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Abstract 

In the process industry, upset conditions can result in the release of fluids to the atmosphere. 

Such a release process is known as ‘Blowdown’.  Accurate modeling and prediction of the 

blowdown process is important in determining the consequences of venting operations and the 

design conditions required for vent and flare systems. The predicted information such as the rate 

at which the fluids are released, the total quantity of fluids released and the physical state of the 

fluid is valuable and helps in evaluating the new process designs, process improvements and 

improves the safety of the existing processes. 

Blowdown events, amongst other transient processes, are the subject of particular interest to the 

chemical, oil/gas, and power industries. In the process plants, particularly in the hydrocarbon 

industry, there are many large vessels and pipelines operating under pressure and containing 

hydrocarbon mixture. Depressurization of such equipment’s is frequently necessary during 

maintenance, and in an emergency it may have to be rapid. Hazards arise because of the very 

low temperatures generated within the fluid during the process and also from the large total 

efflux and high efflux rates that arise from the large inventory of the long pipelines and high 

pressure vessels. This inevitably leads to a reduction in the temperature of the vessel / pipeline 

and associated vent system, possibly to a temperature below the ductile-brittle transition 

temperature of the material from which the vessel, pipeline or piping is fabricated. To date, a 

number of blowdown models and simulation codes related to pressure vessels and pipelines 

have been developed to estimate the blowdown conditions in pressure vessels and pipelines. 

There is no general model developed specifically for analyzing the conditions developed in a 

vent pipe. 

The scope of this work encompasses investigating the behavior of compressible gas in a vent 

pipe, during venting, by developing a vent pipe model. A fluid dynamic and thermodynamic 

approach is used in developing the model. The investigation is focused on the pressure, 

temperature and flow rates of flowing gas and pipe wall temperatures. The model is validated 

with experimental data generated by performing steady-state venting runs using compressed air. 

The model is also validated by comparing the simulations performed in Aspen Hysys for single 

component gases such as air, carbon dioxide, methane and multicomponent gases which are in 

very close agreement. 
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1 Chapter 1 

Introduction and Objectives 
Designing sustainable processes is one of the key challenges of the chemical industry. This is by 

no means a trivial task as it requires translating the theoretical principles of chemical 

engineering into design practice. Process design is central to chemical engineering and can be 

considered to be the summit of chemical engineering, bringing together all of the components of 

that field. Properly designed, constructed, operated and maintained equipment will not fail 

provided that its design conditions are not exceeded. Risk reduction is another challenging task. 

Safety in process plants starts at the design stage and is followed by series of steps in order to 

reduce the risk completely.  

In process plants, particularly in hydrocarbon industry, there are a large number of vessels and 

process piping which contain / carry large amounts of flammable inventories of hydrocarbons. 

Thus, the like hood of an occurrence of an incident or risk associated in such industry is high. 

Such incidents can be significantly reduced by performing safety assessments and appropriate 

safety precautions. Despite many safety precautions within the hydrocarbon industry, equipment 

failures or operator errors may cause upset in process conditions beyond safe levels. If these 

conditions rise too high, they may exceed the maximum strength of process vessels and process 

piping systems. This can result in the rupturing of process vessels or piping, causing major 

releases of toxic or flammable hydrocarbons. Such a sudden release process is called 

‘Blowdown’. Blowdown events, amongst other transient processes, are the subject of particular 

interest to the chemical, oil/gas, and power industries. Blowdown can be an unexpected process 

as seen on ruptured pipelines/process vessels or can be planned during maintenance of the 

process equipment’s. Accurate modeling and prediction of the blowdown process is important in 

determining the consequences of venting operations and the design conditions required for vent 

and flare systems. The primary purpose for blowdown is to reduce pressure and remove 

inventory in the least amount of time possible. Hazards mainly arise due to the changes in 

equipment process conditions taking place during the blowdown process especially high efflux 

rates. This inevitably leads to a reduction in the temperature of the vessel / pipeline and 

associated vent piping system, possibly to a temperature below the ductile-brittle transition 

temperature of the material from which the vessel, pipeline or piping system is fabricated. At a 

temperature below the ductile-brittle transition temperature, the equipment material has a much 

greater tendency to shatter on impact instead bending or deforming. It is under these 
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circumstances that the lowest wall temperatures will often be observed. In such cases, prior 

estimations of the resulting temperature drop in the fluids and the equipment involved are of 

primary importance. Such estimations can be predicted by developing models for performing 

simulations of blowdown operations.  

Today, safety is equal in importance to production and has developed into a scientific discipline 

which includes many highly technical and complex theories and practices. More complex 

processes require more complex safety technology. Examples of the technology of safety 

include hydrodynamic modeling of flow through relief systems, developing mathematical 

techniques to determine various ways that processes can fail and the probability of its failure etc. 

Many blowdown models related to pressure vessels and pipelines have been developed till date 

but each one has their own pros and cons. There is no general model developed specifically for 

analyzing the fluid conditions developed in a vent pipe. A simple model for analyzing a gas 

blowdown in vent pipe is required. The main objective of this work is to investigate the effects 

of changes in gas flow conditions at different pressures and develop a simple steady-state vent 

pipe model and validate the developed model by performing simulations in Aspen Hysys.Plant 

and experimental analysis.  

1.1 Objectives 
As mentioned above, accurate prediction of blowdown conditions is of primary importance. A 

number of blowdown models have been developed but no specific model is available for 

predicting the blowdown conditions in a vent pipe. A thorough investigation of gas behavior in a 

vent pipe during blowdown is required. Therefore, this study aims at developing a simple model 

for a vent pipe by performing steady-state calculations in MS Excel simultaneously utilizing 

Visual Basic code. Thermophysical properties for the gases are extracted from the REFPROP 

software by writing a Visual Basic code. The REFPROP software calculated the thermophysical 

properties using the GERG 2004 equation of state. This equation of state has been proved to be 

better than AGA8-DC92, Peng-Robinson and other cubic equation of state. Pressure and 

temperature variations of gas, temperature distribution on the vent pipe wall and the mass flow 

through the vent pipe are the key parameters which are to be predicted by modeling. These 

parameters govern the entire steady-state venting process. Hence, to investigate this venting 

process of the gas in a vent pipe and to validate the model, a 24m long test rig is designed and 

constructed. Experiments related to compressible gases such as air are conducted. The literature 

available on venting through vent pipes is very scarce. Modeling of vent pipes associated with 

pressure vessels and long pipelines is mentioned in literature but these models are based on 



3 
 

hypothetical assumptions (no validation). Few validated models do exists but are not available 

on commercial scale. This investigation will be a significant contribution to the field of 

blowdown operations. 

The main aim of this research is to achieve the following objectives: 

1. Design and construction of a test rig. A combination of knowledge of related processes and 

application of chemical and mechanical engineering ‘first principles’ will be used to 

satisfactorily design and fabricate the test rig. 

2. Investigation of the behavior of fluids during blowdown using fluid dynamics and 

thermodynamic approach. 

3. Development of a vent pipe model into Microsoft Excel Visual Basic in order to predict the 

pressures and temperatures of the inventory (gas) and the vent pipe wall temperatures 

experienced during venting. 

4. Analyzing the results obtained from blowing down the test rig with air gas and providing a 

brief discussion with respect to thermodynamic theories. 

5. Validating the developed model with the results obtained from the test rig blowdown and 

Aspen Hysys.Plant. 
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1.2 Thesis Outline 

This thesis comprises of the following in detail as shown below in the form of a flowchart: 

 

. 

INTRODUCTION AND OBJECTIVES 
Need for Development of Vent Pipe Model during Blowdown 

Clearly Stated Objectives 
 

LITERATURE REVIEW 
Reviewing Established Theories on Blowdown Operation 

Reviewing Developed Blowdown Models 

 

MODEL DEVELOPMENT 
Fluid Dynamics and Thermodynamic Approach 

 Development of Mathematical Models  
 Modeling Approach  

Computations 

 

RESULTS AND DISCUSSIONS 
Validation of Developed Model with Experimental Data 

Validation of Developed Model with Aspen Hysys 

 

CONCLUSION AND RECOMMENDATION 
Brief Summary on Model Development and Validation 

Future Work 
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2 Chapter 2 

Literature Review 
A brief literature review related to the blowdown of pressure vessels / pipelines’, accentuating 

the development of a simple steady-state gas flow model in a vent pipe, provides research 

progress to date. An extensive literature on blowdown modeling and experimentation related to 

pressure vessels and pipelines exists and is discussed in this section of the thesis. 

The first section of the literature review explains comprehensively the purpose of blowing down 

a pressure vessel / pipeline followed by a brief description of blowdown process in pressure 

vessels and pipelines. Different release cases are tabulated and the need to design Emergency 

Depressurization System is highlighted in this section. The second section emphasizes on the 

current industrial practices in designing Emergency Design Systems (EDS) and operation of a 

typical pressure relief valve. The third section involves reviewing of thermodynamic Joule-

Thomson phenomenon taking place during the blowdown. This part will also provide insights 

into the responsible parameters for causing changes in process conditions during blowdown. The 

fourth section provides details of hazards related to depressurizing a pressure vessel / pipeline. 

This part also provides an insight of the brittlement theory related to metals. The next section is 

introduced here, which gives an extensive review on blowdown process modeling from safety 

perspective and provides detailed investigations performed by various researchers on blowdown 

modeling. A quick summarization of the available literature review is provided towards the end 

of this chapter with an objective to focus on a simple gas flow vent model.  

2.1 Blowdown 
In the last few decades, oil & gas industries have shown excellent developing trends with respect 

to production and technology. National Petroleum Council (NPC) of United States evaluated the 

future demand and supply in oil and gas. This showed a growth by 50-60% in the demand for 

energy by 2030 (Holditch and Chianelli 2008). Growing demand for energy produced from 

natural resources such as oil and gas, coal, nuclear energy etc. calls for a strengthening in 

exploration and development. However, it is evident from the fact that growing demand for 

energy will pose a greater risk for the hazards that may arise in process industries. Processes 

involved in the production of oil and gas facilities are always associated with risks and should be 

recognized for probable hazards. One such process operation is the risk associated with 
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‘Blowdown’. According to API (American Petroleum Institute 2007), the depressurization of a 

plant or part of a plant, or equipment is known as ‘Blowdown’  

During emergency situations in gas processing plants or on oil or gas platforms, the pressure of 

the vessels / pipelines containing inventory must be reduced to avoid possible accidents. This is 

mostly done by discharging the inventory to a flare or vent system (Evanger et al. 1995) and it is 

called ‘depressurization’. The purpose of blowing down or depressurising a pressure vessel or a 

pipeline filled with inventory is to prevent the vessel or the pipeline from rupturing against 

‘overpressure’ caused mainly due to process upsets or during a major fire exposure so that the 

resulting impacts to the vessel or pipeline are minimal.  Sometimes, leaks due to abrupt rupture 

of process vessels or pipelines can result in emergency depressurization of the system. There are 

different instances during which blowdown of pressure vessels or pipelines section becomes 

necessary. These may be for a planned maintenance schedule especially during the shut-down or 

to protect the process equipment (vessel/pipeline) from over pressurization or in emergency 

situations which arises in the vicinity of fire. Thus, the entire blowdown process can be 

characterized to be a rapid release process. (Nolan 1996) has categorized such releases as 

described in table 2-1. 

Table 2-1: Various release categories (Nolan 1996) 

Catastrophic Failure A vessel or pipeline opens completely immediately releasing its 
contents.

Long Rupture A section of pipeline is removed being vented to atmosphere 
whose CS areas are equal to the CS area of the pipe. 

Open Pipe The end of a pipe is fully opened exposing the CS area of the 
pipe.  

Vents, PRV Smaller diameter piping or valves may be opened or fail which 
release vapours or liquids to the environment unexpectedly. 

Normal Operation 
Releases 

Process storage or sewer vents, relief valve outlets, tank seals, 
which are considered normal and acceptable practices that 
release to the atmosphere. 

2.2 Blowdown Process 
The physical phenomenon that occurs during depressurization or blowdown begins with an 

inventory filled vessel / pipeline reaching a trip pressure and the vessel / pipeline being isolated 

(Marian, Vuthaluru, and Ghantala). Such an arrangement is shown in figure 2-1 and figure 2-2 

where an air receiver with automatic isolation and blowdown valve is installed and a gas 

pipeline with a sectionalizing valve in centre, a typical shop fabricated blowdown riser and 
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valve on the left, and a typical field fabricated riser on the right (Gradle 1984). As cited in the 

literature (Richardson and Saville 1991; Haque, Richardson, and Saville 1992; Norris III, Exxon 

Production Research Co, and R.C. Puls 1993; Fairuzov 1998), there exists a significant 

difference in the blowdown process occurring inside a vessel and long pipeline. Spatial 

uniformity of pressure distinguishes a vessel from a pipeline (Haque, Richardson, and Saville 

1992).  

2.2.1 Blowdown of Pressure Vessel 

Skouloudis and Haque et al. have well explained the detailed phenomenon of the blowdown 

process from pressure vessels during top venting transients (Skouloudis 1992; Haque et al. 

1989) and is addressed here. The initial process is actuated by opening of pressure relief valve 

(PRV) in both cases. The pressure vessel filled with inventory comprises of gas zone at the top, 

liquid zone at the bottom and sometimes a third zone for free water formed from condensation 

below the liquid zone. As soon as the relief valve opens, vapour contained in the freeboard 

volume of the pressure vessel will be released and the pressure falls rapidly inside the vessel. 

The liquid phase cannot follow this rapid change of pressure with a prompt change in 

temperature and the liquid becomes 

superheated. This leads to thermodynamic 

disequilibrium between the phases which are 

re-established after a short time by vigorous 

re-evaporation of the liquid. During this 

period the high depressurization rate is 

reduced followed by a marked pressure 

recovery which might occur when the vapour 

volume produced by evaporation exceeds the 

volume of the mixture which flows out of the 

vessel. Vapour still discharges through the 

vent line together with some droplets 

entrained from the interface separating the predominantly liquid and the predominantly vapour 

regions of the vessel. As soon as this level reaches the vent line a distinct two phase mixture is 

discharged with large liquid content. Nevertheless, the evaporation processes continue and the 

thermodynamic disequilibrium is reduced. The interface level gradually collapses so that the 

vent line is no longer blocked. Then a predominantly vapour mixture again leaves the vessel 

Figure 2-1: An air receiver with automatic

isolation and blowdown valve installation

(Spirax Sarco Limited 2011) 
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with several liquid droplets entrained. During this process the pressure in the vessel falls 

continuously until a new state of equilibrium has been established with the surroundings.  

2.2.2 Blowdown of Pipeline 

Richardson et al. and Fairuzov have well explained the detailed phenomenon of the blowdown 

process from pipeline (Richardson and Saville 1991; Fairuzov 1998) as is addressed here. The 

process of pipeline depressurization can be divided into three stages: depressurization wave 

propagation, choked critical flow from the 

line and unchoked critical flow from the 

line. Upon opening the blowdown valve, 

an expansion wave travels from the 

ruptured or open end of the line to the 

intact end of the line. The pressure at the 

intact end is unchanged from the initial 

pressure. The flow is choked at the 

ruptured or open end. After the expansion 

wave has reached the intact end of the 

pipeline, the fluid pressure inside the 

pipeline is very close to the saturation 

pressure corresponding to the fluid temperature. The pressure at the intact end starts to fall. 

However, this does not affect the flow condition at the open end of the pipeline and is still 

choked. The main contribution to the pressure drop in the line arises because of the friction at 

the wall. When the pressure in the line starts decreasing sufficiently, the flow from the ruptured 

end ceases to be choked. The main contribution to the pressure drop in the pipeline is again 

caused due to friction at the pipe wall. In case of flashing liquids, flashing occurs within the 

whole pipeline. The flashing process causes constant changes in the flow pattern. The fluid 

temperature decreases due to the drop in the fluid pressure. The pipe wall is cooled by the fluid 

flowing through the pipeline.  

In both cases as the inventory passes through the choke Joule-Thomson expansion takes place. 

Rapid cooling takes place due to isenthalpic expansion of the high pressure gas through the 

throttling process. Due to Joule-Thomson expansion, the contained inventory cools and draws 

heat from the vessel / pipeline walls, thus producing an auto-refrigeration effect or cooling the 

vessel / pipeline walls. In case of gaseous phase expansion will take place. If liquid inventory is 

present, flashing takes place soon after its pressure reaches the saturation pressure corresponding 

Figure 2-2: Gas pipeline with a sectionalizing valve

in centre, a typical shop fabricated blowdown riser

and valve on the left, and a typical field fabricated

riser on the right (Gradle 1984) 
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to the fluid temperature (Fairuzov 1998) and the composition of the inventory changes with 

decrease in pressure (Nageshwar 2003). Under this instance the mass flow rate of inventory 

depends on the supply pressure and will decrease as the supply pressure decreases (Hong et al. 

2004). Such a rapid release process accentuates the designing of emergency depressurizing 

system and is discussed in the next section.  

2.3 Blowdown or Emergency Depressurising Systems 
In process industry, especially in hydrocarbon processing facilities, severe risks with respect to 

fire, explosions and vessel ruptures are always associated. Designing safe technology has always 

been a challenge for chemical engineers. Among the prime methods to prevent and limit the loss 

potential from such incidents are the provisions of 

hydrocarbon inventory isolation and removal 

system (Nolan 1996). These systems are referred to 

as Emergency Depressurizing Systems (Nolan 

1996). For the emergency system relief in a 

chemical plant several types of venting device are 

installed such as nozzles, long pipes with or 

without bends, orifice plates or other safety relief 

valves. A typical layout of vent testing facility is 

shown in figure 2-3. Currently, industry tends to 

use American petroleum Institute’s Recommended 

Practices 520 (American Petroleum Institute 2008) 

and American petroleum Institute’s Recommended 

Practices 521 (American Petroleum Institute 2007) 

for specification and designing of emergency 

depressurization systems (Roberts et al. 2004). API 

RP 521 defines a vapour depressurizing system as a protective arrangement of valves and piping 

intended to provide for rapid reduction of pressure in equipment by releasing vapours. API RP 

521 defines a pressure-relieving system as an arrangement of a pressure-relieving device, piping 

and a means of disposal intended for the safe relief, conveyance and the disposal of the fluids in 

a vapour, liquid or gaseous state. Such a relieving system may consists of only one pressure 

relief valve or rupture disc, either with or without discharge pipe, on a single vessel or line. The 

function of blowdown facilities is to provide a means of venting the high pressure gas to the 

atmosphere in a relatively short period of time (Gradle 1984). To relieve the overpressure build-

Figure 2-3: Typical layout of vent testing

facility (Skouloudis 1992) 



10 
 

up in the vessel or pipeline, the pressure vessels / pipelines are installed with blowdown valves 

or pressure relief valve (PRV) or pressure safety valve (PSV). These valves sense the 

overpressure and are actuated automatically or manually to relieve the overpressure by reducing 

the inventory and pressure within the isolated process vessel or pipeline section. The relieved 

inventory is routed to a safe location e.g. to a blowdown or knockout drum and then to a flare or 

a vent system to safely remove the vapours from the area and dispose without impact to the 

environment.  

2.3.1 Pressure Safety Valve 

Typically, hydrocarbon pressure vessels are provided with a pressure safety valve (PSV), to 

relieve internal pressure that develops above its designed 

working pressure. The purpose of the PSV is to protect the 

vessel from rupturing due to overpressure generated from 

process condition or exposure to fire heat loads that 

generate additional vaporization pressure inside the vessel. 

A blowdown valve is a pressure relief valve which is 

designed to open at a predetermined pressure in order to 

protect a vessel or system from excess pressure by 

removing or relieving fluid from that vessel or system. A 

typical arrangement of a spring loaded PRV is shown in 

figure 2-4. Although, different types of PRV’s are 

available all differ from each other with respect to their 

operating function. As described in (American Petroleum 

Institute 2008), a spring loaded PRV consists of an inlet 

nozzle which is connected to the vessel or the system to be 

protected against overpressure, a movable disc which rests 

on the nozzle head under normal operating conditions and a spring which controls the position 

of the disc. The movable disc controls the flow through the nozzle. The spring loaded PRV 

works on the principle of force balance which acts on the movable disc on the nozzle. The 

spring load is preset to equal a force exerted on the movable disc (closed position) to equal the 

force exerted on the closed disc by the inlet fluid through the nozzle. Under normal operating 

conditions, the disc is seated on the nozzle head until the pressure exceeds the set pressure. Once 

the inlet pressure exceeds the set pressure, the pressure force overcomes the spring force and the 

valve opens. When the inlet pressure is reduced to the closing pressure, the valve re-closes. The 

Figure 2-4: Spring loaded PRV

(American Petroleum Institute

2008) 
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valve reseats when the inlet pressure or vessel pressure has dropped sufficiently below the set 

pressure and this pressure at which the valve reseats is called the closing pressure. The gas then 

passes through a vent system to the flare or vent header. A number of thermodynamic changes 

take place in the gas properties while releasing the gas through the vent pipe into the 

atmosphere. These changes in gas properties can have an impact on the vent pipe, thus, affecting 

the material of construction of the metal wall, especially when low temperatures are experienced 

in the process. To understand this phenomenon, the thermodynamic physical properties should 

be well understood.  

2.4 Thermophysical Property  
When a gas expands through a restriction from a high pressure to low pressure changes in 

temperature takes place. This process occurs under conditions of constant enthalpy and is known 

as Joule-Thomson expansion (Shoemaker, Garland, and Nibler 1996). Joule-Thomson expansion 

is a thermodynamic physical property which is experienced during blowdown. The temperature 

change is related to pressure change and is characterized by the Joule-Thomson coefficient. The 

temperature drop increases with increase of pressure drop and is proportional to the Joule-

Thomson coefficient (Maric 2005). Joule-Thomson expansion takes place under adiabatic 

conditions such as well insulated vessel or pipeline. In case of an uninsulated vessel or pipeline 

the pressure change is rapid or the velocity of flow is high such that no heat transfer takes place. 

The Joule-Thomson expansion phenomenon can be well understood by passing a gas through a 

restriction while the fluid is allowed to expand adiabatically. During this process, no work is 

done and the changes in potential and kinetic energy are negligible. It has been proved that the 

gas flow through the restriction results in an isenthalpic (constant enthalpy) process (Jones and 

Hawkins 1986). Thus, the gas escaping through the choke from vessel or pipeline into the vent 

system will follow an isenthalpic path. At the same time, the gas flow pattern is affected because 

of the entrance valve port area and frictional resistance in the vent pipe (Gradle 1984). 

According to (Gradle 1984), an increase in the valve port area will increase the mass flow rate 

through the vent system resulting in choked flow condition. At the same time an increase in 

pressure drop results by an equivalent amount to valve port area opening. The pipe frictional 

effects will equally contribute to the pressure drop and will tend to increase the flow path 

resistance, thus, reducing the flow rate through the valve. Nonetheless, due to Joule-Thomson 

expansion the bold inventory contained in the vessel or pipeline cools and draws heat from the 

vessel / pipeline walls thus producing an auto-refrigeration effect. Generally, when Joule-

Thomson expansion takes place, one of the two effects may take place- Joule-Thomson Cooling 
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effect and Joule-Thomson Inversion (heating) effect 

(Wisniak and Avraham 1996). Various authors 

(Wisniak and Avraham 1996; Maric 2005) have 

investigated and modelled the Joule-Thomson 

coefficients and inversion curves. An inversion line is a 

curve formed by passing through maximum 

temperature points for a given constant enthalpy line. 

As shown in the figure 2-5 the inversion curve divides 

the pressure-temperature plane for nitrogen gas into two 

zones. In the zone inside the inversion curve the 

adiabatic Joule-Thomson effect is positive, so that 

decreasing the pressure leads to a decrease in 

temperature whereas outside the inversion curve the adiabatic Joule-Thomson effect is negative 

and a decrease in pressure leads to an increase in temperature. It is understood that an expansion 

that begins from the inversion pressure leads to the highest cooling effect (Wisniak and 

Avraham 1996).  

2.5 Blowdown Effects 
The problem related to the blowdown of pressure vessels / pipelines containing mixtures of 

hydrocarbons are well known amongst industries involved in plant designing and hydrocarbon 

extraction (Speranza and Terenzi 2005). As discussed earlier, during blowdown / 

depressurisation of a pressure vessel or pipeline the most common effect encountered is the 

Joule-Thomson Cooling effect. The primary hazard associated during this process is the 

occurrence of brittle fracture in the vessel / piping material due to sudden decrease in 

temperature.  

Generally, steel type such as carbon steel and other ferritic steels which form the material of 

construction for most pressure vessels / pipelines become susceptible to brittle fracture with 

decrease in temperature (Khazrai, Haghighi, and Kordabadi 2001). The susceptibility of steel 

such as carbon steel to brittle fracture is related to temperature. As the temperature decreases, 

the susceptibility to brittle fracture increases (King 2006). If the temperature reaches close to or 

below the ductile-brittle transition temperature of the vessel / pipeline material of construction, 

the equipment will be prone to failure(Mahgerefteh and Wong 1999). The Joule-Thomson 

cooling effect provides the mechanism for low temperature exposure.  

Figure 2-5: Typical inversion curve -

Data for nitrogen gas (Wisniak and

Avraham 1996) 
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Another key factor which increases the 

probability of metal brittle fracture is the 

minimum level of applied stress to propagate a 

brittle fracture. When the temperature of a body 

is raised, or lowered, the material expands or 

contracts. If this expansion or contraction is 

wholly or partially resisted, stresses are set up in 

the body (Case, Chilver, and Ross 1999). For 

the crack to propagate through the material of 

construction, it must have sufficient energy 

which is available in the form of ‘overpressure’. 

At lower temperatures the yield strength is 

greater and the fracture is more brittle in nature. 

The reason for this could be atomic vibrations (Shackelford 2005). As the temperature of 

material decreases, atomic vibrations decreases and the atoms do not slip to new locations in the 

material. As the stress increases, the atoms break their bonds and do not form new ones. This 

decrease in slippage causes little plastic deformation before fracture. Thus, brittle fracture occurs 

with rapid crack propagation and results in a catastrophic failure of a material with little or no 

plastic deformation (King 2006). Figure 2-6 shows a pressure vessel under brittle fracture 

caused by cold water for a hydrostatic pressure test and then pressurizing the vessel. The 

temperature of the water caused the metal to become brittle.  

A secondary hazard arises if there is a significant liquid. During complete blowdown of pressure 

vessel, the gas-liquid interface reaches the top of the vessel choke. This results in a significant 

liquid carryover with the gas into the vent or flare system. Carryover of a significant quantity of 

liquid can present considerable operational difficulties to a flare or vent system designed to 

handle gas alone(Haque, Richardson, and Saville 1992). 

2.6 Investigations into Developed Simulation Codes and Models 
The depressurization process is not amendable to simple analysis due to its highly transient 

unsteady-state nature. There are several parameters that characterize the venting processes and 

are classified according to their significance as geometrical, operational and physicochemical 

during depressurization. The influence of these parameters during depressurization is well 

studied (Skouloudis 1992). Nonetheless, the resulting effects from blowing down a pressure 

Figure 2-6: Brittle fracture developed in a

pressure vessel (Keenan 2009) 
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vessel / pipeline can pose a significant safety hazard (Cumber 2001). Therefore, a fundamental 

study of the blowdown process is crucial in the assessment of safety practices and procedures to 

prevent or minimise the consequences of controlled or uncontrolled releases (Chen, Richardson, 

and Saville 1995a). Predicting the conditions occurring during blowdown has always been a 

challenge to chemical engineers (Mahgerefteh and Wong 1999). Consequently, in recent years 

there have been a number of theoretical and experimental studies relating to blowdown 

simulation with varying degree of sophistication (Mahgerefteh, Saha, and Economou 1999) and 

several empirical correlations have been proposed (Weiss, Botros, and Jungowski 1988). These 

models / coded programs developed are distinct from each other (very limited) in the range of 

applicability.  

Several numerical codes are available for monitoring some or all of the parameters which are 

directly related to the depressurization of vessels or pipelines. These codes have been developed 

for different types of application and although in principle solve similar sets of conservation 

equations for the mass, momentum and energy. Despite based on the same principles, these 

codes / programs differ significantly from each other in context to describing the 

phenomenology of the transient, the method of solving the pertinent equations, homogeneity / 

non-homogeneity and thermodynamic equilibrium / disequilibrium assumptions for multiple 

phases. A number of benchmark exercises were conducted (Skouloudis 1992) which 

concentrated on the hydrodynamic aspects of venting of vessels containing fluids (water / 

refrigerant R114) under high pressure, identification of parameters characterizing the emergency 

relief as well as the problems associated with the theoretical modeling of such processes with 

four American codes namely RELAP, SAFIRE, RELIEF and DEERS  

RELAP and its derivatives codes RELAP4/MOD6, RELAP5-EUR/MF (Worth, Staedtke, and 

Franchello 1993) were developed to describe the transient single and two phase flows in 

complex networks on the basis of a one dimensional approach. Correlations for single phase 

natural and forced convection, sub-cooled and saturated nucleate boiling, critical heat flux, 

transition boiling, minimum heat flux, annular and dispersed film boiling and calculations for 

friction factors are included in the code. RELIEF (Nijsing and Brinkhof 1996) and DEERS 

(Skouloudis 1992) codes also use a one dimensional mass, momentum, and energy conservation 

equations. RELIEF code discretizes the vessel into several control volumes but a single control 

volume for a vent line. DEERS code can be used in the venting of a large variety of systems. 

However, the use of a single two phase model throughout the whole transient restricts the 

accuracy of its predictions. CHARME-01 (Stoop, Bogaard, and Koning 1986), a thermo-
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hydraulic computer program developed in the late 1970’s provided more accurate computational 

results in comparison with other numerical solution techniques in the calculation of transient 

thermo-hydraulic phenomenon. CHARME-01 code based on the Method of Characteristics 

(MOC) and includes proper treatment of the shock wave phenomenon. A comparison of 

CHARME-01 and RELAP4/RELAP5 was demonstrated by (Stoop, Bogaard, and Koning 1985) 

while describing the thermo-hydraulic loading condition of the reactor pressure vessel vent line 

in the event of hydrogen being released from the reactor vessel into the vent line. All these codes 

consisted of specific models for predicting the different conditions taking place during 

blowdown / depressurization of reactor vessels. 

The DIERS computer program SAFIRE (System Analysis for Integrated Relief Evaluation) was 

developed primarily for vent-sizing calculations and for the interpreting the results of the large-

scale chemical reacting fluids. SAFIRE code is written in ANSI Standard FORTRAN-77 

comprising of 9000 lines of FORTRAN with 66 subroutines (Tilley and Shaw 1990). The main 

feature of the SAFIRE is its ability to handle up to 10 simultaneous chemical reactions with 10 

components. The program solves one dimensional mass, momentum, and energy conservation 

equations in the vent line and can also solve these pertinent equations for vessels; however, it 

assumes a single control volume for describing the vessel. The code can model many different 

aspects of emergency relief situations such as (Tilley and Shaw 1990)  

Complex runaway reactions with or without gas generation 

External heat loads (eg. Fire) 

Venting of gases or mixtures of liquids and gas 

Vapor-liquid disengagement in the vessel being vented 

Non-idealities in vapor-liquid equilibria and in gas compressibility 

Various vessels and vent line geometric combinations 

SAFIRE has a wide range of vent flow calculation routines implemented as subroutines. 

Example: Compressible gas flow through a nozzle is handled by subroutine GASN using 

conventional gas dynamic relationships. Similar subroutine GASLT can also be used to solve 

the compressible flow through a nozzle. While there are many vent flow models available in 

SAFIRE, not all can be used in all situations. The choice of the most appropriate model for a 

particular scenario requires the user to have a detailed knowledge of the range of application of 

each model (Cumber 2001). The friction factor for vent line required for calculating the 

frictional pressure drop has to be user defined. The two phase friction factor is calculated based 
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on the single phase relationship which is based on the liquid phase viscosity (only). The physical 

properties for the components must be provided by the user in the input data in terms of the 

coefficients to the correlations included in SAFIRE. The use of several input options in 

characterizing the venting process makes the code user-dependent. An improper specification of 

a flow model may lead to gross under-sizing of vent system with catastrophic consequences, 

thus making the code very versatile. SAFIRE is not an appropriate tool for the inexperienced 

user (Tilley and Shaw 1990). The model assumes a Homogenous Equilibrium Model (HEM) 

and thermodynamic equilibrium for two phase system (Skouloudis 1992). A further difficulty 

with the application of SAFIRE is that model robustness has been found to be a problem 

(Cumber 2001).  

For long gas pipelines in hydrocarbon service, the most impressive study was found by Botros et 

al. (Botros, Jungowski, and Weiss 1989). In this study, a very mechanistic analysis that included 

pipeline friction drop was supported by a full scale gas pipeline blowdown. Two physical 

models were described one which takes into account the main pipeline as the volume model 

(without frictional losses) with stagnation conditions inside the main pipe and the other as the 

pipe model (with frictional losses) with velocity increasing towards the exit. Solutions for the 

relevant model equations were obtained analytically and real gas properties for the gas (natural 

gas) were obtained numerically. Blowdown time was calculated and the results were compared 

with those obtained using the graphs (Gradle 1984) and own field measurements of a straight 

pipe section and a compressor station yard piping. Effects of stack entrance and friction losses 

and discharge coefficient were also evaluated. The study relates only to the main pipeline 

section and effects of stack entrance and friction losses upstream of the blowdown valve (throat 

area) are evaluated at which point sonic flow discharge results. Depending on the pressure in the 

main pipeline, a subsonic or supersonic flow will result downstream of the blowdown valve. The 

piping downstream of the blowdown valve or throat is neglected to provide simplicity in 

modeling approach.  

We agree to the fact that the physical processes taking place during blowdown are a complicated 

mixture of several phenomena typically comprising of fluid mechanics, heat transfer, and phase 

equilibrium. To investigate into these phenomenon, a programme of experimental work was 

carried out (Haque et al. 1989). The experimental work was focused on depressurization related 

to pressure vessels which varied from 5 to 110 cm in diameter, with a length to diameter ratio of 

10 to 3 respectively. Depressurization experiments were conducted with nitrogen, 70-30% 

mixture of nitrogen and natural gas/propane mixtures. Measurements were taken which included 
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the pressure, temperatures at a large number of positions both within the fluid phases and on the 

wall of the vessel, and composition, all as a function of time which helped in the understanding 

of the blowdown process. Based on the investigations performed and experimental data 

available a mathematical model called ‘BLOWDOWN’ program was developed. The objective 

of this model is to be able to simulate all physically significant effects. Initial development 

(Haque et al. 1989) of ‘BLOWDOWN’ incorporated the presence of only two zones: the top 

zone contains only vapor together with any suspended liquid-phase droplets; and the bottom 

zone containing all liquid phase. The developed model provided a good understanding of the 

physical processes occurring during the blowdown, even for multi-component multiphase 

systems. However, it should be noted that there might be a possibility of free water formation 

settled below zone2. With this in mind, Haque et al. extended the above work and incorporated 

zone3 for free water (including dissolved hydrocarbons) in the ‘BLOWDOWN’ program 

(Haque, Richardson, and Saville 1992). This program was validated again (Haque et al. 1992) 

with a number of experiments performed on pressure vessels and case studies. The measurement 

results and predictions were found to be in good agreement. 

The distinction between the blowdown of vessel and blowdown of a pipeline is that there is a 

significant pressure difference within the latter but not within the former. This significant 

pressure difference is mainly due to frictional effects encountered at the wall of the pipeline. 

Also, in case of blowdown of pipelines it becomes necessary in predicting high efflux rates that 

arise when the very large inventories are involved. With this in mind, an extension of the 

‘BLOWDOWN’ program which can simulate the depressurization of a pipeline was undertaken 

(Richardson and Saville 1991). Richardson and Saville divided the pipeline into a number of 

elements and performed mass, momentum and energy balances for each element with variability 

in elemental size to satisfy a number of requirements (Richardson and Saville 1991). Pertinent 

equations involved in blowdown of gas line and condensate is well described and the developed 

model is validated with two case studies – one for the blowdown of the gas line between Piper 

and MCP-01 and the other is for the full-bore blowdown of a typical condensate line. A 

comparison of BLOWDOWN predictions with the measurements made during eight of the tests 

using LPG carried out by Shell and BP on the Isle of Grain in 1985 (Richardson and Saville 

1996). Four of the tests were for full-bore depressurizations and four for depressurizations with 

orifices at the open ends of the lines. In all cases mentioned above, the BLOWDOWN 

predictions were found to be in good agreement. 
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Although mentioned the use of ‘BLOWDOWN’ program in simulating vessel / pipeline and 

associated vent / piping system (Haque, Richardson, and Saville 1992; Richardson and Saville 

1991, 1996), no thorough calculation procedures or computer algorithms have been described. 

Also, the thermodynamic, phase and transport properties for BLOWDOWN are calculated using 

PREPROP, which is a computer package developed to calculate thermo-physical properties of 

multi-component mixtures by an extended principle of corresponding states which as well as 

introducing uncertainties associated with its accuracy (Jones and Hawkins 1986), makes the 

simulation computationally demanding (Mahgerefteh and Wong 1999).    

A simple mechanistic model FRICRUP coded in FORTRAN program for predicting the 

blowdown process of vessels and pipelines for both single phase and multiphase flow was 

developed (Norris III, Exxon Production Research Co, and R.C. Puls 1993). A homogenous 

equilibrium model and thermodynamic equilibrium model assumption, along with no relative 

velocities between vapor and a liquid phase is assumed. The fact of steady-state hydrodynamic 

conditions prevails in the vented pipe after the vessel is presented. Experiments are conducted 

incorporating gases such as air, carbon dioxide and carbonated water for the validation of 

FRICRUP code. The results of experiment and predictions by model are in good agreement. The 

importance of pipe friction during the blowdown process is well highlighted. This factor 

confirmed that the modeling of pipelines as vessels can be easily seriously inadequate. Despite 

of its sophistication, the model does not agree very well for multiphase flow as can be seen from 

experiments performed with carbon-dioxide which could be because of the assumption of 

thermal equilibrium. Further experiments were carried out using several hydrocarbon gases 

including both methane and heavier mixtures (Norris III and Exxon Production Research Co 

1994). The pronounced difference in the blowdown behavior between pipelines and vessels 

noted in the non-hydrocarbon experiments was confirmed for the hydrocarbon gases tested. The 

basic assumptions for the model remained the same and similar results were obtained as 

obtained when dealing with non-hydrocarbon gases.  

Investigations into the blowdown of carbon dioxide from initially supercritical conditions have 

been performed (Gebbeken and Eggers 1995). The supercritical condition selected for the 

blowdown process was such that on pressure release flashing occurs after saturation condition 

has reached. Experiments were accomplished for initial conditions that varied in temperature, 

pressure, and minimum diameter of the venting line. Results showed that by enlarging the cross 

sectional area of the venting line the outgoing mass flow rate from the vessel is increased. 
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Thermo-hydraulic phenomenon were discussed, particularly the pressure transients, the axial 

temperature profile, and the axial void fraction profiles. 

In order to evaluate the temperature effects of depressurization on the outside surface of the steel 

wall, a full scale depressurization tests on parts of the topside piping on a riser platform in 

operation was conducted (Evanger et al. 1995).The experimental results generated were 

compared to the simulation CFD (Computational Fluid Dynamics) code PIA, developed at 

NTH/SINTEF division. A one-dimensional and two dimensional analysis is performed by the 

code PIA and incorporates a finite difference technique for numerical calculation of general heat 

and mass transfer both in fluid and solid material. A brief description on the experimental set-up 

is given and the calculations performed for the outer steel pipe wall temperatures are in good 

agreement with the measurements. However, it seems to be that PIA gives satisfactory results 

for gas systems with not too much liquid present in the inventory.  

Guerst’s variational principle for bubbly flow was extended to generalized multi-component two 

phase dispersions, and formulated a two fluid model for single and multi-component vapor-

liquid mixtures (Chen, Richardson, and Saville 1995a). In particular focus was on the 

development of the energy conservation equation and equations of motion for compressible 

single or multi-component vapor-liquid mixtures using a thermodynamic equilibrium 

assumption. As described (Chen, Richardson, and Saville 1995a), the Guerst’s variational 

principle allows both phases to be compressible in deriving the momentum equations which 

contradicts the definition of compressible flow. In the second part of the article, a simplified 

numerical method for solving two phase, multi-component flow equations was proposed and a 

detailed study of the blowdown from pipelines containing one and two component flashing 

mixtures was presented (Chen, Richardson, and Saville 1995b). 

A mathematical model for simulating the blowdown of a pipeline conveying flashing 

multicomponent mixtures was developed (Fairuzov 1998). The major features of the model 

comprise of hydrodynamic model, break-flow model and heat transfer model are well explained. 

Fairuzov suggested that a large amount of heat is transferred from the pipe wall into the fluid 

during the blowdown process and hence the adiabatic assumption for simulating the blowdown 

process is not valid. Based on this assumption, the effect of thermal capacitance was 

incorporated into the model by employing a new approach in the formulation of energy 

conservation equation for the fluid flow in the pipeline. The study revealed that the thermal 

capacitance of the pipe wall has a significant influence on the two-phase flow behavior and 
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should not be neglected in the analysis of blowdown of long pipelines containing flashing 

liquids. The model was compared to experimental data of and the model predictions hold in 

good agreement to the experimental data. The effects of friction on the blowdown time were 

assessed. 

Further development of BLOWDOWN model, based on cubic equation of state, for blowdown 

of vessels containing high pressure hydrocarbons was carried out (Mahgerefteh and Wong 

1999). The model, termed as BLOWSIM incorporates the Soave Redlich Kwong EOS, Peng 

Robinson EOS and the newly developed TCC cubic EOS for simulating vapour space 

blowdown of vessels containing multicomponent hydrocarbon mixtures. BLOWSIM model 

takes into account the non-equilibrium effects between phases, heat transfer between each fluid 

phase and their corresponding sections of vessel wall, interphase fluxes due to evaporation and 

condensation, and the effects of sonic flow at the orifice. BLOWSIM predicts the discharge 

rates, pressure as well as the fluid and wall temperatures with time. The fluid phase material 

balances depending on the zones formed inside the vessel, thermodynamic trajectories for fluid 

phases, heat transfer between vessel wall-fluid phases, discharge calculations and calculation of 

thermophysical properties are well explained. The performance of BLOWSIM is evaluated by 

comparing the predictions generated to the predictions generated from BLOWDOWN as well as 

to the published field data for high pressure blowdown of a full size vessel containing a 

condensable hydrocarbon mixture. The model accurately predicts the vessel pressures as a 

function of time and is in close agreement with BLOWDOWN. The minimum average bulk gas 

temperature is predicted to within 2 K, the unwetted wall temperature is overestimated by ~4 K 

and the wetted wall temperature is underestimated by ~5 K when compared to measured data. 

The authors have provided reasoning for this over-estimation and under-estimation. The 

instantaneous formation of liquid phase at the start of depressurization is predicted much earlier 

by the BLOWSIM model then when compared to BLOWDOWN program. 

An efficient numerical simulation (CNGS-MOC), based on the method of characteristics for 

simulating full bore rupture of long pipelines containing two phase hydrocarbon is developed 

(Mahgerefteh, Saha, and Economou 1999). The long CPU time has been largely addressed, and 

this has been synonymous so far with such types of simulations by using curved characteristics 

in conjunction with Compound Nested Grid System (CNGS). Curved characteristics are used as 

they can afford the use of much larger discretization grids; while at the same time improve the 

global accuracy. The method of characteristics is adopted to simulate the full bore rupture or 

blowdown of long pipelines containing condensable or two phase hydrocarbon mixtures. This 
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technique is employed as opposed to Finite Difference method and Finite Element Method as 

both have difficulty in handling the choking condition at the ruptured end. The MOC handles 

choked flow intrinsically via the Mach line characteristics and is more accurate then the FDM 

and FEM. The field data were from pipeline depressurization tests carried out in the Isle of 

Grain (Richardson and Saville 1996) as well as those recorded during the night of Piper Alpha 

tragedy. The performance of MOC in simulating Full bore rupture throughout the discharge 

process is compared to other solution techniques including META-HEM (Chen, Richardson, 

and Saville 1995a, 1995b), MSM-CS (Chen, Richardson, and Saville 1995a, 1995b), 

BLOWDOWN(Haque, Richardson, and Saville 1992; Haque et al. 1992) and PLAC(Hall, 

Butcher, and The 1993). The simulations were performed on the basis of a homogenous 

equilibrium model (HEM) in which all phases are assumed to be at thermal and phase 

equilibrium. Due to the absence of any theoretical and experimentally justified data for unsteady 

friction factor in rough pipes, this parameter was ignored in the model and steady-state friction 

factor estimated using the Moody approximation to Colebrook’s equation. It is the most accurate 

expression available. Two phase mixtures are simply handled by replacing single phase 

properties by two-phase mixture properties. The simulations performed consider only rupture in 

straight, horizontal well anchored pipelines in which the fluid compressibility is by far smaller 

than pipe wall elasticity. Fluid structure interaction can effectively be ignored. Comparison 

showed that CNGS-MOC, META-HEM and BLOWDOWN gave very similar predictions with 

MSM doing less well and PLAC performing very poorly. 

A model for predicting of outflow from high pressure vessels and associated vent pipe during 

accidental failure was developed (Cumber 2001). The model was developed with a view of 

incorporating its use in the safety assessments of industrial plant used to process or store 

flammable material which in turn will provide source conditions for the mathematical models of 

gas dispersion or accumulation and fires. For predicting the outflow, Cumber has sub divided 

the model into 3 sub models – a sub model for the vessel, a sub model for the vent conditions 

and a library of physical property data such that thermodynamic and phase information 

properties can be calculated as required. Model for a transient blowdown is described. The 

model is based on homogeneity of two phase flow and thermodynamic equilibrium assumption 

for both vessels and vent pipes. The system of ordinary differential equations is solved using the 

fourth order Runga Kutta method. The developed model was compared for validation purposes 

with the experimental data (Hervieu 1991), (Gebbeken and Eggers 1995) and (Haque et al. 

1992) and the following was concluded. The vessel pressure and mass flowrate prediction is 



22 
 

well predicted. The vessel temperature is under-predicted, although this does not have a 

significant effect on the predicted mass flowrate. To ensure the robustness of the model, non-

linear system solvers Powell’s hybrid method and the Simplex method of unconstrained 

optimization is incorporated into the model. However, the outflow model can fail when the 

phase of the vessel contents changes. This is because the non-linear systems of equations 

describing mass and energy conservation is degenerate at the critical point. The mass flow rate 

for the gas phase release through a hole is calculated by a variant of the isentropic nozzle flow 

equations. The gas phase density is evaluated using the cubic EOS rather than the ideal equation 

of state significantly improves the accuracy of the vent model. Liquid phase release is modeled 

by the application of Bernoulli’s equation, including a liquid head contribution where 

appropriate. To calculate the mass flow rate for two phase flow through an orifice, the 

homogenous equilibrium model has been implemented. The two phase mixture is treated as a 

single phase fluid, and the two phases are taken to be in equilibrium with equal velocities and 

temperatures. Gas outflow from a vent pipe is calculated by taking the flow of gas from the 

vessel to the pipe entrance to be isentropic, and the flow of gas along the vent pipe to be 

isenthalpic with friction effects included. The model of liquid flow through a pipe is a direct 

extension of Bernoulli’s equation with friction and entrance losses included. Two phase flow 

through a vent pipe is calculated by solving an equation for the conservation of momentum 

under the homogenous equilibrium assumption for two phase flow.  

A model for the simulation of blowdown of pressure vessels containing two-phase (gas-liquid) 

hydrocarbon fluids was proposed (Speranza and Terenzi 2005). Their model is based on a global 

mass and energy balance between the phases, gas and occasionally liquid, present in the vessel, 

at a very stage of blowdown. The model takes into account the heat transfer taking place with 

the external environment, the presence of many components in the vessel and the possibility of 

situations in which the phase equilibrium is not appropriate. The model takes into account the 

strong cooling effect taking place between the wall of the vessel and the liquid in contact with it 

which helps in avoiding cracks in the vessel wall. The model takes into account the 

compositional approach, allowing for the presence of many different hydrocarbons within the 

vessel, as well as non-equilibrium conditions between the phases. The model was validated by 

performing 2 experiments 100% Nitrogen (I1) and a mixture of hydrocarbons (S9). The 

predicted conditions during blowdown by the model are in close agreement with the 

experimental results. It was suggested that before gas escapes through the choke a rapid motion 

is induced by the acceleration of the gas far upstream, and we can imagine it to get mixed and 
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homogenized at all the time, especially in the early stages of the blowdown, while pressure is 

dropping steeply. However, the model does not provide any facts related to modeling of gas in 

the vent pipe after the choke is mentioned. The model focuses on the average quantities rather 

than local variations for homogeneity of fluid, pressure drop and temperature.  

Several other authors have analyzed the behavior of blowdown of vessel / pipelines and 

associated vent piping system. Analysis and experiment data on the discharge from carbon-

dioxide filled vessels is published in literature (Eggers and Green 1990). Goh has described 

simplified pipeline method employing quasi-ideal gas thermodynamics and has shown limited 

experimental validation (Goh 1989). Here experiments were performed with air from which the 

flow rate for natural gas was estimated. Integrated safety relief valve inlet piping design for 

compressible gas flow from an overpressurised pressure vessel was performed (Westman 1997). 

The design was based on ideal gas adiabatic flow principles which involved simultaneous 

solution of parametric equations derived from these principles. Effects of SRV inlet line 

pressure loss and the use of pipe bends is highlighted. Mass flow rates calculations for the inlet 

line and nozzle based on isentropic flow are performed and illustrated; however, its use is 

restricted only to ideal gas assumption. A simple and practical method for sizing pipelines 

incorporating the theories of adiabatic and isothermal frictional flow was investigated (Cochran 

1996). However, no validations were provided. Based on the concept of critical length, 

calculations relating to compressible fluid flow incorporating non-linear equations were 

analyzed (Farina 1997).  
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2.7 Summary of Literature Review 
An extensive literature review related to blowdown of high pressure vessels and pipelines has 

been carried out. In the last few decades, a number of theoretical and experimental studies 

relating to blowdown simulations with varying degree of sophistication were conducted based 

on which different blowdown models were developed. Most of these developed models were in 

good agreement with the experimental analyses and hence were validated whereas few models 

did not provide any validations. Moreover, a number of validated models were not well 

documented properly and are not commercially available. The use of such models is beyond the 

reach of scientific community. Although detailed investigations were conducted on the fluid 

behavior inside the pressure vessel and pipelines, very few investigations related to fluid 

behavior within the associated vent piping system were conducted. As addressed in literature 

review, very few models provided an insight into the vent pipe modeling. It should be noted that 

the impact of piping systems on process plant economics is so great that the initial investment in 

piping systems for new installations has been estimated to range from 18 to 61% of the 

equipment costs and from 7 to 15% of the total cost of the installed plant (Cochran 1996). 

Currently, industry tends to use API Recommended Practices 520 and 521 for specification of 

pressure relieving systems. However, these practices are more relevant to the case of fire 

scenarios. A thorough investigation of compressible fluids in a vent pipe is therefore required.  

The vital and foremost step to tackle this issue is to have more detailed knowledge of events 

occurring prior to fluid entering the vent pipe through the relief valve. As cited in literature 

(Norris III, Exxon Production Research Co, and R.C. Puls 1993; Norris III and Exxon 

Production Research Co 1994), the vent pipe associated with pressure vessels and pipelines for 

venting purposes contains no mass or momentum storage. As a result a steady-state 

hydrodynamics can be adopted in vent pipe analysis. Second step will be identification of 

parameters which bring about changes in the fluid flow conditions along the vent pipe. To date, 

a number of blowdown models and simulation codes related to pressure vessels and pipelines 

have been developed based on the same pertinent equations (continuity equation, energy 

equation and momentum equation) and differ from each other in methods of solving these 

pertinent equations. There is no general model developed specifically for analyzing the 

conditions developed in a vent pipe. 

Due to unavailability of analysis and data applicable to the simulation of a vent pipe, a 

combined analytical and experimental program was initiated. The goal was to develop a steady-

state adiabatic vent pipe model for a single phase (gas only) compressible gases. The model was 
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programmed into Visual basic in conjunction with MS Excel spreadsheet because of its 

simplicity and easy to use user interface. Investigation to be performed will involve determining 

the thermodynamic fluid properties, pressure drop, temperature drop and mass flow along the 

vent pipe. The vent pipe model will incorporate the newly developed GERG 2004 equation of 

state which has proved to be more suitable than other cubic equation of state developed. This 

will help the model in predicting more accurately the thermophysical properties during the 

venting process. The developed model will be validated with experimental data obtained for air 

gas from the test rig designed and constructed in Curtin University’s facility. The developed 

model will be compared to Aspen Hysys.Plant version 7.1, Process Engineering software for 

single phase single component gases such as air, carbon-dioxide, methane and single phase 

multicomponent gas mixtures, thus providing additional validation. 
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3 Chapter 3 
 

Model Development 
Pressure vessels and pipelines, with many more utilization in process industry, nuclear industry, 

marine and space industry, operating under extreme of high and low temperatures and high 

pressures, are becoming highly sophisticated (Mackerle 1999). Their operations are often 

subjected to interference from accidents, corrosion, and human error, etc. A potential of risk is 

always associated with such equipments and safe operations is an important issue for operators 

worldwide. A safety assessment must be performed on these equipments and a quantitative risk 

assessment of their operation should be conducted. 

The problems related to blowdown of pressure vessels / pipelines containing compressible gases 

are well known among process industries. Process modeling and computer simulation have 

proved to be an extremely successful engineering tool for design and optimization of such 

processes (Ramirez 1998). The use of simulation has expanded rapidly during the past few 

decades because of the availability of high speed computers and computer workstations. A 

number of factors which influence the blowdown of pressure vessels / pipelines were discussed 

in the literature review. These factors have led to the modeling of blowdown of pressure vessel / 

pipeline and associated vent piping system. Development of such models has progressed in the 

last few decades which use the same pertinent equations and differ from each other in the 

method of solution approach. Despite availability of blowdown models, very few models are 

available for determining the compressible fluid flow conditions, specifically, in vent piping 

associated with pressure vessels and pipelines. Robustness and efficiency of these available vent 

models have been proved to be a problem. Keeping this in mind, we develop a vent pipe model 

for predicting the pressure and temperature of flowing compressible fluid (gas), surface 

temperature of the vent pipe wall, and the mass flow rate which can be passed through the vent 

pipe during blowdown.  

Since a simple model for predicting the compressible fluid conditions in a vent pipe is desired, 

every approach has been made to characterize the model as mechanistic as possible. The user 

must understand that the developed model will provide a very close estimate of the compressible 

fluid flow properties which bring about the changes in the vent pipe flow conditions. 

Assumptions are clearly stated when developing the pertinent equations in order to ensure a 

better understanding prevails. A well-defined strategy was adopted in developing our vent pipe 
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model consisting of a series of logical steps. These steps involved problem definition, 

development of mathematical models for the process, method of solution, computation and 

interpretation of the results. Problem definition was very precisely stated in chapter 1. The need 

for a vent pipe model for predicting the compressible fluid flow conditions in vent pipe 

associated with pressure vessels / pipelines was highlighted. 

3.1 Development of Mathematical Models 
Compressible flows are limited to low viscosity fluids such as single phase gases and multiphase 

fluids containing mostly gases. In current work, our investigations are related to single phase 

gases only. The model will not encounter any phase change. Compressible fluid flow is a 

complex process, the interpretation of which can be analyzed by a combination of several other 

physical factors. These factors which impact the compressible fluid behavior will be examined 

in order to provide a better insight into compressible flow and are discussed in the concept of 

compressible fluid behavior. Before proceeding with the modeling theory for the vent pipe 

model, basic concept of fluid dynamics involved with the compressible fluid flow is described. 

This will help us in better understanding of our vent pipe model theory.  

3.1.1 Basic Conservation Equations 

All analyses concerning the motion of compressible fluids must necessarily begin, either directly 

or indirectly, with the statements of the four basic physical laws governing such motions. These 

physical laws are independent of the nature of the particular fluid and are as follows: 

Law of Conservation of Mass – The Continuity Principle 

Momentum Principle 

The First Law of Thermodynamics  

The Second Law of Thermodynamics 

3.1.1.1 Law of Conservation of Mass – The Continuity Equation 

The Principle of Conservation of Mass, when referred to a system of fixed identity, simply states 

that the mass of the system under consideration is constant. This statement is a concise summary 

of experimental observation, relativity and nuclear effects being absent (Shapiro 1954). Under 

unsteady state conditions, both density and velocity are functions of space and time. Thus, 

applying the continuity equation for a fixed identity occupying the control volume is  
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        3-1 

Where mc.v - Instantaneous mass within the control volume; dw - Mass rate of flow entering and 

leaving the control volume 

Thus, it can be stated that the rate of accumulation of mass within the control volume is equal to 

the excess of the incoming rate of flow over the outgoing rate of flow. Under steady state 

conditions, the total mass remains constant, thus, there will be no mass accumulation. For a 

control volume at any instant, the mass rate of flow is a function of element of control volume 

and the local mass density. Thus for a steady state, the continuity equation can be expressed as  

       3-2 

In general form, 

          3-3 

Where m – Mass flow rate of the compressible fluid;  – Instantaneous mass density of the fluid 

corresponding to the inlet and outlet area; Vn - Instantaneous velocity of the fluid corresponding 

to the inlet and outlet area 

3.1.1.2 Momentum Principle 

When the net external force acting on a system is zero, the linear momentum of the system in 

the direction of the force is conserved in both magnitude and direction. This is the principle of 

conservation of linear momentum. When there is a net external force, however, the linear 

momentum is no longer conserved. The resultant behavior is described by Newton’s second law 

of motion, which is more general than the momentum principle. 

According to Newton’s second law of motion, the resultant of forces applied to a particle, which 

may be at rest or in motion, is equal to the rate of change of momentum of the particle in the 

direction of the resultant force. Newton’s second law of motion yields: 

          3-4 

Where F – Sum of the forces acting on the particle in any one direction; (mV) – Kinetic 

momentum in the same direction 

The rate of change of momentum of a fixed-mass system can be related to the rate of change of 

momentum of a control volume in accordance to the following equation 
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       3-5 

Under steady state conditions, the rate of change of momentum within the control surface is 

zero, thus the above momentum equation reduces to 

         3-6 

It should be noted that even if frictional forces or non-equilibrium regions exists within the 

control volume, the momentum equation is still valid. This allows the momentum principle to be 

used in evaluating the forces generated by the flow of fluid. 

3.1.1.3 The First Law of Thermodynamics 

The First Law of Thermodynamics or Law of Conservation of Energy states that energy can 

neither be created nor destroyed but can be converted from one form to another. The total 

energy is always conserved. From the first law of thermodynamics or law of conservation of 

energy we can conclude that for any system, open or closed, there is an “energy balance” as 

 

Mathematically the first law can be represented as  

         3-7 

Where Qsys – Net amount of heat associated with the system; Wsys – Net amount of work 

associated with the system; Usys – Net amount of energy stored inside the system 

Thus for a steady-state steady flow system we have, 

     3-8 

Where Q – Net amount of heat associated with the system or control volume; W – Net amount 

of work associated with the control volume and is different from system work; The integral term 

represents the shaft or expansion work, or flow work; h – Enthalpy of the system 

3.1.1.4 The Second Law of Thermodynamics: 

The Second Law of Thermodynamics is far-reaching principle of nature that has been stated in 

many forms. One of the following two forms mentioned in (Jones and Hawkins 1986; 

Nageshwar 2003) are usually the most valuable: 
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The Clausius Statement: “It is impossible for any device to operate in such a manner that it 

produces no effect other than the transfer of heat from one body to another body at a higher 

temperature” 

 

The Kelvin-Planck Statement: “It is impossible for any device to operate in a cycle and produce 

work while exchanging heat only with the bodies at a single fixed temperature” 

 

These two statements of the second law and many other statements are entirely equivalent in 

their consequences. The first law of thermodynamics introduces the internal energy property and 

the second law of thermodynamics introduces the entropy property. The property entropy often 

provides a means of determining if a process is reversible, irreversible, or even possible. This 

application of entropy is based on the principle of the increase of entropy, which states that the 

entropy of an isolated system always increases or, in the limiting case of a reversible process, 

remains constant with respect to time.  

Thus in mathematical form we have, 

         3-9 

With the understanding that time is the independent variable, this statement is usually written 

         3-10 

Thus, based upon the above basic physical laws, the following conditions should exist under 

steady state conditions 

The mass flow rate is constant. This means that the mass flow rate at the entrance is the 

same as at the exit and that the mass contained within the volume neither increases nor 

diminishes at any time. 

The rate of change of momentum within the control volume is zero. 

No change in properties or in energy level of fluid occurs at the entrance, at the exit, or 

at any point within a control volume 

The rate at which energy, in the form of heat or work, crosses the boundaries of the 

control volume is constant.  

The entropy of an adiabatic closed system always increases 
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3.1.2 Theoretical Aspects Related to Compressible Fluid Flow Behavior 

The flow of compressible fluids during blowdown from large pressure vessels or pipelines into 

vent systems is influenced by a number of factors (Skouloudis 1992). These factors could be 

classified according to their significance as geometrical, operational and thermophysical 

parameters. The geometrical parameters which influence the venting process rely to a certain 

extent on the size, type of material of construction and orientation of the vent piping associated 

with the pressure vessels / pipelines. The operational factors which influence the flow of fluid 

into the vent pipe system are the vessel / pipeline conditions present prior to blowdown and the 

changes taking place in the gas behavior (heat transfer) inside the pressure vessel or pipeline 

during blowdown. The thermophysical factors include the physical and transport properties of 

the fluids contained in the vessels / pipeline. These thermophysical factors affect the flow 

regimes of compressible fluid in vent systems, thus determination of these properties along the 

vent pipe is central to this investigation. 

The changes taking place in the properties of the compressible fluid enforces the thermodynamic 

behavior of the fluids to be taken into account. These changes taking place during expansion or 

compression in the vent pipe are brought about by two processes: isothermal process and 

adiabatic process (Bansal 2005). When compression or expansion of gas takes place under 

constant temperature conditions, the resulting process is an isothermal process. In such a 

process, heat transfer takes between the system carrying the compressible gas and the 

surrounding. On the other hand, in an adiabatic process expansion or compression takes place 

with no heat transfer between the system and the surrounding. Such a process occurs if the 

system is well insulated. The use of these two models depends on the situation encountered. It 

has been cited in literature (Cochran 1996; Shapiro 1954; Saad 1993; Yuhu et al. 2002) that 

isothermal models best describe the flow of compressible gases taking place through long 

uninsulated pipelines while the adiabatic model is more appropriate for shorter and insulated 

piping’s such as the vent systems. The solution obtained by incorporating the isothermal model 

yields higher pressure drop at the same mass flow rate and provides a more conservative 

estimate for the pipe diameter sizing. On the other hand, an adiabatic model at constant pressure 

drop predicts higher efflux rates and so is frequently the choice for conservative design of 

emergency depressurization system. Moreover, the velocity of flowing gas in a short pipe is fast 

enough so that no time is provided for heat transfer to take place and hence the flow can be 

modeled as adiabatic. 
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Frictional effects, heat transfer effects and changes in cross sectional area contribute to the 

changes of compressible fluid behavior taking place in the vent pipe. As we adopt an adiabatic 

approach to develop our model, the heat transfer effects can be neglected. The vent pipe is a 

constant cross-sectional area pipe; hence area changes are not relevant to our model. Thus we 

consider pipe wall friction to be the chief factor bringing about the changes in compressible 

fluid properties. In vent pipe subjected to compressible flow, the losses encountered due to 

friction are of two types: skin friction and form friction. The skin frictional losses are 

encountered due to internal surface roughness of the pipe present between the flowing fluid and 

the pipe material. Form frictional losses are due to obstructions present in the piping system 

such as bend pipe fittings, control valve or anything that changes the course of motion of the 

flowing fluid. Thus, change in properties of fluid taking place inside the vent pipe is due to 

frictional effects generated at the wall surface. This is because the behavior of flowing fluid 

depends strongly on whether the fluid is under the influence of solid boundaries. The effect of 

solid boundary on the flow is confined to a layer of the fluid immediately adjacent to the solid 

wall where shear stress is confined (McCabe, Smith, and Harriott 2001). The effects of friction 

on compressible fluid flow parameters are explained in detail using the Fanno curves in the later 

part of this chapter.  

Based on the above theoretical aspects related to compressible fluid flow behavior, we 

understand that the behavior of compressible fluid in the vent pipe associated with emergency 

blowdown facilities should follow an adiabatic path in which the changes in fluid flow 

properties are brought about due to frictional effects. Thus, we progress with the development of 

a vent pipe model based on adiabatic and frictional approach.  

3.1.3 Model Assumptions 

3.1.3.1 Steady State Analysis 

The geometry visualized in the development of model comprises of a source and vent pipe 

arrangement. The source can be visualized to be a pressure vessel / pipeline which has all the 

mass storage of the system at isobaric and isothermal conditions throughout its volume. The 

source delivers the supply of compressible gas to the vent pipe arrangement through a nozzle at 

subsonic conditions. Norris et al. have developed their pipeline model based on this approach 

and have provided validated results (Norris III, Exxon Production Research Co, and R.C. Puls 

1993; Norris III and Exxon Production Research Co 1994). The vent pipe arrangement contains 

no mass or momentum storage. As a result, steady-state hydrodynamics are used in the vent pipe 
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analysis. These steady-state hydrodynamics do, however, contain all frictional pressures drops in 

the system. The pressure, temperature, and fluid properties are considered continuous across 

both the source-vent pipe boundaries.  

3.1.3.2 One Dimensional Approach 

As discussed earlier a number of factors influence the behavior of compressible fluid in a vent 

pipe which results in complexity of the process. Because of the complicated nature of the 

problem, it will be assumed that the flow is one-dimensional, i.e. that all properties are uniform 

over each cross section or a flow in which the rate of change of fluid properties normal to the 

streamline direction is negligibly small compared with the rate of change along the streamline. 

The assumption of one dimensional flow is justified largely by the great simplifications it makes 

possible (Shapiro and Hawthorne 1947). According to (Shapiro and Hawthorne 1947; Shapiro 

1954; Parker 1989) one-dimensional treatment introduces no significant errors especially when 

changes in stream properties in the direction of flow are much larger than in the direction normal 

to flow and when changes in properties in the direction normal to flow are the same in all 

planes, that is, the velocity, temperature, and density profiles are unchanged. An additional 

assumption is inherent in the one-dimensional analysis, namely, that the effect of turbulence on 

the computation of the mean properties is small. 

3.1.3.3 Clearly Stated Assumptions 

The flow is considered to be steady and one dimensional for single-phase gas through a 

constant cross sectional area vent pipe 

No mechanical work done or heat exchange on or by the fluid during the flow 

Differences in elevation produce negligible changes compared with the frictional effects 

and hence neglected 

Specific heats are constant across a particular cross sectional area for a given segment or 

vent pipe length 

Friction is restricted to wall shear 

Velocity gradients within a cross section are neglected 
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3.1.4 Development of Adiabatic Frictional Model 

The flowing compressible fluid at a short distance above the vent pipe wall possesses some 

momentum, whereas the fluid immediately adjacent to the pipe wall, where the fluid velocity is 

zero, has no momentum. The flowing compressible fluid must therefore acquire momentum 

from faster flowing layer above it, which in turn receives momentum from the next layer up and 

so on (McCabe, Smith, and Harriott 2001). Each layer is dragged along by the layer above it 

except the wall where all the momentum is delivered as shear force. Momentum is thus 

transferred from a region of high fluid velocity to low fluid velocity. The rate of momentum 

transfer is governed by velocity gradient which acts as the driving force. Our purpose is to find 

in analytical form the variations in all stream properties along the vent pipe profile of constant 

area. As discussed earlier, the change of fluid properties is brought about by frictional force and 

will depend upon the amount of frictional force. In order to evaluate this frictional force 

generated by the flow of compressible fluid, we apply the momentum principle and obtain a 

differential form of relation between the fluid properties and friction (Saad 1993; Shapiro 1954).  

        3-11 

Where f - Fanning friction factor; DH - Hydraulic diameter or the diameter of the vent pipe;        

 - Density of the compressible fluid; V-Velocity of the flowing stream 

3.1.4.1 Static Property Relations 

The physical phenomenon that causes changes in fluid is viscous friction and is measured by the 

term 4f/DH in equation 3-11. Relevant equations discussed earlier necessary to the solution of 

the problems pertaining to frictional flow in constant area vent pipe are the continuity equation, 

energy equation and the increase in entropy principle by second law of thermodynamics. 

Additional equations include the real gas equation and the equation for Mach number. All 

equations are summarized in the table 3-1 below: 

Table 3-1: Pertinent equations related to frictional flow in constant area vent pipe 

Real Gas Law              (a) 
Continuity Equation               (b) 
Energy Equation       (c) 
Definition of Mach number     (d) 
Increase in Entropy principle by Second Law of Thermodynamics                    (e) 
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Equation 3-11 and above five equations incorporate seven different fluid parameters which can 

be or are inter-related to each other. These property equations can be related to each other by 

defining a single independent variable, the value of which can be changed following which the 

other dependent variables can be calculated. By defining a single parameter we easily determine 

the corresponding values of these compressible fluid properties. Since the effect of friction on 

the changes encountered in compressible fluid parameters is desired we define the independent 

variable as 4f/DH. The entire derivation for relating the compressible fluid parameters to the 

independent variable is given in (Saad 1993; Shapiro 1954). It should be noted that the 

derivation given in (Saad 1993; Shapiro 1954) incorporates the perfect or ideal gas law. We 

incorporate a compressibility factor, Z, to deviate the behavior to real gas. However, when 

deriving the real gas relation, the compressibility factor cancels off and results in same equations 

as of for ideal gas behavior (refer Appendix E for derivation). The table 3-2 below summarizes 

the various static property relations for the compressible fluid. 

Table 3-2: Static property relations for adiabatic flow in constant area vent pipe 

Friction and Mach number relation  (a) 

Frictional effects on velocity  (b) 

Frictional effects on density  (c) 

Frictional effects on pressure  (d) 

Frictional effects on temperature  (e) 

 

Where f - Fanning friction factor; M - Mach number;  - Density of compressible fluid; P - 

Static pressure of flowing fluid; T - Static temperature of flowing fluid; DH - Hydraulic diameter 

of vent pipe; dx - Differential vent pipe length 
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3.1.4.1.1 Static Property Deviations with Friction 

 

Figure 3-1: Variation of fluid properties with friction 

Figure 3-1 gives a better understanding of the variation of compressible fluid properties due to 

friction. Equations involved in plotting the property relations are tabulated in table 3-2. It is seen 

that frictional flow in a vent pipe causing changes in compressible fluid properties is always 

decreasing in a subsonic or supersonic flow and becomes negligible at Mach unity. Figure 3-1 

can be well explained by taking into consideration the inlet flow conditions in the vent pipe. One 

should understand that continuous transitions from subsonic to supersonic flow or from 

supersonic to subsonic flow, are impossible (McCabe, Smith, and Harriott 2001) until and unless 

the flow is mechanically altered. We restrict our vent pipe model to subsonic region. By 

referring to figure 3-1 we can say that with decreasing frictional effects the velocity of the fluid 

is increasing along with increasing Mach number. Pressure, temperature and density are found 

to be of decreasing order in subsonic region. The compressible fluid entering the vent pipe at 

subsonic condition (M < 1) will attain Mach number less than 1 or approach unity at the exit of 

the vent pipe. At Mach unity, choked flow results at the exit of the vent pipe. Relevant 

adjustments are made to overcome the choking condition. Overall it can be said that friction has 

the net effect of accelerating a subsonic stream.  

Although not incorporated in our model, we give the reader an idea of what changes are caused 

due to friction in supersonic flow. The compressible fluid entering the vent pipe at supersonic 

condition (M > 1) will always try to approach Mach unity at the exit of the vent pipe. This is 

because the frictional effects at the exit of the vent pipe are at minimum. In the supersonic 

region, velocity is of decreasing order. When Mach of unity is attained for initial supersonic 

condition, choking takes place which involves the appearance of shock waves. Adjustments are 

made by increasing the vent pipe length to overcome choking condition. Overall, it can be said 
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that friction has the net effect of decelerating a supersonic stream. A better understanding of the 

effects of friction on fluid properties is provided when discussing the Fanno curves in the latter 

section.  

3.1.4.2 Stagnation Property Relations 

Now that the static properties for flowing compressible fluid are defined we define the 

stagnation properties for these compressible fluid. In a steady state adiabatic process, when the 

fluid is decelerated to zero velocity provided that no work interaction occurs the resulting 

properties of the fluid are called stagnation properties. Stagnation properties are developed by 

taking into account the process to be adiabatic and frictionless, that is, isentropic process. Such a 

process is encountered in variable cross sectional area where the frictional effects are minimal. 

Stagnation properties provide a convenient reference state in analyzing the flowing compressible 

fluid properties, that is, static properties. Stagnation properties are more related to the source 

conditions. Although valid for variable cross sectional area, (Shapiro 1954; Shapiro and 

Hawthorne 1947) have suggested that these isentropic stagnation properties are valid for 

adiabatic frictional constant area vent pipe. These properties are defined by (Saad 1993; Shapiro 

1954; Bansal 2005) are represented in table 3-3: 

Table 3-3: Stagnation property relation 

Stagnation and Static Pressure Relation  (a) 

Stagnation and Static Temperature Relation  (b) 

Stagnation and Static Density Relation  (c) 

Where Po – Stagnation Pressure; To – Stagnation Temperature; M: Mach number;  - Specific 

heat ratio. Stagnation enthalpy and stagnation temperature are considered to be a constant 

throughout the process whereas stagnation pressure is not. Compressible fluid when brought to 

rest adiabatically, the static enthalpy of the fluid is equal to the stagnation enthalpy, and the 

static temperature is equal to the stagnation temperature. However, the pressure is equal to the 

initial stagnation pressure only if the fluid is brought to rest both adiabatically and reversibly, 

that is, isentropically. Adiabatic frictional process is considered to be an irreversible process. 

According to (Saad 1993; Shapiro 1954)   

          3-12 
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Where s - Entropy; Po - Stagnation pressure. The above equation provides a better understanding 

of relationship between entropy and stagnation pressure. For an increase in entropy, there will 

always be a decrease in the stagnation pressure. The relative change in stagnation pressure 

therefore provides an indication of degree of irreversibility of the process. Friction present in the 

vent pipe causes an increase in the entropy and therefore stagnation pressure decreases. The 

property relations in table 3 have been derived by (Saad 1993; Shapiro 1954; Shapiro and 

Hawthorne 1947; Bansal 2005).  

3.1.4.3 Estimation of Mass Flow 

The function of blowdown facilities on pressure vessels / pipelines is to provide a means of 

venting the high pressure inventory to atmosphere in a very short period of time (Gradle 1984). 

The short blowdown time is always associated with high velocities and high mass flow-rates. 

Flow of compressible fluid such as natural gas and other gas mixtures is dependent upon 

Reynolds number, friction factor, pipe roughness, pipe diameter, pipe length, temperature, 

pressure, pressure drop and gas properties (Ouyang and Aziz 1995). The prediction of mass 

efflux from pressure vessels / pipelines through vent system is a central step in the design of 

emergency depressurization system. Accurate predictions are required for optimum design. This 

is analyzed in our vent pipe model. The relevant equations adopted for analyzing the flow in 

vent pipes depend on the basic physical law of fluid mechanics, that is, the Continuity Equation. 

For a constant area flow, mass flux is independent of length. The mass velocity can be evaluated 

at any point inside the entrance of the vent pipe. The process of blowdown of pressure vessels / 

pipelines is characterized to be an unsteady process where the properties of compressible fluid 

are functions of space and time causing the flow to change throughout the flow path. However, 

we discussed earlier, as per the geometry visualized in the model analysis steady state 

hydrodynamics prevail in vent pipe. Thus, for steady state conditions, the mass rate of flow 

across two different sections of the vent pipe can be expressed by continuity equation as  

 

Where - Mass flow rate;  - Density, A - Cross sectional area; V - Velocity of flowing fluid 

The mass flow per unit area or the mass flux, G, can then be written as 

          3-13 

For vessels or pipelines of commercial interest, the pressure to be released almost always results 

in sonic velocity at some restriction, and choked flow results (Norris III, Exxon Production 

Research Co, and R.C. Puls 1993). Choked flow is the condition wherein the mass flow rate 

becomes independent of the downstream conditions i.e. that point at which further reduction in 
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downstream pressure does not result in change of the mass flow rate (Haque, Richardson, and 

Saville 1992). Basically, a limit occurs because acoustic signals can no longer propagate 

upstream. This limit occurs when the fluid velocity just equals the propagation velocity. Such a 

condition is seen at Mach unity. Thus it is advisable to relate the gas flow relation in form of 

dimensionless Mach number. The mass flux in terms of static pressure and static temperature 

can be expressed as 

          3-14 

The above equation for mass flux in terms of stagnation properties can be expressed as  

       3-15 

Where Po – Stagnation Pressure; To – Stagnation Temperature; M: Mach number;  - Specific 

heat ratio; Z – Compressibility factor.  

According to equation 3-15, for a given Mach number, the flow is proportional to the stagnation 

pressure and inversely proportional to the square root of stagnation temperature. For a given 

geometry, stagnation and downstream 

pressures, and assumed friction factor, these 

equations 3-14 & 3-15 define the flow 

(Parker 1985). If choking condition is 

attained at the exit of the vent pipe, the rate 

of flow through the system increases and the 

flow is choked by the vent pipe. The mass 

rate of flow can be increased only by 

decreasing the stagnation temperature and /or 

increasing the stagnation pressure. For this 

reason, flow test data  for many applications 

over wide range of pressure and temperature 

levels, are plotted with  as the flow 

variable (Shapiro 1954). The condition at which maximum flow can be achieved occurs at Mach 

unity. This condition is plotted in figure 3-2. 

3.1.4.4 Estimation of Adiabatic Wall Temperature 

During blowdown of pressure vessels / pipelines, the time required to reduce the overpressure 

build-up and inventory is influenced by high efflux rates. This inevitably leads to a reduction in 

Figure 3-2: Condition for maximum mass flux 



40 
 

the temperature of the vessel / pipeline and associated vent pipe system, possibly to a 

temperature below the ductile-brittle transition temperature of the material from which the 

vessel / pipeline and associated vent piping is fabricated (Haque, Richardson, and Saville 1992; 

Haque et al. 1989; Marian, Vuthaluru, and Ghantala). At this temperature, the probability of 

failure of equipment material is high. The temperature of flowing gas in the vent pipe along with 

high speed velocities will influence the temperature of the vent pipe wall. Due to high velocities 

encountered viscous stresses set-up which do shearing work on the fluid particles which results 

in an increase in internal energy as well as the temperature of fluid very close to the wall (Saad 

1993). This work is dissipated in form of viscous heating. At high velocities, dissipation is 

largest close to the wall. The flow is not locally adiabatic and a difference will exist between the 

wall temperature and the stagnation gas temperature (Prandtl 2004). Also, the adiabatic wall 

temperature will be realistically higher than the flowing gas temperature.  

The adiabatic wall temperature has been well studied in the boundary layer flow on a flat plate 

and is usually correlated with the recovery factor (Shi et al. 2001). It has become common 

knowledge that for laminar flow recovery factor, r, is Pr
1/2  while for turbulent flow recovery 

factor is Pr
1/3 These equations neglect the fact that the recovery factors are also influenced by 

Mach number (Kaye 1953) given by the expression: 

        3-16 

Where r - Recovery factor; Pr - Prandtl number; N - Reciprocal of the exponent of the turbulent 

boundary-layer velocity profile approximated by power law. This relation holds for Prandtl 

numbers greater than 0.65 and less than 0.75. Equation 3-16 is not validated. 

The investigations related to adiabatic wall temperature are very few (Shi et al. 2001). Although 

many of these approximations are valid for flat plates, these can be applied to circular pipes. 

(McAdams, Nicolai, and Keenan 1946) have performed investigation related to adiabatic wall 

temperature for the subsonic turbulent flow in a pipe and have defined the recovery factor as: 

          3-17 

Where T : Bulk mean gas temperature; TO : Stagnation gas temperature; Taw : Adiabatic wall 

temperature; r: Recovery factor. A number of approximation and typical ranges for recovery 

factor are provided with no proper validations (Kaye 1953). (Shi et al. 2001)Shi et al. have 

defined the recovery factor as a function of Prandtl number and Knudsen number. The recovery 

factor for continuous flow is always equal to Prandtl number and will increase above Prandtl 
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number as Knudsen number increases (Shi et al. 2001). Validations are been provided by Shi et 

al. for the proposed method of determining the recovery factor. Hence, we equate the recovery 

factor to Prandtl number and calculate the adiabatic wall temperature using the relation by 

McAdams et al. into our model. The use of recovery factor relation for predicting the outlet pipe 

wall temperature will be confirmed with validation of the model.  

3.1.4.5 Effects of Friction - Fanno Process

The effects of friction on the flow parameters in a vent 

pipe during blowdown can be well explained by 

means of Enthalpy-Entropy diagram. The curve 

formed on such a plane is defined by Continuity 

Equation and Energy Equation is known as the Fanno 

curve. The Fanno process is one steady, adiabatic flow 

with friction in a duct in which the cross sectional area 

does not change along its length (Chan and Woods 

1992). The friction leads to a force on the fluid in the 

opposite direction to the flow. In Fanno flow, the 

stagnation enthalpy and mass flux are constant in all 

sections of the vent pipe. The continuity equation and 

energy equation, describes the Fanno process in the 

plane of thermodynamic properties, enthalpy and density as (nomenclature remains the same as 

defined earlier) 

         3-18 

The above equation indicates that when the flow of gas is accelerating in velocity, the enthalpy 

is decreasing by a corresponding amount, and when the gas is decelerating the enthalpy 

increases. As enthalpy is a function of temperature, it is valid that similar results will be seen in 

the temperature profiles.  

The gradient of the Fanno curve is given by (Chan and Woods 1992) expressed as 

        3-19 

Where the subscript FANNO indicates that the differentiation is taken while keeping stagnation 

enthalpy and mass flux unchanged. The slope of the Fanno curve in the enthalpy-entropy plane 

is given by (Saad 1993; Shapiro 1954; Chan and Woods 1992)  

Figure 3-3: Fanno curve (Enthalpy -

Entropy diagram) Adapted from (Saad

1993) 
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          3-20 

Equation 3-20 expresses enthalpy as a function of temperature, Mach number and entropy and 

implies that the effect of friction in a Fanno flow is to drive the flow towards Mach unity, with 

enthalpy and pressure decreasing in the subsonic branch and increasing in the supersonic branch. 

This is represented in figure 3-3. The upper part of the curve represents the subsonic condition 

whereas the lower portion represents the supersonic condition. Since the flow is adiabatic with 

friction, the second law of thermodynamic tells us that entropy may increase but may not 

decrease. Thus the path of states along any one of the Fanno curves must be towards the right. 

Thus a subsonic flow may therefore never become supersonic and a supersonic flow may never 

become subsonic, unless a discontinuity is present. Frictional effects present in the vent pipe 

alone cannot change subsonic flow into supersonic flow or vice versa because part of such 

processes will involve decrease in entropy, thus, violating the increasing entropy principle by 

Second Law of Thermodynamics. Emphasis is on frictional effects taking place in the subsonic 

region. In subsonic flow, frictional effects increase the internal energy with a corresponding 

reduction in the density of the fluid. The mass flow rate per unit area or mass flux must remain 

constant in the vent pipe during subsonic flow condition. In order to achieve this, constant mass 

flow rate condition, there must be an increase in velocity leading to expansion of compressible 

fluid. Friction has no effects on stagnation temperature or on stagnation enthalpy; however, 

friction reduces stagnation pressure in both subsonic and supersonic flow.  

3.1.4.6 Estimation of Friction factor 

Friction is the chief factor bringing about changes in fluid properties. The drag of a fluid at the 

contact between the fluid and the pipe is caused by friction factor (Ellenberger 2010). As cited 

in (Bansal 2005; Ellenberger 2010; Ouyang and Aziz 1995), there are two major friction factors 

available in fluid mechanics which are used to determine the pressure loss due to friction in 

pipes: the Fanning friction factor and Darcy-Weisbach or Moody friction factor. The Darcy 

friction factor is four times larger than the Fanning friction factor. The variation of the friction 

factor with Reynolds number and pipe roughness for circular pipes can be divided into different 

regimes (Govier and Aziz 1972): laminar flow, smooth wall turbulent flow, partially rough wall 

turbulent flow and fully rough wall turbulent flow. Partially rough wall turbulent flow and fully 

rough wall turbulent flow are also named as partially developed turbulent flow and fully 

developed turbulent flow (Ouyang and Aziz 1995). For Laminar flow, the friction factor can be 

shown to be a simple function of Reynolds number (Bansal 2005): 
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Where f - Fanning friction factor and Re - Reynolds number. The friction factor is only a 

function of Reynolds number for smooth wall turbulent flow, and a function of relative pipe 

roughness for fully rough wall turbulent flow, whereas it depends upon both the Reynolds 

number and relative pipe roughness in partially rough wall turbulent flow.  

Table 3-4: Explicit approximation for Colebrook-White friction factor equation 

In practical situations, the flow of compressible fluid (gas) is turbulent. A number of different 

approximations are been reported to analyze the friction on turbulent flow regime. These 

methods can be classified as smooth pipe correlations and rough pipe correlations. Our 

investigations are only related to rough pipes hence we do not consider smooth pipe correlations 

into our vent pipe model. Difficulty of solving turbulent flow problems in rough pipes lies in the 

fact that hydraulic friction factor is a complex function of relative surface roughness and 

Reynolds number (Brkic` 2011). The equation for computing the friction factor in the Darcy-

Weisbach pipe friction loss equation, as presented by Colebrook and White (Colebrook 1939), 

has been preferred because of its presumed superior accuracy and sound theoretical basis 

(Bernuth 1990).  

The Colebrook and White (CW) equation which related to pipe roughness and Reynolds 

number, is customarily given by (Franzini, Finnemore, and Daugherty 1997) 

        3-22 

Where f - fanning friction factor; ( /D) - Relative pipe roughness; Re - Reynolds number. 

Colebrook equation is transcendental which means that it cannot be solved by using only 

(Moody 1947)  (a) 

(Wood 1966)  (b) 

(Jain 1976)  (c) 

(Churchill 1977)    (d) 

(Chen 1979)  (e) 

(Zigrang and Slyvester 1982)  (f) 

(Serghides 1984) ; ; 

;  
(g) 

(Swamee and Jain 1976)  (h) 

(Romeo, Royo, and Monzon 2002) 
 

(i) 

(Sonnad and Goudar 2006) ;  (j) 
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elementary functions and basic arithmetic operation in definitive form (Brkic` 2011). Clearly, 

the above Colebrook and White equations are implicit in the friction factor estimation, and 

requires either an iterative numerical scheme or by graphical representation for solution. An 

alternative solution to iterative methods is the direct use of an explicit equation which is precise 

enough to calculate the value of friction factor.  

Numerous researches (Moody 1947; Wood 1966; Jain 1976; Churchill 1977; Chen 1979; 

Zigrang and Slyvester 1982; Serghides 1984; Swamee and Jain 1976; Romeo, Royo, and 

Monzon 2002; Sonnad and Goudar 2006) have been conducted in this area. The most widely 

used explicit approximations for Colebrook-White equation postulated since the end of 1940s 

are synthesized in table 3-4. These approximations differ from each other in degree of accuracy. 

Average percentage errors generated by these approximations when compared to Colebrook-

White equation have been indicated in table 3-5. Referring to the accuracy table 3-5, we can say 

that the deviation of Serghides approximation (Serghides 1984) table 3-4 equation (g) from the 

Colebrook-White equation for rough pipe results in a very low average error compared to any 

other approximation listed in table 3-5. Hence we apply Serghides approximation for 

Colebrook-White equation into our model for determining the friction factor in the transitional 

and turbulent flow (Re > 2100) at any relative roughness ( /D). The Serghides approximation for 

Colebrook-White equation is derived by applying Steffenson’s accelerated convergence 

technique to an iterative, numerical solution of Colebrook-White equation. The constants A, B 

and C are approximations of Colebrook-White equation obtained by three iterations of direct 

substitution method (Serghides 1984).  

Table 3-5: Overall average relative errors of fanning friction factor values obtained from 

different explicit equations compared with those from the CW equation (Ouyang and Aziz 1995; 

Swamee and Jain 1976; Romeo, Royo, and Monzon 2002; Sonnad and Goudar 2006) 
Average 

Error 

Serghides Chen Z-S Jain Romeo Sonnad Swamee Churchill Wood Moody 

0.00037 0.137 0.234 0.929 1.04 1.09 1.34 4.092 5.107 6.276 

3.1.4.7 Estimation of Thermophysical Properties 

The accurate knowledge of thermodynamic properties of gases such as natural gases and other 

gas mixtures is of indispensable importance for the basic engineering and performance of 

technical processes (Kunz et al. 2007). These properties can significantly affect the flow regimes 

occurring during the venting process, thus introducing unexpected variations in the 

depressurization mechanism (Skouloudis 1992). 
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The thermodynamic properties of mixtures can be calculated in a very convenient way from the 

equations of state. The advantage of employing equation of state in determining these properties 

is because it does not rely on activity coefficient concepts. A number of equations of state are 

available which serve his purpose. AGA8-DC92 equation of state is currently an internationally 

accepted standard only for P- -T relation in homogenous gas region of natural gases. Aside from 

the restriction to the homogenous gas phase, the AGA8-DC92 equation of state shows 

significant weaknesses in the description of natural gas properties and covers only a limited 

temperature, pressure and composition range (Kunz et al. 2007). Cubic equation of states such 

as Soave-Redlich Kwong (Soave 1972) and Peng Robinson (Peng and Robinson 1976) are 

widely used in many technical applications due to their simple mathematical structure. 

Technical applications which demand high accuracy of the calculated mixture properties, the 

cubic equation of state show major weaknesses with respect to representation of thermal 

properties in the liquid phase, speed of sound (thus impacting density, velocity profiles) and the 

description of caloric properties (Soave 1995; Kunz et al. 2007; Won, Smith, and Zeininger 

2005). As a result there are inconsistencies in calculations when moving from one region to 

another. Experimental evidence has also shown that it is most important to model the 

thermodynamics of depressurization accurately since failure to do so can lead to trajectories 

through phase (pressure-temperature-composition) space which are grossly in error (Richardson 

and Saville 1996). For this reason, thermodynamic, phase and transport properties of single 

phase multi-component fluids involved in the vent pipe model are calculated using a 

thermophysical computer package called REFPROP (Lemmon, Huber, and McLinden 2009). 

This program has been developed by National Institute of Standards and Technology (NIST) 

and provides the thermodynamic and transport properties of industrially important fluids and 

their mixtures  

REFPROP is based on the most accurate pure fluid and mixture models. The program 

implements three models for the thermodynamic properties of pure fluids: the GERG-2004 

equation of state explicit in Helmholtz energy (Kunz et al. 2007). Mixture calculations employ a 

model that applies mixing rules to the Helmholtz energy of the mixture components; it uses a 

departure function to account for the departure from ideal mixing (Lemmon, Huber, and 

McLinden 2009). The GERG-2004 (Kunz et al. 2007) equation of state is a fundamental 

equation explicit in the Helmholtz free energy as a function of density, temperature, and 

composition. The GERG-2004 equation of state is developed with a view to overcome the 

weaknesses and limitations of the previous equations of state. The development and evaluation 

of GERG-2004 mixture model is based on more than 100,000 experimental data for multiple 
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thermodynamic properties in different fluid regions (Kunz et al. 2007). The GERG-2004 

formulation is able to represent the most accurate experimental binary and multi-component data 

for gas phase and gas-like supercritical densities, speed of sound, and enthalpy differences 

mostly to within their low experimental uncertainties. The normal range of validity covers 

temperatures from 90 K to 450 K and pressure up to 35 MPa for natural gases and other single 

or gaseous mixture consisting of the 18 components methane, nitrogen, carbon-dioxide, ethane, 

propane, n-butane, isobutene, n-pentane, iso-pentane, n-hexane, n-heptane, n-octane, hydrogen, 

oxygen, carbon monoxide, water, helium, and argon (Lemmon, Huber, and McLinden 2009). 

The uncertainties in gas phase density and speed of sound for a broad variety of natural gases 

and related mixtures are less than 0.1% over the temperature range 250 K to 450 K at pressures 

up to 35 MPa (Kunz et al. 2007). Thus, the utilization of REFPROP into the vent pipe model in 

determining the thermophysical properties will improve the accuracy of predictions of 

compressible fluid flow properties and make the simulation in the vent pipe model competent. 

3.2 Modeling Approach 

3.2.1 Simulation Object 

As discussed earlier the geometry visualized in model development consists of a source and vent 

pipe arrangement. The conditions in vent pipe have been proved to be at steady state. In order to 

perform simulation using vent model, we chose 8 NB schedule 80 stainless steel straight pipe of 

length 12 m. The roughness of the pipe is assumed to be as 0.00015 m. No fittings are involved 

hence we neglect the form friction. The vent pipe predictions which we need to calculate are 

pressure and temperature of the flowing gas, adiabatic wall temperature, Mach number, density, 

velocity, enthalpy, entropy, friction factor, mass flow, standard volumetric flow, stagnation 

properties and critical properties. These properties are calculated for each and every segment 

along the vent profile for specified inlet static pressure and temperature and gas composition. 

Venting is to atmosphere hence the outlet static pressure is 1 bar atm. 

3.2.2 Method of Solution 

A number of equations are involved in determining compressible fluid flow properties in a vent 

pipe during blowdown. One of the methods of applying these is Multi-Step or Segmented 

Design Method (Ouyang and Aziz 1995). Multi-Step or Segmented Design Method require that 

calculations be performed over very small segments of the vent pipe and that iterations be 

employed to obtain the change in pressure, temperature and other thermophysical properties 

over each segment. The vent pipe length can be equally divided or chosen in such a way that 
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their sum of the segment lengths is exactly equal to the total vent pipe length. The procedure can 

be applied from upstream to downstream end of the vent pipe. The method, however, becomes 

bi-directional for calculating properties at sonic condition.  

Table 3-6: Property relations in terms of Mach number 
PART A PART B  

 (a)  (f) 

 (b)  (g) 

 (c)  (h) 

 (d)  (i) 

 (e)  (j) 

Properties of a fluid determined in table 3-2 at any section of a vent pipe can be related to the 

properties at any other section of the vent pipe. It is always advisable to relate the property 

relations in table 3-2 in form of dimensionless Mach number. In order to achieve this, property 

relations in table 3-2 are integrated between the inlet and exit conditions of the vent pipe. The 

inlet conditions are represented by subscript 1 and exit conditions by subscript 2. The integrated 

expressions are tabulated in table 3-6 Part A. A problem develops when the speed of gas is 

approaching sonic velocity. Obtaining results of table 3-6 Part A will sometimes result in 

solutions of subsonic to supersonic flow. This will affect the calculation procedures and will 

result in an error. Hence in order to overcome these situations, we restrict the properties in table 

3-6 Part A to approach those characteristic of Mach unity. Properties of a fluid when the gas is 

flowing at Mach unity are called critical properties and are identified by means of an asterisk 

(*). These equations are represented in table 3-6 Part B.  

Mass flow rate is a requirement in predicting the properties along the vent pipe segments. Thus, 

initially we consider the entire length of vent pipe and compute the mass flow rate. In order to 

calculate the constant mass flow rate, inlet value of Mach number is required. This is achieved 
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by solving equations (a) & (e) of table 3-6 and equation 23 which relates the inlet and outlet 

Mach numbers for a segment or for the entire length of the vent pipe.  

          3-23 

This result in two non-linear equations 24 & 25 with three unknown variable: friction factor, 

Mach number, and outlet temperature. 

  3-24 

         3-25 

Where a = ( -1)/2; : Specific heat ratio; M1 – Inlet Mach number for the segment or vent pipe; 

M2 – Outlet Mach number for the segment or vent pipe; P1 – Inlet static pressure for the segment 

or vent pipe; P2 – Outlet static pressure for the segment or vent pipe; T1 – Inlet static 

temperature for the segment or vent pipe; T2 – Outlet static temperature for the segment or vent 

pipe. We have two dependent variables and one independent variable in equations 24 & 25. 

Since we interested in the effects of friction in the vent pipe, we choose friction factor, f, as 

independent variable.  

Frictional resistance between the moving gas and pipe wall is quantified using Darcy friction 

factor, f. For fully turbulent flow, friction factor is independent of Reynolds number and is 

determined using the Von Karman equation customarily given by (Cochran 1996):  

        3-26 

For flow regimes other than fully turbulent, the friction factor is dependent on Reynolds number. 

However, the above Von-Karman equation can be conveniently used as an initial estimate of 

friction factor. On estimating the initial friction factor, the non-linear equation 24 & 25 can be 

solved by applying Newton’s Iteration method for multi-variable non-linear equations. We 

incorporate the use of Jacobian matrix in calculating our dependent variables. The procedure for 

Newton’s Iteration method can be cited in a (Franz and Melching ND; Bellman 1970; Ortega 

and Rheinboldt 1970). One of the serious difficulties associated with the use of the Newton’s 

technique is calculation of the Jacobian matrix and its inversion at each step which sometimes 

results in errors (Bellman 1970). This difficulty is overcome by solving the matrix on excel 

spreadsheet.  
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An initial estimate for Mach number is assumed to be 0.01 and for outlet temperature is assumed 

to be as inlet temperature. In subsonic flow the exit temperature is always decreasing. Hence the 

inlet temperature will provide a good estimate in calculating the outlet temperature. A minimum 

of 400 iterations are performed to calculate the final friction factor incorporating a number of 

nested iterations. After approximating the friction factor value on first iteration, Serghides 

approximation (Serghides 1984) to the Colebrook-White equation 3-22 is used to estimate the 

friction factor up to final iteration. Iterations are performed until the friction factor convergence 

is of the order 10-16. This will improve the accuracy of vent pipe model predictions. The inlet 

Mach number and outlet static temperature of the flowing gas are calculated from iterations for 

the final friction factor. The inlet Mach number is used to calculate the steady state mass flow-

rate which remains constant for all segments of the vent pipe.  

 

Figure 3-4: Representation of equation 3-27 

The predicted compressible fluid properties for each segment of vent pipe depend on the friction 

term 4fL/D. The accuracy of particular model or method of solution is greatly dependent on the 

4fL/D term of the pipe section under blowdown (Botros, Jungowski, and Weiss 1989). For a 

given segment length, L1-2, the term 4fL1-2/D is estimated from the following equation 3-27 

(Parker 1989; Saad 1993; Shapiro 1954) and is represented in figure 3-4: 

        3-27 

Where L* - Maximum length of vent pipe which does not cause choking; (L*) M1: Vent pipe 

length associated with M1; (L*) M2: Vent pipe length associated with M2; L1-2 - Vent pipe length 

between the section 1 corresponding to Mach M1, and section 2 corresponding to Mach M2  

Upon calculating the friction term, the corresponding compressible fluid properties are 

calculated using the critical property relations in table 3-6 Part B. The resulting venting 

conditions are then calculated for each segment of the pipe. The exit conditions calculated for a 

segment becomes the inlet condition for the next segment of the vent pipe. The balances 

obtained for each segment of the vent pipe are then linked together to satisfy the boundary 

conditions. The boundary conditions for the vent pipe are specified gas static pressure, gas static 
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temperature and gas composition at the inlet of the vent pipe and complete pressure drop to 

atmosphere, that is, a pressure of 1 bar atm or choking pressure (at which flow becomes choked) 

at the exit of the vent pipe.  

If choking condition is attained, the user has following 3 options- 

Decreasing the inlet static pressure – At sonic condition by decreasing the inlet static 

pressure, the mass flow rate will be reduced. Thus, the flow will enter the subsonic region 

with a shift in Fanno curve 

Increasing the vent pipe length - When a compressible gas flows through a constant area 

vent pipe, the flow characteristics in the vent pipe are affected by the length of the vent 

pipe. If the flow entering the vent pipe is at subsonic condition, the gas will accelerate in 

the vent pipe owing to friction, approaching sonic conditions at the exit. At the same time, 

the static pressure as well as stagnation pressure decreases in the direction of the flow. 

Stagnation temperature and stagnation enthalpy will remain constant. If choking condition 

is attained at the vent pipe exit, the mass flow rate through the vent pipe is at its maximum 

(refer figure 2) and the flow is choked at the exit. If a further increase in mass flow rate is 

desired it can be achieved by decreasing the stagnation temperature and or increasing the 

stagnation pressure at the inlet of the vent pipe (as per equation 15). However, the velocity 

at the exit of the vent pipe would still be sonic, but the exit pressure would be higher. 

According to the Fanno process, friction present in adiabatic flow will cause changes in the 

compressible fluid properties and increases the gas velocity so that the sonic velocity is 

approached at the pipe exit. Apart from friction factor, the term, 4fL/D, also incorporates 

the length and diameter of the vent pipe. Precisely, the mass flow rate achieved in the vent 

pipe depends on friction resistance (Brkic` 2011). Hence, the length of the pipe can directly 

affect the mass flow through the vent pipe. If the term 4fL/D is as large as the maximum 

value appropriate for the Mach number at the entrance to the vent pipe, then the gas flow at 

the pipe exit is at Mach 1 and the length of the pipe is at its maximum. Thus when choking 

occurs, the Mach number at the inlet of the pipe depends on the length of the pipe and 

decreases as the length is increased. When the flow is choked, an increase in pipe length 

produces a reduction in the mass flow, so that the operating point is shifted to a different 

Fanno line.  

 Increasing or decreasing the exit gas static pressure - When a compressible gas flows 

through a constant area vent pipe, the flow characteristics in the vent pipe are affected by 

the back pressure at the vent pipe exit. For a constant vent pipe length, an increase or 

decrease in exit gas pressure will result in a sonic condition depending on the back pressure 
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applied. In subsonic flow, gas accelerates continuously such that the exit pressure is equal 

to back pressure. If the back pressure is reduced, the exit pressure of the gas will reduce 

such that sonic conditions are approached at the exit of the vent pipe. At this point the mass 

flow will be at its maximum through the vent pipe and the exit Mach number will be at 

unity. Any further reduction in back pressure will have no effect on the mass flow. In our 

case venting is straight to atmosphere. On achieving choking pressure, an increase or 

decrease in exit pressure from back pressure of 1 bar will cause a decrease in mass flow and 

the Mach number will be less than unity. 

This procedure gives the complete state of the line for specified upstream conditions at all points 

along the vent pipe. Compressible gases used in performing simulations using the vent pipe 

model were air, methane, carbon dioxide and DBNGP gas mixture. Simulations were performed 

in the pressure range from 100 KPa gauge up to choking pressure condition. All results are 

presented in Appendix F.  

3.3 Computations
For obtaining solutions to process simulations, several levels of computation are available – 

ranging from solution by inspection to analytical and high speed computer solution (Ramirez 

1998). Because of the complexity and non-linearity of process simulation problems, most 

solution require high speed computer. All computations related to the vent pipe model were 

carried out on Core 2 Duo 3.00 GHz computer with 2 GB RAM provided by Curtin University. 

The vent pipe model’s programming functions were scripted in Visual Basic in conjunction with 

Microsoft Excel which will act as a user interface for data input, model prediction results, and 

report generations. The algorithm adopted in computing the predictions of the vent pipe model is 

presented in figure 3-5. The MS Excel and Visual Basic program functions for the vent pipe 

model and for obtaining the thermophysical properties are presented in Appendix H. 
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Figure 3-5: Algorithm for vent pipe model
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4 Chapter 4 
 

Results and Discussion 
As discussed in the literature review, the ranges of transient and steady-state vent pipe flow 

experiments are limited. Venting experiments have been conducted with working fluids such as 

water and refrigerant R114 with an operating pressure up to 7.2 MPa (Skouloudis 1992). These 

experiments, which encounter liquid only, are more related to the reactor cooling system for 

nuclear industry and were conducted for validating models SAFIRE (Tilley and Shaw 1990), 

RELAP (Worth, Staedtke, and Franchello 1993), RELIEF (Nijsing and Brinkhof 1996) and 

DEERS (Skouloudis 1992). A wide range of experiments related to blowdown of single phase 

gas/liquid or multiphase mixtures from pressure vessels and pipelines are been conducted 

(Evanger et al. 1995; Gebbeken and Eggers 1995; Norris III, Exxon Production Research Co, 

and R.C. Puls 1993; Haque et al. 1992). A rough idea to model the vent pipe-work associated 

with vessels and pipelines is mentioned (Haque, Richardson, and Saville 1992). In order to 

evaluate the performance of the developed vent pipe model and provide experimental data for 

future development of models, a small facility was constructed to perform venting experiments.  

4.1 Experimental Design 
The experimental test rig was developed and designed based on first principles of chemical 

engineering. The test rig was designed for a maximum design pressure of 1500 KPa G. Relevant 

standard/codes were employed in mechanical designing of the experimental test rig. The design 

was confirmed and signed for construction by Dr. Hari Vuthaluru, Associate Prof. Department 

of Chemical Engineering, Curtin University, Mr. Clinton Smith, Principal Process Engineer, 

Atkins Global and Dennis Kirk-Burnnand, Principal Consultant, GHD Pty Ltd. The construction 

of the experimental test rig was carried out in Curtin University’s Mechanical Workshop by Carl 

Lewis, Senior Technician.  

The experimental test rig consists of a vent pipe and an accumulator pipe arrangement. The vent 

pipe is a 12m long 8NB schedule 80 stainless steel type 316 pipe. The entire test rig arrangement 

is positioned horizontally on 90° brackets mounted in the wall. In order to achieve a steady-state 

flow condition, an 11.6 m long 50 NB schedule 40 seamless carbon steel ASTM A106 GR B 

3000 pipe was positioned in parallel with the vent pipe. The purpose of the carbon steel pipe was 

to act as an ‘accumulator’, a steady supply source of gas through the 12 m vent pipe section in 

case if the supply from the compressor and gas bottles was observed depleting. 
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In order to comply with safety, the vent pipe and accumulator pipe arrangements were 

hydrostatically tested with water at a pressure of 600 psi for a period of 30 min. No leaks were 

found and a pressure test certificate (refer Appendix A) was provided. Pressure reliefs were also 

installed in case of pressure built up in the accumulator. Due to high velocity noise produced at 

the end of the test section, a noise controller was designed and attached to end flange of the vent 

pipe. The noise controller is a 150NB SS pipe with 80NB schedule 10s SS pipe inside both 

welded to a flange. The 80NB pipe has ½ inch perforated holes along its length. The gas exiting 

at the end of the vent pipe is absorbed by the acoustic foam packed inside the 150NB pipe. The 

entire arrangement and mechanical drawings can be seen in figure 4-1 and Appendix B. In order 

to have no heat transfer with the surroundings prevailing adiabatic process assumptions, the 

entire vent pipe arrangement was insulated with glass wool. Extensive safety and operational 

controls were instituted to prevent the ingress of unauthorized personnel into the facility during 

the gas blowdown. 

4.2 Instrumentation and Data Collection 
The vent pipe tests were performed by measuring the stagnation temperature of the gas at the 

inlet and exit, temperature of the vent pipe wall at the exit, the temperature of the vent pipe wall 

at every 1m section of the pipe, pressure and the flow of the gas through the vent pipe. The 

instruments are selected based on the engineering design parameters which could sustain the 

maximum design pressure. Pressure transducers were used to measure the pressure of the gas at 

three different positions: before ball valve (bv2), inlet and exit of vent pipe. The 130C Ceramic 

Pressure Transducer made of Wheatstone bridge circuit transmitting an analog output of 4-

20mA was used to sense the pressure. The pressure range of the transducer is 0-20 bar at an 

accuracy of ±0.1 bar. The pressure transducers were calibrated by the vendor. A digital pressure 

gauge was also used to give direct measurements. This digital pressure gauge was provided by 

BOC Gases. RTD’s were used to sense the temperature of the gas at the inlet and exit ends. 

Model RTD-PT100 output was used with initial calibration performed by the vendor. In order to 

cross check the accuracy, RTD’s were immersed in the ice / water bath and corresponding 

temperatures were recorded. All RTD readings were found to be in close agreement (refer 

Appendix C for Commissioning and Testing report). The temperatures of the outside of the pipe 

wall at the vent pipe exit were obtained using Adjustable Ring T-Type thermocouple. These 

thermocouples make direct contact with the pipe for maximum performance and have grounded 

junctions. The operating range for these thermocouples is -100°C to 400°C. The temperature 

sensed by the temperature sensors was confirmed by a Non-Contact Thermometer with Dual 
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Laser Targeting (temperature gun). The contact thermocouples temperatures were checked for 

accuracy in the ice / water bath and measurements were found to be in close agreement. The 

temperature range was -50°C to 650°C with an accuracy of ±1%. The outside surface pipe wall 

temperatures after every 1m section of the vent pipe were obtained using temperature gun. The 

flowrate of the gas through the vent pipe was monitored and obtained using an IFM Effector 300 

Flow Sensor Model SD6000. This flow sensor is been developed especially for compressed air 

with integrated pipe length. The flow sensor measurement is based on the calorimetric principle 

transmitting an analogue signal of 4-20mA proportional to the standard volumetric flow. The 

compressed air meter detects the standard volume flow (to ISO 2533) directly, eliminating the 

need to correct for temperature and pressure variation. The high measurement dynamics of the 

system enables reliable detection of minute quantities. The range of the flow meter is 0-75 

Nm3/hr at an accuracy of ±3%. High accuracy and repeatability are ensured by the integration of 

the measurement sensor’s key elements into a defined pipe length.  

All data was telemetered to a NI CompactDAQ data acquisition system developed by National 

Instruments. Model NI cDAQ-9172 is an eight-slot NI CompactDAQ chassis that can hold up to 

eight I/O modules and is capable of measuring a broad range of analog and digital I/O signals 

and sensors using a Hi-Speed USB 2.0 interface. The analog signals from the pressure 

transducer, temperature RTD, temperature thermocouple and flow meter are transmitted to NI 

input modules NI9203, NI9217 and NI9211 via 2pr screened dekron cable. The data collection 

is controlled by the NI LabView Signal Express software version 3.5 from where trend data is 

exported to Microsoft Excel for further analysis. The advantage of using LabView Signal 

Express is that it provides instant interactive measurements that require no programming, thus, 

making it easier to use. Although the accuracy of the instruments and modules is found to be 

agreeable there exists a potential for signal noise caused primarily due to power supply 

fluctuations, signal transmission etc. This difficulty was solved by adopting signal noise 

reduction technique and is described in next section.  

4.3 Experimental Data Noise Reduction 
Noise is a high-frequency variation in the process measurement that is not associated with the 

true process measurement i.e. it is the variation in the sensor reading that does not correspond to 

changes in the process and can be by background electrical interference, mechanical vibrations 

and process fluctuations (Riggs and Karim 2006). These signal noises are equivalent to errors 

which inevitably corrupt the process measurement and render the steady-state performance 
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during the measurement processing and transmission of signal. Hence it is therefore important to 

reduce, if not completely eliminate, the effect of noise or errors.  

The total error in a measurement, which is the difference between the measured value and the 

true value of the variable, can be conveniently represented as the sum of the contributions from 

two types of errors – random errors and gross errors (Narasimhan and Jordache 2000). Random 

error (Nagy 1992; Narasimhan and Jordache 2000) implies that neither the magnitude nor the 

sign of the error can be predicted with certainty. In other words, if the measurement is repeated 

with the same instrument under identical process conditions, a different value may be obtained 

depending on the outcome of the random error. Gross errors imply that at any given time they 

have a certain magnitude and sign which may be unknown. Thus, if the measurement is repeated 

with the same instrument under identical conditions, the contributions of the systematic gross 

error to the measured value will be the same. Random errors can be caused by a number of 

different sources such as power supply fluctuations, network transmission and signal conversion 

noise, analog input filtering, changes in ambient conditions whereas gross errors are caused by 

nonrandom events such as instrument malfunctioning, miscalibration, wear or corrosion of 

sensors, and solids deposits. Such gross errors do not apply to our measurement process as no 

malfunctioning, miscalibration, wear or corrosion exists with our sensing instruments. The 

instruments purchased from relevant vendors are new which certify calibration performed on 

them. The temperature instruments have been tested from time to time in ice / water bath to 

ensure its accuracy. The instruments are well fitted by qualified Mechanical Technicians. The 

only error relevant in our case is the random errors on measurements as additive contributions.  

An abundant literature exists on measurement error and its calculation (Lloyd and Lipow 1962). 

Characteristics of random error can be described using statistical properties. Hence its mean or 

expected value is usually the DC voltage we trying to measure, to which noise are added and its 

variance is the standard deviation of the noise. As recommended by (National Instruments 

2006), we assume an identical distribution of each of the samples. Specifically, the means of all 

the samples are the same, as are the standard deviations. This assumption is convenient because 

in calculations we can now use the same statistics to describe each of the samples. 

Characterizing the sample as independent is not a good assumption because the character of 

noise is often time varying. The standard deviation is a measure of the magnitude of the energy 

of whatever AC signal is present (just noise, we hope, in case of a DC measurement) and is 

independent of whatever DC signal is present. Since the true standard deviation is never known, 
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an estimate of the standard deviation can be obtained by using the following equation 

recommended (National Instruments 2006) 

         4-1 

Where  - standard deviation (just noise in case of DC measurement); Xi - sample of noise in 

question; E (.) - Expectation (average value) of the quantity inside the brackets.  

An important requirement for estimating the standard deviation of a measurement error from a 

sample of measurements is that all the measurements of the variable should be drawn from the 

same statistical population. We apply this logic to our initial start-up measurements for which 

the mean or expected value is fixed at 4mA. This makes the task trivial. Now, the standard 

errors calculated are subtracted from the measured values to obtain a true measured value. It 

should be noted that the random error generated will not be entirely eliminated (Narasimhan and 

Jordache 2000). A second type of redundancy, called temporal redundancy exists as we generate 

more data continually from CompactDAQ to determine a steady-state. Temporal redundancy 

can be exploited by simple averaging the calculated measurements. This task is accomplished by 

using a digital filter. Different digital filters such as exponential filter, Moving Average filter, 

polynomial filters and hybrid filters exists. Each filter type has its own advantages. Moving 

average  is a well known low-pass filter defined, for discrete signals, by (Alessio et al. 

2002) 

        4-2 

The moving average is a finite impulse response (FIR) filter which means that the effect of any 

input lasts only for N steps. The equal weight moving average cancels out periodic noise. The 

moving average is easy to tune for steady-state or quasi steady-state signals, requiring only the 

adjustment of the number of input values used to calculate the average. The moving average 

does not overshoot and reaches correct steady-state after a step change. The moving average is 

also easy to implement and fast to compute. These calculations are not trivial and are performed 

in Excel Visual Basic Program. An Excel Visual Basic program is written to accomplish this 

task of reducing the effects of errors on pressure transducer; temperature sensors and flow meter 

(refer Appendix D).  
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Figure 4-2: Noise reduction for pressure transducers P1, P2, P3 
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Figure 4-3: Noise reduction for temperature sensors T1, T2, T3 
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Figure 4-4: Noise reduction for flow-meter 

The procedure explained above for noise reduction works well and its implementation can be 

confirmed by running the program on a set of measurements obtained during 200 KPa gauge 

test. The graphs are summarized for signals obtained from pressure transducers, flow 

transducers and temperature sensors. A clear reduction in the effect of random error can be seen 

in Figure 4-2, figure 4-3, and figure 4-4. Referring to these graphs it can be said that the noise or 

random error produced during the signal measurement is reduced, thus, attaining the true value 

of the measurement. 

4.4 Experimental Analysis 
A total of 9 venting experiments were carried out in the fluid flow laboratory which were 

designated from VPM-1 to VPM-9 (VPM – Vent Pipe Model). These experiments were divided 

into three sets each containing 3 experiments. A set differs with respect to the initial pressure. 

Set-1 experiments were performed at an initial pressure of 200 KPa G, Set-2 at an initial 

pressure of 300 KPa G and Set-3 at an initial pressure of 400 KPa G. Maintaining a steady-state 

pressure above 400 KPa G into the vent pipe was not possible due to restricted flow supply from 

the laboratory air compressor. In all cases, venting was to atmosphere so the back pressure was 0 

KPa G. Experiments were repeated in order to ensure reproducibility. Not all experiments were 

carried out for the same time period. Compressed Air from laboratory air compressor and an 
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Oxygen and 0.92% Argon by mole (BOC Gases 2006). The reason for utilizing air is because of 

its simplicity and cheapness (Glushkov, Selyanskaya, and Kas'yanov 2003). Air has only a 

single phase over the pressures and temperatures encountered in our experiment, and departures 

from ideal gas behavior are small. Also, the restriction of blowing down any supercritical or 

hydrocarbon gases into the atmosphere on the Curtin University premises favored air only. 

A simple procedure was adopted to ensure steady-state conditions are achieved into the vent 

pipe. A pressure regulator and a bleed valve arrangement was installed initially which did not 

prove to be effective and was discarded. Two 20 NB full bore ball valves were used in order to 

achieve steady-state flow conditions. One ball valve (bv1) was placed after the accumulator and 

other (bv2) before the gas enters the vent pipe. Valve (bv2) was used as the open/close valve 

whereas the valve (bv1) was used to function as a regulator to achieve the steady-state 

conditions. Air was supplied by a rubber air hose to the accumulator. Initially, on start-up the 

valve (bv2) was kept in closed position and valve (bv1) was opened slowly. Pressure gauge 

installed on the accumulator line was used to observe the pressure required. Once the required 

air pressure is achieved valve (bv2) was opened slowly and steady-state conditions were 

achieved with valve (bv1). Pressure, temperature and standard flow readings were recorded as 

analog values and the entire process was monitored using LabView Signal Express software. 

Not all experimental readings / logs could be stored as the software was only a demo version 

provided with Compact DAQ. The results obtained from the experiments are compared with the 

model predictions and interpreted in the latter section. 

4.5 Experimental Validation 
Predictions made using the vent pipe model have been conducted with all of the validatory 

experiments VPM-1 to VPM-9. Three selected representative comparisons namely VPM-1, 

VPM-4 and VPM-7 are given in what follows. In all experiments conducted, air is always in 

gaseous state. No condensation or formation of two-phase is likely to take place due to low 

pressures involved. One point that must always be borne in mind while comparing the 

experimental results and vent pipe model predictions is that the model contains no disposable 

parameters. Thus there can be no adjustment of parameters in order to ensure good agreement 

between the experimental measurements and the predictions. The vent pipe model is completely 

predictive.  

The test section is well insulated with glass wool so that the entire arrangement is considered to 

be an adiabatic process. The RTD’s are not fitted exactly in the streamline of the flowing gas. 



63 
 

This is because of area restrictions present with the geometry of RTD tube and the inside 

diameter of the vent pipe. If RTD’s are fitted in such a way that the tip of the RTD is immersed 

half way into the flowing air stream then this will cause restriction to flow inside the duct. Care 

is taken to ensure the tip of RTD is not causing any restriction in the flow. Along the duct length 

the velocity of air is always accelerating towards the exit of the vent pipe. As the air flows inside 

the duct, RTD senses the temperature of air at the point of contact. At this point, the velocity of 

air is likely to be decelerated. According to (Saad 1993), when a fluid is decelerated to zero 

velocity in a steady-flow adiabatic process, the resulting properties of the fluid are called 

stagnation properties, provided that no work interactions occurs and also gravitational, magnetic, 

electric and capillary effects are absent. According to this definition, the measured temperature 

of air will be the stagnation temperature and not static temperature i.e. the temperature measured 

will not be the actual temperature of the flowing air gas.  

4.5.1 Experiment VPM-1 

Stagnation temperature measurements were taken at the entry and exit of the vent pipe. 

Measuring the stagnation temperature along the entire length of the vent pipe was not possible 

due to difficulty in getting the instruments fitted along the vent pipe. The system was allowed to 

attain steady-state condition by controlling the flow. The final steady-state stagnation 

temperature measurements were recorded. After performing noise reductions on the recorded 

measurements, these were summarized in figure 4-5. The experimental values were plotted for a 

steady-state period only. The disturbance occurring prior to achieving steady-state condition was 

not plotted. The stagnation temperature predictions by the vent model were compared to the 

experimental values. It was seen that the exit stagnation temperature achieved a steady-state 

value quicker than the inlet stagnation temperature. The final steady-state value for the inlet 

stagnation temperature was 19.04°C whereas the exit stagnation temperature value achieved was 

18.92°C. The inlet stagnation temperature value obtained from experimental analysis was 

inputted into the vent model to predict the exit stagnation temperature value. The stagnation 

temperature values along the vent profile were also predicted and are summarized in figure 4-5. 

The predicted steady-state exit stagnation temperature was 18.97 °C. This predicted value when 

compared to the exit experimental value results in a percent difference of 0.26% which 

equivalent to ±0.05°C and is relatively very small. There is clearly excellent agreement between 

the predicted stagnation temperature and experimental stagnation temperatures.  
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Figure 4-5: Comparison of model predicted stagnation temperatures with experimental 

stagnation temperatures for VPM-1 

 

Figure 4-6: Comparison of model predicted wall temperatures with experimental wall 

temperatures for VPM-1 
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Figure 4-7: Comparison of model predicted standard volumetric flow rate with experimental 

standard volumetric flow rate for VPM-1 

 

Figure 4-8: Experimental pressure measurements for VPM-1 
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temperatures recorded by temperature gun are also summarized in figure 4-6. The predicted gas 

temperature values for the predicted stagnation temperatures were used in determining the 

adiabatic wall temperature. The predicted adiabatic wall temperatures are represented in figure 

4-6 and compared to the measured surface pipe wall temperatures. The percentage differences 

between predicted and temperature gun measurements were calculated to be 0.0% at the inlet 

and -4.53% (equivalent to -0.73°C) at the exit of the vent pipe. The percent difference between 

predicted and thermocouple temperature measurement was calculated to be 2.26% which is 

equivalent to -0.37°C. Clearly, there is also a good agreement between the measured and 

predicted pipe wall temperatures. In particular, the minimum wall temperature at the exit of the 

vent pipe, which is of significance to the materials of construction of the pipe itself, is under-

predicted within 2.26%. Thus, there exists a very close agreement between the vent pipe model 

temperature predictions and experimental analysis.  

Now, that we have a close agreement between the predicted wall temperatures and the 

experimental values, we can say that the predicted static temperature values and actual 

temperature values must be in close agreement as well and are summarized in figure 4-6. A gas 

temperature drop of 6.53 °C was predicted for an inlet pressure of 200 KPa gauge.  

The standard volumetric flow rate for the gas was recorded using IFM Effector 300 flow sensor. 

The flow measurements were recorded for the steady-state pressure of 200 KPa gauge for the 

same time period as for temperatures. After performing noise reductions on these readings, these 

values are summarized in figure 4-7. However, it was difficult to maintain a steady-state 

condition in the vent pipe due to supply issues from the laboratory air compressor. This resulted 

in slight variations in the pressure and flow rate readings. In order to have a close comparison 

between the predictions and experimental values, it was decided to predict the flow rates for the 

corresponding experimental pressure readings. The predicted flow rates were compared to the 

experimental flow rate results. An average standard volumetric flow of 22.89 Nm3/hr was 

attained on achieving steady-state during the experiment whereas an average standard 

volumetric flow of 20.46 Nm3/hr was predicted by the vent pipe model. The comparison result 

tells us that there exists a percentage difference of -10.6% which is equivalent to ±2.43 Nm3/hr. 

Hence the flow rate is under-predicted by the vent pipe model. However, the calculated 

difference is not very high and is acceptable.  

Pressure measurements were recorded at the entry and exit of the vent pipe using pressure 

transducers. After performing noise reductions these values are summarized in figure 4-8. 
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However, it was not possible to determine the pressure along the vent pipe and hence the 

pressure profile is discussed in more detail in Hysys validation. A similar approach to 

experiment VPM-1 was adopted in comparing the vent pipe model predictions to experimental 

analysis at 300 and 400 KPa inlet gauge pressures. 

4.5.2 Experiment VPM-4 

Stagnation temperature measurements were taken at the entry and exit of the vent pipe. The 

system was allowed to attain steady-state condition by controlling the flow. The final steady-

state stagnation temperature measurements were recorded. After performing noise reductions on 

the recorded measurements, these were summarized in figure 4-9. The experimental values were 

plotted for a steady-state period only. The disturbance occurring prior to achieving steady-state 

condition was not plotted. The stagnation temperature predictions by the vent model were 

compared to the experimental values. It was seen that the exit stagnation temperature achieved a 

steady-state value quicker than the inlet stagnation temperature. The final steady-state value for 

the inlet stagnation temperature was 18.59°C whereas the exit stagnation temperature value 

achieved was 18.35°C. The inlet stagnation temperature value obtained from experimental 

analysis was inputted into the vent model to predict the exit stagnation temperature value. The 

stagnation temperature values along the vent profile were also predicted and are summarized in 

figure 4-9. The predicted steady-state exit stagnation temperature was 18.41°C. This predicted 

value when compared to the exit experimental value results in a percent difference of 0.33% 

which is equivalent to ±0.06°C and is very small. There is clearly excellent agreement between 

the predicted stagnation temperature and experimental stagnation temperatures. Actual gas 

temperature measurement was estimated in a similar manner to experiment VPM-1. After 

performing noise reductions on these temperature readings, these measurements were 

summarized in figure 4-10. The final temperature recorded on achieving steady-state was 

15.33°C. The surface pipe wall temperatures at every 1m surface were measured by a non-

contact dual laser thermometer. The temperatures recorded by temperature gun are also 

summarized in figure 4-10. The predicted gas temperature values for the predicted stagnation 

temperatures were used in determining the adiabatic wall temperature. The predicted adiabatic 

wall temperatures are represented in figure 4-10 and compared to the measured surface pipe wall 

temperatures. The percentage differences between predicted and temperature gun measurements 

were calculated to be 0.19% at the inlet and 3.88% (equivalent to 0.55°C) at the exit of the vent 

pipe. The percent difference between predicted and thermocouple temperature measurement was 

calculated to be -3.78% which is equivalent to -0.58°C. 
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Figure 4-9: Comparison of model predicted stagnation temperature with experimental stagnation 

temperature for VPM-4 

 

Figure 4-10: Comparison of model predicted wall temperature with experimental wall 

temperature for VPM-4 
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predictions and experimental analysis. Now, that we have a close agreement between the 

predicted wall temperatures and the experimental values, we can say that the predicted static 

temperature values and actual temperature values must be in close agreement as well and are 

summarized in figure 4-9. A gas temperature drop of 12.53 °C was predicted for a pressure drop 

of 300 KPa gauge.  

The standard volumetric flow measurements were recorded for the steady-state pressure of 300 

KPa gauge for the same time period as for temperatures. After performing noise reductions on 

these readings, these values are summarized in figure 4-11. It was difficult to maintain a steady-

state condition in the vent pipe due to supply issues from the laboratory air compressor. This 

resulted in slight variations in the pressure and flow rate readings.  

 
Figure 4-11: Comparison of model predicted standard volumetric flowrate with experimental 

standard volumetric flow for VPM-4 
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Figure 4-12: Experimental pressure for VPM-4 
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Figure 4-13: Comparison of model predicted stagnation temperature with experiment stagnation 

temperature for VPM-7 

The predicted adiabatic wall temperatures are represented in figure 4-14 and compared to the 

measured surface pipe wall temperatures. The percentage differences between predicted and 

temperature gun measurements were calculated to be 0.49% at the inlet and 9.79% (equivalent 

to 1.13°C) at the exit of the vent pipe. The percent difference between predicted and 

thermocouple temperature measurement was calculated to be 1.91% which is equivalent to 

0.24°C. 

 
Figure 4-14: Comparison of model predicted stagnation temperature with experiment stagnation 

temperature for VPM-7 
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the materials of construction of the pipe itself, is over-predicted within -1.91% which is 

equivalent to 0.24°C. Thus, there exists a good agreement between the vent pipe model 

temperature predictions and experimental analysis.  

Now, that we have a close agreement between the predicted wall temperatures and the 

experimental values, we can say that the predicted static temperature values and actual 

temperature values must be in close agreement as well and are summarized in figure 4-14. A gas 

temperature drop of 17.35 °C was predicted for a pressure drop of 400 KPa gauge.  

 

Figure 4-15: Comparison of model predicted standard volumetric flowrate with experiment 

flowrate for VPM-7 
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the choke conditions for designing of flare systems and velocities is accurately predicted by the 

vent pipe model within 0.11% which is equivalent to ±0.04Nm3/hr. 

 

Figure 4-16: Experiment pressure measurements for VPM-7 

Pressure measurements were recorded at the entry and exit of the vent pipe using pressure 

transducers. After performing noise reductions these values are summarized in figure 4-16. 

However, it was not possible to determine the pressure along the vent pipe and hence the 

pressure profile is discussed in more detail in Hysys validation.  
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4.6 Validation with Hysys 
In order to assess the predicted performance of the developed vent pipe model, complete process 

simulations were performed. Despite some expected differences between a process simulation 

and real-life operation, process simulators are commonly used to provide reliable information on 

process operation, owing to their vast component libraries, comprehensive thermodynamic 

packages and advanced computational methods (West, Posarac, and Ellis 2008). Predictions 

made using the vent pipe model have been compared with simulations performed for air, 

carbon-dioxide, methane and a multicomponent mixture of hydrocarbons (Kirk-Burnnand 

2009). HYSYS was selected as a process simulator for both its simulation capabilities and its 

ability to incorporate calculations using the spreadsheet tool. It differs from other process 

simulators such as ASPEN PLUS in two respects: interactive interpretation of the 

commands/units as they entered and bi-directional information flow (Pareek 2008). Steady-state 

simulations were performed in Hysys version 7.1. The first step in developing the process 

simulation was selecting the chemical components for the process, as well as a thermodynamic 

model. Additionally, the unit components and input conditions for the venting process must be 

selected and specified. The unit operations and input conditions were selected based on the vent 

pipe model to ensure that the venting process simulated in HYSYS could be compared in a 

consistent manner. Since no polar compounds are present, Peng-Robinson model was selected as 

the property package for the simulation because of its simplicity and accuracy (Peng and 

Robinson 1976). A number of cubic equations of states are available but Peng-Robinson 

thermodynamic model is selected because of its wide use in development of different 

mathematical models. Another equation known for its accuracy is the Soave-Redlich-Kwong 

(Soave 1972). However, the performance of Peng-Robinson equation is better than Soave-

Redlich-Kwong equation in all cases tested and shows its greatest advantage in the prediction of 

vapor pressure of pure substances, liquid phase densities and equilibrium ratios of mixtures. In 

regions where engineering calculations are frequently required the Peng-Robinson equation 

gives better agreement between predictions and experimental PVT data (Peng and Robinson 

1976). No heat transfer approach with the surrounding was considered. The Hysys process flow-

sheet for the vent pipe model is represented in figure 4-17 where the CGP-100 is the vent pipe 

section. 

4.6.1 Comparison with Hysys Simulation for Air 

The vent pipe model’s predicted results for compressible gas such as air are compared with the 

simulated results of Aspen Hysys. The predicted mass flow rates, pressure profile, temperature 
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profile, Mach number profile, density profile and velocity profile for air from the vent pipe 

model and Hysys are analyzed on an excel spreadsheet and various graphs are plotted. 

Remember that we are specifically interested in the exit conditions of the vent pipe. However, 

the different parameter profiles are discussed as well. The vent pipe design specifications used 

in the vent model and Aspen Hysys model puts restriction on the flow and results in a choking 

condition at the end of the vent pipe with sonic conditions. This sonic condition for air was 

calculated at ~750 K Pa gauge pressure. Due to limitations imposed in Aspen Hysys, the vent 

pipe flow sheet did not converge which resulted in increasing the back pressure. The following 

two cases are evaluated here: Air Case 1- Pressure range of 100-500 K Pa gauge (atmospheric 

blowdown) and Air Case 2- Pressure range of 600-1000 K Pa gauge (back pressure). The 

comparison percentage differences are calculated in both cases for Hysys simulations and Vent 

pipe model. Enthalpy and Entropy along the vent profile are also assessed which helped in 

understanding the fanno line. 

4.6.1.1 Air Case 1: Pressure range 100-500 KPa gauge 

The predicted and simulated results for mass flow rates at steady-state conditions in the pressure 

range 100-500 KPa gauge are in close agreement. The comparison percentage difference 

calculated in table G 11-1 on mass flow rates, predicted by the vent model, are at minimal. The 

minimum percentage difference calculated for mass flow rate was 0.25% and maximum 

percentage difference was calculated at 0.568%. Figure 4-18 shows the pressure profile for the 

vent model predictions and Aspen Hysys simulated results for air at steady-state mass flow 

conditions in the pressure range 100-500 K Pa gauge. The pressures at the inlet and exit 

conditions were calculated in both cases and were found to be in close agreement. Obviously, 

the percentage comparison difference at the inlet of the vent pipe was 0% whereas that 

calculated at the exit of vent was 0.025%. This could be due to minor calculation discrepancy. 

Overall an excellent agreement in the mass flow rate and exit pressure prevails. The pressure 

profile along the vent pipe was analyzed. The vent pipe was divided into twelve sections and the 

pressures at entry / exit of each section was calculated. The predicted results were compared 

with Hysys simulated results. Initially, the pressure profile follows a linear path and then 

decreases exponentially attaining exit conditions (atmospheric). The mass flowrate in all cases 

(from 100-500 K Pa gauge vent pipe profiles) should be constant prevailing steady-state 

conditions. The predicted pressure readings along the vent length compares well with Hysys and 

are within ±0.6% of the simulated Hysys values for the first ten sections.  
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Vent Pipe Model Predictions: Pressure K Pa

Aspen HYSYS Simulation: Pressure K Pa
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Vent Pipe Model Predictions: Temperature °C

Aspen HYSYS Simulation: Temperature °C
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Vent Pipe Model Predictions: Mach Number

Aspen HYSYS Simulation: Mach Number
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Vent Pipe Model Predictions: Density kg/m3

Aspen HYSYS Simulation: Density kg/m3
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Vent Pipe Model Predictions: Velocity m/sec

Aspen HYSYS Simulation: Velocity m/sec
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The mystical cases are the last two sections. Although, the exit condition (atmospheric 

pressure) is obtained at the end of the vent pipe, the pressure drop in the 11th section of the 

vent pipe is significantly high in Hysys simulation then predicted by the model. The reason 

for existence of such a pressure profile in the last two sections is unclear at this stage. 

The model predictions and Hysys simulated temperatures along the vent pipe were plotted 

and percent comparison differences were calculated. Figure 4-19 shows the temperature 

profile for the vent model predictions and Aspen Hysys simulated results for air at steady-

state mass flow conditions in the pressure range 100-500 KPa gauge. Once again looking at 

the Figure 4-19, it can be said that the exit temperature readings in all cases are in close 

agreement with a minimum difference of -0.72% and a maximum difference of 1.67%. The 

temperature profile along the vent pipe again follows a linear profile initially and then 

decreases exponentially to attain a final exit temperature. The model predicted temperatures 

in the first ten sections of the vent pipe match with the Hysys simulated temperature readings 

and are within ±1.67%. A similar temperature profile as in case of pressure is obtained in the 

last two sections of the vent pipe. The reason for existence of such a temperature profile is 

unclear at this stage.  

Mach number, density and velocity along the vent pipe were assessed and plotted. Figure 4-

20 shows the Mach number profile for the vent model predictions and Aspen Hysys 

simulated results for air at steady-state mass flow conditions in the pressure range 100-500 

KPa gauge. Based on the assessment performed, it can be said that the Mach number along 

the vent profile is increasing towards the exit of the vent pipe and approaching towards sonic 

velocity. The exit Mach number readings in first ten sections are in close agreement with a 

minimum difference of 0.13% and a maximum difference of 0.63%. 

Figure 4-21 shows the density profile for the vent model predictions and Aspen Hysys 

simulated results for air at steady-state mass flow conditions in the pressure range 100-500 

KPa gauge. A fall in density of fluid is noticed along the vent profile. The graph is very 

similar to pressure Figure 4-18 and temperature Figure 4-19 which shows decreasing 

linearity and an exponential fall. The exit density readings in first ten sections are in close 

agreement with a minimum difference of -0.2% and a maximum difference of 0.02%. 

Figure 4-22 shows the velocity profile for the vent model predictions and Aspen Hysys 

simulated results for air at steady-state mass flow conditions in the pressure range 100-500 
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KPa gauge. Once again, it can be said that the exit velocity readings in all cases are in close 

agreement with a minimum difference of 0.4% and a maximum difference of 0.61%. The 

velocity profile developed is completely opposite to temperature profile and very similar to 

Mach number profile. Overall the results were found to be in very close agreement for all 

parameters in case 1. The percent difference between the vent model and Hysys was 

comparatively high in the 11th section of the vent pipe. 

Figure 4-23 represents the enthalpy and entropy along the vent profile for the pressure range 

100-500 K Pa gauge. The various curves formed are known as ‘Fanno Curve’ or ‘Fanno 

Line’. As can be seen from the Figure 4-23, the enthalpy is decreasing along the vent profile 

and a simultaneous increase in entropy is noticed. As discussed in model development, 

friction is an important parameter which brings about the changes in the flow conditions. To 

define a flow in a region or duct, the effects of friction must be monitored. In our case, 

friction is causing an increase in the velocity and Mach number with a simultaneous 

decrease in enthalpy and pressure. The fanno line represents the effects of friction on the 

flow parameters. In Figure 3-3, the maximum Mach number which could be obtained at the 

end of the vent will be unity representing a case of adiabatic sonic flow. At this point flow is 

choked. On comparison of Figure 4-23 with Figure 3-3, it can be said that the fanno curve in 

Figure 4-23 represents the upper part of the general fanno curve. This region represents the 

subsonic flow region. Thus for case 1, the qualitative character of the flow is markedly 

influenced by subsonic flow conditions.    

4.6.1.2 Air Case 2: Pressure range 600-1000 KPa gauge  

Simulations performed in Aspen Hysys at pressures > 600 K Pa gauge did not converge to 

achieve atmospheric pressure at the exit of the vent pipe. This could be a restriction in 

Hysys. However, no further investigations were performed on this matter. In order to 

simulate the Hysys model, the back pressure (pressure at the exit of the vent) was increased 

by a relative amount such that the vent exit pressure equals to the back pressure. This was 

done by adjusting the steady-state mass flow condition. Trial and error methods were 

performed in order to solve the Hysys model at minimal back pressure (above atmosphere). 

The exit pressures obtained from the Hysys simulations were inputted in the vent pipe model 

and relevant predictions were calculated. The results obtained were tabulated in table G 11-2 

and pressure profile, temperature profile, Mach number profiles, density profile and velocity 
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profile along the vent pipe were plotted. Similar results were obtained as in case1 and are 

discussed here.  

The vent model predictions and Aspen Hysys simulated results for mass flow in the pressure 

range 600-1000 K Pa gauge are found to be in very close agreement. A minimum of 0.08% 

and a maximum of 0.22% of comparison difference were calculated. Figure 4-24 shows the 

pressure profile for the vent model predictions and Aspen Hysys simulated results for air at 

steady-state mass flow conditions in the pressure range 600-1000 K Pa gauge. The pressures 

at the inlet and exit conditions were calculated and were found to be in close agreement. The 

pressure profile along the vent pipe was analyzed in the same way as in case-1. Similar 

results representative to case-1 were obtained. The percentage comparison difference was 

well within limits for the first ten sections and was calculated to be ±0.47% better than case-

1. Figure 4-25 shows the temperature profile for the vent model predictions and Aspen 

Hysys simulated results for air at steady-state mass flow conditions in the pressure range 

600-1000 KPa gauge. The temperature profile developed along the vent pipe was of the 

same pattern as case-1 representing a decreasing linearity followed by an exponential 

decrease to attain exit conditions. The percentage comparison difference calculated was 

±1.71% for the first ten sections of the vent pipe. Mach number, density and velocity profile 

were also plotted and are represented in Figure 4-26, Figure 4-27 and Figure 4-28. The 

density profile developed is very similar to that of the pressure drop profile which confirms 

the existence of relationship between them. The profiles developed represent a linear and 

exponential increase in Mach number and velocity and are opposite to the temperature 

profile. Enthalpy-Entropy plots representing the fanno curve for the pressure range 600-1000 

K Pa gauge are plotted in Figure 4-29. Once again the flow is characterized to be as subsonic 

with a decrease in enthalpy and an increase in entropy proving the irreversibility of the 

process. 

The mystical condition developed in the last two sections of the vent pipe in case 1 was also 

seen in case 2. This condition can be explained by the fanno line equation stated in model 

development. As discussed in the previous section of model development, a decrease in 

density is always registered according to the fanno equation. The mass flow per unit area 

must remain constant and in order to compensate for this the velocity in this region 

increases. As can be seen in the 11th section, the difference in the density of air is high when 

compared to the other sections (refer table 4-1 and table 4-2). However, this does not solve 
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our problem. After a careful consideration, it was concluded that this discrepancy could be 

generated because of calculations performed with different equation of states used in the 

vent model and Aspen Hysys. The GERG-2004 (Kunz et al. 2007) equation of state was 

used in calculating the thermophysical properties in vent model whereas Peng-Robinson 

(Peng and Robinson 1976) equation of state was used in calculating the thermophysical 

properties in Aspen Hysys simulation. The reason for the profile difference must be a result 

of limitations imposed by the equations of state. According to (Setzmann and Wagner 1991), 

the density values calculated from the Peng-Robinson equation of state deviate from the 

reference equation of state by up to +5% at pressures below 30MPa. However, this research 

was conducted for Methane gas. (Kunz et al. 2007) mentioned that the calculated values for 

the speed of sound show deviations of more than ±10% in the same temperature and pressure 

ranges. This can affect our density, velocity and Mach number profiles. It was also reported 

that the suitability of the Peng-Robinson equation of state for use in technical applications 

which require high accuracy predictions of the properties of natural gases quickly revealed 

serious deficiencies. The GERG-2004 equation of state was developed with a view to 

overcome such difficulties.  Hence the vent model predictions can be proved to be more 

accurate than the simulated results from Aspen Hysys. 

Overall it can be concluded that the vent pipe model’s predictions for air are in very close 

agreement with Aspen Hysys simulated results.  

In order to investigate that the vent model predictions hold true not only for compressible 

gas such as air but also for other gases, it was decided to perform simulations in Aspen 

Hysys incorporating supercritical and hydrocarbon gases such as carbon-dioxide and 

methane. The predicted and simulated pressure, temperature, Mach number, density and 

velocity profiles were assessed. The percentage comparison difference is calculated in all 

cases. The results for these gases are discussed here. 
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Vent Pipe Model Predictions: Pressure K Pa

Aspen HYSYS Simulation: Pressure K Pa
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Vent Pipe Model Predictions: Temperature °C

Aspen HYSYS Simulation: Temperature °C
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Vent Pipe Model Predictions: Mach Number

Aspen HYSYS Simulation: Mach Number
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Vent Pipe Model Predictions: Density kg/m3

Aspen HYSYS Simulation: Density kg/m3
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Vent Pipe Model Predictions: Velocity m/sec

Aspen HYSYS Simulation: Velocity m/sec
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4.6.2 Comparison with Hysys Simulation for Carbon-dioxide 

The results from vent pipe model predictions and Aspen Hysys simulations for carbon-

dioxide gas are explained here. The vent pipe Hysys flow sheet did not converge to complete 

atmospheric pressure after 600 K Pa gauge inlet pressure. Suspected reason for this could be 

the limitations with Hysys. Hence it was decided to increase the back pressure in order to 

solve the Hysys flow sheet. The following two cases are evaluated here: CO2 Case 1-

Pressure range of 100-500 K Pa gauge (atmospheric venting); CO2 Case 2-Pressure range of 

600-1000 K Pa gauge (back pressure).  

4.6.2.1 CO2 Case 1: Pressure range 100-500 KPa gauge 

The predicted and simulated results for mass flow rates at steady-state conditions in the 

pressure range 100-500 KPa gauge are in close agreement. The comparison percentage 

difference calculated in table G 11-3 on mass flow rates, predicted by the vent model, are at 

minimal. The minimum comparison percentage difference calculated for mass flow rate was 

-0.16% and maximum percentage difference was calculated at -0.92%. Figure 4-30 shows 

the pressure profile for the vent model predictions and Aspen Hysys simulated results for 

carbon-dioxide at steady-state mass flow conditions in the pressure range 100-500 K Pa 

gauge. The percentage comparison difference at the inlet and exit of the vent pipe was 0% 

whereas at the exit of vent was 0.03%. This could be due to minor calculation discrepancy. 

Overall an excellent agreement in the mass flow rate and exit pressure prevails. The pressure 

profile along the vent pipe for carbon-dioxide was analyzed in a similar manner as analyzed 

for air. The predicted and simulated pressure results for carbon-dioxide at the entry & exit of 

each section of vent pipe were compared. It was found that the pressure profile developed 

was very similar to that developed in case of air. An initial decreasing linearity followed by 

an exponential fall to attain exit pressure condition (atmospheric) was established in the vent 

pipe. The predicted pressure readings along the vent length compares well and are within 

±0.6% of the simulated Hysys values for the first ten sections. High percent differences in 

the pressure drop are seen in the last two sections of the vent pipe. The reason for existence 

of such a pressure profile in the last two sections is unclear at this stage.  

Figure 4-31 shows the temperature profile for the vent model predictions and Aspen Hysys 

simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure 

range 100-500 KPa gauge. A similar temperature profile pattern as seen with air was 

recognized in case of carbon-dioxide. 
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Vent Pipe Model Predictions: Pressure K Pa

Aspen HYSYS Simulation: Pressure K Pa
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Vent Pipe Model Predictions: Temperature 
°C

Aspen HYSYS Simulation: Temperature °C
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Vent Pipe Model Predictions: Mach 
Number

Aspen HYSYS Simulation: Mach Number
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Vent Pipe Model Predictions: Density kg/m3

Aspen HYSYS Simulation: Density kg/m3
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Vent Pipe Model Predictions: Velocity m/sec

Aspen HYSYS Simulation: Velocity m/sec
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However, the temperature percentage differences were found to be of slight variant at the 

exit of the vent pipe. The calculated temperature differences increased with the increase in 

pressure. The model predicted temperatures in the first ten sections of the vent pipe match 

with Hysys simulations and are in close agreement. The percentage temperature differences 

in the 11th section of the pipe have been decreased when compared to the temperature profile 

of air. This decrease in temperature in the 11th section could have been compensated into the 

exit temperature, thus, increasing our final comparison percentage difference. A temperature 

percentage difference of -30.24% at 400 K Pa gauge and 24.65% at 500 K Pa gauge was 

calculated. Percentage differences below 400 K Pa gauge are in close agreement. 

Mach number, density and velocity profiles along the vent pipe were assessed and plotted. 

Figure 4-32 shows the Mach number profile for the vent model predictions and Aspen Hysys 

simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure 

range 100-500 KPa gauge. Based on the assessment performed, it can be said that the Mach 

number along the vent profile is increasing towards the exit of the vent pipe and approaching 

towards sonic velocity. The exit Mach number readings in all cases are in close agreement 

with a minimum difference of -0.97% and a maximum difference of -2.41%. 

Figure 4-33 shows the density profile for the vent model predictions and Aspen Hysys 

simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure 

range 100-500 KPa gauge. A fall in density of fluid is noticed along the vent profile. The 

graph is very similar to pressure Figure 4-30 and temperature Figure 4-31 which shows 

decreasing linearity and an exponential fall. The exit density readings in all cases are in close 

agreement with a minimum difference of -0.32% and a maximum difference of -1.24%. 

Figure 4-34 shows the velocity profile for the vent model predictions and Aspen Hysys 

simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure 

range 100-500 KPa gauge. The minimum and maximum comparison difference calculated 

for the exit velocity was 0.15% and 0.35%. The velocity profile pattern developed is a 

horizontal mirror image of temperature profile and very similar to Mach number profile. 

Overall the results were found to be in very close agreement for all parameters in case 1.  

Figure 4-35 shows the enthalpy-entropy diagram representing the fanno curve for the vent 

pipe model. The friction in the pipe results in a decrease in enthalpy with a simultaneous 

increase in entropy towards the exit of the vent pipe is indicated, thus, defining the flow as 

subsonic.  
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4.6.2.2 CO2 Case 2: Pressure range 600-1000 KPa gauge 

In the case of air, simulations performed in Aspen Hysys at pressures > 600 K Pa gauge did 

not converge to achieve atmospheric pressure at the exit of the vent pipe. An identical 

situation was seen when simulating the vent pipe for carbon-dioxide gas in Hysys. In order 

to simulate the Hysys model, the back pressure (pressure at the exit of the vent) was 

increased by a relative amount such that the vent exit pressure equals to the back pressure. 

This was performed by adjusting the steady-state mass flow condition. Trial and error 

methods were performed in order to solve the Hysys model at minimal back pressure (above 

atmosphere). The exit pressures obtained from the Hysys simulations were inputted in the 

vent pipe model and relevant predictions were calculated. The results obtained were 

tabulated in table G 11-4 and pressure profile, temperature profile, Mach number profiles, 

density profile and velocity profile along the vent pipe were plotted.  

The vent model predictions and Aspen Hysys simulated results for mass flow in the pressure 

range 600-1000 K Pa gauge are found to be in close agreement with a minimum and 

maximum difference of -1.13% and -2.02%. Figure 4-36 shows the pressure profile for the 

vent model predictions and Aspen Hysys simulated results for carbon-dioxide at steady-state 

mass flow conditions in the pressure range 600-1000 K Pa gauge. The predicted pressures at 

the inlet and exit conditions were found to be in close agreement with minimal difference. 

This minimal difference could be because of minor calculation error. A difference of ±0.44% 

was calculated on analyzing the pressure profile for the first ten sections along the vent 

length. The predicted and simulated temperature profile for the first ten sections agreed 

closely and is represented in figure 4-37. The predicted and simulated Mach number, density 

and velocity profiles along the vent pipe were plotted in figure 4-38, figure 4-39 and figure 

4-40. Similar results to CO2 case-1 were obtained. Enthalpy-entropy curve were plotted in 

figure 4-41 which defined the flow in the vent to be subsonic.  
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Aspen HYSYS Simulation: Pressure K Pa
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Aspen HYSYS Simulation: Temperature °C
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Vent Pipe Model Predictions: Mach Number

Aspen HYSYS Simulation: Mach Number
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Vent Pipe Model Predictions: Density kg/m3

Aspen HYSYS Simulation: Density kg/m3
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Vent Pipe Model Predictions: Velocity m/sec

Aspen HYSYS Simulation: Velocity m/sec
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4.6.3 Comparison with Hysys Simulation for Methane 

The vent pipe model predictions for hydrocarbon gas such as methane were also evaluated. 

The results were compared to the simulated results from Aspen Hysys. Previous results for 

air and carbon-dioxide gases were evaluated on case by case basis due to convergence issue 

present in Hysys simulation. A similar situation was encountered here. The following cases 

were evaluated: CH4 Case-1: Pressure ranges 100-500 K Pa gauge and CH4 case-2: Pressure 

range 600-1000 K Pa gauge. 

4.6.3.1 CH4 Case 1: Pressure range 100-500 KPa gauge 

The predicted and simulated results for methane mass flow rates in the pressure range 100-

500 KPa gauge are found to be in close agreement, thus maintaining steady-state conditions. 

The mass flow rate comparison percentage differences calculated in table G 11-5 are at 

minimal. The minimum comparison percentage difference calculated for mass flow rate was 

-0.02% and maximum percentage difference was calculated to be 0.3%. Figure 4-42 shows 

the pressure profile for the vent model predictions and Aspen Hysys simulated results for 

methane at steady-state mass flow conditions in the pressure range 100-500 K Pa gauge. On 

comparing the exit pressure values from the vent model predictions, a minimal percentage 

difference of 0.03% is calculated. This could be due to minor calculation discrepancy. The 

predicted pressure values in the first ten sections of the vent pipe compares well with the 

simulated results and are within ±0.64%. The pressure drop in the 11th section of the vent 

pipe is high (10.92%) in case of Hysys resulting in a high percentage difference. The reason 

for existence of such a pressure profile in the last two sections is unclear at this stage.  

The model predictions and Hysys simulated temperatures along the vent pipe were plotted 

and percent comparison differences were calculated. Figure 4-43 shows the temperature 

profile for the vent model predictions and Aspen Hysys simulated results for methane at 

steady-state mass flow conditions in the pressure range 100-500 KPa gauge. The predicted 

exit temperature comparison percentage difference for methane is less when compared to 

carbon-dioxide. A minimum difference of -0.16% and a maximum difference of -9.14% 

were calculated for the exit temperature. The graph follows a linear decrease with an 

exponential fall pattern to attain the final exit temperature is seen. The model predicted 

temperatures in the first ten sections of the vent pipe match with the Hysys simulated 

temperature readings and are within ±1.15% better than air and carbon-dioxide. 
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Vent Pipe Model Predictions: Pressure K Pa

Aspen HYSYS Simulation: Pressure K Pa
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Vent Pipe Model Predictions: 
Temperature °C

Aspen HYSYS Simulation: Temperature 
°C
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Vent Pipe Model Predictions: Mach Number

Aspen HYSYS Simulation: Mach Number
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Vent Pipe Model Predictions: Density kg/m3

Aspen HYSYS Simulation: Density kg/m3
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Vent Pipe Model Predictions: Velocity m/sec

Aspen HYSYS Simulation: Velocity m/sec
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Vent Pipe Model Predictions: Pressure K Pa

Aspen HYSYS Simulation: Pressure K Pa
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Vent Pipe Model Predictions: 
Temperature °C

Aspen HYSYS Simulation: Temperature 
°C
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Vent Pipe Model Predictions: Mach Number

Aspen HYSYS Simulation: Mach Number
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Vent Pipe Model Predictions: Density kg/m3

Aspen HYSYS Simulation: Density kg/m3
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Vent Pipe Model Predictions: Velocity m/sec

Aspen HYSYS Simulation: Velocity m/sec
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A maximum percentage difference of 136.33% is calculated in the 11th section of the vent 

pipe. The reason for existence of such a temperature profile is unclear at this stage.  

Mach number, density and velocity along the vent pipe were assessed and plotted. Figure 4-

44, Figure 4-45 and Figure 4-46 show the Mach number, density and velocity profiles for the 

vent model predictions and Aspen Hysys simulated results for methane at steady-state mass 

flow conditions in the pressure range 100-500 KPa gauge. Referring to the relevant graphs, it 

can be said that the density along the vent profile is decreasing towards the exit of the vent 

pipe and the graph pattern resembles the same as the pressure graph. The Mach number and 

velocity profiles attain the exit conditions exponentially preceded by a linear rise. The 

predicted results are in close agreement for Mach number, velocity and density profile of the 

Hysys simulated results. Enthalpy-Entropy diagram (fanno curve) was plotted to explain the 

effects of flow conditions developed in the vent pipe and to define the flow in the vent pipe. 

Figure 4-47 represents the fanno curves in the pressure ranges 100-500 K Pa gauge. A 

decrease in enthalpy and pressure with a simultaneous increase in entropy defines the flow to 

be subsonic for the predicted results. 

4.6.3.2 CH4 Case 2: Pressure range 600-1000 KPa gauge 

The vent model predictions and Hysys simulated results with comparison differences are 

tabulated in table G 11-6. Mass flow predictions agreed well with the Hysys simulated 

results for the pressure range 600-1000 K Pa gauge. The minimum and maximum 

comparison percentage difference calculated was -0.2% and 0.58% for the mass flow. The 

predicted and simulated results of pressure profile for the vent pipe flowing with methane 

were plotted and are represented in Figure 4-48. A close agreement in the pressure results is 

seen at the exit and in the first ten sections of the vent pipe. The percentage difference in the 

11th section is high compared to the other sections of the vent pipe and is ~11.6%. The 

pressure profile pattern developed for methane is very similar to air and carbon-dioxide 

gases evaluated before. The temperature predictions and simulated results for methane were 

evaluated and the pattern developed was very similar to air and carbon-dioxide gas. This is 

represented in Figure 4-49. A minimum percentage comparison difference of 4.08% and a 

maximum of 6.15% were calculated at the exit of the vent pipe. The temperature profile 

developed along the vent pipe was of the same pattern as CH4 case-1 representing a 

decreasing linearity followed by an exponential decrease to attain exit conditions. Predicted 

and simulated Mach numbers, density and velocity were also plotted in Figure 4-50, Figure 
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4-51 and Figure 4-52 for methane and were found to be in close agreement with each other. 

Enthalpy-Entropy diagram (Figure 4-53) characterized the flow to be subsonic. A decrease 

in enthalpy and increase in entropy was noticed.  

4.6.4 Comparison with Hysys Simulation for DBNGP Mixture: 

The evaluations performed for compressible gases such as air, carbon-dioxide and methane 

indicate that the vent model predictions and the Aspen Hysys simulated results are in good 

agreement for single component gas phase steady-state adiabatic conditions. In order to test 

the performance of the vent pipe model flowing with a multi-component gas, an evaluation 

was performed on multi-component DBNGP (Kirk-Burnnand 2009) gas mixture. The 

evaluations were performed in the pressure range 100-1000 KPa gauge on a similar case by 

case basis as performed with air, carbon-dioxide and methane. 

4.6.4.1 DBNGPmixture Case 1: Pressure range 100-500 KPa gauge 

The vent model predictions and Hysys simulated results with comparison differences are 

tabulated in table G 11-7. The mass flow rate predictions are in excellent agreement with 

Hysys simulated results. A minimum percentage difference of 0.04% and a maximum 

difference of -0.23% were calculated. These percentage differences are under acceptable 

limits. The pressure and temperature predictions hold in good agreement too. The pressure 

and temperature profile are plotted in figure 4-54 and figure 4-55. The predicted pressures 

for the first ten sections along the vent are within ±0.6% of the comparison difference 

whereas the predicted temperatures are within ±1.09% of the comparison difference in the 

same sections. The predicted exit conditions for pressure are in good agreement. An increase 

in temperature difference is noticed at pressure 400 and 500 KPa gauge. This calculated 

difference of is still acceptable. Predicted Mach number, densities and velocities along the 

vent pipe were compared with Hysys results and are plotted in Figure 4-56, Figure 4-57 and 

Figure 4-58. Except for the 11th section of the vent, the results are in good agreement for the 

first ten sections of the vent pipe and at the exit conditions. The percentage difference 

increases in section 11 and the reason for this is discussed when performing evaluations with 

air. Fanno lines were plotted in Figure 4-59 for the pressure ranging between 100-500 KPa 

gauge and flow was characterized to be subsonic. A decrease in enthalpy with a 

simultaneous increase in entropy was seen. 
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4.6.4.2 DBNGPmixture Case 2: Pressure range 600-1000 KPa gauge 

Hysys simulations performed at pressures > 600 KPa gauge did not converge the flow sheet 

with DBNGP gas mixture which resulted in an increase in back pressure. The vent model 

predictions and Hysys simulated results with comparison difference are tabulated in table G 

11-8. Overall the predicted results were in close agreement with the Hysys simulated results. 

The minimum and maximum difference calculated when comparing the mass flow was -

0.33% and -0.72%. The pressure and temperature profiles plotted for predicted and Hysys 

simulated results in Figure 4-60 and Figure 4-61 resemble very closely to the profile patterns 

developed for single component gases such as air, carbon-dioxide and methane. The 

percentage differences are within ±0.35% for pressure and ±1.08% for temperature in the 

first ten sections of the vent pipe. The exit pressure predictions are very closely agreeable 

with Hysys simulations. However, differences for exit temperatures are slightly higher than 

within the profile but are within acceptable ranges. Figure 4-62, Figure 4-63 and Figure 4-64 

which represent the Mach number, density and velocity profiles for model predicted and 

Hysys simulated results show similar resemblance to air, carbon-dioxide and methane. Flow 

was characterized to be subsonic as per the fanno curve plotted in Figure 4-65. 
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Vent Pipe Model Predictions: Pressure K Pa

Aspen HYSYS Simulation: Pressure K Pa
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Vent Pipe Model Predictions: Temperature 
°C

Aspen HYSYS Simulation: Temperature 
°C
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Vent Pipe Model Predictions: Mach 
Number

Aspen HYSYS Simulation: Mach Number
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Vent Pipe Model Predictions: Density kg/m3

Aspen HYSYS Simulation: Density kg/m3
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Vent Pipe Model Predictions: Velocity m/sec

Aspen HYSYS Simulation: Velocity m/sec
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Vent Pipe Model Predictions: Pressure K Pa

Aspen HYSYS Simulation: Pressure K Pa
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Vent Pipe Model Predictions: 
Temperature °C

Aspen HYSYS Simulation: Temperature 
°C
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Vent Pipe Model Predictions: Mach Number

Aspen HYSYS Simulation: Mach Number
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5 Chapter 5 
 

Conclusions and Recommendations for Future Work 

5.1 Conclusions 

A thorough investigation has been conducted into compressible fluid (single-phase gas) 

behavior taking place in a vent pipe. The factors affecting the compressible fluid behavior 

and their influence on the compressible fluid parameters have been discussed. Friction is 

found to be the chief factor bringing about the changes in compressible fluid flow properties. 

This has been well explained by Fanno process. Based on the investigations performed and 

to satisfy the need of a model for venting through associated vent piping with pressure 

vessels / pipelines, a steady-state vent pipe model to predict the compressible fluid flow 

conditions during blowdown of pressure vessels / pipelines was developed. A fluid dynamic 

and thermodynamic approach was used in developing the model. The vent pipe model is 

described best as a model encountering adiabatic frictional flow conditions. The vent pipe 

model predicts the flowing gas properties such as pressure, temperature, mass flow / 

standard volumetric flow, temperature of the pipe wall at the exit along with stagnation 

properties and critical properties. The use of REFPROP, which incorporates the GERG 2004 

equation of state, makes the simulation with the vent pipe model highly competent. All 

thermophysical properties are determined using REFPROP. The vent pipe model has been 

validated by comparing its predictions to experimental analysis and process simulation 

software, Aspen Hysys. Overall, it can be stated that the vent pipe model’s predictions are in 

good agreement with experimental and Aspen Hysys results. The vent pipe model contains 

no disposable parameters and no adjustments have been made during validation to ensure the 

good agreement. 

5.1.1 Comparison of Vent Pipe Model Predictions with Experimental Analysis 

A test rig was designed and constructed for experimental analysis which incorporated the use 

of fast acting pressure, temperature and flowrate instruments. Steady state experiments were 

conducted with air in the pressure range of 200 – 400 KPa gauge and the results have been 

discussed. It follows from the three sets of comparisons (VPM-1, VPM-4 and VPM-7) 

reported here that the vent pipe model predicts results in very close agreement with the 
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experimental measurements. This agreement permits confidence to be placed in the 

predictions made using the vent pipe model. One of the most important parameters when 

designing venting systems is the temperature of the vent pipe. This parameter helps in 

estimating the minimum temperature that could be attained at the exit of the pipe wall during 

venting. The adiabatic wall temperature was predicted based on the recovery factor approach 

where the recovery factor was taken to be same as the Prandtl number. Comparison of the 

predicted wall temperature using recovery factor approach has provided a very close 

agreement. Based on experimental comparison, the standard volumetric flow rates, the 

stagnation temperatures and minimum pipe wall temperatures can be predicted using the 

vent pipe model with an estimated uncertainty of ±2.5 Nm3/hr, ±0.15°C and ±0.6°C. 

However, there are certain other validatory comparisons which would increase confidence in 

the program and are discussed in the recommendation section.  

5.1.2 Comparison of Vent Pipe Model Predictions with Aspen Hysys  

The vent pipe predictions were compared to Aspen Hysys simulated results for single 

component compressible gases such as air, carbon-dioxide and methane and multi-

component gases such as DBNGP mixtures in the pressure range of 100-1000 KPa gauge. 

The predicted results were found to be in close agreement for all parameters involved. The 

Mach number and velocity profile pattern developed were similar in all cases forming a 

horizontal mirror image to the temperature profiles for the flowing gases. Pressure greater 

than 600 K Pa gauge were evaluated by increasing the exit gas pressure at the end of the vent 

pipe due to convergence issues with Hysys. A high percentage comparison difference was 

seen in the 11th section of the vent pipe in all the parameters plotted for all gases. The reason 

for this high difference was explained during the evaluation of air and holds for all other 

gases evaluated here. Fanno curves were plotted. The flow was characterized to be subsonic 

and irreversibility of the process was confirmed. The vent pipe model predictions compares 

well with Hysys simulations with very small percentage differences at the exit. Based on 

Hysys comparison results, the two important parameters - the minimum temperature of the 

flowing gas at the exit and the maximum mass flow are predicted using the vent pipe model 

with an estimated uncertainty of at most ±0.25°C with air, ±1.65°C with carbon dioxide, 

±0.40 °C with methane. ±0.42 °C with DBNGP gas mixture for minimum temperature of 

flowing gas and ±0.15 kg/hr with air, ±2.5 kg/hr with carbon dioxide, ±0.42 with methane, 

±0.56 kg/hr with DBNGP gas mixture for maximum mass flux. Moreover, the vent pipe 

model predictions are calculated based on the GERG-2004 equation of state which is proved 
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to better than AGA8-DC92, Peng-Robinson and other equations of state (Kunz et al. 

2007)(Kunz et al. 2007). Thus, it can be said that the developed vent pipe model can be 

successfully employed for predicting the single phase steady-state adiabatic vent pipe 

performance for single and multi-component gas mixtures. 

Overall, a very close agreement exists between the predictions of the vent pipe model and 

experimental / Aspen Hysys process simulations. Based on these results we can conclude 

that the vent pipe model can be used in designing the vent piping systems associated with 

pressure vessels / pipelines. The vent pipe model can become much more robust when 

certain gaps in the experimental validation, in particular for higher pressure venting 

conditions, are filled.  

5.2 Recommendations 

There are certain other validatory comparisons which would increase the robustness of the 

vent pipe model and can be undertaken as a future scope of work.  Some of the 

recommendations are as follows: 

The existing experimental evidence was performed in the pressure range from 200 – 

400 KPa gauge due to issues related to laboratory compressor air supply. There is a 

need for further experiments to be performed at pressures higher than 400 KPa 

gauge. The existing experimental evidence was performed with air gas only. Due to 

constraints and other restrictions in fluid flow laboratory hydrocarbon or other 

supercritical gases could not be vented. There is a need for further experiments with 

hydrocarbon gases and supercritical gases.  

The vent pipe model is developed based on an adiabatic approach and will be 

employed mostly to short pipes. However, as discussed in this thesis, the actual 

behavior of the gas lies somewhere between the isothermal and adiabatic conditions. 

Hence, the development of an isothermal model with heat transfer will be an added 

advantage for accurate prediction of real gases.  

The vent pipe model is developed in visual basic in conjunction with Microsoft 

Excel spreadsheet. The convergence of results is delayed due to time taken by 

processor for performing calculations. This problem can be efficiently solved by 

scripting the program in FORTRAN language. The FORTRAN language is designed 
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for scientific usage and also has excellent logical capabilities. Also, FORTRAN is 

used heavily by experienced process engineers.  

The vent pipe model has been developed for single phase gases. A new model for 

multi-component multiphase gases can be developed in conjunction with the current 

single phase model.  
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Appendices

6 Appendix A 
 

 

6.1 Pressure Testing Certificate 
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7 Appendix B 
 

 

7.1 Test Rig Representation and Mechanical Drawings 
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8 Appendix C 
 

 

8.1 Commissioning and Testing Report 
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9 Appendix D 
 

 

9.1 Visual Basic Program for Noise Reduction 
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9.2 General Program for Eliminating Standard Deviation in 
Pressure, Flowrate and Temperature 

Public Function NewmAVAR(mAVAR, ExpectedValue, N) As Double 

Dim SQmAVAR, SQstddev, stddev, stddevAvg As Double 

'Computing square of the mean (measured value - mA current) 

SQmAVAR = WorksheetFunction.Power(mAVAR, 2) 

SQstddev = SQmAVAR - WorksheetFunction.Power(ExpectedValue, 2) 

'Computing Standard deviation as the noise 

If SQstddev < 0 Then 

    SQstddev = SQstddev * -1 

    'Calculating standard deviation of a single sample 

    stddev = WorksheetFunction.Power(SQstddev, 0.5) 

    'Calculating the average standard deviation over a N samples 

    stddevAvg = stddev / WorksheetFunction.Power(N, 0.5) 

    Else 

        stddev = WorksheetFunction.Power(SQstddev, 0.5) 

        stddevAvg = stddev / WorksheetFunction.Power(N, 0.5) 

        End If 

If mAVAR < 4 Then 

    NewmAVAR = mAVAR + stddevAvg 

    Else 

        NewmAVAR = mAVAR - stddevAvg 

        End If 

       End Function 
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Public Sub NewVAR() 

Dim ws, ws1 As String 

Dim rangemAVAR1, rangeClear As Range 

Dim AP1, mAP1, count As Variant 

Dim missing As Variant 

Sheet2.Activate 

ws = Worksheets.Application.ActiveSheet.Name 

ws1 = "VAR to Current conversion" 

Set rangemAVAR1 = Worksheets(ws).Range(Range("StartmAVAR1"), 
Range("StartmAVAR1").End(xlDown)) 

Set rangeClear = Worksheets(ws).Range("startp1clear:endp1clear") 

rangeClear.ClearContents 

missing = "" 

count = 0 

Application.StatusBar = "Converting Start-up Amp to mA" 

For Each AP1 In rangemAVAR1 

    If AP1.Offset(0, -8).Value > 0 Then 

        AP1.Value = AP1.Offset(0, -8).Value * 1000 

        AP1.Offset(0, 1).Value = AP1.Offset(0, -7).Value * 1000 

        AP1.Offset(0, 2).Value = AP1.Offset(0, -6).Value * 1000 

        Else 

            AP1.Value = missing 

            AP1.Offset(0, 1).Value = missing 

            AP1.Offset(0, 2).Value = missing 

            End If 

            Next AP1 
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Application.StatusBar = "Amp to mA conversion complete" 

Application.StatusBar = "Progressing with Standard Deviation Calculations" 

'Performing check if values present 

For Each mAP1 In rangemAVAR1 

    If mAP1.Offset(0, -8).Value = missing Then 

        Application.StatusBar = "Zero value encountered @" & count 

        Exit For 

        Else 

        'VAR 1 

mAP1.Offset(0,3).Value=NewmAVAR(mAP1.Value,Range("ExpectedValue").Value, 
Range("NumberofSamples").Value) 

mAP1.Offset(0,4).Value=NewmAVAR(mAP1.Offset(0,1).Value,Range("ExpectedValue").
Value, Range("NumberofSamples").Value) 

mAP1.Offset(0,5).Value=NewmAVAR(mAP1.Offset(0,2).Value,Range("ExpectedValue").
Value, Range("NumberofSamples").Value) 

mAP1.Offset(0,6).Value=NewmAVAR(mAP1.Offset(0,3).Value,Range("ExpectedValue").
Value, Range("NumberofSamples").Value) 

mAP1.Offset(0,7).Value=NewmAVAR(mAP1.Offset(0,4).Value,Range("ExpectedValue").
Value, Range("NumberofSamples").Value) 

mAP1.Offset(0,8).Value=NewmAVAR(mAP1.Offset(0,5).Value,Range("ExpectedValue").
Value, Range("NumberofSamples").Value) 

End If 

count = count + 1 

Application.StatusBar = "Reducing the mA data point to low Standard Deviation.  Currently 
at " & count 

Next mAP1 

Application.StatusBar = "All mA data points reduced to low Standard Deviation" 

End Sub 
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9.3 General Program for Performing Moving Average on Pressure, 
Flowrate and Temperature measurements 

 

Public Sub CalculateMovingAverage() 
 
Application.Calculation = xlCalculationManual 
 
Dim ws As String 
Dim MAve, DInterval, a, b, c, d, e, f, count As Variant 
Dim rangeMAveCurrent1, rangeMAveCurrent2, rangeMAveCurrent3, rangeMAverage1, 
rangeMAverage2, rangeMAverage3 As Range 
 
ws = "VAR Noise Reduction" 
DInterval = Worksheets(ws).Range("Interval").Value 
 
Set 
rangeMAveCurrent1=Worksheets(ws).Range("StartMovingAverage:EndMovingAverage") 
Set 
rangeMAveCurrent2=Worksheets(ws).Range("StartMovingAverage:EndMovingAverage").
Offset(0, 1) 
Set rangeMAveCurrent3 = 
Worksheets(ws).Range("StartMovingAverage:EndMovingAverage").Offset(0, 2) 
 
rangeMAveCurrent1.ClearContents 
rangeMAveCurrent2.ClearContents 
rangeMAveCurrent3.ClearContents 
count = 0 
 
For Each MAve In rangeMAveCurrent1 
    If MAve.Offset(DInterval - 1, -7).Value > 0 Then 
        'current 1 
        a = MAve.Offset(0, -4).Address 
        b = MAve.Offset(DInterval - 1, -4).Address 
 
        'current 2 
        c = MAve.Offset(0, -3).Address 
        d = MAve.Offset(DInterval - 1, -3).Address 
 
        'current 3 
        e = MAve.Offset(0, -2).Address 
        f = MAve.Offset(DInterval - 1, -2).Address 
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        Set rangeMAverage1 = Worksheets(ws).Range(a, Worksheets(ws).Range(b)) 
        Set rangeMAverage2 = Worksheets(ws).Range(c, Worksheets(ws).Range(d)) 
        Set rangeMAverage3 = Worksheets(ws).Range(e, Worksheets(ws).Range(f)) 
     
        'Starting from the top 
        'MAve.Value = Application.WorksheetFunction.Average(rangeMAverage1) 
        'Starting after the interval point 
MAve.Offset(DInterval-1,0).Value = 
Application.WorksheetFunction.Average(rangeMAverage1) 
MAve.Offset(DInterval - 1, 1).Value = 
Application.WorksheetFunction.Average(rangeMAverage2) 
MAve.Offset(DInterval - 1, 2).Value = 
Application.WorksheetFunction.Average(rangeMAverage3) 
     
count = count + 1 
Application.StatusBar = "Performing Noise Reduction. Currently at " & count 
 
Else 
             Application.StatusBar = "VAR Noise Reduction Calculation Complete" 
             Application.Calculation = xlCalculationAutomatic 
             Exit Sub 
             End If 
             
             Next MAve 
 
Application.StatusBar = "VAR Noise Reduction Calculation Complete" 
Application.Calculation = xlCalculationAutomatic 
 
MsgBox "VAR Noise Reduction Calculation Complete" 
 
End Sub 
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10 Appendix E 
 

 

10.1 Adiabatic frictional flow derivation 
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Consider a steady one dimensional flow of a real gas with constant specific heats across a 
control surface, as shown in the figure below, 

 

 

 

 

 

 

 

 

Above figure adapted from (Saad 1993) 

Momentum equation is expressed as 

)(..)( vdvvAvdxPdppAAp  

AvdvdxPAdpApAp ..  

0.. AvdvdxPwAdp  

Now, the friction factor is related to the shear stress in the flow direction in the following 
way: 

2

2
1 v

f  Where f : Friction factor; : Shear stress; P : Wetted perimeter 

The wetted perimeter of the duct P in terms of hydraulic diameter is given as: 

HD
AP 4

 Where HD  = hydraulic diameter 

For circular ducts DH=D, diameter of circular duct 
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Other equations necessary for the solution 

Real Gas Equation   RTZP       2 

Continuity Equation   vAm Constant    3 

Energy Equation:   22vH      4 

Mach number    RTzvM 22     5 

Second law of thermodynamics  0ds       6 

 

Dividing equation 1 by p 
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 PM 2  

Therefore, above equation becomes 
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From equation 4 
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0
2

2vdvdh  

0vdvdh  

vdvdh  

2
.

2dvdTCp  

Dividing above equation by TCp.  

CpT
dv

T
dT

2

2

 

Now, 
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dzTRCp

 & RTz
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2
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The term )(
REQ

REQ dT
dzT is small and hence can be neglected. 
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From equation 5, we have 

RTz
vM

2
2  

Taking n  on both sides 
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From equations 8 & 9, we get 
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Substitute equation 11 in equation 7 
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From equation 10 
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From equation 11 
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From equation 8 
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Properties of a fluid at any section of a vent pipe may be related to properties at any other 
section. Equation 13 represents the changes in Mach number with displacement along the 
vent pipe. By integrating equation 13 within the limits M=M1 to M=M2 and x=0 to x=L 
(Maximum vent pipe length at which Mach number is unity) 
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The solution of the above equation can be obtained by method of partial fractions which 
results in  
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Friction is the chief parameter which causes the properties of any flow, whether subsonic or 
supersonic to approach these Mach unity characteristics. Hence, M1=M; M2 =1and L=L* 
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11 Appendix F 
 

 

11.1 Vent Pipe Model Simulations Results for Air, Carbon Dioxide, 
Methane and DBNGP Gas Mixture 
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Figure F 11-1: Vent pipe model predictions for air gas at 100 KPa gauge 
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Figure F 11-2: Vent pipe model predictions for air gas at 200 KPa gauge 
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Figure F 11-3: Vent pipe model predictions for air gas at 300 KPa gauge 
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Figure F 11-4: Vent pipe model predictions for air gas at 400 KPa gauge 
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Figure F 11-5: Vent pipe model predictions for air gas at 500 KPa gauge 
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Figure F 11-6: Vent pipe model predictions for air gas at 600 KPa gauge 
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Figure F 11-7: Vent pipe model predictions for air gas at 700 KPa gauge 
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Figure F 11-8: Vent pipe model predictions for air gas at sonic conditions 
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Figure F 11-9: Vent pipe model predictions for methane gas at 100 KPa gauge 
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Figure F 11-10: Vent pipe model predictions for methane gas at 200 KPa gauge 
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Figure F 11-11: Vent pipe model predictions for methane gas at 300 KPa gauge 

 



157 
 

 

Figure F 11-12: Vent pipe model predictions for methane gas at 400 KPa gauge 
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Figure F 11-13: Vent pipe model predictions for methane gas at 500 KPa gauge 
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Figure F 11-14: Vent pipe model predictions for methane gas at 600 KPa gauge 
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Figure F 11-15: Vent pipe model predictions for methane gas at 700 KPa gauge 
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Figure F 11-16: Vent pipe model predictions for methane gas at sonic conditions 

 



162 
 

 

Figure F 11-17: Vent pipe model predictions for carbon-dioxide gas at 100 KPa gauge 
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Figure F 11-18: Vent pipe model predictions for carbon-dioxide gas at 200 KPa gauge 
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Figure F 11-19: Vent pipe model predictions for carbon-dioxide gas at 300 KPa gauge 
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Figure F 11-20: Vent pipe model predictions for carbon-dioxide gas at 400 KPa gauge 
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Figure F 11-21: Vent pipe model predictions for carbon-dioxide gas at 500 KPa gauge 
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Figure F 11-22: Vent pipe model predictions for carbon-dioxide gas at 600 KPa gauge 
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Figure F 11-23: Vent pipe model predictions for carbon-dioxide gas at 700 KPa gauge 
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Figure F 11-24: Vent pipe model predictions for carbon-dioxide gas at sonic conditions 
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Figure F 11-25: Vent pipe model predictions for DBNGP gas mixture at 100 KPa gauge 
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Figure F 11-26: Vent pipe model predictions for DBNGP gas mixture at 200 KPa gauge 
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Figure F 11-27: Vent pipe model predictions for DBNGP gas mixture at 300 KPa gauge 
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Figure F 11-28: Vent pipe model predictions for DBNGP gas mixture at 400 KPa gauge 
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Figure F 11-29: Vent pipe model predictions for DBNGP gas mixture at 500 KPa gauge 
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Figure F 11-30: Vent pipe model predictions for DBNGP gas mixture at 600 KPa gauge 
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Figure F 11-31: Vent pipe model predictions for DBNGP gas mixture at 700 KPa gauge 
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Figure F 11-32: Vent pipe model predictions for DBNGP gas mixture at sonic conditions 
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12 Appendix G 
 

 

12.1 Vent Pipe Model Comparison with Hysys Simulation  
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13 Appendix H 
 

 

13.1 Vent Pipe Model Program 
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Interpolation of Property Relation 

Static Function XYinterpolate(xyarray As Variant, x, y As Single) As Single 

    Dim n1, M1 As Integer 

    Dim x1, x2, y1, y2, Ry1x1, Ry1x2, Ry1x1x2, Ry2x1, Ry2x2, Ry2x1x2 As Single 

    x1 = Application.HLookup(x, xyarray, 1) 

    n1 = Application.Match(x1, xyarray.Rows(1), 0) 

    x2 = xyarray.Cells(1, n1 + 1).Value 

    y1 = Application.VLookup(y, xyarray, 1) 

    M1 = Application.Match(y1, xyarray.Columns(1), 0) 

    y2 = xyarray.Cells(M1 + 1, 1).Value 

    Ry1x1 = xyarray.Cells(M1, n1) 

    Ry1x2 = xyarray.Cells(M1, n1 + 1) 

    Ry1x1x2 = (x - x1) / (x2 - x1) * (Ry1x2 - Ry1x1) + Ry1x1 

    Ry2x1 = xyarray.Cells(M1 + 1, n1) 

    Ry2x2 = xyarray.Cells(M1 + 1, n1 + 1) 

    Ry2x1x2 = (x - x1) / (x2 - x1) * (Ry2x2 - Ry2x1) + Ry2x1 

    XYinterpolate = (y - y1) / (y2 - y1) * (Ry2x1x2 - Ry1x1x2) + Ry1x1x2 

End Function 

Static Function Log10(x) 

    Log10 = Log(x) / Log(10) 

End Function 

 

Serghides approximation to Colebrook-White Equation for calculating friction factor: 

Function MoodyFrictFactor(Nre, rel_rough) 

    If Nre > 2000 Then 

        a = -2 * Log10(rel_rough / 3.7 + 12 / Nre) 

        b = -2 * Log10(rel_rough / 3.7 + 2.51 * a / Nre) 

        c = -2 * Log10(rel_rough / 3.7 + 2.51 * b / Nre) 

        MoodyFrictFactor = (a - (b - a) ^ 2 / (c - 2 * b + a)) ^ -2 

    Else 

        MoodyFrictFactor = 64 / Nre 

    End If 

End Function 
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Initial estimate of friction factor using Von-Karman equation 

Function VonKarmanFrictFactor(rel_rough) 

If rel_rough > 0 Then 

a = 2 * Log10(rel_rough / 3.7) 

b = -1 * a 

c = 1 / b 

VonKarmanFrictFactor = c ^ 2 

Else 

VonKarmanFrictFactor = "Pipe is smooth" 

End If 

End Function 

 

Non-Linear equations for predicting T2 and M1

Function equation1(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) 
As Double 

''Main Equation for T2 

equation1 = (temp1 / temp2) - ((1 + (constA * Mach1 * Mach1 * ((press1 * press1) / 
(press2 * press2)) * (temp2 / temp1))) / (1 + (constA * Mach1 * Mach1))) 

End Function 

 

Function equation2(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1, 
fricf, Lenght, Diameter) As Double 

'Main equation for M1 

equation2 = (((((2 * constA * Compressibility) - (1 / Compressibility) - (3 * 
constA)) * ((Application.ln((press1 * press1) / (press2 * press2))) + 
(Application.ln(temp2 / temp1)) + (Application.ln((1 + (constA * Mach1 * Mach1)) 
/ (1 + (constA * ((press1 * press1) / (press2 * press2)) * (temp2 / temp1) * Mach1 * 
Mach1)))))) + ((1 / (Mach1 * Mach1)) * (1 - (1 / (((press1 * press1) / (press2 * 
press2)) * (temp2 / temp1)))))) * (Compressibility / Gamma)) - ((fricf * Lenght) / 
Diameter) 

End Function 
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Function equation3(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) 
As Double 

'derivative of eqn 1 with respect to T2 which is treated as X1 in our case 

equation3 = (-1) * ((temp1 / (temp2 * temp2)) + ((a * Mach1 * Mach1 * ((press1 * press1) / 
(press2 * press2)) * (1 / temp1)) / (1 + (constA * Mach1 * Mach1)))) 

End Function 

 

Function equation4(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) 
As Double 

'derivative of eqn 1 with respect to mach1 which is treated as X2 in our case 

equation4 = (-1) * ((((1 + (constA * Mach1 * Mach1)) * (constA) * ((press1 * press1) / 
(press2 * press2)) * (temp2 / temp1) * (2 * Mach1)) - ((1 + (constA * Mach1 * Mach1 * 
((press1 * press1) / (press2 * press2)) * (temp2 / temp1))) * (2 * constA * Mach1))) / ((1 + 
(constA * Mach1 * Mach1)) * (1 + (constA * Mach1 * Mach1)))) 

End Function 

 

Function equation5(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) 
As Double 

'derivative of eqn 2 with respect to T2 which is treated as X1 in our case 

equation5 = ((((2 * constA * Compressibility) - (1 / Compressibility) - (3 * constA)) * ((1 / 
temp2) - (1 / ((1 / (constA * ((press1 * press1) / (press2 * press2)) * (Mach1 * Mach1) * (1 / 
temp1))) + (temp2))))) + (1 / ((Mach1 * Mach1) * ((press1 * press1) / (press2 * press2)) * 
(temp2 * temp2) * (1 / temp1)))) * (Compressibility / Gamma) 

End Function 

 

Function equation6(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) 
As Double 

'derivative of eqn 2 with respect to mach1 which is treated as X2 in our case 

equation6 = (((2 * constA * Mach1 * ((2 * constA * Compressibility) - (1 / Compressibility) 
- (3 * constA))) * ((1 / (1 + (constA * Mach1 * Mach1))) - (1 / ((1 / ((press1 * press1 * 
temp2) / (press2 * press2 * temp1))) + (constA * Mach1 * Mach1))))) - ((2 / (Mach1 * 
Mach1 * Mach1)) * (1 - (1 / ((press1 * press1 * temp2) / (press2 * press2 * temp1)))))) * 
(Compressibility / Gamma) 

End Function 
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Calculations and Experimental flow comparisons 
 
Option Explicit 
 
Public Sub OutletPressureGoalSeek() 
Dim ws As String 
ws = "Controlling sheet" 
Worksheets(ws).Range("AR10").GoalSeek _ 
    Goal:=Range("outletpressureKPaG").Value + 101.325, _ 
    ChangingCell:=Worksheets(ws).Range("Error") 
End Sub 
 
Public Sub experimentflowcal() 
Dim ws, ws1 As String 
Dim rangeIP, rangeOP, rangeMF, rangeIT, rangeOT As Range 
Dim x, StartInletPressure, StartOutletPressure, bob As Variant 
ws = "Controlling sheet" 
ws1 = "Experiment Flow Calculation" 
 
Set rangeIP = Worksheets(ws1).Range("StartIP:EndIP") 
Set rangeOP = Worksheets(ws1).Range("StartOP:EndOP") 
Set rangeMF = Worksheets(ws1).Range("StartMF:EndMF") 
Set rangeIT = Worksheets(ws1).Range("StartIT:EndIT") 
Set rangeOT = Worksheets(ws1).Range("StartOT:EndOT") 
 
'StartInletPressure = Worksheets(ws).Range("InletPressureKPaG") 
'StartOutletPressure = Worksheets(ws).Range("OutletPressureKPaG") 
 
For Each x In rangeIP 
    If x.Value > 150 Then 
        If x.Value < x.Offset(0, 1).Value Then 
            x.Value = "" 
            x.Offset(0, 1).Value = "" 
            Else 
                Worksheets(ws).Range("InletPressureKPaG") = x.Value 
                Worksheets(ws).Range("OutletPressureKPaG") = x.Offset(0, 1).Value 
                Worksheets(ws).Range("InletTemperatureDegC") = x.Offset(0, 3).Value 
                'bob = x.Offset(0, 1).Value + 101.325 
                'Worksheets(ws).Range("AK2").GoalSeek , _ 
                '    Goal:=bob, _ 
                '    ChangingCell:=Worksheets(ws).Range("Y4") 
                Call OutletPressureGoalSeek 
                Call SnapShotOfControllingSheet 
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                End If 
                    End If 
                    Next x 
                 
MsgBox "all done" 
End Sub 
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Functions for Vent Pipe Model Program 

Function Mass_Flux(Mach1, Density, Compressibility, Gamma, R, Temperature) As Double 
Mass_Flux = Mach1 * Density * Application.WorksheetFunction.Power(Compressibility 
* Gamma * R * Temperature, 0.5) 

End Function 
 
Function Mass_Flow(MassFlux, Diameter) As Double 

Dim Area As Double 
Area = (Application.WorksheetFunction.pi() / 4) * 
Application.WorksheetFunction.Power(Diameter, 2) 
Mass_Flow = MassFlux * Area 

End Function 
 
Function Velocity(MassFlux, Density) 
    Velocity = MassFlux / Density 
End Function 
 
Function Mach2(Mach1, Pressure1, Pressure2, Temperature1, Temperature2) 

Mach2 = Mach1 * (Pressure1 / Pressure2) * Application.WorksheetFunction. Power 
((Temperature2 / Temperature1), 0.5) 

End Function 
 
Function Reynolds(Diameter, Velocity, Density, Viscosity) 
    Reynolds = (Diameter * Velocity * Density) / Viscosity 
End Function 
 
Function Area(Diameter) 

Area = (Application.WorksheetFunction.pi() / 4) * 
Application.WorksheetFunction.Power(Diameter, 2) 

End Function 
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Newton’s Iteration Method 
 
Public Sub Newton_Iteration_Method() 
 
Dim ws As String 
Dim a, b, c, d, e, f, Ro, A1, B1, C1, D1, G1, Gi, mu1, P1, P2, T1, Z1, A_Constant, 
Pipe_Rel_Roughness, P_Length, P_Diameter As Variant 
Dim T2i, M1i, M2i, mi, Vi, Rei, fi, Iterations As Variant 
Dim i, j As Variant 
 
On Error Resume Next 
ws = "Mass Flow Rate" 
 
P1 = Worksheets(ws).Range("Inlet_Pressure").Value 
P2 = Worksheets(ws).Range("Outlet_Pressure").Value 
T1 = Worksheets(ws).Range("Inlet_Temperature").Value 
Z1 = Worksheets(ws).Range("Inlet_Compressibility").Value 
G1 = Worksheets(ws).Range("Inlet_specific_heat_ratio").Value 
D1 = Worksheets(ws).Range("Inlet_Density").Value 
mu1 = Worksheets(ws).Range("Inlet_Viscosity").Value 
Ro = Worksheets(ws).Range("Gas_Constant").Value 
 
A_Constant = Worksheets(ws).Range("Inlet_A").Value 
Pipe_Rel_Roughness = Worksheets(ws).Range("Pipe_Roughness").Value / 
Worksheets(ws).Range("Pipe_Diameter").Value 
P_Length = Worksheets(ws).Range("Pipe_Length").Value 
P_Diameter = Worksheets(ws).Range("Pipe_Diameter").Value 
 
'Initial estimates 
T2i = Worksheets(ws).Range("Inlet_Temperature").Value 
M1i = 0.01 
fi = VonKarmanFrictFactor(Pipe_Rel_Roughness) 
Iterations = 10 
 
For i = 1 To Iterations 
    For j = 1 To 20 
        a = equation3(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i) 
        c = equation4(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i) 
        b = equation5(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i) 
        d = equation6(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i) 
        e = equation1(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i) 
        f = equation2(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i, fi, P_Length, P_Diameter) 
 
        A1 = d * ((a * d) - (b * c)) 
        B1 = b / ((b * c) - (a * d)) 
        C1 = c / ((b * c) - (a * d)) 
        D1 = a / ((a * d) - (b * c)) 
 
        T2i = T2i - ((A1 * e) + (B1 * f)) 
        M1i = M1i - ((B1 * e) + (D1 * f)) 
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        j = j + 1 
        Next j 
        'New friction factor using moody 
            Gi = Mass_Flux(M1i, D1, Z1, G1, Ro, T2i) 
            mi = Mass_Flow(Gi, P_Diameter) 
            Vi = Velocity(Gi, D1) 
            Rei = Reynolds(P_Diameter, Vi, D1, mu1) 
            fi = MoodyFrictFactor(Rei, Pipe_Rel_Roughness) 
            Next i 
            M2i = Mach2(M1i, P1, P2, T1, T2i) 
            MsgBox M2i 
End Sub 
 
Snap-Shot Module 
 
Public Sub SnapShotOfControllingSheet() 
 
Dim ws, ws1, cell As String 
 
ws = "Snap Shot" 
ws1 = "Controlling sheet" 
cell = Worksheets(ws).Range("A8").Address 
'cell = "SnapShotDateTime" 
 
On Error Resume Next 
Err.Clear 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(1, 0).Value = Date 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 0).NumberFormat = "dd-mmm' yy" 
Worksheets(ws).Range(cell).End(xlDown).Offset(1, 0).NumberFormat = "dd-mmm' yy" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 1).Value = Range("PipeScheduleNo") 
Worksheets(ws).Range(cell).End(xlDown).Offset(1, 0).NumberFormat = "general" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 2).Value = Range("PipeSizeInch") 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 2).NumberFormat = "0.000" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 3).Value = Range("PipeLenghtm") 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 3).NumberFormat = "0.000" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,4).Value = 
Range("SurfaceRoughness").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 4).NumberFormat = "0.000" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,5).Value = 
Range("InletPressureKPaG").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 5).NumberFormat = "0.00" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,6).Value = 
Range("OutletPressureKPaG").Value 
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Worksheets(ws).Range(cell).End(xlDown).Offset(0, 6).NumberFormat = "0.00" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,7).Value = 
Range("PressureDrop").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 7).NumberFormat = "0.00" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,8).Value = 
Range("InletTemperatureDegC").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 8).NumberFormat = "0.000" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,9).Value = 
Range("OutletTemperatureDegC").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 9).NumberFormat = "0.000" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 10).Value = Range("InletMach").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 10).NumberFormat = "0.0000" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,11).Value = 
Range("OutletMach").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 11).NumberFormat = "0.000" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,12).Value = 
Range("PipeMaxMassFlowrate").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 12).NumberFormat = "0.000" 
 
Worksheets(ws).Range(cell).End(xlDown).Offset(0,13).Value = 
Range("PipeMaxNormalFlowrate").Value 
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 13).NumberFormat = "0.000" 
 
'MsgBox "Values entered on Snap Shot Spreadsheet" 
 
End Sub 
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Program for determining thermodynamic properties from REFPROP (Lemmon, 
Huber, and McLinden 2009). Formatted accordingly for vent pipe model by Farhan 
Rajiwate 

Option Explicit 

Private Const FluidsDirectory As String = "fluids\" 

Private Const MixturesDirectory As String = "mixtures\" 

Private Const MaxComps As Integer = 20 

Private Declare Sub SETUPdll Lib "REFPROP.DLL" (i As Long, ByVal hfld As String, 
ByVal hfmix As String, ByVal hrf As String, ierr As Long, ByVal herr As String, ln1 As 
Long, ln2 As Long, ln3 As Long, ln4 As Long) 

Private Declare Sub SETREFdll Lib "REFPROP.DLL" (ByVal hrf As String, ixflag As 
Long, x0 As Double, h0 As Double, s0 As Double, t0 As Double, p0 As Double, ierr As 
Long, ByVal herr As String, ln1 As Long, ln2 As Long) 

Private Declare Sub SETMIXdll Lib "REFPROP.DLL" (ByVal hmxnme As String, ByVal 
hfmix As String, ByVal hrf As String, ncc As Long, ByVal hfile As String, x As Double, 
ierr As Long, ByVal herr As String, ln1 As Long, ln2 As Long, ln3 As Long, ln4 As Long, 
ln5 As Long) 

Private Declare Sub SETMODdll Lib "REFPROP.DLL" (i As Long, ByVal htype As String, 
ByVal hmix As String, ByVal hcomp As String, ierr As Long, ByVal herr As String, ln1 As 
Long, ln2 As Long, ln3 As Long, ln4 As Long) 

Private Declare Sub GERG04dll Lib "REFPROP.DLL" (nc As Long, iflag As Long, ierr As 
Long, ByVal herr As String, ln1 As Long) 

Private Declare Sub TPRHOdll Lib "REFPROP.DLL" (t As Double, p As Double, x As 
Double, j As Long, i As Long, d As Double, ierr As Long, ByVal herr As String, ln As 
Long) 

Private Declare Sub THERM2dll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, p As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, 
w As Double, Z As Double, hjt As Double, aH As Double, G As Double, kappa As Double, 
beta As Double, dPdD As Double, d2PdD2 As Double, dPdT As Double, dDdT As Double, 
dDdP As Double, spare1 As Double, spare2 As Double, spare3 As Double, spare4 As 
Double) 
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Private Declare Sub THERM3dll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, kappa As Double, beta As Double, isenk As Double, kt As Double, betas As 
Double, bs As Double, kkt As Double, thrott As Double, pi As Double, spht As Double) 

Private Declare Sub THERMdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, p As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, 
w As Double, hjt As Double) 

Private Declare Sub THERM0dll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, p As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, 
w As Double, a As Double, G As Double) 

Private Declare Sub ENTROdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, s As Double) 

Private Declare Sub ENTHALdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, h As Double) 

Private Declare Sub CVCPdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, cv As Double, cp As Double) 

Private Declare Sub PRESSdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, p As Double) 

Private Declare Sub AGdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, 
a As Double, G As Double) 

Private Declare Sub DPDDdll Lib "REFPROP.DLL" (t As Double, rho As Double, x As 
Double, dPdD As Double) 

Private Declare Sub DPDD2dll Lib "REFPROP.DLL" (t As Double, rho As Double, x As 
Double, d2PdD2 As Double) 

Private Declare Sub DPDTdll Lib "REFPROP.DLL" (t As Double, rho As Double, x As 
Double, dPdT As Double) 

Private Declare Sub DDDPdll Lib "REFPROP.DLL" (t As Double, rho As Double, x As 
Double, dDdP As Double) 

Private Declare Sub DDDTdll Lib "REFPROP.DLL" (t As Double, rho As Double, x As 
Double, dDdT As Double) 

Private Declare Sub DHD1dll Lib "REFPROP.DLL" (t As Double, rho As Double, x As 
Double, dHdT_D As Double, dHdT_P As Double, dHdD_T As Double, dHdD_P As 
Double, dHdP_T As Double, dHdP_D As Double) 

Private Declare Sub SATTdll Lib "REFPROP.DLL" (t As Double, x As Double, i As Long, 
p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, ierr As Long, 
ByVal herr As String, ln As Long) 
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Private Declare Sub SATPdll Lib "REFPROP.DLL" (p As Double, x As Double, i As Long, 
t As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, ierr As Long, 
ByVal herr As String, ln As Long) 

Private Declare Sub SATDdll Lib "REFPROP.DLL" (d As Double, x As Double, kph As 
Long, kr As Long, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, 
xvap As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub SATHdll Lib "REFPROP.DLL" (h As Double, x As Double, kph As 
Long, nroot As Long, k1 As Long, T1 As Double, P1 As Double, D1 As Double, k2 As 
Long, T2 As Double, P2 As Double, d2 As Double, ierr As Long, ByVal herr As String, ln 
As Long) 

Private Declare Sub SATEdll Lib "REFPROP.DLL" (e As Double, x As Double, kph As 
Long, nroot As Long, k1 As Long, T1 As Double, P1 As Double, D1 As Double, k2 As 
Long, T2 As Double, P2 As Double, d2 As Double, ierr As Long, ByVal herr As String, ln 
As Long) 

Private Declare Sub SATSdll Lib "REFPROP.DLL" (s As Double, x As Double, kph As 
Long, nroot As Long, k1 As Long, T1 As Double, P1 As Double, D1 As Double, k2 As 
Long, T2 As Double, P2 As Double, d2 As Double, k3 As Long, t3 As Double, p3 As 
Double, d3 As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub CV2PKdll Lib "REFPROP.DLL" (icomp As Long, t As Double, rho As 
Double, cv2p As Double, csat As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub CSATKdll Lib "REFPROP.DLL" (icomp As Long, t As Double, kph 
As Long, p As Double, rho As Double, csat As Double, ierr As Long, ByVal herr As String, 
ln As Long) 

Private Declare Sub DPTSATKdll Lib "REFPROP.DLL" (icomp As Long, t As Double, kph 
As Long, p As Double, rho As Double, csat As Double, dpdtsat As Double, ierr As Long, 
ByVal herr As String, ln As Long) 

Private Declare Sub TPFLSHdll Lib "REFPROP.DLL" (t As Double, p As Double, x As 
Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As 
Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub TDFLSHdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As 
Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub PDFLSHdll Lib "REFPROP.DLL" (p As Double, d As Double, x As 
Double, t As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As 
Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 
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Private Declare Sub PHFLSHdll Lib "REFPROP.DLL" (p As Double, h As Double, x As 
Double, t As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As 
Double, q As Double, e As Double, s As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub PSFLSHdll Lib "REFPROP.DLL" (p As Double, s As Double, x As 
Double, t As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As 
Double, q As Double, e As Double, h As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub PEFLSHdll Lib "REFPROP.DLL" (p As Double, e As Double, x As 
Double, t As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As 
Double, q As Double, h As Double, s As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub THFLSHdll Lib "REFPROP.DLL" (t As Double, h As Double, x As 
Double, i As Long, p As Double, d As Double, Dl As Double, Dv As Double, xliq As 
Double, xvap As Double, q As Double, e As Double, s As Double, cv As Double, cp As 
Double, w As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub TSFLSHdll Lib "REFPROP.DLL" (t As Double, s As Double, x As 
Double, i As Long, p As Double, d As Double, Dl As Double, Dv As Double, xliq As 
Double, xvap As Double, q As Double, e As Double, h As Double, cv As Double, cp As 
Double, w As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub TEFLSHdll Lib "REFPROP.DLL" (t As Double, e As Double, x As 
Double, i As Long, p As Double, d As Double, Dl As Double, Dv As Double, xliq As 
Double, xvap As Double, q As Double, h As Double, s As Double, cv As Double, cp As 
Double, w As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub DHFLSHdll Lib "REFPROP.DLL" (d As Double, h As Double, x As 
Double, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As 
Double, q As Double, e As Double, s As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub DSFLSHdll Lib "REFPROP.DLL" (d As Double, s As Double, x As 
Double, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As 
Double, q As Double, e As Double, h As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub DEFLSHdll Lib "REFPROP.DLL" (d As Double, e As Double, x As 
Double, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As 
Double, q As Double, h As Double, s As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub HSFLSHdll Lib "REFPROP.DLL" (h As Double, s As Double, Z As 
Double, t As Double, p As Double, d As Double, Dl As Double, Dv As Double, xliq As 
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Double, xvap As Double, q As Double, e As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub ESFLSHdll Lib "REFPROP.DLL" (e As Double, s As Double, Z As 
Double, t As Double, p As Double, d As Double, Dl As Double, Dv As Double, xliq As 
Double, xvap As Double, q As Double, h As Double, cv As Double, cp As Double, w As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub CCRITdll Lib "REFPROP.DLL" (t As Double, p As Double, V As 
Double, x As Double, cs As Double, ts As Double, Ds As Double, ps As Double, ws As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub FPVdll Lib "REFPROP.DLL" (t As Double, d As Double, p As Double, 
x As Double, f As Double) 

'private Declare Sub SPECGRdll Lib "REFPROP.DLL" (t As Double, d As Double, p As 
Double, Gr As Double) 

Private Declare Sub TQFLSHdll Lib "REFPROP.DLL" (t As Double, q As Double, x As 
Double, kq As Long, p As Double, d As Double, Dl As Double, Dv As Double, xliq As 
Double, xvap As Double, e As Double, h As Double, s As Double, cv As Double, cp As 
Double, w As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub PQFLSHdll Lib "REFPROP.DLL" (p As Double, q As Double, x As 
Double, kq As Long, t As Double, d As Double, Dl As Double, Dv As Double, xliq As 
Double, xvap As Double, e As Double, h As Double, s As Double, cv As Double, cp As 
Double, w As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub ABFL1dll Lib "REFPROP.DLL" (a As Double, b As Double, x As 
Double, i As Long, ByVal ab As String, dmin As Double, dmax As Double, t As Double, p 
As Double, d As Double, ierr As Long, ByVal herr As String, ln1 As Long, ln2 As Long) 

Private Declare Sub ABFL2dll Lib "REFPROP.DLL" (a As Double, b As Double, x As 
Double, kq As Long, ksat As Long, ByVal ab As String, tbub As Double, tdew As Double, 
pbub As Double, pdew As Double, Dlbub As Double, Dvdew As Double, ybub As Double, 
xdew As Double, t As Double, p As Double, Dl As Double, Dv As Double, x As Double, y 
As Double, q As Double, ierr As Long, ByVal herr As String, ln As Long, ln2 As Long) 

Private Declare Sub DBFL2dll Lib "REFPROP.DLL" (d As Double, b As Double, x As 
Double, i As Long, ByVal ab As String, t As Double, p As Double, Dl As Double, Dv As 
Double, xliq As Double, xvap As Double, q As Double, ierr As Long, ByVal herr As String, 
ln As Long, ln2 As Long) 

Private Declare Sub CRITPdll Lib "REFPROP.DLL" (x As Double, tc As Double, pc As 
Double, dc As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub VIRBdll Lib "REFPROP.DLL" (t As Double, x As Double, b As 
Double) 
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Private Declare Sub DBDTdll Lib "REFPROP.DLL" (t As Double, x As Double, dbt As 
Double) 

Private Declare Sub VIRCdll Lib "REFPROP.DLL" (t As Double, x As Double, c As 
Double) 

Private Declare Sub TRNPRPdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, eta As Double, tcx As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub FGCTYdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, f As Double) 

Private Declare Sub DIELECdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, de As Double) 

Private Declare Sub SURFTdll Lib "REFPROP.DLL" (t As Double, d As Double, x As 
Double, sigma As Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub SURTENdll Lib "REFPROP.DLL" (t As Double, rhol As Double, rhov 
As Double, xl As Double, xv As Double, sigma As Double, ierr As Long, ByVal herr As 
String, ln As Long) 

Private Declare Sub MELTTdll Lib "REFPROP.DLL" (t As Double, x As Double, p As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub MLTH2Odll Lib "REFPROP.DLL" (t As Double, P1 As Double, P2 As 
Double) 

Private Declare Sub MELTPdll Lib "REFPROP.DLL" (p As Double, x As Double, t As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub SUBLTdll Lib "REFPROP.DLL" (t As Double, x As Double, p As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub SUBLPdll Lib "REFPROP.DLL" (p As Double, x As Double, t As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub WMOLdll Lib "REFPROP.DLL" (x As Double, wm As Double) 

Private Declare Sub XMASSdll Lib "REFPROP.DLL" (xmol As Double, xkg As Double, 
wmix As Double) 

Private Declare Sub XMOLEdll Lib "REFPROP.DLL" (xkg As Double, xmol As Double, 
wmix As Double) 

Private Declare Sub QMASSdll Lib "REFPROP.DLL" (qmol As Double, xl As Double, xv 
As Double, qkg As Double, xlkg As Double, xvkg As Double, wliq As Double, wvap As 
Double, ierr As Long, ByVal herr As String, ln As Long) 
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Private Declare Sub QMOLEdll Lib "REFPROP.DLL" (qkg As Double, xlkg As Double, 
xvkg As Double, qmol As Double, xl As Double, xv As Double, wliq As Double, wvap As 
Double, ierr As Long, ByVal herr As String, ln As Long) 

Private Declare Sub INFOdll Lib "REFPROP.DLL" (icomp As Long, wmm As Double, ttrp 
As Double, tnbpt As Double, tc As Double, pc As Double, dc As Double, Zc As Double, acf 
As Double, dip As Double, Rgas As Double) 

Private Declare Sub LIMITXdll Lib "REFPROP.DLL" (ByVal htyp As String, t As Double, 
d As Double, p As Double, x As Double, tmin As Double, tmax As Double, dmax As 
Double, pmax As Double, ierr As Long, ByVal herr As String, ln1 As Long, ln2 As Long) 

Private Declare Sub LIMITKdll Lib "REFPROP.DLL" (ByVal htyp As String, icomp As 
Long, t As Double, d As Double, p As Double, tmin As Double, tmax As Double, dmax As 
Double, pmax As Double, ierr As Long, ByVal herr As String, ln1 As Long, ln2 As Long) 

 

Private Declare Sub SETKTVdll Lib "REFPROP.DLL" (icomp As Long, jcomp As Long, 
ByVal hmodij As String, fij As Double, ByVal hfmix As String, ierr As Long, ByVal herr 
As String, ln1 As Long, ln2 As Long, ln3 As Long) 

Private Declare Sub GETKTVdll Lib "REFPROP.DLL" (icomp As Long, jcomp As Long, 
ByVal hmodij As String, fij As Double, ByVal hfmix As String, ByVal hfij As String, 
ByVal hbinp As String, ByVal hmxrul As String, ln1 As Long, ln2 As Long, ln3 As Long, 
ln4 As Long, ln5 As Long) 

Private Declare Sub GETFIJdll Lib "REFPROP.DLL" (ByVal hmodij As String, fij As 
Double, ByVal hfij As String, ByVal hmxrul As String, ln1 As Long, ln2 As Long, ln3 As 
Long) 

Private Declare Sub PREOSdll Lib "REFPROP.DLL" (i As Long) 

Private Declare Sub SETAGAdll Lib "REFPROP.DLL" (ierr As Long, ByVal herr As 
String, ln1 As Long) 

'Used to call Refprop: 

Private herr As String * 255, herr2 As String * 255, hfmix As String * 255, hfmix2 As String 
* 255, hrf As String * 3, htyp As String * 3, hmxnme As String * 255 

Private hfld As String * 10000 

Private nc As Long, phase As Long 

Private x(1 To MaxComps) As Double, xliq(1 To MaxComps) As Double, xvap(1 To 
MaxComps) As Double, xmm(1 To MaxComps) As Double, xkg(1 To MaxComps) As 
Double, xmol(1 To MaxComps) As Double, wmix As Double 

Private ierr As Long, ierr2 As Long, kq As Long, kr As Long 
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Private t As Double, p As Double, d As Double, Dl As Double, Dv As Double, q As Double, 
wm As Double, tz As Double, pz As Double, dz As Double, dd As Double 

Private e As Double, h As Double, s As Double, Cvcalc As Double, Cpcalc As Double, w 
As Double 

Private tmin As Double, tmax As Double, dmax As Double, pmax As Double 

Private tc As Double, pc As Double, dc As Double 

Private tbub As Double, tdew As Double, pbub As Double, pdew As Double, Dlbub As 
Double, Dvdew As Double, ybub(1 To MaxComps) As Double, xdew(1 To MaxComps) As 
Double 

Private eta As Double, tcx As Double, sigma As Double, hjt As Double, de As Double 

Private wmm As Double, ttrp As Double, tnbpt As Double, Zc As Double, acf As Double, 
dip As Double, Rgas As Double 

Private tUnits(10) As String, taUnits(10) As String, pUnits(10) As String, dUnits(10) As 
String, vUnits(10) As String, hUnits(10) As String, sUnits(10) As String, wUnits(10) As 
String, visUnits(10) As String, tcxUnits(10) As String, stUnits(10) As String 

Private tUnits2 As String, taUnits2 As String, pUnits2 As String, dUnits2 As String, vUnits2 
As String, hUnits2 As String, sUnits2 As String, wUnits2 As String, visUnits2 As String, 
tcxUnits2 As String, stUnits2 As String 

Private FldOld As String 

Private Z As Double, aHelm As Double, Gibbs As Double, xkappa As Double, beta As 
Double 

Private dPdD As Double, d2PdD2 As Double, dPdT As Double, dDdT As Double, dDdP As 
Double 

Private spare1 As Double, spare2 As Double, spare3 As Double, spare4 As Double 

Private Const CtoK = 273.15                  'Exact conversion 

Private Const FtoR = 459.67                  'Exact conversion 

Private Const RtoK = 5 / 9                   'Exact conversion 

Private Const HtoS = 3600                    'Exact conversion 

Private Const ATMtoMPa = 0.101325            'Exact conversion 

Private Const BARtoMPA = 0.1                 'Exact conversion 

Private Const KGFtoN = 98.0665 / 10          'Exact conversion 

Private Const INtoM = 0.0254                 'Exact conversion 

Private Const FTtoM = 12 * INtoM             'Exact conversion 
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Private Const LBMtoKG = 0.45359237           'Exact conversion 

Private Const CALtoJ = 4.184                 'Exact conversion (tc) 

'private Const CALtoJ = 4.1868                'Exact conversion (IT) (Use this one only with 
pure water) 

Private Const MMHGtoMPA = ATMtoMPa / 760     'Exact conversion 

Private Const INH2OtoMPA = 0.000249082 

 

Private Const BTUtoKJ = CALtoJ * LBMtoKG * RtoK 

Private Const LBFtoN = LBMtoKG * KGFtoN 

Private Const IN3toM3 = INtoM * INtoM * INtoM 

Private Const FT3toM3 = FTtoM * FTtoM * FTtoM 

Private Const GALLONtoM3 = IN3toM3 * 231 

Private Const PSIAtoMPA = LBMtoKG / INtoM / INtoM * KGFtoN / 1000000 

Private Const FTLBFtoJ = FTtoM * LBFtoN 

Private Const HPtoW = 550 * FTLBFtoJ 

Private Const BTUtoW = BTUtoKJ * 1000 

Private Const LBFTtoNM = LBFtoN / FTtoM 

Private CompFlag As Integer 

 

Function Setup(FluidName) 

  Dim a As String, ab As String, FluidNme As String, FlNme As String 

  Dim i As Integer, sum As Double, sc As Integer, ncc As Integer, nc2 As Long, mass As 
Integer 

  Dim hRef As Double, sRef As Double, Tref As Double, pref As Double 

  Dim htype As String * 3, hmix As String * 3, hcomp As String * 60 

  Dim RPPrefix As String, FluidsPrefix As String, MixturesPrefix As String 

  Dim xtemp(1 To MaxComps) As Double 

  ierr = 0 

  herr = "" 

  FlNme = FluidName 
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  If InStr(FluidName, "error") Then Exit Function 

  If InStr(FluidName, "Inputs are out of range") Then Exit Function 

  If FluidName = FldOld Then Exit Function 

  FldOld = "" 

  Call CheckName(FluidName) 

  RPPrefix = Environ("RPPrefix") 

  If RPPrefix = "" Then 

    FluidsPrefix = FluidsDirectory 

    MixturesPrefix = MixturesDirectory 

  Else 

    FluidsPrefix = RPPrefix & "\" & FluidsDirectory 

    MixturesPrefix = RPPrefix & "\" & MixturesDirectory 

  End If 

  hrf = "DEF" 

  hfmix = FluidsPrefix & "hmx.bnc" 

  On Error GoTo ErrorHandler: 

  ChDrive (Application.ActiveWorkbook.Path) 

  ChDir (Application.ActiveWorkbook.Path) 

  On Error GoTo 0 

  a = "" 

  For i = 1 To MaxComps: xtemp(i) = 0: Next 

  mass = 0 

  If InStr(UCase(FluidName), ".MIX") Then 

    'Open MixturesPrefix & FluidName For Input As #1 

    'Line Input #1, ab 

    'Line Input #1, ab 

    'Input #1, nc2 

    'For i = 1 To nc2 

    '  Line Input #1, ab 
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    '  a = a & FluidsPrefix & ab & "|" 

    'Next 

    'For i = 1 To nc2 

    '  Input #1, xtemp(i) 

    'Next 

    'Close 1 

    'hfld = a 

    hmxnme = MixturesPrefix & FluidName 

    Call SETMIXdll(hmxnme, hfmix, hrf, nc2, hfld, xtemp(1), ierr, herr, 255&, 255&, 3&, 
10000&, 255&) 

  ElseIf InStr(FluidName, ",") Or InStr(FluidName, ";") Then 

    FluidNme = Trim(FluidName) 

    If InStr(FluidNme, ";") Then sc = 1 Else sc = 0 

    If UCase(Right(FluidNme, 4)) = "MASS" Then mass = 1: FluidNme = 
Trim(Left(FluidNme, Len(FluidNme) - 4)) 

    nc2 = 0 

    Do 

      If sc = 0 Then i = InStr(FluidNme, ",") Else i = InStr(FluidNme, ";") 

      If i = 0 Then i = Len(FluidNme) + 1 

      nc2 = nc2 + 1 

      If nc2 > MaxComps Then ierr = 1: herr = Trim2("Too many components"): Exit 
Function 

      ab = Trim(Left(FluidNme, i - 1)) 

      Call CheckName(ab) 

      If InStr(LCase(ab), ".fld") = 0 Then ab = ab + ".fld" 

      a = a & FluidsPrefix & ab & "|" 

      FluidNme = Mid(FluidNme, i + 1) 

      If sc = 0 Then i = InStr(FluidNme, ",") Else i = InStr(FluidNme, ";") 

      If i = 0 Then i = Len(FluidNme) + 1 

      xtemp(nc2) = CDbl(Left(FluidNme, i - 1)) 
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      FluidNme = Trim(Mid(FluidNme, i + 1)) 

    Loop Until FluidNme = "" 

    sum = 0 

    For i = 1 To nc2: sum = sum + xtemp(i): Next 

    If sum <= 0 Then ierr = 1: herr = Trim2("Composition not set"): Exit Function 

    For i = 1 To nc2: xtemp(i) = xtemp(i) / sum: Next 

    hfld = a 

    If nc2 < 1 Then ierr = 1: herr = Trim2("Setup failed"): Exit Function 

    'To load the GERG-2004 pure fluid equations of state rather than the defaults 

    'that come with Refprop, call the GERG04dll routine with a 1 as the second input. 

    'Call GERG04dll(nc2, 1&, ierr, herr, 255&) 

    Call SETUPdll(nc2, hfld, hfmix, hrf, ierr, herr, 10000&, 255&, 3&, 255&) 

  ElseIf InStr(FluidName, "/") <> 0 And InStr(FluidName, "(") <> 0 Then 

    FluidNme = Trim(FluidName) 

    If UCase(Right(FluidNme, 4)) = "MASS" Then mass = 1: FluidNme = 
Trim(Left(FluidNme, Len(FluidNme) - 4)) 

    nc2 = 0 

    Do 

      i = InStr(FluidNme, "/") 

      If InStr(FluidNme, "(") < i Then i = InStr(FluidNme, "(") 

      If i = 0 Then i = Len(FluidNme) + 1 

      nc2 = nc2 + 1 

      If nc2 > MaxComps Then ierr = 1: herr = Trim2("Too many components"): Exit 
Function 

      ab = Trim(Left(FluidNme, i - 1)) 

      Call CheckName(ab) 

      If InStr(LCase(ab), ".fld") = 0 Then ab = ab + ".fld" 

      a = a & FluidsPrefix & ab & "|" 

      FluidNme = Trim(Mid(FluidNme, i)) 

      If Left(FluidNme, 1) = "/" Then FluidNme = Trim(Mid(FluidNme, 2)) 
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    Loop Until Left(FluidNme, 1) = "(" 

    FluidNme = Mid(FluidNme, 2) 

    If Right(FluidNme, 1) = ")" Then FluidNme = Trim(Left(FluidNme, Len(FluidNme) - 1)) 

    ncc = 0 

    Do 

      i = InStr(FluidNme, "/") 

      If i = 0 Then i = Len(FluidNme) + 1 

      ncc = ncc + 1 

      If ncc > MaxComps Then ierr = 1: herr = Trim2("Too many components"): Exit 
Function 

      xtemp(ncc) = CDbl(Left(FluidNme, i - 1)) 

      FluidNme = Mid(FluidNme, i + 1) 

    Loop Until FluidNme = "" 

    sum = 0 

    For i = 1 To nc2: sum = sum + xtemp(i): Next 

    If sum <= 0 Then ierr = 1: herr = Trim2("Composition not set"): Exit Function 

    For i = 1 To nc2: xtemp(i) = xtemp(i) / sum: Next 

    hfld = a 

    If nc2 < 1 Then ierr = 1: herr = Trim2("Setup failed"): Exit Function 

    'To load the GERG-2004 pure fluid equations of state rather than the defaults 

    'that come with Refprop, call the GERG04dll routine with a 1 as the second input. 

    'Call GERG04dll(nc2, 1&, ierr, herr, 255&) 

    Call SETUPdll(nc2, hfld, hfmix, hrf, ierr, herr, 10000&, 255&, 3&, 255&) 

  Else 

    nc2 = 1 

    If InStr(LCase(FluidName), ".fld") = 0 And InStr(LCase(FluidName), ".ppf") = 0 Then 
FluidName = FluidName + ".fld" 

    If InStr(FluidName, "\") Then 

      hfld = FluidName 

    Else 
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      hfld = FluidsPrefix & FluidName 

    End If 

    '...Use call to SETMOD to change the equation of state for any of the 

    '.....pure components from the default (recommended) values. 

    '.....This should only be implemented by an experienced user. 

    'If InStr(LCase(hfld), "argon") <> 0 And nc2 = 1 Then 

    '  hcomp = "FE1": htype = "EOS": hmix = hcomp 

    '  Call SETMODdll(nc2, htype, hmix, hcomp, ierr, herr, 3&, 3&, 60&, 255&) 

    'End If 

 

    Call SETUPdll(nc2, hfld, hfmix, hrf, ierr, herr, 10000&, 255&, 3&, 255&) 

  End If 

 

 

 

  If mass Then 

    For i = 1 To nc2 

      xkg(i) = xtemp(i) 

    Next 

    Call XMOLEdll(xkg(1), xtemp(1), wmix) 

  End If 

  If ierr <= 0 Then 

    nc = nc2           'If setup was successful, load new values of nc and x() 

    For i = 1 To nc 

      x(i) = xtemp(i) 

    Next 

    Setup = FluidName 

    FldOld = FlNme 

    'Use the following line to calculate enthalpies and entropies on a reference state 
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    'based on the currently defined mixture, or to change to some other reference state. 

    'The routine does not have to be called, but doing so will cause calculations 

    'to be the same as those produced from the graphical interface for mixtures. 

    Call SETREFdll(hrf, 2&, x(1), hRef, sRef, Tref, pref, ierr, herr, 3&, 255&) 

  Else 

    Setup = Trim2(herr) 

    FldOld = "" 

  End If 

  Exit Function 

ErrorHandler: 

  Resume Next 

End Function 

 

Sub CheckName(FluidName) 

Restart: 

  If Left(FluidName, 1) = Chr(34) Then 

    FluidName = Mid(FluidName, 2): GoTo Restart 

  End If 

  If Right(FluidName, 1) = Chr(34) Then 

    FluidName = Left(FluidName, Len(FluidName) - 1): GoTo Restart 

  End If 

  If UCase(FluidName) = "AIR" Then FluidName = 
"nitrogen;7812;argon;0092;oxygen;2096" 

  If UCase(FluidName) = "CARBON DIOXIDE" Then FluidName = "CO2" 

  If UCase(FluidName) = "CARBON MONOXIDE" Then FluidName = "CO" 

  If UCase(FluidName) = "CARBONYL SULFIDE" Then FluidName = "COS" 

  If UCase(FluidName) = "CYCLOHEXANE" Then FluidName = "CYCLOHEX" 

  If UCase(FluidName) = "CYCLOPROPANE" Then FluidName = "CYCLOPRO" 

  If UCase(FluidName) = "DEUTERIUM" Then FluidName = "D2" 
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  If UCase(FluidName) = "HEAVY WATER" Then FluidName = "D2O" 

  If UCase(FluidName) = "HYDROGEN SULFIDE" Then FluidName = "H2S" 

  If UCase(FluidName) = "IBUTANE" Then FluidName = "ISOBUTAN" 

  If UCase(FluidName) = "ISOBUTANE" Then FluidName = "ISOBUTAN" 

  If UCase(FluidName) = "ISOPENTANE" Then FluidName = "IPENTANE" 

  If UCase(FluidName) = "NEOPENTANE" Then FluidName = "NEOPENTN" 

  If UCase(FluidName) = "ISOHEXANE" Then FluidName = "IHEXANE" 

  If UCase(FluidName) = "NITROUS OXIDE" Then FluidName = "N2O" 

  If UCase(FluidName) = "PARAHYDROGEN" Then FluidName = "PARAHYD" 

  If UCase(FluidName) = "PROPYLENE" Then FluidName = "PROPYLEN" 

  If UCase(FluidName) = "SULFUR HEXAFLUORIDE" Then FluidName = "SF6" 

End Sub 

 

Sub CalcSetup(FluidName, InpCode, Units, Prop1, Prop2) 

  Call Setup(FluidName) 

  If ierr > 0 Then Exit Sub 

  Call ConvertUnits(InpCode, Units, Prop1, Prop2) 

  herr = "" 

  q = 0: t = 0: p = 0: d = 0: Dl = 0: Dv = 0: e = 0: h = 0: s = 0: Cvcalc = 0: Cpcalc = 0: w = 0 

End Sub 

 

Sub CalcProp(FluidName, InpCode, ByVal Units, ByVal Prop1, ByVal Prop2) 

  Dim iflag1 As Integer, iflag2 As Integer 

  ThisWorkbook.Activate 

  q = 0: t = 0: p = 0: d = 0: Dl = 0: Dv = 0: e = 0: h = 0: s = 0: Cvcalc = 0: Cpcalc = 0: w = 0 

  If IsMissing(Prop1) Then iflag1 = 1 

  If iflag1 = 0 Then 

    If Len(Trim(Prop1)) = 0 Then iflag1 = 2 
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    If iflag1 = 0 Then If CDbl(Prop1) = 0 And Prop1 <> "0" Then ierr = 1: herr = 
Trim2("Invalid input: ") + Prop1: Exit Sub 

  End If 

  If IsMissing(Prop2) Then iflag2 = 1 

  If iflag2 = 0 Then 

    If Len(Trim(Prop2)) = 0 Then iflag2 = 2 

    If iflag2 = 0 Then If CDbl(Prop2) = 0 And Prop2 <> "0" Then ierr = 1: herr = 
Trim2("Invalid input: ") + Prop2: Exit Sub 

  End If 

  If IsMissing(InpCode) Then InpCode = "" 

  Call CalcSetup(FluidName, InpCode, Units, Prop1, Prop2) 

  If UCase(Left(InpCode, 4)) = "CRIT" Then 

    Call CRITPdll(x(1), t, p, d, ierr, herr, 255&) 

    If ierr = 0 Then Call THERMdll(t, d, x(1), pc, e, h, s, Cvcalc, Cpcalc, w, hjt) 

    Exit Sub 

  ElseIf UCase(Left(InpCode, 4)) = "TRIP" Then 

    If nc <> 1 Then ierr = 1: herr = Trim2("Can only return triple point for a pure fluid"): Exit 
Sub 

    Call INFOdll(1, wmm, t, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas) 

    Call SATTdll(t, x(1), 1, p, d, Dv, xliq(1), xvap(1), ierr, herr, 255&) 

    If ierr = 0 Then Call THERMdll(t, d, x(1), pc, e, h, s, Cvcalc, Cpcalc, w, hjt) 

    Exit Sub 

  End If 

 

  If iflag1 Then ierr = 1: herr = Trim2("Inputs are missing"): Exit Sub 

  If ierr > 0 Then Exit Sub 

  If InpCode <> "" Then Call Calc(InpCode, Prop1, Prop2, iflag1, iflag2) 

End Sub 

 

Sub Calc(InputCode, Prop1, Prop2, iflag1, iflag2) 
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  Dim a As String, Input1 As String, Input2 As String, InpCode, i As Integer, pp As Double 

  ierr = 0 

  herr = "" 

  InpCode = Trim(UCase(InputCode)) 

  Input2 = "" 

  Input1 = Left(InpCode, 1) 

  If Len(InpCode) = 2 Then Input2 = Mid(InpCode, 2, 1) 

  If Len(InpCode) = 3 And Right(InpCode, 1) = "&" Then Input2 = Mid(InpCode, 2, 1) 

  If Left(InpCode, 2) = "TP" Or Left(InpCode, 2) = "PT" Then Input2 = Mid(InpCode, 2, 1) 

 

  If Input1 = "T" Then t = Prop1: If iflag1 >= 1 Then GoTo Error1 

  If Input1 = "P" Then p = Prop1: If iflag1 >= 1 Then GoTo Error1 

  If Input1 = "D" Then d = Prop1: If iflag1 >= 1 Then GoTo Error1 

  If Input1 = "V" And Prop1 <> 0 And Len(InpCode) = 2 Then d = 1 / Prop1: Mid(InpCode, 
1, 1) = "D": If iflag1 >= 1 Then GoTo Error1 

  If Input1 = "E" Then e = Prop1: If iflag1 >= 1 Then GoTo Error1 

  If Input1 = "H" Then h = Prop1: If iflag1 >= 1 Then GoTo Error1 

  If Input1 = "S" Then s = Prop1: If iflag1 >= 1 Then GoTo Error1 

  If Input1 = "Q" Then q = Prop1: If iflag1 >= 1 Then GoTo Error1 

  If Input2 = "T" Then t = Prop2: If iflag2 >= 1 Then GoTo Error2 

  If Input2 = "P" Then p = Prop2: If iflag2 >= 1 Then GoTo Error2 

  If Input2 = "D" Then d = Prop2: If iflag2 >= 1 Then GoTo Error2 

  If Input2 = "V" And Prop2 <> 0 And Len(InpCode) = 2 Then d = 1 / Prop2: Mid(InpCode, 
2, 1) = "D": If iflag2 >= 1 Then GoTo Error2 

  If Input2 = "E" Then e = Prop2: If iflag2 >= 1 Then GoTo Error2 

  If Input2 = "H" Then h = Prop2: If iflag2 >= 1 Then GoTo Error2 

  If Input2 = "S" Then s = Prop2: If iflag2 >= 1 Then GoTo Error2 

  If Input2 = "Q" Then q = Prop2: If iflag2 >= 1 Then GoTo Error2 

 

  phase = 2 



218 
 

  If Len(InpCode) > 1 Then If UCase(Mid(InpCode, 2, 1)) = "L" Then phase = 1 

 

  For i = 1 To nc 

    xliq(i) = 0: xvap(i) = 0 

  Next 

  If Left(InpCode, 1) = "T" And t <= 0 Then herr = Trim2("Input temperature is zero"): Exit 
Sub 

  'Calculate saturation values given temperature 

  If InpCode = "TL" Or InpCode = "TLIQ" Or InpCode = "TVAP" Then 

    Call SATTdll(t, x(1), phase, p, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255&) 

    If (p = 0 Or Dl = 0) And ierr = 0 Then ierr = 1: herr = Trim2("Inputs are out of range"): 
Exit Sub 

    d = Dl: q = 0 

    If phase = 2 Then d = Dv: q = 1 

    Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt) 

  'Calculate saturation values given pressure 

  ElseIf InpCode = "PL" Or InpCode = "PLIQ" Or InpCode = "PVAP" Then 

    Call SATPdll(p, x(1), phase, t, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255&) 

    If (p = 0 Or Dl = 0) And ierr = 0 Then ierr = 1: herr = Trim2("Inputs are out of range"): 
Exit Sub 

    d = Dl: q = 0 

    If phase = 2 Then d = Dv: q = 1 

    Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt) 

  'Calculate saturation values given density 

  ElseIf InpCode = "DL" Or InpCode = "DLIQ" Or InpCode = "DVAP" Then 

    Call SATDdll(d, x(1), 1&, kr, t, p, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255&) 

    Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt) 

    q = kr - 1 

  ElseIf InpCode = "TPL" Or InpCode = "PTL" Then 

    Call TPRHOdll(t, p, x(1), 1&, 0&, d, ierr, herr, 255&) 
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    Dl = d: Dv = d: q = 990 

    Call THERMdll(t, d, x(1), pp, e, h, s, Cvcalc, Cpcalc, w, hjt) 

  ElseIf InpCode = "TPV" Or InpCode = "PTV" Then 

    Call TPRHOdll(t, p, x(1), 2&, 0&, d, ierr, herr, 255&) 

    Dl = d: Dv = d: q = 990 

    Call THERMdll(t, d, x(1), pp, e, h, s, Cvcalc, Cpcalc, w, hjt) 

  ElseIf InpCode = "TP" Or InpCode = "PT" Then 

    Call TPFLSHdll(t, p, x(1), d, Dl, Dv, xliq(1), xvap(1), q, e, h, s, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "TD" Or InpCode = "DT" Then 

    Call TDFLSHdll(t, d, x(1), p, Dl, Dv, xliq(1), xvap(1), q, e, h, s, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "TD&" Or InpCode = "DT&" Then 

    'Do not perform any flash calculation here 

    Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt) 

    q = 990 

  ElseIf InpCode = "TH" Or InpCode = "HT" Then 

    Call THFLSHdll(t, h, x(1), 2&, p, d, Dl, Dv, xliq(1), xvap(1), q, e, s, Cvcalc, Cpcalc, w, 
ierr, herr, 255&) 

  ElseIf InpCode = "TS" Or InpCode = "ST" Then 

    Call TSFLSHdll(t, s, x(1), 1&, p, d, Dl, Dv, xliq(1), xvap(1), q, e, h, Cvcalc, Cpcalc, w, 
ierr, herr, 255&) 

  ElseIf InpCode = "TE" Or InpCode = "ET" Then 

    Call TEFLSHdll(t, e, x(1), 2&, p, d, Dl, Dv, xliq(1), xvap(1), q, h, s, Cvcalc, Cpcalc, w, 
ierr, herr, 255&) 

  ElseIf InpCode = "TQ" Or InpCode = "QT" Then 

    Call TQFLSHdll(t, q, x(1), 1&, p, d, Dl, Dv, xliq(1), xvap(1), e, h, s, Cvcalc, Cpcalc, w, 
ierr, herr, 255&) 

  ElseIf InpCode = "PD" Or InpCode = "DP" Then 

    Call PDFLSHdll(p, d, x(1), t, Dl, Dv, xliq(1), xvap(1), q, e, h, s, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 
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  ElseIf InpCode = "PH" Or InpCode = "HP" Then 

    Call PHFLSHdll(p, h, x(1), t, d, Dl, Dv, xliq(1), xvap(1), q, e, s, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "PS" Or InpCode = "SP" Then 

    Call PSFLSHdll(p, s, x(1), t, d, Dl, Dv, xliq(1), xvap(1), q, e, h, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "PE" Or InpCode = "EP" Then 

    Call PEFLSHdll(p, e, x(1), t, d, Dl, Dv, xliq(1), xvap(1), q, h, s, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "PQ" Or InpCode = "QP" Then 

    Call PQFLSHdll(p, q, x(1), 1&, t, d, Dl, Dv, xliq(1), xvap(1), e, h, s, Cvcalc, Cpcalc, w, 
ierr, herr, 255&) 

  ElseIf InpCode = "DH" Or InpCode = "HD" Then 

    Call DHFLSHdll(d, h, x(1), t, p, Dl, Dv, xliq(1), xvap(1), q, e, s, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "DS" Or InpCode = "SD" Then 

    Call DSFLSHdll(d, s, x(1), t, p, Dl, Dv, xliq(1), xvap(1), q, e, h, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "DE" Or InpCode = "ED" Then 

    Call DEFLSHdll(d, e, x(1), t, p, Dl, Dv, xliq(1), xvap(1), q, h, s, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "HS" Or InpCode = "SH" Then 

    Call HSFLSHdll(h, s, x(1), t, p, d, Dl, Dv, xliq(1), xvap(1), q, e, Cvcalc, Cpcalc, w, ierr, 
herr, 255&) 

  ElseIf InpCode = "TMELT" Then 

    Call MELTTdll(t, x(1), p, ierr, herr, 255&) 

    If ierr = 0 Then Call TPFLSHdll(t, p, x(1), d, Dl, Dv, xliq(1), xvap(1), q, e, h, s, Cvcalc, 
Cpcalc, w, ierr, herr, 255&) 

  ElseIf InpCode = "PMELT" Then 

    If p = 0 Then ierr = 1: herr = Trim2("Input pressure is zero"): Exit Sub 

    Call MELTPdll(p, x(1), t, ierr, herr, 255&) 
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    If ierr = 0 Then Call TPFLSHdll(t, p, x(1), d, Dl, Dv, xliq(1), xvap(1), q, e, h, s, Cvcalc, 
Cpcalc, w, ierr, herr, 255&) 

  ElseIf InpCode = "TSUBL" Then 

    Call SUBLTdll(t, x(1), p, ierr, herr, 255&) 

    If ierr = 0 And p = 0 Then ierr = 1: herr = Trim2("No sublimation line available") 

    If ierr = 0 Then 

      q = 1 

      d = p / 8.314472 / t 

      Call TPRHOdll(t, p, x(1), 2&, 1&, d, ierr, herr, 255&) 

      Call THERMdll(t, d, x(1), pp, e, h, s, Cvcalc, Cpcalc, w, hjt) 

    End If 

  ElseIf InpCode = "PSUBL" Then 

    If p = 0 Then ierr = 1: herr = Trim2("Input pressure is zero"): Exit Sub 

    Call SUBLPdll(p, x(1), t, ierr, herr, 255&) 

    If ierr = 0 And t = 0 Then ierr = 1: herr = Trim2("No sublimation line available") 

    If ierr = 0 Then 

      q = 1 

      d = p / 8.314472 / t 

      Call TPRHOdll(t, p, x(1), 2&, 1&, d, ierr, herr, 255&) 

      Call THERMdll(t, d, x(1), pp, e, h, s, Cvcalc, Cpcalc, w, hjt) 

    End If 

  Else 

    ierr = 1: herr = Trim2("Invalid input code") 

  End If 

  If (q <= 0.000001 Or q >= 0.999999) And Cvcalc = -9999980 Then Call THERMdll(t, d, 
x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt) 

  Exit Sub 

Error1: 

  ierr = 1: herr = Trim2("First property missing"): Exit Sub 

Error2: 
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  ierr = 1: herr = Trim2("Second property missing"): Exit Sub 

End Sub 

Function Temperature(FluidName, InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Temperature = ConvertUnits("-T", Units, t, 0) 

End Function 

Function Pressure(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Pressure = ConvertUnits("-P", Units, p, 0) 

End Function 

Function Density(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Density = ConvertUnits("-D", Units, d, 0) 

End Function 

Function CompressibilityFactor(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call INFOdll(1, wmm, ttrp, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas) 

  CompressibilityFactor = p / d / t / Rgas 

End Function 

Function LiquidDensity(FluidName, InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr <> 0 Then LiquidDensity = Trim2(herr): Exit Function 

  If q < 0 Or q > 1 Then 

    LiquidDensity = Trim2("Inputs are single phase") 

  Else 

    CompFlag = 1 

    LiquidDensity = ConvertUnits("-D", Units, Dl, 0) 



223 
 

    CompFlag = 0 

  End If 

End Function 

Function VaporDensity(FluidName, InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr <> 0 Then VaporDensity = Trim2(herr): Exit Function 

  If q < 0 Or q > 1 Then 

    VaporDensity = Trim2("Inputs are single phase") 

  Else 

    CompFlag = 2 

    VaporDensity = ConvertUnits("-D", Units, Dv, 0) 

    CompFlag = 0 

  End If 

End Function 

Function Volume(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Dim V As Double 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Volume = 0 

  If d <= 0 Then Volume = Trim2("Density is zero"): Exit Function 

  V = 1 / d 

  Volume = ConvertUnits("-V", Units, V, 0) 

End Function 

 

Function Energy(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Energy = ConvertUnits("-H", Units, e, 0) 

End Function 
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Function Enthalpy(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Enthalpy = ConvertUnits("-H", Units, h, 0) 

End Function 

 

Function Entropy(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Entropy = ConvertUnits("-S", Units, s, 0) 

End Function 

 

Function IsochoricHeatCapacity(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  IsochoricHeatCapacity = ConvertUnits("-S", Units, Cvcalc, 0) 

End Function 

 

Function cv(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  cv = ConvertUnits("-S", Units, Cvcalc, 0) 

End Function 

 

Function IsobaricHeatCapacity(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  IsobaricHeatCapacity = ConvertUnits("-S", Units, Cpcalc, 0) 

End Function 

 

Function cp(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  cp = ConvertUnits("-S", Units, Cpcalc, 0) 
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End Function 

 

Function SpeedOfSound(FluidName, InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  SpeedOfSound = ConvertUnits("-W", Units, w, 0) 

End Function 

 

Function Sound(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Sound = ConvertUnits("-W", Units, w, 0) 

End Function 

 

Function LatentHeat(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Dim hl As Double, hv As Double 

  InpCode = Trim(UCase(InpCode)) 

  If Left(InpCode, 1) = "T" Then 

    Call CalcSetup(FluidName, "T", Units, Prop1, Prop2) 

    If ierr <> 0 Then LatentHeat = Trim2(herr): Exit Function 

    If nc <> 1 Then LatentHeat = Trim2("Can only be calculated for pure fluids"): Exit 
Function 

    Call INFOdll(1, wmm, ttrp, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas) 

    t = Prop1 

    If t <= 0 Then LatentHeat = Trim2("Input temperature is zero"): Exit Function 

    If t > tc Then LatentHeat = Trim2("Temperature is greater than the critical point 
temperture"): Exit Function 

    Call SATTdll(t, x(1), 1&, p, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255&) 

    If (p = 0 Or Dl = 0) And ierr = 0 Then ierr = 1: LatentHeat = Trim2("Inputs are out of 
range"): Exit Function 

  ElseIf Left(InpCode, 1) = "P" Then 
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    Call CalcSetup(FluidName, "P", Units, Prop1, Prop2) 

    If ierr <> 0 Then LatentHeat = Trim2(herr): Exit Function 

    If nc <> 1 Then LatentHeat = Trim2("Can only be calculated for pure fluids"): Exit 
Function 

    Call INFOdll(1, wmm, ttrp, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas) 

    p = Prop1 

    If p <= 0 Then LatentHeat = Trim2("Input pressure is zero"): Exit Function 

    If p > pc Then LatentHeat = Trim2("Pressure is greater than the critical point pressure"): 
Exit Function 

    Call SATPdll(p, x(1), 1&, t, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255&) 

    If (t = 0 Or Dl = 0) And ierr = 0 Then ierr = 1: LatentHeat = Trim2("Inputs are out of 
range"): Exit Function 

  Else 

    LatentHeat = Trim2("Valid inputs are only 'T' or 'P'"): Exit Function 

  End If 

  If ierr <> 0 Then LatentHeat = Trim2(herr): Exit Function 

  Call THERMdll(t, Dl, x(1), p, e, hl, s, Cvcalc, Cpcalc, w, hjt) 

  Call THERMdll(t, Dv, x(1), p, e, hv, s, Cvcalc, Cpcalc, w, hjt) 

  LatentHeat = ConvertUnits("-H", Units, hv - hl, 0) 

End Function 

 

Function HeatOfVaporization(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  HeatOfVaporization = LatentHeat(FluidName, InpCode, Units, Prop1, Prop2) 

End Function 

 

Function JouleThompson(FluidName, InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt) 

  JouleThompson = ConvertUnits("-J", Units, hjt, 0) 
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End Function 

 

Function IsentropicExpansionCoef(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt) 

  Call INFOdll(1, wmm, ttrp, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas) 

  Call WMOLdll(x(1), wm) 

  If d = 0 Then 

    IsentropicExpansionCoef = w ^ 2 / Rgas / t * wm * 0.001 

  Else 

    IsentropicExpansionCoef = w ^ 2 * d / p * wm * 0.001 

  End If 

End Function 

 

Function IsothermalCompressibility(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, 
beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4) 

  IsothermalCompressibility = Trim2("Infinite") 

  If d > 1E-20 And Not (xkappa = -9999990 Or xkappa > 1E+15) Then 
IsothermalCompressibility = 1 / ConvertUnits("-P", Units, 1 / xkappa, 0) 

End Function 

 

Function VolumeExpansivity(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, 
beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4) 

  VolumeExpansivity = 1 / ConvertUnits("-A", Units, 1 / beta, 0) 
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End Function 

 

Function AdiabaticCompressibility(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, 
beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4) 

  Call WMOLdll(x(1), wm) 

  AdiabaticCompressibility = Trim2("Infinite") 

  If d > 1E-20 And w <> 0 Then AdiabaticCompressibility = 1 / ConvertUnits("-P", Units, 1 / 
(1 / d / w ^ 2 / wm * 1000), 0) 

End Function 

 

Function AdiabaticBulkModulus(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, 
beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4) 

  Call WMOLdll(x(1), wm) 

  If p = 0 Then 

    AdiabaticBulkModulus = 0 

  Else 

    AdiabaticBulkModulus = ConvertUnits("-P", Units, w ^ 2 * d * wm * 0.001, 0) 

  End If 

End Function 

 

Function IsothermalExpansionCoef(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, 
beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4) 
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  Call WMOLdll(x(1), wm) 

  If p = 0 Then 

    IsothermalExpansionCoef = 1 

  Else 

    IsothermalExpansionCoef = d / p * dPdD 

  End If 

End Function 

 

Function IsothermalBulkModulus(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, 
beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4) 

  Call WMOLdll(x(1), wm) 

  If p = 0 Then 

    IsothermalBulkModulus = 0 

  Else 

    IsothermalBulkModulus = ConvertUnits("-P", Units, d * dPdD, 0) 

  End If 

End Function 

 

 

Function Quality(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr > 0 Then Quality = Trim2(herr): Exit Function 

  Quality = q 

  If q = 990 Then Quality = Trim2("Not calculated") 

  If q = 998 Then Quality = Trim2("Superheated vapor with T>Tc") 

  If q = 999 Then Quality = Trim2("Supercritical state (T>Tc, p>pc)") 

  If q = -998 Then Quality = Trim2("Subcooled liquid with p>pc") 
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End Function 

 

Function LiquidMoleFraction(FluidName, Optional InpCode, Optional Units, Optional 
Prop1, Optional Prop2, Optional i) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr > 0 Then LiquidMoleFraction = Trim2(herr): Exit Function 

  If i < 1 Or i > nc Then LiquidMoleFraction = Trim2("Constituent number out of range"): 
Exit Function 

  If q < 0 Or q > 1 Then 

    LiquidMoleFraction = x(i) 

  Else 

    LiquidMoleFraction = xliq(i) 

  End If 

  If nc = 1 Then LiquidMoleFraction = Trim2("Not applicable for a pure fluid") 

End Function 

 

Function VaporMoleFraction(FluidName, Optional InpCode, Optional Units, Optional 
Prop1, Optional Prop2, Optional i) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr > 0 Then VaporMoleFraction = Trim2(herr): Exit Function 

  If i < 1 Or i > nc Then VaporMoleFraction = Trim2("Constituent number out of range"): 
Exit Function 

  If q < 0 Or q > 1 Then 

    VaporMoleFraction = x(i) 

  Else 

    VaporMoleFraction = xvap(i) 

  End If 

 

  If nc = 1 Then VaporMoleFraction = Trim2("Not applicable for a pure fluid") 

End Function 
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Function Viscosity(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr > 0 Then Viscosity = Trim2(herr): Exit Function 

  If t = 0 Or d = 0 Then Viscosity = Trim2("Inputs out of range"): Exit Function 

  Call TRNPRPdll(t, d, x(1), eta, tcx, ierr2, herr2, 255&) 

  If q > 0.000001 And q < 1 - 0.000001 Then eta = -9999999 

  Viscosity = ConvertUnits("-U", Units, eta, 0) 

  If eta = 0 Then Viscosity = Trim2("Unable to calculate property") 

End Function 

 

Function ThermalConductivity(FluidName, InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr > 0 Then ThermalConductivity = Trim2(herr): Exit Function 

  If t = 0 Or d = 0 Then ThermalConductivity = Trim2("Inputs out of range"): Exit Function 

  Call TRNPRPdll(t, d, x(1), eta, tcx, ierr2, herr2, 255&) 

  If q > 0.000001 And q < 1 - 0.000001 Then tcx = -9999999 

  ThermalConductivity = ConvertUnits("-K", Units, tcx, 0) 

  If tcx = 0 Then ThermalConductivity = Trim2("Unable to calculate property") 

End Function 

 

Function Prandtl(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr > 0 Then Prandtl = Trim2(herr): Exit Function 

  If t = 0 Or d = 0 Then Prandtl = Trim2("Inputs out of range"): Exit Function 

  Call TRNPRPdll(t, d, x(1), eta, tcx, ierr2, herr2, 255&) 

  If q > 0.000001 And q < 1 - 0.000001 Then Prandtl = Trim2("Undefined"): Exit Function 

  If tcx = 0 Or eta = 0 Then Prandtl = Trim2("Unable to calculate property") 
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  Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt) 

  Call WMOLdll(x(1), wm) 

  Prandtl = eta * Cpcalc / tcx / wm / 1000 

End Function 

 

Function SurfaceTension(FluidName, InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr > 0 Then SurfaceTension = Trim2(herr): Exit Function 

  If t = 0 Then SurfaceTension = Trim2("Input temperature is zero"): Exit Function 

  If q >= 0 And q <= 1 Then 

    Call SURFTdll(t, Dl, xliq(1), sigma, ierr2, herr2, 255&) 

  Else 

    Call SURFTdll(t, d, x(1), sigma, ierr2, herr2, 255&) 

  End If 

  SurfaceTension = ConvertUnits("-N", Units, sigma, 0) 

  If sigma = 0 Or ierr2 <> 0 Then SurfaceTension = Trim2("Inputs out of range") 

End Function 

 

Function DielectricConstant(FluidName, InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2) 

  If ierr > 0 Then DielectricConstant = Trim2(herr): Exit Function 

  If q > 0.000001 And q < 1 - 0.000001 Then DielectricConstant = Trim2("Undefined"): Exit 
Function 

  If t = 0 Then DielectricConstant = Trim2("Inputs out of range"): Exit Function 

  Call DIELECdll(t, d, x(1), de) 

  DielectricConstant = de 

End Function 
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Function MolarMass(FluidName, Optional InpCode, Optional Units, Optional Prop1, 
Optional Prop2) 

  Call CalcSetup(FluidName, "", Units, Prop1, Prop2) 

  Call WMOLdll(x(1), wm) 

  MolarMass = wm 

End Function 

 

Function MoleFraction(FluidName, i) 

  Call CalcProp(FluidName, "", "", 0, 0) 

  If ierr > 0 Then MoleFraction = Trim2(herr): Exit Function 

  If i < 1 Or i > nc Then MoleFraction = Trim2("Constituent number out of range"): Exit 
Function 

  MoleFraction = x(i) 

  If nc = 1 Then MoleFraction = Trim2("Not applicable for a pure fluid") 

End Function 

 

Function MassFraction(FluidName, i) 

  Call CalcProp(FluidName, "", "", 0, 0) 

  If ierr > 0 Then MassFraction = Trim2(herr): Exit Function 

  If i < 1 Or i > nc Then MassFraction = Trim2("Constituent number out of range"): Exit 
Function 

  Call XMASSdll(x(1), xmm(1), wm) 

  MassFraction = xmm(i) 

  If nc = 1 Then MassFraction = Trim2("Not applicable for a pure fluid") 

End Function 

 

'Change molar composition to mass composition 

'Prop1 - Prop20 are the molar values for the components in the mixture. 

'i specifies which component's mole fraction is returned.  If zero, the molar mass is returned 
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Function Mole2Mass(FluidName, i, Prop1, Prop2, Optional Prop3, Optional Prop4, Optional 
Prop5, Optional Prop6, Optional Prop7, Optional Prop8, Optional Prop9, Optional Prop10, 
Optional Prop11, Optional Prop12, Optional Prop13, Optional Prop14, Optional Prop15, 
Optional Prop16, Optional Prop17, Optional Prop18, Optional Prop19, Optional Prop20) 

Dim j As Integer, xkg2(1 To MaxComps) As Double, xmol2(1 To MaxComps) As Double, 
wmix2 As Double, sum As Double 

For j = 1 To MaxComps: xmol2(j) = 0: Next 

xmol2(1) = Prop1 

xmol2(2) = Prop2 

If Not IsMissing(Prop3) Then xmol2(3) = Prop3 

If Not IsMissing(Prop4) Then xmol2(4) = Prop4 

If Not IsMissing(Prop5) Then xmol2(5) = Prop5 

If Not IsMissing(Prop6) Then xmol2(6) = Prop6 

If Not IsMissing(Prop7) Then xmol2(7) = Prop7 

If Not IsMissing(Prop8) Then xmol2(8) = Prop8 

If Not IsMissing(Prop9) Then xmol2(9) = Prop9 

If Not IsMissing(Prop10) Then xmol2(10) = Prop10 

If Not IsMissing(Prop11) Then xmol2(11) = Prop11 

If Not IsMissing(Prop12) Then xmol2(12) = Prop12 

If Not IsMissing(Prop13) Then xmol2(13) = Prop13 

If Not IsMissing(Prop14) Then xmol2(14) = Prop14 

If Not IsMissing(Prop15) Then xmol2(15) = Prop15 

If Not IsMissing(Prop16) Then xmol2(16) = Prop16 

If Not IsMissing(Prop17) Then xmol2(17) = Prop17 

If Not IsMissing(Prop18) Then xmol2(18) = Prop18 

If Not IsMissing(Prop19) Then xmol2(19) = Prop19 

If Not IsMissing(Prop20) Then xmol2(20) = Prop20 

Call CalcSetup(FluidName, "", "", 0, 0) 

If ierr > 0 Then Mole2Mass = Trim2(herr): Exit Function 

If i < 0 Or i > nc Then Mole2Mass = Trim2("Index out of Range (greater than number of 
components in mixture)"):  Exit Function 
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sum = 0 

For j = 1 To nc 

  sum = sum + xmol2(j) 

Next 

If Abs(sum - 1) > 0.0001 Then Mole2Mass = Trim2("Composition does not sum to 1"): Exit 
Function 

Call XMASSdll(xmol2(1), xkg2(1), wmix2) 

If i = 0 Then  'Molar mass of mixture 

  Mole2Mass = wmix2 

Else               'Mass fraction 

  Mole2Mass = xkg2(i) 

End If 

End Function 

 

'Change mass composition to molar composition 

'Prop1 - Prop20 are the mass values for the components in the mixture. 

'i specifies which component's mass fraction is returned.  If zero, the molar mass is returned 

Function Mass2Mole(FluidName, i, Prop1, Prop2, Optional Prop3, Optional Prop4, Optional 
Prop5, Optional Prop6, Optional Prop7, Optional Prop8, Optional Prop9, Optional Prop10, 
Optional Prop11, Optional Prop12, Optional Prop13, Optional Prop14, Optional Prop15, 
Optional Prop16, Optional Prop17, Optional Prop18, Optional Prop19, Optional Prop20) 

Dim j As Integer, xkg2(1 To MaxComps) As Double, xmol2(1 To MaxComps) As Double, 
wmix2 As Double, sum As Double 

For j = 1 To MaxComps: xkg2(j) = 0: Next 

xkg2(1) = Prop1 

xkg2(2) = Prop2 

If Not IsMissing(Prop3) Then xkg2(3) = Prop3 

If Not IsMissing(Prop4) Then xkg2(4) = Prop4 

If Not IsMissing(Prop5) Then xkg2(5) = Prop5 

If Not IsMissing(Prop6) Then xkg2(6) = Prop6 

If Not IsMissing(Prop7) Then xkg2(7) = Prop7 
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If Not IsMissing(Prop8) Then xkg2(8) = Prop8 

If Not IsMissing(Prop9) Then xkg2(9) = Prop9 

If Not IsMissing(Prop10) Then xkg2(10) = Prop10 

If Not IsMissing(Prop11) Then xkg2(11) = Prop11 

If Not IsMissing(Prop12) Then xkg2(12) = Prop12 

If Not IsMissing(Prop13) Then xkg2(13) = Prop13 

If Not IsMissing(Prop14) Then xkg2(14) = Prop14 

If Not IsMissing(Prop15) Then xkg2(15) = Prop15 

If Not IsMissing(Prop16) Then xkg2(16) = Prop16 

If Not IsMissing(Prop17) Then xkg2(17) = Prop17 

If Not IsMissing(Prop18) Then xkg2(18) = Prop18 

If Not IsMissing(Prop19) Then xkg2(19) = Prop19 

If Not IsMissing(Prop20) Then xkg2(20) = Prop20 

Call CalcSetup(FluidName, "", "", 0, 0) 

If ierr > 0 Then Mass2Mole = Trim2(herr): Exit Function 

If i < 0 Or i > nc Then Mass2Mole = Trim2("Index out of Range (greater than number of 
components in mixture)"):  Exit Function 

sum = 0 

For j = 1 To nc 

  sum = sum + xkg2(j) 

Next 

If Abs(sum - 1) > 0.0001 Then Mass2Mole = Trim2("Composition does not sum to 1"): Exit 
Function 

Call XMOLEdll(xkg2(1), xmol2(1), wmix2) 

If i = 0 Then  'Molar mass of mixture 

  Mass2Mole = wmix2 

Else               'Mole fraction 

  Mass2Mole = xmol2(i) 

End If 

End Function 
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Function EOSMax(FluidName, Optional InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcSetup(FluidName, "", Units, Prop1, Prop2) 

  If nc > 1 Then 

    Call LIMITXdll("EOS", 300#, 0#, 0#, x(1), tmin, tmax, dmax, pmax, ierr2, herr2, 3&, 
255&) 

  Else 

    Call LIMITKdll("EOS", 1, 300#, 0#, 0#, tmin, tmax, dmax, pmax, ierr2, herr2, 3&, 255&) 

  End If 

  If IsMissing(InpCode) Then InpCode = "" 

  If InpCode = "P" Or InpCode = "p" Then 

    EOSMax = ConvertUnits("-P", Units, pmax, 0) 

  ElseIf InpCode = "D" Or InpCode = "d" Then 

    EOSMax = ConvertUnits("-D", Units, dmax, 0) 

  Else 

    EOSMax = ConvertUnits("-T", Units, tmax, 0) 

  End If 

End Function 

 

Function EOSMin(FluidName, Optional InpCode, Optional Units, Optional Prop1, Optional 
Prop2) 

  Call CalcSetup(FluidName, "", Units, Prop1, Prop2) 

  If nc > 1 Then 

    Call LIMITXdll("EOS", 300#, 0#, 0#, x(1), tmin, tmax, dmax, pmax, ierr2, herr2, 3&, 
255&) 

  Else 

    Call LIMITKdll("EOS", 1, 300#, 0#, 0#, tmin, tmax, dmax, pmax, ierr2, herr2, 3&, 255&) 

  End If 

  If IsMissing(InpCode) Then InpCode = "" 
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  If InpCode = "P" Or InpCode = "p" Then 

    EOSMin = 0 

  ElseIf InpCode = "D" Or InpCode = "d" Then 

    EOSMin = 0 

  Else 

    EOSMin = ConvertUnits("-T", Units, tmin, 0) 

  End If 

End Function 

 

Function ErrorCode(InputCell) 

  ErrorCode = ierr 

End Function 

 

Function ErrorString(InputCell) 

  ErrorString = Trim2(herr) 

End Function 

 

Function Trim2(a) 

'All error messages call this routine to add the pound sign (#) to the beginning of the line. 

'If you do not want this error code, simply remove the ["#" +] piece below. 

'It can also be changed to any other symbol(s) you desire. 

  If Left(a, 1) <> "#" Then 

    Trim2 = "#" + Trim(a) 

  Else 

    Trim2 = Trim(a) 

  End If 

End Function 
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Function UnitConvert(InputValue, UnitType As String, OldUnits As String, NewUnits As 
String) 

 

'InputValue is the value to be converted from OldUnits to NewUnits 

'UnitType is one of the following letters (one character only in most cases): 

'UnitType     Unit name                          SI units 

'  T         Temperature                            K 

'  P         Pressure                               Pa 

'  D         Density or specific volume         mol/m^3 or kg/m^3 (or m^3/mol or m^3/kg) 

'  H         Enthalpy or specific energy        J/mol or J/kg 

'  S         Entropy or heat capacity           J/mol-K or J/kg-K 

'  W         Speed of sound                         m/s 

'  U         Viscosity                              Pa-s 

'  K         Thermal conductivity                   W/m-K 

'  JT        Joule Thompson                         K/Pa 

'  L         Length                                 m 

'  A         Area                                   m^2 

'  V         Volume                                 m^3 

'  M         Mass                                   kg 

'  F         Force                                  N 

'  E         Energy                                 J 

'  Q         Power                                  W 

'  N         Surface tension                        N/m 

' Gage pressures can be used by adding "_g" to the unit, e.g., "MPa_g" 

 

Dim Value As Double, Tpe As String, Unit1 As String, Unit2 As String 

Dim Drct As Integer, Gage As Integer, Vacm As Integer 

Dim MolWt As Double, Rgas As Double 
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If Not IsNumeric(InputValue) Then UnitConvert = 0: Exit Function 

If NewUnits = "" Then UnitConvert = InputValue: Exit Function 

Value = InputValue 

Tpe = UCase(Trim(UnitType)) 

Unit1 = UCase(Trim(OldUnits)) 

Unit2 = UCase(Trim(NewUnits)) 

 

Rgas = 8.314472 

Call WMOLdll(x(1), wm) 

If CompFlag = 1 Then Call WMOLdll(xliq(1), wm) 

If CompFlag = 2 Then Call WMOLdll(xvap(1), wm) 

MolWt = wm 

 

For Drct = 1 To -1 Step -2 

'----------------------------------------------------------------------- 

'   Temperature Conversion 

'----------------------------------------------------------------------- 

  If Tpe = "T" Then 

    If Unit1 = "K" Then 

    ElseIf Unit1 = "C" Then 

      Value = Value + Drct * CtoK 

    ElseIf Unit1 = "R" Then 

      Value = Value * RtoK ^ Drct 

    ElseIf Unit1 = "F" Then 

      If Drct = 1 Then 

        'Value = RtoK * (Value + FtoR)    'Does not give exactly zero at 32 F 

        Value = (Value - 32) * RtoK + CtoK 

      Else 

        'Value = Value / RtoK - FtoR      'Does not give exactly 32 at 273.15 K 
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        Value = (Value - CtoK) / RtoK + 32 

      End If 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Pressure Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "P" Then 

    Gage = InStr(Unit1, "GAGE") 

    Vacm = InStr(Unit1, "VACM") 

    If Gage = 0 Then Gage = InStr(Unit1, "_G") 

    If Vacm = 0 Then Vacm = InStr(Unit1, "_V") 

    If Gage <> 0 And Drct = -1 Then Value = Value - ATMtoMPa 

    If Vacm <> 0 And Drct = -1 Then Value = ATMtoMPa - Value 

    If Gage <> 0 Then Unit1 = Trim(Left(Unit1, Gage - 1)) 

    If Vacm <> 0 Then Unit1 = Trim(Left(Unit1, Vacm - 1)) 

    If Unit1 = "PA" Then 

      Value = Value / 1000000 ^ Drct 

    ElseIf Unit1 = "KPA" Then 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "MPA" Then 

      Value = Value 

    ElseIf Unit1 = "GPA" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "BAR" Then 

      Value = Value * BARtoMPA ^ Drct 

    ElseIf Unit1 = "KBAR" Then 
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      Value = Value * (BARtoMPA * 1000) ^ Drct 

    ElseIf Unit1 = "ATM" Then 

      Value = Value * ATMtoMPa ^ Drct 

    ElseIf Unit1 = "KGF/CM^2" Or Unit1 = "KG/CM^2" Or Unit1 = "ATA" Or Unit1 = 
"AT" Or Unit1 = "ATMA" Then 

      Value = Value * (KGFtoN / 100) ^ Drct 

    ElseIf Unit1 = "PSI" Or Unit1 = "PSIA" Then 

      Value = Value * PSIAtoMPA ^ Drct 

    ElseIf Unit1 = "PSF" Then 

      Value = Value * (PSIAtoMPA / 144) ^ Drct 

    ElseIf Unit1 = "MMHG" Or Unit1 = "TORR" Then 

      Value = Value * MMHGtoMPA ^ Drct 

    ElseIf Unit1 = "CMHG" Then 

      Value = Value * (MMHGtoMPA * 10) ^ Drct 

    ElseIf Unit1 = "INHG" Then 

      Value = Value * (MMHGtoMPA * INtoM * 1000) ^ Drct 

    ElseIf Unit1 = "INH2O" Then 

      Value = Value * INH2OtoMPA ^ Drct 

    ElseIf Unit1 = "PSIG" Then 

      If Drct = 1 Then 

        Value = PSIAtoMPA * Value + ATMtoMPa 

      Else 

        Value = (Value - ATMtoMPa) / PSIAtoMPA 

      End If 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

    If Gage <> 0 And Drct = 1 Then Value = Value + ATMtoMPa 

    If Vacm <> 0 And Drct = 1 Then Value = ATMtoMPa - Value 
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'----------------------------------------------------------------------- 

'   Density Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "D" Then 

    If Value = 0 Then Value = 1E-50 

    If Unit1 = "MOL/DM^3" Or Unit1 = "MOL/L" Or Unit1 = "KMOL/M^3" Then 

    ElseIf Unit1 = "MOL/CM^3" Or Unit1 = "MOL/CC" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "MOL/M^3" Then 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "KG/M^3" Then 

      Value = Value / MolWt ^ Drct 

    ElseIf Unit1 = "KG/DM^3" Or Unit1 = "KG/L" Then 

      Value = Value * (1000 / MolWt) ^ Drct 

    ElseIf Unit1 = "G/DM^3" Or Unit1 = "G/L" Then 

      Value = Value * (1 / MolWt) ^ Drct 

    ElseIf Unit1 = "G/CC" Or Unit1 = "G/CM^3" Or Unit1 = "G/ML" Then 

      Value = Value * (1000 / MolWt) ^ Drct 

    ElseIf Unit1 = "G/DM^3" Then 

      Value = Value * (1 / MolWt) ^ Drct 

    ElseIf Unit1 = "LBM/FT^3" Or Unit1 = "LB/FT^3" Then 

      Value = Value * (LBMtoKG / FT3toM3 / MolWt) ^ Drct 

    ElseIf Unit1 = "LBMOL/FT^3" Then 

      Value = Value * (LBMtoKG / FT3toM3) ^ Drct 

    ElseIf Unit1 = "SLUG/FT^3" Then 

      Value = Value * (LBMtoKG / FT3toM3 / MolWt * KGFtoN / FTtoM) ^ Drct 

    ElseIf Unit1 = "LB/GAL" Then 

      Value = Value * (LBMtoKG / GALLONtoM3 / MolWt) ^ Drct 
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'----------------------------------------------------------------------- 

'   Specific Volume Conversion 

'----------------------------------------------------------------------- 

    ElseIf Unit1 = "DM^3/MOL" Or Unit1 = "L/MOL" Or Unit1 = "M^3/KMOL" Then 

      Value = 1 / Value 

    ElseIf Unit1 = "CM^3/MOL" Or Unit1 = "CC/MOL" Or Unit1 = "ML/MOL" Then 

      Value = 1000 / Value 

    ElseIf Unit1 = "M^3/MOL" Then 

      Value = 1 / Value / 1000 

    ElseIf Unit1 = "M^3/KG" Then 

      Value = 1 / Value / MolWt 

    ElseIf Unit1 = "DM^3/KG" Or Unit1 = "L/KG" Then 

      Value = 1000 / Value / MolWt 

    ElseIf Unit1 = "CC/G" Or Unit1 = "CM^3/G" Or Unit1 = "ML/G" Then 

      Value = 1000 / Value / MolWt 

    ElseIf Unit1 = "DM^3/G" Then 

      Value = 1 / Value / MolWt 

    ElseIf Unit1 = "FT^3/LBM" Or Unit1 = "FT^3/LB" Then 

      Value = 1 / Value * (LBMtoKG / FT3toM3 / MolWt) 

    ElseIf Unit1 = "FT^3/LBMOL" Then 

      Value = 1 / Value * (LBMtoKG / FT3toM3) 

    ElseIf Unit1 = "FT^3/SLUG" Then 

      Value = 1 / Value * (LBMtoKG / FT3toM3 / MolWt * KGFtoN / FTtoM) 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

    If Abs(Value) < 1E-30 Then Value = 0 
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'----------------------------------------------------------------------- 

'   Specific Energy and Enthalpy Conversions 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "H" Then 

    If Unit1 = "J/MOL" Or Unit1 = "KJ/KMOL" Then 

    ElseIf Unit1 = "KJ/MOL" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "MJ/MOL" Then 

      Value = Value * 1000000 ^ Drct 

    ElseIf Unit1 = "KJ/KG" Or Unit1 = "J/G" Then 

      Value = MolWt ^ Drct * Value 

    ElseIf Unit1 = "J/KG" Then 

      Value = (MolWt / 1000) ^ Drct * Value 

    ElseIf Unit1 = "M^2/S^2" Then 

      Value = (MolWt / 1000) ^ Drct * Value 

    ElseIf Unit1 = "FT^2/S^2" Then 

      Value = (MolWt / 1000 * FTtoM ^ 2) ^ Drct * Value 

    ElseIf Unit1 = "CAL/MOL" Or Unit1 = "KCAL/KMOL" Then 

      Value = CALtoJ ^ Drct * Value 

    ElseIf Unit1 = "CAL/G" Or Unit1 = "KCAL/KG" Then 

      Value = (CALtoJ * MolWt) ^ Drct * Value 

    ElseIf Unit1 = "BTU/LBM" Or Unit1 = "BTU/LB" Then 

      Value = (BTUtoKJ / LBMtoKG * MolWt) ^ Drct * Value 

    ElseIf Unit1 = "BTU/LBMOL" Then 

      Value = (BTUtoKJ / LBMtoKG) ^ Drct * Value 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 
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'----------------------------------------------------------------------- 

'   Entropy and Heat Capacity Conversions 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "S" Then 

    If Unit1 = "J/MOL-K" Or Unit1 = "KJ/KMOL-K" Then 

      Value = Value 

    ElseIf Unit1 = "KJ/MOL-K" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "KJ/KG-K" Or Unit1 = "J/G-K" Then 

      Value = MolWt ^ Drct * Value 

    ElseIf Unit1 = "J/KG-K" Then 

      Value = (MolWt / 1000) ^ Drct * Value 

    ElseIf Unit1 = "BTU/LBM-R" Or Unit1 = "BTU/LB-R" Then 

      Value = (BTUtoKJ / LBMtoKG / RtoK * MolWt) ^ Drct * Value 

    ElseIf Unit1 = "BTU/LBMOL-R" Then 

      Value = (BTUtoKJ / LBMtoKG / RtoK) ^ Drct * Value 

    ElseIf Unit1 = "CAL/G-K" Or Unit1 = "CAL/G-C" Or Unit1 = "KCAL/KG-K" Or Unit1 
= "KCAL/KG-C" Then 

      Value = (CALtoJ * MolWt) ^ Drct * Value 

    ElseIf Unit1 = "CAL/MOL-K" Or Unit1 = "CAL/MOL-C" Then 

      Value = CALtoJ ^ Drct * Value 

    ElseIf Unit1 = "FT-LBF/LBMOL-R" Then 

      Value = (FTLBFtoJ / LBMtoKG / RtoK / 1000) ^ Drct * Value 

    ElseIf Unit1 = "CP/R" Then 

      Value = Rgas ^ Drct * Value * 1000 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 
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'----------------------------------------------------------------------- 

'   Speed of Sound Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "W" Then 

    If Unit1 = "M/S" Then 

    ElseIf Unit1 = "M^2/S^2" Then 

      Value = Sqr(Value) 

    ElseIf Unit1 = "CM/S" Then 

      Value = Value / 100 ^ Drct 

    ElseIf Unit1 = "KM/H" Then 

      Value = Value * (1000 / HtoS) ^ Drct 

    ElseIf Unit1 = "FT/S" Then 

      Value = Value * FTtoM ^ Drct 

    ElseIf Unit1 = "IN/S" Then 

      Value = Value * INtoM ^ Drct 

    ElseIf Unit1 = "MILE/H" Or Unit1 = "MPH" Then 

      Value = Value * (INtoM * 63360 / HtoS) ^ Drct 

    ElseIf Unit1 = "KNOT" Then 

      Value = Value * 0.5144444444 ^ Drct 

    ElseIf Unit1 = "MACH" Then 

      Value = Value * Sqr(1.4 * 298.15 * 8314.51 / 28.95853816) ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Viscosity Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "U" Then 
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    If Unit1 = "PA-S" Or Unit1 = "KG/M-S" Then 

    ElseIf Unit1 = "MPA-S" Then      'Note:  This is milliPa-s, not MPa-s 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "UPA-S" Then 

      Value = Value / 1000000 ^ Drct 

    ElseIf Unit1 = "G/CM-S" Or Unit1 = "POISE" Then 

      Value = Value / 10 ^ Drct 

    ElseIf Unit1 = "CENTIPOISE" Then 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "MILLIPOISE" Or Unit1 = "MPOISE" Then 

      Value = Value / 10000 ^ Drct 

    ElseIf Unit1 = "MICROPOISE" Or Unit1 = "UPOISE" Then 

      Value = Value / 10000000 ^ Drct 

    ElseIf Unit1 = "LBM/FT-S" Or Unit1 = "LB/FT-S" Then 

      Value = Value * (LBMtoKG / FTtoM) ^ Drct 

    ElseIf Unit1 = "LBF-S/FT^2" Then 

      Value = Value * (LBFtoN / FTtoM ^ 2) ^ Drct 

    ElseIf Unit1 = "LBM/FT-H" Or Unit1 = "LB/FT-H" Then 

      Value = Value * (LBMtoKG / FTtoM / HtoS) ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Thermal Conductivity Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "K" Then 

    If Unit1 = "MW/M-K" Then 

    ElseIf Unit1 = "W/M-K" Then 
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      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "G-CM/S^3-K" Then 

      Value = Value / 100 ^ Drct 

    ElseIf Unit1 = "KG-M/S^3-K" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "CAL/S-CM-K" Then 

      Value = Value * (CALtoJ * 100000) ^ Drct 

    ElseIf Unit1 = "KCAL/HR-M-K" Then 

      Value = Value * (CALtoJ * 100000 * 1000 / 100 / 3600) ^ Drct 

    ElseIf Unit1 = "LBM-FT/S^3-F" Or Unit1 = "LB-FT/S^3-F" Then 

      Value = Value * (1000 * LBMtoKG * FTtoM / RtoK) ^ Drct 

    ElseIf Unit1 = "LBF/S-F" Then 

      Value = Value * (1000 * LBFtoN / RtoK) ^ Drct 

    ElseIf Unit1 = "BTU/H-FT-F" Then 

      Value = Value * (1000 * BTUtoW / HtoS / FTtoM / RtoK) ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Joule-Thomson Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "JT" Then 

    If Unit1 = "K/MPA" Or Unit1 = "C/MPA" Then 

    ElseIf Unit1 = "K/KPA" Or Unit1 = "C/KPA" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "K/PA" Or Unit1 = "C/PA" Then 

      Value = Value * 1000000 ^ Drct 

    ElseIf Unit1 = "C/ATM" Then 
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      Value = Value / ATMtoMPa ^ Drct 

    ElseIf Unit1 = "C/BAR" Then 

      Value = Value / BARtoMPA ^ Drct 

    ElseIf Unit1 = "K/PSI" Or Unit1 = "K/PSIA" Then 

      Value = Value / PSIAtoMPA ^ Drct 

    ElseIf Unit1 = "F/PSI" Or Unit1 = "F/PSIA" Or Unit1 = "R/PSIA" Then 

      Value = Value / (PSIAtoMPA / RtoK) ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Length Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "L" Then 

    If Unit1 = "METER" Or Unit1 = "M" Then 

    ElseIf Unit1 = "DM" Then 

      Value = Value / 10 ^ Drct 

    ElseIf Unit1 = "CM" Then 

      Value = Value / 100 ^ Drct 

    ElseIf Unit1 = "MM" Then 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "KM" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "INCH" Or Unit1 = "IN" Then 

      Value = Value * INtoM ^ Drct 

    ElseIf Unit1 = "FOOT" Or Unit1 = "FT" Then 

      Value = Value * FTtoM ^ Drct 

    ElseIf Unit1 = "YARD" Or Unit1 = "YD" Then 
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      Value = Value * (INtoM * 36) ^ Drct 

    ElseIf Unit1 = "MILE" Or Unit1 = "MI" Then 

      Value = Value * (INtoM * 63360) ^ Drct 

    ElseIf Unit1 = "LIGHT YEAR" Then 

      Value = Value * 9.46055E+15 ^ Drct 

    ElseIf Unit1 = "ANGSTROM" Then 

      Value = Value / 10000000000# ^ Drct 

    ElseIf Unit1 = "FATHOM" Then 

      Value = Value * (FTtoM * 6) ^ Drct 

    ElseIf Unit1 = "MIL" Then 

      Value = Value * (INtoM / 1000) ^ Drct 

    ElseIf Unit1 = "ROD" Then 

      Value = Value * (INtoM * 16.5 * 12) ^ Drct 

    ElseIf Unit1 = "PARSEC" Then 

      Value = Value * (30837400000000# * 1000) ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Area Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "A" Then 

    If Unit1 = "METER^2" Or Unit1 = "M^2" Then 

    ElseIf Unit1 = "CM^2" Then 

      Value = Value / 10000 ^ Drct 

    ElseIf Unit1 = "MM^2" Then 

      Value = Value / 1000000 ^ Drct 

    ElseIf Unit1 = "KM^2" Then 
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      Value = Value * 1000000 ^ Drct 

    ElseIf Unit1 = "INCH^2" Or Unit1 = "IN^2" Then 

      Value = Value * (INtoM ^ 2) ^ Drct 

    ElseIf Unit1 = "FOOT^2" Or Unit1 = "FT^2" Then 

      Value = Value * (FTtoM ^ 2) ^ Drct 

    ElseIf Unit1 = "YARD^2" Or Unit1 = "YD^2" Then 

      Value = Value * ((INtoM * 36) ^ 2) ^ Drct 

    ElseIf Unit1 = "MILE^2" Or Unit1 = "MI^2" Then 

      Value = Value * ((INtoM * 63360) ^ 2) ^ Drct 

    ElseIf Unit1 = "ACRE" Then 

      Value = Value * ((INtoM * 36) ^ 2 * 4840) ^ Drct 

    ElseIf Unit1 = "BARN" Then 

      Value = Value * 1E-28 ^ Drct 

    ElseIf Unit1 = "HECTARE" Then 

      Value = Value * 10000 ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Volume Conversion (Note: not specific volume) 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "V" Then 

    If Unit1 = "METER^3" Or Unit1 = "M^3" Then 

    ElseIf Unit1 = "CM^3" Then 

      Value = Value / 1000000 ^ Drct 

    ElseIf Unit1 = "LITER" Or Unit1 = "L" Or Unit1 = "DM^3" Then 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "INCH^3" Or Unit1 = "IN^3" Then 
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      Value = Value * IN3toM3 ^ Drct 

    ElseIf Unit1 = "FOOT^3" Or Unit1 = "FT^3" Then 

      Value = Value * (IN3toM3 * 12 ^ 3) ^ Drct 

    ElseIf Unit1 = "YARD^3" Or Unit1 = "YD^3" Then 

      Value = Value * (IN3toM3 * 36 ^ 3) ^ Drct 

    ElseIf Unit1 = "GALLON" Or Unit1 = "GAL" Then 

      Value = Value * GALLONtoM3 ^ Drct 

    ElseIf Unit1 = "QUART" Or Unit1 = "QT" Then 

      Value = Value * (GALLONtoM3 / 4) ^ Drct 

    ElseIf Unit1 = "PINT" Or Unit1 = "PT" Then 

      Value = Value * (GALLONtoM3 / 8) ^ Drct 

    ElseIf Unit1 = "CUP" Then 

      Value = Value * (GALLONtoM3 / 16) ^ Drct 

    ElseIf Unit1 = "OUNCE" Then 

      Value = Value * (GALLONtoM3 / 128) ^ Drct 

    ElseIf Unit1 = "TABLESPOON" Or Unit1 = "TBSP" Then 

      Value = Value * (GALLONtoM3 / 256) ^ Drct 

    ElseIf Unit1 = "TEASPOON" Or Unit1 = "TSP" Then 

      Value = Value * (GALLONtoM3 / 768) ^ Drct 

    ElseIf Unit1 = "CORD" Then 

      Value = Value * (FT3toM3 * 128) ^ Drct 

    ElseIf Unit1 = "BARREL" Then 

      Value = Value * (GALLONtoM3 * 42) ^ Drct 

    ElseIf Unit1 = "BOARD FOOT" Then 

      Value = Value * (IN3toM3 * 144) ^ Drct 

    ElseIf Unit1 = "BUSHEL" Then 

      Value = Value * 0.03523907016688 ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 



254 
 

    End If 

 

'----------------------------------------------------------------------- 

'   Mass Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "M" Then 

    If Unit1 = "KG" Then 

    ElseIf Unit1 = "G" Then 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "MG" Then            'milligram 

      Value = Value / 1000000 ^ Drct 

    ElseIf Unit1 = "LBM" Or Unit1 = "LB" Then 

      Value = Value * LBMtoKG ^ Drct 

    ElseIf Unit1 = "GRAIN" Then 

      Value = Value * (LBMtoKG / 7000) ^ Drct 

    ElseIf Unit1 = "SLUG" Then 

      Value = Value * (KGFtoN * LBMtoKG / FTtoM) ^ Drct 

    ElseIf Unit1 = "TON" Then 

      Value = Value * (LBMtoKG * 2000) ^ Drct 

    ElseIf Unit1 = "TONNE" Then 

      Value = Value * 1000 ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Force Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "F" Then 
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    If Unit1 = "NEWTON" Or Unit1 = "N" Then 

    ElseIf Unit1 = "MN" Then 'milliNewtons 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "KGF" Then 

      Value = Value * KGFtoN ^ Drct 

    ElseIf Unit1 = "DYNE" Then 

      Value = Value / 100000 ^ Drct 

    ElseIf Unit1 = "LBF" Then 

      Value = Value * LBFtoN ^ Drct 

    ElseIf Unit1 = "POUNDAL" Then 

      Value = Value * (LBMtoKG * FTtoM) ^ Drct 

    ElseIf Unit1 = "OZF" Then 

      Value = Value * (LBFtoN / 16) ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Energy Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "E" Then 

    If Unit1 = "JOULE" Or Unit1 = "J" Then 

    ElseIf Unit1 = "KJ" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "MJ" Then 

      Value = Value * 1000000 ^ Drct 

    ElseIf Unit1 = "KW-H" Then 

      Value = Value * (HtoS * 1000) ^ Drct 

    ElseIf Unit1 = "CAL" Then 
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      Value = CALtoJ ^ Drct * Value 

    ElseIf Unit1 = "KCAL" Then 

      Value = Value * (CALtoJ * 1000) ^ Drct 

    ElseIf Unit1 = "ERG" Then 

      Value = Value / 10000000 ^ Drct 

    ElseIf Unit1 = "BTU" Then 

      Value = Value * (BTUtoKJ * 1000) ^ Drct 

    ElseIf Unit1 = "FT-LBF" Then 

      Value = Value * FTLBFtoJ ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Power Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "Q" Then 

    If Unit1 = "WATT" Or Unit1 = "W" Then 

    ElseIf Unit1 = "KWATT" Or Unit1 = "KW" Then 

      Value = Value * 1000 ^ Drct 

    ElseIf Unit1 = "BTU/S" Then 

      Value = Value * BTUtoW ^ Drct 

    ElseIf Unit1 = "BTU/MIN" Then 

      Value = Value * (BTUtoW / 60) ^ Drct 

    ElseIf Unit1 = "BTU/H" Then 

      Value = Value * (BTUtoW / HtoS) ^ Drct 

    ElseIf Unit1 = "CAL/S" Then 

      Value = Value * CALtoJ ^ Drct 

    ElseIf Unit1 = "KCAL/S" Then 
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      Value = Value * (CALtoJ * 1000) ^ Drct 

    ElseIf Unit1 = "CAL/MIN" Then 

      Value = Value * (CALtoJ / 60) ^ Drct 

    ElseIf Unit1 = "KCAL/MIN" Then 

      Value = Value * (CALtoJ / 60 * 1000) ^ Drct 

    ElseIf Unit1 = "FT-LBF/S" Then 

      Value = Value * FTLBFtoJ ^ Drct 

    ElseIf Unit1 = "FT-LBF/MIN" Then 

      Value = Value * (FTLBFtoJ / 60) ^ Drct 

    ElseIf Unit1 = "FT-LBF/H" Then 

      Value = Value * (FTLBFtoJ / HtoS) ^ Drct 

    ElseIf Unit1 = "HP" Then 

      Value = Value * HPtoW ^ Drct 

    Else 

      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

 

'----------------------------------------------------------------------- 

'   Surface Tension Conversion 

'----------------------------------------------------------------------- 

  ElseIf Tpe = "N" Then 

    If Unit1 = "N/M" Then 

    ElseIf Unit1 = "MN/M" Then 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "DYNE/CM" Or Unit1 = "DYN/CM" Then 

      Value = Value / 1000 ^ Drct 

    ElseIf Unit1 = "LBF/FT" Then 

      Value = Value * LBFTtoNM ^ Drct 

    Else 
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      UnitConvert = Trim2("Undefined input unit"): Exit Function 

    End If 

  End If 

  Unit1 = Unit2 

Next Drct 

UnitConvert = Value 

End Function 

 

Sub SetupUnits(i) 

 

'Warning:  If any of these are changed (to make them the default) after the program has run, 

'  you will need to exit Excel and restart it so that it reinitializes 

 

'Refprop Units 

  tUnits2 = "K" 

  taUnits2 = "K" 

  pUnits2 = "kPa" 

  dUnits2 = "mol/dm^3" 

  vUnits2 = "dm^3/mol" 

  hUnits2 = "J/mol" 

  sUnits2 = "J/mol-K" 

  wUnits2 = "m/s" 

  visUnits2 = "uPa-s" 

  tcxUnits2 = "W/m-K" 

  stUnits2 = "N/m" 

'Default units: (SI) 

  tUnits(0) = "K" 

  taUnits(0) = "K" 

  pUnits(0) = "MPa" 
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  dUnits(0) = "kg/m^3" 

  vUnits(0) = "m^3/kg" 

  hUnits(0) = "kJ/kg" 

  sUnits(0) = "kJ/kg-K" 

  wUnits(0) = "m/s" 

  visUnits(0) = "uPa-s" 

  tcxUnits(0) = "mW/m-K" 

  stUnits(0) = "mN/m" 

'Default units but with K switch to C (SI with C) 

  tUnits(5) = "C" 

  taUnits(5) = "K" 

  pUnits(5) = "MPa" 

  dUnits(5) = "kg/m^3" 

  vUnits(5) = "m^3/kg" 

  hUnits(5) = "kJ/kg" 

  sUnits(5) = "kJ/kg-K" 

  wUnits(5) = "m/s" 

  visUnits(5) = "uPa-s" 

  tcxUnits(5) = "mW/m-K" 

  stUnits(5) = "mN/m" 

'Default units on a molar basis (Molar SI) 

  tUnits(6) = "K" 

  taUnits(6) = "K" 

  pUnits(6) = "MPa" 

  dUnits(6) = "mol/dm^3" 

  vUnits(6) = "dm^3/mol" 

  hUnits(6) = "J/mol" 

  sUnits(6) = "J/mol-K" 

  wUnits(6) = "m/s" 
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  visUnits(6) = "uPa-s" 

  tcxUnits(6) = "mW/m-K" 

  stUnits(6) = "mN/m" 

'mks (mks) 

  tUnits(1) = "K" 

  taUnits(1) = "K" 

  pUnits(1) = "kPa" 

  dUnits(1) = "kg/m^3" 

  vUnits(1) = "m^3/kg" 

  hUnits(1) = "kJ/kg" 

  sUnits(1) = "kJ/kg-K" 

  wUnits(1) = "m/s" 

  visUnits(1) = "uPa-s" 

  tcxUnits(1) = "W/m-K" 

  stUnits(1) = "mN/m" 

'cgs (cgs) 

  tUnits(2) = "K" 

  taUnits(2) = "K" 

  pUnits(2) = "MPa" 

  dUnits(2) = "g/cm^3" 

  vUnits(2) = "cm^3/g" 

  hUnits(2) = "J/g" 

  sUnits(2) = "J/g-K" 

  wUnits(2) = "cm/s" 

  visUnits(2) = "uPa-s" 

  tcxUnits(2) = "mW/m-K" 

  stUnits(2) = "dyn/cm" 

'English (E) 

  tUnits(3) = "F"             'See comments above 
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  taUnits(3) = "R" 

  pUnits(3) = "psia" 

  dUnits(3) = "lbm/ft^3" 

  vUnits(3) = "ft^3/lbm" 

  hUnits(3) = "Btu/lbm" 

  sUnits(3) = "Btu/lbm-R" 

  wUnits(3) = "ft/s" 

  visUnits(3) = "lbm/ft-s" 

  tcxUnits(3) = "Btu/h-ft-F" 

  stUnits(3) = "lbf/ft" 

'Mixed (M) 

  tUnits(4) = "K" 

  taUnits(4) = "K" 

  pUnits(4) = "psia" 

  dUnits(4) = "g/cm^3" 

  vUnits(4) = "cm^3/g" 

  hUnits(4) = "J/g" 

  sUnits(4) = "J/g-K" 

  wUnits(4) = "m/s" 

  visUnits(4) = "uPa-s" 

  tcxUnits(4) = "mW/m-K" 

  stUnits(4) = "mN/m" 

End Sub 

 

Function ConvertUnits(InpCode, Units, Prop1, Prop2) 

Dim i As Integer, at As String, bt As String, tConv As Double, DefaultUnits As Integer 

 

If IsMissing(InpCode) Then InpCode = "" 

If IsMissing(Units) Then Units = "" 
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If IsMissing(Prop1) Then Prop1 = 0 

If IsMissing(Prop2) Then Prop2 = 0 

If ierr > 0 Then ConvertUnits = Trim2(herr): Exit Function 

If tUnits2 = "" Then 

  Call SetupUnits(0)  'If Default units are changed, this needs to be called again.  Normally it 
is skipped after the first entry 

End If 

'Change the 0 in the following line to 3 for default English units, 1 for mks, or 2 for cgs, etc. 

DefaultUnits = 0 

i = DefaultUnits 

'Do not change the order of the next 7 statements 

If Left(UCase(Units), 2) = "SI" Then i = 0                       'SI 

If UCase(Units) = "SI WITH C" Or UCase(Units) = "C" Then i = 5   'SI with C 

If Left(UCase(Units), 1) = "M" Then i = 4                        'Mixed 

If UCase(Units) = "MOLAR SI" Then i = 6                          'Molar SI 

If UCase(Units) = "MKS" Then i = 1                               'mks 

If UCase(Units) = "CGS" Then i = 2                               'cgs 

If Left(UCase(Units), 1) = "E" Then i = 3                        'English 

 

at = UCase(Left(InpCode, 1)) 

bt = UCase(Mid(InpCode, 2, 1)) 

If at = "-" Then 

  ConvertUnits = Prop1 

  If Prop1 >= -9999999 And Prop1 <= -9999900 Then 

    If Prop1 = CLng(Prop1) Then 

      ConvertUnits = Trim2("Undefined") 

      Exit Function 

    End If 

  End If 
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  'If Len(Trim(Prop1)) > 0 Then 

    If bt = "T" Then ConvertUnits = UnitConvert(Prop1, "T", tUnits2, tUnits(i)) 

    If bt = "A" Then ConvertUnits = UnitConvert(Prop1, "T", taUnits2, taUnits(i)) 

    If bt = "P" Then ConvertUnits = UnitConvert(Prop1, "P", pUnits2, pUnits(i)) 

    If bt = "D" Then ConvertUnits = UnitConvert(Prop1, "D", dUnits2, dUnits(i)) 

    If bt = "V" Then ConvertUnits = UnitConvert(Prop1, "D", vUnits2, vUnits(i)) 

    If bt = "H" Or bt = "E" Then ConvertUnits = UnitConvert(Prop1, "H", hUnits2, hUnits(i)) 

    If bt = "S" Then ConvertUnits = UnitConvert(Prop1, "S", sUnits2, sUnits(i)) 

    If bt = "W" Then ConvertUnits = UnitConvert(Prop1, "W", wUnits2, wUnits(i)) 

    If bt = "U" Then ConvertUnits = UnitConvert(Prop1, "U", visUnits2, visUnits(i)) 

    If bt = "K" Then ConvertUnits = UnitConvert(Prop1, "K", tcxUnits2, tcxUnits(i)) 

    If bt = "N" Then ConvertUnits = UnitConvert(Prop1, "N", stUnits2, stUnits(i)) 

  'End If 

  If bt = "J" Then 

    tConv = 1 

    If tUnits(i) = "R" Or tUnits(i) = "F" Then tConv = 1 / RtoK 

    ConvertUnits = Prop1 * tConv / UnitConvert(1, "P", "kPa", pUnits(i)) 

  End If 

Else 

  If Len(Trim(Prop1)) > 0 Then 

    If at = "T" Then Prop1 = UnitConvert(Prop1, "T", tUnits(i), tUnits2) 

    If at = "A" Then Prop1 = UnitConvert(Prop1, "T", taUnits(i), taUnits2) 

    If at = "P" Then Prop1 = UnitConvert(Prop1, "P", pUnits(i), pUnits2) 

    If at = "D" Then Prop1 = UnitConvert(Prop1, "D", dUnits(i), dUnits2) 

    If at = "V" Then Prop1 = UnitConvert(Prop1, "D", vUnits(i), vUnits2) 

    If at = "H" Or at = "E" Then Prop1 = UnitConvert(Prop1, "H", hUnits(i), hUnits2) 

    If at = "S" Then Prop1 = UnitConvert(Prop1, "S", sUnits(i), sUnits2) 

    If at = "W" Then Prop1 = UnitConvert(Prop1, "W", wUnits(i), wUnits2) 

    If at = "U" Then Prop1 = UnitConvert(Prop1, "U", visUnits(i), visUnits2) 
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    If at = "K" Then Prop1 = UnitConvert(Prop1, "K", tcxUnits(i), tcxUnits2) 

    If at = "N" Then Prop1 = UnitConvert(Prop1, "N", stUnits(i), stUnits2) 

  End If 

 

  If Len(Trim(Prop2)) > 0 Then 

    If bt = "T" Then Prop2 = UnitConvert(Prop2, "T", tUnits(i), tUnits2) 

    If bt = "A" Then Prop2 = UnitConvert(Prop2, "T", taUnits(i), taUnits2) 

    If bt = "P" Then Prop2 = UnitConvert(Prop2, "P", pUnits(i), pUnits2) 

    If bt = "D" Then Prop2 = UnitConvert(Prop2, "D", dUnits(i), dUnits2) 

    If bt = "V" Then Prop2 = UnitConvert(Prop2, "D", vUnits(i), vUnits2) 

    If bt = "H" Or bt = "E" Then Prop2 = UnitConvert(Prop2, "H", hUnits(i), hUnits2) 

    If bt = "S" Then Prop2 = UnitConvert(Prop2, "S", sUnits(i), sUnits2) 

    If bt = "W" Then Prop2 = UnitConvert(Prop2, "W", wUnits(i), wUnits2) 

    If bt = "U" Then Prop2 = UnitConvert(Prop2, "U", visUnits(i), visUnits2) 

    If bt = "K" Then Prop2 = UnitConvert(Prop2, "K", tcxUnits(i), tcxUnits2) 

    If bt = "N" Then Prop2 = UnitConvert(Prop2, "N", stUnits(i), stUnits2) 

  End If 

End If 

End Function 
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