hori-
zontal drilling was successful. Fujita et  al. (2010) 
and Smith et  al. (2012) reported a successful bio-
stimulation operation to immobilise heavy metals, 
strontium-90, along with calcium carbonate, in 
the field. In contrast, in a recent study, Zeng et al. 
(2021) reported no significant improvement in the 
cone penetration resistance upon MICP treatment 
of three plots, each of 125  m3 via injection strat-
egy and reasoned it with the heterogenous profile 
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of the soil and inhibition of urease activity due to 
high amount of natural calcium salts and low pH 
of the soil.

In a recent study, Ghasemi and Montoya (2022b) 
implemented MICP in the field to improve erosion 
resistance for shallow soil depths through three 
application strategies, including surface spraying, 
shallow trenches and prefabricated vertical drains 
(PVDs) employing lower-grade chemicals and 
pond water. They reported wider zones for treat-
ment and maximum improvement in erosion resist-
ance with surface spraying technique  for a moni-
toring period of around 11  months. These studies 
have provided promising results but the possibility 
of profit-making with the MICP technique for field-
scale applications is still uncertain. Currently, three 
business start-ups, namely, Medusoil, BioMason 
and Basilisk, based on biocementation techniques, 
are operational. Their projects could provide more 
insights into the commercialisation of biocemen-
tation techniques. Nonetheless, further studies are 
required addressing the cost–benefit, service life 
and durability of biocementation for field-scale 
applications and replacing existing erosion control 
and grouting techniques.

5  Concluding remarks

Soil erosion leads to the degradation of arable and 
habitable land around the globe. In this environmen-
tally conscious era, it is necessary for researchers to 
devise sustainable alternatives to the current erosion 
mitigation practices that harm ecology. The current 
review revisits the recent studies based on laboratory 
and pilot-scale investigations on soil erosion control 
and strength improvement through biocementation, 
with the aim of consolidating the gained knowl-
edge and highlighting the challenges that need to be 
addressed for  upscaling and commercialisation of 
biocementation technique.

The critical evaluation of the literature outlines the 
general consensus that a small to moderate quantity 
of  CaCO3 (4–10% of soil weight) is satisfactory for 
a notable strength improvement and erosion control. 
However, there are disparities in the reported findings 
due to differences in types of soils, their gradation,   
density, soil mineralogy, biocementation application 
strategy, microbial characteristics (urease activity), 
loading/erosion testing strategy and environmental 
conditions (pH, temperature, aeration). Moreover, 
the obvious concerns of MICP-based biocementation 

Fig. 7  Challenges associated with application of MICP in different landforms
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the permitted use, you will need to obtain permission directly 
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over non-uniform precipitation, durability, cost-
effectiveness, and overall environmental impact (due 
to generated by-product ammonia) have not been 
addressed for devising a viable and affordable strat-
egy for field-scale applications. Therefore, there is 
an urgent need to explore the technique further to 
address the above-mentioned aspects in future stud-
ies. A systematic interdisciplinary approach must be 
channelised for standardising the biocementation pro-
cedure for upscaling. Moreover, different pathways of 
biocementation must be explored for erosion control 
applications to find their suitability. The biocemen-
tation technique is still in a nascent state despite the 
magnanimous efforts of researchers worldwide. This 
review will be helpful for the early-stage research-
ers of geotechnical and geoenvironmental engineer-
ing  domain, who intend to work on the facilitation 
of biocementation technique from laboratories to the 
field.
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