Department of Chemical Engineering

Investigation of Compressible Fluid Behaviour in a Vent Pipe during Blowdown

Farhan Liyakat Husain Rajiwate

This thesis is presented for the Degree of Master of Philosophy (Chemical Engineering)
of
Curtin University

August 2011

Declaration

To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made.

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university.

Signature:

Date: \qquad

Dedications

To Mum and Dad

"Never regard study as a duty, but as the enviable opportunity to learn to know the liberating influence of beauty in the realm of the spirit for your personal joy and to the profit of the community to which your later work belongs"

Albert Einstein

Abstract

In the process industry, upset conditions can result in the release of fluids to the atmosphere. Such a release process is known as 'Blowdown’. Accurate modeling and prediction of the blowdown process is important in determining the consequences of venting operations and the design conditions required for vent and flare systems. The predicted information such as the rate at which the fluids are released, the total quantity of fluids released and the physical state of the fluid is valuable and helps in evaluating the new process designs, process improvements and improves the safety of the existing processes.

Blowdown events, amongst other transient processes, are the subject of particular interest to the chemical, oil/gas, and power industries. In the process plants, particularly in the hydrocarbon industry, there are many large vessels and pipelines operating under pressure and containing hydrocarbon mixture. Depressurization of such equipment's is frequently necessary during maintenance, and in an emergency it may have to be rapid. Hazards arise because of the very low temperatures generated within the fluid during the process and also from the large total efflux and high efflux rates that arise from the large inventory of the long pipelines and high pressure vessels. This inevitably leads to a reduction in the temperature of the vessel / pipeline and associated vent system, possibly to a temperature below the ductile-brittle transition temperature of the material from which the vessel, pipeline or piping is fabricated. To date, a number of blowdown models and simulation codes related to pressure vessels and pipelines have been developed to estimate the blowdown conditions in pressure vessels and pipelines. There is no general model developed specifically for analyzing the conditions developed in a vent pipe.

The scope of this work encompasses investigating the behavior of compressible gas in a vent pipe, during venting, by developing a vent pipe model. A fluid dynamic and thermodynamic approach is used in developing the model. The investigation is focused on the pressure, temperature and flow rates of flowing gas and pipe wall temperatures. The model is validated with experimental data generated by performing steady-state venting runs using compressed air. The model is also validated by comparing the simulations performed in Aspen Hysys for single component gases such as air, carbon dioxide, methane and multicomponent gases which are in very close agreement.

Acknowledgement

It is great pleasure for me to acknowledge all the people who helped me to accomplish this dissertation. First of all I would like to express my deepest gratitude to my supervisor Dr. Hari B. Vuthaluru for giving me the opportunity to pursue my Master's Degree and the incredible support provided during this study. I would like to thank my co-supervisor's Mr. Clinton Smith, Principal Process Engineer at Atkins Global and Mr. Dennis Kirk-Burnnand, Principal Consultant at GHD Pty Ltd, for their timely support. Their in-depth advice, encouragement, easy accessibility and freedom for work helped me to explore new ideas and to complete the work in time. I would also like to thank Professor Moses Tadé, Dean of Engineering and Professor Ming H. Ang, Chairman of thesis committee, for evaluating my work.

I would like to thank all members of the administrations at Chemical Engineering Department as well as library staff for their help during this course. Timely help from the secretarial staff, Mrs. Naomi Mockford is highly appreciated. The support given by the technical staff, notably Mr. John Murray, Ms. Karen Haynes, Mr. Jason Wright, Mr. Carl Lewis, Mr. Ashley Hughes and Mr. Pierre Bastouil is worth mentioning. I am also thankful to my colleagues at Independent Metallurgical Operations Pty Ltd, especially Mr. David Symons, Managing Director, Mr. Steve McGhee, Director, Mr. Dennis Boska, Project Development Manager and Mrs. Sharon O’Reilly, Recruitment Consultant for all the support they have provided during this thesis. I would also like to thank my friends Faizaan, Jawad and Riyadh for all their help in nontechnical matters.

Finally, all the credentials of this degree go to my beloved parents. This course would not have been possible without the financial support given by my father Mr. Liyakat Husain Gulmohamad Rajiwate. I am deeply indebted to my parents, my brother Fahim and sister Faiza, who have been with me at every step before and during this project completion. Last but not the least my wife, Simin's support before and during this thesis writing cannot be expressed in words. I also acknowledge everyone who has assisted me directly or indirectly in the completion of this work. Their assistance is invaluable and shall always be held in high regards.

Brief Biography of Author

Author of this thesis Mr. Farhan Rajiwate has completed Bachelor of Chemical Engineering in year 2007 from Thadomal Shahani Engineering College, Mumbai, India, standing with First Class Distinction. He worked as a graduate for Bharat Petroleum Corporation Ltd, India where he was responsible for simulation of MTBE plant. He joined Curtin University, Perth, Australia in February 2008 with the enrolment in Postgraduate Diploma in Chemical Engineering. On successfully completing PG Diploma, he enrolled in Master of Philosophy (Chemical Engineering) to work on the industry related research offered to him by GHD Pty Ltd. During his time as a researcher, he was employed as a Process Engineer for Independent Metallurgical Operations Pty Ltd (IMO) and has worked on a number of mineral processing projects related to copper, gold, iron-ore and manganese with experience in plant commissioning, plant operation, and designing. Prior to joining IMO, he worked for Nuplex Industries, a polyester resin company, Perth and SGS Australia, Perth as a vacation-work student. Farhan holds interest in process engineering related to oil \& gas as well as mineral processing, specifically in the field of process modeling / simulations, process control and plant operations.

He has written the following paper in the support of this thesis:

- "Investigations into Compressible Gas Behavior in a Vent Pipe during Blowdown", a paper to be submitted for PSE-2012 conference, Singapore.

Thesis Contents

Dedications I
Abstract II
Acknowledgement III
Brief Biography of Author IV
List of Figures VIII
List of Tables XV
Nomenclature XVI
Chapter 1
Introduction and Objectives 1
1.1 Objectives 2
1.2 Thesis Outline 4
Chapter 2
Literature Review 5
2.1 Blowdown 5
2.2 Blowdown Process 6
2.2.1 Blowdown of Pressure Vessel 7
2.2.2 Blowdown of Pipeline 8
2.3 Blowdown or Emergency Depressurising Systems 9
2.3.1 Pressure Safety Valve 10
2.4 Thermophysical Property 11
2.5 Blowdown Effects 12
2.6 Investigations into Developed Simulation Codes and Models 13
2.7 Summary of Literature Review 24
Chapter 3
Model Development 26
3.1 Development of Mathematical Models 27
3.1.1 Basic Conservation Equations 27
3.1.2 Theoretical Aspects Related to Compressible Fluid Flow Behavior 31
3.1.3 Model Assumptions 32
3.1.4 Development of Adiabatic Frictional Model 34
3.2 Modeling Approach 46
3.2.1 Simulation Object 46
3.2.2 Method of Solution 46
3.3 Computations 51
Chapter 4
Results and Discussion 53
4.1 Experimental Design 53
4.2 Instrumentation and Data Collection 55
4.3 Experimental Data Noise Reduction 56
4.4 Experimental Analysis 61
4.5 Experimental Validation 62
4.5.1 Experiment VPM-1 63
4.5.2 Experiment VPM-4 67
4.5.3 Experiment VPM-7 70
4.6 Validation with Hysys 75
4.6.1 Comparison with Hysys Simulation for Air. 75
4.6.2 Comparison with Hysys Simulation for Carbon-dioxide 87
4.6.3 Comparison with Hysys Simulation for Methane 96
4.6.4 Comparison with Hysys Simulation for DBNGP Mixture: 104
Chapter 5
Conclusions and Recommendations for Future Work 112
5.1 Conclusions 112
5.1.1 Comparison of Vent Pipe Model Predictions with Experimental Analysis 112
5.1.2 Comparison of Vent Pipe Model Predictions with Aspen Hysys 113
5.2 Recommendations 114
Appendices 116
References 265

List of Figures

Figure 2-1: An air receiver with automatic isolation and blowdown valve installation (Spirax Sarco Limited 2011)

Figure 2-2: Gas pipeline with a sectionalizing valve in centre, a typical shop fabricated blowdown riser and valve on the left, and a typical field fabricated riser on the right (Gradle 1984)
Figure 2-3: Typical layout of vent testing facility (Skouloudis 1992) 9
Figure 2-4: Spring loaded PRV (American Petroleum Institute 2008) 10
Figure 2-5: Typical inversion curve - Data for nitrogen gas (Wisniak and Avraham 1996) 12
Figure 2-6: Brittle fracture developed in a pressure vessel (Keenan 2009) 13
Figure 3-1: Variation of fluid properties with friction 36
Figure 3-2: Condition for maximum mass flux 39
Figure 3-3: Fanno curve (Enthalpy - Entropy diagram) Adapted from (Saad 1993) 41
Figure 3-4: Representation of equation 3-27 49
Figure 3-5: Algorithm for vent pipe model 52
Figure 4-1: Schematic representation of the vent pipe assembly. 54
Figure 4-2: Noise reduction for pressure transducers $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ 59
Figure 4-3: Noise reduction for temperature sensors $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ 60
Figure 4-4: Noise reduction for flow-meter 61
Figure 4-5: Comparison of model predicted stagnation temperatures with experimentalstagnation temperatures for VPM-164
Figure 4-6: Comparison of model predicted wall temperatures with experimental walltemperatures for VPM-164
Figure 4-7: Comparison of model predicted standard volumetric flow rate with experimentalstandard volumetric flow rate for VPM-165
Figure 4-8: Experimental pressure measurements for VPM-1 65

Figure 4-9: Comparison of model predicted stagnation temperature with experimental stagnation temperature for VPM-4 68

Figure 4-10: Comparison of model predicted wall temperature with experimental wall temperature for VPM-4 68

Figure 4-11: Comparison of model predicted standard volumetric flowrate with experimental standard volumetric flow for VPM-4. 69

Figure 4-12: Experimental pressure for VPM-4 ... 70
Figure 4-13: Comparison of model predicted stagnation temperature with experiment stagnation temperature for VPM-7... 71

Figure 4-14: Comparison of model predicted stagnation temperature with experiment stagnation temperature for VPM-7... 71

Figure 4-15: Comparison of model predicted standard volumetric flowrate with experiment flowrate for VPM-7. 72

Figure 4-16: Experiment pressure measurements for VPM-7 .. 73
Figure 4-17: Aspen Hysys Simulation Flowsheet.. 74
Figure 4-18: Predicted pressure comparison of vent pipe model with Hysys simulation for air in the pressure range 100-500 KPa gauge... 77

Figure 4-19: Predicted temperature comparison of vent pipe model with Hysys simulation for air in the pressure range 100-500 KPa gauge... 77

Figure 4-20: Predicted mach no. comparison of vent pipe model with Hysys simulation for air in pressure range 100-500 KPa gauge 78

Figure 4-21: Predicted density comparison of vent pipe model with Hysys simulation for air in the pressure range 100-500 KPa gauge .78

Figure 4-22: Predicted velocity comparison of vent pipe model with Hysys simulation for air in the pressure range 100-500 KPa gauge. .79

Figure 4-23: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for air in pressure range $100-500 \mathrm{KPa}$ gauge 79

Figure 4-24: Predicted pressure comparison of vent pipe model with Hysys for air in the pressure range 600-1000 KPa gauge84

Figure 4-25: Predicted temperature comparison of vent pipe model with Hysys simulation for air in the pressure range 600-1000 KPa gauge.. 84

Figure 4-26: Predicted mach no. comparison of vent pipe model with Hysys simulation for air in the pressure range 600-1000 KPa gauge.. 85 Figure 4-27: Predicted density comparison of vent pipe model with Hysys simulation for air in the pressure range 600-1000 KPa gauge. 85

Figure 4-28: Predicted velocity comparison of vent pipe model with Hysys simulation for air in the pressure range 600-1000 KPa gauge. 86

Figure 4-29: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for air in the pressure range 600-1000 KPa gauge

Figure 4-30: Predicted pressure comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 100-500 KPa gauge. 88

Figure 4-31: Predicted temperature comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 100-500 KPa gauge .88

Figure 4-32: Predicted Mach no. comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 100-500 KPa gauge. 89

Figure 4-33: Predicted density comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 100-500 KPa gauge 89

Figure 4-34: Predicted velocity comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 100-500 KPa gauge .90

Figure 4-35: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for CO_{2} in the pressure range 100-500 KPa gauge. 90

Figure 4-36: Predicted pressure comparison of vent pipe model with Hysys simulation for CO2 in pressure range 600-1000 KPa gauge. .93

Figure 4-37: Predicted temperature comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range $600-1000 \mathrm{KPa}$ gauge 93

Figure 4-38: Predicted Mach no. comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 600-1000 KPa gauge.. 94

Figure 4-39: Predicted density comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 600-1000 KPa gauge.

Figure 4-40: Predicted velocity comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 600-1000 KPa gauge.

Figure 4-41: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for CO_{2} in the pressure range 600-1000 KPa gauge.

Figure 4-42: Predicted pressure comparison of vent pipe with Hysys simulation for methane in pressure range 100-500 KPa gauge. .97

Figure 4-43: Predicted temperature comparison of vent pipe with Hysys simulation for methane in pressure range 100-500 KPa gauge. .97

Figure 4-44: Predicted Mach no. comparison of vent pipe model with Hysys simulation for methane in pressure range $100-500 \mathrm{KPa}$ gauge .98

Figure 4-45: Predicted density comparison of vent pipe model with Hysys simulation for methane in pressure range 100-500 KPa gauge .98

Figure 4-46: Predicted velocity comparison of vent pipe model with Hysys simulation for methane in pressure range 100-500 KPa gauge

Figure 4-47: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for methane in pressure range 100-500 KPa gauge

Figure 4-48: Predicted pressure comparison of vent pipe model with Hysys simulation for methane in pressure range $600-1000 \mathrm{KPa}$ gauge 100

Figure 4-49: Predicted temperature comparison of vent pipe model with Hysys simulation for methane in pressure range $600-1000 \mathrm{KPa}$ gauge

Figure 4-50: Predicted Mach no. comparison of vent pipe model with Hysys simulation for methane in pressure range 600-1000 KPa gauge 101

Figure 4-51: Predicted density comparison of vent pipe model with Hysys simulation for methane in pressure range 600-1000 KPa gauge 101

Figure 4-52: Predicted velocity comparison of vent pipe model with Hysys simulation for methane in pressure range $600-1000 \mathrm{KPa}$ gauge 102

Figure 4-53: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for methane in pressure range 600-1000 KPa gauge 102
Figure 4-54: Predicted pressure comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 100-500 KPa gauge .. 106

> Figure 4-55: Predicted temperature comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 100-500 KPa gauge ... 106

Figure 4-56: Predicted Mach no. comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 100-500 KPa gauge 107

Figure 4-57: Predicted density comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 100-500 KPa gauge 107

Figure 4-58: Predicted velocity comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 100-500 KPa gauge 108

Figure 4-59: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for DBNGP in pressure range 100-500 KPa gauge

Figure 4-60: Predicted pressure comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 600-1000 KPa gauge

Figure 4-61: Predicted temperature comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 600-1000 KPa gauge ... 109

Figure 4-62: Predicted Mach no. comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 600-1000 KPa gauge 110

Figure 4-63: Predicted density comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 600-1000 KPa gauge 110

Figure 4-64: Predicted velocity comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 600-1000 KPa gauge 111

Figure 4-65: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for DBNGP in pressure range 600-1000 KPa gauge111
Figure B 7-1: Mechanical drawings for vent pipe assembly. 119
Figure B 7-2: Photographs of test rig 124
Figure F 11-1: Vent pipe model predictions for air gas at 100 KPa gauge 146
Figure F 11-2: Vent pipe model predictions for air gas at 200 KPa gauge 147
Figure F 11-3: Vent pipe model predictions for air gas at 300 KPa gauge. 148
Figure F 11-4: Vent pipe model predictions for air gas at 400 KPa gauge. 149
Figure F 11-5: Vent pipe model predictions for air gas at 500 KPa gauge 150

Figure F 11-6: Vent pipe model predictions for air gas at 600 KPa gauge............................... 151
Figure F 11-7: Vent pipe model predictions for air gas at 700 KPa gauge............................... 152
Figure F 11-8: Vent pipe model predictions for air gas at sonic conditions 153
Figure F 11-9: Vent pipe model predictions for methane gas at 100 KPa gauge 154
Figure F 11-10: Vent pipe model predictions for methane gas at 200 KPa gauge 155
Figure F 11-11: Vent pipe model predictions for methane gas at 300 KPa gauge 156
Figure F 11-12: Vent pipe model predictions for methane gas at 400 KPa gauge 157
Figure F 11-13: Vent pipe model predictions for methane gas at 500 KPa gauge 158
Figure F 11-14: Vent pipe model predictions for methane gas at 600 KPa gauge 159
Figure F 11-15: Vent pipe model predictions for methane gas at 700 KPa gauge 160
Figure F 11-16: Vent pipe model predictions for methane gas at sonic conditions.................. 161
Figure F 11-17: Vent pipe model predictions for carbon-dioxide gas at 100 KPa gauge.......... 162
Figure F 11-18: Vent pipe model predictions for carbon-dioxide gas at 200 KPa gauge.......... 163
Figure F 11-19: Vent pipe model predictions for carbon-dioxide gas at 300 KPa gauge.......... 164
Figure F 11-20: Vent pipe model predictions for carbon-dioxide gas at 400 KPa gauge.......... 165
Figure F 11-21: Vent pipe model predictions for carbon-dioxide gas at 500 KPa gauge.......... 166
Figure F 11-22: Vent pipe model predictions for carbon-dioxide gas at 600 KPa gauge.......... 167
Figure F 11-23: Vent pipe model predictions for carbon-dioxide gas at 700 KPa gauge.......... 168
Figure F 11-24: Vent pipe model predictions for carbon-dioxide gas at sonic conditions 169
Figure F 11-25: Vent pipe model predictions for DBNGP gas mixture at 100 KPa gauge 170
Figure F 11-26: Vent pipe model predictions for DBNGP gas mixture at 200 KPa gauge 171
Figure F 11-27: Vent pipe model predictions for DBNGP gas mixture at 300 KPa gauge 172
Figure F 11-28: Vent pipe model predictions for DBNGP gas mixture at 400 KPa gauge 173
Figure F 11-29: Vent pipe model predictions for DBNGP gas mixture at 500 KPa gauge 174
Figure F 11-30: Vent pipe model predictions for DBNGP gas mixture at 600 KPa gauge 175
Figure F 11-31: Vent pipe model predictions for DBNGP gas mixture at 700 KPa gauge 176

Figure F 11-32: Vent pipe model predictions for DBNGP gas mixture at sonic conditions
Figure H 13-1: Vent pipe model user specification sheet... 188
Figure H 13-2: Newtons Iteration method for nonlinear equations ... 190

List of Tables

Table 2-1: Various release categories (Nolan 1996) 6
Table 3-1: Pertinent equations related to frictional flow in constant area vent pipe. 34
Table 3-2: Static property relations for adiabatic flow in constant area vent pipe 35
Table 3-3: Stagnation property relation 37
Table 3-4: Explicit approximation for Colebrook-White friction factor equation 43Table 3-5: Overall average relative errors of fanning friction factor values obtained fromdifferent explicit equations compared with those from the CW equation (Ouyang and Aziz 1995;Swamee and Jain 1976; Romeo, Royo, and Monzon 2002; Sonnad and Goudar 2006) 44
Table 3-6: Property relations in terms of Mach number 47Table G 12-1: Comparison of vent pipe model predictions with Hysys simulation in pressurerange 100-500 KPa gauge for air179Table G 12-2: Comparison of vent pipe model predictions with Hysys simulation in pressurerange 600-1000 KPa gauge for air180
Table G 12-3: Comparison of vent pipe model predictions with Hysys simulation in pressurerange 100-500 KPa gauge for carbon-dioxide181
Table G 12-4: Comparison of vent pipe model predictions with Hysys simulation in pressurerange 600-1000 KPa gauge for carbon-dioxide182
Table G 12-5: Comparison of vent pipe model predictions with Hysys simulation in pressurerange 100-500 KPa gauge for methane.183
Table G 12-6: Comparison of vent pipe model predictions with Hysys simulation in pressurerange 600-1000 KPa gauge for methane184
Table G 12-7: Comparison of vent pipe model predictions with Hysys simulation in pressurerange 100-500 KPa gauge for DBNGP gas mixture185Table G 12-8: Comparison of vent pipe model predictions with Hysys simulation in pressurerange 600-1000 KPa gauge for DBNGP gas mixture186

Nomenclature

r	Recovery factor (-)	
S	Entropy (kJ/kg-K)	
T	Temperature (${ }^{\circ} \mathrm{C}$)	
T_{o}	Stagnation temperature	$\left({ }^{\circ} \mathrm{C}\right)$
T^{*}	Critical temperature (${ }^{\circ} \mathrm{C}$)	
$T_{a w}$	Adiabatic wall temperature	$\left({ }^{\circ} \mathrm{C}\right)$
V	Velocity (m/s)	
V^{*}	Critical velocity (m/sec)	
Z	Compressibility factor (-)	
ρ	Density ($\mathrm{kg} / \mathrm{m}^{3}$)	
ρ_{o}	Stagnation density (kg/m ${ }^{3}$)	
ρ^{*}	Critical density $\quad\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	
ε	Roughness (m)	
γ	Specific heat ratio (-)	
μ	Viscosity (Pa.s)	

Chapter 1

Introduction and Objectives

Designing sustainable processes is one of the key challenges of the chemical industry. This is by no means a trivial task as it requires translating the theoretical principles of chemical engineering into design practice. Process design is central to chemical engineering and can be considered to be the summit of chemical engineering, bringing together all of the components of that field. Properly designed, constructed, operated and maintained equipment will not fail provided that its design conditions are not exceeded. Risk reduction is another challenging task. Safety in process plants starts at the design stage and is followed by series of steps in order to reduce the risk completely.

In process plants, particularly in hydrocarbon industry, there are a large number of vessels and process piping which contain / carry large amounts of flammable inventories of hydrocarbons. Thus, the like hood of an occurrence of an incident or risk associated in such industry is high. Such incidents can be significantly reduced by performing safety assessments and appropriate safety precautions. Despite many safety precautions within the hydrocarbon industry, equipment failures or operator errors may cause upset in process conditions beyond safe levels. If these conditions rise too high, they may exceed the maximum strength of process vessels and process piping systems. This can result in the rupturing of process vessels or piping, causing major releases of toxic or flammable hydrocarbons. Such a sudden release process is called 'Blowdown'. Blowdown events, amongst other transient processes, are the subject of particular interest to the chemical, oil/gas, and power industries. Blowdown can be an unexpected process as seen on ruptured pipelines/process vessels or can be planned during maintenance of the process equipment's. Accurate modeling and prediction of the blowdown process is important in determining the consequences of venting operations and the design conditions required for vent and flare systems. The primary purpose for blowdown is to reduce pressure and remove inventory in the least amount of time possible. Hazards mainly arise due to the changes in equipment process conditions taking place during the blowdown process especially high efflux rates. This inevitably leads to a reduction in the temperature of the vessel / pipeline and associated vent piping system, possibly to a temperature below the ductile-brittle transition temperature of the material from which the vessel, pipeline or piping system is fabricated. At a temperature below the ductile-brittle transition temperature, the equipment material has a much greater tendency to shatter on impact instead bending or deforming. It is under these
circumstances that the lowest wall temperatures will often be observed. In such cases, prior estimations of the resulting temperature drop in the fluids and the equipment involved are of primary importance. Such estimations can be predicted by developing models for performing simulations of blowdown operations.

Today, safety is equal in importance to production and has developed into a scientific discipline which includes many highly technical and complex theories and practices. More complex processes require more complex safety technology. Examples of the technology of safety include hydrodynamic modeling of flow through relief systems, developing mathematical techniques to determine various ways that processes can fail and the probability of its failure etc. Many blowdown models related to pressure vessels and pipelines have been developed till date but each one has their own pros and cons. There is no general model developed specifically for analyzing the fluid conditions developed in a vent pipe. A simple model for analyzing a gas blowdown in vent pipe is required. The main objective of this work is to investigate the effects of changes in gas flow conditions at different pressures and develop a simple steady-state vent pipe model and validate the developed model by performing simulations in Aspen Hysys.Plant and experimental analysis.

1.1 Objectives

As mentioned above, accurate prediction of blowdown conditions is of primary importance. A number of blowdown models have been developed but no specific model is available for predicting the blowdown conditions in a vent pipe. A thorough investigation of gas behavior in a vent pipe during blowdown is required. Therefore, this study aims at developing a simple model for a vent pipe by performing steady-state calculations in MS Excel simultaneously utilizing Visual Basic code. Thermophysical properties for the gases are extracted from the REFPROP software by writing a Visual Basic code. The REFPROP software calculated the thermophysical properties using the GERG 2004 equation of state. This equation of state has been proved to be better than AGA8-DC92, Peng-Robinson and other cubic equation of state. Pressure and temperature variations of gas, temperature distribution on the vent pipe wall and the mass flow through the vent pipe are the key parameters which are to be predicted by modeling. These parameters govern the entire steady-state venting process. Hence, to investigate this venting process of the gas in a vent pipe and to validate the model, a 24 m long test rig is designed and constructed. Experiments related to compressible gases such as air are conducted. The literature available on venting through vent pipes is very scarce. Modeling of vent pipes associated with pressure vessels and long pipelines is mentioned in literature but these models are based on
hypothetical assumptions (no validation). Few validated models do exists but are not available on commercial scale. This investigation will be a significant contribution to the field of blowdown operations.

The main aim of this research is to achieve the following objectives:

1. Design and construction of a test rig. A combination of knowledge of related processes and application of chemical and mechanical engineering 'first principles' will be used to satisfactorily design and fabricate the test rig.
2. Investigation of the behavior of fluids during blowdown using fluid dynamics and thermodynamic approach.
3. Development of a vent pipe model into Microsoft Excel Visual Basic in order to predict the pressures and temperatures of the inventory (gas) and the vent pipe wall temperatures experienced during venting.
4. Analyzing the results obtained from blowing down the test rig with air gas and providing a brief discussion with respect to thermodynamic theories.
5. Validating the developed model with the results obtained from the test rig blowdown and Aspen Hysys.Plant.

1.2 Thesis Outline

This thesis comprises of the following in detail as shown below in the form of a flowchart:

Chapter 2

Literature Review

A brief literature review related to the blowdown of pressure vessels / pipelines', accentuating the development of a simple steady-state gas flow model in a vent pipe, provides research progress to date. An extensive literature on blowdown modeling and experimentation related to pressure vessels and pipelines exists and is discussed in this section of the thesis.

The first section of the literature review explains comprehensively the purpose of blowing down a pressure vessel / pipeline followed by a brief description of blowdown process in pressure vessels and pipelines. Different release cases are tabulated and the need to design Emergency Depressurization System is highlighted in this section. The second section emphasizes on the current industrial practices in designing Emergency Design Systems (EDS) and operation of a typical pressure relief valve. The third section involves reviewing of thermodynamic JouleThomson phenomenon taking place during the blowdown. This part will also provide insights into the responsible parameters for causing changes in process conditions during blowdown. The fourth section provides details of hazards related to depressurizing a pressure vessel / pipeline. This part also provides an insight of the brittlement theory related to metals. The next section is introduced here, which gives an extensive review on blowdown process modeling from safety perspective and provides detailed investigations performed by various researchers on blowdown modeling. A quick summarization of the available literature review is provided towards the end of this chapter with an objective to focus on a simple gas flow vent model.

2.1 Blowdown

In the last few decades, oil \& gas industries have shown excellent developing trends with respect to production and technology. National Petroleum Council (NPC) of United States evaluated the future demand and supply in oil and gas. This showed a growth by $50-60 \%$ in the demand for energy by 2030 (Holditch and Chianelli 2008). Growing demand for energy produced from natural resources such as oil and gas, coal, nuclear energy etc. calls for a strengthening in exploration and development. However, it is evident from the fact that growing demand for energy will pose a greater risk for the hazards that may arise in process industries. Processes involved in the production of oil and gas facilities are always associated with risks and should be recognized for probable hazards. One such process operation is the risk associated with
'Blowdown'. According to API (American Petroleum Institute 2007), the depressurization of a plant or part of a plant, or equipment is known as 'Blowdown'

During emergency situations in gas processing plants or on oil or gas platforms, the pressure of the vessels / pipelines containing inventory must be reduced to avoid possible accidents. This is mostly done by discharging the inventory to a flare or vent system (Evanger et al. 1995) and it is called 'depressurization'. The purpose of blowing down or depressurising a pressure vessel or a pipeline filled with inventory is to prevent the vessel or the pipeline from rupturing against 'overpressure' caused mainly due to process upsets or during a major fire exposure so that the resulting impacts to the vessel or pipeline are minimal. Sometimes, leaks due to abrupt rupture of process vessels or pipelines can result in emergency depressurization of the system. There are different instances during which blowdown of pressure vessels or pipelines section becomes necessary. These may be for a planned maintenance schedule especially during the shut-down or to protect the process equipment (vessel/pipeline) from over pressurization or in emergency situations which arises in the vicinity of fire. Thus, the entire blowdown process can be characterized to be a rapid release process. (Nolan 1996) has categorized such releases as described in table 2-1.

Table 2-1: Various release categories (Nolan 1996)

Catastrophic Failure	A vessel or pipeline opens completely immediately releasing its contents.
Long Rupture	A section of pipeline is removed being vented to atmosphere whose CS areas are equal to the CS area of the pipe.
Open Pipe	The end of a pipe is fully opened exposing the CS area of the pipe.
Vents, PRV	Smaller diameter piping or valves may be opened or fail which release vapours or liquids to the environment unexpectedly.
Normal Releases	Operation
Process storage or sewer vents, relief valve outlets, tank seals, which are considered normal and acceptable practices that release to the atmosphere.	

2.2 Blowdown Process

The physical phenomenon that occurs during depressurization or blowdown begins with an inventory filled vessel / pipeline reaching a trip pressure and the vessel / pipeline being isolated (Marian, Vuthaluru, and Ghantala). Such an arrangement is shown in figure 2-1 and figure 2-2 where an air receiver with automatic isolation and blowdown valve is installed and a gas pipeline with a sectionalizing valve in centre, a typical shop fabricated blowdown riser and
valve on the left, and a typical field fabricated riser on the right (Gradle 1984). As cited in the literature (Richardson and Saville 1991; Haque, Richardson, and Saville 1992; Norris III, Exxon Production Research Co, and R.C. Puls 1993; Fairuzov 1998), there exists a significant difference in the blowdown process occurring inside a vessel and long pipeline. Spatial uniformity of pressure distinguishes a vessel from a pipeline (Haque, Richardson, and Saville 1992).

2.2.1 Blowdown of Pressure Vessel

Skouloudis and Haque et al. have well explained the detailed phenomenon of the blowdown process from pressure vessels during top venting transients (Skouloudis 1992; Haque et al. 1989) and is addressed here. The initial process is actuated by opening of pressure relief valve (PRV) in both cases. The pressure vessel filled with inventory comprises of gas zone at the top, liquid zone at the bottom and sometimes a third zone for free water formed from condensation below the liquid zone. As soon as the relief valve opens, vapour contained in the freeboard volume of the pressure vessel will be released and the pressure falls rapidly inside the vessel. The liquid phase cannot follow this rapid change of pressure with a prompt change in temperature and the liquid becomes superheated. This leads to thermodynamic disequilibrium between the phases which are re-established after a short time by vigorous re-evaporation of the liquid. During this period the high depressurization rate is reduced followed by a marked pressure recovery which might occur when the vapour volume produced by evaporation exceeds the volume of the mixture which flows out of the vessel. Vapour still discharges through the vent line together with some droplets entrained from the interface separating the predominantly liquid and the predominantly vapour regions of the vessel. As soon as this level reaches the vent line a distinct two phase mixture is discharged with large liquid content. Nevertheless, the evaporation processes continue and the thermodynamic disequilibrium is reduced. The interface level gradually collapses so that the vent line is no longer blocked. Then a predominantly vapour mixture again leaves the vessel
with several liquid droplets entrained. During this process the pressure in the vessel falls continuously until a new state of equilibrium has been established with the surroundings.

2.2.2 Blowdown of Pipeline

Richardson et al. and Fairuzov have well explained the detailed phenomenon of the blowdown process from pipeline (Richardson and Saville 1991; Fairuzov 1998) as is addressed here. The process of pipeline depressurization can be divided into three stages: depressurization wave propagation, choked critical flow from the

Figure 2-2: Gas pipeline with a sectionalizing valve in centre, a typical shop fabricated blowdown riser and valve on the left, and a typical field fabricated riser on the right (Gradle 1984) line and unchoked critical flow from the line. Upon opening the blowdown valve, an expansion wave travels from the ruptured or open end of the line to the intact end of the line. The pressure at the intact end is unchanged from the initial pressure. The flow is choked at the ruptured or open end. After the expansion wave has reached the intact end of the pipeline, the fluid pressure inside the pipeline is very close to the saturation pressure corresponding to the fluid temperature. The pressure at the intact end starts to fall. However, this does not affect the flow condition at the open end of the pipeline and is still choked. The main contribution to the pressure drop in the line arises because of the friction at the wall. When the pressure in the line starts decreasing sufficiently, the flow from the ruptured end ceases to be choked. The main contribution to the pressure drop in the pipeline is again caused due to friction at the pipe wall. In case of flashing liquids, flashing occurs within the whole pipeline. The flashing process causes constant changes in the flow pattern. The fluid temperature decreases due to the drop in the fluid pressure. The pipe wall is cooled by the fluid flowing through the pipeline.

In both cases as the inventory passes through the choke Joule-Thomson expansion takes place. Rapid cooling takes place due to isenthalpic expansion of the high pressure gas through the throttling process. Due to Joule-Thomson expansion, the contained inventory cools and draws heat from the vessel / pipeline walls, thus producing an auto-refrigeration effect or cooling the vessel / pipeline walls. In case of gaseous phase expansion will take place. If liquid inventory is present, flashing takes place soon after its pressure reaches the saturation pressure corresponding
to the fluid temperature (Fairuzov 1998) and the composition of the inventory changes with decrease in pressure (Nageshwar 2003). Under this instance the mass flow rate of inventory depends on the supply pressure and will decrease as the supply pressure decreases (Hong et al. 2004). Such a rapid release process accentuates the designing of emergency depressurizing system and is discussed in the next section.

2.3 Blowdown or Emergency Depressurising Systems

In process industry, especially in hydrocarbon processing facilities, severe risks with respect to fire, explosions and vessel ruptures are always associated. Designing safe technology has always been a challenge for chemical engineers. Among the prime methods to prevent and limit the loss

Figure 2-3: Typical layout of vent testing facility (Skouloudis 1992) potential from such incidents are the provisions of hydrocarbon inventory isolation and removal system (Nolan 1996). These systems are referred to as Emergency Depressurizing Systems (Nolan 1996). For the emergency system relief in a chemical plant several types of venting device are installed such as nozzles, long pipes with or without bends, orifice plates or other safety relief valves. A typical layout of vent testing facility is shown in figure 2-3. Currently, industry tends to use American petroleum Institute's Recommended Practices 520 (American Petroleum Institute 2008) and American petroleum Institute's Recommended Practices 521 (American Petroleum Institute 2007) RP 521 defines a vapour depressurizing system as a protective arrangement of valves and piping intended to provide for rapid reduction of pressure in equipment by releasing vapours. API RP 521 defines a pressure-relieving system as an arrangement of a pressure-relieving device, piping and a means of disposal intended for the safe relief, conveyance and the disposal of the fluids in a vapour, liquid or gaseous state. Such a relieving system may consists of only one pressure relief valve or rupture disc, either with or without discharge pipe, on a single vessel or line. The function of blowdown facilities is to provide a means of venting the high pressure gas to the atmosphere in a relatively short period of time (Gradle 1984). To relieve the overpressure build-
up in the vessel or pipeline, the pressure vessels / pipelines are installed with blowdown valves or pressure relief valve (PRV) or pressure safety valve (PSV). These valves sense the overpressure and are actuated automatically or manually to relieve the overpressure by reducing the inventory and pressure within the isolated process vessel or pipeline section. The relieved inventory is routed to a safe location e.g. to a blowdown or knockout drum and then to a flare or a vent system to safely remove the vapours from the area and dispose without impact to the environment.

2.3.1 Pressure Safety Valve

Typically, hydrocarbon pressure vessels are provided with a pressure safety valve (PSV), to

Figure 2-4: Spring loaded PRV (American Petroleum Institute relieve internal pressure that develops above its designed working pressure. The purpose of the PSV is to protect the vessel from rupturing due to overpressure generated from process condition or exposure to fire heat loads that generate additional vaporization pressure inside the vessel. A blowdown valve is a pressure relief valve which is designed to open at a predetermined pressure in order to protect a vessel or system from excess pressure by removing or relieving fluid from that vessel or system. A typical arrangement of a spring loaded PRV is shown in figure 2-4. Although, different types of PRV's are available all differ from each other with respect to their operating function. As described in (American Petroleum Institute 2008), a spring loaded PRV consists of an inlet nozzle which is connected to the vessel or the system to be protected against overpressure, a movable disc which rests 2008) on the nozzle head under normal operating conditions and a spring which controls the position of the disc. The movable disc controls the flow through the nozzle. The spring loaded PRV works on the principle of force balance which acts on the movable disc on the nozzle. The spring load is preset to equal a force exerted on the movable disc (closed position) to equal the force exerted on the closed disc by the inlet fluid through the nozzle. Under normal operating conditions, the disc is seated on the nozzle head until the pressure exceeds the set pressure. Once the inlet pressure exceeds the set pressure, the pressure force overcomes the spring force and the valve opens. When the inlet pressure is reduced to the closing pressure, the valve re-closes. The
valve reseats when the inlet pressure or vessel pressure has dropped sufficiently below the set pressure and this pressure at which the valve reseats is called the closing pressure. The gas then passes through a vent system to the flare or vent header. A number of thermodynamic changes take place in the gas properties while releasing the gas through the vent pipe into the atmosphere. These changes in gas properties can have an impact on the vent pipe, thus, affecting the material of construction of the metal wall, especially when low temperatures are experienced in the process. To understand this phenomenon, the thermodynamic physical properties should be well understood.

2.4 Thermophysical Property

When a gas expands through a restriction from a high pressure to low pressure changes in temperature takes place. This process occurs under conditions of constant enthalpy and is known as Joule-Thomson expansion (Shoemaker, Garland, and Nibler 1996). Joule-Thomson expansion is a thermodynamic physical property which is experienced during blowdown. The temperature change is related to pressure change and is characterized by the Joule-Thomson coefficient. The temperature drop increases with increase of pressure drop and is proportional to the JouleThomson coefficient (Maric 2005). Joule-Thomson expansion takes place under adiabatic conditions such as well insulated vessel or pipeline. In case of an uninsulated vessel or pipeline the pressure change is rapid or the velocity of flow is high such that no heat transfer takes place. The Joule-Thomson expansion phenomenon can be well understood by passing a gas through a restriction while the fluid is allowed to expand adiabatically. During this process, no work is done and the changes in potential and kinetic energy are negligible. It has been proved that the gas flow through the restriction results in an isenthalpic (constant enthalpy) process (Jones and Hawkins 1986). Thus, the gas escaping through the choke from vessel or pipeline into the vent system will follow an isenthalpic path. At the same time, the gas flow pattern is affected because of the entrance valve port area and frictional resistance in the vent pipe (Gradle 1984). According to (Gradle 1984), an increase in the valve port area will increase the mass flow rate through the vent system resulting in choked flow condition. At the same time an increase in pressure drop results by an equivalent amount to valve port area opening. The pipe frictional effects will equally contribute to the pressure drop and will tend to increase the flow path resistance, thus, reducing the flow rate through the valve. Nonetheless, due to Joule-Thomson expansion the bold inventory contained in the vessel or pipeline cools and draws heat from the vessel / pipeline walls thus producing an auto-refrigeration effect. Generally, when JouleThomson expansion takes place, one of the two effects may take place- Joule-Thomson Cooling

Figure 2-5: Typical inversion curve -
effect and Joule-Thomson Inversion (heating) effect (Wisniak and Avraham 1996). Various authors (Wisniak and Avraham 1996; Maric 2005) have investigated and modelled the Joule-Thomson coefficients and inversion curves. An inversion line is a curve formed by passing through maximum temperature points for a given constant enthalpy line. As shown in the figure 2-5 the inversion curve divides the pressure-temperature plane for nitrogen gas into two Data for nitrogen gas (Wisniak and adiabatic Joule-Thomson effect is positive, so that Avraham 1996) decreasing the pressure leads to a decrease in temperature whereas outside the inversion curve the adiabatic Joule-Thomson effect is negative and a decrease in pressure leads to an increase in temperature. It is understood that an expansion that begins from the inversion pressure leads to the highest cooling effect (Wisniak and Avraham 1996).

2.5 Blowdown Effects

The problem related to the blowdown of pressure vessels / pipelines containing mixtures of hydrocarbons are well known amongst industries involved in plant designing and hydrocarbon extraction (Speranza and Terenzi 2005). As discussed earlier, during blowdown / depressurisation of a pressure vessel or pipeline the most common effect encountered is the Joule-Thomson Cooling effect. The primary hazard associated during this process is the occurrence of brittle fracture in the vessel / piping material due to sudden decrease in temperature.

Generally, steel type such as carbon steel and other ferritic steels which form the material of construction for most pressure vessels / pipelines become susceptible to brittle fracture with decrease in temperature (Khazrai, Haghighi, and Kordabadi 2001). The susceptibility of steel such as carbon steel to brittle fracture is related to temperature. As the temperature decreases, the susceptibility to brittle fracture increases (King 2006). If the temperature reaches close to or below the ductile-brittle transition temperature of the vessel / pipeline material of construction, the equipment will be prone to failure(Mahgerefteh and Wong 1999). The Joule-Thomson cooling effect provides the mechanism for low temperature exposure.

Figure 2-6: Brittle fracture developed in a pressure vessel (Keenan 2009)

Another key factor which increases the probability of metal brittle fracture is the minimum level of applied stress to propagate a brittle fracture. When the temperature of a body is raised, or lowered, the material expands or contracts. If this expansion or contraction is wholly or partially resisted, stresses are set up in the body (Case, Chilver, and Ross 1999). For the crack to propagate through the material of construction, it must have sufficient energy which is available in the form of 'overpressure'. At lower temperatures the yield strength is greater and the fracture is more brittle in nature. The reason for this could be atomic vibrations (Shackelford 2005). As the temperature of material decreases, atomic vibrations decreases and the atoms do not slip to new locations in the material. As the stress increases, the atoms break their bonds and do not form new ones. This decrease in slippage causes little plastic deformation before fracture. Thus, brittle fracture occurs with rapid crack propagation and results in a catastrophic failure of a material with little or no plastic deformation (King 2006). Figure 2-6 shows a pressure vessel under brittle fracture caused by cold water for a hydrostatic pressure test and then pressurizing the vessel. The temperature of the water caused the metal to become brittle.

A secondary hazard arises if there is a significant liquid. During complete blowdown of pressure vessel, the gas-liquid interface reaches the top of the vessel choke. This results in a significant liquid carryover with the gas into the vent or flare system. Carryover of a significant quantity of liquid can present considerable operational difficulties to a flare or vent system designed to handle gas alone(Haque, Richardson, and Saville 1992).

2.6 Investigations into Developed Simulation Codes and Models

The depressurization process is not amendable to simple analysis due to its highly transient unsteady-state nature. There are several parameters that characterize the venting processes and are classified according to their significance as geometrical, operational and physicochemical during depressurization. The influence of these parameters during depressurization is well studied (Skouloudis 1992). Nonetheless, the resulting effects from blowing down a pressure
vessel / pipeline can pose a significant safety hazard (Cumber 2001). Therefore, a fundamental study of the blowdown process is crucial in the assessment of safety practices and procedures to prevent or minimise the consequences of controlled or uncontrolled releases (Chen, Richardson, and Saville 1995a). Predicting the conditions occurring during blowdown has always been a challenge to chemical engineers (Mahgerefteh and Wong 1999). Consequently, in recent years there have been a number of theoretical and experimental studies relating to blowdown simulation with varying degree of sophistication (Mahgerefteh, Saha, and Economou 1999) and several empirical correlations have been proposed (Weiss, Botros, and Jungowski 1988). These models / coded programs developed are distinct from each other (very limited) in the range of applicability.

Several numerical codes are available for monitoring some or all of the parameters which are directly related to the depressurization of vessels or pipelines. These codes have been developed for different types of application and although in principle solve similar sets of conservation equations for the mass, momentum and energy. Despite based on the same principles, these codes / programs differ significantly from each other in context to describing the phenomenology of the transient, the method of solving the pertinent equations, homogeneity / non-homogeneity and thermodynamic equilibrium / disequilibrium assumptions for multiple phases. A number of benchmark exercises were conducted (Skouloudis 1992) which concentrated on the hydrodynamic aspects of venting of vessels containing fluids (water / refrigerant R114) under high pressure, identification of parameters characterizing the emergency relief as well as the problems associated with the theoretical modeling of such processes with four American codes namely RELAP, SAFIRE, RELIEF and DEERS

RELAP and its derivatives codes RELAP4/MOD6, RELAP5-EUR/MF (Worth, Staedtke, and Franchello 1993) were developed to describe the transient single and two phase flows in complex networks on the basis of a one dimensional approach. Correlations for single phase natural and forced convection, sub-cooled and saturated nucleate boiling, critical heat flux, transition boiling, minimum heat flux, annular and dispersed film boiling and calculations for friction factors are included in the code. RELIEF (Nijsing and Brinkhof 1996) and DEERS (Skouloudis 1992) codes also use a one dimensional mass, momentum, and energy conservation equations. RELIEF code discretizes the vessel into several control volumes but a single control volume for a vent line. DEERS code can be used in the venting of a large variety of systems. However, the use of a single two phase model throughout the whole transient restricts the accuracy of its predictions. CHARME-01 (Stoop, Bogaard, and Koning 1986), a thermo-
hydraulic computer program developed in the late 1970's provided more accurate computational results in comparison with other numerical solution techniques in the calculation of transient thermo-hydraulic phenomenon. CHARME-01 code based on the Method of Characteristics (MOC) and includes proper treatment of the shock wave phenomenon. A comparison of CHARME-01 and RELAP4/RELAP5 was demonstrated by (Stoop, Bogaard, and Koning 1985) while describing the thermo-hydraulic loading condition of the reactor pressure vessel vent line in the event of hydrogen being released from the reactor vessel into the vent line. All these codes consisted of specific models for predicting the different conditions taking place during blowdown / depressurization of reactor vessels.

The DIERS computer program SAFIRE (System Analysis for Integrated Relief Evaluation) was developed primarily for vent-sizing calculations and for the interpreting the results of the largescale chemical reacting fluids. SAFIRE code is written in ANSI Standard FORTRAN-77 comprising of 9000 lines of FORTRAN with 66 subroutines (Tilley and Shaw 1990). The main feature of the SAFIRE is its ability to handle up to 10 simultaneous chemical reactions with 10 components. The program solves one dimensional mass, momentum, and energy conservation equations in the vent line and can also solve these pertinent equations for vessels; however, it assumes a single control volume for describing the vessel. The code can model many different aspects of emergency relief situations such as (Tilley and Shaw 1990)

- Complex runaway reactions with or without gas generation
- External heat loads (eg. Fire)
- Venting of gases or mixtures of liquids and gas
- Vapor-liquid disengagement in the vessel being vented
- Non-idealities in vapor-liquid equilibria and in gas compressibility
- Various vessels and vent line geometric combinations

SAFIRE has a wide range of vent flow calculation routines implemented as subroutines. Example: Compressible gas flow through a nozzle is handled by subroutine GASN using conventional gas dynamic relationships. Similar subroutine GASLT can also be used to solve the compressible flow through a nozzle. While there are many vent flow models available in SAFIRE, not all can be used in all situations. The choice of the most appropriate model for a particular scenario requires the user to have a detailed knowledge of the range of application of each model (Cumber 2001). The friction factor for vent line required for calculating the frictional pressure drop has to be user defined. The two phase friction factor is calculated based
on the single phase relationship which is based on the liquid phase viscosity (only). The physical properties for the components must be provided by the user in the input data in terms of the coefficients to the correlations included in SAFIRE. The use of several input options in characterizing the venting process makes the code user-dependent. An improper specification of a flow model may lead to gross under-sizing of vent system with catastrophic consequences, thus making the code very versatile. SAFIRE is not an appropriate tool for the inexperienced user (Tilley and Shaw 1990). The model assumes a Homogenous Equilibrium Model (HEM) and thermodynamic equilibrium for two phase system (Skouloudis 1992). A further difficulty with the application of SAFIRE is that model robustness has been found to be a problem (Cumber 2001).

For long gas pipelines in hydrocarbon service, the most impressive study was found by Botros et al. (Botros, Jungowski, and Weiss 1989). In this study, a very mechanistic analysis that included pipeline friction drop was supported by a full scale gas pipeline blowdown. Two physical models were described one which takes into account the main pipeline as the volume model (without frictional losses) with stagnation conditions inside the main pipe and the other as the pipe model (with frictional losses) with velocity increasing towards the exit. Solutions for the relevant model equations were obtained analytically and real gas properties for the gas (natural gas) were obtained numerically. Blowdown time was calculated and the results were compared with those obtained using the graphs (Gradle 1984) and own field measurements of a straight pipe section and a compressor station yard piping. Effects of stack entrance and friction losses and discharge coefficient were also evaluated. The study relates only to the main pipeline section and effects of stack entrance and friction losses upstream of the blowdown valve (throat area) are evaluated at which point sonic flow discharge results. Depending on the pressure in the main pipeline, a subsonic or supersonic flow will result downstream of the blowdown valve. The piping downstream of the blowdown valve or throat is neglected to provide simplicity in modeling approach.

We agree to the fact that the physical processes taking place during blowdown are a complicated mixture of several phenomena typically comprising of fluid mechanics, heat transfer, and phase equilibrium. To investigate into these phenomenon, a programme of experimental work was carried out (Haque et al. 1989). The experimental work was focused on depressurization related to pressure vessels which varied from 5 to 110 cm in diameter, with a length to diameter ratio of 10 to 3 respectively. Depressurization experiments were conducted with nitrogen, 70-30\% mixture of nitrogen and natural gas/propane mixtures. Measurements were taken which included
the pressure, temperatures at a large number of positions both within the fluid phases and on the wall of the vessel, and composition, all as a function of time which helped in the understanding of the blowdown process. Based on the investigations performed and experimental data available a mathematical model called 'BLOWDOWN' program was developed. The objective of this model is to be able to simulate all physically significant effects. Initial development (Haque et al. 1989) of 'BLOWDOWN' incorporated the presence of only two zones: the top zone contains only vapor together with any suspended liquid-phase droplets; and the bottom zone containing all liquid phase. The developed model provided a good understanding of the physical processes occurring during the blowdown, even for multi-component multiphase systems. However, it should be noted that there might be a possibility of free water formation settled below zone2. With this in mind, Haque et al. extended the above work and incorporated zone3 for free water (including dissolved hydrocarbons) in the 'BLOWDOWN' program (Haque, Richardson, and Saville 1992). This program was validated again (Haque et al. 1992) with a number of experiments performed on pressure vessels and case studies. The measurement results and predictions were found to be in good agreement.

The distinction between the blowdown of vessel and blowdown of a pipeline is that there is a significant pressure difference within the latter but not within the former. This significant pressure difference is mainly due to frictional effects encountered at the wall of the pipeline. Also, in case of blowdown of pipelines it becomes necessary in predicting high efflux rates that arise when the very large inventories are involved. With this in mind, an extension of the 'BLOWDOWN' program which can simulate the depressurization of a pipeline was undertaken (Richardson and Saville 1991). Richardson and Saville divided the pipeline into a number of elements and performed mass, momentum and energy balances for each element with variability in elemental size to satisfy a number of requirements (Richardson and Saville 1991). Pertinent equations involved in blowdown of gas line and condensate is well described and the developed model is validated with two case studies - one for the blowdown of the gas line between Piper and MCP-01 and the other is for the full-bore blowdown of a typical condensate line. A comparison of BLOWDOWN predictions with the measurements made during eight of the tests using LPG carried out by Shell and BP on the Isle of Grain in 1985 (Richardson and Saville 1996). Four of the tests were for full-bore depressurizations and four for depressurizations with orifices at the open ends of the lines. In all cases mentioned above, the BLOWDOWN predictions were found to be in good agreement.

Although mentioned the use of 'BLOWDOWN' program in simulating vessel / pipeline and associated vent / piping system (Haque, Richardson, and Saville 1992; Richardson and Saville 1991, 1996), no thorough calculation procedures or computer algorithms have been described. Also, the thermodynamic, phase and transport properties for BLOWDOWN are calculated using PREPROP, which is a computer package developed to calculate thermo-physical properties of multi-component mixtures by an extended principle of corresponding states which as well as introducing uncertainties associated with its accuracy (Jones and Hawkins 1986), makes the simulation computationally demanding (Mahgerefteh and Wong 1999).

A simple mechanistic model FRICRUP coded in FORTRAN program for predicting the blowdown process of vessels and pipelines for both single phase and multiphase flow was developed (Norris III, Exxon Production Research Co, and R.C. Puls 1993). A homogenous equilibrium model and thermodynamic equilibrium model assumption, along with no relative velocities between vapor and a liquid phase is assumed. The fact of steady-state hydrodynamic conditions prevails in the vented pipe after the vessel is presented. Experiments are conducted incorporating gases such as air, carbon dioxide and carbonated water for the validation of FRICRUP code. The results of experiment and predictions by model are in good agreement. The importance of pipe friction during the blowdown process is well highlighted. This factor confirmed that the modeling of pipelines as vessels can be easily seriously inadequate. Despite of its sophistication, the model does not agree very well for multiphase flow as can be seen from experiments performed with carbon-dioxide which could be because of the assumption of thermal equilibrium. Further experiments were carried out using several hydrocarbon gases including both methane and heavier mixtures (Norris III and Exxon Production Research Co 1994). The pronounced difference in the blowdown behavior between pipelines and vessels noted in the non-hydrocarbon experiments was confirmed for the hydrocarbon gases tested. The basic assumptions for the model remained the same and similar results were obtained as obtained when dealing with non-hydrocarbon gases.

Investigations into the blowdown of carbon dioxide from initially supercritical conditions have been performed (Gebbeken and Eggers 1995). The supercritical condition selected for the blowdown process was such that on pressure release flashing occurs after saturation condition has reached. Experiments were accomplished for initial conditions that varied in temperature, pressure, and minimum diameter of the venting line. Results showed that by enlarging the cross sectional area of the venting line the outgoing mass flow rate from the vessel is increased.

Thermo-hydraulic phenomenon were discussed, particularly the pressure transients, the axial temperature profile, and the axial void fraction profiles.

In order to evaluate the temperature effects of depressurization on the outside surface of the steel wall, a full scale depressurization tests on parts of the topside piping on a riser platform in operation was conducted (Evanger et al. 1995).The experimental results generated were compared to the simulation CFD (Computational Fluid Dynamics) code PIA, developed at NTH/SINTEF division. A one-dimensional and two dimensional analysis is performed by the code PIA and incorporates a finite difference technique for numerical calculation of general heat and mass transfer both in fluid and solid material. A brief description on the experimental set-up is given and the calculations performed for the outer steel pipe wall temperatures are in good agreement with the measurements. However, it seems to be that PIA gives satisfactory results for gas systems with not too much liquid present in the inventory.

Guerst's variational principle for bubbly flow was extended to generalized multi-component two phase dispersions, and formulated a two fluid model for single and multi-component vaporliquid mixtures (Chen, Richardson, and Saville 1995a). In particular focus was on the development of the energy conservation equation and equations of motion for compressible single or multi-component vapor-liquid mixtures using a thermodynamic equilibrium assumption. As described (Chen, Richardson, and Saville 1995a), the Guerst's variational principle allows both phases to be compressible in deriving the momentum equations which contradicts the definition of compressible flow. In the second part of the article, a simplified numerical method for solving two phase, multi-component flow equations was proposed and a detailed study of the blowdown from pipelines containing one and two component flashing mixtures was presented (Chen, Richardson, and Saville 1995b).

A mathematical model for simulating the blowdown of a pipeline conveying flashing multicomponent mixtures was developed (Fairuzov 1998). The major features of the model comprise of hydrodynamic model, break-flow model and heat transfer model are well explained. Fairuzov suggested that a large amount of heat is transferred from the pipe wall into the fluid during the blowdown process and hence the adiabatic assumption for simulating the blowdown process is not valid. Based on this assumption, the effect of thermal capacitance was incorporated into the model by employing a new approach in the formulation of energy conservation equation for the fluid flow in the pipeline. The study revealed that the thermal capacitance of the pipe wall has a significant influence on the two-phase flow behavior and
should not be neglected in the analysis of blowdown of long pipelines containing flashing liquids. The model was compared to experimental data of and the model predictions hold in good agreement to the experimental data. The effects of friction on the blowdown time were assessed.

Further development of BLOWDOWN model, based on cubic equation of state, for blowdown of vessels containing high pressure hydrocarbons was carried out (Mahgerefteh and Wong 1999). The model, termed as BLOWSIM incorporates the Soave Redlich Kwong EOS, Peng Robinson EOS and the newly developed TCC cubic EOS for simulating vapour space blowdown of vessels containing multicomponent hydrocarbon mixtures. BLOWSIM model takes into account the non-equilibrium effects between phases, heat transfer between each fluid phase and their corresponding sections of vessel wall, interphase fluxes due to evaporation and condensation, and the effects of sonic flow at the orifice. BLOWSIM predicts the discharge rates, pressure as well as the fluid and wall temperatures with time. The fluid phase material balances depending on the zones formed inside the vessel, thermodynamic trajectories for fluid phases, heat transfer between vessel wall-fluid phases, discharge calculations and calculation of thermophysical properties are well explained. The performance of BLOWSIM is evaluated by comparing the predictions generated to the predictions generated from BLOWDOWN as well as to the published field data for high pressure blowdown of a full size vessel containing a condensable hydrocarbon mixture. The model accurately predicts the vessel pressures as a function of time and is in close agreement with BLOWDOWN. The minimum average bulk gas temperature is predicted to within 2 K , the unwetted wall temperature is overestimated by $\sim 4 \mathrm{~K}$ and the wetted wall temperature is underestimated by $\sim 5 \mathrm{~K}$ when compared to measured data. The authors have provided reasoning for this over-estimation and under-estimation. The instantaneous formation of liquid phase at the start of depressurization is predicted much earlier by the BLOWSIM model then when compared to BLOWDOWN program.

An efficient numerical simulation (CNGS-MOC), based on the method of characteristics for simulating full bore rupture of long pipelines containing two phase hydrocarbon is developed (Mahgerefteh, Saha, and Economou 1999). The long CPU time has been largely addressed, and this has been synonymous so far with such types of simulations by using curved characteristics in conjunction with Compound Nested Grid System (CNGS). Curved characteristics are used as they can afford the use of much larger discretization grids; while at the same time improve the global accuracy. The method of characteristics is adopted to simulate the full bore rupture or blowdown of long pipelines containing condensable or two phase hydrocarbon mixtures. This
technique is employed as opposed to Finite Difference method and Finite Element Method as both have difficulty in handling the choking condition at the ruptured end. The MOC handles choked flow intrinsically via the Mach line characteristics and is more accurate then the FDM and FEM. The field data were from pipeline depressurization tests carried out in the Isle of Grain (Richardson and Saville 1996) as well as those recorded during the night of Piper Alpha tragedy. The performance of MOC in simulating Full bore rupture throughout the discharge process is compared to other solution techniques including META-HEM (Chen, Richardson, and Saville 1995a, 1995b), MSM-CS (Chen, Richardson, and Saville 1995a, 1995b), BLOWDOWN(Haque, Richardson, and Saville 1992; Haque et al. 1992) and PLAC(Hall, Butcher, and The 1993). The simulations were performed on the basis of a homogenous equilibrium model (HEM) in which all phases are assumed to be at thermal and phase equilibrium. Due to the absence of any theoretical and experimentally justified data for unsteady friction factor in rough pipes, this parameter was ignored in the model and steady-state friction factor estimated using the Moody approximation to Colebrook's equation. It is the most accurate expression available. Two phase mixtures are simply handled by replacing single phase properties by two-phase mixture properties. The simulations performed consider only rupture in straight, horizontal well anchored pipelines in which the fluid compressibility is by far smaller than pipe wall elasticity. Fluid structure interaction can effectively be ignored. Comparison showed that CNGS-MOC, META-HEM and BLOWDOWN gave very similar predictions with MSM doing less well and PLAC performing very poorly.

A model for predicting of outflow from high pressure vessels and associated vent pipe during accidental failure was developed (Cumber 2001). The model was developed with a view of incorporating its use in the safety assessments of industrial plant used to process or store flammable material which in turn will provide source conditions for the mathematical models of gas dispersion or accumulation and fires. For predicting the outflow, Cumber has sub divided the model into 3 sub models - a sub model for the vessel, a sub model for the vent conditions and a library of physical property data such that thermodynamic and phase information properties can be calculated as required. Model for a transient blowdown is described. The model is based on homogeneity of two phase flow and thermodynamic equilibrium assumption for both vessels and vent pipes. The system of ordinary differential equations is solved using the fourth order Runga Kutta method. The developed model was compared for validation purposes with the experimental data (Hervieu 1991), (Gebbeken and Eggers 1995) and (Haque et al. 1992) and the following was concluded. The vessel pressure and mass flowrate prediction is
well predicted. The vessel temperature is under-predicted, although this does not have a significant effect on the predicted mass flowrate. To ensure the robustness of the model, nonlinear system solvers Powell's hybrid method and the Simplex method of unconstrained optimization is incorporated into the model. However, the outflow model can fail when the phase of the vessel contents changes. This is because the non-linear systems of equations describing mass and energy conservation is degenerate at the critical point. The mass flow rate for the gas phase release through a hole is calculated by a variant of the isentropic nozzle flow equations. The gas phase density is evaluated using the cubic EOS rather than the ideal equation of state significantly improves the accuracy of the vent model. Liquid phase release is modeled by the application of Bernoulli's equation, including a liquid head contribution where appropriate. To calculate the mass flow rate for two phase flow through an orifice, the homogenous equilibrium model has been implemented. The two phase mixture is treated as a single phase fluid, and the two phases are taken to be in equilibrium with equal velocities and temperatures. Gas outflow from a vent pipe is calculated by taking the flow of gas from the vessel to the pipe entrance to be isentropic, and the flow of gas along the vent pipe to be isenthalpic with friction effects included. The model of liquid flow through a pipe is a direct extension of Bernoulli's equation with friction and entrance losses included. Two phase flow through a vent pipe is calculated by solving an equation for the conservation of momentum under the homogenous equilibrium assumption for two phase flow.

A model for the simulation of blowdown of pressure vessels containing two-phase (gas-liquid) hydrocarbon fluids was proposed (Speranza and Terenzi 2005). Their model is based on a global mass and energy balance between the phases, gas and occasionally liquid, present in the vessel, at a very stage of blowdown. The model takes into account the heat transfer taking place with the external environment, the presence of many components in the vessel and the possibility of situations in which the phase equilibrium is not appropriate. The model takes into account the strong cooling effect taking place between the wall of the vessel and the liquid in contact with it which helps in avoiding cracks in the vessel wall. The model takes into account the compositional approach, allowing for the presence of many different hydrocarbons within the vessel, as well as non-equilibrium conditions between the phases. The model was validated by performing 2 experiments 100% Nitrogen (I1) and a mixture of hydrocarbons (S9). The predicted conditions during blowdown by the model are in close agreement with the experimental results. It was suggested that before gas escapes through the choke a rapid motion is induced by the acceleration of the gas far upstream, and we can imagine it to get mixed and
homogenized at all the time, especially in the early stages of the blowdown, while pressure is dropping steeply. However, the model does not provide any facts related to modeling of gas in the vent pipe after the choke is mentioned. The model focuses on the average quantities rather than local variations for homogeneity of fluid, pressure drop and temperature.

Several other authors have analyzed the behavior of blowdown of vessel / pipelines and associated vent piping system. Analysis and experiment data on the discharge from carbondioxide filled vessels is published in literature (Eggers and Green 1990). Goh has described simplified pipeline method employing quasi-ideal gas thermodynamics and has shown limited experimental validation (Goh 1989). Here experiments were performed with air from which the flow rate for natural gas was estimated. Integrated safety relief valve inlet piping design for compressible gas flow from an overpressurised pressure vessel was performed (Westman 1997). The design was based on ideal gas adiabatic flow principles which involved simultaneous solution of parametric equations derived from these principles. Effects of SRV inlet line pressure loss and the use of pipe bends is highlighted. Mass flow rates calculations for the inlet line and nozzle based on isentropic flow are performed and illustrated; however, its use is restricted only to ideal gas assumption. A simple and practical method for sizing pipelines incorporating the theories of adiabatic and isothermal frictional flow was investigated (Cochran 1996). However, no validations were provided. Based on the concept of critical length, calculations relating to compressible fluid flow incorporating non-linear equations were analyzed (Farina 1997).

2.7 Summary of Literature Review

An extensive literature review related to blowdown of high pressure vessels and pipelines has been carried out. In the last few decades, a number of theoretical and experimental studies relating to blowdown simulations with varying degree of sophistication were conducted based on which different blowdown models were developed. Most of these developed models were in good agreement with the experimental analyses and hence were validated whereas few models did not provide any validations. Moreover, a number of validated models were not well documented properly and are not commercially available. The use of such models is beyond the reach of scientific community. Although detailed investigations were conducted on the fluid behavior inside the pressure vessel and pipelines, very few investigations related to fluid behavior within the associated vent piping system were conducted. As addressed in literature review, very few models provided an insight into the vent pipe modeling. It should be noted that the impact of piping systems on process plant economics is so great that the initial investment in piping systems for new installations has been estimated to range from 18 to 61% of the equipment costs and from 7 to 15% of the total cost of the installed plant (Cochran 1996). Currently, industry tends to use API Recommended Practices 520 and 521 for specification of pressure relieving systems. However, these practices are more relevant to the case of fire scenarios. A thorough investigation of compressible fluids in a vent pipe is therefore required.

The vital and foremost step to tackle this issue is to have more detailed knowledge of events occurring prior to fluid entering the vent pipe through the relief valve. As cited in literature (Norris III, Exxon Production Research Co, and R.C. Puls 1993; Norris III and Exxon Production Research Co 1994), the vent pipe associated with pressure vessels and pipelines for venting purposes contains no mass or momentum storage. As a result a steady-state hydrodynamics can be adopted in vent pipe analysis. Second step will be identification of parameters which bring about changes in the fluid flow conditions along the vent pipe. To date, a number of blowdown models and simulation codes related to pressure vessels and pipelines have been developed based on the same pertinent equations (continuity equation, energy equation and momentum equation) and differ from each other in methods of solving these pertinent equations. There is no general model developed specifically for analyzing the conditions developed in a vent pipe.

Due to unavailability of analysis and data applicable to the simulation of a vent pipe, a combined analytical and experimental program was initiated. The goal was to develop a steadystate adiabatic vent pipe model for a single phase (gas only) compressible gases. The model was
programmed into Visual basic in conjunction with MS Excel spreadsheet because of its simplicity and easy to use user interface. Investigation to be performed will involve determining the thermodynamic fluid properties, pressure drop, temperature drop and mass flow along the vent pipe. The vent pipe model will incorporate the newly developed GERG 2004 equation of state which has proved to be more suitable than other cubic equation of state developed. This will help the model in predicting more accurately the thermophysical properties during the venting process. The developed model will be validated with experimental data obtained for air gas from the test rig designed and constructed in Curtin University's facility. The developed model will be compared to Aspen Hysys.Plant version 7.1, Process Engineering software for single phase single component gases such as air, carbon-dioxide, methane and single phase multicomponent gas mixtures, thus providing additional validation.

Chapter 3

Model Development

Pressure vessels and pipelines, with many more utilization in process industry, nuclear industry, marine and space industry, operating under extreme of high and low temperatures and high pressures, are becoming highly sophisticated (Mackerle 1999). Their operations are often subjected to interference from accidents, corrosion, and human error, etc. A potential of risk is always associated with such equipments and safe operations is an important issue for operators worldwide. A safety assessment must be performed on these equipments and a quantitative risk assessment of their operation should be conducted.

The problems related to blowdown of pressure vessels / pipelines containing compressible gases are well known among process industries. Process modeling and computer simulation have proved to be an extremely successful engineering tool for design and optimization of such processes (Ramirez 1998). The use of simulation has expanded rapidly during the past few decades because of the availability of high speed computers and computer workstations. A number of factors which influence the blowdown of pressure vessels / pipelines were discussed in the literature review. These factors have led to the modeling of blowdown of pressure vessel / pipeline and associated vent piping system. Development of such models has progressed in the last few decades which use the same pertinent equations and differ from each other in the method of solution approach. Despite availability of blowdown models, very few models are available for determining the compressible fluid flow conditions, specifically, in vent piping associated with pressure vessels and pipelines. Robustness and efficiency of these available vent models have been proved to be a problem. Keeping this in mind, we develop a vent pipe model for predicting the pressure and temperature of flowing compressible fluid (gas), surface temperature of the vent pipe wall, and the mass flow rate which can be passed through the vent pipe during blowdown.

Since a simple model for predicting the compressible fluid conditions in a vent pipe is desired, every approach has been made to characterize the model as mechanistic as possible. The user must understand that the developed model will provide a very close estimate of the compressible fluid flow properties which bring about the changes in the vent pipe flow conditions. Assumptions are clearly stated when developing the pertinent equations in order to ensure a better understanding prevails. A well-defined strategy was adopted in developing our vent pipe
model consisting of a series of logical steps. These steps involved problem definition, development of mathematical models for the process, method of solution, computation and interpretation of the results. Problem definition was very precisely stated in chapter 1. The need for a vent pipe model for predicting the compressible fluid flow conditions in vent pipe associated with pressure vessels / pipelines was highlighted.

3.1 Development of Mathematical Models

Compressible flows are limited to low viscosity fluids such as single phase gases and multiphase fluids containing mostly gases. In current work, our investigations are related to single phase gases only. The model will not encounter any phase change. Compressible fluid flow is a complex process, the interpretation of which can be analyzed by a combination of several other physical factors. These factors which impact the compressible fluid behavior will be examined in order to provide a better insight into compressible flow and are discussed in the concept of compressible fluid behavior. Before proceeding with the modeling theory for the vent pipe model, basic concept of fluid dynamics involved with the compressible fluid flow is described. This will help us in better understanding of our vent pipe model theory.

3.1.1 Basic Conservation Equations

All analyses concerning the motion of compressible fluids must necessarily begin, either directly or indirectly, with the statements of the four basic physical laws governing such motions. These physical laws are independent of the nature of the particular fluid and are as follows:

- Law of Conservation of Mass - The Continuity Principle
- Momentum Principle
- The First Law of Thermodynamics
- The Second Law of Thermodynamics

3.1.1.1 Law of Conservation of Mass - The Continuity Equation

The Principle of Conservation of Mass, when referred to a system of fixed identity, simply states that the mass of the system under consideration is constant. This statement is a concise summary of experimental observation, relativity and nuclear effects being absent (Shapiro 1954). Under unsteady state conditions, both density and velocity are functions of space and time. Thus, applying the continuity equation for a fixed identity occupying the control volume is
$\frac{\partial}{\partial t}\left(m_{c . v}\right)=\int d w_{\text {in }}-\int d w_{\text {out }}$
Where $m_{c . v}$ - Instantaneous mass within the control volume; $d w$ - Mass rate of flow entering and leaving the control volume

Thus, it can be stated that the rate of accumulation of mass within the control volume is equal to the excess of the incoming rate of flow over the outgoing rate of flow. Under steady state conditions, the total mass remains constant, thus, there will be no mass accumulation. For a control volume at any instant, the mass rate of flow is a function of element of control volume and the local mass density. Thus for a steady state, the continuity equation can be expressed as
$\int \rho_{\text {in }} V_{\text {in }} d A_{\text {in }}=\int \rho_{\text {in }} V_{\text {out }} d A_{\text {out }}$
In general form,
$\dot{m}=\rho V_{n} A$
Where m - Mass flow rate of the compressible fluid; ρ - Instantaneous mass density of the fluid corresponding to the inlet and outlet area; V_{n} - Instantaneous velocity of the fluid corresponding to the inlet and outlet area

3.1.1.2 Momentum Principle

When the net external force acting on a system is zero, the linear momentum of the system in the direction of the force is conserved in both magnitude and direction. This is the principle of conservation of linear momentum. When there is a net external force, however, the linear momentum is no longer conserved. The resultant behavior is described by Newton's second law of motion, which is more general than the momentum principle.

According to Newton's second law of motion, the resultant of forces applied to a particle, which may be at rest or in motion, is equal to the rate of change of momentum of the particle in the direction of the resultant force. Newton's second law of motion yields:
$\sum F=\frac{d}{d t}(m V)$
Where ΣF - Sum of the forces acting on the particle in any one direction; ($m V$) - Kinetic momentum in the same direction

The rate of change of momentum of a fixed-mass system can be related to the rate of change of momentum of a control volume in accordance to the following equation
$\sum F=\frac{\partial}{\partial t} \int_{c v} V \rho d V-\int_{c s} V(\rho V \cdot d A)$
Under steady state conditions, the rate of change of momentum within the control surface is zero, thus the above momentum equation reduces to
$\sum F=-\int_{c s} V(\rho V \cdot d A)$
It should be noted that even if frictional forces or non-equilibrium regions exists within the control volume, the momentum equation is still valid. This allows the momentum principle to be used in evaluating the forces generated by the flow of fluid.

3.1.1.3 The First Law of Thermodynamics

The First Law of Thermodynamics or Law of Conservation of Energy states that energy can neither be created nor destroyed but can be converted from one form to another. The total energy is always conserved. From the first law of thermodynamics or law of conservation of energy we can conclude that for any system, open or closed, there is an "energy balance" as

$$
\left[\begin{array}{c}
\text { Net amount of energy } \\
\text { added or transfered to the system }
\end{array}\right]=\left[\begin{array}{c}
\text { Net increase in stored } \\
\text { energy of system }
\end{array}\right]
$$

Mathematically the first law can be represented as
$Q_{s y s}=U_{s y s}+W_{s y s}$
Where $Q_{\text {sys }}$ - Net amount of heat associated with the system; $W_{s y s}$ - Net amount of work associated with the system; $U_{\text {sys }}$ - Net amount of energy stored inside the system

Thus for a steady-state steady flow system we have,
$\delta Q+\delta W+\int_{C S}\left(\left(h+\frac{V^{2}}{2}+g Z\right) \cdot(\rho V \cdot d A)\right)=0$
Where δQ - Net amount of heat associated with the system or control volume; δW - Net amount of work associated with the control volume and is different from system work; The integral term represents the shaft or expansion work, or flow work; h - Enthalpy of the system

3.1.1.4 The Second Law of Thermodynamics:

The Second Law of Thermodynamics is far-reaching principle of nature that has been stated in many forms. One of the following two forms mentioned in (Jones and Hawkins 1986; Nageshwar 2003) are usually the most valuable:

The Clausius Statement: "It is impossible for any device to operate in such a manner that it produces no effect other than the transfer of heat from one body to another body at a higher temperature"

The Kelvin-Planck Statement: "It is impossible for any device to operate in a cycle and produce work while exchanging heat only with the bodies at a single fixed temperature"

These two statements of the second law and many other statements are entirely equivalent in their consequences. The first law of thermodynamics introduces the internal energy property and the second law of thermodynamics introduces the entropy property. The property entropy often provides a means of determining if a process is reversible, irreversible, or even possible. This application of entropy is based on the principle of the increase of entropy, which states that the entropy of an isolated system always increases or, in the limiting case of a reversible process, remains constant with respect to time.

Thus in mathematical form we have,

$$
\left(\frac{d S}{d t}\right)_{\text {isolated system }} \geq 0
$$

With the understanding that time is the independent variable, this statement is usually written
$\Delta S_{\text {isolated system }} \geq 0$

Thus, based upon the above basic physical laws, the following conditions should exist under steady state conditions

- The mass flow rate is constant. This means that the mass flow rate at the entrance is the same as at the exit and that the mass contained within the volume neither increases nor diminishes at any time.
- The rate of change of momentum within the control volume is zero.
- No change in properties or in energy level of fluid occurs at the entrance, at the exit, or at any point within a control volume
- The rate at which energy, in the form of heat or work, crosses the boundaries of the control volume is constant.
- The entropy of an adiabatic closed system always increases

3.1.2 Theoretical Aspects Related to Compressible Fluid Flow Behavior

The flow of compressible fluids during blowdown from large pressure vessels or pipelines into vent systems is influenced by a number of factors (Skouloudis 1992). These factors could be classified according to their significance as geometrical, operational and thermophysical parameters. The geometrical parameters which influence the venting process rely to a certain extent on the size, type of material of construction and orientation of the vent piping associated with the pressure vessels / pipelines. The operational factors which influence the flow of fluid into the vent pipe system are the vessel / pipeline conditions present prior to blowdown and the changes taking place in the gas behavior (heat transfer) inside the pressure vessel or pipeline during blowdown. The thermophysical factors include the physical and transport properties of the fluids contained in the vessels / pipeline. These thermophysical factors affect the flow regimes of compressible fluid in vent systems, thus determination of these properties along the vent pipe is central to this investigation.

The changes taking place in the properties of the compressible fluid enforces the thermodynamic behavior of the fluids to be taken into account. These changes taking place during expansion or compression in the vent pipe are brought about by two processes: isothermal process and adiabatic process (Bansal 2005). When compression or expansion of gas takes place under constant temperature conditions, the resulting process is an isothermal process. In such a process, heat transfer takes between the system carrying the compressible gas and the surrounding. On the other hand, in an adiabatic process expansion or compression takes place with no heat transfer between the system and the surrounding. Such a process occurs if the system is well insulated. The use of these two models depends on the situation encountered. It has been cited in literature (Cochran 1996; Shapiro 1954; Saad 1993; Yuhu et al. 2002) that isothermal models best describe the flow of compressible gases taking place through long uninsulated pipelines while the adiabatic model is more appropriate for shorter and insulated piping's such as the vent systems. The solution obtained by incorporating the isothermal model yields higher pressure drop at the same mass flow rate and provides a more conservative estimate for the pipe diameter sizing. On the other hand, an adiabatic model at constant pressure drop predicts higher efflux rates and so is frequently the choice for conservative design of emergency depressurization system. Moreover, the velocity of flowing gas in a short pipe is fast enough so that no time is provided for heat transfer to take place and hence the flow can be modeled as adiabatic.

Frictional effects, heat transfer effects and changes in cross sectional area contribute to the changes of compressible fluid behavior taking place in the vent pipe. As we adopt an adiabatic approach to develop our model, the heat transfer effects can be neglected. The vent pipe is a constant cross-sectional area pipe; hence area changes are not relevant to our model. Thus we consider pipe wall friction to be the chief factor bringing about the changes in compressible fluid properties. In vent pipe subjected to compressible flow, the losses encountered due to friction are of two types: skin friction and form friction. The skin frictional losses are encountered due to internal surface roughness of the pipe present between the flowing fluid and the pipe material. Form frictional losses are due to obstructions present in the piping system such as bend pipe fittings, control valve or anything that changes the course of motion of the flowing fluid. Thus, change in properties of fluid taking place inside the vent pipe is due to frictional effects generated at the wall surface. This is because the behavior of flowing fluid depends strongly on whether the fluid is under the influence of solid boundaries. The effect of solid boundary on the flow is confined to a layer of the fluid immediately adjacent to the solid wall where shear stress is confined (McCabe, Smith, and Harriott 2001). The effects of friction on compressible fluid flow parameters are explained in detail using the Fanno curves in the later part of this chapter.

Based on the above theoretical aspects related to compressible fluid flow behavior, we understand that the behavior of compressible fluid in the vent pipe associated with emergency blowdown facilities should follow an adiabatic path in which the changes in fluid flow properties are brought about due to frictional effects. Thus, we progress with the development of a vent pipe model based on adiabatic and frictional approach.

3.1.3 Model Assumptions

3.1.3.1 Steady State Analysis

The geometry visualized in the development of model comprises of a source and vent pipe arrangement. The source can be visualized to be a pressure vessel / pipeline which has all the mass storage of the system at isobaric and isothermal conditions throughout its volume. The source delivers the supply of compressible gas to the vent pipe arrangement through a nozzle at subsonic conditions. Norris et al. have developed their pipeline model based on this approach and have provided validated results (Norris III, Exxon Production Research Co, and R.C. Puls 1993; Norris III and Exxon Production Research Co 1994). The vent pipe arrangement contains no mass or momentum storage. As a result, steady-state hydrodynamics are used in the vent pipe
analysis. These steady-state hydrodynamics do, however, contain all frictional pressures drops in the system. The pressure, temperature, and fluid properties are considered continuous across both the source-vent pipe boundaries.

3.1.3.2 One Dimensional Approach

As discussed earlier a number of factors influence the behavior of compressible fluid in a vent pipe which results in complexity of the process. Because of the complicated nature of the problem, it will be assumed that the flow is one-dimensional, i.e. that all properties are uniform over each cross section or a flow in which the rate of change of fluid properties normal to the streamline direction is negligibly small compared with the rate of change along the streamline. The assumption of one dimensional flow is justified largely by the great simplifications it makes possible (Shapiro and Hawthorne 1947). According to (Shapiro and Hawthorne 1947; Shapiro 1954; Parker 1989) one-dimensional treatment introduces no significant errors especially when changes in stream properties in the direction of flow are much larger than in the direction normal to flow and when changes in properties in the direction normal to flow are the same in all planes, that is, the velocity, temperature, and density profiles are unchanged. An additional assumption is inherent in the one-dimensional analysis, namely, that the effect of turbulence on the computation of the mean properties is small.

3.1.3.3 Clearly Stated Assumptions

- The flow is considered to be steady and one dimensional for single-phase gas through a constant cross sectional area vent pipe
- No mechanical work done or heat exchange on or by the fluid during the flow
- Differences in elevation produce negligible changes compared with the frictional effects and hence neglected
- Specific heats are constant across a particular cross sectional area for a given segment or vent pipe length
- Friction is restricted to wall shear
- Velocity gradients within a cross section are neglected

3.1.4 Development of Adiabatic Frictional Model

The flowing compressible fluid at a short distance above the vent pipe wall possesses some momentum, whereas the fluid immediately adjacent to the pipe wall, where the fluid velocity is zero, has no momentum. The flowing compressible fluid must therefore acquire momentum from faster flowing layer above it, which in turn receives momentum from the next layer up and so on (McCabe, Smith, and Harriott 2001). Each layer is dragged along by the layer above it except the wall where all the momentum is delivered as shear force. Momentum is thus transferred from a region of high fluid velocity to low fluid velocity. The rate of momentum transfer is governed by velocity gradient which acts as the driving force. Our purpose is to find in analytical form the variations in all stream properties along the vent pipe profile of constant area. As discussed earlier, the change of fluid properties is brought about by frictional force and will depend upon the amount of frictional force. In order to evaluate this frictional force generated by the flow of compressible fluid, we apply the momentum principle and obtain a differential form of relation between the fluid properties and friction (Saad 1993; Shapiro 1954).
$d p+\frac{4 f}{D_{H}} \frac{\rho V^{2}}{2} d x+\frac{\rho V^{2}}{2} \frac{d V^{2}}{V^{2}}=0$
Where f - Fanning friction factor; D_{H} - Hydraulic diameter or the diameter of the vent pipe; ρ - Density of the compressible fluid; V-Velocity of the flowing stream

3.1.4.1 Static Property Relations

The physical phenomenon that causes changes in fluid is viscous friction and is measured by the term $4 f / D_{H}$ in equation 3-11. Relevant equations discussed earlier necessary to the solution of the problems pertaining to frictional flow in constant area vent pipe are the continuity equation, energy equation and the increase in entropy principle by second law of thermodynamics. Additional equations include the real gas equation and the equation for Mach number. All equations are summarized in the table 3-1 below:

Table 3-1: Pertinent equations related to frictional flow in constant area vent pipe

Real Gas Law	$P=\rho Z R T$	(a)
Continuity Equation	$\dot{m}=\rho A V$	(b)
Energy Equation	$h_{o}=h+V^{2} / 2$	(c)
Definition of Mach number	$M^{2}=V^{2} / Z \gamma R T$	(d)
Increase in Entropy principle by Second Law of Thermodynamics	$d s \geq 0$	(e)

Equation 3-11 and above five equations incorporate seven different fluid parameters which can be or are inter-related to each other. These property equations can be related to each other by defining a single independent variable, the value of which can be changed following which the other dependent variables can be calculated. By defining a single parameter we easily determine the corresponding values of these compressible fluid properties. Since the effect of friction on the changes encountered in compressible fluid parameters is desired we define the independent variable as $4 f / D_{H}$. The entire derivation for relating the compressible fluid parameters to the independent variable is given in (Saad 1993; Shapiro 1954). It should be noted that the derivation given in (Saad 1993; Shapiro 1954) incorporates the perfect or ideal gas law. We incorporate a compressibility factor, Z , to deviate the behavior to real gas. However, when deriving the real gas relation, the compressibility factor cancels off and results in same equations as of for ideal gas behavior (refer Appendix E for derivation). The table 3-2 below summarizes the various static property relations for the compressible fluid.

Table 3-2: Static property relations for adiabatic flow in constant area vent pipe

Friction and Mach number relation	$\frac{4 f}{D_{H}} d x=\frac{2\left(1-M^{2}\right)}{\gamma M^{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)} \frac{d M}{M}$
Frictional effects on velocity	$\frac{d V}{V}=\frac{\gamma M^{2}}{2\left(1-M^{2}\right)} \frac{4 f}{D_{H}} d x$
Frictional effects on density	$\frac{d \rho}{\rho}=-\frac{\gamma M^{2}}{2\left(1-M^{2}\right)} \frac{4 f}{D_{H}} d x$
Frictional effects on pressure	$\frac{d P}{P}=-\frac{\gamma M^{2}\left[1+(\gamma-1) M^{2}\right]}{2\left(1-M^{2}\right)} \frac{4 f}{D_{H}} d x$
Frictional effects on temperature	$\frac{d T}{T}=-\frac{\gamma(\gamma-1) M^{4}}{2\left(1-M^{2}\right)} \frac{4 f}{D_{H}} d x$

Where f - Fanning friction factor; M - Mach number; ρ - Density of compressible fluid; P Static pressure of flowing fluid; T - Static temperature of flowing fluid; D_{H} - Hydraulic diameter of vent pipe; dx - Differential vent pipe length

3.1.4.1.1 Static Property Deviations with Friction

Figure 3-1: Variation of fluid properties with friction
Figure 3-1 gives a better understanding of the variation of compressible fluid properties due to friction. Equations involved in plotting the property relations are tabulated in table 3-2. It is seen that frictional flow in a vent pipe causing changes in compressible fluid properties is always decreasing in a subsonic or supersonic flow and becomes negligible at Mach unity. Figure 3-1 can be well explained by taking into consideration the inlet flow conditions in the vent pipe. One should understand that continuous transitions from subsonic to supersonic flow or from supersonic to subsonic flow, are impossible (McCabe, Smith, and Harriott 2001) until and unless the flow is mechanically altered. We restrict our vent pipe model to subsonic region. By referring to figure 3-1 we can say that with decreasing frictional effects the velocity of the fluid is increasing along with increasing Mach number. Pressure, temperature and density are found to be of decreasing order in subsonic region. The compressible fluid entering the vent pipe at subsonic condition $(\mathrm{M}<1)$ will attain Mach number less than 1 or approach unity at the exit of the vent pipe. At Mach unity, choked flow results at the exit of the vent pipe. Relevant adjustments are made to overcome the choking condition. Overall it can be said that friction has the net effect of accelerating a subsonic stream.

Although not incorporated in our model, we give the reader an idea of what changes are caused due to friction in supersonic flow. The compressible fluid entering the vent pipe at supersonic condition ($\mathrm{M}>1$) will always try to approach Mach unity at the exit of the vent pipe. This is because the frictional effects at the exit of the vent pipe are at minimum. In the supersonic region, velocity is of decreasing order. When Mach of unity is attained for initial supersonic condition, choking takes place which involves the appearance of shock waves. Adjustments are made by increasing the vent pipe length to overcome choking condition. Overall, it can be said
that friction has the net effect of decelerating a supersonic stream. A better understanding of the effects of friction on fluid properties is provided when discussing the Fanno curves in the latter section.

3.1.4.2 Stagnation Property Relations

Now that the static properties for flowing compressible fluid are defined we define the stagnation properties for these compressible fluid. In a steady state adiabatic process, when the fluid is decelerated to zero velocity provided that no work interaction occurs the resulting properties of the fluid are called stagnation properties. Stagnation properties are developed by taking into account the process to be adiabatic and frictionless, that is, isentropic process. Such a process is encountered in variable cross sectional area where the frictional effects are minimal. Stagnation properties provide a convenient reference state in analyzing the flowing compressible fluid properties, that is, static properties. Stagnation properties are more related to the source conditions. Although valid for variable cross sectional area, (Shapiro 1954; Shapiro and Hawthorne 1947) have suggested that these isentropic stagnation properties are valid for adiabatic frictional constant area vent pipe. These properties are defined by (Saad 1993; Shapiro 1954; Bansal 2005) are represented in table 3-3:

Table 3-3: Stagnation property relation

Stagnation and Static Pressure Relation	$\frac{P_{O}}{P}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\gamma / \gamma-1}$	(a)
Stagnation and Static Temperature Relation	$\frac{T_{O}}{T}=1+\frac{\gamma-1}{2} M^{2}$	(b)
Stagnation and Static Density Relation	$\frac{\rho_{O}}{\rho}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{1 / \gamma-1}$	(c)

Where P_{o} - Stagnation Pressure; T_{o} - Stagnation Temperature; M: Mach number; γ - Specific heat ratio. Stagnation enthalpy and stagnation temperature are considered to be a constant throughout the process whereas stagnation pressure is not. Compressible fluid when brought to rest adiabatically, the static enthalpy of the fluid is equal to the stagnation enthalpy, and the static temperature is equal to the stagnation temperature. However, the pressure is equal to the initial stagnation pressure only if the fluid is brought to rest both adiabatically and reversibly, that is, isentropically. Adiabatic frictional process is considered to be an irreversible process. According to (Saad 1993; Shapiro 1954)
$\frac{d s}{R}=-\frac{d P_{O}}{P_{O}}$

Where s - Entropy; P_{o} - Stagnation pressure. The above equation provides a better understanding of relationship between entropy and stagnation pressure. For an increase in entropy, there will always be a decrease in the stagnation pressure. The relative change in stagnation pressure therefore provides an indication of degree of irreversibility of the process. Friction present in the vent pipe causes an increase in the entropy and therefore stagnation pressure decreases. The property relations in table 3 have been derived by (Saad 1993; Shapiro 1954; Shapiro and Hawthorne 1947; Bansal 2005).

3.1.4.3 Estimation of Mass Flow

The function of blowdown facilities on pressure vessels / pipelines is to provide a means of venting the high pressure inventory to atmosphere in a very short period of time (Gradle 1984). The short blowdown time is always associated with high velocities and high mass flow-rates. Flow of compressible fluid such as natural gas and other gas mixtures is dependent upon Reynolds number, friction factor, pipe roughness, pipe diameter, pipe length, temperature, pressure, pressure drop and gas properties (Ouyang and Aziz 1995). The prediction of mass efflux from pressure vessels / pipelines through vent system is a central step in the design of emergency depressurization system. Accurate predictions are required for optimum design. This is analyzed in our vent pipe model. The relevant equations adopted for analyzing the flow in vent pipes depend on the basic physical law of fluid mechanics, that is, the Continuity Equation. For a constant area flow, mass flux is independent of length. The mass velocity can be evaluated at any point inside the entrance of the vent pipe. The process of blowdown of pressure vessels / pipelines is characterized to be an unsteady process where the properties of compressible fluid are functions of space and time causing the flow to change throughout the flow path. However, we discussed earlier, as per the geometry visualized in the model analysis steady state hydrodynamics prevail in vent pipe. Thus, for steady state conditions, the mass rate of flow across two different sections of the vent pipe can be expressed by continuity equation as

$$
\dot{m}=\rho A V
$$

Where \dot{m} - Mass flow rate; ρ - Density, A - Cross sectional area; V - Velocity of flowing fluid The mass flow per unit area or the mass flux, G, can then be written as
$G=\frac{\dot{m}}{A}=\rho V$
For vessels or pipelines of commercial interest, the pressure to be released almost always results in sonic velocity at some restriction, and choked flow results (Norris III, Exxon Production Research Co, and R.C. Puls 1993). Choked flow is the condition wherein the mass flow rate becomes independent of the downstream conditions i.e. that point at which further reduction in
downstream pressure does not result in change of the mass flow rate (Haque, Richardson, and Saville 1992). Basically, a limit occurs because acoustic signals can no longer propagate upstream. This limit occurs when the fluid velocity just equals the propagation velocity. Such a condition is seen at Mach unity. Thus it is advisable to relate the gas flow relation in form of dimensionless Mach number. The mass flux in terms of static pressure and static temperature can be expressed as
$G=P M \sqrt{\frac{\gamma}{Z R T}}$
The above equation for mass flux in terms of stagnation properties can be expressed as
$G=\frac{P_{o}}{\sqrt{T_{o}}} \sqrt{\frac{\gamma}{Z R}} \frac{M}{\left(1+\frac{\gamma-1}{2} M^{2}\right)^{(\gamma+1) / 2(\gamma-1)}}$
Where $\mathrm{P}_{\mathrm{o}}-$ Stagnation Pressure; $\mathrm{T}_{\mathrm{o}}-$ Stagnation Temperature; M: Mach number; $\gamma-$ Specific heat ratio; Z - Compressibility factor.

According to equation 3-15, for a given Mach number, the flow is proportional to the stagnation pressure and inversely proportional to the square root of stagnation temperature. For a given

Figure 3-2: Condition for maximum mass flux geometry, stagnation and downstream pressures, and assumed friction factor, these equations 3-14 \& 3-15 define the flow (Parker 1985). If choking condition is attained at the exit of the vent pipe, the rate of flow through the system increases and the flow is choked by the vent pipe. The mass rate of flow can be increased only by decreasing the stagnation temperature and /or increasing the stagnation pressure. For this reason, flow test data for many applications over wide range of pressure and temperature levels, are plotted with $G \sqrt{T_{o}} / P_{o}$ as the flow variable (Shapiro 1954). The condition at which maximum flow can be achieved occurs at Mach unity. This condition is plotted in figure 3-2.

3.1.4.4 Estimation of Adiabatic Wall Temperature

During blowdown of pressure vessels / pipelines, the time required to reduce the overpressure build-up and inventory is influenced by high efflux rates. This inevitably leads to a reduction in
the temperature of the vessel / pipeline and associated vent pipe system, possibly to a temperature below the ductile-brittle transition temperature of the material from which the vessel / pipeline and associated vent piping is fabricated (Haque, Richardson, and Saville 1992; Haque et al. 1989; Marian, Vuthaluru, and Ghantala). At this temperature, the probability of failure of equipment material is high. The temperature of flowing gas in the vent pipe along with high speed velocities will influence the temperature of the vent pipe wall. Due to high velocities encountered viscous stresses set-up which do shearing work on the fluid particles which results in an increase in internal energy as well as the temperature of fluid very close to the wall (Saad 1993). This work is dissipated in form of viscous heating. At high velocities, dissipation is largest close to the wall. The flow is not locally adiabatic and a difference will exist between the wall temperature and the stagnation gas temperature (Prandtl 2004). Also, the adiabatic wall temperature will be realistically higher than the flowing gas temperature.

The adiabatic wall temperature has been well studied in the boundary layer flow on a flat plate and is usually correlated with the recovery factor (Shi et al. 2001). It has become common knowledge that for laminar flow recovery factor, r , is $P_{r}^{1 / 2}$ while for turbulent flow recovery factor is $P_{r}^{1 / 3}$ These equations neglect the fact that the recovery factors are also influenced by Mach number (Kaye 1953) given by the expression:
$\ln r=\left[\frac{N+1+0.528 M_{1}^{2}}{3 N+1+M_{1}^{2}}\right] \ln P_{r}$
Where r - Recovery factor; P_{r} - Prandtl number; N - Reciprocal of the exponent of the turbulent boundary-layer velocity profile approximated by power law. This relation holds for Prandtl numbers greater than 0.65 and less than 0.75 . Equation 3-16 is not validated.

The investigations related to adiabatic wall temperature are very few (Shi et al. 2001). Although many of these approximations are valid for flat plates, these can be applied to circular pipes. (McAdams, Nicolai, and Keenan 1946) have performed investigation related to adiabatic wall temperature for the subsonic turbulent flow in a pipe and have defined the recovery factor as:
$r=\frac{T_{a w}-T}{T_{O}-T}$
Where T : Bulk mean gas temperature; T_{O} : Stagnation gas temperature; $T_{a w}$: Adiabatic wall temperature; r : Recovery factor. A number of approximation and typical ranges for recovery factor are provided with no proper validations (Kaye 1953). (Shi et al. 2001)Shi et al. have defined the recovery factor as a function of Prandtl number and Knudsen number. The recovery factor for continuous flow is always equal to Prandtl number and will increase above Prandtl
number as Knudsen number increases (Shi et al. 2001). Validations are been provided by Shi et al. for the proposed method of determining the recovery factor. Hence, we equate the recovery factor to Prandtl number and calculate the adiabatic wall temperature using the relation by McAdams et al. into our model. The use of recovery factor relation for predicting the outlet pipe wall temperature will be confirmed with validation of the model.

3.1.4.5 Effects of Friction - Fanno Process

Figure 3-3: Fanno curve (Enthalpy Entropy diagram) Adapted from (Saad 1993)

The effects of friction on the flow parameters in a vent pipe during blowdown can be well explained by means of Enthalpy-Entropy diagram. The curve formed on such a plane is defined by Continuity Equation and Energy Equation is known as the Fanno curve. The Fanno process is one steady, adiabatic flow with friction in a duct in which the cross sectional area does not change along its length (Chan and Woods 1992). The friction leads to a force on the fluid in the opposite direction to the flow. In Fanno flow, the stagnation enthalpy and mass flux are constant in all sections of the vent pipe. The continuity equation and energy equation, describes the Fanno process in the plane of thermodynamic properties, enthalpy and density as (nomenclature remains the same as defined earlier)
$h_{o}=h+\frac{V^{2}}{2}=h+\frac{G^{2}}{2 \rho^{2}}$
The above equation indicates that when the flow of gas is accelerating in velocity, the enthalpy is decreasing by a corresponding amount, and when the gas is decelerating the enthalpy increases. As enthalpy is a function of temperature, it is valid that similar results will be seen in the temperature profiles.

The gradient of the Fanno curve is given by (Chan and Woods 1992) expressed as
$\left(\frac{\partial h}{\partial \rho}\right)_{\text {FANNO }}=\frac{V^{2}}{\rho}=\frac{M^{2}}{\rho}\left(\frac{\partial P}{\partial \rho}\right)_{S}$
Where the subscript FANNO indicates that the differentiation is taken while keeping stagnation enthalpy and mass flux unchanged. The slope of the Fanno curve in the enthalpy-entropy plane is given by (Saad 1993; Shapiro 1954; Chan and Woods 1992)

$$
\frac{d h}{d s}=\frac{\gamma T M^{2}}{M^{2}-1}
$$

Equation 3-20 expresses enthalpy as a function of temperature, Mach number and entropy and implies that the effect of friction in a Fanno flow is to drive the flow towards Mach unity, with enthalpy and pressure decreasing in the subsonic branch and increasing in the supersonic branch. This is represented in figure 3-3. The upper part of the curve represents the subsonic condition whereas the lower portion represents the supersonic condition. Since the flow is adiabatic with friction, the second law of thermodynamic tells us that entropy may increase but may not decrease. Thus the path of states along any one of the Fanno curves must be towards the right. Thus a subsonic flow may therefore never become supersonic and a supersonic flow may never become subsonic, unless a discontinuity is present. Frictional effects present in the vent pipe alone cannot change subsonic flow into supersonic flow or vice versa because part of such processes will involve decrease in entropy, thus, violating the increasing entropy principle by Second Law of Thermodynamics. Emphasis is on frictional effects taking place in the subsonic region. In subsonic flow, frictional effects increase the internal energy with a corresponding reduction in the density of the fluid. The mass flow rate per unit area or mass flux must remain constant in the vent pipe during subsonic flow condition. In order to achieve this, constant mass flow rate condition, there must be an increase in velocity leading to expansion of compressible fluid. Friction has no effects on stagnation temperature or on stagnation enthalpy; however, friction reduces stagnation pressure in both subsonic and supersonic flow.

3.1.4.6 Estimation of Friction factor

Friction is the chief factor bringing about changes in fluid properties. The drag of a fluid at the contact between the fluid and the pipe is caused by friction factor (Ellenberger 2010). As cited in (Bansal 2005; Ellenberger 2010; Ouyang and Aziz 1995), there are two major friction factors available in fluid mechanics which are used to determine the pressure loss due to friction in pipes: the Fanning friction factor and Darcy-Weisbach or Moody friction factor. The Darcy friction factor is four times larger than the Fanning friction factor. The variation of the friction factor with Reynolds number and pipe roughness for circular pipes can be divided into different regimes (Govier and Aziz 1972): laminar flow, smooth wall turbulent flow, partially rough wall turbulent flow and fully rough wall turbulent flow. Partially rough wall turbulent flow and fully rough wall turbulent flow are also named as partially developed turbulent flow and fully developed turbulent flow (Ouyang and Aziz 1995). For Laminar flow, the friction factor can be shown to be a simple function of Reynolds number (Bansal 2005):
$f=\frac{16}{R e}$
Where f - Fanning friction factor and Re - Reynolds number. The friction factor is only a function of Reynolds number for smooth wall turbulent flow, and a function of relative pipe roughness for fully rough wall turbulent flow, whereas it depends upon both the Reynolds number and relative pipe roughness in partially rough wall turbulent flow.

Table 3-4: Explicit approximation for Colebrook-White friction factor equation

(Moody 1947)	$f=0.001375\left[1+\left(2 \times 10^{4}(\varepsilon / D)+\left(10^{6} / R e\right)\right)^{1 / 3}\right]$	(a)
(Wood 1966)	$f=0.026(\varepsilon / D)^{0.225}+0.133(\varepsilon / D)+22(\varepsilon / D)^{0.44} R e^{1.62(\varepsilon / D)^{0.134}}$	(b)
(Jain 1976)	$f^{-0.5}=2.28-4 \log \left[(\varepsilon / D)+\left(21.25 / R e^{0.9}\right)\right]$	(c)
(Churchill 1977)	$f=2\left[(8 / R e)^{12}+1 /(A+B)^{1.5}\right]^{1 / 12} A=\left\{2.457 \ln \left[(\varepsilon / D)^{0.9}+0.27(\varepsilon / D)\right]\right\}^{16} B=(37530 / R e)^{16}$	(d)
(Chen 1979)	$f^{-0.5}=-4 \log \left\{0.2698(\varepsilon / D)-(5.0452 / R e) \times \log \left[0.3539(\varepsilon / D)^{1.1098}+\left(5.8506 / R e^{0.8981}\right)\right]\right\}$	(e)
(Zigrang and Slyvester 1982)	$f^{-0.5}=-4 \log [(\varepsilon / 3.7 D)-(5.02 / R e) \times \log ((\varepsilon / 3.7 D)+(13 / R e))]$	(f)
(Serghides 1984)	$\begin{aligned} & f=0.25\left\{A-\left[(B-A)^{2} /(C-2 B+A)\right]\right\}^{-2} ; A=-2 \log [(\varepsilon / 3.7 D)+(12 / R e)] ; B=-2 \log [(\varepsilon / 3.7 D)+ \\ & (2.51 A / R e)] ; C=-2 \log [(\varepsilon / 3.7 D)+(2.51 B / R e)] \end{aligned}$	(g)
(Swamee and Jain 1976)	$f=0.25\left\{\log \left[(\varepsilon / 3.7 D)+\left(5.74 / R e^{0.9}\right)\right]\right\}^{-2}$	(h)
(Romeo, Royo, and Monzon 2002)	$\begin{aligned} f^{-0.5}=-2 \log \{(\varepsilon / 3.7 D)(5.03 / R e) & \log [(\varepsilon / 3.83 D)-(4.6 / R e) \\ & \left.\left.\times \log \left\{[\varepsilon / 7.8 D]^{0.9924}+[5.33 / 208.82+R e]^{0.9345}\right\}\right]\right\} \end{aligned}$	(i)
(Sonnad and Goudar 2006)	$f^{-0.5}=0.8686 \ln \left[(0.4587 R) / s^{(s /(s+1))}\right] ; s=0.1240(\varepsilon / D) R+\ln (0.4587 R)$	(j)

In practical situations, the flow of compressible fluid (gas) is turbulent. A number of different approximations are been reported to analyze the friction on turbulent flow regime. These methods can be classified as smooth pipe correlations and rough pipe correlations. Our investigations are only related to rough pipes hence we do not consider smooth pipe correlations into our vent pipe model. Difficulty of solving turbulent flow problems in rough pipes lies in the fact that hydraulic friction factor is a complex function of relative surface roughness and Reynolds number (Brkic` 2011). The equation for computing the friction factor in the DarcyWeisbach pipe friction loss equation, as presented by Colebrook and White (Colebrook 1939), has been preferred because of its presumed superior accuracy and sound theoretical basis (Bernuth 1990).

The Colebrook and White (CW) equation which related to pipe roughness and Reynolds number, is customarily given by (Franzini, Finnemore, and Daugherty 1997)
$\frac{1}{\sqrt{f}}=-2 \log \left[\frac{(\epsilon / D)}{3.7}+\frac{2.51}{\operatorname{Re} \sqrt{f}}\right]$
Where f - fanning friction factor; (ε / D) - Relative pipe roughness; Re - Reynolds number. Colebrook equation is transcendental which means that it cannot be solved by using only
elementary functions and basic arithmetic operation in definitive form (Brkic` 2011). Clearly, the above Colebrook and White equations are implicit in the friction factor estimation, and requires either an iterative numerical scheme or by graphical representation for solution. An alternative solution to iterative methods is the direct use of an explicit equation which is precise enough to calculate the value of friction factor.

Numerous researches (Moody 1947; Wood 1966; Jain 1976; Churchill 1977; Chen 1979; Zigrang and Slyvester 1982; Serghides 1984; Swamee and Jain 1976; Romeo, Royo, and Monzon 2002; Sonnad and Goudar 2006) have been conducted in this area. The most widely used explicit approximations for Colebrook-White equation postulated since the end of 1940s are synthesized in table 3-4. These approximations differ from each other in degree of accuracy. Average percentage errors generated by these approximations when compared to ColebrookWhite equation have been indicated in table 3-5. Referring to the accuracy table 3-5, we can say that the deviation of Serghides approximation (Serghides 1984) table 3-4 equation (g) from the Colebrook-White equation for rough pipe results in a very low average error compared to any other approximation listed in table 3-5. Hence we apply Serghides approximation for Colebrook-White equation into our model for determining the friction factor in the transitional and turbulent flow $(\operatorname{Re}>2100)$ at any relative roughness (ε / D). The Serghides approximation for Colebrook-White equation is derived by applying Steffenson's accelerated convergence technique to an iterative, numerical solution of Colebrook-White equation. The constants A, B and C are approximations of Colebrook-White equation obtained by three iterations of direct substitution method (Serghides 1984).

Table 3-5: Overall average relative errors of fanning friction factor values obtained from different explicit equations compared with those from the CW equation (Ouyang and Aziz 1995; Swamee and Jain 1976; Romeo, Royo, and Monzon 2002; Sonnad and Goudar 2006)

Average	Serghides	Chen	Z-S	Jain	Romeo	Sonnad	Swamee	Churchill	Wood	Moody
Error	0.00037	0.137	0.234	0.929	1.04	1.09	1.34	4.092	5.107	6.276

3.1.4.7 Estimation of Thermophysical Properties

The accurate knowledge of thermodynamic properties of gases such as natural gases and other gas mixtures is of indispensable importance for the basic engineering and performance of technical processes (Kunz et al. 2007). These properties can significantly affect the flow regimes occurring during the venting process, thus introducing unexpected variations in the depressurization mechanism (Skouloudis 1992).

The thermodynamic properties of mixtures can be calculated in a very convenient way from the equations of state. The advantage of employing equation of state in determining these properties is because it does not rely on activity coefficient concepts. A number of equations of state are available which serve his purpose. AGA8-DC92 equation of state is currently an internationally accepted standard only for $P-\rho-T$ relation in homogenous gas region of natural gases. Aside from the restriction to the homogenous gas phase, the AGA8-DC92 equation of state shows significant weaknesses in the description of natural gas properties and covers only a limited temperature, pressure and composition range (Kunz et al. 2007). Cubic equation of states such as Soave-Redlich Kwong (Soave 1972) and Peng Robinson (Peng and Robinson 1976) are widely used in many technical applications due to their simple mathematical structure. Technical applications which demand high accuracy of the calculated mixture properties, the cubic equation of state show major weaknesses with respect to representation of thermal properties in the liquid phase, speed of sound (thus impacting density, velocity profiles) and the description of caloric properties (Soave 1995; Kunz et al. 2007; Won, Smith, and Zeininger 2005). As a result there are inconsistencies in calculations when moving from one region to another. Experimental evidence has also shown that it is most important to model the thermodynamics of depressurization accurately since failure to do so can lead to trajectories through phase (pressure-temperature-composition) space which are grossly in error (Richardson and Saville 1996). For this reason, thermodynamic, phase and transport properties of single phase multi-component fluids involved in the vent pipe model are calculated using a thermophysical computer package called REFPROP (Lemmon, Huber, and McLinden 2009). This program has been developed by National Institute of Standards and Technology (NIST) and provides the thermodynamic and transport properties of industrially important fluids and their mixtures

REFPROP is based on the most accurate pure fluid and mixture models. The program implements three models for the thermodynamic properties of pure fluids: the GERG-2004 equation of state explicit in Helmholtz energy (Kunz et al. 2007). Mixture calculations employ a model that applies mixing rules to the Helmholtz energy of the mixture components; it uses a departure function to account for the departure from ideal mixing (Lemmon, Huber, and McLinden 2009). The GERG-2004 (Kunz et al. 2007) equation of state is a fundamental equation explicit in the Helmholtz free energy as a function of density, temperature, and composition. The GERG-2004 equation of state is developed with a view to overcome the weaknesses and limitations of the previous equations of state. The development and evaluation of GERG-2004 mixture model is based on more than 100,000 experimental data for multiple
thermodynamic properties in different fluid regions (Kunz et al. 2007). The GERG-2004 formulation is able to represent the most accurate experimental binary and multi-component data for gas phase and gas-like supercritical densities, speed of sound, and enthalpy differences mostly to within their low experimental uncertainties. The normal range of validity covers temperatures from 90 K to 450 K and pressure up to 35 MPa for natural gases and other single or gaseous mixture consisting of the 18 components methane, nitrogen, carbon-dioxide, ethane, propane, n -butane, isobutene, n -pentane, iso-pentane, n -hexane, n -heptane, n -octane, hydrogen, oxygen, carbon monoxide, water, helium, and argon (Lemmon, Huber, and McLinden 2009). The uncertainties in gas phase density and speed of sound for a broad variety of natural gases and related mixtures are less than 0.1% over the temperature range 250 K to 450 K at pressures up to 35 MPa (Kunz et al. 2007). Thus, the utilization of REFPROP into the vent pipe model in determining the thermophysical properties will improve the accuracy of predictions of compressible fluid flow properties and make the simulation in the vent pipe model competent.

3.2 Modeling Approach

3.2.1 Simulation Object

As discussed earlier the geometry visualized in model development consists of a source and vent pipe arrangement. The conditions in vent pipe have been proved to be at steady state. In order to perform simulation using vent model, we chose 8 NB schedule 80 stainless steel straight pipe of length 12 m . The roughness of the pipe is assumed to be as 0.00015 m . No fittings are involved hence we neglect the form friction. The vent pipe predictions which we need to calculate are pressure and temperature of the flowing gas, adiabatic wall temperature, Mach number, density, velocity, enthalpy, entropy, friction factor, mass flow, standard volumetric flow, stagnation properties and critical properties. These properties are calculated for each and every segment along the vent profile for specified inlet static pressure and temperature and gas composition. Venting is to atmosphere hence the outlet static pressure is 1 bar atm.

3.2.2 Method of Solution

A number of equations are involved in determining compressible fluid flow properties in a vent pipe during blowdown. One of the methods of applying these is Multi-Step or Segmented Design Method (Ouyang and Aziz 1995). Multi-Step or Segmented Design Method require that calculations be performed over very small segments of the vent pipe and that iterations be employed to obtain the change in pressure, temperature and other thermophysical properties over each segment. The vent pipe length can be equally divided or chosen in such a way that
their sum of the segment lengths is exactly equal to the total vent pipe length. The procedure can be applied from upstream to downstream end of the vent pipe. The method, however, becomes bi-directional for calculating properties at sonic condition.

Table 3-6: Property relations in terms of Mach number

PART A	PART B	
$\frac{4 f L_{1-2}}{D_{H}}=\frac{1}{\gamma}\left(\frac{1}{M_{1}^{2}}-\frac{1}{M_{2}^{2}}\right)+\frac{(\gamma+1)}{2 \gamma} \ln \frac{M_{1}^{2}}{M_{2}^{2}}\left(\frac{1+\left(\frac{\gamma-1}{2}\right) M_{2}^{2}}{1+\left(\frac{\gamma-1}{2}\right) M_{1}^{2}}\right)$	$\frac{4 f L^{*}}{D_{H}}=\frac{1-M^{2}}{\gamma M^{2}}+\frac{\gamma+1}{2 \gamma} \ln \frac{(\gamma+1) M^{2}}{2\left(1+\frac{\gamma-1}{2} M^{2}\right)}$	(f)
$\begin{equation*} \frac{V_{1}}{V_{2}}=\frac{M_{1}}{M_{2}} \sqrt{\frac{1+\left(\frac{\gamma-1}{2}\right) M_{2}^{2}}{1+\left(\frac{\gamma-1}{2}\right) M_{1}^{2}}} \tag{b} \end{equation*}$	$\frac{V}{V^{*}}=M \sqrt{\frac{\gamma+1}{2+(\gamma-1) M^{2}}}$	(g)
$\begin{equation*} \frac{\rho_{1}}{\rho_{2}}=\frac{M_{2}}{M_{1}} \sqrt{\frac{1+\left(\frac{\gamma-1}{2}\right) M_{1}^{2}}{1+\left(\frac{\gamma-1}{2}\right) M_{2}^{2}}} \tag{c} \end{equation*}$	$\frac{\rho}{\rho^{*}}=\frac{1}{M} \sqrt{\frac{2+(\gamma-1) M^{2}}{\gamma+1}}$	(h)
$\begin{equation*} \frac{P_{1}}{P_{2}}=\frac{M_{2}}{M_{1}} \sqrt{\frac{1+\left(\frac{\gamma-1}{2}\right) M_{2}^{2}}{1+\left(\frac{\gamma-1}{2}\right) M_{1}^{2}}} \tag{d} \end{equation*}$	$\frac{P}{P^{*}}=\frac{1}{M} \sqrt{\frac{\gamma+1}{2+(\gamma-1) M^{2}}}$	(i)
$\begin{equation*} \frac{T_{1}}{T_{2}}=\frac{1+\left(\frac{\gamma-1}{2}\right) M_{2}^{2}}{1+\left(\frac{\gamma-1}{2}\right) M_{1}^{2}} \tag{e} \end{equation*}$	$\frac{T}{T^{*}}=\frac{\gamma+1}{2+(\gamma-1) M^{2}}$	(j)

Properties of a fluid determined in table 3-2 at any section of a vent pipe can be related to the properties at any other section of the vent pipe. It is always advisable to relate the property relations in table 3-2 in form of dimensionless Mach number. In order to achieve this, property relations in table 3-2 are integrated between the inlet and exit conditions of the vent pipe. The inlet conditions are represented by subscript 1 and exit conditions by subscript 2 . The integrated expressions are tabulated in table 3-6 Part A. A problem develops when the speed of gas is approaching sonic velocity. Obtaining results of table 3-6 Part A will sometimes result in solutions of subsonic to supersonic flow. This will affect the calculation procedures and will result in an error. Hence in order to overcome these situations, we restrict the properties in table 3-6 Part A to approach those characteristic of Mach unity. Properties of a fluid when the gas is flowing at Mach unity are called critical properties and are identified by means of an asterisk $\left(^{*}\right)$. These equations are represented in table 3-6 Part B.

Mass flow rate is a requirement in predicting the properties along the vent pipe segments. Thus, initially we consider the entire length of vent pipe and compute the mass flow rate. In order to calculate the constant mass flow rate, inlet value of Mach number is required. This is achieved
by solving equations (a) \& (e) of table 3-6 and equation 23 which relates the inlet and outlet Mach numbers for a segment or for the entire length of the vent pipe.
$\frac{M_{1}}{M_{2}}=\frac{P_{1}}{P_{2}}\left(\frac{T_{2}}{T_{1}}\right)^{1 / 2}$
This result in two non-linear equations $24 \& 25$ with three unknown variable: friction factor, Mach number, and outlet temperature.
$\frac{1}{\gamma}\left\{\frac{1}{M_{1}^{2}}\left[1-\left(\frac{P_{1}}{P_{2}}\right)^{2}\left(\frac{T_{2}}{T_{1}}\right)\right]-(1+a) \ln \left[\left(\frac{P_{1}}{P_{2}}\right)^{2}\left(\frac{T_{2}}{T_{1}}\right) \frac{1+a M_{1}^{2}}{1+a\left(\frac{P_{2}}{P_{1}}\right)^{2}\left(\frac{T_{1}}{T_{2}}\right) M_{1}^{2}}\right]\right\}-\frac{4 f L}{D}=0$
$\frac{T_{1}}{T_{2}}-\frac{1+a\left(\frac{P_{2}}{P_{1}}\right)^{2}\left(\frac{T_{1}}{T_{2}}\right) M_{1}^{2}}{1+a M_{1}^{2}}=0$
Where $\mathrm{a}=(\gamma-1) / 2 ; \gamma$: Specific heat ratio; $\mathrm{M}_{1}-$ Inlet Mach number for the segment or vent pipe; M_{2} - Outlet Mach number for the segment or vent pipe; P_{1} - Inlet static pressure for the segment or vent pipe; $\mathrm{P}_{2}-$ Outlet static pressure for the segment or vent pipe; $\mathrm{T}_{1}-$ Inlet static temperature for the segment or vent pipe; $\mathrm{T}_{2}-$ Outlet static temperature for the segment or vent pipe. We have two dependent variables and one independent variable in equations $24 \& 25$. Since we interested in the effects of friction in the vent pipe, we choose friction factor, f , as independent variable.

Frictional resistance between the moving gas and pipe wall is quantified using Darcy friction factor, f. For fully turbulent flow, friction factor is independent of Reynolds number and is determined using the Von Karman equation customarily given by (Cochran 1996):
$f=-2 \log [(\epsilon / D) / 3.7]^{-2}$
For flow regimes other than fully turbulent, the friction factor is dependent on Reynolds number. However, the above Von-Karman equation can be conveniently used as an initial estimate of friction factor. On estimating the initial friction factor, the non-linear equation $24 \& 25$ can be solved by applying Newton's Iteration method for multi-variable non-linear equations. We incorporate the use of Jacobian matrix in calculating our dependent variables. The procedure for Newton's Iteration method can be cited in a (Franz and Melching ND; Bellman 1970; Ortega and Rheinboldt 1970). One of the serious difficulties associated with the use of the Newton's technique is calculation of the Jacobian matrix and its inversion at each step which sometimes results in errors (Bellman 1970). This difficulty is overcome by solving the matrix on excel spreadsheet.

An initial estimate for Mach number is assumed to be 0.01 and for outlet temperature is assumed to be as inlet temperature. In subsonic flow the exit temperature is always decreasing. Hence the inlet temperature will provide a good estimate in calculating the outlet temperature. A minimum of 400 iterations are performed to calculate the final friction factor incorporating a number of nested iterations. After approximating the friction factor value on first iteration, Serghides approximation (Serghides 1984) to the Colebrook-White equation 3-22 is used to estimate the friction factor up to final iteration. Iterations are performed until the friction factor convergence is of the order 10^{-16}. This will improve the accuracy of vent pipe model predictions. The inlet Mach number and outlet static temperature of the flowing gas are calculated from iterations for the final friction factor. The inlet Mach number is used to calculate the steady state mass flowrate which remains constant for all segments of the vent pipe.

Figure 3-4: Representation of equation 3-27
The predicted compressible fluid properties for each segment of vent pipe depend on the friction term $4 f L / D$. The accuracy of particular model or method of solution is greatly dependent on the $4 f L / D$ term of the pipe section under blowdown (Botros, Jungowski, and Weiss 1989). For a given segment length, L_{l-2}, the term $4 f L_{l-2} / D$ is estimated from the following equation 3-27 (Parker 1989; Saad 1993; Shapiro 1954) and is represented in figure 3-4:
$\frac{4 f L_{1-2}}{D}=\left(\frac{4 f L^{*}}{D}\right)_{M_{1}}-\left(\frac{4 f L^{*}}{D}\right)_{M_{2}}$
Where L^{*} - Maximum length of vent pipe which does not cause choking; ($\left.L^{*}\right)_{\mathrm{m} 1}$: Vent pipe length associated with $\mathrm{M}_{1} ;\left(\mathrm{L}^{*}\right)_{\mathrm{M} 2}$: Vent pipe length associated with $\mathrm{M}_{2} ; \mathrm{L}_{1-2}$ - Vent pipe length between the section 1 corresponding to Mach M_{1}, and section 2 corresponding to Mach M_{2} Upon calculating the friction term, the corresponding compressible fluid properties are calculated using the critical property relations in table 3-6 Part B. The resulting venting conditions are then calculated for each segment of the pipe. The exit conditions calculated for a segment becomes the inlet condition for the next segment of the vent pipe. The balances obtained for each segment of the vent pipe are then linked together to satisfy the boundary conditions. The boundary conditions for the vent pipe are specified gas static pressure, gas static
temperature and gas composition at the inlet of the vent pipe and complete pressure drop to atmosphere, that is, a pressure of 1 bar atm or choking pressure (at which flow becomes choked) at the exit of the vent pipe.

If choking condition is attained, the user has following 3 options-

- Decreasing the inlet static pressure - At sonic condition by decreasing the inlet static pressure, the mass flow rate will be reduced. Thus, the flow will enter the subsonic region with a shift in Fanno curve
- Increasing the vent pipe length - When a compressible gas flows through a constant area vent pipe, the flow characteristics in the vent pipe are affected by the length of the vent pipe. If the flow entering the vent pipe is at subsonic condition, the gas will accelerate in the vent pipe owing to friction, approaching sonic conditions at the exit. At the same time, the static pressure as well as stagnation pressure decreases in the direction of the flow. Stagnation temperature and stagnation enthalpy will remain constant. If choking condition is attained at the vent pipe exit, the mass flow rate through the vent pipe is at its maximum (refer figure 2) and the flow is choked at the exit. If a further increase in mass flow rate is desired it can be achieved by decreasing the stagnation temperature and or increasing the stagnation pressure at the inlet of the vent pipe (as per equation 15). However, the velocity at the exit of the vent pipe would still be sonic, but the exit pressure would be higher. According to the Fanno process, friction present in adiabatic flow will cause changes in the compressible fluid properties and increases the gas velocity so that the sonic velocity is approached at the pipe exit. Apart from friction factor, the term, $4 f L / D$, also incorporates the length and diameter of the vent pipe. Precisely, the mass flow rate achieved in the vent pipe depends on friction resistance (Brkic` 2011). Hence, the length of the pipe can directly affect the mass flow through the vent pipe. If the term $4 f L / D$ is as large as the maximum value appropriate for the Mach number at the entrance to the vent pipe, then the gas flow at the pipe exit is at Mach 1 and the length of the pipe is at its maximum. Thus when choking occurs, the Mach number at the inlet of the pipe depends on the length of the pipe and decreases as the length is increased. When the flow is choked, an increase in pipe length produces a reduction in the mass flow, so that the operating point is shifted to a different Fanno line.
- Increasing or decreasing the exit gas static pressure - When a compressible gas flows through a constant area vent pipe, the flow characteristics in the vent pipe are affected by the back pressure at the vent pipe exit. For a constant vent pipe length, an increase or decrease in exit gas pressure will result in a sonic condition depending on the back pressure
applied. In subsonic flow, gas accelerates continuously such that the exit pressure is equal to back pressure. If the back pressure is reduced, the exit pressure of the gas will reduce such that sonic conditions are approached at the exit of the vent pipe. At this point the mass flow will be at its maximum through the vent pipe and the exit Mach number will be at unity. Any further reduction in back pressure will have no effect on the mass flow. In our case venting is straight to atmosphere. On achieving choking pressure, an increase or decrease in exit pressure from back pressure of 1 bar will cause a decrease in mass flow and the Mach number will be less than unity.

This procedure gives the complete state of the line for specified upstream conditions at all points along the vent pipe. Compressible gases used in performing simulations using the vent pipe model were air, methane, carbon dioxide and DBNGP gas mixture. Simulations were performed in the pressure range from 100 KPa gauge up to choking pressure condition. All results are presented in Appendix F.

3.3 Computations

For obtaining solutions to process simulations, several levels of computation are available ranging from solution by inspection to analytical and high speed computer solution (Ramirez 1998). Because of the complexity and non-linearity of process simulation problems, most solution require high speed computer. All computations related to the vent pipe model were carried out on Core 2 Duo 3.00 GHz computer with 2 GB RAM provided by Curtin University.

The vent pipe model's programming functions were scripted in Visual Basic in conjunction with Microsoft Excel which will act as a user interface for data input, model prediction results, and report generations. The algorithm adopted in computing the predictions of the vent pipe model is presented in figure 3-5. The MS Excel and Visual Basic program functions for the vent pipe model and for obtaining the thermophysical properties are presented in Appendix H.

Figure 3-5: Algorithm for vent pipe model

Chapter 4

Results and Discussion

As discussed in the literature review, the ranges of transient and steady-state vent pipe flow experiments are limited. Venting experiments have been conducted with working fluids such as water and refrigerant R114 with an operating pressure up to 7.2 MPa (Skouloudis 1992). These experiments, which encounter liquid only, are more related to the reactor cooling system for nuclear industry and were conducted for validating models SAFIRE (Tilley and Shaw 1990), RELAP (Worth, Staedtke, and Franchello 1993), RELIEF (Nijsing and Brinkhof 1996) and DEERS (Skouloudis 1992). A wide range of experiments related to blowdown of single phase gas/liquid or multiphase mixtures from pressure vessels and pipelines are been conducted (Evanger et al. 1995; Gebbeken and Eggers 1995; Norris III, Exxon Production Research Co, and R.C. Puls 1993; Haque et al. 1992). A rough idea to model the vent pipe-work associated with vessels and pipelines is mentioned (Haque, Richardson, and Saville 1992). In order to evaluate the performance of the developed vent pipe model and provide experimental data for future development of models, a small facility was constructed to perform venting experiments.

4.1 Experimental Design

The experimental test rig was developed and designed based on first principles of chemical engineering. The test rig was designed for a maximum design pressure of 1500 KPa G. Relevant standard/codes were employed in mechanical designing of the experimental test rig. The design was confirmed and signed for construction by Dr. Hari Vuthaluru, Associate Prof. Department of Chemical Engineering, Curtin University, Mr. Clinton Smith, Principal Process Engineer, Atkins Global and Dennis Kirk-Burnnand, Principal Consultant, GHD Pty Ltd. The construction of the experimental test rig was carried out in Curtin University's Mechanical Workshop by Carl Lewis, Senior Technician.

The experimental test rig consists of a vent pipe and an accumulator pipe arrangement. The vent pipe is a 12 m long 8 NB schedule 80 stainless steel type 316 pipe. The entire test rig arrangement is positioned horizontally on 90° brackets mounted in the wall. In order to achieve a steady-state flow condition, an 11.6 m long 50 NB schedule 40 seamless carbon steel ASTM A106 GR B 3000 pipe was positioned in parallel with the vent pipe. The purpose of the carbon steel pipe was to act as an 'accumulator', a steady supply source of gas through the 12 m vent pipe section in case if the supply from the compressor and gas bottles was observed depleting.

Figure 4-1: Schematic representation of the vent pipe assembly

In order to comply with safety, the vent pipe and accumulator pipe arrangements were hydrostatically tested with water at a pressure of 600 psi for a period of 30 min . No leaks were found and a pressure test certificate (refer Appendix A) was provided. Pressure reliefs were also installed in case of pressure built up in the accumulator. Due to high velocity noise produced at the end of the test section, a noise controller was designed and attached to end flange of the vent pipe. The noise controller is a 150 NB SS pipe with 80 NB schedule 10 s SS pipe inside both welded to a flange. The 80NB pipe has $1 / 2$ inch perforated holes along its length. The gas exiting at the end of the vent pipe is absorbed by the acoustic foam packed inside the 150 NB pipe. The entire arrangement and mechanical drawings can be seen in figure 4-1 and Appendix B. In order to have no heat transfer with the surroundings prevailing adiabatic process assumptions, the entire vent pipe arrangement was insulated with glass wool. Extensive safety and operational controls were instituted to prevent the ingress of unauthorized personnel into the facility during the gas blowdown.

4.2 Instrumentation and Data Collection

The vent pipe tests were performed by measuring the stagnation temperature of the gas at the inlet and exit, temperature of the vent pipe wall at the exit, the temperature of the vent pipe wall at every 1 m section of the pipe, pressure and the flow of the gas through the vent pipe. The instruments are selected based on the engineering design parameters which could sustain the maximum design pressure. Pressure transducers were used to measure the pressure of the gas at three different positions: before ball valve $\left(\mathrm{bv}_{2}\right)$, inlet and exit of vent pipe. The 130 C Ceramic Pressure Transducer made of Wheatstone bridge circuit transmitting an analog output of 420 mA was used to sense the pressure. The pressure range of the transducer is $0-20$ bar at an accuracy of ± 0.1 bar. The pressure transducers were calibrated by the vendor. A digital pressure gauge was also used to give direct measurements. This digital pressure gauge was provided by BOC Gases. RTD's were used to sense the temperature of the gas at the inlet and exit ends. Model RTD-PT100 output was used with initial calibration performed by the vendor. In order to cross check the accuracy, RTD's were immersed in the ice / water bath and corresponding temperatures were recorded. All RTD readings were found to be in close agreement (refer Appendix C for Commissioning and Testing report). The temperatures of the outside of the pipe wall at the vent pipe exit were obtained using Adjustable Ring T-Type thermocouple. These thermocouples make direct contact with the pipe for maximum performance and have grounded junctions. The operating range for these thermocouples is $-100^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$. The temperature sensed by the temperature sensors was confirmed by a Non-Contact Thermometer with Dual

Laser Targeting (temperature gun). The contact thermocouples temperatures were checked for accuracy in the ice / water bath and measurements were found to be in close agreement. The temperature range was $-50^{\circ} \mathrm{C}$ to $650^{\circ} \mathrm{C}$ with an accuracy of $\pm 1 \%$. The outside surface pipe wall temperatures after every 1 m section of the vent pipe were obtained using temperature gun. The flowrate of the gas through the vent pipe was monitored and obtained using an IFM Effector 300 Flow Sensor Model SD6000. This flow sensor is been developed especially for compressed air with integrated pipe length. The flow sensor measurement is based on the calorimetric principle transmitting an analogue signal of $4-20 \mathrm{~mA}$ proportional to the standard volumetric flow. The compressed air meter detects the standard volume flow (to ISO 2533) directly, eliminating the need to correct for temperature and pressure variation. The high measurement dynamics of the system enables reliable detection of minute quantities. The range of the flow meter is 0-75 $\mathrm{Nm}^{3} / \mathrm{hr}$ at an accuracy of $\pm 3 \%$. High accuracy and repeatability are ensured by the integration of the measurement sensor's key elements into a defined pipe length.

All data was telemetered to a NI CompactDAQ data acquisition system developed by National Instruments. Model NI cDAQ-9172 is an eight-slot NI CompactDAQ chassis that can hold up to eight I/O modules and is capable of measuring a broad range of analog and digital I/O signals and sensors using a Hi-Speed USB 2.0 interface. The analog signals from the pressure transducer, temperature RTD, temperature thermocouple and flow meter are transmitted to NI input modules NI9203, NI9217 and NI9211 via 2pr screened dekron cable. The data collection is controlled by the NI LabView Signal Express software version 3.5 from where trend data is exported to Microsoft Excel for further analysis. The advantage of using LabView Signal Express is that it provides instant interactive measurements that require no programming, thus, making it easier to use. Although the accuracy of the instruments and modules is found to be agreeable there exists a potential for signal noise caused primarily due to power supply fluctuations, signal transmission etc. This difficulty was solved by adopting signal noise reduction technique and is described in next section.

4.3 Experimental Data Noise Reduction

Noise is a high-frequency variation in the process measurement that is not associated with the true process measurement i.e. it is the variation in the sensor reading that does not correspond to changes in the process and can be by background electrical interference, mechanical vibrations and process fluctuations (Riggs and Karim 2006). These signal noises are equivalent to errors which inevitably corrupt the process measurement and render the steady-state performance
during the measurement processing and transmission of signal. Hence it is therefore important to reduce, if not completely eliminate, the effect of noise or errors.

The total error in a measurement, which is the difference between the measured value and the true value of the variable, can be conveniently represented as the sum of the contributions from two types of errors - random errors and gross errors (Narasimhan and Jordache 2000). Random error (Nagy 1992; Narasimhan and Jordache 2000) implies that neither the magnitude nor the sign of the error can be predicted with certainty. In other words, if the measurement is repeated with the same instrument under identical process conditions, a different value may be obtained depending on the outcome of the random error. Gross errors imply that at any given time they have a certain magnitude and sign which may be unknown. Thus, if the measurement is repeated with the same instrument under identical conditions, the contributions of the systematic gross error to the measured value will be the same. Random errors can be caused by a number of different sources such as power supply fluctuations, network transmission and signal conversion noise, analog input filtering, changes in ambient conditions whereas gross errors are caused by nonrandom events such as instrument malfunctioning, miscalibration, wear or corrosion of sensors, and solids deposits. Such gross errors do not apply to our measurement process as no malfunctioning, miscalibration, wear or corrosion exists with our sensing instruments. The instruments purchased from relevant vendors are new which certify calibration performed on them. The temperature instruments have been tested from time to time in ice / water bath to ensure its accuracy. The instruments are well fitted by qualified Mechanical Technicians. The only error relevant in our case is the random errors on measurements as additive contributions.

An abundant literature exists on measurement error and its calculation (Lloyd and Lipow 1962). Characteristics of random error can be described using statistical properties. Hence its mean or expected value is usually the DC voltage we trying to measure, to which noise are added and its variance is the standard deviation of the noise. As recommended by (National Instruments 2006), we assume an identical distribution of each of the samples. Specifically, the means of all the samples are the same, as are the standard deviations. This assumption is convenient because in calculations we can now use the same statistics to describe each of the samples. Characterizing the sample as independent is not a good assumption because the character of noise is often time varying. The standard deviation is a measure of the magnitude of the energy of whatever AC signal is present (just noise, we hope, in case of a DC measurement) and is independent of whatever DC signal is present. Since the true standard deviation is never known,
an estimate of the standard deviation can be obtained by using the following equation recommended (National Instruments 2006)
$\sigma=\sqrt{E\left(X_{i}{ }^{2}\right)-\mu^{2}}$
Where σ - standard deviation (just noise in case of DC measurement); X_{i} - sample of noise in question; E (.) - Expectation (average value) of the quantity inside the brackets.

An important requirement for estimating the standard deviation of a measurement error from a sample of measurements is that all the measurements of the variable should be drawn from the same statistical population. We apply this logic to our initial start-up measurements for which the mean or expected value is fixed at 4 mA . This makes the task trivial. Now, the standard errors calculated are subtracted from the measured values to obtain a true measured value. It should be noted that the random error generated will not be entirely eliminated (Narasimhan and Jordache 2000). A second type of redundancy, called temporal redundancy exists as we generate more data continually from CompactDAQ to determine a steady-state. Temporal redundancy can be exploited by simple averaging the calculated measurements. This task is accomplished by using a digital filter. Different digital filters such as exponential filter, Moving Average filter, polynomial filters and hybrid filters exists. Each filter type has its own advantages. Moving average $\widetilde{y_{n}}(i)$ is a well known low-pass filter defined, for discrete signals, by (Alessio et al. 2002)
$\widetilde{y_{n}}(i)=\frac{1}{n} \sum_{k=0}^{n-1} y(i-k)$

The moving average is a finite impulse response (FIR) filter which means that the effect of any input lasts only for N steps. The equal weight moving average cancels out periodic noise. The moving average is easy to tune for steady-state or quasi steady-state signals, requiring only the adjustment of the number of input values used to calculate the average. The moving average does not overshoot and reaches correct steady-state after a step change. The moving average is also easy to implement and fast to compute. These calculations are not trivial and are performed in Excel Visual Basic Program. An Excel Visual Basic program is written to accomplish this task of reducing the effects of errors on pressure transducer; temperature sensors and flow meter (refer Appendix D).

Figure 4-2: Noise reduction for pressure transducers $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$

Figure 4-3: Noise reduction for temperature sensors $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$

Figure 4-4: Noise reduction for flow-meter
The procedure explained above for noise reduction works well and its implementation can be confirmed by running the program on a set of measurements obtained during 200 KPa gauge test. The graphs are summarized for signals obtained from pressure transducers, flow transducers and temperature sensors. A clear reduction in the effect of random error can be seen in Figure 4-2, figure 4-3, and figure 4-4. Referring to these graphs it can be said that the noise or random error produced during the signal measurement is reduced, thus, attaining the true value of the measurement.

4.4 Experimental Analysis

A total of 9 venting experiments were carried out in the fluid flow laboratory which were designated from VPM-1 to VPM-9 (VPM - Vent Pipe Model). These experiments were divided into three sets each containing 3 experiments. A set differs with respect to the initial pressure. Set-1 experiments were performed at an initial pressure of 200 KPa G, Set-2 at an initial pressure of 300 KPa G and Set-3 at an initial pressure of 400 KPa G . Maintaining a steady-state pressure above 400 KPa G into the vent pipe was not possible due to restricted flow supply from the laboratory air compressor. In all cases, venting was to atmosphere so the back pressure was 0 KPa G. Experiments were repeated in order to ensure reproducibility. Not all experiments were carried out for the same time period. Compressed Air from laboratory air compressor and an instrument graded air in G-size cylinder (single) was used in the experiments. Cylindrical gas bottles were provided by BOC Gases. The air gas composed of 78.12% Nitrogen, 20.96%

Oxygen and 0.92% Argon by mole (BOC Gases 2006). The reason for utilizing air is because of its simplicity and cheapness (Glushkov, Selyanskaya, and Kas'yanov 2003). Air has only a single phase over the pressures and temperatures encountered in our experiment, and departures from ideal gas behavior are small. Also, the restriction of blowing down any supercritical or hydrocarbon gases into the atmosphere on the Curtin University premises favored air only.

A simple procedure was adopted to ensure steady-state conditions are achieved into the vent pipe. A pressure regulator and a bleed valve arrangement was installed initially which did not prove to be effective and was discarded. Two 20 NB full bore ball valves were used in order to achieve steady-state flow conditions. One ball valve (bv_{1}) was placed after the accumulator and other $\left(\mathrm{bv}_{2}\right)$ before the gas enters the vent pipe. Valve $\left(\mathrm{bv}_{2}\right)$ was used as the open/close valve whereas the valve $\left(\mathrm{bv}_{1}\right)$ was used to function as a regulator to achieve the steady-state conditions. Air was supplied by a rubber air hose to the accumulator. Initially, on start-up the valve (bv_{2}) was kept in closed position and valve $\left(\mathrm{bv}_{1}\right)$ was opened slowly. Pressure gauge installed on the accumulator line was used to observe the pressure required. Once the required air pressure is achieved valve $\left(\mathrm{bv}_{2}\right)$ was opened slowly and steady-state conditions were achieved with valve $\left(\mathrm{bv}_{1}\right)$. Pressure, temperature and standard flow readings were recorded as analog values and the entire process was monitored using LabView Signal Express software. Not all experimental readings / logs could be stored as the software was only a demo version provided with Compact DAQ. The results obtained from the experiments are compared with the model predictions and interpreted in the latter section.

4.5 Experimental Validation

Predictions made using the vent pipe model have been conducted with all of the validatory experiments VPM-1 to VPM-9. Three selected representative comparisons namely VPM-1, VPM-4 and VPM-7 are given in what follows. In all experiments conducted, air is always in gaseous state. No condensation or formation of two-phase is likely to take place due to low pressures involved. One point that must always be borne in mind while comparing the experimental results and vent pipe model predictions is that the model contains no disposable parameters. Thus there can be no adjustment of parameters in order to ensure good agreement between the experimental measurements and the predictions. The vent pipe model is completely predictive.

The test section is well insulated with glass wool so that the entire arrangement is considered to be an adiabatic process. The RTD's are not fitted exactly in the streamline of the flowing gas.

This is because of area restrictions present with the geometry of RTD tube and the inside diameter of the vent pipe. If RTD's are fitted in such a way that the tip of the RTD is immersed half way into the flowing air stream then this will cause restriction to flow inside the duct. Care is taken to ensure the tip of RTD is not causing any restriction in the flow. Along the duct length the velocity of air is always accelerating towards the exit of the vent pipe. As the air flows inside the duct, RTD senses the temperature of air at the point of contact. At this point, the velocity of air is likely to be decelerated. According to (Saad 1993), when a fluid is decelerated to zero velocity in a steady-flow adiabatic process, the resulting properties of the fluid are called stagnation properties, provided that no work interactions occurs and also gravitational, magnetic, electric and capillary effects are absent. According to this definition, the measured temperature of air will be the stagnation temperature and not static temperature i.e. the temperature measured will not be the actual temperature of the flowing air gas.

4.5.1 Experiment VPM-1

Stagnation temperature measurements were taken at the entry and exit of the vent pipe. Measuring the stagnation temperature along the entire length of the vent pipe was not possible due to difficulty in getting the instruments fitted along the vent pipe. The system was allowed to attain steady-state condition by controlling the flow. The final steady-state stagnation temperature measurements were recorded. After performing noise reductions on the recorded measurements, these were summarized in figure 4-5. The experimental values were plotted for a steady-state period only. The disturbance occurring prior to achieving steady-state condition was not plotted. The stagnation temperature predictions by the vent model were compared to the experimental values. It was seen that the exit stagnation temperature achieved a steady-state value quicker than the inlet stagnation temperature. The final steady-state value for the inlet stagnation temperature was $19.04^{\circ} \mathrm{C}$ whereas the exit stagnation temperature value achieved was $18.92^{\circ} \mathrm{C}$. The inlet stagnation temperature value obtained from experimental analysis was inputted into the vent model to predict the exit stagnation temperature value. The stagnation temperature values along the vent profile were also predicted and are summarized in figure 4-5. The predicted steady-state exit stagnation temperature was $18.97^{\circ} \mathrm{C}$. This predicted value when compared to the exit experimental value results in a percent difference of 0.26% which equivalent to $\pm 0.05^{\circ} \mathrm{C}$ and is relatively very small. There is clearly excellent agreement between the predicted stagnation temperature and experimental stagnation temperatures.

Figure 4-5: Comparison of model predicted stagnation temperatures with experimental stagnation temperatures for VPM-1

Figure 4-6: Comparison of model predicted wall temperatures with experimental wall temperatures for VPM-1

Figure 4-7: Comparison of model predicted standard volumetric flow rate with experimental standard volumetric flow rate for VPM-1

Figure 4-8: Experimental pressure measurements for VPM-1
Actual gas temperature measurement is not a trivial task and requires very accurate measuring instruments. One way of estimating the actual gas temperature is by determining the pipe wall temperature during the steady-state flow process and calculating the gas temperature assuming a recovery factor (McAdams, Nicolai, and Keenan 1946). In order to evaluate this, the process has to be adiabatic so that no heat transfer takes place with the surrounding. A T-type thermocouple was attached to the pipe wall at the exit of the vent pipe. The thermocouple was attached using an adjustable ring so that a firm contact exists between the pipe wall and thermocouple. The temperature readings were recorded at a nominal sampling rate. After performing noise reductions on these temperature readings, these measurements were summarized in figure 4-6. The final temperature recorded on achieving steady-state was $16.56{ }^{\circ} \mathrm{C}$. The surface pipe wall temperatures at every 1 m surface were measured by a non-contact dual laser thermometer. The
temperatures recorded by temperature gun are also summarized in figure 4-6. The predicted gas temperature values for the predicted stagnation temperatures were used in determining the adiabatic wall temperature. The predicted adiabatic wall temperatures are represented in figure 4-6 and compared to the measured surface pipe wall temperatures. The percentage differences between predicted and temperature gun measurements were calculated to be 0.0% at the inlet and -4.53% (equivalent to $-0.73^{\circ} \mathrm{C}$) at the exit of the vent pipe. The percent difference between predicted and thermocouple temperature measurement was calculated to be 2.26% which is equivalent to $-0.37^{\circ} \mathrm{C}$. Clearly, there is also a good agreement between the measured and predicted pipe wall temperatures. In particular, the minimum wall temperature at the exit of the vent pipe, which is of significance to the materials of construction of the pipe itself, is underpredicted within 2.26%. Thus, there exists a very close agreement between the vent pipe model temperature predictions and experimental analysis.

Now, that we have a close agreement between the predicted wall temperatures and the experimental values, we can say that the predicted static temperature values and actual temperature values must be in close agreement as well and are summarized in figure 4-6. A gas temperature drop of $6.53{ }^{\circ} \mathrm{C}$ was predicted for an inlet pressure of 200 KPa gauge.

The standard volumetric flow rate for the gas was recorded using IFM Effector 300 flow sensor. The flow measurements were recorded for the steady-state pressure of 200 KPa gauge for the same time period as for temperatures. After performing noise reductions on these readings, these values are summarized in figure 4-7. However, it was difficult to maintain a steady-state condition in the vent pipe due to supply issues from the laboratory air compressor. This resulted in slight variations in the pressure and flow rate readings. In order to have a close comparison between the predictions and experimental values, it was decided to predict the flow rates for the corresponding experimental pressure readings. The predicted flow rates were compared to the experimental flow rate results. An average standard volumetric flow of $22.89 \mathrm{Nm}^{3} / \mathrm{hr}$ was attained on achieving steady-state during the experiment whereas an average standard volumetric flow of $20.46 \mathrm{Nm}^{3} / \mathrm{hr}$ was predicted by the vent pipe model. The comparison result tells us that there exists a percentage difference of -10.6% which is equivalent to $\pm 2.43 \mathrm{Nm}^{3} / \mathrm{hr}$. Hence the flow rate is under-predicted by the vent pipe model. However, the calculated difference is not very high and is acceptable.

Pressure measurements were recorded at the entry and exit of the vent pipe using pressure transducers. After performing noise reductions these values are summarized in figure 4-8.

However, it was not possible to determine the pressure along the vent pipe and hence the pressure profile is discussed in more detail in Hysys validation. A similar approach to experiment VPM-1 was adopted in comparing the vent pipe model predictions to experimental analysis at 300 and 400 KPa inlet gauge pressures.

4.5.2 Experiment VPM-4

Stagnation temperature measurements were taken at the entry and exit of the vent pipe. The system was allowed to attain steady-state condition by controlling the flow. The final steadystate stagnation temperature measurements were recorded. After performing noise reductions on the recorded measurements, these were summarized in figure 4-9. The experimental values were plotted for a steady-state period only. The disturbance occurring prior to achieving steady-state condition was not plotted. The stagnation temperature predictions by the vent model were compared to the experimental values. It was seen that the exit stagnation temperature achieved a steady-state value quicker than the inlet stagnation temperature. The final steady-state value for the inlet stagnation temperature was $18.59^{\circ} \mathrm{C}$ whereas the exit stagnation temperature value achieved was $18.35^{\circ} \mathrm{C}$. The inlet stagnation temperature value obtained from experimental analysis was inputted into the vent model to predict the exit stagnation temperature value. The stagnation temperature values along the vent profile were also predicted and are summarized in figure 4-9. The predicted steady-state exit stagnation temperature was $18.41^{\circ} \mathrm{C}$. This predicted value when compared to the exit experimental value results in a percent difference of 0.33% which is equivalent to $\pm 0.06^{\circ} \mathrm{C}$ and is very small. There is clearly excellent agreement between the predicted stagnation temperature and experimental stagnation temperatures. Actual gas temperature measurement was estimated in a similar manner to experiment VPM-1. After performing noise reductions on these temperature readings, these measurements were summarized in figure 4-10. The final temperature recorded on achieving steady-state was $15.33^{\circ} \mathrm{C}$. The surface pipe wall temperatures at every 1 m surface were measured by a noncontact dual laser thermometer. The temperatures recorded by temperature gun are also summarized in figure 4-10. The predicted gas temperature values for the predicted stagnation temperatures were used in determining the adiabatic wall temperature. The predicted adiabatic wall temperatures are represented in figure 4-10 and compared to the measured surface pipe wall temperatures. The percentage differences between predicted and temperature gun measurements were calculated to be 0.19% at the inlet and 3.88% (equivalent to $0.55^{\circ} \mathrm{C}$) at the exit of the vent pipe. The percent difference between predicted and thermocouple temperature measurement was calculated to be -3.78% which is equivalent to $-0.58^{\circ} \mathrm{C}$.

Figure 4-9: Comparison of model predicted stagnation temperature with experimental stagnation temperature for VPM-4

Figure 4-10: Comparison of model predicted wall temperature with experimental wall temperature for VPM-4

Clearly, there is also a good agreement between the measured and predicted pipe wall temperatures. In particular, the minimum wall temperature at the exit of the vent pipe, which is of significance to the materials of construction of the pipe itself, is under-predicted within 3.78% which is equivalent to $-0.58^{\circ} \mathrm{C}$. The percent difference is relatively small and is acceptable. Once again there is a good agreement between the vent pipe model temperature
predictions and experimental analysis. Now, that we have a close agreement between the predicted wall temperatures and the experimental values, we can say that the predicted static temperature values and actual temperature values must be in close agreement as well and are summarized in figure 4-9. A gas temperature drop of $12.53{ }^{\circ} \mathrm{C}$ was predicted for a pressure drop of 300 KPa gauge.

The standard volumetric flow measurements were recorded for the steady-state pressure of 300 KPa gauge for the same time period as for temperatures. After performing noise reductions on these readings, these values are summarized in figure $4-11$. It was difficult to maintain a steadystate condition in the vent pipe due to supply issues from the laboratory air compressor. This resulted in slight variations in the pressure and flow rate readings.

Figure 4-11: Comparison of model predicted standard volumetric flowrate with experimental standard volumetric flow for VPM-4

In order to have a close comparison between the predictions and experimental values, it was decided to predict the flowrates for the corresponding experimental pressure readings. The predicted flowrates were compared to the experimental flowrate results. An average standard volumetric flow of $29.86 \mathrm{Nm}^{3} / \mathrm{hr}$ was attained on achieving steady-state during the experiment whereas an average standard volumetric flow of $27.98 \mathrm{Nm}^{3} / \mathrm{hr}$ was predicted by the vent pipe model. The comparison result tells us that there exists a percentage difference of -6.3% which is equivalent to $\pm 1.88 \mathrm{Nm}^{3} / \mathrm{hr}$. Hence the flowrate is under-predicted by the vent pipe model. However, the calculated difference is not very high and is acceptable. Pressure measurements were recorded at the entry and exit of the vent pipe using pressure transducers. After performing noise reductions these values are summarized in figure 4-12. However, it was not possible to determine the pressure along the vent pipe and hence the pressure profile is discussed in more detail in Hysys validation.

Figure 4-12: Experimental pressure for VPM-4

4.5.3 Experiment VPM-7

Stagnation temperature measurements were taken at the entry and exit of the vent pipe. The system was allowed to attain steady-state condition by controlling the flow. The final steadystate stagnation temperature measurements were recorded. After performing noise reductions on the recorded measurements, these were summarized in figure 4-13. The experimental values were plotted for a steady-state period only. The disturbance occurring prior to achieving steadystate condition was not plotted. The stagnation temperature predictions by the vent model were compared to the experimental values. It was seen that the exit stagnation temperature achieved a steady-state value quicker than the inlet stagnation temperature. The final steady-state value for the inlet stagnation temperature was $18.55^{\circ} \mathrm{C}$ whereas the exit stagnation temperature value achieved was $18.16^{\circ} \mathrm{C}$. The inlet stagnation temperature value obtained from experimental analysis was inputted into the vent model to predict the exit stagnation temperature value. The stagnation temperature values along the vent profile were also predicted and are summarized in figure 4-13. The predicted steady-state exit stagnation temperature was $18.27^{\circ} \mathrm{C}$. This predicted value when compared to the exit experimental value results in a percent difference of 0.6% which is equivalent to $\pm 0.11^{\circ} \mathrm{C}$ and is very small. There is clearly excellent agreement between the predicted stagnation temperature and experimental stagnation temperatures. Actual gas temperature measurement was estimated in a similar manner to experiment VPM-1 and VPM-4. After performing noise reductions on these temperature readings, these measurements were summarized in figure 4-14. The final temperature recorded on achieving steady-state was $12.39^{\circ} \mathrm{C}$. The surface pipe wall temperatures at every 1 m surface were measured by a noncontact dual laser thermometer. The temperatures recorded by temperature gun are also summarized in figure $4-14$. The predicted gas temperature values for the predicted stagnation temperatures were used in determining the adiabatic wall temperature.

Figure 4-13: Comparison of model predicted stagnation temperature with experiment stagnation temperature for VPM-7

The predicted adiabatic wall temperatures are represented in figure 4-14 and compared to the measured surface pipe wall temperatures. The percentage differences between predicted and temperature gun measurements were calculated to be 0.49% at the inlet and 9.79% (equivalent to $1.13^{\circ} \mathrm{C}$) at the exit of the vent pipe. The percent difference between predicted and thermocouple temperature measurement was calculated to be 1.91% which is equivalent to $0.24^{\circ} \mathrm{C}$.

Figure 4-14: Comparison of model predicted stagnation temperature with experiment stagnation temperature for VPM-7

Again, there is good agreement between the measured and predicted pipe wall temperatures. In particular, the minimum wall temperature at the exit of the vent pipe, which is of significance to
the materials of construction of the pipe itself, is over-predicted within -1.91% which is equivalent to $0.24^{\circ} \mathrm{C}$. Thus, there exists a good agreement between the vent pipe model temperature predictions and experimental analysis.

Now, that we have a close agreement between the predicted wall temperatures and the experimental values, we can say that the predicted static temperature values and actual temperature values must be in close agreement as well and are summarized in figure 4-14. A gas temperature drop of $17.35^{\circ} \mathrm{C}$ was predicted for a pressure drop of 400 KPa gauge.

Figure 4-15: Comparison of model predicted standard volumetric flowrate with experiment flowrate for VPM-7

The standard volumetric flow measurements were recorded for the steady-state pressure of 400 KPa gauge for the same time period as for temperatures. After performing noise reductions on these readings, these values are summarized in figure 4-15. It was difficult to maintain a steadystate condition in the vent pipe due to supply issues from the laboratory air compressor as the pressure vent on increasing. This resulted in slight variations in the pressure and flowrate readings. In order to have a close comparison between the predictions and experimental values, it was decided to predict the flowrates for the corresponding experimental pressure readings. The predicted flowrates were compared to the experimental flowrate results. An average standard volumetric flow of $35.44 \mathrm{Nm}^{3} / \mathrm{hr}$ was attained on achieving steady-state during the experiment whereas an average standard volumetric flow of $35.40 \mathrm{Nm}^{3} / \mathrm{hr}$ was predicted by the vent pipe model. The comparison result tells us that there exists a percentage difference of 0.11%. Hence, an excellent agreement exists between the predicted and experimental flow rates at 400 KPa gauge pressure. In particular, maximum flow which is of significance in determining
the choke conditions for designing of flare systems and velocities is accurately predicted by the vent pipe model within 0.11% which is equivalent to $\pm 0.04 \mathrm{Nm}^{3} / \mathrm{hr}$.

Figure 4-16: Experiment pressure measurements for VPM-7
Pressure measurements were recorded at the entry and exit of the vent pipe using pressure transducers. After performing noise reductions these values are summarized in figure 4-16. However, it was not possible to determine the pressure along the vent pipe and hence the pressure profile is discussed in more detail in Hysys validation.

Figure 4-17: Aspen Hysys Simulation Flowsheet

4.6 Validation with Hysys

In order to assess the predicted performance of the developed vent pipe model, complete process simulations were performed. Despite some expected differences between a process simulation and real-life operation, process simulators are commonly used to provide reliable information on process operation, owing to their vast component libraries, comprehensive thermodynamic packages and advanced computational methods (West, Posarac, and Ellis 2008). Predictions made using the vent pipe model have been compared with simulations performed for air, carbon-dioxide, methane and a multicomponent mixture of hydrocarbons (Kirk-Burnnand 2009). HYSYS was selected as a process simulator for both its simulation capabilities and its ability to incorporate calculations using the spreadsheet tool. It differs from other process simulators such as ASPEN PLUS in two respects: interactive interpretation of the commands/units as they entered and bi-directional information flow (Pareek 2008). Steady-state simulations were performed in Hysys version 7.1. The first step in developing the process simulation was selecting the chemical components for the process, as well as a thermodynamic model. Additionally, the unit components and input conditions for the venting process must be selected and specified. The unit operations and input conditions were selected based on the vent pipe model to ensure that the venting process simulated in HYSYS could be compared in a consistent manner. Since no polar compounds are present, Peng-Robinson model was selected as the property package for the simulation because of its simplicity and accuracy (Peng and Robinson 1976). A number of cubic equations of states are available but Peng-Robinson thermodynamic model is selected because of its wide use in development of different mathematical models. Another equation known for its accuracy is the Soave-Redlich-Kwong (Soave 1972). However, the performance of Peng-Robinson equation is better than Soave-Redlich-Kwong equation in all cases tested and shows its greatest advantage in the prediction of vapor pressure of pure substances, liquid phase densities and equilibrium ratios of mixtures. In regions where engineering calculations are frequently required the Peng-Robinson equation gives better agreement between predictions and experimental PVT data (Peng and Robinson 1976). No heat transfer approach with the surrounding was considered. The Hysys process flowsheet for the vent pipe model is represented in figure $4-17$ where the CGP-100 is the vent pipe section.

4.6.1 Comparison with Hysys Simulation for Air

The vent pipe model's predicted results for compressible gas such as air are compared with the simulated results of Aspen Hysys. The predicted mass flow rates, pressure profile, temperature
profile, Mach number profile, density profile and velocity profile for air from the vent pipe model and Hysys are analyzed on an excel spreadsheet and various graphs are plotted. Remember that we are specifically interested in the exit conditions of the vent pipe. However, the different parameter profiles are discussed as well. The vent pipe design specifications used in the vent model and Aspen Hysys model puts restriction on the flow and results in a choking condition at the end of the vent pipe with sonic conditions. This sonic condition for air was calculated at $\sim 750 \mathrm{~K} \mathrm{~Pa}$ gauge pressure. Due to limitations imposed in Aspen Hysys, the vent pipe flow sheet did not converge which resulted in increasing the back pressure. The following two cases are evaluated here: Air Case 1- Pressure range of $100-500 \mathrm{~K} \mathrm{~Pa}$ gauge (atmospheric blowdown) and Air Case 2- Pressure range of $600-1000 \mathrm{~K} \mathrm{~Pa}$ gauge (back pressure). The comparison percentage differences are calculated in both cases for Hysys simulations and Vent pipe model. Enthalpy and Entropy along the vent profile are also assessed which helped in understanding the fanno line.

4.6.1.1 Air Case 1: Pressure range $100-500 \mathrm{KPa}$ gauge

The predicted and simulated results for mass flow rates at steady-state conditions in the pressure range $100-500 \mathrm{KPa}$ gauge are in close agreement. The comparison percentage difference calculated in table G 11-1 on mass flow rates, predicted by the vent model, are at minimal. The minimum percentage difference calculated for mass flow rate was 0.25% and maximum percentage difference was calculated at 0.568%. Figure $4-18$ shows the pressure profile for the vent model predictions and Aspen Hysys simulated results for air at steady-state mass flow conditions in the pressure range $100-500 \mathrm{~K} \mathrm{~Pa}$ gauge. The pressures at the inlet and exit conditions were calculated in both cases and were found to be in close agreement. Obviously, the percentage comparison difference at the inlet of the vent pipe was 0% whereas that calculated at the exit of vent was 0.025%. This could be due to minor calculation discrepancy. Overall an excellent agreement in the mass flow rate and exit pressure prevails. The pressure profile along the vent pipe was analyzed. The vent pipe was divided into twelve sections and the pressures at entry / exit of each section was calculated. The predicted results were compared with Hysys simulated results. Initially, the pressure profile follows a linear path and then decreases exponentially attaining exit conditions (atmospheric). The mass flowrate in all cases (from 100-500 K Pa gauge vent pipe profiles) should be constant prevailing steady-state conditions. The predicted pressure readings along the vent length compares well with Hysys and are within $\pm 0.6 \%$ of the simulated Hysys values for the first ten sections.

Figure 4-18: Predicted pressure comparison of vent pipe model with Hysys simulation for air in the pressure range 100-500 KPa gauge

Figure 4-20: Predicted mach no. comparison of vent pipe model with Hysys simulation for air in pressure range 100-500 KPa gauge

Figure 4-21: Predicted density comparison of vent pipe model with Hysys simulation for air in the pressure range 100-500 KPa gauge

Figure 4-22: Predicted velocity comparison of vent pipe model with Hysys simulation for air in the pressure range
Figure 4-23: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for air in pressure range 100-500 KPa gauge

The mystical cases are the last two sections. Although, the exit condition (atmospheric pressure) is obtained at the end of the vent pipe, the pressure drop in the $11^{\text {th }}$ section of the vent pipe is significantly high in Hysys simulation then predicted by the model. The reason for existence of such a pressure profile in the last two sections is unclear at this stage.

The model predictions and Hysys simulated temperatures along the vent pipe were plotted and percent comparison differences were calculated. Figure 4-19 shows the temperature profile for the vent model predictions and Aspen Hysys simulated results for air at steadystate mass flow conditions in the pressure range $100-500 \mathrm{KPa}$ gauge. Once again looking at the Figure $4-19$, it can be said that the exit temperature readings in all cases are in close agreement with a minimum difference of -0.72% and a maximum difference of 1.67%. The temperature profile along the vent pipe again follows a linear profile initially and then decreases exponentially to attain a final exit temperature. The model predicted temperatures in the first ten sections of the vent pipe match with the Hysys simulated temperature readings and are within $\pm 1.67 \%$. A similar temperature profile as in case of pressure is obtained in the last two sections of the vent pipe. The reason for existence of such a temperature profile is unclear at this stage.

Mach number, density and velocity along the vent pipe were assessed and plotted. Figure 420 shows the Mach number profile for the vent model predictions and Aspen Hysys simulated results for air at steady-state mass flow conditions in the pressure range 100-500 KPa gauge. Based on the assessment performed, it can be said that the Mach number along the vent profile is increasing towards the exit of the vent pipe and approaching towards sonic velocity. The exit Mach number readings in first ten sections are in close agreement with a minimum difference of 0.13% and a maximum difference of 0.63%.

Figure 4-21 shows the density profile for the vent model predictions and Aspen Hysys simulated results for air at steady-state mass flow conditions in the pressure range 100-500 KPa gauge. A fall in density of fluid is noticed along the vent profile. The graph is very similar to pressure Figure $4-18$ and temperature Figure $4-19$ which shows decreasing linearity and an exponential fall. The exit density readings in first ten sections are in close agreement with a minimum difference of -0.2% and a maximum difference of 0.02%.

Figure 4-22 shows the velocity profile for the vent model predictions and Aspen Hysys simulated results for air at steady-state mass flow conditions in the pressure range 100-500

KPa gauge. Once again, it can be said that the exit velocity readings in all cases are in close agreement with a minimum difference of 0.4% and a maximum difference of 0.61%. The velocity profile developed is completely opposite to temperature profile and very similar to Mach number profile. Overall the results were found to be in very close agreement for all parameters in case 1. The percent difference between the vent model and Hysys was comparatively high in the $11^{\text {th }}$ section of the vent pipe.

Figure 4-23 represents the enthalpy and entropy along the vent profile for the pressure range 100-500 K Pa gauge. The various curves formed are known as 'Fanno Curve' or 'Fanno Line'. As can be seen from the Figure 4-23, the enthalpy is decreasing along the vent profile and a simultaneous increase in entropy is noticed. As discussed in model development, friction is an important parameter which brings about the changes in the flow conditions. To define a flow in a region or duct, the effects of friction must be monitored. In our case, friction is causing an increase in the velocity and Mach number with a simultaneous decrease in enthalpy and pressure. The fanno line represents the effects of friction on the flow parameters. In Figure 3-3, the maximum Mach number which could be obtained at the end of the vent will be unity representing a case of adiabatic sonic flow. At this point flow is choked. On comparison of Figure 4-23 with Figure 3-3, it can be said that the fanno curve in Figure 4-23 represents the upper part of the general fanno curve. This region represents the subsonic flow region. Thus for case 1 , the qualitative character of the flow is markedly influenced by subsonic flow conditions.

4.6.1.2 Air Case 2: Pressure range 600-1000 KPa gauge

Simulations performed in Aspen Hysys at pressures > 600 K Pa gauge did not converge to achieve atmospheric pressure at the exit of the vent pipe. This could be a restriction in Hysys. However, no further investigations were performed on this matter. In order to simulate the Hysys model, the back pressure (pressure at the exit of the vent) was increased by a relative amount such that the vent exit pressure equals to the back pressure. This was done by adjusting the steady-state mass flow condition. Trial and error methods were performed in order to solve the Hysys model at minimal back pressure (above atmosphere). The exit pressures obtained from the Hysys simulations were inputted in the vent pipe model and relevant predictions were calculated. The results obtained were tabulated in table G 11-2 and pressure profile, temperature profile, Mach number profiles, density profile and velocity
profile along the vent pipe were plotted. Similar results were obtained as in casel and are discussed here.

The vent model predictions and Aspen Hysys simulated results for mass flow in the pressure range $600-1000 \mathrm{~K} \mathrm{~Pa}$ gauge are found to be in very close agreement. A minimum of 0.08% and a maximum of 0.22% of comparison difference were calculated. Figure $4-24$ shows the pressure profile for the vent model predictions and Aspen Hysys simulated results for air at steady-state mass flow conditions in the pressure range $600-1000 \mathrm{~K} \mathrm{~Pa}$ gauge. The pressures at the inlet and exit conditions were calculated and were found to be in close agreement. The pressure profile along the vent pipe was analyzed in the same way as in case-1. Similar results representative to case-1 were obtained. The percentage comparison difference was well within limits for the first ten sections and was calculated to be $\pm 0.47 \%$ better than case1. Figure $4-25$ shows the temperature profile for the vent model predictions and Aspen Hysys simulated results for air at steady-state mass flow conditions in the pressure range $600-1000 \mathrm{KPa}$ gauge. The temperature profile developed along the vent pipe was of the same pattern as case-1 representing a decreasing linearity followed by an exponential decrease to attain exit conditions. The percentage comparison difference calculated was $\pm 1.71 \%$ for the first ten sections of the vent pipe. Mach number, density and velocity profile were also plotted and are represented in Figure 4-26, Figure 4-27 and Figure 4-28. The density profile developed is very similar to that of the pressure drop profile which confirms the existence of relationship between them. The profiles developed represent a linear and exponential increase in Mach number and velocity and are opposite to the temperature profile. Enthalpy-Entropy plots representing the fanno curve for the pressure range 600-1000 K Pa gauge are plotted in Figure 4-29. Once again the flow is characterized to be as subsonic with a decrease in enthalpy and an increase in entropy proving the irreversibility of the process.

The mystical condition developed in the last two sections of the vent pipe in case 1 was also seen in case 2 . This condition can be explained by the fanno line equation stated in model development. As discussed in the previous section of model development, a decrease in density is always registered according to the fanno equation. The mass flow per unit area must remain constant and in order to compensate for this the velocity in this region increases. As can be seen in the $11^{\text {th }}$ section, the difference in the density of air is high when compared to the other sections (refer table 4-1 and table 4-2). However, this does not solve
our problem. After a careful consideration, it was concluded that this discrepancy could be generated because of calculations performed with different equation of states used in the vent model and Aspen Hysys. The GERG-2004 (Kunz et al. 2007) equation of state was used in calculating the thermophysical properties in vent model whereas Peng-Robinson (Peng and Robinson 1976) equation of state was used in calculating the thermophysical properties in Aspen Hysys simulation. The reason for the profile difference must be a result of limitations imposed by the equations of state. According to (Setzmann and Wagner 1991), the density values calculated from the Peng-Robinson equation of state deviate from the reference equation of state by up to $+5 \%$ at pressures below 30 MPa . However, this research was conducted for Methane gas. (Kunz et al. 2007) mentioned that the calculated values for the speed of sound show deviations of more than $\pm 10 \%$ in the same temperature and pressure ranges. This can affect our density, velocity and Mach number profiles. It was also reported that the suitability of the Peng-Robinson equation of state for use in technical applications which require high accuracy predictions of the properties of natural gases quickly revealed serious deficiencies. The GERG-2004 equation of state was developed with a view to overcome such difficulties. Hence the vent model predictions can be proved to be more accurate than the simulated results from Aspen Hysys.

Overall it can be concluded that the vent pipe model's predictions for air are in very close agreement with Aspen Hysys simulated results.

In order to investigate that the vent model predictions hold true not only for compressible gas such as air but also for other gases, it was decided to perform simulations in Aspen Hysys incorporating supercritical and hydrocarbon gases such as carbon-dioxide and methane. The predicted and simulated pressure, temperature, Mach number, density and velocity profiles were assessed. The percentage comparison difference is calculated in all cases. The results for these gases are discussed here.

Figure 4-29: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for air in the pressure range 600-1000 KPa gauge

4.6.2 Comparison with Hysys Simulation for Carbon-dioxide

The results from vent pipe model predictions and Aspen Hysys simulations for carbondioxide gas are explained here. The vent pipe Hysys flow sheet did not converge to complete atmospheric pressure after 600 K Pa gauge inlet pressure. Suspected reason for this could be the limitations with Hysys. Hence it was decided to increase the back pressure in order to solve the Hysys flow sheet. The following two cases are evaluated here: CO_{2} Case 1Pressure range of 100-500 K Pa gauge (atmospheric venting); CO_{2} Case 2-Pressure range of 600-1000 K Pa gauge (back pressure).

4.6.2.1 $\quad \mathrm{CO}_{2}$ Case 1: Pressure range $100-500 \mathrm{KPa}$ gauge

The predicted and simulated results for mass flow rates at steady-state conditions in the pressure range $100-500 \mathrm{KPa}$ gauge are in close agreement. The comparison percentage difference calculated in table G 11-3 on mass flow rates, predicted by the vent model, are at minimal. The minimum comparison percentage difference calculated for mass flow rate was -0.16% and maximum percentage difference was calculated at -0.92%. Figure $4-30$ shows the pressure profile for the vent model predictions and Aspen Hysys simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure range $100-500 \mathrm{~K} \mathrm{~Pa}$ gauge. The percentage comparison difference at the inlet and exit of the vent pipe was 0% whereas at the exit of vent was 0.03%. This could be due to minor calculation discrepancy. Overall an excellent agreement in the mass flow rate and exit pressure prevails. The pressure profile along the vent pipe for carbon-dioxide was analyzed in a similar manner as analyzed for air. The predicted and simulated pressure results for carbon-dioxide at the entry \& exit of each section of vent pipe were compared. It was found that the pressure profile developed was very similar to that developed in case of air. An initial decreasing linearity followed by an exponential fall to attain exit pressure condition (atmospheric) was established in the vent pipe. The predicted pressure readings along the vent length compares well and are within $\pm 0.6 \%$ of the simulated Hysys values for the first ten sections. High percent differences in the pressure drop are seen in the last two sections of the vent pipe. The reason for existence of such a pressure profile in the last two sections is unclear at this stage.

Figure 4-31 shows the temperature profile for the vent model predictions and Aspen Hysys simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure range $100-500 \mathrm{KPa}$ gauge. A similar temperature profile pattern as seen with air was recognized in case of carbon-dioxide.

Figure 4-33: Predicted density comparison of vent pipe model with Hysys simulation for CO_{2} in pressure range 100-500 KPa gauge

However, the temperature percentage differences were found to be of slight variant at the exit of the vent pipe. The calculated temperature differences increased with the increase in pressure. The model predicted temperatures in the first ten sections of the vent pipe match with Hysys simulations and are in close agreement. The percentage temperature differences in the $11^{\text {th }}$ section of the pipe have been decreased when compared to the temperature profile of air. This decrease in temperature in the $11^{\text {th }}$ section could have been compensated into the exit temperature, thus, increasing our final comparison percentage difference. A temperature percentage difference of -30.24% at 400 K Pa gauge and 24.65% at 500 K Pa gauge was calculated. Percentage differences below 400 K Pa gauge are in close agreement.

Mach number, density and velocity profiles along the vent pipe were assessed and plotted. Figure 4-32 shows the Mach number profile for the vent model predictions and Aspen Hysys simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure range $100-500 \mathrm{KPa}$ gauge. Based on the assessment performed, it can be said that the Mach number along the vent profile is increasing towards the exit of the vent pipe and approaching towards sonic velocity. The exit Mach number readings in all cases are in close agreement with a minimum difference of -0.97% and a maximum difference of -2.41%.

Figure 4-33 shows the density profile for the vent model predictions and Aspen Hysys simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure range $100-500 \mathrm{KPa}$ gauge. A fall in density of fluid is noticed along the vent profile. The graph is very similar to pressure Figure 4-30 and temperature Figure 4-31 which shows decreasing linearity and an exponential fall. The exit density readings in all cases are in close agreement with a minimum difference of -0.32% and a maximum difference of -1.24%.

Figure 4-34 shows the velocity profile for the vent model predictions and Aspen Hysys simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure range $100-500 \mathrm{KPa}$ gauge. The minimum and maximum comparison difference calculated for the exit velocity was 0.15% and 0.35%. The velocity profile pattern developed is a horizontal mirror image of temperature profile and very similar to Mach number profile. Overall the results were found to be in very close agreement for all parameters in case 1.

Figure 4-35 shows the enthalpy-entropy diagram representing the fanno curve for the vent pipe model. The friction in the pipe results in a decrease in enthalpy with a simultaneous increase in entropy towards the exit of the vent pipe is indicated, thus, defining the flow as subsonic.

4.6.2.2 CO_{2} Case 2: Pressure range 600-1000 KPa gauge

In the case of air, simulations performed in Aspen Hysys at pressures > 600 K Pa gauge did not converge to achieve atmospheric pressure at the exit of the vent pipe. An identical situation was seen when simulating the vent pipe for carbon-dioxide gas in Hysys. In order to simulate the Hysys model, the back pressure (pressure at the exit of the vent) was increased by a relative amount such that the vent exit pressure equals to the back pressure. This was performed by adjusting the steady-state mass flow condition. Trial and error methods were performed in order to solve the Hysys model at minimal back pressure (above atmosphere). The exit pressures obtained from the Hysys simulations were inputted in the vent pipe model and relevant predictions were calculated. The results obtained were tabulated in table G 11-4 and pressure profile, temperature profile, Mach number profiles, density profile and velocity profile along the vent pipe were plotted.

The vent model predictions and Aspen Hysys simulated results for mass flow in the pressure range $600-1000 \mathrm{~K} \mathrm{~Pa}$ gauge are found to be in close agreement with a minimum and maximum difference of -1.13% and -2.02%. Figure $4-36$ shows the pressure profile for the vent model predictions and Aspen Hysys simulated results for carbon-dioxide at steady-state mass flow conditions in the pressure range $600-1000 \mathrm{~K}$ Pa gauge. The predicted pressures at the inlet and exit conditions were found to be in close agreement with minimal difference. This minimal difference could be because of minor calculation error. A difference of $\pm 0.44 \%$ was calculated on analyzing the pressure profile for the first ten sections along the vent length. The predicted and simulated temperature profile for the first ten sections agreed closely and is represented in figure 4-37. The predicted and simulated Mach number, density and velocity profiles along the vent pipe were plotted in figure 4-38, figure 4-39 and figure 4-40. Similar results to CO_{2} case-1 were obtained. Enthalpy-entropy curve were plotted in figure 4-41 which defined the flow in the vent to be subsonic.

Figure 4-36: Predicted pressure comparison of vent pipe model with Hysys simulation for CO 2 in pressure range $600-1000 \mathrm{KPa}$ gauge

Figure 4-41: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for CO_{2} in the pressure range $600-1000 \mathrm{KPa}$ gauge

4.6.3 Comparison with Hysys Simulation for Methane

The vent pipe model predictions for hydrocarbon gas such as methane were also evaluated. The results were compared to the simulated results from Aspen Hysys. Previous results for air and carbon-dioxide gases were evaluated on case by case basis due to convergence issue present in Hysys simulation. A similar situation was encountered here. The following cases were evaluated: CH_{4} Case-1: Pressure ranges $100-500 \mathrm{~K}$ Pa gauge and CH_{4} case-2: Pressure range $600-1000 \mathrm{~K}$ Pa gauge.

4.6.3.1 $\quad \mathrm{CH}_{4}$ Case 1: Pressure range $100-500 \mathrm{KPa}$ gauge

The predicted and simulated results for methane mass flow rates in the pressure range 100500 KPa gauge are found to be in close agreement, thus maintaining steady-state conditions. The mass flow rate comparison percentage differences calculated in table G 11-5 are at minimal. The minimum comparison percentage difference calculated for mass flow rate was -0.02% and maximum percentage difference was calculated to be 0.3%. Figure $4-42$ shows the pressure profile for the vent model predictions and Aspen Hysys simulated results for methane at steady-state mass flow conditions in the pressure range 100-500 K Pa gauge. On comparing the exit pressure values from the vent model predictions, a minimal percentage difference of 0.03% is calculated. This could be due to minor calculation discrepancy. The predicted pressure values in the first ten sections of the vent pipe compares well with the simulated results and are within $\pm 0.64 \%$. The pressure drop in the $11^{\text {th }}$ section of the vent pipe is high (10.92%) in case of Hysys resulting in a high percentage difference. The reason for existence of such a pressure profile in the last two sections is unclear at this stage.

The model predictions and Hysys simulated temperatures along the vent pipe were plotted and percent comparison differences were calculated. Figure 4-43 shows the temperature profile for the vent model predictions and Aspen Hysys simulated results for methane at steady-state mass flow conditions in the pressure range $100-500 \mathrm{KPa}$ gauge. The predicted exit temperature comparison percentage difference for methane is less when compared to carbon-dioxide. A minimum difference of -0.16% and a maximum difference of -9.14% were calculated for the exit temperature. The graph follows a linear decrease with an exponential fall pattern to attain the final exit temperature is seen. The model predicted temperatures in the first ten sections of the vent pipe match with the Hysys simulated temperature readings and are within $\pm 1.15 \%$ better than air and carbon-dioxide.

Figure 4-42: Predicted pressure comparison of vent pipe with Hysys simulation for methane in pressure range 100-500 KPa gauge

Figure 4-45: Predicted density comparison of vent pipe model with Hysys simulation for methane in pressure range 100-500 KPa gauge

Figure 4-46: Predicted velocity comparison of vent pipe model with Hysys simulation for methane in pressure range

Figure 4-49: Predicted temperature comparison of vent pipe model with Hysys simulation for methane in pressure range $600-1000 \mathrm{KPa}$ gauge

Figure 4-50: Predicted Mach no. comparison of vent pipe model with Hysys simulation for methane in pressure range 600-1000 KPa gauge

Figure 4-53: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for methane in pressure range 600-1000 KPa gauge

A maximum percentage difference of 136.33% is calculated in the $11^{\text {th }}$ section of the vent pipe. The reason for existence of such a temperature profile is unclear at this stage.

Mach number, density and velocity along the vent pipe were assessed and plotted. Figure 444, Figure 4-45 and Figure 4-46 show the Mach number, density and velocity profiles for the vent model predictions and Aspen Hysys simulated results for methane at steady-state mass flow conditions in the pressure range $100-500 \mathrm{KPa}$ gauge. Referring to the relevant graphs, it can be said that the density along the vent profile is decreasing towards the exit of the vent pipe and the graph pattern resembles the same as the pressure graph. The Mach number and velocity profiles attain the exit conditions exponentially preceded by a linear rise. The predicted results are in close agreement for Mach number, velocity and density profile of the Hysys simulated results. Enthalpy-Entropy diagram (fanno curve) was plotted to explain the effects of flow conditions developed in the vent pipe and to define the flow in the vent pipe. Figure $4-47$ represents the fanno curves in the pressure ranges $100-500 \mathrm{~K} \mathrm{~Pa}$ gauge. A decrease in enthalpy and pressure with a simultaneous increase in entropy defines the flow to be subsonic for the predicted results.

4.6.3.2 CH_{4} Case 2: Pressure range 600-1000 KPa gauge

The vent model predictions and Hysys simulated results with comparison differences are tabulated in table G 11-6. Mass flow predictions agreed well with the Hysys simulated results for the pressure range $600-1000 \mathrm{~K} \mathrm{~Pa}$ gauge. The minimum and maximum comparison percentage difference calculated was -0.2% and 0.58% for the mass flow. The predicted and simulated results of pressure profile for the vent pipe flowing with methane were plotted and are represented in Figure 4-48. A close agreement in the pressure results is seen at the exit and in the first ten sections of the vent pipe. The percentage difference in the $11^{\text {th }}$ section is high compared to the other sections of the vent pipe and is $\sim 11.6 \%$. The pressure profile pattern developed for methane is very similar to air and carbon-dioxide gases evaluated before. The temperature predictions and simulated results for methane were evaluated and the pattern developed was very similar to air and carbon-dioxide gas. This is represented in Figure 4-49. A minimum percentage comparison difference of 4.08% and a maximum of 6.15% were calculated at the exit of the vent pipe. The temperature profile developed along the vent pipe was of the same pattern as CH_{4} case-1 representing a decreasing linearity followed by an exponential decrease to attain exit conditions. Predicted and simulated Mach numbers, density and velocity were also plotted in Figure 4-50, Figure

4-51 and Figure 4-52 for methane and were found to be in close agreement with each other. Enthalpy-Entropy diagram (Figure 4-53) characterized the flow to be subsonic. A decrease in enthalpy and increase in entropy was noticed.

4.6.4 Comparison with Hysys Simulation for DBNGP Mixture:

The evaluations performed for compressible gases such as air, carbon-dioxide and methane indicate that the vent model predictions and the Aspen Hysys simulated results are in good agreement for single component gas phase steady-state adiabatic conditions. In order to test the performance of the vent pipe model flowing with a multi-component gas, an evaluation was performed on multi-component DBNGP (Kirk-Burnnand 2009) gas mixture. The evaluations were performed in the pressure range $100-1000 \mathrm{KPa}$ gauge on a similar case by case basis as performed with air, carbon-dioxide and methane.

4.6.4.1 DBNGP ${ }_{\text {mixture }}$ Case 1: Pressure range 100-500 KPa gauge

The vent model predictions and Hysys simulated results with comparison differences are tabulated in table G 11-7. The mass flow rate predictions are in excellent agreement with Hysys simulated results. A minimum percentage difference of 0.04% and a maximum difference of -0.23% were calculated. These percentage differences are under acceptable limits. The pressure and temperature predictions hold in good agreement too. The pressure and temperature profile are plotted in figure 4-54 and figure 4-55. The predicted pressures for the first ten sections along the vent are within $\pm 0.6 \%$ of the comparison difference whereas the predicted temperatures are within $\pm 1.09 \%$ of the comparison difference in the same sections. The predicted exit conditions for pressure are in good agreement. An increase in temperature difference is noticed at pressure 400 and 500 KPa gauge. This calculated difference of is still acceptable. Predicted Mach number, densities and velocities along the vent pipe were compared with Hysys results and are plotted in Figure 4-56, Figure 4-57 and Figure 4-58. Except for the $11^{\text {th }}$ section of the vent, the results are in good agreement for the first ten sections of the vent pipe and at the exit conditions. The percentage difference increases in section 11 and the reason for this is discussed when performing evaluations with air. Fanno lines were plotted in Figure $4-59$ for the pressure ranging between $100-500 \mathrm{KPa}$ gauge and flow was characterized to be subsonic. A decrease in enthalpy with a simultaneous increase in entropy was seen.

4.6.4.2 DBNGP ${ }_{\text {mixture }}$ Case 2: Pressure range 600-1000 KPa gauge

Hysys simulations performed at pressures > 600 KPa gauge did not converge the flow sheet with DBNGP gas mixture which resulted in an increase in back pressure. The vent model predictions and Hysys simulated results with comparison difference are tabulated in table G 11-8. Overall the predicted results were in close agreement with the Hysys simulated results. The minimum and maximum difference calculated when comparing the mass flow was 0.33% and -0.72%. The pressure and temperature profiles plotted for predicted and Hysys simulated results in Figure 4-60 and Figure 4-61 resemble very closely to the profile patterns developed for single component gases such as air, carbon-dioxide and methane. The percentage differences are within $\pm 0.35 \%$ for pressure and $\pm 1.08 \%$ for temperature in the first ten sections of the vent pipe. The exit pressure predictions are very closely agreeable with Hysys simulations. However, differences for exit temperatures are slightly higher than within the profile but are within acceptable ranges. Figure 4-62, Figure 4-63 and Figure 4-64 which represent the Mach number, density and velocity profiles for model predicted and Hysys simulated results show similar resemblance to air, carbon-dioxide and methane. Flow was characterized to be subsonic as per the fanno curve plotted in Figure 4-65.

Figure 4-55: Predicted temperature comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 100-500 KPa gauge

Figure 4-57: Predicted density comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 100-500 KPa gauge

Figure 4-59: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for DBNGP in pressure range 100-500 KPa gauge

Figure 4-61: Predicted temperature comparison of vent pipe model with Hysys simulation for DBNGP in pressure range $600-1000 \mathrm{KPa}$ gauge

Figure 4-62: Predicted Mach no. comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 600-1000 KPa gauge

Figure 4-63: Predicted density comparison of vent pipe model with Hysys simulation for DBNGP in pressure range 600-1000 KPa gauge

Figure 4-65: Predicted Enthalpy-Entropy (Fanno curve) of vent pipe model for DBNGP in pressure range 600-1000 KPa gauge

Chapter 5

Conclusions and Recommendations for Future Work

5.1 Conclusions

A thorough investigation has been conducted into compressible fluid (single-phase gas) behavior taking place in a vent pipe. The factors affecting the compressible fluid behavior and their influence on the compressible fluid parameters have been discussed. Friction is found to be the chief factor bringing about the changes in compressible fluid flow properties. This has been well explained by Fanno process. Based on the investigations performed and to satisfy the need of a model for venting through associated vent piping with pressure vessels / pipelines, a steady-state vent pipe model to predict the compressible fluid flow conditions during blowdown of pressure vessels / pipelines was developed. A fluid dynamic and thermodynamic approach was used in developing the model. The vent pipe model is described best as a model encountering adiabatic frictional flow conditions. The vent pipe model predicts the flowing gas properties such as pressure, temperature, mass flow / standard volumetric flow, temperature of the pipe wall at the exit along with stagnation properties and critical properties. The use of REFPROP, which incorporates the GERG 2004 equation of state, makes the simulation with the vent pipe model highly competent. All thermophysical properties are determined using REFPROP. The vent pipe model has been validated by comparing its predictions to experimental analysis and process simulation software, Aspen Hysys. Overall, it can be stated that the vent pipe model's predictions are in good agreement with experimental and Aspen Hysys results. The vent pipe model contains no disposable parameters and no adjustments have been made during validation to ensure the good agreement.

5.1.1 Comparison of Vent Pipe Model Predictions with Experimental Analysis

A test rig was designed and constructed for experimental analysis which incorporated the use of fast acting pressure, temperature and flowrate instruments. Steady state experiments were conducted with air in the pressure range of $200-400 \mathrm{KPa}$ gauge and the results have been discussed. It follows from the three sets of comparisons (VPM-1, VPM-4 and VPM-7) reported here that the vent pipe model predicts results in very close agreement with the
experimental measurements. This agreement permits confidence to be placed in the predictions made using the vent pipe model. One of the most important parameters when designing venting systems is the temperature of the vent pipe. This parameter helps in estimating the minimum temperature that could be attained at the exit of the pipe wall during venting. The adiabatic wall temperature was predicted based on the recovery factor approach where the recovery factor was taken to be same as the Prandtl number. Comparison of the predicted wall temperature using recovery factor approach has provided a very close agreement. Based on experimental comparison, the standard volumetric flow rates, the stagnation temperatures and minimum pipe wall temperatures can be predicted using the vent pipe model with an estimated uncertainty of $\pm 2.5 \mathrm{Nm}^{3} / \mathrm{hr}, \pm 0.15^{\circ} \mathrm{C}$ and $\pm 0.6^{\circ} \mathrm{C}$. However, there are certain other validatory comparisons which would increase confidence in the program and are discussed in the recommendation section.

5.1.2 Comparison of Vent Pipe Model Predictions with Aspen Hysys

The vent pipe predictions were compared to Aspen Hysys simulated results for single component compressible gases such as air, carbon-dioxide and methane and multicomponent gases such as DBNGP mixtures in the pressure range of $100-1000 \mathrm{KPa}$ gauge. The predicted results were found to be in close agreement for all parameters involved. The Mach number and velocity profile pattern developed were similar in all cases forming a horizontal mirror image to the temperature profiles for the flowing gases. Pressure greater than 600 K Pa gauge were evaluated by increasing the exit gas pressure at the end of the vent pipe due to convergence issues with Hysys. A high percentage comparison difference was seen in the $11^{\text {th }}$ section of the vent pipe in all the parameters plotted for all gases. The reason for this high difference was explained during the evaluation of air and holds for all other gases evaluated here. Fanno curves were plotted. The flow was characterized to be subsonic and irreversibility of the process was confirmed. The vent pipe model predictions compares well with Hysys simulations with very small percentage differences at the exit. Based on Hysys comparison results, the two important parameters - the minimum temperature of the flowing gas at the exit and the maximum mass flow are predicted using the vent pipe model with an estimated uncertainty of at most $\pm 0.25^{\circ} \mathrm{C}$ with air, $\pm 1.65^{\circ} \mathrm{C}$ with carbon dioxide, $\pm 0.40{ }^{\circ} \mathrm{C}$ with methane. $\pm 0.42{ }^{\circ} \mathrm{C}$ with DBNGP gas mixture for minimum temperature of flowing gas and $\pm 0.15 \mathrm{~kg} / \mathrm{hr}$ with air, $\pm 2.5 \mathrm{~kg} / \mathrm{hr}$ with carbon dioxide, ± 0.42 with methane, $\pm 0.56 \mathrm{~kg} / \mathrm{hr}$ with DBNGP gas mixture for maximum mass flux. Moreover, the vent pipe model predictions are calculated based on the GERG-2004 equation of state which is proved
to better than AGA8-DC92, Peng-Robinson and other equations of state (Kunz et al. 2007)(Kunz et al. 2007). Thus, it can be said that the developed vent pipe model can be successfully employed for predicting the single phase steady-state adiabatic vent pipe performance for single and multi-component gas mixtures.

Overall, a very close agreement exists between the predictions of the vent pipe model and experimental / Aspen Hysys process simulations. Based on these results we can conclude that the vent pipe model can be used in designing the vent piping systems associated with pressure vessels / pipelines. The vent pipe model can become much more robust when certain gaps in the experimental validation, in particular for higher pressure venting conditions, are filled.

5.2 Recommendations

There are certain other validatory comparisons which would increase the robustness of the vent pipe model and can be undertaken as a future scope of work. Some of the recommendations are as follows:

- The existing experimental evidence was performed in the pressure range from 200 400 KPa gauge due to issues related to laboratory compressor air supply. There is a need for further experiments to be performed at pressures higher than 400 KPa gauge. The existing experimental evidence was performed with air gas only. Due to constraints and other restrictions in fluid flow laboratory hydrocarbon or other supercritical gases could not be vented. There is a need for further experiments with hydrocarbon gases and supercritical gases.
- The vent pipe model is developed based on an adiabatic approach and will be employed mostly to short pipes. However, as discussed in this thesis, the actual behavior of the gas lies somewhere between the isothermal and adiabatic conditions. Hence, the development of an isothermal model with heat transfer will be an added advantage for accurate prediction of real gases.
- The vent pipe model is developed in visual basic in conjunction with Microsoft Excel spreadsheet. The convergence of results is delayed due to time taken by processor for performing calculations. This problem can be efficiently solved by scripting the program in FORTRAN language. The FORTRAN language is designed
for scientific usage and also has excellent logical capabilities. Also, FORTRAN is used heavily by experienced process engineers.
- The vent pipe model has been developed for single phase gases. A new model for multi-component multiphase gases can be developed in conjunction with the current single phase model.

Appendices

Appendix A

6.1 Pressure Testing Certificate

AUSTRALIA
Trident Australia Pty Ltd ABN 24079789852

121 Vulcan Road
Canning Vale WA 6155 Australia
$\mathrm{Ph}+61894561300$
Fax +61894561400
Email: calibration@tridentaustralia.com.at

Test Certificate - Pressure Test

Test Cert No	PT1100	Date	6-April-2010
Client	Curtin University	Purchase Order	

Test Details

Job / Sales No	J1697
Item:	$1 \times$ Vent Tube Assembly
Part Number:	N/A
Serial Number:	N/A
Operating Range	$0-600$ psi
Test Specfication	WI-QA63
Test Description:	Hydrostatic
Test Medium	Water
Test Equipment:	Calibrated pressure gauge, PG

Test Results

Test Pressure:	600 psi				
Test Period:	30 Min				
Temperature:	Ambient	Date			
Comments:	No Leaks	6-April-2010			
Tested by:	Signatare				
B Gibbon					

Appendix B

7.1 Test Rig Representation and Mechanical Drawings

T.V.
T.V.

	PROIECT: INVESTIGATION INTO COMPRESSIBLE FLUIDBEHAVIOUR IN A VENT PIPE DURING BLOWDOWN			Ely Curtin			$\begin{gathered} \text { KENT STREET, } \\ \text { BENTLEY, WA } 6102 \end{gathered}$		
	wn	Farhan rajwate	${ }_{\text {P5AI/2010 }}^{\text {Date }}$						
	Checked		DATE	TTLE:					
	APPROVED		DATE	VENT PIPE INSTRUMENTATIOARRANGEMENT FOR TESTRIG					
	APProved		date	SCALE	1:2	Sheet	1	OF	3

T.V.

	PROJECT: INVESTIGATION INTO COMPRESSBLE FLUIDBEHAVIOUR IN A VENT PIPE DURING BLOWDOWN			= CUITII								
	$\frac{\text { DRAWN }}{\text { Checked }}$	Farhan rasiwate	$\begin{aligned} & \text { DATE } \\ & \hline \text { PAII210 } \\ & \hline \text { DATE } \end{aligned}$									
			DA									
	APPRoved			VENT PIPE INSTRUMENTATION AND FITTINGSARRANGEMENT FOR TEST RIG								
	APPROVED		date	scale	1:2	SHEET	2	OF				

Appendix C

8.1 Commissioning and Testing Report

Instruments Testing:

PT 100 RTD Temperature Probe T1

Description:

Location Start of the 12 m long test rig. Temperature corresponding to the second pressure transducer (P2).

RTD testing temperature: Water bath

Temperature of water bath:	37-37.8	${ }^{\circ} \mathrm{C}$	[Range]	
Corresponding temperature of RTD:	37.85-37.9	${ }^{\circ} \mathrm{C}$	[Range]	
Temperature of Mercury thermometer bulb:	37-38.5	${ }^{\circ} \mathrm{C}$	[Range]	Accuracy of thermometer not known
Testing time of RTD	3	min		
Temperature of water bath:	53.0-53.5	${ }^{\circ} \mathrm{C}$	[Range]	
Corresponding temperature of RTD:	53.253 .6	${ }^{\circ} \mathrm{C}$	[Range]	
Temperature of Mercury thermometer bulb:	53.0-54.5	${ }^{\circ} \mathrm{C}$	[Range]	Accuracy of thermometer not known
Testing time of RTD	3	min		

RTD testing temperature: ICE

| Temperature of ICE: | $1.5-2.5$ | ${ }^{\circ} \mathrm{C}$ | | [Range] | As measured by thermometer. |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| Corresponding temperature of RTD: | $\mathbf{1 . 9 0 - 1 . 9 2}$ | ${ }^{\circ} \mathrm{C}$ | | [Range] | Thermometer immersed very close to |
| Testing time of RTD | 2 | min | 40 | sec | |

PT 100 RTD Temperature Probe T2

Description:
Location End of the 12 m long test rig. Temperature corresponding to the second pressure transducer (P3).
RTD testing temperature: Water bath

Temperature of water bath:	37.0-37.8	${ }^{\circ} \mathrm{C}$	[Range]	
Corresponding temperature of RTD:	36.8-37.3	${ }^{\circ} \mathrm{C}$	[Range]	
Temperature of Mercury thermometer bulb:	37-38.5	${ }^{\circ} \mathrm{C}$	[Range]	Accuracy of thermometer not known
Testing time of RTD	5	min		
Temperature of water bath:	53.0-53.5	${ }^{\circ} \mathrm{C}$	[Range]	
Corresponding temperature of RTD:	53.2-53.7	${ }^{\circ} \mathrm{C}$	[Range]	
Temperature of Mercury thermometer bulb:	53.0-54.5	${ }^{\circ} \mathrm{C}$	[Range]	Accuracy of thermometer not known
Testing time of RTD	3	min		

RTD testing temperature: ICE

Temperature of ICE:	$1.0-1.5$	${ }^{\circ} \mathrm{C}$		[Range]	As measured by thermometer.
Corresponding temperature of RTD:	$1.2-1.3$	${ }^{\circ} \mathrm{C}$		[Range]	Thermometer immersed very close to
Testing time of RTD	2	min	40	sec	

PT 100 RTD Temperature Probe T3

Description:
Location End of the 12 m long test rig on the pipe wall.
Results not available in Labview. Testing was conducted on 12 August 2010.

Start-Up Procedures:

Safety Check:

1 Ensure that all personal protective equipment (PPE) is worn correctly. PPE: Safety shoes, safety glasses, ear muffs, leather gloves.
2 Ensure that all instruments are online and Labview Signal Processing is running.
3 Ensure that both ball valves are in open position.
4 Close the first ball valve [confirm tags on the rig] and pressurise the buffer to 2.5 bar gauge pressure. To achieve this, open the regulator on the hose connecting the gas bottle and the test rig completely (100%). Open the valve on G size gas bottle very slowly and simulataneously, keep watching the pressure on the digital gauge to achieve 2.5 bar gauge pressure.
5 Once a pressure of 2.5 bar is achieved, close the valve on the G size cylinder and check for any leaks. If any leaks are detected on the buffer (especially joints) notify the area technician. Do not proceed further if leak is present.
6 Open the first ball valve and blowdown the gas. At the same time check the signal processing screen for instrument values.

Testing:

1 Once the safety check is performed proceed with the testing at different pressures.
2 Ensure that both ball valves are in open position.
3 Enter the desired value of pressure on the 'calibration' sheet and look for the corresponding calculated value of the current in mA . For eg: for 200 kpaG the corresponding value of current is 5.6 mA .
4 Ensure that the regulator connecting the G size bottle and the test rig is fully open. Open the valve on the Gize gas cylinder very slowly and simultaneously keep watching the current (mA) setpoint of the second pressure transducer. Remember the aim is to achieve the current (mA). For eg. to achieve 200 kpaG , the current of 5.6 mA must be achieved.
5 Try to maintain the current setpoint (eg: 5.6 mA) by controlling the G size bottle valve to achieve a steady state.
6 Monitor the signal processing screen continuously. The test data will be logged automatically in the signal processing software.
7 Perform the run until a steady state is reached. (Until temperatures are stabilised at the front and end of the pipe)

Test 1:

Pressure to achieve	200 kPaG		
Test Pressure	$\mathbf{1 5 0} \mathbf{- \mathbf { 2 2 5 } \mathrm { kPaG }}$		[Range]
Time for testing	6 min	0 sec	

Pressure- Time Hisory (Iest-1)

The above trend was recorded for a time period of 6 min . The valve on the G size cylinder was opened at $16: 29: 50 \mathrm{hr}$ which can be seen from the rising trend and reached the desired value of 5.6 mA . The increment was in series of steps until it reached the desired value. The pressure was maintained at $200 \mathrm{kpag}(5.6 \mathrm{~mA})$ by controlling the regulator and not the valve on the \mathbf{G} size cylinder. The temperatures for the time period were recorded and are shown in fig 2.

Temperature - Time History (Test -1)

The gas was supplied for a period of 6 min . After sometime (pass $3-4 \mathrm{~min}$ from the start-up), Joule-Thomson cooling started to take place at the regulator followed by isentropic cooling inside the gas bottle. The freezing of the regulator was visible and the gas bottle has started to cool. The decrease in temperature could be sensed by touching the top end (outlet end) and the bottom end of the bottle with hands. At this point, I closed the valve on the gas bottle.

As can be seen from the trend, the temperature drop at the end of the pipe and the pipe wall was not quick (reason for this I am not sure of) whereas the temperature at the start of the rig (T1) was decreasing quickly. This was obvious because JT cooling effect has started to take place.

I checked the connections for the RTD's at the end of the pipe. The connections were fine. However, out of curiosity I disconnected both the RTD's and re-did the connection. This time I put the RTD on the pipe wall to offline mode and only RTD at the end of the pipe to online mode. Also, I opened the regulator connecting the G size cylinder and the rig to 100%. The flow capacity coming out of the regulator is 500 cub . m / hr as mentioned by Andrew Arkosi (BOC representative). The test was conducted again at 200 kpag pressure. Similar operating procedures were used except that the regulator connecting the gas bottle and the test rig was 100% open.

Test 2:

Pressure to achieve	200 kPaG		
Test Pressure	$\mathbf{1 5 0 - 2 2 5} \mathrm{kPaG}$		[Range]
Time for testing	6 min	40 sec	

Pressure - Time History (Test -2)

The pressure time trend was recorded for a period of 6 min and 40 sec . The regulator connecting the G size gas bottle and the test rig was fully open (100%) and the flow to the rig was controlled by the valve on the G size gas bottle. The pressure was in the range $150-225 \mathrm{kpag}$ with the few hicups while controlling the pressure. The corresponding temperature trend is plotted for the same time period and is shown in fig 4. Refering to the temperature trends, the temperature of the gas at the end of the pipe has started to drop at $0.48^{\circ} \mathrm{C} / \mathrm{min}$ and the temperature at the start of the test rig was dropping at $1.5^{\circ} \mathrm{C} / \mathrm{min}$. Comparing the temperatures of gas at the start of the pipe with the previous test 1 results, the current rate of temperature drop has decreased by $0.9^{\circ} \mathrm{C} / \mathrm{min}$ whereas the rate of temperature of the gas at the end of the pipe has decreased by $0.12^{\circ} \mathrm{C} / \mathrm{min}$.

Problems Encountered during the process:

Flowmeter errror: Short circuit output 1
Error while controlling the inlet pressure
Experiment could not be complete due to emptying of gas bottle

Current focus / Precautions:

Flowmeter error to be eliminated
Monitor the inlet pressure closely so that steady state can be achieved
Recheck the RTD's at the end of the pipe
Provision for a standby gas bottle

Flow to be controlled by gas bottle valve or regulator to be decided? | Farhan: |
| :--- |
| Dennis Krk-burnand to |

Conclusion

At this stage, it is hard to conclude any of these results and would require more steady state runs to establish a proper set of readings.

Appendix D

9.1 Visual Basic Program for Noise Reduction

9.2 General Program for Eliminating Standard Deviation in Pressure, Flowrate and Temperature

Public Function NewmAVAR(mAVAR, ExpectedValue, N) As Double
Dim SQmAVAR, SQstddev, stddev, stddevAvg As Double
'Computing square of the mean (measured value - mA current)
SQmAVAR $=$ WorksheetFunction.Power(mAVAR, 2)
SQstddev $=$ SQmAVAR - WorksheetFunction.Power(ExpectedValue, 2)
'Computing Standard deviation as the noise
If SQstddev < 0 Then
SQstddev $=$ SQstddev * -1
'Calculating standard deviation of a single sample
stddev $=$ WorksheetFunction.Power(SQstddev, 0.5)
'Calculating the average standard deviation over a N samples
stddevAvg $=$ stddev $/$ WorksheetFunction.Power(N, 0.5)
Else
stddev $=$ WorksheetFunction.Power(SQstddev, 0.5)
stddevAvg $=$ stddev $/$ WorksheetFunction.Power(N, 0.5)
End If
If mAVAR < 4 Then
NewmAVAR $=m A V A R+$ stddevAvg
Else
NewmAVAR $=m A V A R-s t d d e v A v g$
End If
End Function

Public Sub NewVAR()

Dim ws, ws1 As String
Dim rangemAVAR1, rangeClear As Range
Dim AP1, mAP1, count As Variant
Dim missing As Variant
Sheet2.Activate
ws $=$ Worksheets.Application.ActiveSheet.Name
ws1 = "VAR to Current conversion"
Set rangemAVAR1 = Worksheets(ws).Range(Range("StartmAVAR1"), Range("StartmAVAR1").End(xlDown))

Set rangeClear $=$ Worksheets(ws).Range("startp1clear:endp1clear")
rangeClear.ClearContents
$\operatorname{missing}=" "$
count $=0$

Application.StatusBar $=$ "Converting Start-up Amp to $\mathrm{mA}^{\prime \prime}$

For Each AP1 In rangemAVAR1
If AP1.Offset $(0,-8)$.Value >0 Then

$$
\text { AP1.Value }=\text { AP1.Offset }(0,-8) . \text { Value } * 1000
$$

$$
\text { AP1.Offset }(0,1) . \text { Value }=\operatorname{AP} 1 . \operatorname{Offset}(0,-7) . \text { Value } * 1000
$$

$$
\text { AP1.Offset }(0,2) . \text { Value }=\mathrm{AP} 1 . \text { Offset }(0,-6) . \text { Value } * 1000
$$

Else

AP1.Value $=$ missing
AP1.Offset(0,1$)$.Value $=$ missing
AP1.Offset $(0,2)$. Value $=$ missing
End If
Next AP1

Application.StatusBar $=$ "Amp to mA conversion complete"
Application.StatusBar $=$ "Progressing with Standard Deviation Calculations"
'Performing check if values present
For Each mAP1 In rangemAVAR1
If mAP1.Offset $(0,-8)$.Value $=$ missing Then
Application.StatusBar = "Zero value encountered @" \& count
Exit For
Else
'VAR 1
mAP1.Offset(0,3).Value=NewmAVAR(mAP1.Value,Range("ExpectedValue").Value, Range("NumberofSamples").Value)
mAP1.Offset(0,4).Value=NewmAVAR(mAP1.Offset(0,1).Value,Range("ExpectedValue"). Value, Range("NumberofSamples").Value)
mAP1.Offset(0,5).Value=NewmAVAR(mAP1.Offset(0,2).Value,Range("ExpectedValue"). Value, Range("NumberofSamples").Value)
mAP1.Offset(0,6).Value=NewmAVAR(mAP1.Offset(0,3).Value,Range("ExpectedValue"). Value, Range("NumberofSamples").Value)
mAP1.Offset(0,7).Value=NewmAVAR(mAP1.Offset(0,4).Value,Range("ExpectedValue"). Value, Range("NumberofSamples").Value)
mAP1.Offset $(0,8)$.Value=NewmAVAR(mAP1.Offset(0,5).Value,Range("ExpectedValue"). Value, Range("NumberofSamples").Value)

End If
count $=$ count +1
Application.StatusBar $=$ "Reducing the mA data point to low Standard Deviation. Currently at " \& count

Next mAP1
Application.StatusBar $=$ "All mA data points reduced to low Standard Deviation"
End Sub

9.3 General Program for Performing Moving Average on Pressure, Flowrate and Temperature measurements

```
Public Sub CalculateMovingAverage()
Application.Calculation = xlCalculationManual
Dim ws As String
Dim MAve, DInterval, a, b, c, d, e, f, count As Variant
Dim rangeMAveCurrent1, rangeMAveCurrent2, rangeMAveCurrent3, rangeMAverage1,
rangeMAverage2, rangeMAverage3 As Range
ws = "VAR Noise Reduction"
DInterval = Worksheets(ws).Range("Interval").Value
Set
rangeMAveCurrent1=Worksheets(ws).Range("StartMovingAverage:EndMovingAverage")
Set
rangeMAveCurrent2=Worksheets(ws).Range("StartMovingAverage:EndMovingAverage").
Offset(0,1)
Set rangeMAveCurrent3 =
Worksheets(ws).Range("StartMovingAverage:EndMovingAverage").Offset(0, 2)
rangeMAveCurrent1.ClearContents
rangeMAveCurrent2.ClearContents
rangeMAveCurrent3.ClearContents
count = 0
For Each MAve In rangeMAveCurrent1
    If MAve.Offset(DInterval - 1, -7).Value > 0 Then
        'current 1
        a = MAve.Offset(0, -4).Address
        b = MAve.Offset(DInterval - 1, -4).Address
        'current 2
        c = MAve.Offset(0, -3).Address
        d = MAve.Offset(DInterval - 1,-3).Address
        current 3
        e = MAve.Offset(0, -2).Address
        f = MAve.Offset(DInterval - 1, -2).Address
```

```
    Set rangeMAverage1 = Worksheets(ws).Range(a, Worksheets(ws).Range(b))
    Set rangeMAverage2 = Worksheets(ws).Range(c, Worksheets(ws).Range(d))
    Set rangeMAverage3 = Worksheets(ws).Range(e, Worksheets(ws).Range(f))
    'Starting from the top
    'MAve.Value = Application.WorksheetFunction.Average(rangeMAverage1)
    'Starting after the interval point
MAve.Offset(DInterval-1,0).Value =
Application.WorksheetFunction.Average(rangeMAverage1)
MAve.Offset(DInterval - 1, 1).Value =
Application.WorksheetFunction.Average(rangeMAverage2)
MAve.Offset(DInterval - 1, 2).Value =
Application.WorksheetFunction.Average(rangeMAverage3)
count = count + 1
Application.StatusBar = "Performing Noise Reduction. Currently at " & count
Else
        Application.StatusBar = "VAR Noise Reduction Calculation Complete"
        Application.Calculation = xlCalculationAutomatic
        Exit Sub
        End If
            Next MAve
Application.StatusBar = "VAR Noise Reduction Calculation Complete"
Application.Calculation = xlCalculationAutomatic
MsgBox "VAR Noise Reduction Calculation Complete"
End Sub
```


Appendix E

10.1 Adiabatic frictional flow derivation

Consider a steady one dimensional flow of a real gas with constant specific heats across a control surface, as shown in the figure below,

Above figure adapted from (Saad 1993)
Momentum equation is expressed as
$A p-A(p+d p)-\tau \omega \cdot P \cdot d x=\rho A v(v+d v-v)$
$A p-A p-A d p-\tau \omega . P . d x=\rho A v d v$
$A d p+\tau w \cdot P \cdot d x+\rho A v d v=0$
Now, the friction factor is related to the shear stress in the flow direction in the following way:
$f=\frac{\tau_{\omega}}{\frac{1}{2} \rho v^{2}} \quad$ Where $f:$ Friction factor; $\tau_{\omega}:$ Shear stress; $P:$ Wetted perimeter
The wetted perimeter of the duct P in terms of hydraulic diameter is given as:

$$
P=\frac{4 A}{D_{H}} \quad \text { Where } D_{H}=\text { hydraulic diameter }
$$

For circular ducts $\mathrm{D}_{\mathrm{H}}=\mathrm{D}$, diameter of circular duct

$$
\begin{aligned}
& \therefore A d p+\frac{f \rho v^{2}}{2} \cdot \frac{4 A}{D} d x+\frac{\rho A v^{2}}{v^{2}} \frac{d v^{2}}{2}=0 \\
& \therefore d p+\frac{4 f \rho v^{2}}{D \times 2} d x+\frac{\rho v^{2}}{2} \frac{d v^{2}}{v^{2}}=0 \cdots \cdots \cdots \cdot 1
\end{aligned}
$$

Other equations necessary for the solution

Real Gas Equation	$P=Z \rho R T$	2
Continuity Equation	$m=\rho v A=$ Constant	3
Energy Equation:	$\Delta H=-v^{2} / 2$	4
Mach number	$M^{2}=v^{2} / z \gamma R T$	5
Second law of thermodynamics	$d s \geq 0$	6

Dividing equation 1 by p
$\therefore \frac{d p}{p}+\frac{4 f \rho v^{2}}{D .2 p} d x+\frac{\rho v^{2}}{2 p} \frac{d v^{2}}{v^{2}}=0$

Now,

$$
\begin{aligned}
\rho v^{2} & =\rho \frac{v^{2}}{z \gamma R T} \times z \gamma R T \\
& =\rho M^{2} \times z \gamma R T \\
& =\gamma M^{2} \times \rho R T \\
& =\gamma M^{2} P
\end{aligned}
$$

Therefore, above equation becomes
$\therefore \frac{d p}{p}+\frac{4 f \gamma M^{2}}{2 D} d x+\frac{\gamma M^{2}}{2} \frac{d v^{2}}{v^{2}}=0$

From equation 4

$$
\begin{aligned}
& \Delta H=-\frac{v^{2}}{2} \\
& \therefore H+\frac{v^{2}}{2}=\text { Constant }
\end{aligned}
$$

$\therefore d h+\frac{2 v d v}{2}=0$
$\therefore d h+v d v=0$
$\therefore d h=-v d v$
$\therefore C p . d T=\frac{-d v^{2}}{2}$
Dividing above equation by $C p . T$
$\therefore \frac{d T}{T}=-\frac{d v^{2}}{2 C p T}$
${ }_{\text {Now, }} C p=\frac{\gamma R}{\gamma-1}\left(T_{\text {REQ }} \frac{d z}{d T}+z_{\text {REQ }}\right) \quad \& \quad M^{2}=\frac{v^{2}}{z \gamma R T}$
The term ($T_{R E Q} \frac{d z}{d T_{R E Q}}$) is small and hence can be neglected.
$\therefore \frac{d T}{T}=-\frac{d v^{2}}{2\left(\frac{\gamma R}{\gamma-1}\right) z T}$
$\therefore \frac{d T}{T}=-\left(\frac{\gamma-1}{2}\right) \frac{d v^{2}}{z \gamma R T}$
$\therefore \frac{d T}{T}=-\left(\frac{\gamma-1}{2}\right) \frac{d v^{2}}{v^{2} / M^{2}}$
$\therefore \frac{d T}{T}=-\left(\frac{\gamma-1}{2}\right) M^{2} \frac{d v^{2}}{v^{2}}$
From equation 5, we have

$$
M^{2}=\frac{v^{2}}{z \gamma R T}
$$

\therefore Taking ℓn on both sides

$$
\begin{aligned}
& \therefore \ell n M^{2}=\ell n v^{2}-\ln T-\ell n z \\
& \therefore \frac{d M^{2}}{M^{2}}=\frac{d v^{2}}{v^{2}}-\frac{d T}{T}-\frac{d z}{z} \\
& \frac{d T}{T}=\frac{d v^{2}}{v^{2}}-\frac{d M^{2}}{M^{2}}-\frac{d z}{z}
\end{aligned}
$$

From equations 8 \& 9, we get

$$
\begin{aligned}
& \frac{d v^{2}}{v^{2}}-\frac{d M^{2}}{M^{2}}=-\frac{(\gamma-1)}{2} M^{2} \frac{d v^{2}}{v^{2}} \\
& \therefore \frac{d v^{2}}{v^{2}}\left[1+\left(\frac{\gamma-1}{2}\right) M^{2}\right]=\frac{d M^{2}}{M^{2}} \\
& \therefore \frac{d v^{2}}{v^{2}}=\frac{1}{1+\left(\frac{\gamma-1}{2}\right) M^{2}}\left(\frac{d M^{2}}{M^{2}}\right) \cdots \cdots \cdots \cdots \cdots \cdots 10
\end{aligned}
$$

From equation $2 \& 3$

$$
\begin{aligned}
& \quad \frac{d p}{p}=\frac{d \rho}{\rho}+\frac{d T}{T}+\frac{d z}{z} \\
& \& \frac{d \rho}{\rho}=-\frac{d v}{v} \\
& \therefore \frac{d p}{p}=-\frac{d v}{v}+\frac{d T}{T}+\frac{d z}{z} \\
& \therefore \frac{d p}{p}=\frac{d v^{2}}{v^{2}}\left[-\frac{1}{2}-\frac{\gamma-1}{2} M^{2}\right]
\end{aligned}
$$

Substitute equation 11 in equation 7

$$
\begin{aligned}
& \frac{d v^{2}}{v^{2}}\left[-\frac{1}{2}-\frac{\gamma-1}{2} M^{2}\right]+\frac{4 f \gamma M^{2}}{2 D} d x+\frac{\gamma M^{2}}{2} \frac{d v^{2}}{v^{2}}=0 \\
& \therefore \frac{d v^{2}}{v^{2}}\left[-\frac{1}{2}-\frac{\gamma-1}{2} M^{2}+\frac{\gamma M^{2}}{2}\right]+\frac{4 f \gamma M^{2}}{2 D} d x=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{d v^{2}}{v^{2}}\left(1-M^{2}\right)=\frac{4 f \gamma M^{2}}{D} d x \\
& \therefore \frac{4 f \gamma M^{2}}{D} d x=\left[\frac{1}{1+\left(\frac{\gamma-1}{2}\right) M^{2}} \frac{d M^{2}}{M^{2}}\right]\left(1-M^{2}\right) \\
& \therefore \frac{4 f}{D} d x=\left[\frac{1}{\left[1+\left(\frac{\gamma-1}{2}\right) M^{2}\right] \gamma M^{2}}\right]\left(1-M^{2}\right) \frac{d M^{2}}{M^{2}} \\
& \therefore \frac{4 f}{D} d x=\frac{2\left(1-M^{2}\right)}{\gamma M^{2}\left[1+\left(\frac{\gamma-1}{2}\right) M^{2}\right]} \frac{d M}{M}
\end{aligned}
$$

From equation 10

$$
\begin{align*}
& \frac{d v^{2}}{v^{2}}=\frac{1}{1+\left(\frac{\gamma-1}{2}\right) M^{2}} \frac{d M^{2}}{M^{2}} \\
& \therefore \frac{d v}{v}=\frac{1}{1+\left(\frac{\gamma-1}{2}\right) M^{2}} \frac{d M}{M} \tag{14}
\end{align*}
$$

Now,
$\therefore \frac{d v}{v}=-\frac{d \rho}{\rho}=\frac{1}{1+\left(\frac{\gamma-1}{2}\right) M^{2}} \frac{d M}{M}$
From equation 11

$$
\begin{aligned}
\frac{d p}{p}= & \frac{d v^{2}}{v^{2}}\left[-\frac{1}{2}-\frac{\gamma-1}{2} M^{2}\right] \\
& =\frac{2 d v}{v}\left[-\frac{1}{2}-\frac{\gamma-1}{2} M^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{d p}{p}=\frac{d v^{2}}{v^{2}}\left[-1-(\gamma-1) M^{2}\right] \\
& \therefore \frac{d p}{p}=\left[\frac{1}{1+\left(\frac{\gamma-1}{2}\right) M^{2}}\right] \frac{d M}{M}\left[-1-(\gamma-1) M^{2}\right] \\
& \therefore \frac{d p}{p}=\left[\frac{-1-(\gamma-1) M^{2}}{1+\left(\frac{\gamma-1}{2}\right) M^{2}}\right] \frac{d M}{M}
\end{aligned}
$$

From equation 8

$$
\begin{aligned}
& \frac{d T}{T}=-\left(\frac{\gamma-1}{2}\right) M^{2} \frac{d v^{2}}{v^{2}} \\
& =-\left(\frac{\gamma-1}{2}\right) M^{2} \frac{2 d v}{v} \\
& =-\left[\frac{(\gamma-1) M^{2}}{1+\left(\frac{\gamma-1}{2}\right) M^{2}}\right] \frac{d M}{M} \\
& \therefore \frac{d T}{T}=-\left[\frac{(\gamma-1) M}{\left.1+\left(\frac{\gamma-1}{2}\right) M^{2}\right] d M}\right.
\end{aligned}
$$

Properties of a fluid at any section of a vent pipe may be related to properties at any other section. Equation 13 represents the changes in Mach number with displacement along the vent pipe. By integrating equation 13 within the limits $M=M_{1}$ to $M=M_{2}$ and $x=0$ to $x=L$ (Maximum vent pipe length at which Mach number is unity)
$\int_{0}^{L} \frac{4 f}{D} d x=\int_{M_{1}}^{M_{2}} \frac{2}{\gamma M^{2}} \frac{\left(1-M^{2}\right)}{1+\left(\frac{\gamma-1}{2}\right) M^{2}} \frac{d M}{M}$

$$
=\int_{M_{1}}^{M_{2}} \frac{1}{\gamma M^{4}} \frac{\left(1-M^{2}\right)}{1+\left(\frac{\gamma-1}{2}\right) M^{2}} d M^{2}
$$

The solution of the above equation can be obtained by method of partial fractions which results in

$$
\left(\frac{4 f L}{D}\right)=\frac{1}{\gamma}\left(\frac{1}{M_{1}^{2}}-\frac{1}{M_{2}^{2}}\right)+\left[\left(\frac{\gamma+1}{2 \gamma}\right) \ln \left(\frac{1+\left(\frac{\gamma-1}{2}\right) M_{2}^{2}}{1+\left(\frac{\gamma-1}{2}\right) M_{1}^{2}}\right)\right]
$$

Friction is the chief parameter which causes the properties of any flow, whether subsonic or supersonic to approach these Mach unity characteristics. Hence, $M_{l}=M ; M_{2}=1$ and $L=L^{*}$

$$
\left(\frac{4 f L^{*}}{D}\right)=\left(\frac{1-M^{2}}{\gamma M^{2}}\right)+\left[\left(\frac{\gamma+1}{2 \gamma}\right) \ln \left(\frac{(\gamma+1) M^{2}}{2\left(1+\left(\frac{\gamma-1}{2}\right) M^{2}\right)}\right]\right]
$$

Appendix F

11.1 Vent Pipe Model Simulations Results for Air, Carbon Dioxide, Methane and DBNGP Gas Mixture

Gas Property Calculation for Air @ 100 Kpa gauge \& $19^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	137	13.7	13.7	13.7	13.7	13.7	13.7	13.7
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	302	3.02	3.02	3.02	302	3.02	3302	302	302	3.02
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66	7.66	7.66
Roughness, s	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		$1.96 \mathrm{E}-03$	196E-03	196E-03	1196E-03	1196E-03	$11966-03$	1196E-03	1196E-03	$196 \mathrm{E}-03$	196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$
Length of pipe	. m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Argon;0.0092;Oxygen;0.2096;Nitrogen;07812;									
Specific heat at constant pressure, cp	J/ke K	1008.07	100794	1007.81	1007.66	100751	100735	1007.19	1007.00	1006.80	100657
Specific heat at constant volume, cv:	J/ke K	718.06	718.04	718.02	71799	71796	71793	71790	717.86	717.82	71777
Ratio of specific heats, X		1.4039	14037	14036	14035	14033	14031	1.4030	1.4028	14026	14024
Molecular weight, MW	kg/omole	28.96	28.96	28.96	28.96	28.96	2896	2896	2896	28.96	2896
Gas constant, R	J/kg	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12
Standard condition											
Inlet pressure, P stp (gauge)	KPag	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	000
Atmospheric pressure	${ }^{K} \mathrm{P}^{\text {a }}$	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sid (absolute)	K Paabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature, T smp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	-288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {sid }}$ \%		0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	09996	0.9996	0.9996	0.9996
Density at standard condition Psst?	kg/m	12252	12252	12252	12252	12252	12252	12252	12252	12252	12252
Normal or standard flow:	$m^{\text {m }} / 7 r$	12.2853	122853	122853	12.2853	122853	122853	12.2853	122853	12.2853	122853
	litres min	2047552	204.7552	204.7552	2047552	2047552	2047552	2047552	2047552	2047552	2047552
Phase flow:		Single									
Actual inlet flow condition:	kghr	15.05									
	m^{3} / h	627	652	6.79	710	7.46	789	839	9.02	981	10.86
Standard flow condition	$m^{3} / 7 r$	1229	1229	1229	1229	1229	1229	1229	1229	1229	12.29
Stagnation Properties											
Stagnation Temperature, T_{0} O	${ }^{\circ} \mathrm{K}$	29286	29285	292.84	292.82	29280	292.78	292.79	292.74	292.72	292.69
	${ }^{\circ} \mathrm{C}$	19.71	19.70	19.69	19.67	19.65	19.63	19.64	1959	1957	1954
Inlet Stagnation Pressure	Kpa abs	203.04	195.02	187.61	179.15	170.85	161.81	15221	141.96	130.79	11885
Outlet Stagnation Pressure	Kpaabs	195.02	187.61	179.15	170.85	161.81	15221	141.96	130.79	118859	10475
Stagnation Density, Po	kg/m ${ }^{3}$	2.42	232	223	2.13	203	193	1.81	1.69	156	1.41
-...-.-..........- Stagnation Enthalpy h_{0}	KJ/kg	29288	29289	29290	2929	29290	29290	29293	29291	29291	2929
Upstream Condition											
- Inlet pressure, P_{1}	Kpog.	100.00	9225	84.49	76.13	67.55	5838	48.67	38.18	26.81	1427
	Kpa abs	201.33	193.58	185.82	177.46	168.88	159.71	149.99	13951	128.13	11559
Inlet temperature, t_{1}	${ }^{\circ}$	19.00	18.9377	18.8586	18.7584	18.6480	18.5110	18.3677	18.1235	17.8299	17.4146
	${ }^{\mathrm{K}}$	292.15	292.09	292.01	29191	29180	291.66	29152	29127	29098	29056
		0.9993	0.999	09993	09994	0.9994	0.9994	09995	09995	0.9995	09996
Compressiblity, z_{1} : Viscosity, μ_{1}	Pasec	1.82E-05	1.82E-05	182E-05	1.82E-05	$1.82 \mathrm{E}-05$	1.82E-05	$1.82 \mathrm{E}-05$	1.82E-05	1.81E-05	$1.81 \mathrm{E}-05$
Density,ρ_{1}	kg/m	2.4018	23098	22178	21187	20169	1.9083	1.7930	1.6690	1.5344	13861
Mach numberat.........elocity, V_{1} :	m/sec	37.7753	392798	40.9104	42.8241	44.9843	47.5458	50.6020	54.3612	59.1308	659548
		0.1101	0.1147	0.1193	0.1251	0.1313	0.1388	0.1478	0.1587	0.1728	0.1913
-		54.4216	50.1634	459053	41.6471	373891	33.1312	28.8734	24.6157	20.3583	16.1013
Reynolds number, Re		$3.816 \mathrm{E}+04$	3 $3817 \mathrm{E}+04$	3.818E+04	3819E+04	3.820E+04	$38222 \mathrm{E}+04$	3.824E+04	3.827E+04	$3830 \mathrm{E}+04$	$3835 \mathrm{EE}+04$
Friction factor, 4 f		0.02718800	00272	0.0272	0.0272	0.0272	00.0272	0.0272	0.0272	0.0272	00272
Recovery factor, r :		0.7214162	0.7214	0.7213	0.7213	0.7212	0.7212	0.7211	0.7211	0.7210	0.7210
Adiabatic Wall Temperature, T_{ys} (19.51	1949	1946	19.41	1937	1932	1928	19.18	19.08	1895
Enthalpy, h Entropy, s		292.17	292.12	292.06	291.98	29189	29178	291.65	291.43	291.17	29078
		6.64203303	6.6531	6.6647	6.6776	6.6915	6.7071	6.7247	67748	67683	67965
Downstream Condition											
$4 \mathrm{fl}_{122} / \mathrm{D}$		42592	42591	42590	42588	42586	42584	42582	42578	42574	42568
Mach number at the outlet, M_{2}		0.1147	0.1193	0.1251	0.1313	01388	0.1478	0.1587	0.1728	0.1913	02180
Absolute outlet pressure, P_{2}	Kра	193.58	185.82	177.46	168.88	159.71	149.99	139.51	128.13	115.59	10133
Outlet pressure (gauge)	Kpag	92253	84.491	76.132	67.551	58383	48.668	38.183	26.806	14266	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.94	18.86	18.76	18.65	18.51	1837	18.12	17.83	17.41	16.76
Compressibility, z_{2}Density ${ }^{\text {P }}$?		0.9993	0.9993	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995	0.9996	0.9996
	kg/m	23098	22178	2.1187	2.0169	1.9083	1.7930	1.6690	1.5344	1.3861	12178
Viscosity of gas μ_{2} Actual outlet flow	Passec	1822-05	1.82E-05	182E-05	182E-05	1.82E-05	$182 \mathrm{E}-05$	$182 \mathrm{E}-05$	1.81E-05	$1.81 \mathrm{E}-05$	1818.05
	$m^{3} / h r$	6.5166	6.7871	7.1046	7.4630	7.8879	83949	9.0186	988099	10.8590	123604
Velocity, V_{2}	m/sec	392798	40.9104	42.8241	44.9843	47.5458	50.6020	54.3612	\$9.1308	65.4548	74.5043
Reynolds number, Re)		$3.817 \mathrm{E}+04$	$3818 \mathrm{E}+04$	3819E+04	$38820 \mathrm{E}+04$	38822 +04	$3824 E+04$	3.827 E+04	$3830 \mathrm{E}+04$	$3833 \mathrm{E}+04$	$3842 \mathrm{E}+04$
Friction factor, if		0.0272	0.0272	0.0272	0.0272	0.0272	0.0272	0.0272	0.0272	0.0272	0.0272
Recovery factor, r :		0.7214	0.7213	0.7213	0.7212	0.7212	07211	0.7211	0.7210	0.7210	07210
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ (${ }^{\text {a }}$ - ${ }^{\circ} \mathrm{C}$		19.4932	19.4678	19.4296	193839	193341	192802	192162	19.0996	18.9660	18.7654
Enthalpy, hEntropy,	KJ/kg	292.1247	292.0636	2919826	2918919	2917759	291.6549	2914342	2911660	2907783	290.1505
	KJ/kg K	6.6531	6.6647	6.6776	6.6915	6.7071	6.7247	67448	6.7683	6.7965	6.8321
Critical Properties at Outlet Mach 1											
Contical Pressure	Kpa G	-81.08									
	Kpa abs	20.24									
Critical Temperature:	${ }^{\circ} \mathrm{C}$	-29.49									
	${ }^{\circ} \mathrm{K}$	243.66									
Drop	m	15.33									
	Drop										
Pressure drop/Segment Length	Kpa	7.75	7.76	836	8.58	9.17	9.71	10.48	11.38	12.54	14.27
Temperature drop/Segment Length	${ }^{\circ}$	0.06	0.08	0.10	0.11	0.14	0.14	0.24	0.29	0.42	0.66
Total pressure drop	Kpa	100.00									
Total temperature drop:	${ }^{\circ}$	2.07									

Figure F 11-1: Vent pipe model predictions for air gas at 100 KPa gauge

Gas Property Calculation for Air @ 200 Kpa gauge \& $19^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	137	137	13.7	13.7	1137	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	- mm	3.02	302	3.02	3.02	302	302	302	302	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	196E-03	1196E-03	11966-03	1196E-03	1196E-03	1196E-03	1196E-03	1966-03	1966-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$						
Length of pipe	?	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Argon;00092;Oxygen;0.2096;Nitrogen;0.7812;									
Specific heat at constant pressure cp	J/ke K	100978	100955	100931	1009.06	1008.79	1008.49	1008.17	1007.82	1007.41	100690
Specific heat at constant volume, cy	Jkg K	71833	71829	71824	-71820	718.15	718.10	718.04	71796	71788	71775
Ratio of specific heats, γ		1.4057	14055	14052	14050	1.4047	14044	1.4041	1.4037	14033	14029
Molecular weight, MW	kg/kmole	28.96	28.96	28.96	2896	28.96	2896	2896	2896	28.96	2896
Gas constant, R	Jkg K	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12
Standard condition											
Inlet pressure, P Pstp (gauge)	KPag	0.00	0.00	000	000	0.00	0.00	0.00	0.00	000	000
Atmospheric pressure	K Ka	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sip (absolute)	KPabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
-.-. - Temperature T sTp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\text {K }}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z ST		0.9996	09996	0.9996	0.9996	09996	09996	0.9996	09996	09996	09996
Density at standard condition, P Stp	$\mathrm{kg} / \mathrm{m}^{3}$	12252	12252	12252	12252	12252	12252	12252	12252	12252	12252
Normal or standard flow	$m^{4} / h r$	20.3759	203759	20.3759	203759	20.3759	20.3759	20.3759	20.3759	203759	20.3759
	litres/min	3395988	3395988	3395988	3395988	3395988	3395988	3395988	3395988	3395988	3395988
Phase flow		Single									
Actual inlet flow condition:	ke/hr	24.97									
	m^{3} / h	694	726	7.63	807	858	922	10.02	11.09	12.61	15.05
Standard flow condition	m^{3} / hr	20.38	2038	2038	2038	2038	2038	2038	20.38	2038	2038
Stagnation Properties											
Stagnation Temperature T O	${ }^{\circ} \mathrm{K}$	29302	293.02	292.98	292.96	29292	292.89	292.89	29281	292.77	29271
	${ }^{\circ} \mathrm{C}$	19.87	19.87	19.83	19.81	19.77	19.74	1974	19.66	19.62	19.56
Inlet Stagnation Pressure	Kpa abs	304.49	291.18	27724	262.87	247.47	23072	212.74	192.90	170.69	144.49
Outlet Stagnation Pressure	Kpa abs	291.18	27724	262.87	247.47	23072	212.74	192.90	170.69	144.49	11090
Stagnation Density ρ_{0} o	ke/m ${ }^{3}$	3.62	3.46	330	3.13	294	275	253	230	2.03	1.72
Stagnation Enthalpy, $\mathrm{ho}^{\text {a }}$	KJ/kg	29280	292.83	29283	292.83	29284	29284	292.88	29285	292.86	292.87
Upstream Condition											
	Kpag	200.00	186.60	17251	157.76	142.02	125.05	10675	8637	63.40	3608
	Kpa abs	301.33	287.92	273.84	259.08	24335	22638	208.08	18770	164.73	137.40
Inlet temperature, t_{1}	$\stackrel{C}{C}$	19.00	18.9161	18.7855	18.6340	18.4473	182064	17.9278	17.4407	16.7491	15.4787
Compressibilty	${ }^{\circ} \mathrm{K}$	292.15	292.07	291.94	29178	291.60	29136	291.08	29059	28990	288.63
		0.9989	09990	0.9990	09991	0999	0999	0.9992	09993	09994	0999
Viscosity, μ_{1}	Pasee	1.82E-05	1.82E-05	1822-05	1.82E-05	$1.82 \mathrm{E}-05$	1.82E-05	1.82E-05	1.81E-05	$1.81 \mathrm{E}-05$	$1.80 \mathrm{E}-05$
Density, P_{1}	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	3.5961	3.4370	32702	3.0954	2.9091	2.7083	2.4916	22512	19803	16589
	m/sec	41.8457	43.7832	46.0163	48.6139	51.7276	55.5624	60.3943	66.8441	75.9898	90.7104
Mach number at the inlet, M_{1}^{1}		0.1219	0.1276	0.1342	0.1417	0.1507	01620	0.1762	0.1951	02220	02656
- ${ }^{\text {a }}$		43.8352	39.7622	35.6917	31.6239	27.5586	23.4961	19.4362	153792	113250	72740
Reynolds number, Re:		$6323 \mathrm{E}+04$	$6325 \mathrm{E}+04$	$6328 E+04$	$6332 \mathrm{E}+04$	$6336 \mathrm{E}+04$	$6341 \mathrm{E}+04$	$6347 \mathrm{E}+04$	$6356 \mathrm{E}+04$	$6369 \mathrm{E}+04$	$6393 \mathrm{E}+04$
Friction factor, 4 f		0.02584669	0.0258	0.0258	00258	0.0258	0.0258	0.0258	0.0258	0.0258	0.0258
Recovery factor, r :		0.72221023	0.7221	0.7220	0.7219	0.7218	0.7218	0.7217	0.7216	0.7215	0.7214
Adiabatic Wall Temperature, T_{a} (19.63	19.60	1954	19.48	19.40	1931	1923	19.04	18.82	18.43
Enthalpy, h Entropy, s		29193	291.88	291.78	291.66	29151	29131	291.07	290.63	28999	288.78
		6.52553120	6.5384	655524	65679	6.5854	6.6054	6.6288	6.6569	6.6921	6.7400
Downstream Condition											
$4 \mathrm{fL} 12 . \mathrm{D}$		4.0491	4.0490	40488	4.0486	4.0484	4.0481	4.0478	4.0473	40466	4.0453
Mach number at the outlet, M_{2} \}		0.1276	0.1342	0.1417	0.1507	0.1620	0.1762	0.1951	02220	02656	03580
Absolute outlet pressure, P_{2}	Kpaa	287.92	273.84	259.08	24335	22638	208.08	187.70	164.73	137.40	10133
Outlet pressure (gauge)	Kpag	186.596	172514	157.759	142.020	125.050	106.752	86372	63.401	36.076	0.001
Outlet temperature, t_{2}		18.92	18.79	18.63	18.45	18.21	17.93	17.44	16.75	15.48	12.16
Compressibility, 2_{2}		0.9990	0.9990	0.9991	0.9991	0.9992	0.9992	0.9993	0.9994	0.9995	0.9996
- Density, P_{2}	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	3.4370	32702	3.0954	29091	2.7083	24916	22512	1.9803	1.6589	12374
Viscosity of gas, μ,	Pasee	1.82E-05	1828.05	1822-05	$1882 \mathrm{E}-5$	$1.82 \mathrm{E}-05$	182E-05	1.81E-05	1.81E-05	$180 \mathrm{E}-05$	179E-05
	$m^{3} / h r$	72637	7.6342	8.0651	85817	92179	10.0195	11.0899	12.6068	15.0490	20.1746
Velocity, V_{2}	m msec	43.7832	46.0163	48.6139	51.7276	-55.5624	60.3943	66.8441	\%59898	90.7104	121.6062
Reynolds number, Re		$6325 \mathrm{E}+04$	$6328 \mathrm{E}+04$	$6332 \mathrm{E}+04$	$6336 \mathrm{E}+04$	$6341 \mathrm{E}+04$	634 TE+04	$6356 \mathrm{E}+04$	$6369 \mathrm{E}+04$	$6393 \mathrm{E}+04$	$6453 \mathrm{E}+04$
Friction factor, 41		0.0258	0.0258	0.0258	0.0258	0.0258	0.0258	0.0258	0.0258	0.0258	0.0258
Recovery factor, r :		0.7221	0.7220	07219	07218	0.7218	0.7217	0.7216	07215	0.7214	0.7216
		19.6028	195653	19.5007	19.4274	193374	192334	19.0974	18.8474	18.4629	17.5043
Enthalpy, h :	KJ/kg	2918774	291.7792	291.6616	2915110	2913087	2910718	290.6301	2899889	288.7761	2855286
	KJ/kg K	6.5384	655524	65679	65854	6.6054	6.6288	6.6569	6.6921	67400	68161
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	-67.81									
	Kpa abs	33.52									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-29.54									
	${ }^{\text {c/ }}$	243.61									
Max length of duct at which no shock occurs	m	12.99									
Drop \quad Pressure drop/Segment Length	Appa	13.40	14.08	14.75	15.74	16.97	1830	2038	22.97	2733	36.08
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.13	0.15	0.19	0.24	0.28	0.49	0.69	1.27	332
Total pressure drop	Kpa	200.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	6.56									

Figure F 11-2: Vent pipe model predictions for air gas at 200 KPa gauge

Gas Property Calculation for Air @ 300 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	13.7	137	137	13.7	13.7	1137	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	302	3.02	3.02	302	302	302	302	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	196E-03	1196E-03	11966-03	1196E-03	1196E-03	1196E-03	1196E-03	1966-03	1196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$						
Length of pipe	,	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Argon;00092;Oxygen;0.2096;Nitrogen;0.7812;									
Specific heat at constant pressure cp	J/Ke K	1011.49	1011.18	1010.84	101048	1010.10	1009.69	100924	1008.73	1008.13	100736
Specific heat at constant volume, cy	J/he K	718.59	718.54	718.48	718.42	71835	71828	718.19	718.09	71797	71778
Ratio of specific heats, γ		1.4076	14073	14069	14065	1.4061	14057	1.4052	1.4047	1.4041	14034
Molecular weight, MW	kg/omole	28.96	28.96	28.96	2896	28.96	2896	28.96	2896	28.96	2896
Gas constant, R	J/kek	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12
Standard condition											
Inlet pressure, P Pstp (gauge)	KPag.	0.00	0.00	000	000	0.00	0.00	0.00	0.00	000	000
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sip (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
--.-...... Temperature, T sp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288. 15	288.15
Compressibility at std cond Z S STp ,		0.9996	09996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996
Density at standard condition, P Stp	kg/m	12252	12252	12252	12252	12252	12252	12252	12252	12252	12252
Normal or standard flow	m^{4} / h	28.0591	28.0591	-28.0591	-28.0591	28.0591	28.0591	28.0591	28.0591	-28.0591	28.0591
	lipes/min	467.6514	467.6514	467.6514	467.6514	467.6514	467.6514	467.6514	467.6514	467.6514	467.6514
Phase flow		Single									
Actual inlet flow condition:	kght	34.38									
	m^{3} / p	718	752	792	840	898	970	10.62	11.90	13.80	1718
Standard flow condition	$m^{3} / 7 p$	28.06	28.06	28.06	28.06	28.06	28.06	28.06	28.06	28.06	28.06
Stagnation Properties											
Stagnation Temperature, T .	${ }^{\circ} \mathrm{K}$	293.07	293.08	293.03	292.99	29294	29290	292.89	292.78	292.72	292.65
	${ }^{\circ} \mathrm{C}$	19.92	19.93	19.88	19.84	19.79	19.75	1974	19.63	19.57	1950
Inlet Stagnation Pressure	Kpa abs	405.82	387.79	368.54	347.77	325.97	302.75	27699	24853	215.84	176.25
Outlet Stagnation Pressure	Kpaabs	387.79	36854	34777	325.97	302.75	276.99	24853	215.84	17625	11950
Stagnation Density ρ_{0} o	k/ m^{3}	4.83	4.61	439	4.14	388	360	330	296	257	210
Stagnation Enthalpy, ho_{0}	KJ/kg	292.62	292.66	292.66	292.67	292.67	292.68	292.74	292.70	29271	292.73
Upstream Condition											
-- Inlet pressure, P_{1}	Kpag	300.00	281.49	261.84	24091	218.68	194.81	168.66	13927	105.42	6365
	Kpa abs	401.33	382.82	363.17	34223	32000	296.13	269.99	240.60	20675	164.98
Inlet temperature, t_{1}	${ }^{\circ} \mathrm{C}$	19.00	18.9090	18.7561	18.5694	183421	18.0549	177090	17.0860	16.1375	14.1760
Compressibilty	${ }^{*} \mathrm{~K}$	292.15	292.06	29191	29172	29149	29120	290.86	29024	28929	28733
		0.9986	09987	0.9987	09988	09989	09989	09990	0.9991	09992	09993
Viscosity μ_{1}	Pasec	1.82E-05	1.82E-05	182E-05	1.82E-05	$1.82 \mathrm{E}-05$	1.82E-05	1.82E-05	1.81E-05	$1.81 \mathrm{E}-05$	$1.80 \mathrm{E}-05$
Density, P_{1}	kg/m	4.7912	45714	43387	4.0909	38280	35456	32362	288898	24911	20011
	$\mathrm{m} / \mathrm{sec}$	432511	453307	477617	50.6543	54.1341	58.4444	64.0336	71.7082	83.1844	1035520
Mach number at the inlet, M_{1}^{1}		0.1260	0.1319	0.1390	0.1475	0.1577	0.1702	0.1867	02091	02430	03035
$4 \mathrm{fl}_{1} / \mathrm{D}$		40.8869	36.8954	32.9083	28.9258	24.9476	20.9740	17.0050	13.0405	90809	51263
Reynolds number, Re:		$8.700 \mathrm{E}+04$	$8704 \mathrm{E}+04$	$8709 \mathrm{E}+04$	$8714 \mathrm{E}+04$	$8721 \mathrm{E}+04$	$8730 \mathrm{E}+04$	$8.740 \mathrm{E}+04$	8.75 EE+04	$8.782 \mathrm{E}+04$	$8832 \mathrm{E}+04$
Friction factor, 4 f		0.02522425	0.0252	0.0252	00252	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252
Recovery factor, r :		0.72296951	0.7228	0.7227	0.7226	0.7225	0.7223	0.7222	0.7220	0.7219	0.7219
Adiabatic Wall Temperature, T_{a},		19.67	19.64	1957	1949	1939	1928	19.18	1893	18.61	18.02
Enthalpy, h Entropy, s		291.69	291.64	29154	29140	29122	29099	29070	290.14	28927	28740
		6.44253250	6.4559	64706	6.4872	65059	6.5273	65528	65840	6.624	6.6827
Downstream Condition											
$4 \mathrm{fl}_{122} \mathrm{D}$		39516	39515	39513	39511	39509	39507	39503	39498	39491	39475
Mach number at the outlet, M_{2} \}		0.1319	0.1390	0.1475	0.1577	0.1702	0.1867	02091	0.2430	03035	04870
Absolute outlet pressure, P_{2}	Kpa	382.82	363.17	342.23	320.00	296.13	269.99	240.60	20675	164.98	10133
Outlet pressure (gauge)	Kpag	281.493	261840	240.906	218.679	194.809	168.662	139272	105.423	63.652	0.000
Outlet temperature, t_{2}		18.91	18.76	18.57	1834	18.05	17.71	17.09	16.14	14.18	6.08
Compressibility, 22		0.9987	0.9987	0.9988	0.9989	0.9989	0.9990	0.9991	0.9992	0.9993	0.9995
-	kg/m	4.5714	4.3387	4.0909	382280	35456	32362	2.8898	24911	2.0011	12645
Viscosity of gas, μ_{2} 2Actual outlet flow:	Pasec	1.82E-05	1828.05	182E-05	1828 -05	1828	182E-05	1.81E-05	1.81E-05	180E-05	1776E-05
	$m^{3} / h r$.	7.5204	7.9237	84036	89809	9.6960	10.6233	11.8965	138004	17.1794	27.1875
Velocity, V_{2}	m/sec	453307	47.7617	50.6543	54.1341	58.4444	64.0336	71.7082	83.1844	1035520	163.8774
Reynolds number, Re		$8.704 \mathrm{E}+04$	$8709 \mathrm{E}+04$	$8714 \mathrm{E}+04$	$87721 \mathrm{E}+04$	$8830 \mathrm{E}+04$	$88740 \mathrm{E}+04$	$8.757 \mathrm{E}+04$	$88.782 \mathrm{E}+04$	$88.832 \mathrm{E}+04$	$9.039 \mathrm{E}+04$
Friction factor, 4 f		0.0252	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252
Recovery factor, r :		0.7228	0.7227	0.7226	07225	0.7223	0.7222	0.7220	07219	0.7219	0.7225
Adiabatic Wall Temperature, T_{am} -		19.6432	19.6010	19.5197	194235	193101	19.1803	19.0026	18.6622	18.0693	15.7747
Enthalpy, hEntropy, s	KJ/kg	291.6436	2915360	2913973	2912209	2909882	2907020	290.1444	2892702	2873962	2794062
	KJ/kg K	6.4559	6.4706	64872	6.5059	65273	655528	6.5840	6.6244	6.6827	6.7944
Critical Properties at Outlet Mach 1											
Critical Pressure	$K p a G$	-55.25									
	Kpa abs	46.08									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-29.68									
	${ }^{\circ} \mathrm{K}$	24347									
Max length of duct at which no shock occurs	m	12.42									
Drop											
- - Pressure drop/ Segment Length	Kpa	18.51	19.65	20.93	22.23	23.87	26.15	2939	33.85	41.77	63.65
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.09	0.15	0.19	0.23	0.29	035	0.62	0.95	1.96	8.10
Total pressure drop	Kpa	300.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	12.62									

Figure F 11-3: Vent pipe model predictions for air gas at 300 KPa gauge

Gas Property Calculation for Air @ 400 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3.	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	13.7	13.7	13.7	13.7	137	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	302	302	302	302	302	302	302	3.02	302
Intemal diameter:	mm	766	7.66	7.66	7.66	7.66	7.66	7.66	766	766	766
Roughness, ©	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		196E-03	1196E-03	$1.96 \mathrm{E}-03$	196E-03	196E-03	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$						
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Argon;00092;Oxygen;0.2096;Nitrogen;0.7812;									
Specific heat at constant pressure cep	J/ke K	101320	1012.80	101238	101193	101144	101092	101034	1009.69	100892	100792
Specific heat at constant volume, cy	$\mathrm{J} / \mathrm{ge} \mathrm{K}$	718.85	718.79	718.71	718.64	71855	718.46	71836	71823	718.08	71784
Ratio of specific heats, X		14095	14090	14086	14081	14076	14071	14065	14058	14050	1.4041
Molecular weight, MW-	kg/omole	28.96	28.96	2896	2896	28.96	28.96	28.96	2896	28.96	2896
Gas constant, R :	J/EK	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12
Standard condition											
Inlet pressure, P stip (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00
Atmospheric pressure	K^{Pa}	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure P Psip (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
--.-....... Temperature T stp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond, ZSTPD,		0.9996	0.9996	0.9996	0.9996	09996	0.9996	0.9996	0.9996	0.9996	0.9996
Density at standard condition estro	kepm ${ }^{3}$	12252	12252	12252	12252	12252	12252	12252	1.2252	12252	12252
Normal or standard flow:	m^{\prime} / h	35.5869	355869	355869	355869	35.5869	35.5869	35.5869	35.5869	35.5869	355869
	lipes/min	593.1155	593.1155	593.1155	593.1155	593.1155	593.1155	593.1155	593.1155	593.1155	593.1155
Phase flow		Single									
Actual inlet flow condition:	kght	43.60									
	$\mathrm{m}^{3} / \mathrm{hr}$	728	764	8.06	8.55	9.16	991	10.89	1226	1434	1823
Standard flow condition	$m^{3} / 7 \%$	3559	359	359	359	35.59	3559	3559	3559	3559	3599
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{*} \mathrm{~K}$	293.10	293.10	293.05	:292.99	29293	292.87	292.86	292.72	:292.64	292.55
	${ }^{\circ} \mathrm{C}$	19.95	19.95	19.90	19.84	19.78	19.72	19.71	19.57	19.49	19.40
Inlet Stagnation Pressure:	Kpa abs	507.12	483.60	459.47	433.69	405.68	37533	343.01	30605	26389	21176
Outlet Stagnation Pressure	Kpa abs	483.60	45947	433.69	405.68	37533	343.01	30605	26389	21176	13058
Stagnation Density P O	ke/m	6.04	5.76	547	516	4.83	4.47	4.08	365	3.14	252
Stagnation Enthalpy, ho.	K/kg	292.40	292.46	292.46	292.47	292.47	292.48	29255	29250	22251	29254
Upstream Condition											
	Kро 8	400.00	37630	351.45	325.02	296.60	265.84	232.60	19457	150.66	9530
	Kpa abs	501.33	477.62	452.77	42634	-39793	[367.17	33392	29589	25198	196.63
Inlet temperature, t_{1} !	${ }^{\circ} \mathrm{C}$	19.00	18.9005	18.7318	18.5302	182776	17.9507	175818	16.8701	15.7875	13.4056
Compressibility, z_{1},	${ }^{\circ} \mathrm{K}$	292.15	292.05	291.88	291.68	29143	291.10	29073	290.02	288.94	28656
		09983	09983	0.9984	09985	09986	09987	0.9988	0.9989	0.9990	09992
$\begin{gathered} \text { Compressibilty, } \\ \text { Z } \quad \text { Viscosity } \mu \end{gathered}$	Pasec	$1.83 \mathrm{E}-05$	$1.83 \mathrm{E}-05$	1.82E-05	1.82E-05	$1.82 \mathrm{E}-05$	1.82E-05	$1.82 \mathrm{E}-05$	1.81E-05	1.81E-05	179E-05
Density, p_{1}	ke/m ${ }^{\text {s }}$	59870	5.7055	5.4113	5.0986	4.7625	4.3988	4.0052	3.5574	3.0404	23918
	$\mathrm{m} / \mathrm{sec}$	438980	46.0643	48.5681	515475	55.1853	59.7476	65.6194	73.8798	86.4417	1098821
Mach number at the inlet, M_{1}^{1}		0.1278	0.1341	0.1413	0.1500	0.1606	0.1741	0.1912	02156	02526	03224
$4 \mathrm{fl}_{1} / \mathrm{D}$		39.5286	35.6051	31.6851	27.7684	23.8553	199456	16.0394	12.1368	82380	43432
Reynolds number, Re:		11102E+05	1103E+05	1104E+05	1105E+05	1106E+05	1107E+05	1108E+05	1111E+05	11114E+05	1122E+05
Friction factor, $4 f$		0.02485395	0.0249	0.0249	0.0249	00248	0.0248	0.0248	00248	00248	0.0248
Recovery factor, r :		0.72371972	0.7236	0.7234	0.7232	0.7231	0.7229	0.7227	0.7225	0.7223	0.7222
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$		19.69	19.66	19.57	19.48	1937	1923	19.12	18.82	18.46	17.73
Enthalpy, h Entropy, s		29145	29141	29130	29116	29097	29071	290.42	28979	288.81	28654
		6.37793819	63917	64066	64234	6.4425	6.4647	64909	6.5234	6.5661	6.6294
Downstream Condition											
4 fL 122 D		3.8936	3.8935	38933	38931	38929	38927	38924	38919	38912	38896
Mach number at the outlet, M_{2}]		0.1341	0.1413	0.1500	0.1606	0.1741	0.1912	02156	02526	03224	0.6094
Absolute outlet pressure, P_{2}	Kpa	477.62	452.77	42634	39793	:367.17	333.92	295.89	251.98	196.63	10132
	Kроg	376297	351.448	325.018	296.604	265.841	232597	194.569	150.659	95303	0.000
Outlet temperature, t_{2}		18.90	18.73	18.53	1828	1795	17.58	16.87	15.79	13.41	-1.09
Compressibility z_{2} 2		0.9983	0.9984	0.9985	0.9986	0.9987	0.9988	0.9989	0.9990	0.9992	0.9994
-	kg/m	5.7055	54113	50986	4.7625	4.3988	4.0052	35574	3.0404	23918	12979
Viscosity of gas,μ_{2} Actual outlet flow:	Pasec	1.83E-05	1.82E-05	1.82E-05	1.82E-05	182 E 05	1.82E-05	$1.81 \mathrm{E}-05$	1.81E-05	$1798 \mathrm{E}-05$	1.72E-05
	$m^{3} / h r$	7.6421	8.0575	85518	91553	99122	10.8864	122568	143408	182296	3335933
Velocity, $\mathrm{V}_{2} \quad \mathrm{~m} / \mathrm{sec}$		46.0643	485681	515475	55.1853	-59.7476	65.6194	73.8798	86.4417	109.8821	2024898
Reynolds number, Re		11.103E+05	1104E+05	1105E+05	$1106 \mathrm{E}+05$	$11075+05$	1108E+05	1.111E+05	1.114E+05	1.122E+05	1170E+05
Friction factor, 4 f		0.0249	0.0249	00249	0.0248	0.0248	0.0248	0.0248	0.0248	00248	0.0248
Recovery factor, r :		07236	07234	0.7232	07231	0.7229	0.7227	0.7225	0.7223	0.7222	0.7237
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ (${ }^{\text {a }}{ }^{\circ}{ }^{\circ} \mathrm{C}$		19.6606	19.6116	19.5186	194096	192753	19.124	18.9239	18.5219	17.8004	13.7338
Enthalpy, hEntropy s	KJ/kg	2914089	2912973	291.1564	2909689	290.7122	2904194	2897925	2888068	2865414	272.1934
	KJ/kg E	63917	64066	6.4234	6.4425	64647	6.4909	6.5234	6.5661	6.6294	67.782
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	42.93									
	Kpa abs	58.40									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-29.84									
	${ }^{\circ} \mathrm{K}$	24331									
	m	12.18									
Drop											
Drop \quad Pressure drop/Segment Length	Kpa	23.70	24.85	26.43	28.41	30.76	33.24	38.03	43.91	55.36	95.30
Temperature drop / Segment Length	${ }^{\circ} \mathrm{C}$	0.10	0.17	0.20	0.25	0.33	0.37	0.71	1.08	2.38	14.50
Total pressure drop.	Kрa	400.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	19.80									

Figure F 11-4: Vent pipe model predictions for air gas at 400 KPa gauge

Gas Property Calculation for Air @ 500 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3.	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	13.7	13.7	13.7	13.7	137	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	m	3.02	302	302	3.02	302	302	302	302	3.02	3.02
Intemal diameter:	mm	766	7.66	7.66	7.66	7.66	7.66	7.66	766	766	7.66
Roughness, ©	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		196E-03	1196E-03	$1.96 \mathrm{E}-03$	196E-03	196E-03	$196 \mathrm{E}-03$	1196E-03	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$						
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Argon;00092;Oxygen;0.2096;Nitrogen;0.7812;									
Specific heat at constant pressure cep	J/ke K	101492	1014.43	101392	101338	1012.79	1012.16	101147	1010.68	100974	100853
Specific heat at constant volume, cy	$\mathrm{J} / \mathrm{kg}, \mathrm{K}$	719.11	719.03	718.95	718.86	718.76	718.65	71853	71838	71820	71792
Ratio of specific heats, X		1.4113	1.4108	1.4103	14097	14091	1.4084	1.4077	14069	14059	14048
Molecular weight, MW-	kg/omole	28.96	28.96	2896	2896	28.96	28.96	28.96	2896	28.96	2896
Gas constant, R :	J/EK	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12
Standard condition											
Inlet pressure, Pssm (gauge)	KPag	0.00	0.00	0.00	000	0.00	0.00	0.00	000	0.00	0.00
Atmospheric pressure	K_{Pa}	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure P Psip (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
--.-....... Temperature T stp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z Zssp:		0.9996	0.9996	0.9996	0.9996	09996	0.9996	0.9996	0.9996	0.9996	09996
Density at standard condition estro	kg/m ${ }^{3}$	12252	12252	12252	12252	12252	12252	12252	12252	12252	12252
Normal or standard flow:	$\mathrm{m}^{\text {s } / h}$	43.0370	43.0370	43.0370	433.0370	43.0370	43.0370	43.0370	43.0370	43.0370	43.0370
	lipes/min	7172829	7172829	7172829	7172829	7172829	7172829	7172829	7172829	7172829	7172829
Phase flow		Single									
Actual inlet flow condition:	kght	52.73									
	m^{s} / h	734	771	8.13	8.63	925	10.02	11.02	12.43	14.60	18.74
Standard flow condition	$m^{3} / 7 p$	43.04	43.04	43.04	43.04	43.04	43.04	43.04	43.04	43.04	43.04
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{*} \mathrm{~K}$	293.11	293.11	293.05	:292.98	:29291	29283	292.82	292.66	292.55	292.43
	${ }^{\circ} \mathrm{C}$	19.96	19.96	19.90	19.83	19.76	19.68	19.67	19.51	19.40	1928
Inlet Stagnation Pressure:	Kpa abs	60839	579.65	55028	519.08	48532	44893	409.66	365.11	313.63	24971
Outlet Stagnation Pressure	Kpa abs	579.65	55028	51908	48532	44893	409.66	365.11	313.63	24971	14434
Stagnation Density P O	ke/m ${ }^{\text {a }}$	724	690	655	6.18	578	535	488	435	3.74	2.98
Stagnation Enthalpy $\mathrm{h}_{\text {ho }}$.	K/kg	292.18	2922	29224	29225	29226	2922	29235	29229	29231	29234
Upstream Condition											
	Kро $\mathrm{g}^{\text {a }}$	500.00	47128	441.18	40923	374.89	33777	29746	25134	197.73	129.61
	Kpa abs	601.33	572.60	[542.51	510.55	47622	439.09	398.79	352.66	299.06	23093
Inlet temperature, t_{1} !	${ }^{\circ} \mathrm{C}$	19.00	18.8961	18.7115	18.4934	182228	17.8769	174898	16.7294	15.5669	12.9574
Compressibility, z_{1},	${ }^{\circ} \mathrm{K}$	292.15	292.05	291.86	291.64	29137	291.03	29064	289.88	288.72	286.11
		09979	09980	0.9981	09982	09983	09984	09986	0.9987	0.9988	09990
Compressibility, z_{1} Viscosity, μ_{1} :	Pasec	$1.83 \mathrm{E}-05$	$1.83 \mathrm{E}-05$	$1.83 \mathrm{E}-05$	1.82E-05	$1.82 \mathrm{E}-05$	1.82E-05	$1.82 \mathrm{E}-05$	1.81E-05	1.81E-05	1.79E-05
Density, p_{1}	ke/m ${ }^{\text {s }}$	7.1837	6.8424	6.4863	6.1082	5.7021	5.2632	4.7858	42428	3.6118	2.8139
	$\mathrm{m} / \mathrm{sec}$	442447	46.4516	49.0018	520350	55.7406	60.3887	66.4121	74.9120	879992	1129918
Mach number at the inlet, M_{1}^{1}		0.1287	0.1352	0.1426	0.1514	0.1623	0.1760	0.1936	02185	02572	03315
$4 \mathrm{ff}_{1} / \mathrm{D}$		38.7991	34.9243	31.0518	27.1816	23.3139	19.4486	15.5857	11.7254	7.8677	4.0129
Reynolds number, Re:		$1332 \mathrm{E}+05$	1333E+05	1334E+05	1335E+05	1336E+05	1338E+05	1340E+05	1343E+05	$1348 \mathrm{E}+05$	1358E+05
Friction factor, $4 f$		0002460583	0.0246	0.0246	0.0246	00246	0.0246	0.0246	0.0246	00246	0.0246
Recovery factor, r :		0.72446114	0.7243	0.7241	0.7239	0.7237	0.7234	0.7232	0.7230	0.7227	0.7226
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$		19.70	19.67	19.57	19.46	1933	19.18	19.07	18.74	1834	17.53
Enthalpy, h Entropy, s		29122	291.18	291.06	29092	29073	290.46	290.17	28951	288.47	286.00
		632500191	63389	63540	63709	6.3902	64125	64391	64721	6.5158	658813
Downstream Condition											
$4 \mathrm{fl}_{122} / \mathrm{D}$		3.8547	38546	38545	38543	38541	38539	38536	38531	38525	38510
Mach number at the outlet, M_{2}]		0.1352	0.1426	0.1514	0.1623	0.1760	01936	02185	0.2572	0.3315	07259
Absolute outlet pressure, P_{2}	Kpa	572.60	542.51	510.55	47622	439.09	398.79	352.66	299.06	23093	10133
	Kpag	471278	441.184	409228	374.895	3377769	297.463	251338	197.734	129.607	0.000
Outlet temperature, t_{2}		18.90	18.71	18.49	18.22	17.88	17.49	16.73	15.57	12.96	8.98
Compressibility, z_{2}		09980	0.9981	0.9982	0.9983	0.9984	0.9986	0.9987	0.9988	0.9990	0.9993
-	kg/m	6.8424	6.4863	6.1082	57021	52632	4.7858	42428	3.6118	2.8139	13368
Viscosity of gas, μ_{2} 2	Pasec	183E-05	183E-05	1.82E-05	1.82E-05	182 E 05	1.82E-05	$1.81 \mathrm{E}-05$	1.81E-05	1798.05	$168 \mathrm{E}-05$
	$m^{3} / h r$	77064	8.1295	8.6327	92474	10.0186	11.0179	12.4280	14.5992	18.7389	3994439
Velocity, V_{2}	m/sec	46.4516	49.0018	52.0350	\$557406	60.3887	66.4121	74.9120	879992	112.9518	2377549
Reynolds number, Re		$1333 \mathrm{E}+05$	1334E+05	1335E+05	$1336 \mathrm{E}+05$	$1338 E+05$	1340E+05	$1343 \mathrm{E}+05$	1348E+05	$1358 \mathrm{E}+05$	$1449 \mathrm{E}+05$
Friction factor, 4 f		0.0246	00246	00246	0.0246	00246	0.0246	0.0246	00246	0.0246	00245
Recovery factor, r :		0.7243	0.7241	0.7239	0.7237	0.7234	0.7232	0.7230	0.7227	0.7226	0.7250
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw: }}$ (-a) ${ }^{\circ} \mathrm{C}$		19.6698	19.6153	195084	193854	192368	19.0726	18.8554	18.4135	17.6138	11.5097
Enthalpy, hEntropy s	KJ/kg	291.1782	2910627	2909179	2907258	290.4647	290.1700	2895127	288.4689	286.0039	2642607
	KJ/kg $:$.	63389	63540	63709	63902	64125	6.4391	64721	65.158	65813	67388
Critical Properties at Outlet Mach 1											
Critical Pressure	KpaG	-30.76									
	Kpa abs	70.56									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-30.01									
	${ }^{\circ} \mathrm{K}$	243.14									
	m	12.08									
Drop											
Drop \quad Pressure drop/Segment Length	Kpa	28.72	30.09	31.96	34.33	37.13	40.31	46.12	53.60	68.13	129.61
Temperature drop / Segment Length	${ }^{\circ} \mathrm{C}$	0.10	0.18	0.22	0.27	0.35	0.39	0.76	1.16	2.61	21.94
Total pressure drop.	Kрa	500.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	27.73									

Figure F 11-5: Vent pipe model predictions for air gas at 500 KPa gauge

Gas Property Calculation for Air @ 600 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3.	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	13.7	13.7	13.7	137	137	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	302	302	302	302	302	302	302	3.02	302
Intemal diameter:	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, E	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (8/D)		1.96E-03	1196E-03	$1.96 \mathrm{E}-03$	11966-03	1196E-03	1196E-03	1196E-03	1196E-03	1196E-03	196E-03
Cross sectional area, A	m^{2}	4.61E-05	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$	4.61E-05					
Length of pipe	.	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Argon;0.0092;Oxygen; 0.2096 ;Nitrogen;0.7812;									
Specific heat at constant pressure cp	J/ke K	1016.63	1016.06	1015.46	1014.83	1014.15	1013.41	1012.61	1011.68	101059	100918
Specific heat at constant volume, cy	J/ke K	71937	71928	719.19	719.08	71897	718.84	718.70	718.53	71832	718.01
Ratio of specific heats, X		1.4132	1.4126	14120	1.4113	1.4106	14098	14089	14080	14069	1.4055
Molecular weight, M.W	kg/omole	28.96	28.96	28.96	28.96	28.96	28.96	28.96	28.96	28.96	28.96
Gas constant, R	J kg K	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12
Standard condition											
Inlet pressure, P STD (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P s sp (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\text {\% }}$ K	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	-288.15	288.15
Compressibility at std cond Z STP		0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	09996	0.9996
Density at standard condition , Psto	kg/m	12252	12252	12252	12252	12252	12252	12252	12252	12252	12252
Normal or standard flow:	$m^{3} / h r$	50.4426	50.4426	50.4426	50.4426	50.4426	50.4426	50.4426	50.4426	50.4426	50.4426
	litres/min	8407099	8407099	8407099	840.7099	8407099	8407099	8407099	8407099	8407099	8407099
Phase flow		Single									
Actual inlet flow condition:	kghr	61.80									
	m^{3} / p	737	774	8.17	8.68	930	10.08	11.09	12.51	14.72	1898
Standard flow condition	m^{3} / hr	50.44	50.44	50.44	50.44	50.44	50.44	50.44	50.44	50.44	50.44
Stagnation Properties											
Stagnation Temperature, T_{0}	. K	293.12	293.12	293.04	292.96	292.88	292.79	292.77	292.58	:292.46	29231
	${ }^{\circ} \mathrm{C}$	19.97	19.97	19.89	19.81	19.73	19.64	19.62	19.43	1931	19.16
Inlet Stagnation Pressure:	Kpa abs	709.64	675.83	64135	604.82	565.41	523.03	477.03	424.98	364.55	289.16
Outlet Stagnation Pressure	Kpa abs	675.83	64135	604.82	565.41	523.03	477.03	424.98	36455	28916	160.89
Stagnation Density Po: $^{\text {a }}$	$\mathrm{ke}^{\mathrm{k}} \mathrm{m}^{3}$	8.45	8.05	764	721	674	623	568	507	435	345
Stagnation Enthalpy , ho	KJ/kg	29195	292.02	292.02	292.03	292.04	292.05	292.14	292.07	29209	292.13
Upstream Condition											
--...................................et pressure, P_{1}	Kpag	600.00	566.36	531.11	493.71	453.56	410.17	362.99	308.93	24597	165.60
	Kpa abs	701.33	667.68	632.43	595.03	554.88	511.49	46432	41026	34730	26692
Inlet temperature, t_{1}	${ }^{\circ} \mathrm{C}$	19.00	18.8936	18.6954	18.4634	18.1779	17.8163	17.4200	16.6222	15.4145	12.6793
	${ }^{*} \mathrm{~K}$	292.15	292.04	29185	291.61	29133	290.97	290.57	28977	288.56	285.83
Compressibility z_{1}		0.9976	09977	0.9978	0.9979	09980	09982	09983	09985	09987	09989
- Viscosity μ_{1}	Pasee	1.83E-05	$1.83 \mathrm{E}-05$	$1.83 \mathrm{E}-05$	$1.83 \mathrm{E}-05$	$1.82 \mathrm{E}-05$	182E-05	1.82E-05	$1.81 \mathrm{E}-05$	$1.81 \mathrm{E}-05$	$1.79 \mathrm{E}-05$
Density ρ_{1} Velocity V_{1}	kg m^{3}	83811	79811	7.5641	71217	6.6468	61339	55749	4.9386	4.1974	32561
	$\mathrm{m} / \mathrm{sec}$	44.4491	46.6767	492499	523095	56.0464	60.7333	66.8224	75.4323	88.7518	1144092
Mach number at the inlet, M_{1} :		0.1293	0.1359	0.1433	0.1522	01632	01769	0.1947	02200	02593	03358
		38.3674	34.5274	30.6890	26.8522	23.0170	19.1835	153517	115216	7.6934	38673
Reynolds number, Re:		$1.560 \mathrm{E}+05$	$1561 \mathrm{E}+05$	1.562E+05	$1.564 \mathrm{E}+05$	$1565 \mathrm{E}+05$	$1.567 \mathrm{E}+05$	1570E+05	$1.574 \mathrm{E}+05$	$1580 \mathrm{E}+05$	1593E+05
Friction factor, 4 f		0.02442714	0.0244	0.0244	00244	0.0244	0.0244	0.0244	00244	00244	0.0244
Recovery factor, r :		0.72519404	0.7250	0.7247	0.7245	0.7243	0.7240	0.7237	0.7234	0.7231	0.7229
Adiabatic Wall Temperature, T_{3} a		1970	19.67	19.56	1944	1930	19.13	19.02	18.66	18.23	1737
Enthalpy, h Entropy, s		29098	29095	290.83	290.69	290.49	29023	28994	28926	28820	285.63
		628011837	62941	63092	63262	63456	63680	63947	64279	6.4720	6.5385
Downstream Condition											
$4 \mathrm{fI}_{122} \mathrm{D}$ Mach number at the outlet, M_{2}		3.8267	38266	38265	38263	38261	38259	38257	38252	38246	38233
		0.1359	0.1433	0.1522	0.1632	0.1769	0.1947	02200	02593	0.3358	08369
Mach number at the outlet, M_{2} Absolute outlet pressure, P_{2}	Kpaa	667.68	632.43	595.03	554.88	511.49	464.32	41026	34730	26692	10132
Outlet pressure (gauge)	Kpag	566357	531.108	493.710	453559	410.169	362.994	308.932	245974	165596	0.000
Outlet temperature, t_{2}		18.89	18.70	18.46	18.18	17.82	17.42	16.62	15.41	12.68	17.27
Compressibility, z2		0.9977	0.9978	0.9979	0.9980	0.9982	0.9983	0.9985	0.9987	09989	0.9992
Density P^{2} ?	kg/m	7.9811	7.5641	7.1217	6.6468	6.1339	55749	4.9386	4.1974	32561	13803
Viscosity of gas, μ_{2}	Pasec	$1.83 \mathrm{E}-05$	1.83E-05	$1.83 \mathrm{E}-05$	$1.82 \mathrm{E}-05$	$1.82 \mathrm{E}-05$	182E-05	$1.81 \mathrm{E}-05$	$1.81 \mathrm{E}-05$	17.79E-05	$1.64 \mathrm{E}-05$
Actual outlet flow	m^{3} / h	7.7437	817706	8.6782	92982	10.0757	11.0859	12.5143	14.7240	18.9806	44.7746
Velocity, V_{2}	$\mathrm{m} / \mathrm{sec}$	46.6767	492499	523095	56.0464	60.7333	66.8224	75.4323	88.7518	114.4092	269.886
Reynolds number, Re		$1.561 \mathrm{E}+05$	1562E+05	1.564E+05	1565E+05	$1567 \mathrm{E}+05$	$1570 \mathrm{E}+05$	1574E+05	1.580E+05	$1593 \mathrm{E}+05$	1742E+05
Friction factor, 41		0.0244	0.0244	0.0244	00244	0.0244	00244	00244	0.0244	0.0244	0.0243
Recovery factor, r :		0.7250	0.7247	07245	07243	0.7240	0.723	0.7234	07231	07229	07264
Adiabatic Wall Temperature, T_{ax} :	${ }^{\circ} \mathrm{C}$	19.6752	19.6161	19.4968	193611	19.1993	19.0238	18.7944	183214	1774739	9.1972
------- Enthalpy, h	KJ/kg	2909494	2908320	290.6856	2904920	2902294	2899414	2892647	288.1969	285.6335	2559225
Entropy, s:	KJ/kg K	62941	63092	63262	63456	63680	63947	6.4279	6.4720	65385	67065
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	-18.69									
	Kpa abs	82.63									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-30.19									
	${ }^{\circ} \mathrm{K}$	242.96									
Max length of duct at which no shock occurs	m	12.03									
Pressure drop/Segment Length	Kpa	33.64	35.25	37.40	40.15	43.39	47.17	54.06	62.96	80.38	165.60
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.11	0.20	0.23	0.29	0.36	0.40	0.80	1.21	2.74	29.95
Total pressure drop	Kpa	600.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	36.10									

Figure F 11-6: Vent pipe model predictions for air gas at 600 KPa gauge

Gas Property Calculation for Air @ 700 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	13.7	137	13.7	13.7	1137	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	- mm	3.02	302	3.02	3.02	302	302	302	302	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	196E-03	1196E-03	11966-03	1196E-03	1196E-03	1196E-03	1196E-03	196E-03	1966-03
Cross sectional area, A	m^{2}	4.61E-05	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$					
Length of pipe	?	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Argon;00092;Oxygen;0.2096;Nitrogen;0.7812;									
Specific heat at constant pressure cp	J/ke K	101835	1017.69	1017.01	101629	101551	1014.67	101375	101270	101146	1009.85
Specific heat at constant volume, cy	Jkg K	719.64	71953	71942	71930	719.17	719.03	718.88	718.68	718.45	718.11
Ratio of specific heats, γ		1.4151	1.4144	1.4137	14129	1.4121	1.4112	1.4102	14091	1.4078	14063
Molecular weight, MW	kg/omole	28.96	28.96	28.96	2896	28.96	2896	28.96	2896	28.96	2896
Gas constant, R	J/ke	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12
Standard condition											
Inlet pressure, P Pstp (gauge)	KPag	0.00	0.00	000	000	0.00	0.00	0.00	0.00	000	000
Atmospheric pressure	K Ka	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sip (absolute)	KPabs	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
-.-. - Temperature T sTp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\text {K }}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z S STp ,		0.9996	09996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996
Density at standard condition, P Stp	kg/m	12252	12252	12252	12252	12252	12252	12252	1.2252	12252	12252
Normal or standard flow	$m^{4} / 7$	57.8210	57.8210	57.8210	57.8210	-57.8210	57.8210	57.8210	57.8210	57.8210	57.8210
	litres/min	963.6828	963.6828	963.6828	963.6828	963.6828	963.6828	963.6828	963.6828	963.6828	963.6828
Phase flow		Single									
Actual inlet flow condition:	ke/hr	70.84									
	m^{3} / hr	740	777	820	871	933	10.11	11.12	12.56	14.78	19.08
Standard flow condition	m^{3} / hr	57.82	57.82	57.82	5782	57.82	57.82	57.82	57.82	57.82	57.82
Stagnation Properties											
Stagnation Temperature, To	${ }^{\circ} \mathrm{K}$	293.13	293.12	293.03	29294	292.84	292.74	292.73	29251	29237	29220
	${ }^{\circ} \mathrm{C}$	19.98	19.97	19.88	19.79	19.69	1959	1958	1936	1922	1905
Inlet Stagnation Pressure	Kpa abs	810.88	772.09	732.57	690.77	645.76	597.42	544.81	485.12	416.09	32971
Outlet Stagnation Pressure	Kpa abs	772.09	732.57	69077	645.76	597.42	544.81	485.12	416.09	32971	180.37
Stagnation Density ρ_{0} o	ke/m ${ }^{3}$	9.66	920	8873	823	770	712	649	5.79	4.96	393
Stagnation Enthalpy, $\mathrm{ho}^{\text {a }}$	KJ/kg	291.71	29180	29180	29181	29181	29182	29194	29185	291.88	29191
Upstream Condition											
	Kpag	700.00	661.49	621.14	57835	532.44	48284	428.93	366.94	294.90	202.74
	Kpa abs	801.33	762.82	\%22.47	679.68	633.77	\$54.17	53025	46826	39622	304.06
Inlet temperature, t_{1}	${ }^{\circ} \mathrm{C}$	19.00	18.8920	18.6815	18.4367	18.1379	17.7622	173610	16.5277	152926	12.4973
Compressibilty	${ }^{\text {c/ }}$	292.15	292.04	291.83	29159	29129	290.91	290.51	289.68	288.44	285.65
		0.9973	09974	0.9975	0.9976	09978	09979	09981	09983	09985	09987
Viscosity μ_{1}	Pasee	$1.83 \mathrm{E}-05$	183E-05	183E-05	$183 \mathrm{E}-05$	1828 -05	$182 \mathrm{E}-05$	$1828 \mathrm{E}-05$	1818-05	$1881 \mathrm{E}-05$	$17.79 \mathrm{E}-05$
Density, P_{1} Velocity, V_{1}	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	95792	9.1212	8.6439	8.1378	75948	7.0085	63694	56399	4.7917	37122
	m msec	44.5780	46.8163	494014	52.4739	56.2254	60.9292	67.0432	75.7140	89.1178	115.0334
Mach number at the inlet, M_{1}^{1}		0.1296	0.1362	0.1438	0.1527	0.1637	0.1774	0.1953	02208	02603	03376
- ${ }^{\text {a }}$		38.0938	342796	30.4663	26.6542	22.8432	19.0334	15.2247	11.4173	7.6112	38067
Reynolds number, Re:		$17886 \mathrm{E}+05$	1788E+05	1789E+05	$1.791 \mathrm{E}+05$	1.793E+05	1796e+05	1.799E+05	$1804 \mathrm{E}+05$	$1811 \mathrm{E}+05$	$1826 \mathrm{E}+05$
		0.02429196	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243	00.024	0.0243
Recovery factor, r :		0.72591869	0.7257	0.7254	0.7251	0.7249	0.7246	0.7242	0.7239	0.7235	0.7233
Adiabatic Wall Temperature, $\mathrm{T}_{\text {a }}$ (Enthalpy h		1971	19.67	1955	19.42	1927	19.09	1897	18.58	18.13	1724
		290.74	290.72	290.60	290.46	29026	290.00	289.72	289.03	28795	28536
Entropy, s:		624113293	6.2552	62703	62873	63067	63291	63559	63892	64333	6.5002
Domnstream Condition											
4 fI 122 D		3.8055	388054	38053	38052	38050	38048	38045	38041	38036	38023
Mach number at the outlet, M_{2} \}		0.1362	0.1438	0.1527	0.1637	0.1774	0.1953	02208	0.2603	03376	09427
Absolute outlet pressure, P_{2} Outlet pressure (gauge)	Kpaa	762.82	722.47	679.68	633.77	584.17	53025	468.26	39622	304.06	10133
	Kpag	661.495	621.141	578354	532.440	482.844	4288926	366939	294.897	202.737	0.000
Outlet temperature, t_{2}		18.89	18.68	18.44	18.14	17.76	1736	16.53	15.29	12.50	-25.72
Compressibility, 2_{2}		0.9974	0.9975	0.9976	0.9978	0.9979	0.9981	0.9983	0.9985	0.9987	0.9990
- Density, P_{2}	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	9.1212	8.6439	8.1378	75948	7.0085	6.3694	56399	4.7917	+ 37122	1.4277
Viscosity of gas, μ_{2} ?	Pasee	183E-05	183E-05	$183 \mathrm{E}-05$	182E-05	1828 -05	182E-05	1.81E-05	1.81E-05	$179 \mathrm{E}-05$	159E-05
	$m^{3} / h r$	7.7669	8.1958	8.7055	93279	10.1082	111222	12.5610	14.7848	19.0842	49.6203
Velocity, V_{2}	$m \mathrm{msec}$	46.8163	494014	52.4739	56.2254	60.9292	67.0432	75.7140	89.1178	115.0334	299.0954
Reynolds number, Re		$1.788 \mathrm{E}+05$	1789E+05	1791E+05	$1793 \mathrm{E}+05$	$1.796 \mathrm{E}+05$	1799E+05	1804E+05	1.811E+05	$1826 \mathrm{E}+05$	2052E+05
Friction factor, 4 f		0.0243	0.0243	0.0243	0.0243	0.0243	00243	00243	0.0243	0.0243	00242
Recovery factor, r :		0.7257	0.7254	0.7251	07249	0.7246	0.7242	0.7239	0.7235	0.7233	0.7280
Adiabatic Wall Temperature, T_{am} (-).... ${ }^{\circ} \mathrm{C}$		19.6784	19.6153	19.4842	193365	19.1622	18.9764	18.7357	182341	173585	68708
Enthalpy, hEntropy s	KJ/kg	290.7218	290.6035	290.4566	2902627	290.0002	2897229	289.0283	2879539	2853569	2477180
	KJ/kg K	62552	62703	62873	63067	63291	63559	63892	64333	65002	66727
Critical Properties at Outlet Mach 1											
--..........................citical Pressure.	Kpa G	-6.70									
	Kpa abs	94.62									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-30.37									
	${ }^{\text {c/ }}$	242.78									
Max length of duct at which no shock occurs	m	12.01									
Drop \quad Pressure drop/Segment Length	Apa	38.51	40.35	42.79	45.91	49.60	53.92	61.99	72.04	92.16	202.74
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.11	0.21	0.24	030	0.38	0.40	0.83	1.24	2880	38.22
Total pressure drop	Kpa	700.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	44.67									

Figure F 11-7: Vent pipe model predictions for air gas at 700 KPa gauge

Gas Property Calculation for Air @ 755.979489349149 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	137	137	137	137	137	137	137	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	302	3.02	3.02	3.02	302	302	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66
Roughness, 8	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (\%/D)		$1.96 \mathrm{E}-03$	1196E-03	1196E-03	196E-03	1196E-03	1196E-03	$1.96 \mathrm{E}-03$	1196E-03	1.96E-03	1196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$						
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Argon;0.0092;Oxygen;0.2096;Nitrogen;0.7812;									
Specific heat at constant pressure cp:	J/Re K	101931	1018.60	1017.86	1017.07	101623	101532	101432	1013.18	101183	1010.06
Specific heat at constant volume, cy	Jkg K	71978	719.67	7195	71942	71928	719.13	718.96	718.75	71850	718.12
Ratio of specific heats, γ		1.4161	1.4154	1.4146	1.4137	1.4128	1.4119	14108	14096	14082	14065
Molecular weight, M.W	kg/omole	28.96	28.96	2896	2896	28.96	2896	28.96	2896	28.96	28.96
Gas constant, R	J / EK	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12	287.12
Standard condition											
Inlet pressure, P Pspo (gauge)	KPag	0.00	0.00	000	000	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure:	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sip (absolute)	KPaabs	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T STP:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{6} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z STD,		0.9996	09996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996
		12252	12252	12252	12252	12252	12252	12252	12252	12252	12252
-	m^{3} / h	61.9433	61.9433	61.9433	61.9433	619433	61.9433	61.9433	61.9433	61.9433	61.9433
	litres/min	10323884	10323884	10323884	10323884	10323884	10323884	10323884	1032.3884	10323884	10323884
Phase flow		Single									
Actual inlet flow condition:	ke/hr	75.89									
	m^{3} / h	740	778	822	8.74	938	10.18	1122	12.71	15.04	19.67
Standard flow condition	m^{3} / hr	61.94	6194	6194	6194	61.94	6194	6194	61.94	61.94	6194
Stagnation Properties											
Stagnation Temperature, T O	${ }^{*} \mathrm{~K}$	293.13	293.12	293.02	29293	292.82	292.71	292.69	292.45	29230	292.12
	${ }^{\circ} \mathrm{C}$	19.98	19.97	19.87	19.78	19.67	1956	1954	1930	19.15	1897
Inlet Stagnation Pressure	Kpa abs	867.56	82535	78230	73685	688.06	635.89	578.73	51357	438.46	34387
Outlet Stagnation Pressure	Kpa abs	82535	78230	73685	688.06	635.89	578.73	51357	438.46	343.87	192.61
Stagnation Density $\mathrm{P}^{\text {o }}$	$\mathrm{kg} / \mathrm{m}^{3}$	1034	983	932	8.78	820	758	690	6.13	523	4.10
Stagnation Enthalpy, ho	KJ/k	29158	291.67	291.68	291.68	291.69	29170	29182	291.73	29175	29180
Upstream Condition											
	Kpag	755.98	714.09	670.19	623.70	573.87	520.15	461.62	394.12	315.60	214.19
	Kpa abs	857.30	815.42	771.52	725.02	67520	621.47	562.94	495.44	416.93	315.52
Inlet temperature, t_{1}	${ }^{\circ} \mathrm{C}$	19.00	18.8896	18.6682	18.4114	18.0990	17.7080	172889	16.4056	15.0882	12.0110
-	${ }^{*} \times$	292.15	292.04	291.82	29156	29125	290.86	29044	28956	28824	285.16
Compressibility, z_{1}		0.9971	09972	0.9973	0.9975	09976	09978	09980	09982	09984	09987
Viscosity μ_{1},Density, ρ_{1}	Pasee	1.83E-05	1.83E-05	183E-05	183E-05	1.82E-05	1.82E-05	1.82E-05	1818.05	1.81E-05	1799-05
	kg/m	10.2502	97519	92327	8.6827	8.0936	74584	67645	59704	50461	38888
Velocity, V_{1}	m/sec	44.6298	469104	495483	52.6868	565221	613355	67.6275	76.6220	90.6581	1185513
Mach number at the inlet, M_{1} (0.1297	0.1365	01442	0.1533	0.1645	01785	0.1970	02235	02649	03481
$4 \mathrm{fL} 1 / \mathrm{D}$		37.9833	34.1184	30.2615	26.4125	22.5714	18.7382	149130	11.0958	72866	34858
Reynolds number, Re.		$1913 \mathrm{E}+05$	$1914 \mathrm{E}+05$	$1.916 \mathrm{E}+05$	$1918 \mathrm{E}+05$	1921E+05	$1924 \mathrm{E}+05$	$1927 \mathrm{E}+05$	1932E+05	$1941 \mathrm{E}+05$	1999E+05
Friction factor, 4 f		0.02422969	0.0242	0.0242	00242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242
Recovery factor, r		0.72632083	07260	0.7258	0.7255	0.7252	07248	0.7245	0.7241	0.7237	0.7234
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$:		19.71	19.67	19.54	19.40	1924	19.05	1892	1850	18.03	17.04
		290.61	290.59	290.47	29032	290.12	289.86	28957	288.84	28770	284.84
Entropy, s		622134538	62356	62511	62684	62881	63109	63383	63723	64178	64878
Domnstream Condition											
		3.7958	37957	37955	37954	37952	37950	37948	37944	3.7938	37925
Mach number at the outlet, M_{2})		0.1365	0.1442	0.1533	0.1645	01785	0.1970	02235	02649	03481	1.000
Absolute outlet pressure, P_{2}	Kраа	815.42	77152	725.02	67520	621.47	562.94	495.44	416.93	31552	1013
Outlet pressure (gauge)	Kpag	714.095	670.194	623.696	573.873	520.149	461.616	394.118	315.602	214.19	0.000
Outlet temperature, t_{2} Compressibility, z_{2}	${ }^{\circ} \mathrm{C}$	18.89	18.67	18.41	18.10	17.71	1729	16.41	15.09	12.01	30.47
		0.9972	0.9973	0.9975	0.9976	0.9978	09980	0.9982	0.9984	0.9987	0.9989
\cdots Density ${ }_{2} P_{2}$	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	9.7519	92327	8.6827	8.0936	7.4584	6.7645	59704	50461	3.8588	1.4555
Viscosity of gas,μ_{2}	Paseo	183E-05	183E-05	$183 \mathrm{E}-05$	182E-05	1828 -05	182E-05	1.81E-05	1.81E-05	1798.05	1578.05
Actual outlet flow	m^{3} / hr	77825	82201	87408	93771	10.1756	112195	12.7117	15.0403	19.6678	52.1432
Velocity, V_{2}	m/sec	46.9104	495483	52.6868	56.5221	613355	67.6275	76.6220	90.6581	1185513	3143027
Reynolds number, Re:		$1.914 \mathrm{E}+05$	$1916 \mathrm{E}+05$	$1918 \mathrm{E}+05$	$1921 \mathrm{E}+05$	$1924 \mathrm{E}+05$	1927 E+05	1932E+05	$1941 \mathrm{E}+05$	$1.1959 \mathrm{E}+05$	2233E+05
Friction factor, 4 f:		0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0241
Recovery factor, r :		0.7260	0.7258	0.7255	0.7252	0.7248	0.7245	0.7241	0.7237	0.7234	0.7289
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ ($-\cdots{ }^{\circ} \mathrm{C}$		19.6791	19.6129	19.4726	193152	19.1308	189347	18.6777	18.1385	17.1752	55665
Enthalpy h	KJ/kg	290.5945	2904734	2903228	290.1242	2898556	2895710	288.8387	287.6963	2848371	242.6422
Entropy, s:	KJ/kg K	62356	62511	62684	62881	63109	63383	63723	64178	64878	66533
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	-0.02									
	Kpa abs	10131									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-30.47									
	-	242.68									
Max length of duct at which no shock occurs		12.01									
Drop											
Pressure drop / Segment Length	Kpa	41.88	43.90	46.50	49.82	53.72	58.53	67.50	78.52	101.41	214.21
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.11	0.22	0.26	031	0.39	0.42	0.88	132	3.08	42.48
Total pressure drop	Kpa	755.98									
Total temperature drop:	${ }^{\text {c }}$	49.47									

Figure F 11-8: Vent pipe model predictions for air gas at sonic conditions

Gas Property Calculation for Methane @ 100 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments.		Segment-1.	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	137	137	137	137	137	137	137	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	3.02	3.02	302	302	3.02	3.02	302	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s .	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	1196E-03	1.96E-03	1.96E-03	$196 \mathrm{E}-03$	196E-03	$196 \mathrm{E}-03$	196E-03	$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Methane; $1 ;$									
Specific heat at constant pressure, cp.	J/ke K	222457	222402	222335	222266	222189	2221.06	222041	221908	221787	221633
Specific heat at constant volume cy	J/K K	1696.15	169598	1695.71	169543	1695.10	169473	1694.56	169376	1693.10	1692.19
Ratio of specific heats, X		13115	13113	13112	13110	13108	13106	13103	13102	13099	13097
Molecular weight, M.W-	kg/mole	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04
Gas constant, R	J/KK	51827	51827	51827	51827	51827	51827	51827	51827	51827	51827
Standard condition											
Inlet pressure, P sto (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	000	000	0.00	000	000
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P ssm (absolute)	KPaabs	101.325	101325	101325	101325	101325	101.325	101325	101325	101325	101.325
- Temperature, T Tsp:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{-1}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {STD }}$:		09980	0.9980	09980	09980	0.9980	0.9980	0.9980	0.9980	0.9980	0.9980
Density at standard condition PsTTP	kg/m	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798
Normal or standard flow:	$\mathrm{m}^{\prime} / \mathrm{hr}$	16.7051	16.7051	16.7051	167051	16.7051	16.7051	16.7051	167051	16.7051	16.7051
	lites/min	278.4185	278.4185	278.4185	2784185	2784185	2784185	278.4185	278.4185	2784185	2784185
Phase flow:		Single									
Actual inlet flow condition:	kghr	11.36									
	m^{s} / h	851	8.84	922	9.64	10.14	10.72	11.40	1226	1334	14.77
Standard flow condition	m^{3} / h	16.71	1671	16.71	1671	1671	1671	16.71	16.71	1671	1671
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{*} \times$	292.74	292.74	292.72	292.70	292.67	292.64	292.73	29259	29257	29254
	${ }^{\circ} \mathrm{C}$	1959	1959	1957	1955	19.52	19.49	19.58	1944	19.42	1939
Inlet Stagnation Pressure:	Kpaabs	203.09	19601	18780	17997	171.13	162.05	152.69	142.19	131.19	11892
Outlet Stagnation Pressure	Kpa abs	196.01	18780	17997	171.13	16205	152.69	142.19	131.19	11892	10503
Stagnation Density, P (kg/m ${ }^{3}$	1.34	130	1.24	1.19	1.13	1.07	1.01	0.94	0.87	0.79
Stagnation Enthalpy h_{0}.	KJ/kg	896.89	896.96	89699	897.02	887.05	89708	89737	89716	89723	89729
Upstream Condition											
Inlet pressure, P_{1}	Kpog.	100.00	9256	84.50	7634	67.56	5836	48.88	38.15	26.83	14.28
	Kpa abs	201.33	193.88	185.83	177.67	168.88	159.69	15020	13947	128.16	115.60
Inlet temperature, t_{1}	$\stackrel{\square}{C}$	19.00	18.9558	18.8724	18.7860	18.6784	18.5529	18.5188	182041	179598	17.6023
$\cdots \quad \mathrm{T}_{1}$	${ }^{\circ} \mathrm{K}$	292.15	292.11	292.02	29194	29183	29170	291.67	29135	291.11	29075
Compressibility, 21		09963	09964	09965	09967	09968	09970	09972	09974	0.9976	09978
Viscosity, μ_{1}	Pasec	$1.09 \mathrm{E}-05$	1.09E-05	$1.09 \mathrm{E}-05$	109E-05	109E-05	109E-05	$109 \mathrm{E}-05$	109E-05	$108 \mathrm{E}-05$	108E-05
Density ${ }_{2} P^{1}$	kg m^{3}	13346	12853	12321	1.1782	1.1201	10594	0.9964	09261	0.8515	0.7688
Velocity, $\mathrm{V}_{1} \mathrm{Y}$	m/sec	512905	532584	555597	58.1024	61.1130	64.6136	68.6993	739180	803930	89.0365
Mach number at the inlet, M_{1}		0.1153	0.1195	0.1249	0.1304	0.1373	0.1452	0.1543	0.1661	01805	02000
$4 \mathrm{fm}_{1} / \mathrm{D}$		532201	49.0270	44.8374	40.6513	364689	322001	28.1149	23.9432	19.775	15.6115
Reynolds number, Re		$4.817 \mathrm{E}+04$	4.818E+04	4.820E+04	$4.822 \mathrm{E}+04$	$4.824 \mathrm{E}+04$	$4826 \mathrm{E}+04$	4.827e+04	$4832 \mathrm{E}+04$	4.837E+04	$4.843 \mathrm{E}+04$
Friction factor, 4 f		0.02650902	0.0265	0.0265	00265	00265	00265	00265	00265	0.0265	00265
Recovery factor, r :		0.72992420	0.7298	07297	0.7296	0.7295	0.7294	0.7293	0.7291	0.7290	0.7289
Adiabatic Wall Temperature, $\mathrm{T}_{\text {av }}$.		19.43	19.42	1938	1934	1929	1924	1929	19.10	19.02	1891
Enthalpy, h		895.59	89557	895.46	89535	89520	895.02	895.04	894.45	89402	89336
Entropy, s		627089020	62903	63118	63346	63603	63886	64203	64566	64989	65499
Downstream Condition											
		4.1528	4.1528	4.1526	4.1525	4.1523	4.1521	4.1520	4.1515	4.1512	4.1507
Mach number at the outlet M_{2}		0.1195	0.1249	01304	0.1373	0.1452	0.1543	01661	01805	02000	02280
Absolute outlet pressure, P_{2}.	крра	193.88	185.83	177.67	168.88	159.69	15020	139.47	128.16	115.60	10133
Outlet pressure (gauge)	Kpag.	92598	84.502	76343	67.556	58364	48.876	38.148	26.833	14276	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.96	18.87	18.79	18.68	18.55	18.52	18.20	1796	17.60	17.04
Compressibility, 2		0.9964	0.9965	0.9967	0.9968	0.9970	0.9972	0.9974	0.9976	0.9978	0.9981
- ${ }^{\text {a }}$ Density, P_{2} :	kg/m	12853	12321	1.1782	1.1201	10594	0.9964	0.9261	08515	07688	0.6750
Viscosity of gas μ_{2}.	Pasec	1.09E-05	$1.09 \mathrm{E}-05$	$109 \mathrm{E}-05$	109 E 05	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	109 E 05	108 E 05	$108 \mathrm{E}-05$	108E-05
Actual outlet flow:	$m^{3} / 7$	88356	92174	9.6393	10.1387	10.7195	113973	122631	133373	14.7713	16.8243
Velocity, V_{2}	msaec	532584	555597	58.1024	61.1130	64.6136	68.6993	739180	803930	89.0365	101.4115
Reynolds number, Re)		$4.818 \mathrm{E}+04$	$4820 \mathrm{E}+04$	4.822E+04	4.824E+04	$4.826 \mathrm{E}+04$	4.822e+04	$4.832 \mathrm{E}+04$	4837 E+04	$4.843 \mathrm{E}+04$	$4.852 \mathrm{E}+04$
Friction factor, 41		0.0265	0.0265	0.0265	0.0265	00265	0.0265	00265	0.0265	0.0265	0.0265
Recovery factor, r :		0.7298	0.7297	0.7296	0.7295	0.7294	07293	0.7291	0.7290	07289	07288
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$	${ }^{\circ} \mathrm{C}$	19.4196	193986	193555	193109	192574	192291	192085	190354	18.9249	18.7536
- - Enthalpy, h	KJ/kg	895.5664	895.4626	8953533	8952033	895.0181	895.0387	894.4494	894.0226	8933580	8892625
Entropy, s	KJ/kg K	62903	63118	63346	63603	63886	6.4203	64566	64989	6.5499	6.6143
Critical Properties at Outlet Mach 1											
Critical Pressure	KpaG	-79.75									
	Kpa abs	21.58									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-19.85									
	${ }^{\circ} \mathrm{K}$	23330									
Max length of duct at which no shock occurs	m	15.38									
Drop											
Pressure drop/Segment Lengt	Kра	7.44	8.06	8.16	8.79	9.19	9.49	10.73	11.31	12.56	14.28
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.04	0.08	0.09	0.11	0.13	0.03	031	0.24	0.36	0.56
Total pressure drop	кра	100.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	1.76									

Figure F 11-9: Vent pipe model predictions for methane gas at 100 KPa gauge

Gas Property Calculation for Methane @ 200 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments.		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	137	13.7	137	137	137	137	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	3.02	3.02	3.02	3.02	3.02	302	3.02	3.02	302
Intemal diameter:	mm	7.66	7.66	766	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s .	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (δ / D)		1.96E-03	1196E-03	1.96E-03	1196E-03	$1.96 \mathrm{E}-03$	11966 -03	1196E-03	1196E-03	1.96E-03	1196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05					
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Methane; $1 ;$									
Specific heat at constant pressure, cp	J/ES K	223075	222978	2228.66	2227.43	2226.09	2224.59	222324	222077	2218.12	221417
Specific heat at constant volume, cy	Jkg	169722	169693	169651	1696.03	1695.48	1694.83	169438	169293	169142	1688.81
Ratio of specific heats, X.		13144	13140	13137	13133	13130	13126	13121	13118	13114	13111
Molecular weight, M.W	.kg/mole	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04
- Gas constant, R	J/kE	51827	51827	51827	51827	51827	51827	518.27	518.27	51827	51827
Standard condition											
Inlet pressure, Psstp (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P smp (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature, $\mathrm{T}_{\text {STD }}$	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {SIT }}$:		09980	0.9980	0.9980	09980	0.9980	0.9980	09980	09980	09980	0.9980
Density at standard condition PSTTP	kp/m	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798
Normal or standard flow:	$m^{3} / h r$	27.6194	27.6194	27.6194	27.6194	27.6194	27.6194	27.6194	27.6194	27.6194	27.6194
	litres/min	4603241	4603241	4603241	4603241	4603241	4603241	4603241	4603241	4603241	4603241
Phase flow:		Single									
Actual inlet flow condition:	kg/hr	18.78									
	m^{3} / h	938	988	10.31	1091	11.61	12.47	1354	15.01	17.08	20.40
Standard flow condition	m^{3} / mr	27.62	27.62	27.62	27.62	27.62	27.62	27.62	27.62	27.62	27.62
Stagnation Properties											
Stagnation Temperature, T_{0}.	${ }^{\sim}$	292.87	292.87	29282	292.78	292.73	292.69	29280	2925	29254	292.48
	${ }^{\circ} \mathrm{C}$	19.72	19.72	19.67	19.63	1958	1954	19.65	1943	1939	1933
Inlet Stagnation Pressure	Kpa abs	304.54	291.41	27790	262.99	24746	230.99	21337	193.17	170.97	144.78
Outlet Stagnation Pressure	Kpa abs	291.41	27790	262.99	24746	230.99	21337	193.17	170.97	144.78	11114
Stagnation Density, Po	kg/m	2.02	193	1.84	1.74	1.64	153	1.41	128	1113	0.96
Stagnation Enthalpy h_{h}.	KJ/kg	896.14	89627	89631	89636	896.42	896.48	89691	896.62	896.75	89690
Upstream Condition											
Inlet pressure, P_{1}	Kpog.	200.00	186.68	172.72	157.77	141.99	125.12	107.24	86.45	63.49	36.17
	Kpa abs	301.33	288.00	27405	25910	24331	22644	208.57	187.77	164.82	137.49
Inlet temperature, t_{1}	$\stackrel{\circ}{\circ}$	19.00	18.9304	18.8063	18.6580	18.4820	182664	18.1504	17.5837	16.9967	15.9182
- T_{1}	. K	292.15	292.08	291.96	29181	291.63	291.42	29130	290.73	290.15	289.07
Compressibility, z_{1}		0.9944	0.9946	0.9949	09952	0.9954	0.9957	09961	09964	0.9969	09973
Viscosity μ_{1}	Pasee	1.09E-05	1.09E-05	1.09E-05	109E-05	109E-05	109E-05	1.09E-05	108E-05	1.08E-05	1.08E-05
Density P_{2}	kotm	2.0013	19128	18204	1.7215	1.6172	15057	13869	12506	1.0995	0.9202
Velocity, V_{1}^{1}	m/sec	56.5528	99.1691	62.1713	65.7429	69.9858	75.1673	81.6045	90.4984	1029363	1229942
Mach number at the inlet, M_{1}		0.1271	0.1330	01396	0.1477	0.1572	0.1688	01833	02034	02314	02768
		42.9976	389899	34.9847	30.9834	26.9854	22.9909	18.9999	15.0123	11.0284	7.0484
Reynolds number, Re.		$7.955 \mathrm{E}+04$	7958E+04	7962E+04	$7.967 \mathrm{E}+04$	$7973 \mathrm{E}+04$	7980E+04	7984E+04	$8.000 \mathrm{E}+04$	$8.016 \mathrm{E}+04$	$8.045 \mathrm{E}+04$
Friction factor, 4 f		0.02538367	0.0254	0.0254	0.0254	00254	00254	00254	0.0254	0.0254	00254
Recovery factor, r :		0.73136208	0.7312	07310	0.7308	0.7306	0.7304	07301	07729	0.7297	0.7294
Adiabatic Wall Temperature, $\mathrm{T}_{\text {3w }}$ (1952	1950	19.44	1937	1929	19.19	1924	18.93	18.74	18.41
Enthalpy h		894.57	89455	89442	89424	894.01	88370	893.63	89258	89151	889940
Entropy s :		6.05937785	60826	6.1078	6.1361	61677	62037	62459	62965	63602	6.4466
Downstream Condition											
		39766	39764	39763	39761	39759	39757	39755	39749	3974	39733
Mach number at the outlet, M_{2}		0.1330	0.1396	0.147	0.1572	01688	0.1833	02034	02314	02768	03738
Absolute outlet pressure, P_{2}.	Kраа	288.00	27405	259.10	24331	226.44	208.57	187.77	164.82	137.49	10133
Outlet pressure (gauge)	Kpag	186.678	172.723	157.774	141989	125.118	107242	86.447	63.493	36.169	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.93	18.81	18.66	18.48	1827	18.15	17.58	17.00	15.92	13.11
Compressibility, z_{2}		0.9946	0.9949	0.9952	0.9954	0.9957	0.9961	0.9964	0.9969	0.9973	0.9980
	${\mathrm{kg} / \mathrm{m}^{3}}$	1.9128	1.8204	17215	1.6172	15057	13869	12506	1.0995	09202	0.6844
Viscosity of gas μ_{2}	Pasee	1.09E-05	1.09E-05	$109 \mathrm{E}-05$	$1.09 \mathrm{E}-05$	1.09E-05	109E-05	$108 \mathrm{E}-05$	108E-05	$1.08 \mathrm{EE}-05$	107E-05
Actual outlet flow:	m^{3} / hr	98162	103143	10.9068	11.6107	12.4704	135383	15.0138	17.0773	20.4049	274367
Velocity, V_{2}	m/sec	59.1691	62.1713	-65.7429	69.9858	75.1673	81.6045	90.4984	1029363	122.9942	1653796
Reynolds number, Re		$7958 \mathrm{E}+04$	$7962 \mathrm{E}+04$	7967E+04	$7973 \mathrm{E}+04$	7980E+04	7984E+04	$8.000 \mathrm{E}+04$	$8.016 \mathrm{E}+04$	$8.045 \mathrm{E}+04$	$8.118 \mathrm{E}+04$
Friction factor, 4 If		0.0254	0.0254	0.0254	00254	0.0254	0.0254	0.0254	0.0254	0.0254	0.0253
Recovery factor, r :		0.7312	0.7310	0.7308	0.7306	0.7304	07301	0.7299	0.7297	0.7294	0.7292
Adiabatic Wall Temperature, $\mathrm{T}_{\text {a }}$:	${ }^{\circ} \mathrm{C}$	195054	19.4709	19.4001	193194	192274	19.1623	19.0905	18.7704	18.4470	17.6480
Enthalpy h	KJ/kg	8945542	8944194	8942409	8894.0099	893.7018	893.6260	88925791	8915116	8894026	8835656
Entropy, s	KJ/kg.K	60826	6.1078	6.1361	61677	62037	62459	62965	63602	64466	65842
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	-65.72									
	Kpa abs	35.61									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-20.04									
	${ }^{\circ} \mathrm{K}$	253.11									
Max length of duct at which no shock occurs:	m	12.98									
Drop											
Pressure drop/Segment Length	Kрa	13.32	13.95	14.95	15.79	16.87	17.88	20.79	22.95	2732	36.17
Temperature drop/ Segment Length	${ }^{\circ} \mathrm{C}$	0.07	0.12	0.15	0.18	0.22	0.12	0.57	0.59	1.08	2.81
Total pressure drop.	Kpa	200.00									
Total temperature drop:	${ }^{\circ}$	5.57									

Figure F 11-10: Vent pipe model predictions for methane gas at 200 KPa gauge

Gas Property Calculation for Methane @ 300 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments.		Segment-1.	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	137	137	137	137	137	137	137	137	13.7	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	3.02	3.02	3.02	302	302	3.02	3.02	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s :	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, ($8 / \mathrm{D}$)		1.96E-03	1196E-03	1.96E-03	1.96E-03	196E-03	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$	196E-03	196E-03	$196 \mathrm{E}-03$
Cross sectional area, A :	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Methane, $1 ;$									
Specific heat at constant pressure, cp	J/ke K	223699	2235.66	223411	223246	223064	2228.60	222675	222337	2219.60	221356
Specific heat at constant volume, cy	J/K K	169829	169792	169737	169676	169605	169522	1694.66	169275	1690.66	1686.67
Ratio of specific heats, X.		13172	13167	13162	13157	13152	13146	13140	13135	13129	13124
Molecular weight, M.W	kg/mole	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04
Gas constant, R	J/KK	51827	51827	51827	51827	51827	51827	51827	51827	51827	51827
Standard condition											
Inlet pressure, Pssto (gauge)	KPag	0000	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	000
Atmospheric pressure	${ }^{K} \mathrm{~Pa}^{\text {a }}$	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sto (absolute)	KPaabs	101.325	101325	101325	101325	101325	101.325	101325	101325	101325	101.325
-....- Temperature, T smp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{-1}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	28815	288.15
Compressibility at std cond $Z_{\text {STD }}$ (09980	0.9980	09980	09980	0.9980	0.9980	0.9980	0.9980	09980	0.9980
Density at standard condition PSTTP	kg/m	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	06798	0.6798
Normal or standard flow:	m^{3} / h	379827	37.9827	37.9827	379827	379827	379827	37.9827	379827	379827	379827
	litres/min	633.0444	633.0444	633.0444	633.0444	633.0444	633.0444	633.0444	633.0444	633.0444	633.0444
Phase flow		Single									
Actual inlet flow condition:	kghr	25.82									
	m^{\prime} / h	9.67	10.14	10.69	1133	12.11	13.09	14.30	16.06	18.63	2322
Standard flow condition	m^{3} / h	3798	3798	3798	3798	3798	37.98	37.98	37.98	37.98	3798
Stagnation Properties											
Stagnation Temperature, T_{0}.	${ }^{\sim}$	29291	29291	29284	292.78	29271	292.64	292.79	29249	292.42	29234
	${ }^{\circ} \mathrm{C}$	19.76	19.76	19.69	19.63	19.56	19.49	19.64	1934	1927	19.19
Inlet Stagnation Pressure:	Kpa abs	405.88	38722	367.82	34752	325.78	302.47	27773	248.66	216.18	176.68
Outlet Stagnation Pressure	Kpa abs	38722	367.82	34752	325.78	302.47	27773	248.66	216.18	176.68	11985
Stagnation Density, Po:	kg/m ${ }^{3}$	2.69	257	2.44	231	2.16	2.01	1.84	1.65	1.43	1.17
Stagnation Enthalpy h_{0}.	KJ/kg	89521	89539	885.44	885.51	895.58	889.67	89623	895.86	896.03	89626
Upstream Condition											
Inlet pressure, P_{1}	Kро. 8.	300.00	28132	261.67	24093	218.77	194.89	16963	13955	105.81	64.06
	Kpa abs	401.33	\%82.65	362.99	34226	320.09	29621	270.96	240.88	207.13	16538
Inlet temperature, t_{1}	$\stackrel{\square}{\circ}$	19.00	18.9196	18.7619	18.5835	183678	18.0992	17.9659	172302	16.4257	14.7631
$\cdots{ }^{\text {a }}$	${ }^{\circ} \mathrm{K}$	292.15	292.07	29191	291.73	29152	29125	291.12	29038	28958	28791
Compressibility, 21		0.9925	09929	09932	09936	09940	09944	09949	09954	0.9960	09968
Viscosity, μ_{1}	Pasec	$1.09 \mathrm{E}-05$	1.09E-05	$1.09 \mathrm{E}-05$	109E-05	109E-05	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	108E-05	$108 \mathrm{E}-05$	$107 \mathrm{E}-05$
Density ${ }_{2} P_{1}$	kem ${ }^{\text {b }}$	2.6705	25460	24157	22782	2.1314	19734	18051	1.6079	13857	11119
Velocity, V_{1}	m/sec	58.2844	61.1333	64.4314	683187	73.0253	88.8730	862253	967996	1123244	1399764
Mach number at the inlet, M_{1}		0.1310	01375	01449	0.1536	0.1641	0.1772	0.1937	02176	02526	03155
$4 \mathrm{fI}_{1} / \mathrm{D}$		40.0952	36.1871	32.2804	283752	244716	20.5695	16.6691	12.7701	88731	49781
Reynolds number, Re .		$1.093 \mathrm{E}+05$	1.093E+05	1.094E+05	$1.095 \mathrm{E}+05$	1096E+05	1097e+05	1098E+05	1101E+05	11.04E+05	1110E+05
Friction factor, 4 f		0.02486675	0.0249	0.0249	00249	0.0249	0.0249	00249	00249	00249	00248
Recovery factor, r :		0.73283029	0.7326	07323	0.7320	0.7317	0.7314	0.7311	0.7307	0.7303	0.7299
Adiabatic Wall Temperature, $\mathrm{T}_{3 \mathrm{w}}$!		19.56	1953	19.44	1935	1924	19.12	19.19	18.77	18.50	17.99
Enthalpy h		893.56	89357	883.42	89323	89297	892.62	89258	89125	889.81	886.56
Entropy, s		5.90833475	59329	59595	59891	60228	60615	6.1073	6.1634	62363	63413
Downstream Condition											
4 fL 12 D		3.8956	3.8955	38953	38951	38949	38947	38945	38939	38933	38921
Mach number at the outlet, M_{2}		0.1375	0.1449	0.1536	0.1641	0.1772	0.1937	02176	02526	03155	05086
Absolute outlet pressure, P_{2}.	крра	382.65	362.99	34226	320.09	29621	270.96	240.88	207.13	16538	10132
Outlet pressure (gauge)	Kpag.	281323	261.669	240933	218.766	194.889	169.634	139551	105.809	64.058	0.000
Outlet temperature, t_{2} ?	${ }^{\circ} \mathrm{C}$	18.92	18.76	18.58	1837	18.10	17.97	1723	16.43	14.76	7.83
Compressibility, z_{2}		0.9929	0.9932	0.9936	0.9940	0.9944	0.9949	0.9954	0.9960	0.9968	09978
.-..... Density, P_{2}	kg/m	25460	24157	22782	2.1314	19734	18051	1.6079	13857	1.1119	0.6973
Viscosity of gas μ_{2}	Pasec	1.09E-05	$1.09 \mathrm{E}-05$	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$108 \mathrm{E}-05$	$108 \mathrm{E}-05$	$1.07 \mathrm{E}-05$	105E-05
Actual outlet flow:	$m^{3} / 7 r$	10.1421	10.6893	113342	12.1150	13.0851	143049	16.0592	18.6348	232223	37.0312
Velocity, V_{2}	msaec	61.1333	64.4314	683187	73.0253	78.8730	862253	96.7996	1123244	1399764	2232124
Reynolds number, Re:		$11.093 \mathrm{E}+05$	$1.094 \mathrm{E}+05$	$1.095 \mathrm{E}+05$	$1.096 \mathrm{E}+05$	$1097 \mathrm{E}+05$	$1098 \mathrm{E}+05$	1.101E+05	$1104 \mathrm{E}+05$	1.110E +05	1135E+05
Friction factor, 4 f		0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0248	0.0248
Recovery factor, r :		0.7326	0.7323	0.7320	0.7317	0.7314	07311	0.7307	0.7303	07299	07299
Adiabatic Wall Temperature, $\mathrm{T}_{3 \text { a }}$:	${ }^{\circ} \mathrm{C}$	19.5347	19.4894	193942	19290	19.1699	19.0837	189876	185522	18.0513	16.1214
--- Enthalpy, h	KJ/kg	8935676	893.4155	8932281	8929729	892.6177	8925787	8912497	889.8096	8865564	871.9597
Entropy, s	KJ/kg K	59329	59595	59891	60.028	60615	6.1073	6.1634	62363	63413	65432
Critical Properties at Outlet Mach 1											
Critical Pressure	KpaG	-52.44									
	Kpa abs	48.89									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-20.31									
	${ }^{-1}$	222.84									
Max length of duct at which no shock occurs:	m	12.35									
Drop											
Pressure drop/Segment Length	Kра	18.68	19.65	20.74	22.17	23.88	25.25	30.08	33.74	41.75	64.06
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.16	0.18	0.22	0.27	0.13	0.74	0.80	1.66	6.93
Total pressure drop	кра	300.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	10.78									

Figure F 11-11: Vent pipe model predictions for methane gas at 300 KPa gauge

Gas Property Calculation for Methane @ 400 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments.		Segment-1.	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	137	137	137	137	137	137	137	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	3.02	3.02	302	3.02	3.02	3.02	302	302
Intemal diameter:	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s .	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	1196E-03	1.96E-03	1.96E-03	196E-03	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$	196E-03	$196 \mathrm{E}-03$	196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$						
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Methane; $1 ;$									
Specific heat at constant pressure, cp.	J/ke K	224328	2241.64	223970	2237.63	223537	223285	223057	222639	2221.76	2214.18
Specific heat at constant volume cy	J/K K	169936	169894	169828	169755	169672	169575	1695.13	169286	169042	168555
Ratio of specific heats, X		13201	13194	13188	13181	13175	13167	13159	13152	13143	13136
Molecular weight, M.W-	kg/mole	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04
Gas constant, R	J/KK	51827	51827	51827	51827	51827	51827	51827	51827	51827	51827
Standard condition											
Inlet pressure, P sto (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	000	000	0.00	000	000
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P ssm (absolute)	KPaabs	101.325	101325	101325	101325	101325	101.325	101325	101325	101325	101.325
-..... Temperature, T sid	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{-1}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {STD }}$:		09980	0.9980	09980	09980	0.9980	0.9980	0.9980	0.9980	0.9980	0.9980
Density at standard condition PsTTP	kg/m	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798
Normal or standard flow:	$\mathrm{m}^{\prime} / \mathrm{hr}$	48.1434	48.1434	48.1434	4881434	48.1434	488.1434	48.1434	481434	488.1434	488.1434
	litres/min	8023892	8023892	8023892	8023892	: 8023892	8023892	:8023892	: 8023892	8023892	8023892
Phase flow:		Single									
Actual inlet flow condition:	kghr	32.73									
	m^{\prime} / h	9.79	1028	10.85	11.52	1233	1335	14.63	16.52	1934	24.61
Standard flow condition	m^{3} / h	48.14	48.14	48.14	48.14	48.14	48.14	48.14	48.14	48.14	48.14
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{\sim}$	29293	2929	29284	292.76	292.67	29259	292.76	29238	29229	292.18
	${ }^{\circ} \mathrm{C}$	19.78	19.78	19.69	19.61	19.52	19.44	19.61	1923	19.14	19.03
Inlet Stagnation Pressure:	Kpaabs	507.17	48428	45924	43320	40554	37596	34425	30654	26452	212.53
Outlet Stagnation Pressure	Kpa abs	484.28	45924	43320	405.54	375.96	34425	30654	26452	21253	13140
Stagnation Density, P (kg/m ${ }^{3}$	337	322	3.05	2.88	2.69	250	228	2.03	1.75	1.41
Stagnation Enthalpy h_{0}.	KT/kg	89422	884.45	89452	894.60	894.69	894.79	895.49	895.03	89525	895.54
Upstream Condition - - - - - - .-.........											
Inlet pressure, P_{1}	Kро. 8.	400.00	376.53	35136	324.85	29657	266.12	233.88	194.88	151.10	95.88
	Kpa abs	501.33	477.86	452.68	42618	39790	367.44	33520	29620	252.43	19721
Inlet temperature, t_{1}	$\stackrel{\square}{C}$	19.00	18.9193	18.7375	18.5329	182892	179884	17.8634	17.0011	16.0770	14.0601
$\cdots \quad \mathrm{T}_{1}$	${ }^{\circ} \mathrm{K}$	292.15	292.07	29189	291.68	291.44	291.14	291.01	290.15	28923	28721
Compressibility, z_{1}		09907	09911	09916	09920	09925	09931	0.9937	09944	0.9951	09961
Viscosity, μ_{1}	Pasec	$1.09 \mathrm{E}-05$	1.09E-05	$1.09 \mathrm{E}-05$	109E-05	109E-05	109E-05	$109 \mathrm{E}-05$	108E-05	$108 \mathrm{EE}-05$	107E-05
Density P^{1}	kepm ${ }^{3}$	33421	3.1852	30179	28418	2.6541	24522	22366	1.9809	1.6922	13300
Velocity, $\mathrm{V}_{1} \mathrm{l}$	m/sec	59.0293	61.9377	653710	69.4212	743307	80.4526	882052	995921	1165818	1483293
Mach number at the inlet, M_{1}		0.1327	0.1391	01468	01559	0.1669	01805	0.1979	02236	02619	03341
$4 \mathrm{fm}_{1} / \mathrm{D}$		39.0050	35.1296	312574	273883	23.5225	19.6600	15.8007	11.9446	8.0921	42432
Reynolds number, Re		$1.383 E+05$	$1384 \mathrm{E}+05$	$1385 \mathrm{E}+05$	1386E+05	1388E+05	1390E+05	1391E+05	1395E+05	$1400 \mathrm{E}+05$	$1409 \mathrm{E}+05$
Friction factor, 4 f		0.02456108	00246	00246	0.0246	00246	0.0246	00246	00246	0.0245	0.0245
Recovery factor, r :		0.73432430	0.7340	07336	0.7333	0.7329	0.7325	0.7320	0.7316	0.7310	0.7305
Adiabatic Wall Temperature, $\mathrm{T}_{\text {ave }}$.		19.57	1955	19.44	1932	19.19	19.05	19.14	18.63	1831	17.69
Enthalpy, h		892.54	889260	882.45	89226	892.00	891.64	881.69	890.17	888.57	884.67
Entropy, s		5.79050630	5885	58426	58830	59074	59472	59946	6.0531	61300	62439
Downstream Condition											
		3.8477	38476	38474	38473	38471	38468	38467	38461	38455	38443
Mach number at the outlet M_{2}		0.1391	0.1468	0.1559	0.1669	0.1805	01979	02236	02619	0.3341	0.6358
Absolute outlet pressure, P_{2}.	крра	477.86	452.68	426.18	39790	367.44	33520	29620	252.43	19721	10133
Outlet pressure (gauge)	Kpag.	376.533	351359	324.852	296574	266.118	233.880	194.875	151.101	95.882	0.001
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.92	18.74	18.53	18.29	17.99	17.86	17.00	16.08	14.06	1.59
Compressibility, 2		0.9911	0.9916	0.9920	0.9925	0.9931	0.9937	0.9944	0.9951	0.9961	0.9977
- ${ }^{\text {a }}$ Density, P_{2} :	kg/m	3.1852	3.0179	2.8418	2.6541	2.4522	22366	1.9809	1.6922	13300	07133
Viscosity of gas μ,	Pasec	1.09E-05	1.09E-05	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$108 \mathrm{E}-05$	$108 \mathrm{E}-05$	$107 \mathrm{E}-05$	103E-05
Actual outlet flow:	$m^{3} / 7 r$	102756	10.8451	11.5171	123316	133472	14.6334	16.5225	193411	24.6080	458863
Velocity, V_{2}	msaec	61.9377	653710	69.4212	743307	80.4526	882052	99.5921	1165818	1483293	2765881
Reynolds number, Rè		1384E+05	1385E+05	$1386 \mathrm{E}+05$	1388E+05	1390E+05	$1391 \mathrm{E}+05$	$1395 \mathrm{E}+05$	$1400 \mathrm{E}+05$	1409E+05	1467E+05
Friction factor, 41		0.0246	00246	0.0246	0.0246	0.0246	0.0246	00246	0.0245	0.0245	0.0245
Recovery factor, r :		0.7340	07336	0.7333	0.7329	0.7325	07320	0.7316	0.7310	0.7305	07307
Adiabatic Wall Temperature, $\mathrm{T}_{\text {ax }}$	${ }^{\circ} \mathrm{C}$	195486	194987	193825	192571	19.1139	19.0159	18.9078	183810	177.7678	143330
- - - Enthalpy, h	KJ/kg	8925974	892.4468	8922593	892.0029	891.6423	891.6933	890.1718	888.5678	884.6682	8582929
Entropy, s	KJ/kg K	5.8153	58426	58730	59074	59472	59946	60531	6.1300	6.2439	6.4940
Critical Properties at Outlet Mach 1											
Critical Pressure	KpaG	-39.56									
	Kpa abs	61.77									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-20.59									
	${ }^{-1}$	22256									
Max length of duct at which no shock occurs	m	12.16									
Drop											
Pressure drop/Segment Lengt	Kра	23.47	25.17	26.51	28.28	30.46	32.24	39.00	43.77	55.22	95.88
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.18	0.20	0.24	0.30	0.12	0.86	0.92	2.02	12.47
Total pressure drop	кра	400.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	17.04									

Figure F 11-12: Vent pipe model predictions for methane gas at 400 KPa gauge

Gas Property Calculation for Methane@ 500 Kpagauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	13.7	13.7	13.7	137	13.7	13.7	13.7	13.7
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	302	3.02	3.02	3.02	302	3.02	3.02	3.02	3.02	302
Intemal diameter:	mm	7.66	7.66	766	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, \&	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (δ /)		196E-03	1196E-03	1.96E-03	196E-03	196E-03	1966-03	196E-03	196E-03	196E-03	196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$							
Length of pipe:	m	12.00									
Gas properties	m	120	120	120	120	120	120	120	120	120	120
		Methane;1;									
Specific heat at constant pressure, cp	J/kg K	2249.62	224767	224535	224288	224020	223720	223457	222964	222427	221554
Specific heat at constant volume, cy	$\mathrm{J} / \mathrm{kg} \mathrm{K}$	1700.44	169996	169920	169837	169743	169632	1695.70	1693.11	1690.41	1685.02
Ratio of specific heats, X		13230	13222	13214	13206	13198	13189	13178	13169	13158	13148
Molecular weight, MW:	ke/mole	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04
Gas constant, R :	J/EK	51827	51827	51827	51827	51827	51827	51827	51827	51827	51827
Standard condition											
Inlet pressure, P StD (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	000
Atmospheric pressure:	${ }^{1} \mathrm{~Pa}$ a	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P P sto (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T sto	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{2}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {sIT }}$ \%		09980	0.9980	09980	09980	09980	0.9980	09980	09980	09980	09980
Density at standard condition PsTTP	ke/m ${ }^{3}$	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798
Normal or standard flow:	m^{s} / h	58.2093	58.2093	58.2093	58.2093	582093	58.2093	58.2093	582093	58.2093	58.2093
	lipes/min	9701542	970.1542	970.1542	970.1542	970.1542	970.1542	970.1542	970.1542	970.1542	970.1542
Phase flow		Single									
Actual inlet flow condition:	kghr	39.57									
	m^{s} / h	9.85	10.34	10.92	11.60	12.43	13.48	14.78	16.74	19.67	25.26
Standard flow condition	$m^{3} / 7 r$	5821	5821	5821	5821	5821	5821	5821	5821	5821	5821
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{*} \times$	29293	29293	29283	292.73	292.63	29252	292.72	29226	29214	29200
	${ }^{\circ} \mathrm{C}$	19.78	19.78	19.68	1958	19.48	1937	19.57	19.11	18.99	18.85
Inlet Stagnation Pressure:	Kpa abs	608.44	58126	550.82	51925	485.85	449.63	411.91	365.67	314.48	250.83
Outlet Stagnation Pressure	Kpa abs	58126	550.82	51925	485.85	44963	41191	365.67	314.48	250.83	145.82
Stagnation Density, P O	ke/m ${ }^{3}$	405	387	3.67	3.46	323	299	2.74	2.43	2.09	1.67
Stagnation Enthalpy h_{0}.	K/kg	89321	893.49	89357	893.66	893.77	88389	894.73	894.16	894.42	894.76
Upstream Condition											
	Kро. 8.	500.00	471.82	41130	40920	374.99	33795	29932	25157	19822	130.40
	Kpa abs	601.33	573.15	542.63	51052	47631	43927	400.65	35290	29954	231.72
Inlet temperature, t_{1}	${ }^{\circ} \mathrm{C}$	19.00	18.9190	18.7164	18.4899	182230	17.8915	17.7947	16.8266	15.8294	13.6198
T_{1}	${ }^{*}$	292.15	292.07	291.87	291.64	29137	291.04	29094	28998	288.98	28677
		0.9888	0.9893	0.9899	09905	09911	09917	09924	09933	0.9942	0.9954
$\begin{gathered} \text { Compressibility, } z_{1} \\ \text { Viscosity } \mu, \end{gathered}$	Pasec	1.09E-05	1.09E-05	$1.09 \mathrm{E}-05$	1.09E-05	$1.09 \mathrm{E}-05$	109E-05	$1.09 \mathrm{E}-05$	$1.08 \mathrm{E}-05$	$1.08 \mathrm{E}-05$	$1.07 \mathrm{E}-05$
Density, P_{1} -	kg/m ${ }^{3}$	4.0163	3.8272	3.6239	3.4102	3.1826	29365	2.6773	23641	2.0117	1.5663
	m/sec	593910	62325	665.8218	699469	749483	812289	89.0945	1008973	1185736	152.2865
Mach number at the inlet, M_{1})		0.1334	0.1398	0.1477	01570	0.1681	0.1822	01996	02264	02662	0.3427
$4 \mathrm{ff}_{1} / \mathrm{D}$		38.4391	-345908	-30.7463	269056	23.0686	192354	15.4060	11.5804	77589	3.9415
Reynolds number, Re		$1.670 \mathrm{E}+05$	1671E+05	$1673 \mathrm{E}+05$	$1.675 \mathrm{E}+05$	1.677e+05	11679E+05	1680E+05	$1.686 E+05$	$1.693 \mathrm{E}+05$	1705E+05
Friction factor, 4 f :		002435710	00244	0.0244	0.0244	0.0244	0.0244	00244	0.0243	0.0243	0.0243
Recovery factor, r :		0.73584190	0.7354	07350	0.7345	0.7341	0.7336	07330	0.7324	0.7318	0.7311
Adiabatic Wall Temperature, T_{39} :		19.58	1955	19.43	1929	19.14	18.97	19.10	1850	18.14	17.45
Enthalpy h		891.52	891.62	891.48	89130	891.05	890.69	89087	88920	88753	88333
Entropy, s:		5.69371464	5.7187	5.7463	57769	5.8117	58520	59000	59595	6.0382	6.1560
Downstream Condition											
$4 \mathrm{fl} \mathrm{L}_{2}$ D		3.8157	3.8156	38155	38153	38151	38149	3.8148	38142	38137	3.8125
Mach number at the outlet, M_{2};		0.1398	0.1477	0.1570	01681	0.1822	01996	02264	02662	03427	0.7573
Absolute outlet pressure, P_{2}	Kрpa	573.15	542.63	510.52	47631	43927	400.65	352.90	299.54	231.72	10133
	Kpog	471.823	441300	409.197	374.986	337949	299325	251.572	198216	130397	0.000
Outlet temperature, t_{2} Compressibility, z_{2}		18.92	18.72	18.49	18.22	17.89	17.79	16.83	15.83	13.62	${ }^{-536}$
		0.9893	0.9899	0.9905	0.9911	0.9917	0.9924	0.9933	0.9942	0.9954	0.9974
-	kp/m	3.8272	3.6239	34102	31826	29365	2.6773	23641	20117	15663	07319
Viscosity of gas μ_{2} Actual outlet flow	Pasec	1.09E-05	1.09E-05	$109 \mathrm{E}-05$	109 E 05	$109 \mathrm{E}-05$	109 E 05	$108 \mathrm{E}-05$	$108 \mathrm{E}-05$	$1.07 \mathrm{E}-05$	101E-05
	$m^{3} / 7 r$	10.3399	10.9199	11.6043	12.4340	13.4760	14.7809	16.7390	19.6715	25.2645	54.0653
Velocity, V_{2}	msaec	623257	65.8218	699469	74.9483	812289	89.0945	1008973	1185736	1522865	-325.8881
Reynolds number, Re)		1.671E+05	$1.673 \mathrm{E}+05$	$1.675 \mathrm{E}+05$	$1677 \mathrm{E}+05$	$1679 \mathrm{E}+05$	1680E+05	$1.686 \mathrm{E}+05$	$1.693 \mathrm{E}+05$	$1705 \mathrm{E}+05$	$1815 \mathrm{E}+05$
Friction factor, 4 f		0.0244	0.0244	00244	00244	0.0244	0.0244	0.0243	0.0243	0.0243	0.0243
Recovery factor, r :		0.7354	0.7350	0.7345	0.7341	0.7336	07330	07324	0.7318	0.7311	07317
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ (19.5551	19.5004	193650	192196	19.0543	18.9466	18.8365	182297	175457	123582
Enthalpy, hEntropy,	KJ/kg	891.6248	8914813	8913012	891.0528	890.6901	890.8695	8891994	: 8875300	8833317	843.1538
	KJ/kg K	5.7187	5.7463	[57769	5.8117	58520	59000	5.9595	6.0382	6.1560	64382
Critical Properties at Outlet Mach 1											
Critical Pressure	Kppa	-26.85									
	Kpa abs	74.47									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-20.89									
	${ }^{\circ} \mathrm{K}$	25226									
Drop	m.	12.09									
Drop Pressure drop/Segment Length	Kра	28.18	30.52	32.10	34.21	37.04	38.62	47.75	53.36	67.82	130.40
Temperature drop / Segment Length.	${ }^{\circ} \mathrm{C}$	0.08	0.20	0.23	0.27	0.33	0.10	0.97	1.00	2.21	18.98
Total pressure drop	кра	500.00									
Total temperature drop.	${ }^{\circ} \mathrm{C}$	24.07									

Figure F 11-13: Vent pipe model predictions for methane gas at 500 KPa gauge

Gas Property Calculation for Methane @ 600 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments.		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	137	13.7	137	137	137	137	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	3.02	3.02	302	3.02	302	3.02	3.02	302
Intemal diameter	mm	7.66	7.66	766	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s :	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	1196E-03	1196E-03	1196E-03	$1.96 \mathrm{E}-03$	11966 -03	$1196 \mathrm{E}-03$	1196E-03	1196E-03	1196E-03
Cross sectional area, A .	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05					
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Methane; $1 ;$									
Specific heat at constant pressure, cp:	Jkg K	2256.01	225375	225106	2248.19	2245.09	2241.64	2238.66	2233.02	222698	221730
Specific heat at constant volume cy	Jkg K	170151	170098	1700.13	169920	1698.15	169692	169630	1693.43	169054	1684.81
Ratio of specific heats, χ.		13259	13250	13241	13231	13221	13210	13197	13186	13173	13161
Molecular weight, M W	kg/omole	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	1604
- Gas constant, R.	J/kE	51827	51827	51827	51827	51827	51827	518.27	518.27	51827	51827
Standard condition											
Inlet pressure, Pspto (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00
Atmospheric pressure:	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P smp (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature $\mathrm{T}_{\text {s }}$ (${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {STP }}$:		09980	0.9980	0.9980	09980	09980	0.9980	09980	09980	09980	09980
Density at standard condition PSTPR	kp/m	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798
Normal or standard flow:	$m^{3} / h r$	68.2271	68.2271	68.2271	68.2271	68.2271	682271	68.2271	682271	68.2271	682271
	litres/min	11377.1188	11137.1188	11137.1188	1137.1188	11137.1188	11137.1188	11137.1188	1137.1188	11137.1188	11137.1188
Phase flow:		Single									
Actual inlet flow condition:	kg/hr	46.38									
	m^{3} / h	9.88	1037	10.96	11.65	12.49	1354	14.85	16.84	19.82	25.56
Standard flow condition	m^{3} / hr	6823	68.23	68.23	6823	68.23	6823	68.23	6823	68.23	68.23
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{\sim}$	29294	29294	29282	292.70	292.57	292.44	292.68	292.14	291.99	291.82
	${ }^{\circ} \mathrm{C}$	19.79	19.79	19.67	1955	19.42	1929	19.53	1899	18.84	18.67
Inlet Stagnation Pressure:	Kpa abs	709.69	677.96	642.46	60548	566.42	523.81	480.04	425.62	365.58	290.69
Outlet Stagnation Pressure:	Kpa abs	677.96	642.46	605.48	566.42	523.81	480.04	425.62	365.58	290.69	16333
Stagnation Density, Po.	kg/m	4.74	452	4.28	404	\% 378	3.49	-3.19	283	2.43	1.93
Stagnation Enthalpy h_{0}.	KJ/kg	892.19	892.51	892.60	892.71	892.83	892.96	89394	89328	89357	8939
Upstream Condition											
Inlet pressure, P_{1}	Kpag.	600.00	567.07	53137	493.76	453.72	41026	365.42	309.10	24650	166.65
	Kpa abs	701.33	668.40	632.69	595.09	555.04	51159	466.74	41043	347.83	267.97
Inlet temperature, t_{1}	$\stackrel{\circ}{\circ}$	19.00	18.9177	18.6963	18.4499	18.1618	17.8050	17.7392	16.6785	15.6355	133184
-	${ }^{\mathrm{K}} \mathrm{K}$	292.15	292.07	29185	291.60	29131	290.96	290.89	289.83	288.79	286.47
Compressibility, zi		0.9870	0.9876	0.9882	09889	0.9896	09904	09912	09921	09933	0.9947
Viscosity, μ !	Pasee	1.10E-05	1.09E-05	1.09E-05	109E-05	109E-05	109E-05	1.09E-05	108E-05	1.08E-05	1.07E-05
Density P^{1}	kg/m	4.6930	4.4712	42329	39820	377150	3.4257	3.1235	27540	23398	18146
Velocity, V_{1}	m/sec	59.5748	62.5298	66.0503	702121	752577	81.6131	89.5100	1015190	119.4915	154.0708
Mach number at the inlet M_{1}		0.1338	0.1402	01482	0.1575	01687	0.1830	02004	02276	02680	03465
- ${ }^{4 \mathrm{fL}_{1} / \mathrm{D}}$		38.1161	342891	30.4661	26.6470	22.8318	19.0207	15.2136	114103	7.6114	38168
Reynolds number, Re		$1.955 \mathrm{E}+05$	1956E+05	1958E+05	1961E+05	$1.964 E+05$	$1967 \mathrm{E}+05$	1968E+05	$1976 \mathrm{E}+05$	$1984 \mathrm{E}+05$	$2000 \mathrm{E}+05$
Friction factor, 4 f .		0.02421064	0.0242	0.0242	0.0242	00242	00242	00242	0.0242	0.0242	00242
Recovery factor, r :		0.73738185	0.7369	07364	0.7358	0.7353	0.7347	0.7340	0.7333	0.7325	0.7317
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ (1958	1956	19.41	1926	19.09	18.90	19.05	1837	17.98	1723
Enthalpy h		890.50	890.65	890.52	89035	890.11	88975	890.07	88828	886.60	88228
Entropy s :		5.61145191	5.6366	5.6642	5.6950	57729	57705	58187	58786	59580	660774
Downstream Condition											
-		37928	37927	37925	37924	37922	37920	37919	37913	37908	37897
Mach number at the outlet, M_{2} -		0.1402	0.1482	0.1575	01687	01830	02004	02276	02680	03465	0.8734
Absolute outlet pressure, P_{2}.	Kраа	668.40	632.69	595.09	555.04	51159	466.74	410.43	347.83	26797	10132
Outlet pressure (gauge)	Kpag	567.072	531.369	493.764	453.716	410265	365.419	309.103	246505	166.650	0.000
Outlet temperature, t 2		18.92	18.70	18.45	18.16	17.81	17.74	16.68	15.64	1332	-12.77
Compressibility, z_{2}		0.9876	0.9882	0.9889	0.9896	0.9904	0.9912	0.9921	0.9933	0.9947	0.9972
-	${\mathrm{kg} / \mathrm{m}^{3}}$	4.4712	42329	39820	37150	34257	3.1235	2.7540	23398	18146	07530
Viscosity of gas μ ?	Paseo	1.09E-05	$1.09 \mathrm{E}-05$	$1.09 \mathrm{E}-05$	$1.09 \mathrm{E}-05$	1.09E-05	109E-05	$108 \mathrm{E}-05$	108E-05	$107 \mathrm{E}-05$	9.82E-06
Actual outle flow:	m^{3} / hr	103738	10.9578	11.6483	12.4854	13.5397	14.8498	16.8421	19.8238	25.5606	61.6001
Velocity, V_{2}	m/sec	62.5298	66.0503	-702121	1752577	81.6131	89.5100	1015190	1194915	154.0708	3713055
Reynolds number Re-		1956E+05	1958E+05	$1961 \mathrm{E}+05$	$1964 \mathrm{E}+05$	1967E+05	1968E+05	$1976 \mathrm{E}+05$	$1984 \mathrm{E}+05$	2000E+05	2182E+05
Friction factor, 4 f		0.0242	0.0242	0.0242	00242	0.0242	0.0242	0.0242	00242	0.0242	0.0241
Recovery factor, r :		0.7369	07364	0.7358	0.7353	0.7347	0.7340	0.7333	0.7325	0.7317	07330
Adiabatic Wall Temperature, $\mathrm{T}_{\text {a }}$:	${ }^{\circ} \mathrm{C}$	195580	194981	193442	19.1798	18.9938	1888780	18.7686	18.0900	173592	102741
Enthalpy h	KJ/kg	890.6488	8905153	8903459	8890.1090	:8897545	890.0676	8882758	886.5976	8822830	827.0969
Entropy, s	KJ/kg.K	5.6366	5.6642	5.6950	57299	57705	588187	58786	59580	60774	63774
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	-14.27									
	Kpa abs	87.05									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-21.20									
	${ }^{\circ} \mathrm{K}$	25195									
Max length of duct at which no shock occurs :	m	12.06									
Drop											
Pressure drop / Segment Length	Kрa	32.93	35.70	37.61	40.05	43.45	44.85	5632	62.60	79.85	166.65
Temperature drop / Segment Length.	${ }^{\circ} \mathrm{C}$	0.08	0.22	0.25	0.29	0.36	0.07	1.06	1.04	232	26.09
Total pressure drop	Kpa	600.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	31.63									

Figure F 11-14: Vent pipe model predictions for methane gas at 600 KPa gauge

Gas Property Calculation for Methane @ 700 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	13.7	13.7	13.7	13.7	13.7	137	13.7	13.7
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	302	3302	3.02	302	302	3.02	302	302	3.02	302
Internal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, E	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (δ ($)$		$1.96 \mathrm{E}-03$	1196E-03	196E-03	1966-03	1196E-03	1196E-03	1196E-03	1196E-03	1196E-03	1196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$				
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Methane;1;									
Specific heat at constant pressure, cp:	J/ke K	2262.46	225988	2256.81	225356	2250.05	224615	224282	2236.49	222981	221931
Specific heat at constant volume, cy	J/ke K	1702.59	1702.01	1701.06	170003	1698.88	169754	169692	169378	169073	168476
Ratio of specific heats, X		13288	13278	13267	13256	13244	13232	13217	13204	13188	13173
Molecular weight, MW	kghoole	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	1604
Gas constant, R,	J/kg	51827	51827	51827	51827	51827	51827	51827	518.27	51827	51827
Standard condition											
Inlet pressure, P stp (gauge).	KPag	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	000
Atmospheric pressure:	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sto (absolute)	K Paabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T smp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{-1}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {SID }}$:		09980	0.9980	0.9980	09980	09980	0.9980	09980	09980	09980	09980
Density at standard condition PSTP:	kg/m	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798
Normal or standard flow:	$m^{s} / h r$	78.2213	\%8.2213	782213	78.2213	78.2213	782213	78.2213	782213	78.2213	78.2213
	lives/min	1303.6887	1303.6887	1303.6887	1303.6887	1303.6887	1303.6887	13036888	13036887	1303.6887	1303.6887
Phase flow:		Single									
Actual inlet flow condition:	kg/h	53.18									
	$\mathrm{m}^{\text {b } / h}$	990	1039	10.98	11.67	12.51	1357	14.88	1689	19.89	25.67
Standard flow condition	$m^{3} / 7 r$	7822	7822	7822	7822	7822	7822	78.22	7822	7822	7822
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{*} \mathrm{~K}$	292.94	29293	292.80	292.66	292.52	292.36	292.63	292.01	291.84	291.64
	${ }^{\circ} \mathrm{C}$	19.79	19.78	19.65	1951	1937	1921	19.48	18.86	18.69	18.49
Inlet Stagnation Pressure:	Kpa abs	810.93	77458	734.13	691.80	647.13	59828	548.58	486.03	41735	331.61
Outlet Stagnation Pressure	Kpa abs	774.58	734.13	69180	647.13	59828	548.58	486.03	41735	331.61	18420
Stagnation Density, P O	kg/m ${ }^{3}$	542	518	490	4.62	432	399	3.65	324	278	221
Stagnation Enthalpy ho_{0}.	KJ/kg	891.16	89152	891.62	891.74	891.88	892.03	893.15	89238	892.70	883.12
Upstream Condition											
Inlet pressure, P_{1}.	Kpog.	700.00	66233	62151	578.46	532.63	482.86	431.98	367.13	295.51	204.06
	Kpa abs	801.33	763.65	722.83	679.78	63395	584.19	53330	468.46	396.83	30539
Inlet temperature, t_{1} :	${ }^{\circ} \mathrm{C}$	19.00	18.9164	18.6765	18.4111	18.1027	17.7232	17.6916	16.5426	15.4661	13.0909
Compressibility z_{1}	${ }^{-K}$	292.15	292.07	29183	29156	29125	290.87	29084	289.69	288.62	28624
		0.9851	0.9858	09865	09873	0.9881	0.9890	09899	09910	09923	0.9939
$\begin{gathered} \text { Compressibility, } z_{1} \\ \text { Viscosity } \mu, \end{gathered}$	Pasec	110E-05	110E-05	1.09E-05	1.09E-05	109E-05	1.09E-05	$1.09 \mathrm{E}-05$	1.08E-05	1.08E-05	1.07E-05
Density, ρ_{1}	kem ${ }^{\text {b }}$	53722	5.1176	4.8445	45566	42504	39184	3.5740	31484	2.6736	2.0712
	$\mathrm{m} / \mathrm{sec}$	59.6660	62.6347	66.1654	703459	75.4132	818032	89.6851	1018090	119.8917	154.7571
Mach number at the inlet, M_{1})		0.1340	0.1405	0.1484	0.1577	0.1690	01833	02007	02280	02687	03477
		37.9192	34.1090	303028	26.5006	22.7024	18.9083	15.1182	113321	75504	37729
Reynolds number, Re:		$2238 \mathrm{E}+05$	$2240 \mathrm{E}+05$	$2243 \mathrm{E}+05$	$2246 \mathrm{E}+05$	2249E+05	2253E+05	2255E+05	2265E+05	2274E+05	2293E+05
Friction factor, 4 f		0.02410010	0.0241	0.0241	0.0241	0.0241	00241	0.0241	0.0241	0.0241	0.0241
Adiabatic Wall Tecovery factor, r :		0.73894338	0.7384	0.7378	0.7372	0.7365	0.7358	0.7350	0.7342	0.7333	0.7323
		1958	1956	1939	1922	19.03	18.82	19.01	1824	17.83	17.04
-		889.47	889.67	88955	88939	889.17	888.82	88928	88737	885.71	88138
Entropy, s:		553982874	55651	55927	5.6236	5.6586	5.6993	57476	58.8076	5.8871	6.0069
Downstream Condition											
Downstream Condition		37755	3.7754	37752	3.7751	37749	37747	37746	37741	37736	37726
Mach number at the outlet, M_{2}		0.1405	0.1484	0.1577	01690	0.1833	02007	02280	02687	0.3477	0.9845
Absolute outlet pressure, P_{2}	Kpa	763.65	722.83	679.78	633.95	584.19	533.30	468.46	396.83	30539	10133
Outlet pressure (gauge)	Kpag	662329	621510	578.456	532.627	482.864	431979	367.133	295506	204.064	0.000
Outlet temperature, t_{2}		18.92	18.68	18.41	18.10	17.72	17.69	16.54	15.47	13.09	-20.44
Compressibility, z_{2}		0.9858	0.9865	0.9873	0.9881	0.9890	0.9899	0.9910	09923	0.9939	0.9969
	kp/m	5.1176	4.8445	45566	42504	39184	35740	31484	2.6736	20712	07760
Viscosity of gas, μ :	Pasec	1.10E-05	1.09E-05	1.09E-05	$1.09 \mathrm{E}-05$	$1.09 \mathrm{E}-05$	$1.09 \mathrm{E}-05$	$1.08 \mathrm{E}-05$	108E-05	1.07E-05	$9.56 \mathrm{E}-06$
	$m^{3} / 7 r$	10.3912	10.9769	11.6705	12.5112	13.5713	14.8789	16.8902	198902	25.6744	68.5234
Velocity, V_{2}	m/sec	62.6347	66.1654	\%0.3459	\%75.4132	818032	89.6851	1018090	11988917	154.7571	413.0371
Reynolds number, Re)		$2240 \mathrm{E}+05$	$2243 \mathrm{E}+05$	$2246 \mathrm{E}+05$	$2249 \mathrm{E}+05$	$2253 \mathrm{E}+05$	$2255 \mathrm{E}+05$	$2265 \mathrm{E}+05$	2274E+05	2293E+05	$2570 \mathrm{E}+05$
Friction factor, 4 If		0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0240
Recovery factor, r :		0.7384	0.7378	0.7372	0.7365	0.7358	0.7350	0.7342	0.7333	0.7323	07343
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$:	${ }^{\circ} \mathrm{C}$	195590	19.4939	193217	19.1385	18.9323	18.8097	18.7028	17.9548	17.1903	8.1449
Enthalpy, hEntropy s	KJ/kg	889.6714	8895477	:8893907	889.1665	888.8248	8892770	8873724	885.7111	8813845	8105753
	KJ/kg K	5.5651	55927	5.6236	56586	5.6993	5 57476	5.8076	58871	6.0069	63130
Critical Properties at Outlet Mach 1											
-- Critical Pressure:	Kpa G	-1.79									
	Kpa abs	9954									
Critical Temperature:	${ }^{\circ} \mathrm{C}$	-21.51									
	${ }^{-1}$	251.64									
Max length of duct at which no shock occurs	m	12.05									
Drop											
Pressure drop/Segment Length	Kра	37.67	40.82	43.05	45.83	49.76	50.88	64.85	71.63	91.44	204.06
Temperature drop / Segment Length.	${ }^{\circ} \mathrm{C}$	0.08	0.24	0.27	0.31	0.38	0.03	1.15	1.08	238	33.53
Total pressure drop	кра	700.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	39.49									

Figure F 11-15: Vent pipe model predictions for methane gas at 700 KPa gauge

Gas Property Calculation for Methane @ 713.2 Kpa gauge \& $19^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments.		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	137	137	137	137	137	137	137	137	13.7	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	3.02	3.02	302	302	3.02	3.02	3.02	302
Intemal diameter:	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s .	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (δ /)		1.96E-03	$1196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	1.96E-03	196E-03	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$	196E-03	196E-03	$196 \mathrm{E}-03$
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Methane; 1;									
Specific heat at constant pressure, cp.	J/ke K	226332	2260.69	225758	225427	225071	224675	224337	223695	2230.19	221959
Specific heat at constant volume cy	Jkg K	1702.73	1702.14	1701.18	170014	169898	1697.62	1697.00	169383	169076	168477
Ratio of specific heats, X		13292	13281	13271	13259	13247	13235	13220	13206	13191	13174
Molecular weight, M.W-	kg/mole	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04	16.04
Gas constant, R	J/KK	51827	51827	51827	51827	51827	51827	51827	51827	51827	51827
Standard condition											
Inlet pressure, P sto (gauge)	KPag	0000	0.00	0.00	0.00	0.00	000	000	0.00	0.00	000
Atmospheric pressure	${ }^{K} \mathrm{~Pa}^{\text {a }}$	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P ssm (absolute).	KPaabs	101.325	101325	101325	101325	101325	101.325	101325	101325	101325	101325
-...- Temperature, T sid.	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{-1}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	28815	288.15
Compressibility at std cond $\mathrm{Z}_{\text {spd }}$:		09980	0.9980	09980	09980	0.9980	0.9980	0.9980	0.9980	0.9980	0.9980
Density at standard condition Psstp	$\mathrm{kg} / \mathrm{m}^{3}$	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	0.6798	06798	0.6798
Normal or standard flow:	$m^{3} / h r$	795396	795396	79.5396	79.5396	79.5396	79.5396	795396	79.5396	795396	79.5396
	litres/min	1325.6602	1325.6602	1325.6602	1325.6602	1325.6602	1325.6602	1325.6602	1325.6602	1325.6602	1325.6602
Phase flow:		Single									
Actual inlet flow condition:	kghr	54.07									
	m^{3} / h	990	1039	10.98	11.67	12.51	1357	14.88	16.89	1990	25.68
Standard flow condition	m^{3} / h	7954	7954	7954	7954	7954	79.54	79.54	7954	7954	79.54
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{\sim}$	29294	2929	292.79	292.65	29251	29235	29263	29199	29182	291.61
	${ }^{\circ} \mathrm{C}$	19.79	19.78	19.64	1950	1936	1920	19.48	18.84	18.67	18.46
Inlet Stagnation Pressure:	Kpa abs	82430	78734	74623	70320	657.79	608.13	557.66	494.03	42422	337.07
Outlet Stagnation Pressure	Kpa abs	78734	74623	70320	6577.79	608.13	557.66	49403	42422	337.07	18722
Stagnation Density, P (kg/m ${ }^{3}$	551	526	4.99	4.70	439	4.06	372	329	2.83	224
Stagnation Enthalpy h_{0}.	KJ/kg	891.02	89139	891.49	891.62	89175	89191	893.04	89226	892.58	893.01
Upstream Condition - - - - - .-...........											
Inlet pressure, P_{1}	Kро g .	713.20	674.91	633.41	589.64	54305	492.46	440.79	374.82	30201	209.07
	Kpa abs	814.53	77623	73474	69097	64438	593.79	542.12	476.14	40334	31039
Inlet temperature, t_{1}	$\stackrel{\square}{C}$	19.00	18.9162	18.6739	18.4061	18.0950	17.7126	17.6857	16.5252	15.4448	13.0641
$\cdots \mathrm{T}_{1}$	${ }^{\circ} \mathrm{K}$	292.15	292.07	29182	29156	29124	290.86	290.84	289.68	28859	28621
Compressibility, zi		0.9849	0.9856	09863	09871	0.9879	0.9888	0.9898	09909	0.9922	09938
Viscosity, μ_{1}	Pasec	1.10E-05	11.10E-05	$1.09 \mathrm{E}-05$	109E-05	109E-05	109 E 05	$109 \mathrm{E}-05$	108E-05	$108 \mathrm{E}-05$	$107 \mathrm{E}-05$
Density ${ }_{2} P^{1}$	kepm ${ }^{3}$	54620	52031	49254	4.6326	43213	39836	36338	32007	27179	21056
Velocity, $\mathrm{V}_{1} \mathrm{Y}$	m/sec	59.6736	62.6435	66.1752	703574	75.4266	818193	89.6968	1018323	1199215	154.7993
Mach number at the inlet, M_{1}		0.1340	01405	01484	01577	0.1690	0.1833	02007	02281	02687	03477
$4 \mathrm{fm}_{1} / \mathrm{D}$		37.8993	34.0910	30.2868	26.4865	22.6903	188981	15.1100	113259	75461	37706
Reynolds number, Re		$2276 \mathrm{E}+05$	2277E+05	2280E+05	$2283 \mathrm{E}+05$	$22876+05$	2291E+05	2293E+05	2303E+05	$2312 \mathrm{E}+05$	2332E+05
Friction factor, 4 f		0.02408750	0.0241	0.0241	0.0241	0.0241	0.0241	00241	0.0241	0.0241	0.0241
Recovery factor, r :		0.73915108	0.7386	07380	0.7373	0.7367	0.7360	0.7352	0.7343	0.7334	0.7323
Adiabatic Wall Temperature, $\mathrm{T}_{\text {ave }}$.		19.58	19.56	1939	1922	19.03	18.81	19.00	1823	17.81	17.02
Enthalpy, h		88934	88954	889942	88926	889.04	888.70	889.17	88725	885.60	88127
Entropy, s		553102521	55563	55840	5.6148	5.6498	5.6905	5.7388	57988	58783	59981
Downstream Condition											
-		37735	37734	37733	37731	37729	37727	37726	37721	37716	37706
Mach number at the outlet M_{2}		0.1405	0.1484	0.1577	0.1690	0.1833	02007	02281	02687	03477	0.9987
Absolute outlet pressure, P_{2}.	крра	77623	734.74	69097	64438	593.79	542.12	476.14	40334	31039	10133
Outlet pressure (gauge)	Kpag.	674.906	633.411	589.642	543.052	492.462	440.794	374.819	302.012	209.065	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.92	18.67	18.41	18.09	17.71	17.69	16.53	15.44	13.06	21.46
Compressibility, 2		0.9856	0.9863	0.9871	0.9879	0.9888	0.9898	0.9909	0.9922	0.9938	0.9969
- ${ }^{\text {a }}$ Density, P_{2} :	kg/m	52031	49254	4.6326	4.3213	39836	3.6338	32007	27179	2.1056	07792
Viscosity of gas μ,	Pasec	110E-05	1.09E-05	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$109 \mathrm{E}-05$	$108 \mathrm{E}-05$	$108 \mathrm{E}-05$	$1.07 \mathrm{E}-05$	9.52 E 06
Actual outlet flow:	$m^{3} / 7 r$	103926	10.9786	11.6724	12.5134	13.5739	14.8808	16.8941	19.8951	25.6814	693938
Velocity, V_{2}	msaec	62.6435	66.1752	70.3574	75.4266	81.8193	89.6968	1018323	1199215	154.7993	4182838
Reynolds number, Re-		$2277 \mathrm{E}+05$	2280E+05	2283E+05	2287E+05	2291E+05	2293E+05	$2303 \mathrm{E}+05$	2312E+05	2332E+05	$2623 \mathrm{E}+05$
Friction factor, 41		0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0240
Recovery factor, r :		0.7386	07380	0.7373	0.7367	0.7360	0.7352	0.7343	0.7334	0.7323	07345
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$	${ }^{\circ} \mathrm{C}$	195591	19.4932	193186	19.1330	189242	18.8007	18.6942	179371	17.1688	78634
- - Enthalpy, h	KJ/kg	889.5423	8894198	8892645	889.0421	888.7022	889.1732	8872539	8855960	8812723	8083817
Entropy, s	KJ/kg K	55563	55840	5.6148	56498	5.6905	57388	57988	58783	59981	63043
Critical Properties at Outlet Mach 1											
Critical Pressure:	KpaG	-0.15									
	Kpa abs	101.18									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-21.55									
	${ }^{*}$	251.60									
Max length of duct at which no shock occurs	m	12.05									
Drop											
Pressure drop/Segment Length	кра	38.29	41.49	43.77	46.59	50.59	51.67	65.98	72.81	92.95	209.07
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.24	0.27	0.31	0.38	0.03	1.16	1.08	238	34.53
Total pressure drop	Kра	713.20									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	40.54									

Figure F 11-16: Vent pipe model predictions for methane gas at sonic conditions

Gas Property Calculation for Carbon-dioxide @ $100 \mathrm{Kpagauge} \mathrm{\&} 19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	13.7	137	137	137	137	137	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	3.02	3.02	3.02	3.02	302	302	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66
Roughness, 8	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (δ / D)		1.96E-03	$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	1196E-03	1196E-03	1196E-03	$1.96 \mathrm{E}-03$	1196E-03	$1.96 \mathrm{E}-03$	1196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Carbon dioxide; ;									
Specific heat at constant pressure cp	J/ke K	852.66	852.05	85133	850.60	849.81	84897	848.41	847.03	84591	844.58
Specific heat at constant volume, cy	J/kg K	654.16	653.91	653.58	65323	652.86	652.45	65235	651.47	650.88	65014
Ratio of specific heats, γ		13034	13030	13026	13021	13017	13012	13005	13002	12996	12991
Molecular weight, MW	kg/omole	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01
Gas constant, R	J / EK	188.92	18892	188.92	188.92	188.92	188.92	188.92	188.92	188.92	188.92
Standard condition											
Inlet pressure, P Pspo (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure:	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sip (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T STP:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\circ} \mathrm{K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $Z_{\text {stp }}$, Density at standard condition. PSTD		0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944
	$\mathrm{kg} / \mathrm{m}^{3}$	1.8718	18718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718
Normal or standard flow	m^{3} / hr	10.1870	10.1870	10.1870	10.1870	10.1870	10.1870	10.1870	10.1870	10.1870	10.1870
	litres/min	1697834	1697834	1697834	1697834	1697834	1697834	1697834	1697834	1697834	169.7834
Phase flow		Single									
Actual inlet flow condition:	ke/hr	19.07									
	m^{3} / h	5.17	537	5.60	58.8	617	652	692	746	8.12	900
Standard flow condition	m^{3} / hr	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	1019
Stagnation Properties											
------ Stagnation Temperature, T .	${ }^{*} \mathrm{~K}$	292.72	292.72	292.66	292.61	29255	292.49	292.75	29234	29230	29222
	${ }^{\circ} \mathrm{C}$	19.57	19.57	1951	19.46	19.40	1934	19.60	19.19	19.15	19.07
Inlet Stagnation Pressure	Kpa abs	203.12	19590	187.82	179.77	17129	162.11	153.15	142.29	131.14	11891
Outlet Stagnation Pressure	Kpa abs	19590	18782	179.77	17129	162.11	153.15	14229	131.14	11891	105.14
Stagnation Density $\mathrm{P}^{\text {o }}$	$\mathrm{kg} / \mathrm{m}^{3}$	3.71	358	3.43	328	3.13	296	-279	2.60	239	2.17
Stagnation Enthalpy, ho	KJ/k	50024	50031	50034	50038	500.41	500.45	500.76	500.52	500.59	500.64
Upstream Condition											
- .-_-	Kpag	100.00	9253	8450	7626	67.58	5835	4933	38.13	26.77	1423
	Kpa abs	201.33	19385	185.83	17758	16891	159.68	150.66	139.46	128.10	11555
Inlet temperature, t_{1}	${ }^{\circ} \mathrm{C}$	19.00	18.9543	18.8410	18.7216	18.5872	18.4285	18.5726	179994	17.7279	173317
-	${ }^{*} \times$	292.15	29210	291.99	29187	291.74	29158	291.72	291.15	290.88	29048
Compressibility z_{1}		0.9892	09896	0.9901	09905	09909	09914	09919	0.9925	09931	09937
Viscosity, μ_{1}Density ρ_{1}	Pasee	1.46E-05	$1.46 \mathrm{E}-05$	1.46E-05	$146 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	1.46E-05	$1.46 \mathrm{E}-05$	$146 \mathrm{E}-05$	1.46E-05
	$\mathrm{kg} / \mathrm{m}^{3}$	3.6873	35495	3.4024	32514	30926	2.9237	27559	25546	23473	2.1188
Velocity, V_{1}	m/sec	31.1719	323817	33.7814	353508	37.1653	393122	41.7067	44.9932	48.9671	542462
Mach number at the inlet, M_{1} (0.1168	0.1212	0.1265	0.1323	0.1390	0.1471	0.1559	0.1682	0.1831	02028
$4 \mathrm{fL} / \mathrm{D}$		52.0304	47.9352	43.8424	397522	-35.6646	31.5796	27.4972	23.4170	193400	15.2657
Reynolds number, Re.		$6.010 \mathrm{E}+04$	$6012 \mathrm{E}+04$	$6.014 \mathrm{E}+04$	$6.017 \mathrm{E}+04$	$6.020 \mathrm{E}+04$	$6.023 \mathrm{E}+04$	$6.021 \mathrm{E}+04$	$6.033 \mathrm{E}+04$	$6.038 \mathrm{E}+04$	$6.047 \mathrm{E}+04$
Friction factor, 4 f		0.02596042	0.0260	0.0260	00260	0.0260	0.0260	0.0260	00260	0.0259	0.0259
Recovery factor, r :		0.77059787	07702	0.7699	0.7695	0.7691	07687	0.7682	07678	0.7674	0.7669
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$:		19.44	1943	1936	1929	1921	19.13	1936	1892	18.82	18.67
		49978	499.81	499.79	499.77	499.74	49970	49991	49953	499.42	49920
Entropy,		2.58751848	25947	2.6026	2.6110	2.6202	2.6306	2.6422	2.655	2.6710	2.6896
Downstream Condition											
$4 \mathrm{ILI}_{12} \mathrm{P}$ D		4.0669	4.0668	4.0667	40665	4.0663	4.0661	4.0663	4.0656	4.0652	4.0647
Mach number at the outlet, M_{2})		0.1212	0.1265	0.1323	0.1390	01471	01559	0.1682	0.1831	02028	02309
Absolute outlet pressure, P_{2}	Kраа	193.85	185.83	177.58	168.91	159.68	150.66	13946	128.10	11555	10133
Outlet pressure (gauge)	Kpag	92526	844500	76255	67.585	58351	49334	38.133	26.773	14225	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.95	18.84	18.72	18.59	18.43	18.57	18.00	17.73	1733	16.74
Compressibility, z_{2}		0.9896	0.9901	0.9905	0.9909	0.9914	0.9919	0.9925	0.9931	0.9937	0.9945
.-...... Density ${ }^{2} 2$	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	3.5495	3.4024	32514	3.0926	29237	27559	25546	23473	2.1188	1.8604
Viscosity of gas μ_{2}	Paseo	$1.46 \mathrm{E}-05$	$146 \mathrm{E}-05$	$145 \mathrm{E}-05$							
Actual outlet flow	m^{3} / hr	53722	5.6044	5.8647	6.1658	65220	69192	7.4644	8.1237	89995	102496
Velocity, V_{2}	m/sec	32.3817	33.7814	353508	-37.1653	-393122	41.7067	44.9932	488.9671	-542462	61.7814
Reynolds number, Re:		$6.012 \mathrm{E}+04$	$6.014 \mathrm{E}+04$	6017 E+04	$60.020 \mathrm{E}+04$	$60.023 \mathrm{E}+04$	$6021 \mathrm{E}+04$	$6033 \mathrm{E}+04$	$6038 \mathrm{E}+04$	$6047 \mathrm{E}+04$	$6.059 E+04$
Friction factor, 4 F		0.0260	0.0260	0.0260	0.0260	0.0260	00260	00260	0.0259	00259	0.0259
Recovery factor, r		0.7702	0.7699	0.7695	0.7691	0.7687	0.7682	0.7678	0.7674	0.7669	0.7663
Adiabatic Wall Temperature, T_{aw}	${ }^{\circ} \mathrm{C}$	19.4284	19.4020	193292	19255	19.1752	19.1611	192267	18.8533	18.7224	18.5283
Enthalpy h	KJ/kg	4998102	4997926	4997719	4997429	499.6988	4999096	4995338	4994159	4992048	498.8455
Entropy s	KJ/kg K	25947	2.6026	2.6110	2.6202	26306	2.6422	2.6594	2.6710	26896	27130
Critical Properties at Outlet Mach 1											
-.-.-.....................- Critical Pressure:	Kpa G	-79.42									
	Kpa abs	21.91									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-18.96									
	-	254.19									
Max length of duct at which no shock occurs		15.35									
Drop											
Pressure drop / Segment Length	Kpa	7.47	8.03	8.24	8.67	9.23	9.02	11.20	1136	12.55	14.22
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.05	0.11	0.12	0.13	0.16	0.14	0.57	0.27	0.40	0.59
Total pressure drop	Kpa	100.00									
Total temperature drop:	${ }^{\text {c }}$	1.76									

Figure F 11-17: Vent pipe model predictions for carbon-dioxide gas at 100 KPa gauge

Gas Property Calculation for Carbon-dioxide @ 200 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1.	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8.	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	137	13.7	137	137	137	13.7	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	3.02	302	302	302	3.02	302	302	3.02	3.02
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66
Roughness, s :	mm.	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	196E-03	196E-03	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	196E-03	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Carbon dioxide;1;									
Specific heat at constant pressure cp	J/ke K	860.43	85932	858.08	856.75	88532	853.78	85257	850.04	847.68	84450
Specific heat at constant volume, cy	Jkg K	65692	656.48	655.92	65532	654.65	65392	653.57	652.03	65075	648.84
Ratio of specific heats, X		13098	13090	13082	13074	13065	13056	13045	13037	13026	13015
Molecular weight, M.W	kghomole	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01
Gas constant, R	JKEK	188.92	188.92	188.92	188.92	188.92	18892	188.92	18892	188.92	188.92
Standard condition											
Inlet pressure, P ssip (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sto (absolute)	KPaabs	101.325	101325	101.325	101325	101325	101.325	101325	101325	101325	101.325
Temperature T STP	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \times$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond ZsTD, Density at standard condition P STD:		0994	09944	0.9944	0.9944	0.994	0.9944	0.9944	0.9944	0.9944	0.9944
	kg/m	1.8718	18718	18718	18718	1.8718	18718	1.8718	18718	1.8718	1.8718
Normal or standard flow:	$m^{3} / 7$	16.8211	16.8211	16.8211	16.8211	16.8211	16.8211	16.8211	16.8211	16.8211	16.8211
	litres/min	280.3522	2803522	2803522	2803522	2803522	2803522	2803522	2803522	2803522	2803522
Phase flow --		Single									
Actual inlet flow condition:	kphr	31.49									
	m^{s} / h	5.67	594	624	6.60	703	756	8.18	9.11	10.37	12.40
Standard flow condition	m^{3} / h	16.82	16.82	16.82	16.82	16.82	16.82	16.82	16.82	16.82	16.82
Stagnation Properties											
Stagnation Temperature, T_{0}.	\bigcirc	292.83	292.82	292.72	292.62	29251	292.40	292.74	222.13	29202	291.88
	${ }^{\circ} \mathrm{C}$	19.68	19.67	1957	19.47	1936	1925	1959	18.98	18.87	18.73
Inlet Stagnation Pressure	Kpa abs	304.58	29124	27775	263.07	24751	231.04	214.16	193.12	17094	14490
Outlet Stagnation Pressure:	Kpa abs	29124	277.75	26307	24751	23104	214.16	193.12	17094	14490	11132
Stagnation Density P^{\prime} :	kg/m ${ }^{3}$	5.60	535	5.10	4.83	4.54	423	3392	354	3.13	2.65
Stagnation Enthalpy ho.	KT/kg	49934	499.47	49951	49957	499.63	499.70	500.16	49984	49997	50010
Upstream Condition											
	Kро 8	200.00	186.62	172.64	15775	141.92	125.03	108.08	8629	6335	36.10
	Kpa abs	301.33	28795	27397	259.07	24325	22636	20941	187.61	164.68	137.43
Inlet temperature, t_{1}	-	19.00	18.9285	18.7461	18.5458	183122	18.0365	18.1665	172061	16.5690	15.4288
-	-	292.15	292.08	291.90	291.70	291.46	291.19	29132	29036	289.72	288.58
Compressibility z_{1}		0.9838	09845	0.9853	0.9860	0.9869	09878	0.9887	09898	09910	09924
Viscosity μ_{1},	Pasec	1.47E-05	$1.47 \mathrm{E}-05$	$146 \mathrm{E}-05$	$146 \mathrm{E}-05$	$1466-05$	146E-05	$1466-05$	$1.46 \mathrm{E}-05$	$145 \mathrm{E}-05$	145E-05
	ke/m ${ }^{3}$	55491	53003	5.0423	4.7677	4.4763	4.1657	38484	34555	30361	25401
Velocity, V_{1}	m/sec	342021	35.8080	37.6399	398081	423988	455606	493174	54.9242	62.5115	74.7186
Mach number at the inlet, M_{1} 1		0.1282	0.1342	0.1409	01490	0.1586	0.1703	01842	02053	02336	02792
	- - - - - - - $\mathrm{fLI}_{1} / \mathrm{D}$	42.2902	383543	34.4203	30.4883	265583	22.6303	18.7044	14.7802	10.8587	69395
Reynolds number, Re.		$9.919 \mathrm{E}+04$	$9922 \mathrm{E}+04$	$9.929 \mathrm{E}+04$	$9936 \mathrm{E}+04$	$9945 \mathrm{E}+04$	$9.955 \mathrm{E}+04$	$9952 \mathrm{E}+04$	$9.985 \mathrm{E}+04$	1.001E+05	$1005 \mathrm{E}+05$
Friction factor, 4 f .		0.02501052	0.0250	0.0250	0.0250	00250	00250	00250	00250	00250	00250
Recovery factor, r :		0.77579509	07751	0.7745	0.7738	07731	07723	07714	0.7707	0.7697	07687
Adiabatic Wall Temperature, T_{3} :		1953	1951	1939	1926	19.12	18.98	1927	18.57	1834	17.97
Enthalpy h		498.79	498.86	498.84	498.82	498.77	498.71	49899	49838	498.07	49738
Entropy, s		250896426	25177	25268	25372	25488	25620	25775	25959	2.6192	2.6507
Downstream Condition											
$4 \mathrm{fl} \mathrm{l}_{2} / \mathrm{D}$		39181	39180	39179	39177	39175	39172	39173	39165	39159	39150
Mach number at the outlet, $\mathrm{M}_{2}{ }^{\text {² }}$		0.1342	0.1409	01490	0.1586	01703	01842	02053	02336	02792	03769
Absolute outlet pressure, P_{2}	Kраа	287.95	27397	259.07	24325	22636	209.41	187.61	164.68	137.43	10133
Outlet pressure (gauge)	Kpag	186.624	172.644	157.746	141.925	125.032	108.081	86288	63353	36.101	0.000
Outlet temperature, t_{2}	${ }^{\circ}{ }^{\circ}$	18.93	18.75	18.55	18.31	18.04	18.17	1721	16.57	15.43	12.58
Compressibility z_{2}^{2} -		0.9845	0.9853	0.9860	0.9869	0.9878	0.9887	0.9898	0.9910	0.9924	0.9942
${ }^{1} \quad$ Density P_{2} 2	kg/m	53003	5.0423	4.7677	4.4763	4.1657	38484	34555	3.0361	2.5401	18880
Viscosity of gas μ_{2}	Passec	1.47E-05	$1.46 \mathrm{E}-05$	$1468-05$	1468 -05	$146 \mathrm{E}-05$	$146 \mathrm{E}-05$	$146 \mathrm{E}-05$	$145 \mathrm{E}-05$	$145 \mathrm{E}-05$	$143 \mathrm{E}-05$
Actual outlet flow:	$m^{3} / h r$	59406	62444	6.6042	7.0340	75586	8.1818	91120	103707	12.3959	16.6771
		35.8080	37.6395	39.8081	423988	45.5606	493174	54.9242	62.5115	-74.7186	1005242
		$9.922 \mathrm{E}+04$	$9929 \mathrm{E}+04$	$9936 \mathrm{E}+04$	$9945 \mathrm{E}+04$	$9955 \mathrm{E}+04$	$9952 \mathrm{E}+04$	$9.985 \mathrm{E}+04$	$10018+05$	$1005 \mathrm{E}+05$	$1015 \mathrm{E}+05$
Friction factor, 4 f		0.0250	0.0250	0.0250	00250	00250	00250	00250	0.0250	00250	00250
Recovery factor, r :		0.7751	0.7745	07738	07731	07723	07714	0.7707	0.7697	0.7687	0.7679
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ ($-\cdots \cdots{ }^{\circ} \mathrm{C}$		195108	19.4652	193396	192078	19.0611	19.0039	19.0455	18.4253	18.0773	173054
- Enthalpy, h	KJ/kg	498.8597	498.8416	498.8176	498.7745	498.7065	498.9853	4983841	498.0718	4973799	4953470
Entropy, s	$K J / \mathrm{kg} \cdot K$	25177	25268	25372	25488	25620	25775	25959	26192	26507	27009
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	-6535									
	Kpa abs	3597									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-19.54									
	${ }^{\circ} \mathrm{K}$	233.61									
Max length of duct at which no shock occurs	m	12.95									
Drop											
Pressure drop/Segment Length	Kрa	13.38	13.98	14.90	15.82	16.89	16.95	21.79	22.94	27.25	36.10
Temperature drop / Segment Length	${ }^{\circ} \mathrm{C}$	0.07	0.18	0.20	0.23	0.28	-0.13	0.96	0.64	1.14	285
Total pressure drop	Kpa	200.00									
Total temperature drop:	${ }^{\text {c }}$	5.59									

Figure F 11-18: Vent pipe model predictions for carbon-dioxide gas at 200 KPa gauge

Gas Property Calculation for Carbon-dioxide @ 300 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3.	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	302	302	3.02	3.02	3.02	302	302	3.02	3.02
Internal diameter	mm	7.66	7.66	7.66	766	7.66	7.66	7.66	766	766	7.66
Roughness, ©	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		196E-03	1196E-03	$1.96 \mathrm{E}-03$	196E-03	196E-03	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$	1966-03	196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$						
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Carbon dioxide; 1 ;									
Specific heat at constant pressure cep	J/ke K	868.41	866.86	865.09	86323	86123	859.05	85732	853.77	85033	845.44
Specific heat at constant volume, cy	J / kg K	659.71	659.12	65834	657.52	656.62	655.62	655.13	653.02	65120	64827
Ratio of specific heats, X		13163	13152	13140	13129	13116	13103	13086	13074	13058	13042
Molecular weight, MW-	kg/omole	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01
Gas constant, R :	J/EK	188.92	18892	18892	18892	188.92	188.92	188.92	188.92	188.92	188.92
Standard condition											
Inlet pressure, Pssm (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00
Atmospheric pressure	${ }^{1} \mathrm{~Pa}$	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure P Psip (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
--.-....... Temperature T stp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z Z STPD		0.9944	0.9944	0.9944	0.9944	09944	0.9944	0.9944	0.9944	0.9944	0.9944
Density at standard condition estro	kg/m ${ }^{3}$	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718
Normal or standard flow:	$\mathrm{m}^{\text {s } / h}$	23.1398	-23.1398	23.1398	23.1398	23.1398	23.1398	23.1398	23.1398	-23.1398	23.1398
	lipes/min	385.6639	385.6639	385.6639	385.6639	385.6639	385.6639	385.6639	385.6639	385.6639	385.6639
Phase flow		Single									
Actual inlet flow condition:	kght	43.31									
	m^{s} / h	583	6.12	6.45	6.85	732	792	8.62	973	1131	14.11
Standard flow condition	$m^{3} / 7 r$	23.14	23.14	23.14	23.14	23.14	23.14	23.14	23.14	23.14	23.14
Stagnation Properties											
Stagnation Temperature, T :	${ }^{*} \mathrm{~K}$	292.86	29285	292.70	292.55	:292.40	29224	292.68	29185	291.68	291.47
	${ }^{\circ} \mathrm{C}$	1971	19.70	1955	19.40	1925	19.09	1953	18.70	18.53	1832
Inlet Stagnation Pressure:	Kpa abs	405.93	38757	36797	34754	:325.77	30251	279.12	248.63	216.10	176.72
Outlet Stagnation Pressure	Kpa abs	387.57	36797	34754	325.77	30251	279.12	248.63	216.10	176.72	12015
Stagnation Density P O	ke/m ${ }^{\text {a }}$	750	7.15	6.79	6.41	6.00	557	5.12	457	397	324
Stagnation Enthalpy, ho.	K/kg	498.36	49854	498.60	498.68	498.76	498.85	499.46	499.05	49923	499.44
Upstream Condition											
	Kро g	300.00	281.43	26159	240.72	21847	19455	170090	13910	10537	63.73
	Kpa abs	401.33	382.75	362.92	342.05	319.79	295.87	27222	240.42	206.69	165.06
Inlet temperature, t_{1} !	${ }^{\circ} \mathrm{C}$	19.00	18.9206	18.6776	18.4184	18.1188	17.7634	17.9543	16.6829	15.7995	14.0420
Compressibility, z_{1},	-	292.15	292.07	29183	29157	29127	29091	29110	28983	288.95	28719
		09784	09794	0.9804	0.9815	0.9826	0.9839	0.9852	0.9868	0.9885	09907
$\begin{gathered} \text { Compressibility, } z_{1} \\ -\quad \text { Viscosity } \mu, ~ \end{gathered}$	Pasec	1.47E-05	1.47E-05	$1.46 \mathrm{E}-05$	$145 \mathrm{E}-05$	$145 \mathrm{E}-05$	$1.44 \mathrm{E}-05$				
Density, p_{1}	ke/m	74319	7.8226	67141	63267	59141	54714	50240	44496	38302	30708
	$\mathrm{m} / \mathrm{sec}$	35.1304	36.8627	38.8860	412673	44.1462	47.7177	51.9673	58.6760	68.1643	85.0225
Mach number at the inlet, M_{1}^{1}		0.1318	0.1381	0.1457	0.1545	0.1651	0.1783	0.1939	02189	02543	03175
$4 \mathrm{fl}_{1} / \mathrm{D}$		39.6587	35.7909	31.9252	28.0614	24.1998	203402	16.4827	12.6271	87741	49236
Reynolds number, Re:		$1364 \mathrm{E}+05$	1364E+05	1365E+05	$1367 \mathrm{E}+05$	1368E+05	$1370 \mathrm{E}+05$	$1369 \mathrm{E}+05$	$1376 \mathrm{E}+05$	1380E+05	$1388 \mathrm{E}+05$
Friction factor, 4 f		0.02457785	0.0246	0.0246	0.0246	00246	00246	00246	0.0246	00246	00246
Recovery factor, r :		0.78112298	0.7802	0.7792	0.7783	07773	0.7762	0.7748	0.7737	0.7723	07708
Adiabatic Wall Temperature, Taw		1956	1953	1936	19.19	19.00	18.79	19.17	18.24	17.91	1734
Enthalpy, h Entropy, s		497.79	49791	49790	49788	49785	497.78	498.18	497.41	497.00	49593
		2.45242618	2.4616	24714	24823	2.4947	25089	25258	2.5463	2.5730	2.6114
Downstream Condition											
$4 \mathrm{fl}_{122} / \mathrm{D}$		3.8503	3.8502	38501	38499	38497	38494	38495	38487	38481	38470
Mach number at the outlet, M_{2} -		0.1381	0.1457	0.1545	0.1651	0.1783	0.1939	02189	02543	0.3175	05108
Absolute outlet pressure, P_{2} Outlet pressure (gauge)	Kpa	382.75	362.92	342.05	319.79	295.87	27222	240.42	206.69	165.06	10133
	Kроg	281.426	261590	240.724	218.466	194.546	170.898	139.098	105368	63.733	0.000
Outlet temperature, t_{2}	$\stackrel{C}{ }$	18.92	18.68	18.42	18.12	17.76	17.95	16.68	15.80	14.04	7.14
Compressibility, 2		0.9794	0.9804	0.9815	0.9826	0.9839	0.9852	0.9868	0.9885	0.9907	0.9938
${ }^{\text {a }}$ - ${ }^{\text {d }}$ Density, P_{2}.	kg m ${ }^{\text {b }}$	7.0826	67.714	63267	59141	5.4714	5.0240	4.4496	3.8302	3.0708	19254
Viscosity of gas, μ_{2} ?	Pasec	1.47E-05	$1.46 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	1468.05	$1.46 \mathrm{E}-05$	$145 \mathrm{E}-05$	$145 \mathrm{E}-05$	$1.44 \mathrm{E}-05$	$141 \mathrm{E}-05$
Actual outlet flow	$m^{3} / h r$	6.1156	6.4512	6.8463	73239	79164	8.6214	97344	113085	14.1054	22.4964
Reynolds number, Re:	m/sec	36.8627	38.8860	412673	44.1462	477177	51.9673	58.6760	68.1643	85.0225	135.6011
		$1364 \mathrm{E}+05$	1365E+05	1367E+05	$1368 \mathrm{E}+05$	$1370 \mathrm{E}+05$	$1369 \mathrm{E}+05$	1376E+05	1380E+05	1388E+05	$1422 \mathrm{E}+05$
Friction factor, 4 f		0.0246	0.0246	0.0246	0.0246	0.0246	0.0246	00246	0.0246	0.0246	0.0245
Recovery factor, r :		07802	07792	07783	07773	07762	07748	07737	07723	07708	0.7699
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ (- $^{\circ}{ }^{\circ} \mathrm{C}$		19.5369	194778	193003	19.1183	18.9174	18.8332	18.8853	18.0390	17.5027	15.7451
Enthalpy hEntropy s	KJ/kg	4979088	497.8968	4978815	4978460	4977797	498.1799	4974104	4969971	4959287	490.7986
	KJ/kg E	2.4616	2.4714	2.4823	2.4947	2.5089	2.5258	2.5463	2.5730	2.6114	2.6848
Critical Properties at Outlet Mach 1											
Crital Pressure	KpaG	-52.16									
	Kpa abs	49.17									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-20.21									
	${ }^{\circ} \mathrm{K}$	252.94									
Max length of duct at which no shock occurs	m	12.36									
$\text { Drop } \quad \text { Pressure drop / Segment Length }$	Kpa	18.57	19.84	20.87	22.26	23.92	23.65	31.80	33.73	41.63	63.73
Temperature drop / Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.24	0.26	0	0.36	0.19	1.27	0.88	1.76	6.90
Total pressure drop.	Kрa	300.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	10.87									

Figure F 11-19: Vent pipe model predictions for carbon-dioxide gas at 300 KPa gauge

Gas Property Calculation for Carbon-dioxide @ $400 \mathrm{Kpagauge} \mathrm{\&} 19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1.	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	13.7	137	137	137	137	137	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	302	3.02	3.02	3.02	3.02	302	302	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66
Roughness, 8	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (δ / D)		1.96E-03	$1.96 \mathrm{E}-03$	196E-03	1196E-03	1196E-03	1196E-03	$1.96 \mathrm{E}-03$	1196E-03	$1.96 \mathrm{E}-03$	1196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Carbon dioxide; ${ }^{\text {a }}$									
Specific heat at constant pressure cp	J/ke K	876.62	874.63	87236	86997	867.41	864.62	862.41	857.87	85350	847.19
Specific heat at constant volume, cv	J/kg K	662.55	661.81	660.84	659.80	658.68	657.43	656.84	654.21	651.97	648.27
Ratio of specific heats, X		13231	13216	13201	13185	13169	13152	13130	13113	13091	13068
Molecular weight, MW	kg/omole	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01
Gas constant, R	J / EK	188.92	18892	188.92	188.92	188.92	188.92	188.92	188.92	188.92	188.92
Standard condition											
Inlet pressure, P Pspo (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
Atmospheric pressure:	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sip (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T STP:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\circ} \mathrm{K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z STP		0.9944	0.9944	0.9944	0.9944	0.994	0.9944	0.9944	0.9944	0.9944	0.9944
Density at standard condition, P STD	$\mathrm{kg} / \mathrm{m}^{3}$	1.8718	18718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718
-	m^{3} / hr	293582	293582	293582	293582	293582	293582	293582	293582	293582	293582
	litres/min	4893033	4893033	4893033	4893033	4893033	4893033	4893033	4893033	4893033	4893033
Phase flow		Single									
Actual inlet flow condition:	ke/hr	54.95									
	m^{3} / h	5.89	6.18	653	694	7.44	8.06	8.80	10.01	11.73	14.95
Standard flow condition	m^{3} / hr	2936	2936	2936	2936	2936	2936	2936	2936	2936	2936
Stagnation Properties											
Stagnation Temperature, To	${ }^{*} \mathrm{~K}$	292.87	29286	292.66	292.47	29227	292.05	292.60	29154	29132	291.03
	${ }^{\circ} \mathrm{C}$	19.72	1971	1951	1932	19.12	1890	19.45	1839	18.17	17.88
Inlet Stagnation Pressure	Kpa abs	50723	484.56	49931	433.13	405.41	375.58	346.18	306.16	264.19	21236
Outlet Stagnation Pressure	Kpa abs	48456	45931	433.13	405.41	375.58	346.18	306.16	264.19	21236	131.67
Stagnation Density $\mathrm{P}^{\text {of }}$	$\mathrm{kg} / \mathrm{m}^{3}$	9.42	899	852	8.03	751	695	638	5.65	4.87	391
Stagnation Enthalpy, ho	KJ/k	49736	49758	497.66	497.75	497.85	49797	498.74	498.22	498.44	498.71
Upstream Condition											
- A-	Kpag	400.00	376.62	351.19	324.49	296.06	265.42	235.74	194.02	15031	9525
	Kpa abs	501.33	47794	452.52	425.82	39739	366.74	337.07	29535	251.63	19658
Inlet temperature, t_{1}	${ }^{\circ} \mathrm{C}$	19.00	18.9191	18.6248	183132	179580	175384	17.8238	162703	152380	13.0863
	${ }^{\text {\% }}$ K	292.15	292.07	291.77	291.46	291.11	290.69	290.97	289.42	28839	286.24
Compressibility z $_{1}$		0.9729	09741	09755	09768	09783	09799	0.9816	0.9836	09859	09888
Viscosity μ_{1}	Pasee	1.47E-05	147E-05	1.47E-05	$146 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	1.46E-05	$1.45 \mathrm{E}-05$	$145 \mathrm{E}-05$	$1.44 \mathrm{E}-05$
Density ρ_{1}	kg/m	93362	888916	8.4157	79164	73857	6.8148	62464	54914	4.6844	36765
Velocity, V_{1}	m/sec	35.4799	372536	393603	41.8432	44.8498	48.6071	53.0300	60.3213	70.7121	90.0990
Mach number at the inlet, M_{1}		0.1331	0.1395	0.1473	0.1565	0.1675	0.1813	0.1974	02247	02633	03357
		38.6375	34.7982	30.9622	27.1296	23.3003	194743	15.6518	11.8324	8.0169	42051
Reynolds number, Re		$1.729 \mathrm{E}+05$	$1730 \mathrm{E}+05$	1.732E+05	$1734 \mathrm{E}+05$	1736E+05	$1739 \mathrm{E}+05$	1.737E+05	1747E+05	1.754E+05	$1.767 \mathrm{E}+05$
Friction factor, 4 f		0.02432322	0.0243	0.0243	00243	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243
Recovery factor, r :		0.78658774	07854	0.7842	0.7829	07816	07801	07783	07769	07750	0.7730
Adiabatic Wall Temperature, T_{3} :		19.56	1954	1932	19.10	18.86	18.60	19.09	17.92	1751	16.79
Enthalpy h		496.79	49695	49695	49695	49693	496.87	497.42	49650	496.06	494.80
Entropy, s:		2.40796830	24173	24274	24386	24513	24659	24835	25048	25331	25748
Downstream Condition											
$4 \mathrm{LL} \mathrm{l}_{2} \mathrm{D}$		3.8104	38104	38102	38100	38098	38096	38097	38089	38083	38072
Mach number at the outlet, M_{2})		0.1395	0.1473	0.1565	0.1675	01813	01974	02247	02633	0.3357	0.6370
Absolute outtet pressure, P_{2}	Kраа	47794	452.52	425.82	39739	366.74	337.07	29535	251.63	196.58	10133
Outlet pressure (gauge)	Kpag	376.619	351.193	324.493	296.064	265.417	235.745	194.023	150306	95251	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.92	18.62	1831	17.96	17.54	17.82	1627	15.24	13.09	0.74
Compressibility z_{2}		0.9741	0.9755	0.9768	0.9783	0.9799	0.9816	0.9836	0.9859	0.9888	0.9933
.-...... Density ${ }^{2} 2$	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	8.8916	8.4157	79164	73857	6.8148	62464	54914	4.6844	3.6765	1.9714
Viscosity of gas μ_{2}	Pasee	$1.47 \mathrm{E}-05$	147E-05	$1.46 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	1.46E-05	$1.45 \mathrm{E}-05$	$145 \mathrm{E}-05$	$144 \mathrm{E}-05$	1378.05
Actual outlet flow	m^{3} / hr	6.1804	65299	69418	74406	8.0640	8.7978	10.0074	11.7312	14.9475	27.8761
Velocity, V_{2}	m/sec	372536	393603	41.8432	44.8498	48.6071	53.0300	60.3213	\%0.7121	900990	168.0280
Reynolds number, Re:		1.730E+05	1732E+05	1734E+05	$1736 \mathrm{E}+05$	1.739E+05	1.737E+05	$1.747 \mathrm{E}+05$	$1754 \mathrm{E}+05$	1.767E+05	$1846 \mathrm{E}+05$
Friction factor, 4 f		0.0243	00243	0.0243	0.0243	0.0243	00243	0.0243	0.0243	0.0243	00243
Recovery factor, r		0.7854	0.7842	0.7829	0.7816	0.7801	0.7783	0.7769	07750	0.7730	0.7723
Adiabatic Wall Temperature, T_{aw}	${ }^{\circ} \mathrm{C}$	19.5465	194777	192523	19.0221	18.7703	18.6651	18.7440	17.6817	17.0138	139744
Enthalpy h	KJ/kg	4969506	4969503	4969485	4969269	496.8731	4974185	4965032	496.0637	494.7973	485.4811
Entropy s	KJ/kg K	2.4173	24274	24386	24513	24659	24835	25048	25331	25748	2.6656
Critical Properties at Outlet Mach 1	Kpa G	-3939									
	Kpa abs	61.93									
Critical Temperature:	${ }^{\circ} \mathrm{C}$	-20.91									
	-	25224									
Max length of duct at which no shock occurs		12.17									
Drop											
Pressure drop / Segment Length	Kpa	23.38	25.43	26.70	28.43	30.65	29.67	41.72	43.72	55.06	95.25
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.29	031	0.36	0.42	0.29	1.55	1.03	2.15	12.35
Total pressure drop	Kpa	400.00									
Total temperature drop:	${ }^{\text {c }}$	17.28									

Figure F 11-20: Vent pipe model predictions for carbon-dioxide gas at 400 KPa gauge

Gas Property Calculation for Carbon-dioxide @ 500 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1.	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8.	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	137	137	13.7	137	137	137	13.7	137	137	137
Special wall thickness.	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	302	302	302	3.02	302	302	3.02	3.02
Intemal diameter:	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66
Roughness, s ,	mm.	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	196E-03	196E-03	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	196E-03	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Carbon dioxide; 1 ;									
Specific heat at constant pressure cep	J/ke K	885.06	882.62	879.84	87692	873.80	87039	867.74	86224	85699	84944
Specific heat at constant volume, cy	Jkg K	665.42	66454	66337	662.14	660.80	65930	658.64	65552	652.91	648.62
Ratio of specific heats, γ		13301	13282	13263	13244	13223	13202	13175	13154	13126	13096
Molecular weight, M.W-	kghomole	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01
Gas constant, R .	JKEK	188.92	188.92	188.92	188.92	188.92	18892	188.92	18892	188.92	188.92
Standard condition											
Inlet pressure, P smp (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure P Psp (absolute)	KPaabs	101.325	101325	101325	101325	101325	101.325	101325	101325	101.325	101.325
-	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \times$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $Z_{\text {STD }}$, Density at standard condition. PSTD:		0994	09944	0.994	0.9944	0.994	0.9944	0.9944	0.9944	0.9944	0.9944
	kg/m	1.8718	18718	18718	18718	1.8718	18718	18718	18718	1.8718	18718
Normal or standard flow	$m^{3} / h r$	35.5435	335435	355435	355435	35.5435	355435	35.5435	35.5435	35.5435	355435
	litresmin	5923917	5923917	5923917	5923917	5923917	5923917	5923917	5923917	5923917	5923917
Phase flow		Single									
Actual inlet flow condition:	kphr	66.53									
	m^{\prime} / h	591	621	6.56	6.98	749	8.13	8.87	10.13	11.93	1535
Standard flow condition	m^{3} / h	3554	3554	3554	3554	3554	35.54	35.54	3554	3554	3554
Stagnation Properties											
Stagnation Temperature, T_{0}	\bigcirc	292.87	292.86	292.61	:29237	292.12	291.86	29252	29122	29094	29057
	${ }^{\circ} \mathrm{C}$	19.72	19.71	19.46	1922	1897	18.71	1937	18.07	17.79	17.42
Inlet Stagnation Pressure:	Kpa abs	608.50	581.43	550.76	519.01	485.49	449.04	414.45	365.00	313.87	25035
Outlet Stagnation Pressure	Kpa abs	581.43	550.76	51901	485.49	449.04	414.45	365.00	313.87	25035	146.00
Stagnation Density $\mathrm{P}^{\text {o }}$:	kg/m ${ }^{3}$	11.37	10.85	1027	9.67	9.03	835	7.67	6.77	581	4.62
Stagnation Enthalpy, ho.	KT/kg	49633	496.60	496.69	49680	49692	497.06	49799	49735	497.62	49794
Upstream Condition											
-...................................et pressure, P_{1}	Kро ${ }_{\text {g }}$	500.00	471.87	440.99	408.61	374.16	33688	301.88	25024	19696	12933
	Kpa abs	601.33	573.19	54232	509.93	475.49	43820	40321	351.56	29828	23065
Inlet temperature, t_{1}	c	19.00	18.9174	18.5730	182122	178050	173254	17.7274	15.9072	14.7696	123780
$\mathrm{Ca}^{\text {a }}$ (T_{1}	-	292.15	292.07	291.72	29136	29095	29048	290.88	289.06	28792	28553
		0.9673	09689	09705	09721	09739	09759	09779	09804	0.9832	09867
Viscosity, μ_{1} Density, ρ_{1}	Pasec	1.47E-05	$1.47 \mathrm{E}-05$	147E-05	$146 \mathrm{E}-05$	$1466-05$	146E-05	$1466-05$	$1.45 \mathrm{E}-05$	$145 \mathrm{E}-05$	$143 \mathrm{E}-05$
	ke/m ${ }^{3}$	112626	10.7218	10.1395	95293	88816	81824	75027	6.5664	5.5774	43336
Velocity V_{1} -	m/sec	35.6075	37.4038	39.5515	42.0842	45.1532	49.0118	53.4520	61.0736	71.9035	92.5408
Mach number at the inlet, M_{1} (0.1336	0.1400	01480	0.1573	01685	01827	01986	02271	02672	03440
	- - - - - - - $\mathrm{fL}_{1} / \mathrm{D}$	38.1217	343054	30.4929	26.6840	22.8790	19.0777	15.2803	11.4863	7.6967	39111
Reynolds number, Re.		$2.091 E+05$	2093E+05	2095E+05	2.098E+05	2.102E+05	2.106E+05	$2103 \mathrm{E}+05$	2117e+05	2.126E+05	2144E+05
Friction factor, 4 f .		0.02415384	00242	0.0242	0.0242	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241
Recovery factor, r :		0.79219593	0.7907	0.7892	0.7876	07860	07842	0.7820	0.7803	07779	07753
Adiabatic Wall Temperature, $T_{\text {ax }}$:		1957	1954	1927	1901	18.72	18.41	19.01	17.59	17.12	1629
Enthalpy h		495.77	49598	49599	49601	496.00	49596	496.67	495.62	495.19	49384
Entropy, s:		237115057	23806	23908	24022	24150	24299	24477	2.4694	24984	25416
Downstream Condition											
$4 \mathrm{fL} 12 . \mathrm{D}$		3.7839	3.7838	37837	3.7835	37833	37830	37832	3.7824	37818	37808
Mach number at the outlet, M_{2}]		0.1400	0.1480	0.1573	0.1685	01827	01986	02271	02672	03440	07568
Absolute outlet pressure, P_{2}	Kраа	573.19	54232	50993	475.49	43820	40321	351.56	29828	230.65	10133
Outlet pressure (gauge)	Apag	471.868	440995	408.609	374.162	336.880	301.884	250239	196957	129327	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.92	18.57	18.21	17.80	1733	17.73	15.91	14.77	12.38	6.37
Compressibility, z2-		0.9689	0.9705	0.9721	0.9739	0.9759	0.9779	0.9804	0.9832	0.9867	0.9927
		10.7218	10.1395	95293	888816	8.1824	75027	65664	55774	43336	20251
Viscosity of gas μ_{2} ?	Passec	1.47E-05	1.47E-05	$146 \mathrm{E}-05$	1468	$146 \mathrm{E}-05$	$146 \mathrm{E}-05$	$145 \mathrm{E}-05$	$145 \mathrm{E}-05$	$143 \mathrm{E}-05$	134E-05
Actual outlet flow	$m^{3} / h r$	62053	65616	69818	74910	8.1311	88.8678	10.1322	11.9289	153527	32.8535
- .-..... Velocity, V_{2} - ${ }^{\text {a }}$ - m/sec		37.4038	39.5515	42.0842	45.1532	49.0118	53.4520	61.0736	71.9035	92.5408	198.0301
Reynolds number, Re		$2.093 \mathrm{E}+05$	2095E+05	2098E+05	2102E+05	2106 E+05	2103E+05	2.117e+05	2.126E+05	2.144E+05	2293E+05
Friction factor, 41		0.0242	0.0242	0.0242	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241
Recovery factor, r :		0.7907	0.7892	0.7876	0.7860	0.7842	0.7820	07803	07779	0.7753	07750
		195491	194703	19.1965	189188	18.6164	184921	18.6119	173371	16.5708	12.065
	KJ/kg	4959825	4959938	4960070	496.0015	495.9632	496.6680	495.6188	495.1866	493.8441	479.6239
Entropy, s	KJ/kg K	23806	23908	24022	24150	24299	24477	2.4694	2.4984	25416	26439
Critical Properties at Outlet Mach 1											
Critical Pressure	KpaG	-26.87									
	Kpa abs	74.45									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-21.65									
	${ }^{\circ} \mathrm{K}$	25150									
Max length of duct at which no shock occurs	m	12.09									
Drop											
Pressure drop / Segment Length	Kрa	28.13	30.87	32.39	34.45	37.28	35.00	51.65	53.28	67.63	12933
Temperature drop / Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.34	0.36	0.41	0.48	0.40	1.82	1.14	2.39	18.75
Total pressure drop	Kpa	500.00									
Total temperature drop:	${ }^{\text {c }}$	24.57									

Figure F 11-21: Vent pipe model predictions for carbon-dioxide gas at 500 KPa gauge

Gas Property Calculation for Carbon-dioxide @ 600 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1.	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8.	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	137	137	137	137	137	137	13.7	137	137	137
Special wall thickness.	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	302	302	302	3.02	302	302	3.02	302
Intemal diameter:	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66
Roughness, s	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	1.96E-03	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	196E-03	$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Carbon dioxide;1;									
Specific heat at constant pressure cep	J/ke K	893.76	89084	88754	884.08	88039	87636	87326	866.81	860.69	852.02
Specific heat at constant volume, cy	Jkg K	66833	66731	665.94	66451	662.95	66123	660.51	656689	65394	64916
Ratio of specific heats, γ		13373	13350	13328	13304	13280	13254	13221	13196	13162	13125
Molecular weight, M.W-	kghmole	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01
Gas constant, R .	JKEK	188.92	188.92	188.92	188.92	188.92	188.92	188.92	18892	188.92	188.92
Standard condition											
Inlet pressure, P sto (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure P Psp (absolute)	KPaabs	101.325	101325	101.325	101325	101325	101.325	101325	101325	101325	101325
Temperature T Tsp:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\circ} \mathrm{K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $Z_{\text {STD }}$ T		09944	09944	0.9944	0.9944	0.994	0.9944	0.9944	0.9944	0.9944	0.9944
		1.8718	18718	18718	1.8718	1.8718	18718	1.8718	18718	1.8718	18718
Normal or standard flow:	$m^{3} / h r$	41.7256	41.7256	41.7256	41.7256	41.7256	417236	41.7256	41.7256	41.7256	41.7256
	litres/min	695.4270	695.4270	6954270	695.4270	695.4270	695.4270	695.4270	695.4270	695.4270	695.4270
Phase flow		Single									
Actual inlet flow condition:	kghr	78.10									
	$\mathrm{m}^{3} / \mathrm{h}$	591	621	6.57	7.00	751	8.16	8.89	10.19	12.02	15.54
Standard flow condition	m^{3} / h	41.73	41.73	41.73	41.73	41.73	41.73	41.73	41.73	41.73	41.73
Stagnation Properties											
- Stagnation Temperature, T_{0}	\bigcirc	292.86	292.85	292.55	:29227	:291.97	291.65	292.44	290.89	290.54	29010
	${ }^{\circ} \mathrm{C}$	19.71	19.70	19.40	19.12	18.82	18.50	1929	17.74	1739	1695
Inlet Stagnation Pressure:	Kpa abs	709.75	678.07	642.21	60500	565.75	52292	48344	424.53	36457	28984
Outlet Stagnation Pressure	Kpa abs	678.07	64221	605.00	565.75	52292	483.44	42453	36457	289.84	16330
Stagnation Density $\mathrm{P}_{\text {O }}$:	kg/m ${ }^{3}$	13.34	12.72	12.04	11.33	10.58	977	8.98	791	678	537
Stagnation Enthalpy, ho.	KT/kg	49529	495.61	495.71	495.83	49597	496.12	49722	49646	49677	497.14
Upstream Condition -											
	Kро ${ }_{\text {g }}$	600.00	567.09	530.88	492.88	452.48	40872	368.84	30714	244.63	165.01
	Kpa abs	701.33	668.41	63220	59420	553.81	510.04	470.17	408.46	34595	26634
Inlet temperature, t_{1}	${ }^{\circ}$	19.00	18.9151	18.5195	18.1106	17.6519	17.1161	17.6459	15.5604	143425	11.7958
	${ }^{*} \mathrm{~K}$	292.15	292.07	291.67	29126	290.80	29027	29080	288.71	287.49	284.95
Compressibility z_{1}		09617	09636	0.9654	0.9674	0.9695	09718	0.9742	09771	0.9804	09845
Viscosity, μ_{1} Density, ρ_{1}	Pasec	1.47E-05	$1.47 \mathrm{E}-05$	147E-05	$146 \mathrm{E}-05$	$146 \mathrm{E}-05$	146E-05	146E-05	$145 \mathrm{E}-05$	$144 \mathrm{E}-05$	$143 \mathrm{E}-05$
	ke/m ${ }^{3}$	132119	125720	11.8839	1111625	10.3974	95709	8.7848	7.6643	64970	50255
Velocity, V_{1} -	m/sec	35.6334	37.4474	39.6153	42.1757	452791	49.1893	535911	61.4260	72.4624	93.6797
Mach number at the inlet, M_{1} (0.1337	0.1401	0.1482	0.1575	0.1688	01832	01988	02281	02687	03474
	- - - - - - - $\mathrm{fL}_{1} / \mathrm{D}$	37.8348	34.0365	30.2420	26.4514	22.6647	18.8819	15.1030	113277	75569	3.7903
Reynolds number, Re.		$2.453 \mathrm{E}+05$	2455E+05	2.459E+05	2463E+05	$2.467 \mathrm{E}+05$	2472E+05	$2469 \mathrm{E}+05$	2487E+05	2.498E+05	2521E+05
Friction factor, 4 f .		0.02403248	0.0240	0.0240	0.0240	00240	0.0240	0.0240	0.0240	0.0240	0.0240
Recovery factor, r :		0.79795454	0.7961	0.7944	0.7925	0.7905	07884	0.7858	0.7837	0.7809	07777
Adiabatic Wall Temperature, Taw		1957	19.54	1922	1891	18.57	1820	18.94	1727	16.72	15.80
Enthalpy h		494.74	495.00	49503	495.05	495.07	495.04	49592	494.73	49433	49298
Entropy, s:		233959973	23492	23595	23709	23838	23988	24168	24386	24679	25118
Downstream Condition											
$4 \mathrm{LI} \mathrm{L}_{12} \mathrm{D}$		3.7649	3.7648	37646	3.7645	37643	37640	37642	3.7634	37629	37619
Mach number at the outlet, M_{2}]		0.1401	0.1482	0.1575	0.1688	01832	01988	02281	02687	03474	0.8708
Absolute outlet pressure, P_{2}.	Kраа	668.41	63220	59420	553.81	510.04	470.17	408.46	34595	26634	10133
Outlet pressure (gauge)	Kрая	567.089	530.875	492.877	452.481	408.717	368.841	307.139	244.625	165.014	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.92	18.52	18.11	17.65	17.12	17.65	15.56	1434	11.80	-13.94
Compressibility, z2-		0.9636	0.9654	0.9674	0.9695	0.9718	0.9742	0.9771	0.9804	0.9845	0.9920
		12.5720	11.8839	111625	103974	95709	8.7848	7.6643	64970	5.0255	2.0858
Viscosity of gas μ,	Pasec	1.47E-05	1.47E-05	$146 \mathrm{E}-05$	1468	$146 \mathrm{E}-05$	$146 \mathrm{E}-05$	$145 \mathrm{E}-05$	$144 \mathrm{E}-05$	$143 \mathrm{E}-05$	$130 \mathrm{E}-05$
Actual outlet flow	$m^{3} / h r$	62126	65722	69970	75119	8.1606	88.8908	10.1907	12.0216	155416	37.445
		37.4474	39.6153	42.1757	452791	49.1893	535911	61.4260	72.4624	:93.6797	225.7093
Reynolds number, Re		$2.455 \mathrm{E}+05$	2459E+05	2463E+05	$2467 \mathrm{E}+05$	2472E+05	$2469 \mathrm{E}+05$	$2487 \mathrm{E}+05$	$2.498 \mathrm{E}+05$	$2521 \mathrm{E}+05$	$2769 \mathrm{E}+05$
Friction factor, 4 f		0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	00240	0.0240	0.0240	0.0240
Recovery factor, r :		0.7961	0.7944	0.7925	0.7905	0.7884	0.7858	0.7837	0.7809	0.7777	0.7778
		195482	194590	19.1353	18.8098	18.4566	183143	18.4835	169930	16.1484	10.0827
-.................. Enthalpy, h	KJ/kg	495.0047	495.0258	495.0546	495.0655	495.0449	4959168	4947350	4943286	492.9765	473.4357
Entropy, s :	KJ/kg K	23492	23595	23709	23838	23988	2.4168	2.4386	24679	25118	2.6204
Critical Properties at Outlet Mach 1											
Critical Pressure	$K p a G$	-14.54									
	Kpa abs	86.78									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-22.40									
	${ }^{\circ} \mathrm{K}$	250.75									
Max length of duct at which no shock occurs	m	12.06									
Drop											
Pressure drop / Segment Length	Kpa	32.91	36.21	38.00	40.40	43.76	39.88	61.70	62.51	79.61	165.01
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.40	0.41	0.46	0.54	0.53	2.09	1.22	2.55	25.74
Total pressure drop	Kpa	600.00									
Total temperature drop:	${ }^{\text {c }}$	32.47									

Figure F 11-22: Vent pipe model predictions for carbon-dioxide gas at 600 KPa gauge

Gas Property Calculation for Carbon-dioxide @ $700 \mathrm{Kpagauge} \mathrm{\&} 19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	13.7	137	137	137	137	137	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	302	3.02	3.02	3.02	3.02	302	3.02	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66
Roughness, 8	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (δ / D)		$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	1.96E-03	1196E-03	1196E-03	$1.96 \mathrm{E}-03$	1196E-03	1.96E-03	1196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Carbon dioxide; ;									
Specific heat at constant pressure cp	J/ke K	902.72	89930	895.46	891.44	887.17	882.52	878.96	87153	864.56	854.81
Specific heat at constant volume, cy	J/Eg. K	67129	670.11	668.55	66692	665.15	663.19	662.42	68831	655.03	64982
Ratio of specific heats, 8		1.3447	13420	13394	13367	13338	13307	13269	13239	13199	13155
Molecular weight, MW	kg/kmole	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01
Gas constant, R	J / EK	188.92	18892	188.92	188.92	188.92	188.92	188.92	188.92	188.92	188.92
Standard condition											
Inlet pressure, P Pspo (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
Atmospheric pressure:	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sip (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T STP:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\circ} \mathrm{K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond ZSTD,		0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944
		1.8718	18718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718	1.8718
Normal or standard flow	m^{3} / hr	479207	47.9207	479207	479207	479207	479207	479207	479207	479207	479207
	litres/min	798.6776	798.6776	798.6776	798.6776	798.6776	798.6776	798.6776	798.6776	798.6776	798.6776
Phase flow		Single									
Actual inlet flow condition:	ke/hr	89.70									
	m^{3} / h	591	621	657	7.00	752	8.17	8.89	1022	12.06	15.62
Standard flow condition	m^{3} / hr	4792	4792	4792	4792	47.92	4792	47.92	4792	4792	4792
Stagnation Properties											
	${ }^{*} \mathrm{~K}$	29285	292.84	292.49	292.15	29180	291.43	29236	290.54	290.14	289.61
	${ }^{\circ} \mathrm{C}$	1970	19.69	1934	19.00	18.65	1828	1921	1739	16.99	1646
Inlet Stagnation Pressure	Kpa abs	811.00	774.80	733.64	691.02	646.06	597.01	552.94	484,41	415.81	33026
Outlet Stagnation Pressure	Kpa abs	774.80	733.64	691.02	646.06	597.01	552.94	484.41	415.81	33026	183.76
Stagnation Density $\mathrm{P}^{\text {o }}$	$\mathrm{kg} / \mathrm{m}^{3}$	1533	14.62	13.83	13.01	12.15	1121	1032	9.07	17.76	6.15
Stagnation Enthalpy, ho	KJ/k	49424	494.60	494.71	494.85	495.00	495.17	496.44	49555	49590	49631
Upstream Condition											
- .-_-	Kpag	700.00	66238	620.78	57720	530.89	480.73	43639	364.39	292.86	20171
	Kpa abs	801.33	763.70	722.11	678.52	63221	582.06	537.71	465.72	394.18	303.03
Inlet temperature, t_{1}	${ }^{\circ} \mathrm{C}$	19.00	18.9133	18.4643	18.0063	17.4956	16.9044	17.5714	152151	13927	112715
-	${ }^{\text {c/ }}$	292.15	292.06	291.61	291.16	290.65	290.05	290.72	28837	287.08	284,42
Compressibility, z_{1}		0.9561	09582	0.9603	0.9626	09650	09676	09704	0.9737	0.9775	09822
Viscosity, μ_{1} Density, P_{1}	Pasee	1.47E-05	1.47E-05	1.47E-05	$146 \mathrm{E}-05$	1.46E-05	$1.46 \mathrm{E}-05$	1.46E-05	$145 \mathrm{E}-05$	$1.44 \mathrm{E}-05$	$1.43 \mathrm{E}-05$
	kg/m	15.1848	14.4447	13.6485	12.8148	11.9312	10.9772	10.0890	87794	74354	57417
Velocity, V_{1}	m/sec	35.6070	37.4314	39.6149	42.1923	453169	492551	535916	61.5856	72.7179	94.1679
Mach number at the inlet, M_{1}^{\prime}		0.1337	01401	0.1481	0.1575	0.1688	0.1832	0.1985	02283	02690	03483
		37.6633	3338794	30.0994	263232	22.5509	18.7825	15.0180	112570	75006	37483
Reynolds number Re .		$2.815 \mathrm{E}+05$	2.817e+05	2.822E+05	2827E+05	2.833E+05	2.840E+05	2.835E+05	2858E+05	2.872E+05	$2900 \mathrm{E}+05$
Friction factor, 4 f		0.02394104	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239	0.0239
Recovery factor, r :		0.80387101	0.8017	0.7997	0.7975	0.7952	0.7928	0.7897	0.7872	0.7839	07801
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$:		19.56	1954	19.17	18.80	18.42	17.99	18.86	1693	1633	1532
		493.70	494.02	494.05	494.09	494.12	494.11	495.16	49384	493.47	492.14
Entropy, s		231189701	23217	23319	23434	23563	23714	23895	24114	24408	24849
Domnstream Condition											
		37506	37505	37503	37501	37499	37497	37499	37491	37486	37477
Mach number at the outlet, M_{2})		0.1401	0.1481	0.1575	0.1688	01832	0.1985	02283	02690	03483	09793
Absolute outlet pressure, P_{2}	Kраа	763.70	72.11	678.52	63221	582.06	537.71	465.72	394.18	303.03	10133
Outlet pressure (gauge)	Kpag	662378	620.781	577200	\$30.886	480.731	8363389	364392	292.855	201.710	0.001
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.91	18.46	18.01	17.50	16.90	17.57	1522	13.93	1127	-21.78
Compressibility z_{2}		0.9582	0.9603	0.9626	0.9650	0.9676	0.9704	0.9737	0.9775	0.9822	09911
.-...... Density ${ }^{2} 2$	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	14.4447	13.6485	12.8148	11.9312	10.9772	1100890	87794	74354	5.7417	-21527
Viscosity of gas μ_{2}	Pasee	1.47E-05	147E-05	$1.46 \mathrm{E}-05$	$1146 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	$145 \mathrm{E}-05$	$1144 \mathrm{E}-05$	$143 \mathrm{E}-05$	126E-05
Actual outlet flow	m^{3} / hr	62099	6.5722	69998	75181	8.1715	88999	10.2171	12.0640	15.6226	41.6678
Velocity, V_{2}	m/sec	37.4314	39.6149	42.1923	453169	492551	535916	61.5856	-727179	94.1679	251.1604
Reynolds number, Re		2.813 E+05	2.822E+05	2.827E+05	2833E+05	2.840E+05	2835E+05	2.858E+05	2.872E+05	$2900 \mathrm{E}+05$	3278E+05
Friction factor, 4 F		0.0239	00239	0.0239	0.0239	0.0239	00239	0.0239	0.0239	0.0239	00239
Recovery factor, r		0.8017	0.7997	0.7975	0.7952	0.7928	07897	0.7872	0.7839	0.7801	0.7807
Adiabatic Wall Temperature, T_{aw}	${ }^{\circ} \mathrm{C}$	195458	194463	19.0704	18.6957	182906	18.1301	183563	16.6427	15.7294	8.0728
Enthalpy h	KJKg	494.0171	494.0466	494.0903	494.1171	494.1147	495.1601	493.8420	4934697	492.1431	467.0847
Entropy s	KJ/kg K	23217	23319	23434	23563	23714	23899	2.4114	24408	2.4849	25955
Critical Properties at Outlet Mach 1											
-.-.-.....................- Critical Pressure:	Kpa G	-2.38									
	Kpa abs	98.95									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-23.19									
	-	249.96									
Max length of duct at which no shock occurs		12.05									
Drop											
Pressure drop / Segment Length	Kpa	37.62	41.60	43.58	46.31	50.16	44.34	72.00	71.54	91.15	201.71
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.09	0.45	0.46	0.51	0.59	-0.67	236	1.29	2.66	33.05
Total pressure drop	Kpa	700.00									
Total temperature drop:	${ }^{\text {c }}$	40.76									

Figure F 11-23: Vent pipe model predictions for carbon-dioxide gas at 700 KPa gauge

Gas Property Calculation for Carbon-dioxide @ 718.566806695343 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments.		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	137	13.7	137	137	137	137	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	3.02	3.02	302	3.02	302	3.02	3.02	302
Intemal diameter	mm	7.66	7.66	766	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, \%	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (8/D)		1.96E-03	$1196 \mathrm{E}-03$	1196E-03	1196E-03	$1.96 \mathrm{E}-03$	11966 -03	$1.96 \mathrm{E}-03$	1196E-03	1196E-03	1196E-03
Cross sectional area, A .	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$							
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		Carbon dioxide;1;									
Specific heat at constant pressure, cp:	JKE K	904.41	900.89	89696	892.83	888.45	883.68	880.04	872.42	86529	85535
Specific heat at constant volume cy	Jkg K	671.85	670.64	669.04	66737	66556	663.56	662.78	658.58	65524	6499
Ratio of specific heats, X.		13462	13433	13407	13378	13349	13317	13278	13247	13206	13160
Molecular weight, M.W-	.kg/mole	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01	44.01
Gas constant, R	J/kE	188.92	188.92	188.92	188.92	188.92	188.92	188.92	188.92	188.92	188.92
Standard condition											
Inlet pressure, Pspto (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P smp (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T spo	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compresssibility at std cond $Z_{\text {smp }}$ (10		0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944	0.9944
	kp/m	1.8718	1.8718	1.8718	1.8718	18718	18718	1.8718	1.8718	1.8718	1.8718
-.-........ Normal or standard flow:	$m^{3} / h r$	49.0732	49.0732	49.0732	49.0732	49.0732	49.0732	49.0732	490732	49.0732	49.0732
	litres min	817.8860	817.8860	8817.8860	817.8860	817.8860	:817.8860	817.8860	817.8860	817.8860	817.8860
Phase flow:		Single									
Actual inlet flow condition:	kg/hr	91.86									
	m^{3} / h.	5.91	621	657	7.00	752	8.17	889	1022	12.07	15.63
Standard flow condition	$m^{3} / 7 r$	49.07	49.07	49.07	49.07	49.07	49.07	49.07	49.07	49.07	49.07
Stagnation Properties											
--- Stagnation Temperature, $\mathrm{T}_{\text {O }}$	${ }^{\sim}$	292.85	29284	292.48	292.13	29177	29139	29234	29048	290.06	28952
	${ }^{\circ} \mathrm{C}$	19.70	19.69	1933	18.98	18.62	1824	19.19	1733	16.91	1637
Inlet Stagnation Pressure:	Kpa abs	829.79	792.77	750.61	70699	660.98	61079	565.89	495.56	42537	337.84
Outlet Stagnation Pressure:	Kpa abs	792.77	750.61	70699	660.98	610.79	565.89	495.56	42537	337.84	18792
Stagnation Density, Po.	kg/m	15.71	14.97	14.16	1332	12.44	11.48	10.57	928	795	6.29
Stagnation Enthalpy ho_{0}.	KJ/kg	494.04	494.42	49453	494.67	494.82	495.00	49630	49538	495.73	496.15
Upstream Condition - .-..................											
- Inlet pressure, P_{1}	Kpag.	718.57	680.08	637.47	592.86	545.45	494.11	448.99	375.04	301.85	208.60
	Kpa abs	819.89	781.40	738.80	694.18	64677	595.44	55031	47637	403.17	309.92
Inlet temperature, t_{1}	$\stackrel{\circ}{\circ}$	19.00	18.9131	18.4539	179865	174660	16.8646	175580	15.1506	13.8509	11.1772
Compressibility, z_{1}	. K	292.15	292.06	291.60	291.14	290.62	290.01	290.71	288.30	287.00	284.33
		0.9551	0.9572	0.9594	09617	0.9642	0.9668	09697	09731	0.9769	0.9818
- Viscosity, μ_{1},	Pasee	1.47E-05	147E-05	$147 \mathrm{E}-05$	$1146 \mathrm{E}-05$	146E-05	1466-05	1.46E-05	$145 \mathrm{E}-05$	144E-05	$1.43 \mathrm{E}-05$
Density P_{1} !	$\mathrm{kg}^{\mathrm{m}} \mathrm{m}^{3}$	15.5537	14.7949	13.9784	13.1236	12.2178	112401	10.3334	89881	7.6113	58767
Velocity, $\mathrm{V}_{1} \mathrm{Y}$	$\mathrm{m} / \mathrm{sec}$	35.5984	37.4243	39.6104	42.1902	453180	492599	535824	61.6025	72.7456	942167
Mach number at the inlet, M_{1}		0.1336	0.1400	01481	01575	01688	0.1832	01984	02283	02690	03484
	Machnuber athe	37.6393	3388579	30.0802	263064	22.5364	18.7704	15.0083	112496	7.4955	37455
Reynolds number, Re:		$2.883 \mathrm{E}+05$	2.884E+05	2.890E+05	2899E +05	$2901 \mathrm{E}+05$	2908E+05	2903E+05	2928E+05	2942E+05	2971E+05
Friction factor, 4 f		0.02392647	0.0239	0.0239	0.0239	00239	00239	0.0239	0.0239	0.0239	00239
Recovery factor, r :		0.80498751	0.8028	0.8007	0.7985	0.7961	0.7936	0.7904	07879	0.7845	07806
Adiabatic Wall Temperature, $\mathrm{T}_{\text {as }}$ (1956	1954	19.15	18.78	1839	1795	18.85	16.86	1625	1523
		49351	49383	49388	49391	49394	49394	495.02	493.67	49331	49199
Entropy, s:		230709800	23169	23271	23386	23516	23667	23848	24066	24361	24802
Downstream Condition											
		37483	37482	37480	3.7479	37477	37474	3.7476	37468	37463	37454
Mach number at the outlet, M_{2}		0.1400	0.1481	0.1575	01688	0.1832	0.1984	02283	02690	03484	0.9988
Absolute outlet pressure, P_{2}.	Kраа	781.40	738.80	694.18	646.77	595.44	550.31	47637	403.17	30992	10133
Outlet pressure (gauge)	Kpag	680.076	637.474	592.857	545.446	494.111	448.985	375.044	301849	208599	0.000
Outlet temperature, t_{2}		18.91	18.45	1799	17.47	16.86	17.56	15.15	13.85	11.18	-23.25
Compressibility, z_{2}		0.9572	0.9594	0.9617	0.9642	0.9668	0.9697	0.9731	0.9769	0.9818	0.9909
- ${ }^{\text {a }}$ Density, P_{2} :	kg/m	14.7949	13.9784	13.1236	122178	112401	103334	89881	7.6113	58767	21658
Viscosity of gas μ ?	Pasee	1.47E-05	147E-05	$1.46 \mathrm{E}-05$	1466 -05	146E-05	1466 -05	$145 \mathrm{E}-05$	$1.44 \mathrm{E}-05$	$143 \mathrm{E}-05$	126E-05
Actual outle flow:	$m^{3} / h r$	62087	6.5714	6.9994	75183	8.1723	88894	10.2199	12.0686	15.6307	42.4128
Velocity, V_{2}	m/sec	37.4243	+39.6104	-42.1902	453180	492599	535824	61.6025	72.7456	942167	255.6507
Reynolds number Re-		$2.884 \mathrm{E}+05$	28900e+05	2.895E+05	$2901 \mathrm{E}+05$	2908E+05	2903E+05	2928E+05	2942E+05	$2971 \mathrm{E}+05$	337TE+05
Friction factor, 4 f		0.0239	0.0239	0.0239	00239	0.0239	0.0239	0.0239	00239	0.0239	0.0238
Recovery factor, r :		0.8028	0.8007	0.7985	0.7961	0.7936	0.7904	0.7879	0.7845	0.7806	07813
Adiabatic Wall Temperature, $\mathrm{T}_{\text {a }}$:	${ }^{\circ} \mathrm{C}$	195453	194439	190580	18.6740	182591	18.0952	183327	16.5767	15.6513	7.6995
Enthalpy, h	KJ/kg	4938326	4938636	4939099	4939395	4939406	495.0188	493.6749	4933094	4919896	465.8983
Entropy, s	KJ/kg. K	23169	23271	23386	23516	23667	23848	2.4066	24361	24802	25908
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	-0.14									
	Kpa abs	101.19									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-23.33									
	${ }^{\circ} \mathrm{K}$	249.82									
Max length of duct at which no shock occurs	m	12.05									
Drop											
Pressure drop / Segment Length	Kрa	38.49	42.60	44.62	47.41	5134	45.13	73.94	73.20	93.25	208.60
Temperature drop / Segment Length.	${ }^{\circ} \mathrm{C}$	0.09	0.46	0.47	0.52	0.60	-0.69	2.41	130	2.67	34.43
Total pressure drop	Kpa	718.57									
Total temperature drop:	${ }^{\circ}$	42.33									

Figure F 11-24: Vent pipe model predictions for carbon-dioxide gas at sonic conditions

Gas Property Calculation for DBNGP Gas Mixture @ 100 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3.	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	13.7	137	13.7	137	13.7	13.7	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	3.02	302	302	3.3	3.02	302	302	3.02	3.02
Intemal diameter:	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766	766	766
Roughness, 8 :	mm	0.0150	0.0150	0.0150	00150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	1196E-03	$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$					
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		DBNGP Gas Mixture									
Specific heat at constant pressure cp	J/ke K	204480	204425	204356	204287	2042.10	204126	2040.63	203926	2038.04	203650
Specific heat at constant volume, cy	$J \mathrm{~kg} . \mathrm{K}$	157097	157079	157051	157022	156989	156950	156935	156850	1567.84	156691
Ratio of specific heats, γ		13016	13014	13012	13010	13008	13006	13003	13001	12999	12997
Molecular weight, MW:	kg/mole	17.93	1793	1793	1793	1793	17.93	17.93	17.93	1793	1793
Gas constant, R	J/EK	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78
Standard condition											
Inlet pressure, P Psid (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure	K^{Pa}	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sto (absolute)	KPaabs	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature, T STp:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z STIV		0.9977	09977	0.9977	0.9977	09977	0.9977	09977	0.9977	0.9977	0.9977
Density at standard condition, PsTD	kg/m	0.7599	0.7599	07599	07599	0.7599	07599	0.7599	07599	07599	0.7599
Normal or standard flow:	m^{s} / h	15.8109	15.8109	15.8109	15.8109	15.8109	15.8109	15.8109	15.8109	15.8109	15.8109
	litresmin	2635150	2635150	2635150	2635150	2635150	2635150	2635150	2635150	2635150	2635150
Phase flow		Single									
Actual inlet flow condition:	kght	12.02									
	$\mathrm{m}^{3} / \mathrm{hr}$	8.05	836	8.72	9.12	959	10.14	10.78	11.61	12.62	13.98
Standard flow condition	$m^{3} / h r$	15.81	15.81	15.81	15.81	15.81	15.81	15.81	15.81	15.81	15.81
Stagnation Properties											
- - - - - ${ }^{\text {a }}$ Stagnation Temperature, T .	${ }^{\circ} \mathrm{K}$	292.73	292.73	292.70	292.68	292.65	292.62	292.72	29256	29254	29251
	${ }^{\circ} \mathrm{C}$	1958	19.58	19.55	1953	19.50	19.47	19.57	19.41	1939	1936
Inlet Stagnation Pressure	Kpa abs	203.09	196.10	187.79	17989	171.17	16205	152.72	14220	131.14	11889
Outlet Stagnation Pressure:	Kpa abs	196.10	187.79	179.89	171.17	162.05	152.72	14220	131.14	11888	105.04
Stagnation Density ρ_{0} :	kepm ${ }^{3}$	150	145	139	133	127	120	1.13	1.05	0.97	0.88
Stagnation Enthalpy $\mathrm{h}_{\text {¢ }}$.	KI/kg	823.95	824.02	824.05	824.08	824.11	824.15	824.44	82422	82429	82435
Upstream Condition											
	Kро $\mathrm{g}^{\text {a }}$	100.00	92.59	84.50	7631	67.57	5836	4891	38.15	26.82	14.26
	Kpa abs	201.33	19392	185.82	177.64	168.89	159.69	15023	139.47	128.14	115.58
Inlet temperature, t_{1}	- \quad - ${ }^{\circ}$	19.00	18.9576	18.8731	18.7854	18.6794	18.5542	18.5340	182078	17.9663	17.6143
	${ }^{\circ} \mathrm{K}$	292.15	292.11	292.02	29194	29183	29170	291.68	29136	291.12	29076
	.	0.9957	09959	0.9960	09962	09964	0.996	09968	09970	0.9972	09975
Viscosity μ_{1} Density p_{1}	Pasec	1.14E-05	1.14E-05	1.14E-05	1.14E-05	$1.14 \mathrm{E}-05$	1.14E-05	114E-05	1.13E-05	1.13E-05	1.13E-05
	ke/m ${ }^{3}$	14923	14373	13775	13170	12524	11844	11141	10353	0.9517	0.8593
Mach numberat........elocity, V_{1}	m/sec	48.5325	50.3871	52.5750	S4.9903	57.8280	61.1466	65.0041	69.9552	76.0972	842839
		0.1158	01200	01254	01310	01379	01458	01550	01688	01814	02009
$\cdots{ }^{-1}$		53.1369	48.9495	44.7656	40.5852	364083	322350	28.0651	238988	19.7362	15.5773
Reynolds number, Re.		4.874E+04	$4875 \mathrm{E}+04$	4.876E+04	4.878E+04	4.880E+04	4.882E+04	4.883E+04	4.889E+04	4.893E+04	4.899E+04
Friction factor, 4 f		0.02647796	0.0265	0.0265	0.0265	0.0265	0.0265	0.0265	0.0265	0.0265	0.0265
Recovery factor, r :		0.74390939	07438	0.7437	0.7435	0.7434	07433	0.7431	07429	07428	07426
Adiabatic Wall Temperature, $T_{\text {ax }}$:		19.43	19.42	1938	1934	19.29	1923	1930	1910	19.02	1891
Enthalpy h		822.79	822.78	822.69	822.59	822.46	82230	82235	821.80	821.42	820.83
Entropy, s		5.94853756	5.9658	5.9852	60057	60286	6.0539	60823	6.1148	6.1527	6.1983
Downstream Condition											
$4 \mathrm{fI} 12 / \mathrm{D}$:		4.1480	4.1479	4.1478	4.1476	4.1474	4.1472	4.1472	4.1467	4.1463	4.1458
Mach number at the outlet, M_{2}.		0.1200	01254	01310	01379	01458	01550	01668	01814	02009	02290
Absolute outlet pressure, P_{2}	Kpaa	193.92	185.82	177.64	168.89	159.69	15023	139.47	128.14	115.58	10133
Outlet pressure (gauge)	Kpag.	92.592	84.500	76315	67.567	58.363	48.907	38.149	26.815	14259	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.96	18.87	18.79	18.68	18.55	18.53	18.21	17.97	17.61	17.07
Compressibility z_{2}		0.9959	09960	0.9962	0.9964	0.9966	0.9968	0.9970	0.9972	0.9975	0.9978
Viscosity ${ }^{\text {Density }}$, R_{2} 2	kg/m	1.4373	13775	13170	12524	1.1844	1.1141	10353	0.9517	0.8593	0.7545
	Pasec	1.14E-05	1.14E-05	$1114 \mathrm{E}-05$	$1.14 \mathrm{E}-05$	$1.14 \mathrm{E}-05$	114E-05	$11.13 \mathrm{E}-05$	$1.13 \mathrm{E}-05$	$11.13 \mathrm{E}-05$	1.13E-05
Viscosity of gas, μ_{2} Actual outlet flow	$m^{3} / 7$	83593	887223	91230	95938	101443	10.7843	11.6057	12.6246	139828	15.9252
$\text { Velocity, } \mathrm{V}_{2}$	m/sec	503871	525750	549903	578280	61.1466	65.0041	699552	76.0972	842839	959919
Reynolds number, Re:		$4.875 \mathrm{E}+04$	$4.876 \mathrm{E}+04$	4.878E+04	$4.880 \mathrm{E}+04$	$4.882 \mathrm{E}+04$	$4.883 \mathrm{E}+04$	$4.889 \mathrm{E}+04$	$4.893 \mathrm{E}+04$	$4.899 \mathrm{E}+04$	$4908 \mathrm{E}+04$
Friction factor, 41		0.0265	00265	00265	00265	00265	00265	00265	00265	00265	00265
Recovery factor, r :		0.7438	0.7437	07435	07434	0.7433	0.7431	0.7429	0.7428	0.7426	07424
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ (${ }^{\text {a }}$ - ${ }^{\circ}{ }^{\circ}$		19.4175	193977	193534	193084	192559	192296	192194	19.0369	18.9307	18.7681
Enthalpy h	KJ/kg	8227768	822.6861	8225899	822.4622	8223000	8223548	8217985	8214215	820.8323	8198635
	KJ/kg E	59658	5985	6.0057	60.0286	60539	60823	6.1148	6.1527	6.1983	62559
Critical Properties at Outlet Mach 1											
..-...................... Critical Pressure	Kpa G	-79.61									
	Kpa abs	21.72									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-18.77									
	${ }^{\circ} \mathrm{K}$	254.38									
Max length of duct at which no shock occurs:	m	15.37									
Drop											
Pressure drop / Segment Length	кра	7.41	8.09	8.18	8.75	9.20	9.46	10.76	1133	12.56	14.26
Temperature drop/Segment Length		0.04	0.08	0.09	0.11	0.13	0.02	0.33	0.34	0.35	0.55
Total pressure drop	Kpa	100.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	1.71									

Figure F 11-25: Vent pipe model predictions for DBNGP gas mixture at 100 KPa gauge

Gas Property Calculation for DBNGP Gas Mixture @ 200 Kpa gauge \& $19^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	137	137	13.7	137	137	13.7	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	302	3.02	3.02	3.02	302	3.02	3.02	302	302	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	766	7.66	7.66	766
Roughness, E :	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (8 D)		196E-03	1196E-03	1.96E-03	196E-03	196E-03	1966-03	196E-03	1196E-03	$196 \mathrm{E}-03$	196E-03
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	$4.61 \mathrm{E}-05$	$461 \mathrm{E}-05$	$461 \mathrm{E}-05$	$4.61 \mathrm{E}-05$				
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		DBNGP Gas Mixture									
Specific heat at constant pressure, cp	J/ke K	2051.03	2050.05	204892	204767	204632	2044.81	204349	204095	203829	203432
Specific heat at constant volume cy	$J \mathrm{~kg} . \mathrm{K}$	1572.12	157182	157138	1570.88	157031	156964	156922	156770	156616	156353
Ratio of specific heats, 8		13046	13043	13039	13035	13031	13027	13022	13019	13015	13011
Molecular weight, MW	kg/mole	17.93	1793	1793	1793	17.93	17.93	17.93	17.93	1793	1793
Gas constant, R	J/EK	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78
Standard condition											
Inlet pressure, Pstp (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P smo (absolute)	KPaabs	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature , Tsio	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*}{ }^{\text {K }}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z SIT		0.9977	0.9977	0.9977	0.9977	09977	0.9977	09977	09977	0.9977	0.9977
Density at standard condition PSTT	kg/m	0.7599	0.7599	0.7599	07599	07599	07599	0.7599	0.7599	07599	0.7599
Normal or standard flow:	$m^{3} / 7$	26.1394	26.1394	26.1394	26.1394	26.1394	26.1394	26.1394	26.1394	26.1394	26.1394
	litresmin	435.6568	435.6568	435.6568	435.6568	435.6568	435.6568	435.6568	435.6568	435.6568	435.6568
Phase flow		Single									
Actual inlet flow condition:	kg/h	19.86									
	m^{s} / h	88.87	929	976	1032	10.98	11.80	12.81	1421	16.16	1931
Standard flow condition	$m^{3} / h r$	26.14	26.14	26.14	26.14	26.14	26.14	26.14	26.14	26.14	26.14
Stagnation Properties											
- .-............. Stagnation Temperature, T_{0}.	${ }^{*} \times$	292.85	29285	29280	292.75	29270	292.65	292.78	2925	292.49	292.43
	${ }^{\circ} \mathrm{C}$	19.70	19.70	19.65	19.60	19.55	19.50	19.63	1938	1934	1928
Inlet Stagnation Pressure	Kpa abs	30454	29131	27792	263.02	24748	231.04	21340	193.14	17094	144.80
Outlet Stagnation Pressure	Kpa abs	29131	27792	26302	24748	231.04	213.40	193.14	17094	14480	111.15
Stagnation Density, P_{0} O	ke/m ${ }^{3}$	226	2.16	2.06	1.95	1.83	171	158	1.43	126	1.07
Stagnation Enthalpy h_{0}.	KJ/kg	823.17	82330	82335	823.40	823.45	82352	82395	883.66	823.79	82394
Upstream Condition											
-	Kро 8.	200.00	186.65	172.74	1577.79	14201	125.15	10732	86.45	6350	36.19
	Kpa abs	301.33	28797	274.06	259.12	24333	226.47	208.64	187.78	164.82	13751
Inlet temperature, t_{1}	- $\quad . \quad . \quad 0$	19.00	18.9312	18.8065	18.6579	18.4818	182673	18.1709	17.5885	17.0114	15.9552
	${ }^{\circ} \mathrm{K}$	292.15	292.08	291.96	29181	291.63	29142	29132	29074	29016	289.11
Compressibility, z1		0.9936	0.9939	0.9942	0.9945	0.9948	0.9951	09955	0.9959	0.9964	09970
Viscosity, μ_{1}	Pasec	1.14E-05	1.13E-05	1.13E-05	1.13E-05						
Density, P^{1}	kem ${ }^{\text {b }}$	22383	21390	20360	19253	18085	16839	15512	13983	12292	10287
Mach number at the inlet, M_{1}.	m/sec	53.4941	55.9773	88.8096	62.1894	662057	711064	771877	85.6281	97.4065	1163902
		0.1276	01336	01401	01483	01579	01695	01840	02042	02324	02780
$4 \mathrm{fL}_{1} / \mathrm{D}^{\text {²}}$		42.9292	38.9285	34.9308	309361	269443	229556	18.9699	14.9871	11.0078	7.0318
Reynolds number, Re		$8.048 \mathrm{E}+04$	8.051E+04	$8.055 \mathrm{E}+04$	$8.060 \mathrm{E}+04$	$8.066 \mathrm{E}+04$	$8.073 \mathrm{E}+04$	$8077 \mathrm{E}+04$	$8.093 E+04$	$8.109 \mathrm{E}+04$	$8.138 \mathrm{E}+04$
Friction factor, 4 f		0.02536227	0.0254	0.0254	0.0254	0.0254	0.0254	00254	0.0254	0.0253	0.0253
Recovery factor, r		0.74560947	0.7454	07452	0.7449	0.744	0.7444	07441	07438	0.7435	07431
Adiabatic Wall Temperature, $\mathrm{T}_{\text {ar }}$:		19.52	19.50	1944	1936	1928	19.19	1926	1892	18.74	18.43
Enthalpy h		821.77	8221.77	821.65	821.50	82130	821.03	821.02	820.04	819.10	81723
Entropy s		5.75902489	5.7799	588023	58277	58560	58882	59260	59713	60283	6.1056
Downstream Condition											
$4 \mathrm{fl}_{2} 2 \mathrm{D}$.		3.9732	39731	3.9729	39728	39726	39723	39722	39716	39710	39700
Mach number at the outlet, M_{2}.		0.1336	0.1401	0.1483	01579	01695	01840	02042	02324	02780	03754
Absolute outlet pressure, P_{2}	Kра а	28797	274.06	259.12	24333	22647	208.64	187.78	164.82	13751	10133
Outlet pressure (gauge)	Kpag.	186.646	172.739	157.793	142.007	125.149	107316	86.453	63.498	36.189	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.93	18.81	18.66	18.48	18.27	18.17	17.59	17.01	15.96	13.20
Compressibility, z_{2}		0.9939	0.9942	0.9945	0.9948	0.9951	0.9955	0.9959	09964	0.9970	0.9977
.-..... Density, P_{2}	kg/m	2.1390	2.0360	1.9253	18085	1.6839	1.5512	13983	12292	1.0287	07647
Viscosity of gas μ_{2}	Pasec	1.14E-05	1.14E-05	$1.14 \mathrm{E}-05$	114E-05	1.14E-05	$1.14 \mathrm{E}-05$	$1.13 \mathrm{E}-05$	1.13E-05	$1.13 \mathrm{E}-05$	1.12E-05
Actual outlet flow:	$m^{3} / 7 r$	92867	97566	103173	109836	1117966	12.8055	142058	16.1599	193093	259750
Velocity, V_{2}	m/sec	55.9773	588.8096	62.1894	662057	711064	77.1877	85.6281	974065	1163902	1565687
Reynolds number, Re,		$8.051 \mathrm{E}+04$	$8.055 \mathrm{E}+04$	$8.060 \mathrm{E}+04$	$8.066 \mathrm{E}+04$	$8.073 \mathrm{E}+04$	$8.077 \mathrm{E}+04$	$8.093 \mathrm{E}+04$	$8.109 E+04$	$8.138 E+04$	$8210 \mathrm{E}+04$
Friction factor, if		0.0254	00254	00254	0.0254	00254	00254	00254	00253	00253	00253
Recovery factor, r :		0.7454	07452	0.7449	0.7447	0.7444	07441	0.7438	0.7435	07431	07428
Adiabatic Wall Temperature, T_{2} :	${ }^{\circ} \mathrm{C}$	19.5025	19.4689	193973	193162	192243	19.1626	19.1061	18.7760	18.4697	1777199
Enthalpy h	KJ/kg	82177685	821.6543	8215018	8213019	821.0347	821.0194	820.0427	8191006	8172306	812.0157
Entropy, s	KJ/kg. K	57799	58023	58277	58560	58882	59260	59713	6.0283	6.1056	62287
Critical Properties at Outlet Mach 1											
Critical Pressure	Kpa G	-65.49									
	Kpa abs	35.83									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-18.99									
	${ }^{*} \times$	254.16									
Max length of duct at which no shock occurs:	m	12.97									
Drop											
Pressure drop/Segment Length	кра	13.35	13.91	14.95	15.79	16.86	17.83	20.86	22.96	27.31	36.19
Temperature drop/Segment Length		0.07	0.12	0.15	0.18	0.21	0.10	0.58	0.58	1.06	2.75
Total pressure drop	кра	200.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	5.45									

Figure F 11-26: Vent pipe model predictions for DBNGP gas mixture at 200 KPa gauge

Gas Property Calculation for DBNGP Gas Mixture @ 300 Kpa gauge \& $19^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	13.7	13.7	13.7	137	137	137	137	13.7	137
Special wall thickness	mm	0	0	0	0	0	0	0	:0	0	0
Wall thickness	mm	3.02	3.02	3.02	3.02	302	3.02	3.02	302	302	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	$1.96 \mathrm{E}-03$	1196E-03	$1.96 \mathrm{E}-03$	1.96E-03	$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		DBNGP Gas	Mixture								
Specific heat at constant pressure, cp	J/ke K	205733	205599	205442	2052.74	205090	2048.84	2047.03	20435	203976	2033.69
Specific heat at constant volume cy	J/ke K	157328	157289	157231	1571.67	157094	1570.08	15695	156754	1565.41	156138
Ratio of specific heats, X		13077	13071	13066	13061	13055	13049	13042	13037	13030	13025
Molecular weight, MW	kelomole	1793	17.93	1793	1793	1793	1793	17.93	17.93	17.93	1793
Gas constant, R	J/ke	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78
Standard condition											
Inlet pressure, P sto (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, Pssmp (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T STP:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {STID }}$		0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977
Density at standard condition PSTT?	ke/m	0.7599	07599	07599	07599	07599	07599	0.7599	0.7599	07599	07599
Normal or standard flow:	$m^{\text {m }} / 7 r$	35.9483	-359483	-35.9483	359483	359483	359483	359483	35.9483	35.9483	359483
	litres/min	599.1377	599.1377	599.1377	599.1377	599.1377	5991377	599.1377	599.1377	599.1377	599.1377
Phase flow:		Single									
Actual inlet flow condition:	kghr	27.32									
	m^{3} / h	9.14	959	10.11	10.72	11.46	1238	1353	15.19	17.63	21.98
Standard flow condition	$m^{\text {m }} / 7 r$	35.95	3599	3599	3599	3595	3599	3599	3595	3595	355
Stagnation Properties											
------.-. Stagnation Temperature, T_{0}	${ }^{*} \mathrm{~K}$	29289	29289	292.82	292.75	292.68	292.61	292.76	222.44	29236	29228
	${ }^{\circ} \mathrm{C}$	19.74	19.74	19.67	19.60	19.53	19.46	19.61	1929	1921	19.13
Inlet Stagnation Pressure	Kpa abs	405.88	387.41	367.92	34757	325.83	30257	277.87	248.74	21620	176.73
Outlet Stagnation Pressure	Kpa abs	387.41	36792	34757	325.83	302.57	277.87	248.74	21620	176.73	11991
Stagnation Density, Po	kg/m	3.01	288	273	258	242	224	2.06	184	1.60	131
Stagnation Enthalpy $\mathrm{h}_{\text {¢ }}$.	KJ/kg	822.23	822.41	: 822.47	822.53	822.61	822.70	82327	822.89	823.07	823330
Upstream Condition											
Inlet pressure, P_{1}	Kpog.	300.00	28138	261.68	240.92	218.75	194.89	16973	13954	105.78	64.05
	Kpa abs	401.33	382.71	363.01	34225	320.07	29621	271.05	240.86	207.11	16538
Inlet temperature, t_{1}	- \quad - ${ }^{\circ} \mathrm{C}$	19.00	18.9225	18.7620	18.5814	183648	18.0968	17.9894	172328	16.4407	14.8112
T_{1}	${ }^{\circ} \mathrm{K}$	292.15	292.07	291.91	291.73	29151	29125	291.14	29038	28959	287.96
Compressibility, z_{1})		0.9915	0.9919	0.9923	0.9927	0.9931	0.9936	0.9942	0.9948	0.9955	0.9963
- Viscosity, μ_{1}	Pasec	1.14E-05	1.14E-05	1.14E-05	1.14E-05	1.14E-05	114E-05	1.14E-05	$1.13 \mathrm{E}-05$	$1.13 \mathrm{E}-05$	1.12E-05
Density ${ }_{2}, P_{1}$	kg/m	2.9875	28485	27023	25482	23838	22070	2.0192	1.7979	15491	12429
Velocity $\mathrm{V}_{1}{ }_{1}$	m/sec	55.1185	57.8072	60.9355	64.6199	69.0765	44.6097	815484	91.5864	1062969	132.4810
Mach number at the inlet, M_{1}		0.1315	0.1379	0.1454	0.1541	0.1647	0.1779	01944	02184	02536	03167
$4 \mathrm{fL}_{1} / \mathrm{D}^{\text {²}}$		40.0882	36.177	32.2692	28.3627	24.4584	20.5561	16.6559	12.7578	88821	4.9690
Reynolds number, Re		$1.106 \mathrm{E}+05$	$1106 \mathrm{E}+05$	1107E+05	11108E+05	1.109E+05	1.110E+05	1.111E+05	11114E+05	1.117e+05	1.123E+05
Friction factor, 4 f		0.02485001	00248	0.0248	0.0248	0.0248	00248	0.0248	00248	0.0248	00248
Recovery factor, r		0.74733469	0.7470	0.7467	07464	0.7460	0.7456	0.7452	07448	0.7443	0.7437
Adiabatic Wall Temperature, $\mathrm{T}_{3 \text { aw }}$		19.55	1953	19.44	1934	1923	19.11	1920	18.76	18.50	18.02
Enthalpy h		820.76	820.79	820.66	820.50	82028	819.97	820.01	818.77	817.50	814.62
Entropy s s		5.62362056	5.6456	56694	5.6960	5.7261	5.7607	58018	58520	59173	60.112
Downstream Condition											
$4 \mathrm{fl}_{12} / \mathrm{D}$		3.8930	388929	3.8927	3.8925	3.8923	3.8921	3.8919	38914	38907	3.8896
Mach number at the outlet, M_{2}		0.1379	0.1454	0.1541	0.1647	0.1779	0.1944	02184	02536	0.3167	05107
Absolute outlet pressure, P_{2}	Kраа	382.71	363.01	34225	320.07	29621	271.05	240.86	207.11	16538	10133
Outlet pressure (gauge)	Kpag	281382	261.683	240.923	218.749	194.886	169.727	139538	105.783	64.054	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.92	18.76	18.58	18.36	18.10	17.99	1723	16.44	14.81	8.03
Compressibility, z_{2}		0.9919	0.9923	0.9927	0.9931	0.9936	0.9942	09948	0.9955	09963	0.9975
Density, ρ_{2}	$\mathrm{kg}^{3} \mathrm{~m}^{3}$	2.8485	2.7023	2.5482	23838	22070	2.0192	1.7979	15491	12429	07789
Viscosity of gas, μ_{2}	Pasee	1.14E-05	1.14E-05	1.14E-05	114E-05	1114E-05	1.14E-05	$11.13 \mathrm{E}-05$	1.13E-05	$1.12 \mathrm{E}-05$	$110 \mathrm{E}-05$
Actual outlet flow:	$m^{3} / h r$	95903	10.1093	10.7205	11.4599	123778	135290	15.1943	17.6348	21.9788	35.0719
Velocity, V_{2}	--.....mseo	57.8072	60.9355	64.6199	69.0765	74.6097	815484	91.5864	1062969	132.4810	2114020
Reynolds number, Ref		$1.106 \mathrm{E}+05$	$1107 \mathrm{E}+05$	1.108E+05	1109E+05	1110e +05	1.111E+05	1114E+05	1111E+05	1.123E+05	1148E+05
Friction factor, if		0.0248	0.0248	0.0248	00248	00248	00248	00248	00248	00248	00248
Recovery factor, r :		0.7470	0.7467	0.7464	0.7460	0.7456	07452	0.7448	0.7443	07437	07433
Adiabatic Wall Temperature, $T_{2 \text { w }}$	${ }^{\circ} \mathrm{C}$	19.5319	19.4886	193907	192852	19.1640	19.0818	19.0060	18.5577	18.0830	162779
Enthalpy, h	KJ/kg	820.7872	820.6580	8204987	82202804	8199745	820.0115	818.7729	8175027	814.6153	8015679
Entropy s:	KJ/kg. K	5.6456	56694	56960	57261	57607	58018	58520	59173	60.012	6.1919
Critical Properties at Outlet Mach 1 . .a. .											
Critical Pressure:	Kpa G	-52.16									
	Kpa abs	49.16									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-19.28									
	${ }^{\circ} \mathrm{K}$	253.87									
Max length of duct at which no shock occurs	m	12.36									
Drop											
Pressure drop/Segment Length	Kpa	18.62	19.70	20.76	22.17	23.86	25.16	30.19	33.76	41.73	64.05
Temperature drop/Segment Length		0.08	0.16	0.18	0.22	0.27	0.11	0.76	0.79	1.63	6.78
Total pressure drop	Kpa	300.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	10.55									

Figure F 11-27: Vent pipe model predictions for DBNGP gas mixture at 300 KPa gauge

Gas Property Calculation for DBNGP Gas Mixture @ 400 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	13.7	13.7	137	137	13.7	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	3.02	3.02	3.02	3.02	3.02	302	3.02	3.02	302
Intemal diameter	mm	7.66	766	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766
Roughness, E :	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (8/D)		1.96E-03	$1.96 \mathrm{E}-03$	1196E-03	196E-03	196E-03	1196E-03	$196 \mathrm{E}-03$	1.96E-03	$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$
Cross sectional area, A ,	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05					
Length of pipe	m.	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		DBNGP Gas Mixture									
Specific heat at constant pressure, cp.	J/ke K	2063.69	2062.04	2060.07	205796	2055.67	2053.11	2050.89	204657	204191	203429
Specific heat at constant volume cy	J/ke K	157444	1574.00	157330	157253	1571.67	1570.65	1570.07	1567.67	1565.17	156024
Ratio of specific heats, X		13107	13101	13094	13087	13080	13072	13062	13055	13046	13038
Molecular weight, MW	kghomole	17.93	1793	17.93	1793	1793	1793	17.93	17.93	1793	1793
Gas constant, R	J kg K	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78
Standard condition											
Inlet pressure, P stD (gauge)	KPag	0.00	0.00	0.00	000	000	000	0.00	0.00	0.00	000
Atmospheric pressure	${ }^{1} \mathrm{~Pa}$	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P STM (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature, T str:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {str }}$		0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977
Density at standard condition PSTTP	kp/m	0.7599	07599	07599	0.7599	07599	07599	0.7599	0.7599	07599	0.7599
Normal or standard flow:	$\mathrm{m}^{3} / \mathrm{hr}$	45.5677	45.5677	455677	455677	45.5677	4455677	455677	45.5677	455.5677	45.5677
	lites/min	7594610	7594610	7594610	7594610	7594610	759.4610	7594610	7594610	7594610	7594610
Phase flow:		Single									
Actual inlet flow condition:	kg/hr	34.63									
	m^{3} / h	926	971	1025	10.89	11.66	12.63	13.84	15.63	1830	2329
Standard flow condition	$m^{3} / 7 v$	45.57	4557	45.57	4557	4557	4557	45.57	45.57	4557	45.57
Stagnation Properties											
	\%	29290	29290	29281	292.73	292.63	29254	292.73	29231	29221	292.10
	${ }^{\circ} \mathrm{C}$	1975	1975	19.66	1958	19.48	1939	1958	19.16	19.06	18.95
Inlet Stagnation Pressure	Kpa abs	507.18	48452	45938	43329	405.64	37591	34450	30656	26454	21259
Outlet Stagnation Pressure	Kpa abs	484.52	45938	43329	405.64	37591	34450	306.56	26454	21259	131.49
Stagnation Density, Po:	kg/m	3.77	3.60	3.42	322	301	279	256	228	196	158
Stagnation Enthalpy h_{0}.	KJ/kg	821.24	821.46	821.53	821.62	821.71	821.82	822.53	822.06	82228	822.57
Upstream Condition											
- Inlet pressure, P_{1}	Kpog.	400.00	376.61	35139	324.86	296.58	266.06	234.07	194.85	151.08	95.90
	Kpa abs	501.33	47794	452.72	426.18	39790	36739	33539	296.17	252.41	19722
Inlet temperature, t_{1}	- ${ }^{\circ} \mathrm{C}$	19.00	18.9222	18.7364	18.5285	182826	179789	17.8878	16.9949	16.0848	14.1062
	${ }^{\circ} \mathrm{K}$	292.15	292.07	29189	291.68	29143	291.13	291.04	290.14	28923	28726
Compressibility, z_{1}		0.9893	0.9898	0.9903	09909	0.9915	0.9921	0.9928	09935	0.9944	0.9956
Viscosity ${ }^{\mu} \mu_{1}$	Pasee	1.14E-05	1.13E-05	1.13E-05	1.12E-05						
Density $\mathrm{P}^{\text {P }}$,	kg/m	3.7399	35646	33769	3.1795	29693	27427	25029	22153	1.8922	14870
	m/sec	55.8112	58.5553	61.8105	65.6476	70.2952	76.1023	833941	942209	1103101	1403685
		0.1331	01395	01473	01565	01675	01812	0.1985	02244	02629	03353
		38.9927	35.1167	312441	273751	23.5096	19.6476	15.7893	11.9343	8.0833	42363
Reynolds number, Re:		$1.400 \mathrm{E}+05$	$1400 \mathrm{E}+05$	1402E+05	$1.403 \mathrm{E}+05$	1.404E+05	$1.406 \mathrm{E}+05$	1407E+05	$1412 \mathrm{t}+05$	$1.416 \mathrm{E}+05$	$1426 \mathrm{E}+05$
		0.02454717	00245	0.0245	0.0245	0.0245	0.0245	0.0245	00245	00245	00245
Friction factor, 4 f Recovery factor, r		0.74908514	0.7487	07483	0.7478	0.7474	0.7469	07463	07458	0.7451	0.744
Adiabatic Wall Temperature, $\mathrm{T}_{\text {aw }}$ (1957	1954	1943	1931	19.18	19.03	19.15	18.61	1830	17.71
Enthalpy, h Entropy, s		819.74	819.82	819.69	81953	81932	819.00	819.15	817.72	81631	81285
		551793574	55401	55646	55918	5.6226	56582	5.7007	575330	58219	59237
Downstream Condition											
$4 \mathrm{fl}_{122}$ /D:		3.8455	3.8454	3.8453	3.8451	3.8449	3.8447	3.8445	3.8440	3.8434	3.8422
Mach number at the outlet, M_{2}		0.1395	0.1473	0.1565	0.1675	0.1812	0.1985	02244	02629	03353	0.6385
Absolute outlet pressure, P_{2}	Kраа	47794	452.72	426.18	39790	36739	33539	296.17	222.41	19722	10133
Outlet pressure (gauge)	Kpag	376.614	351391	324.859	296579	266.065	234.066	194.847	151.082	95.895	0.000
Outlet temperature, t_{2}		18.92	18.74	18.53	18.28	17.98	17.89	16.99	16.08	14.11	11.90
Compressibility, z_{2}		0.9898	0.9903	09909	0.9915	0.9921	0.9928	09935	0994	0.9956	0.9973
- ${ }^{\text {a }}$ - ${ }^{\text {ansity }} p_{2}$	kg/m	3.5646	37769	3.1795	2.9693	2.7427	25029	22153	1.8922	1.4870	07964
Viscosity of gas $\mu 2$	Pasec	1.14E-05	114E-05	1.14E-05	1.14E-05	114E-05	1.14E-05	$1.13 \mathrm{E}-05$	1.13E-05	11.12E-05	$1.08 \mathrm{E}-05$
Actual outlet flow:	$m^{3} / h r$	9.7144	102544	10.8910	11.6621	12.6255	1388352	15.6314	183006	232873	43.4784
Velocity, V_{2}	$\mathrm{m} / \mathrm{sec}$	58.5553	61.8105	65.6476	70.2952	76.1023	833941	942209	1103101	1403685	262.0737
Reynolds number Re		$1400 \mathrm{E}+05$	$1402 \mathrm{E}+05$	1403E+05	$1404 \mathrm{E}+05$	$1406 \mathrm{E}+05$	$1407 \mathrm{E}+05$	$1412 \mathrm{E}+05$	$1416 \mathrm{E}+05$	$1426 E+05$	$1483 E+05$
Friction factor, if		0.0245	00245	00245	00245	0.0245	0.0245	00245	00245	00245	00245
Recovery factor, r :		0.7487	0.7483	0.7478	0.7474	0.7469	0.7463	0.7458	0.7451	0.744	07439
Adiabatic Wall Temperature, T_{3} :	${ }^{\circ} \mathrm{C}$	19.5455	19.4975	193774	192489	19.1034	19.0084	18.9252	183789	17.7969	14.5823
Enthalpy h	KJ/kg	8198161	819.6905	8195335	8193166	8190049	819.1454	8177185	8163091	8128498	7892385
Entropy s	KJ/kg. K	55401	5646	5918	5.6226	56582	57007	57530	58219	59237	6.1475
Critical Properties at Outlet Mach 1											
.-..................-Cntical Pressure	Kpa G	-39.21									
	Kpa abs	62.11									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-19.59									
	${ }^{\circ} \mathrm{K}$	253.56									
Max length of duct at which no shock occurs:	m	12.17									
Drop											
Pressure drop/Segment Length	Kpa	23.39	25.22	26.53	28.28	30.51	32.00	39.22	43.77	55.19	95.90
Temperature drop / Segment Length		0.08	0.19	0.21	0.25	030	0.09	0.89	0.91	198	12.21
Total pressure drop	Kpa	400.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	16.71									

Figure F 11-28: Vent pipe model predictions for DBNGP gas mixture at 400 KPa gauge

Gas Property Calculation for DBNGP Gas Mixture @ $500 \mathrm{Kpa} \mathrm{gauge} \mathrm{\&} 19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter:	mm	13.7	13.7	13.7	13.7	137	137	13.7	137	137	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	3.02	3.02	3.02	3.02	3.02	302	3.02	3.02	302
Intemal diameter	mm	7.66	766	7.66	7.66	7.66	7.66	7.66	7.66	7.66	766
Roughness, E :	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (8/D)		1.96E-03	$1.96 \mathrm{E}-03$	1196E-03	196E-03	196E-03	1196E-03	$196 \mathrm{E}-03$	1.96E-03	$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$
Cross sectional area, A ,	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$	4.61E-05	4.61E-05					
Length of pipe	m.	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		DBNGP Gas Mixture									
Specific heat at constant pressure, cp.	J/Re K	2070.12	2068.15	2065.79	206327	206055	205750	205493	2049.83	2044.42	2035.62
Specific heat at constant volume cy	J/ke K	1575.60	1575.10	157430	1573.42	1572.43	157127	1570.69	156794	1565.18	155970
Ratio of specific heats, X		13139	13130	13122	13113	13104	13095	1.3083	13073	13062	13051
Molecular weight, MW	kghomole	17.93	1793	17.93	17.93	1793	1793	17.93	17.93	1793	1793
Gas constant, R	J kg K	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78
Standard condition											
Inlet pressure, P stD (gauge)	KPag	0.00	0.00	0.00	000	000	000	0.00	0.00	0.00	000
Atmospheric pressure	${ }^{1} \mathrm{~Pa}$	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P STo (absolute)	KPaabs	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature, T str:	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*} \mathrm{~K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond Z str		0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977
Density at standard condition PSTTP	kp/m	0.7599	07599	07599	0.7599	07599	07599	0.7599	0.7599	07599	0.7599
Normal or standard flow:	$\mathrm{m}^{3} / \mathrm{hr}$	55.0997	55.0997	55.0997	55.0997	55.0997	55.0997	55.0997	55.0997	55.0997	55.0997
	litres min	9183286	9183286	9183286	9183286	9183286	9183286	9183286	9183286	9183286	9183286
Phase flow:		Single									
Actual inlet flow condition:	kg/hr	41.87									
	m^{3} / h	931	977	1032	1097	11.76	12.75	1397	15.83	18.61	23.91
Standard flow condition	$m^{3} / 7 r$	55.10	55.10	55.10	55.10	55.10	55.10	55.10	55.10	55.10	55.10
Stagnation Properties											
- - - - -	\%	29291	29291	29280	292.69	29258	292.46	292.69	292.18	29206	29191
	${ }^{\circ} \mathrm{C}$	1976	19.76	19.65	1954	1943	1931	1954	19.03	18.91	18.76
Inlet Stagnation Pressure	Kpa abs	608.44	58129	550.98	51937	48598	44959	41221	365.74	31455	25091
Outlet Stagnation Pressure	Kpa abs	58129	55098	51937	485.98	449.59	41221	365.74	314.55	25091	145.96
Stagnation Density, Po:	kg/m	454	433	4.11	3887	3.62	335	3.06	272	234	188
Stagnation Enthalpy h_{0}.	KJ/kg	82022	820.49	820.58	820.67	820.78	82091	821.77	821.19	821.45	821.79
Upstream Condition											
- Inlet pressure, P_{1}	Kpag.	500.00	47184	44134	40921	375.00	33790	299.59	25156	198.23	130.43
	Kpa abs	601.33	573.16	542.67	510.54	47633	43923	400.91	352.89	29955	231.76
Inlet temperature, t_{1}	- ${ }^{\circ} \mathrm{C}$	19.00	18.9208	18.7135	18.4827	182121	17.8766	17.8181	16.8120	15.8290	13.6578
	${ }^{\circ} \mathrm{K}$	292.15	292.07	291.86	291.63	29136	291.03	290.97	289.96	288.98	286.81
Compressibility, z_{1}		0.9872	0.9878	0.9884	0.9891	0.9898	0.9905	0.9914	09923	0.9934	0.9947
- Viscosity $\mu^{\text {a }}$	Pasec	1.14E-05	114E-05	1.14E-05	1.14E-05	1.14E-05	1.14E-05	$1.14 \mathrm{E}-05$	$113 \mathrm{E}-05$	1.13E-05	1.12E-05
Density $\mathrm{P}^{\text {P }}$,	$\mathrm{kg} / \mathrm{m}^{3}$	4.4955	42836	40561	388164	336615	32853	29969	2.6445	22500	17515
	m/sec	56.1423	58.9201	62.225	66.1331	70.8671	76.8236	842184	95.4396	112.1742	1440954
		0.1339	01403	01482	01575	01687	01829	02002	02271	02671	03439
		38.4261	34.5780	30.7338	26.8936	23.0573	192250	15.3968	11.5724	7.7523	39366
Reynolds number, Re:		$1.690 \mathrm{E}+05$	$1.691 \mathrm{E}+05$	$1.693 \mathrm{E}+05$	$1.695 \mathrm{E}+05$	$1.697 \mathrm{E}+05$	$1.699 \mathrm{E}+05$	1.701E+05	$1.707 \mathrm{E}+05$	$1.713 \mathrm{E}+05$	$1726 \mathrm{E}+05$
		0.02434511	00243	0.0243	0.0243	0.0243	0.0243	0.0243	00243	00243	00243
Friction factor, 4 ff Recovery factor, r		0.75086096	0.7504	07499	07493	0.7488	0.7482	07475	07468	0.7460	07450
Adiabatic Wall Temperature, T_{yw} (1957	1955	19.42	1928	19.12	18.95	19.11	18.47	18.12	17.46
Enthalpy, h Entropy, s		818.72	818.84	818.72	81858	81837	818.06	81833	816.76	81530	81158
		5.43107305	54535	54781	55056	55367	55729	5.6158	5.6691	5.7395	58448
Downstream Condition											
$4 \mathrm{fl}_{122} / \mathrm{D}$		3.8139	3.8138	3.8136	3.8134	3.8133	3.8130	3.8129	3.8124	3.8118	3.8107
Mach number at the outlet, M_{2}		0.1403	0.1482	0.1575	0.1687	0.1829	02002	02271	02671	0.3439	0.7605
Absolute outlet pressure, P_{2}	Kраа	573.16	542.67	510.54	47633	43923	400.91	352.89	29955	231.76	10133
Outlet pressure (gauge)	Kpag	471.835	441344	409214	375.003	337901	299585	251.561	198226	130.432	0.000
Outlet temperature, t_{2}		18.92	18.71	18.48	18.21	17.88	17.82	16.81	15.83	13.66	4.95
Compressibility, z_{2}		0.9878	0.9884	09891	0.9898	0.9905	0.9914	0.9923	09934	0.9947	0.9971
	kg/m	42836	4.0561	3.8164	3.5615	32853	29969	2.6445	22500	1.7515	0.8170
Viscosity of gas $\mu 2$	Pasec	1.14E-05	1.14E-05	1.14E-05	1.14E-05	114E-05	1114E-05	$1.13 \mathrm{E}-05$	1.13E-05	11.12E-05	$1.05 \mathrm{E}-05$
Actual outlet flow:	$m^{3} / h r$	97749	103233	10.9716	1177570	12.7451	1339720	15.8336	18.6098	23.9056	512530
Velocity, V_{2}	$\mathrm{m} / \mathrm{sec}$	58.9201	62.225	66.1331	70.8671	76.8236	842184	95.4396	112.1742	144.0954	3089366
Reynolds number, Re		$1.691 \mathrm{E}+05$	1.693E+05	1.695E+05	$1.697 \mathrm{E}+05$	$1.699 \mathrm{E}+05$	1701E+05	1.707E+05	1.713E+05	1.726E+05	1835E+05
Friction factor, if		0.0243	00243	00243	00243	0.0243	0.0243	00243	00243	00243	00243
Recovery factor, r :		0.7504	07499	0.7493	0.7488	0.7482	0.7475	0.7468	0.7460	0.7450	07447
Adiabatic Wall Temperature, T_{3} :	${ }^{\circ} \mathrm{C}$	19.5515	19.4983	193579	192083	19.0393	18.9339	18.8521	182197	17.5682	12.7069
Enthalpy h	KJ/kg	818.8404	818.7240	818.5763	8183688	818.0584	8183311	8167601	8152989	8115760	7755702
Entropy s	KJ/kg.K	5.4535	54781	5056	53367	55729	5.6158	56691	57395	58448	6.0972
Critical Properties at Outlet Mach 1											
.....................-Critical Pressure	Kpa ${ }_{\text {G }}$	-26.45									
	Kpaabs	74.88									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-1992									
	${ }^{\circ} \mathrm{K}$	25323									
Max length of duct at which no shock occurs:	m	12.09									
Drop											
Pressure drop/Segment Length	Kpa	28.16	30.49	32.13	34.21	37.10	38.32	48.02	53.34	67.79	130.43
Temperature drop / Segment Length		0.08	0.21	0.23	0.27	0.34	0.06	1.01	0.98	2.17	18.61
Total pressure drop	Kpa	500.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	23.64									

Figure F 11-29: Vent pipe model predictions for DBNGP gas mixture at 500 KPa gauge

Gas Property Calculation for DBNGP Gas Mixture @ 600 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number:		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	137	137	13.7	137	137	13.7	137	137	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	302	3.02	3.02	3.02	302	3.02	3.02	302	302	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	766	766	7.66	766
Roughness, E	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (δ / D)		1.96E-03	$1.96 \mathrm{E}-03$	196E-03	1.96E-03	$1.96 \mathrm{E}-03$					
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe:	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		DBNGP Gas Mixture									
Specific heat at constant pressure, cp.	J/ke K	2076.62	207432	207158	2068.66	206550	206199	205907	205323	2047.14	203738
Specific heat at constant volume, cy	$J \mathrm{ke} K$	157677	157621	157530	157432	157321	157192	157134	156828	156532	155949
Ratio of specific heats, X		13170	13160	13150	13140	13129	13118	13104	13092	13078	13064
Molecular weight, M W	kg/mole	17.93	1793	1793	1793	17.93	17.93	17.93	17.93	1793	1793
Gas constant, R :	J/ke	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78
Standard condition											
Inlet pressure, Pssto (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Atmospheric pressure:	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P smo (absolute)	KPaabs	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature, T sto	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{*}{ }^{\text {K }}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{ZST}^{\text {ST }}$:		0.9977	0.9977	0.9977	0.9977	09977	0.9977	09977	09977	0.9977	0.9977
Density at standard condition PSTPR	$\mathrm{kg} / \mathrm{m}^{3}$	0.7599	0.7599	0.7599	07599	07599	07599	07599	07599	07599	0.7599
Normal or standard flow:	m^{3} / h	64.5888	645888	64.5888	645888	64.5888	64.5888	64.5888	645888	64.5888	645888
	litresmin	1076.4806	1076.4806	1076.4806	1076.4806	1076.4806	10764806	10764806	10764806	10764806	10764806
Phase flow:		Single									
Actual inlet flow condition:	kg/h	49.08									
	m^{s} / h	934	981	10.36	11.01	11.80	12.80	14.04	15.93	18.75	24.18
Standard flow condition.	$\mathrm{m}^{3} / \mathrm{hr}$	64.59	64.59	64.59	64.59	64.59	64.59	64.59	64.59	64.59	64.59
Stagnation Properties											
- .-............. Stagnation Temperature, T_{0}	${ }^{*} \times$	29291	29291	292.78	292.65	29252	29238	292.65	29205	291.89	291.71
	${ }^{\circ} \mathrm{C}$	19.76	19.76	19.63	1950	1937	1923	19.50	1890	18.74	18.56
Inlet Stagnation Pressure:	Kpa abs	709.69	67780	642.65	605.62	56658	523.78	48032	425.71	365.69	290.81
Outlet Stagnation Pressure	Kpa abs	677.80	642.65	605.62	566.58	523.78	48032	425.71	365.69	29081	16357
Stagnation Density, P O.	ke/m ${ }^{3}$	530	5.06	4.80	4.52	423	391	358	3.17	272	2.16
Stagnation Enthalpy ho_{0},	KJ/kg	819.19	81951	819.60	81972	81984	81998	820.98	820.30	820.60	820.98
Upstream Condition											
-	Kро. 8	600.00	567.02	531.42	493.79	453.74	41021	365.73	309.10	24653	166.72
	Kpa abs	701.33	66835	632.75	595.11	55506	51154	467.06	410.42	34786	268.05
Inlet temperature, t_{1}	- $\quad . \quad$ - ${ }^{\circ}$	19.00	18.9187	18.6915	18.4396	18.1463	17.7840	177606	16.6542	15.6245	133466
	${ }^{\circ} \mathrm{K}$	292.15	292.07	291.84	29159	29130	29093	29091	289880	288.77	28650
Compressibility, z_{1}	.-............	0.9851	0.9858	0.9865	0.9873	0.9881	0.9890	0.9899	09910	0.9923	0.9939
Viscosity, μ_{1}	Pasec	1.15E-05	1.14E-05	1.14E-05	1.14E-05	1.14E-05	1.14E-05	1.14E-05	1.13E-05	1.13E-05	1.12E-05
Density ${ }_{2} P_{1}$	ke/m	52545	50053	4.7389	44574	4.1582	38335	3.4971	3.0813	2.6175	20297
	m/sec	56.3058	991088	62.4315	663738	71.1497	077176	84.6014	96.0164	113.0290	145.7604
Mach number at the inlet, M_{1} 1		0.1343	0.1408	0.1487	01580	0.1693	0.1836	02010	02283	02689	0.3475
$4 \mathrm{fL}_{1} / \mathrm{D}^{\text {²}}$		38.1042	342777	30.4552	26.6369	22.8226	19.0124	152064	11.4044	7.6068	38137
Reynolds number, Re		$1.979 \mathrm{E}+05$	1980E+05	1983E+05	$1.985 \mathrm{E}+05$	$1988 \mathrm{E}+05$	1991E+05	1992E+05	$2000 \mathrm{E}+05$	2008E+05	2024E+05
Friction factor, 4 f		0.02420005	00242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	0.0242	00242
Recovery factor, r :		0.75266227	0.7521	07515	0.7508	0.7502	07495	0.7487	07478	0.7468	07457
Adiabatic Wall Temperature, T_{w} S		19.57	1955	19.40	1924	19.07	18.87	19.06	1833	1795	1723
Enthalpy h		817.69	817.86	81776	817.62	817.43	817.12	817.53	815.84	81438	880.56
Entropy, s		535720890	53798	54045	54321	54633	54997	55429	5.5964	5.6674	5.7742
Downstream Condition											
$4 \mathrm{fI} \mathrm{L}_{2 / 2}$ /D.		3.7911	3.7910	3.7909	3.7907	37905	37903	3.7902	3.7897	37892	3.7882
Mach number at the outlet, M_{2}		0.1408	0.1487	0.1580	01693	01836	02010	02283	02689	0.3475	08772
Absolute outlet pressure, P_{2}	Kра а	66835	632.75	595.11	555.06	51154	467.06	410.42	347.86	268.05	10133
Outlet pressure (gauge)	Kpag.	567.022	531.421	493.785	453.737	410213	365.733	309.098	246530	166.721	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.92	18.69	18.44	18.15	17.78	17.76	16.65	15.62	1335	-12.26
Compressibility, z2		0.9858	0.9865	0.9873	0.9881	0.9890	0.9899	09910	0.9923	0.9939	0.9968
- ${ }^{\text {a }}$ Density, P_{2} :	kg/m	5.0053	4.7389	4.4574	4.1582	38335	3.4971	3.0813	2.6175	2.0297	0.8401
Viscosity of gas μ_{2}	Pasec	1.14E-05	$1.14 \mathrm{E}-05$	$1.14 \mathrm{E}-05$	$1.14 \mathrm{E}-05$	1.14E-05	$1.14 \mathrm{E}-05$	$1.13 \mathrm{E}-05$	1.13E-05	1.12E-05	$1.03 \mathrm{E}-05$
Actual outlet flow:	$m^{3} / 7 r$	98062	103575	11.0115	11.8038	12.8037	14.035	159293	18.7517	24.1819	58.4255
Velocity, V_{2}	m/sec	59.1088	62.4315	663738	711497	771766	84.6014	96.0164	113.0290	145.7604	352.1703
Reynolds number, Re-		1980E+05	1983E+05	$1985 \mathrm{E}+05$	$1988 \mathrm{E}+05$	$1991 \mathrm{E}+05$	$1992 \mathrm{E}+05$	2.000E+05	2008E+05	$2.024 \mathrm{E}+05$	2205E+05
Friction factor, 41		0.0242	00242	00242	00242	00242	00242	00242	00242	00242	00241
Recovery factor, r :		0.7521	07515	0.7508	0.7502	0.7495	07487	0.7478	0.7468	07457	07457
Adiabatic Wall Temperature, $\mathrm{T}_{\text {a }}$:	${ }^{\circ} \mathrm{C}$	19.5539	19.4951	193351	19.1651	18.9739	18.8594	18.7813	18.0702	173721	10.7235
Enthalpy h	KJ/kg	817.8618	817.7558	817.6205	8174252	817.1249	8175340	815.8425	8143795	8105613	7610566
Entropy, s:	KJ/kg. K	53798	5.4045	54321	54633	54997	55429	55964	5.6674	57742	6.0424
Critical Properties at Outlet Mach 1											
	Kpa G	-13.81									
	Kpa abs	87.51									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-20.25									
	${ }^{*} \mathrm{~K}$	25290									
Max length of duct at which no shock occurs:	m	12.06									
Drop											
Pressure drop / Segment Length	кра	32.98	35.60	37.64	40.05	43.52	44.48	56.64	62.57	79.81	166.72
Temperature drop/ Segment Length.		0.08	0.23	0.25	0.29	0.36	0.02	1.11	1.03	2.28	25.61
Total pressure drop	кра	600.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	31.11									

Figure F 11-30: Vent pipe model predictions for DBNGP gas mixture at 600 KPa gauge

Gas Property Calculation for DBNGP Gas Mixture @ 700 Kpa gauge \& $19^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	13.7	13.7	13.7	13.7	137	137	137	137	13.7	137
Special wall thickness	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness	mm	3.02	3.02	3.02	3.02	302	3.02	3.02	302	302	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, (s/D)		1.96E-03	$1.96 \mathrm{E}-03$	1196E-03	$1.96 \mathrm{E}-03$	1.96E-03	$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	$196 \mathrm{E}-03$	$1.96 \mathrm{E}-03$	$1.96 \mathrm{E}-03$
Cross sectional area, A	m^{2}	$4.61 \mathrm{E}-05$									
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		DBNGP Gas Mixture									
Specific heat at constant pressure, cp	J/ke K	2083.18	208055	207743	2074.11	207052	206654	206329	205672	204998	203937
Specific heat at constant volume cy	J/ke K	157795	157733	157632	157522	157401	157259	157202	1568.66	156552	155944
Ratio of specific heats, X		13202	13190	13179	13167	13154	13141	13125	1.3111	13095	13078
Molecular weight, MW	kg/omole	17.93	17.93	1793	1793	1793	1793	17.93	17.93	17.93	1793
Gas constant, R	J kg K	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78
Standard condition											
Inlet pressure, P sto (gauge)	KPag	0.00	000	0.00	000	000	0.00	0.00	0.00	000	000
Atmospheric pressure	${ }_{\text {K }} \mathrm{Pa}^{\text {a }}$	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, Pssmp (absolute)	KPaabs	101.325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Temperature T sit	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\circ} \mathrm{K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $\mathrm{Z}_{\text {stive }}$ -		0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977
Density at standard condition PSTT?	ke/m	0.7599	07599	07599	07599	07599	07599	0.7599	07599	07599	07599
Normal or standard flow:	$m^{3} / h r$	74.0582	174.0582	74.0582	74.0582	74.0582	74.0582	74.0582	74.0582	74.0582	74.0582
	litres/min	12343026	12343026	12343026	12343026	12343026	1234.3026	12343026	12343026	12343026	12343026
Phase flow:		Single									
Actual inlet flow condition:	kghr	56.28									
	m^{3} / h	935	982	1037	11.03	1183	1283	14.06	15.97	18.81	2429
Standard flow condition	$\mathrm{m}^{\text {s }} / \mathrm{hr}$	74.06	74.06	74.06	74.06	74.06	74.06	74.06	74.06	74.06	74.06
Stagnation Properties											
- - -	${ }^{*} \mathrm{~K}$	29291	29291	292.76	292.61	292.46	292.29	292.60	29191	291.73	29151
	${ }^{\circ} \mathrm{C}$	19.76	19.76	19.61	19.46	1931	19.14	19.45	18.76	18.58	1836
Inlet Stagnation Pressure	Kpa abs	81093	774.40	73433	69195	64731	59826	548.96	486.13	41749	331.77
Outlet Stagnation Pressure	Kpa abs	77440	73433	69195	64731	59826	548.96	486.13	41749	331.77	18459
Stagnation Density, Po	kg/m	6.07	5.80	549	517	4.84	447	4.09	363	3.11	2.47
Stagnation Enthalpy $\mathrm{h}_{\text {¢ }}$.	KJ/kg	818.16	818.52	818.62	818.75	818.89	819.04	820.19	819.40	819.73	820.15
Upstream Condition											
-	Kpog.	700.00	66228	621.56	578.48	532.64	48280	432.40	367.12	29554	20416
	Kpa abs	801.33	763.60	722.89	679.80	63397	584.13	533.72	468.45	396.86	305.49
Inlet temperature, t_{1}	- \quad - ${ }^{\circ} \mathrm{C}$	19.00	18.9174	18.6700	18.3976	18.0823	17.6957	17.7121	16.5077	15.4431	13.1059
Comere T_{1}	${ }^{\circ} \mathrm{K}$	292.15	292.07	29182	29155	29123	290.85	290.86	289.66	28859	28626
Compressibility, z_{1}		0.9830	0.9838	0.9846	0.9854	0.9864	0.9874	0.9885	0.9897	0.9912	0.9930
Viscosity, μ_{1}	Pasec	1.15E-05	1.15E-05	1.14E-05	1.14E-05	114E-05	1.14E-05	1.14E-05	1.13E-05	1.13E-05	1.12E-05
Density, P	kg/m	6.0166	57304	54250	51019	4.7586	43858	4.0027	35233	29915	23172
Mach numberat.........elocity, V_{1},	m/sec	563823	59.1982	62.5310	66.4912	712881	773477	84.7503	962826	1133987	1463951
		0.1345	0.1410	0.1488	0.1582	0.1695	0.1839	02012	02288	02695	03487
		37.9091	34.0994	30.2939	26.4924	22.6951	18.9019	15.1129	113279	75474	37713
Reynolds number, Re		$2266 \mathrm{E}+05$	$2268 \mathrm{E}+05$	$2271 E+05$	$2274 \mathrm{E}+05$	2277E+05	2281E+05	2283E+05	2293E+05	2302E+05	2321E+05
Friction factor, 4 f :		0.02409058	00241	0.0241	0.0241	0.0241	00241	0.0241	0.0241	0.0241	0.0241
Recovery factor, r :		0.75448918	0.7538	07531	0.7524	0.7516	0.7508	0.7499	07489	0.7477	0.7464
Adiabatic Wall Temperature, $\mathrm{T}_{\text {a }}$ ¢		19.58	1955	1938	1920	19.00	18.78	19.02	18.20	17.79	17.03
Enthalpy, h Entropy, s		816.67	816.88	816.79	816.66	816.48	81620	816.75	814.94	81350	809.68
		529286293	53156	53403	53679	53992	54357	54790	55326	5.6038	57109
Downstream Condition											
		3.7740	3.7739	3.7737	3.7736	37734	37732	3.7731	37726	3.7721	37712
		0.1410	0.1488	0.1582	0.1695	01839	02012	02288	02695	0.3487	0.9888
Mach number at the outlet, M_{2} : Absolute outlet pressure, P_{2}	кра а	763.60	722.89	679.80	63397	584.13	533.72	468.45	396.86	305.49	10133
Outlet pressure (gauge)	Kpag	662276	621.565	578.476	532.644	482.801	432398	367.122	295537	204.161	0.000
Outlet temperature, t_{2}	${ }^{\circ} \mathrm{C}$	18.92	18.67	18.40	18.08	17.70	17.71	16.51	15.44	13.11	-19.84
Compressibility, z_{2}		0.9838	0.9846	0.9854	0.9864	0.9874	0.9885	0.9897	09912	0.9930	09965
${ }^{\text {Viscosity onsity }}$ ($\boldsymbol{\rho}_{2}$	${\mathrm{kg} / \mathrm{m}^{3}}^{3}$	5.7304	5.4250	5.1019	4.7586	43858	4.0027	3.5233	29915	23172	0.8655
	Pasec	$1.15 \mathrm{E}-05$	1.14E-05	1.14E-05	1.14E-05	1148-05	$1.14 \mathrm{E}-05$	$11.13 \mathrm{E}-05$	1.13E-05	1.12E-05	$1.00 \mathrm{E}-05$
Actual outlet flow	$\mathrm{m}^{3} / 7 r$	9.8211	103740	11.0310	11.8268	128322	14.0602	159734	18.8130	242871	65.0251
$\text { Velocity, } \mathrm{V}_{2}$	m/sec	59.1982	62.5310	66.4912	712881	773477	84.7503	962826	1133987	1463951	3919506
Reynolds number, Re		$2268 \mathrm{E}+05$	$2271 \mathrm{E}+05$	2274E+05	2277E+05	2281E+05	2283E+05	2293E+05	2302E+05	2321E+05	$2.596 \mathrm{E}+05$
Friction factor, 4 If		0.0241	0.0241	0.0241	00241	0.0241	00241	00241	00241	00241	00240
Recovery factor, r :		0.7538	07531	0.7524	0.7516	07508	07499	0.7489	0.7477	07464	07469
Adiabatic Wall Temperature, $T_{\text {aw }}$: $\quad \cdots \quad{ }^{\circ} \mathrm{C}$		19.5548	19.4906	193106	19.1203	18.9073	18.7852	18.7132	179243	17.1915	8.6915
Enthalpy, hEntropy,	KJ/kg	816.8819	8167857	816.6633	8164815	816.1952	8167484	814.9412	8134984	8096767	746.1151
	$K J / \mathrm{kg} \cdot \mathrm{K}$	53156	53403	53679	53992	54357	54790	55326	56038	57109	59842
Critical Properties at Outlet Mach 1 . .a. -											
Critical Pressure	Kpa G	-1.28									
	Kpa abs	100.05									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-20.59									
	${ }^{*} \mathrm{~K}$	252.56									
Max length of duct at which no shock occurs	m	12.05									
Drop											
Pressure drop/Segment Length	Kрa	37.72	40.71	43.09	45.83	49.84	50.40	65.28	71.59	9138	204.16
Temperature drop/Segment Length	${ }^{\circ}$	0.08	0.25	0.27	0.32	0.39	0.02	1.20	1.06	234	32.94
Total pressure drop	Kpa	700.00									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	38.90									

Figure F 11-31: Vent pipe model predictions for DBNGP gas mixture at 700 KPa gauge

Gas Property Calculation for DBNGP Gas Mixture @ 709.142009419784 Kpa gauge \& $19{ }^{\circ} \mathrm{C}$ Inlet Conditions										by Farhan Rajiwate	
Pipe segments		Segment-1.	Segment-2	Segment-3	Segment-4	Segment-5	Segment-6	Segment-7	Segment-8	Segment-9	Segment-10
Schedule number		80	80	80	80	80	80	80	80	80	80
Outside diameter	mm	137	13.7	137	137	137	137	137	137	13.7	137
Special wall thickness:	mm	0	0	0	0	0	0	0	0	0	0
Wall thickness:	mm	3.02	3.02	3.02	3.02	302	302	3.02	3.02	3.02	302
Intemal diameter	mm	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
Roughness, s :	mm	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150
Relative roughness, ($8 / \mathrm{D}$)		1.96E-03	1196E-03	$1.96 \mathrm{E}-03$	1.96E-03	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$	$196 \mathrm{E}-03$	196E-03	196E-03	$196 \mathrm{E}-03$
Cross sectional area, A :	m^{2}	$4.61 \mathrm{E}-05$	4.61E-05	$4.61 \mathrm{E}-05$							
Length of pipe	m	12.00									
Pipe segments	m	120	120	120	120	120	120	120	120	120	120
Gas properties		DBNGP Gas Mixture									
Specific heat at constant pressure, cp	J/kg K	2083.79	2081.12	207797	2074.61	207099	206696	206368	2057.05	205024	203956
Specific heat at constant volume, cy	$J / \mathrm{kg}, \mathrm{K}$	1578.05	157743	157641	157531	1574.08	1572.65	1572.09	1568.69	156554	155944
Ratio of specific heats, X.		13205	13193	13182	13170	13157	13143	13127	13113	13096	13079
Molecular weight, M.W	kg/mole	17.93	17.93	1793	1793	17.93	17.93	17.93	17.93	1793	1793
Gas constant, R	J/KK	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78	463.78
Standard condition											
Inlet pressure, Pssto (gauge)	KPag	0.00	0.00	0.00	0.00	0.00	000	000	0.00	0.00	000
Atmospheric pressure	KPa	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
Inlet pressure, P sto (absolute)	KPaabs	101.325	101325	101325	101325	101325	101.325	101325	101325	101325	101.325
Temperature T strp	${ }^{\circ} \mathrm{C}$	15	15	15	15	15	15	15	15	15	15
	${ }^{\circ} \mathrm{K}$	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15	288.15
Compressibility at std cond $Z_{\text {STD }}$ (0.9977	0.9977	0.9977	09977	0.9977	0.9977	0.9977	0.9977	0.9977	0.9977
Density at standard condition PSTR	$\mathrm{kg} / \mathrm{m}^{3}$	0.7599	0.7599	07599	07599	07599	07599	07599	0.7599	07599	07599
--.-. Normal or standard flow:	$\mathrm{m}^{3} / \mathrm{hr}$	74.9234	74.9234	\%49234	749234	74923	74.9234	74.923	74.9234	749234	74.923
	litres/min	1248.7229	1248.7229	1248.7229	1248.7229	1248.7229	1248.7229	1248.7229	1248.7229	1248.7229	12487222
Phase flow		Single									
Actual inlet flow condition:	kghr	56.94									
	m^{\prime} / h	935	982	1037	11.03	11.83	12.83	14.06	15.98	18.82	2429
Standard flow condition	m^{3} / h	7492	74.92	74.92	7492	74.92	74.92	74.92	7492	74.92	74.92
Stagnation Properties											
Stagnation Temperature, T_{0}	${ }^{*} \times$	29291	29291	292.76	292.61	292.45	29229	292.60	29190	29171	29149
	${ }^{\circ} \mathrm{C}$	19.76	19.76	19.61	19.46	19.30	19.14	19.45	18.75	18.56	1834
Inlet Stagnation Pressure:	Kpaabs	820.19	78324	742.72	699.85	654.69	60507	55526	491.68	42224	335.56
Outlet Stagnation Pressure	Kpa abs	78324	742.72	699.85	654.69	60507	55526	491.68	42224	335.56	186.69
Stagnation Density, Po:	kg/m ${ }^{3}$	6.14	58.8	556	523	4.89	4.52	4.14	3.67	3.15	250
Stagnation Enthalpy h_{0}.	KT/kg	818.06	818.43	818.53	818.66	818.80	818.96	820.11	81932	819.65	820.08
Upstream Condition											
-	Kро g .	709.14	670.99	629.81	58622	539.86	48945	43851	372.44	300.04	20763
	Kpa abs	810.47	77231	731.13	68755	641.19	59077	539.84	473.77	40137	308.95
Inlet temperature, t_{1}	$\stackrel{\square}{C}$	19.00	18.9173	18.6680	183938	18.0765	17.6877	177080	164946	15.4271	13.0859
Comonessibity T_{1}	${ }^{\circ} \mathrm{K}$	292.15	292.07	29182	29154	29123	290.84	290.86	289.64	28858	28624
		0.9828	0.9836	0.9844	0.9853	0.9862	0.9872	0.9883	09896	0.9911	09929
Compressibility, z_{1} Viscosity, μ_{1}	Pasec	1.15E-05	1.15E-05	1.14E-05	114E-05	1144-05	114E-05	1148	113E-05	113 E 05	112E-05
Density,P_{1} :	kepm ${ }^{3}$	6.0865	57969	54879	51610	4.8136	44365	40492	35639	3.0259	23439
Velocity, V_{1}	m/sec	56.3864	592032	62.5367	664981	712962	773576	84.7567	962974	1134178	1464223
Mach number at the inlet M_{1}		0.1345	01410	01488	0.1582	0.1695	01839	02012	02288	02695	03487
-		37.8954	34.0871	302828	26.4827	22.6868	188950	15.1073	113237	75445	37698
Reynolds number, Re		$2293 \mathrm{E}+05$	$2294 \mathrm{E}+05$	2297E+05	2300E+05	2304E+05	2308E+05	2309E+05	2320E+05	$2329 \mathrm{E}+05$	2349E+05
Friction factor, 4 f		0.02408189	0.0241	0.0241	0.0241	0.0241	0.0241	00241	0.0241	0.0241	0.0241
Recovery factor, r :		0.75465747	0.7540	07533	0.7525	0.7517	0.7509	07500	07490	0.7478	0.7465
Adiabatic Wall Temperature, $\mathrm{T}_{\text {ay }}$ (19.58	1955	1938	1920	19.00	18.77	19.01	18.18	17.77	17.01
		816.57	816.79	816.70	816.58	81640	816.11	816.68	814.86	813.42	809.60
Enthalpy, h		528737043	53101	53348	53624	53937	54302	5.4735	55271	55983	57054
Downstream Condition											
		37726	37725	37724	37722	37720	37718	37718	37712	37708	37698
		0.1410	0.1488	0.1582	0.1695	01839	02012	02288	02695	03487	0.9988
Absolute outlet pressure, P_{2}.	крра	77231	731.13	68755	64119	590.77	539.84	473.77	40137	30899	10132
Outlet pressure (gauge)	Apag.	670986	629.808	586222	539.864	489.446	438.513	372.444	300.042	207.626	0.000
Outlet temperature, t_{2}.	${ }^{\circ} \mathrm{C}$	18.92	18.67	18.39	18.08	17.69	17.71	16.49	15.43	13.09	-20.54
Compressibility, 2_{2}		0.9836	0.9844	0.9853	0.9862	0.9872	0.9883	0.9896	0.9911	0.9929	0.9965
	kg/m	5.7969	54879	5.1610	4.8136	44365	4.0492	3.5639	3.0259	23439	0.8679
Viscosity of gas, μ,Actual outlet flow:	Pasec	1.15E-05	114E-05	114E-05	$114 \mathrm{E}-05$	$114 \mathrm{E}-05$	$114 \mathrm{E}-05$	113 E 05	$1.13 \mathrm{E}-05$	$112 \mathrm{E}-05$	$998 \mathrm{E}-06$
	$m^{3} / 7 r$	98219	103749	11.0321	11.8281	128337	14.0613	15975	18.8162	242917	65.6010
Velocity, V_{2}	msaec	592032	62.5367	66.4981	712962	773576	84.7567	962974	113.4178	146.4223	395.4217
Reynolds number, Re)		$2294 \mathrm{E}+05$	2297E+05	$2300 \mathrm{E}+05$	$2304 \mathrm{E}+05$	2308E+05	2309E+05	2320E+05	2329E+05	$2349 \mathrm{E}+05$	2633E+05
Friction factor, 4 \%		0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0241	0.0240
Recovery factor, r :		0.7540	0.7533	0.7525	0.7517	0.7509	07500	0.7490	0.7478	07465	07470
		195549	194901	193083	19.1162	189012	18.7784	18.7070	179110	17.1753	85049
-................... Enthalpy, h	KJ/kg	816.7923	816.6969	8165758	8163952	816.1102	816.6768	814.8592	813.4188	8095994	744.7391
Entropy,	KJ/kg K	53101	53348	53624	53937	54302	5.4735	55271	55983	57054	59788
Critical Properties at Outlet Mach 1											
Critical Pressure	KpaG	-0.14									
	Kpa abs	101.19									
Critical Temperature	${ }^{\circ} \mathrm{C}$	-20.62									
	${ }^{\circ} \mathrm{K}$	252.53									
Max length of duct at which no shock occurs:	m	12.05									
Drop											
Pressure drop/Segment Length	Kpa	38.16	41.18	43.59	46.36	50.42	50.93	66.07	72.40	92.42	207.63
Temperature drop/Segment Length	${ }^{\circ} \mathrm{C}$	0.08	0.25	0.27	0.32	0.39	-0.02	1.21	1.07	2.34	33.62
Total pressure drop	кра	709.14									
Total temperature drop:	${ }^{\circ} \mathrm{C}$	39.62									

Figure F 11-32: Vent pipe model predictions for DBNGP gas mixture at sonic conditions

Appendix G

12.1 Vent Pipe Model Comparison with Hysys Simulation

Table G 12-1: Comparison of vent pipe model predictions with Hysys simulation in pressure range 100-500 KPa gauge for air

$\therefore y^{2}$	$\overline{[35}$			
\triangle EESG\%				-367 \square^{6}
	Q2\%gr ${ }^{\circ} \mathrm{C}$			
		\%egegeg		
		\% \% वRECE		- 4.
		\% $\square^{\text {\% \% \% \% }}$		\%296\%
		geczatio		
				\% $\square^{6} 7 \square^{\circ} \mathrm{B}$
				E\%2]f
				\%

Table G 12-2: Comparison of vent pipe model predictions with Hysys simulation in pressure range 600-1000 KPa gauge for air

				3 \% \% ${ }^{\text {a }}$
				9686\% ${ }^{3}$
	\% Gebegt		7 \% \% \% \% \%	
- $\square^{\text {\% \% \% \% \% \% }}$			\% \% \% \% \% ${ }^{\text {\% }}$	
	\%gbeg ${ }^{\text {g }}$		3 289% \%	\%GEP边
	\% $\square^{\text {geng \% }}$			
				\% \% \% ${ }^{\text {a }}$
			5\% \% \% \% \%	\% \% ¢ege

Table G 12-4: Comparison of vent pipe model predictions with Hysys simulation in pressure range 600-1000 KPa gauge for carbon-dioxide

Table G 12-5: Comparison of vent pipe model predictions with Hysys simulation in pressure range 100-500 KPa gauge for methane

Table G 12－6：Comparison of vent pipe model predictions with Hysys simulation in pressure range 600－1000 KPa gauge for methane

딜	
a	
ำ	
\square	
3	
${ }^{2} 9$	
（ 0	
～${ }^{1}$	

	－0．0\％	－0．024	0．08\％$\%$	．	－0．08				0．34\％		
0．00\％	－0．01\％	0．01\％ 0	0．21\％ 0	0．02\％ 0	0．00\％ 0	0．82\％ 0	0．01\％	0．18\％	1．146	179．18\％	
0．304	－．30\％	－0．30\％－0，	0．30\％．0．	0．30\％．0．	－0．30\％ 0	0．30\％－0	－	0．30\％	－	0．30\％	
	－0．99\％－	－0．4	0．49\％－0，	0.996	－0．94，	0．49\％ 0	0.496	0.994	0.994	－0．49\％	
0．52\％	－0．484－0	－0．40\％－0	－0	229－0．	－0．0\％ 0	0．13\％ 0	0.			7.95%	
23\％	0．17\％	0．10\％\％－0	0．01\％－0	0．07\％－0，	－0．21\％ 0	0．43\％－ 0	0．38\％	0．454：	0．30\％	7．9\％	

	\square			
	CRE－			
9 \％\％\％${ }^{\text {a }}$	\％6\％${ }^{\text {g\％}}$			\％\％\％\％${ }^{\text {\％\％}}$
	\square ¢6，${ }^{\circ} \mathrm{A}$ ¢			
＊\％－\％egat				
			\％里易呂	
	\square^{\square}		\％	
$\cdots 3$	二6eget			
	2G\％${ }^{\text {a }}$			

Table G 12－7：Comparison of vent pipe model predictions with Hysys simulation in pressure range 100－500 KPa gauge for DBNGP gas

Pipioe Nodel Comarion nrib HYSYS											
\bigcirc	$\underline{0.6}$	1.8	$\underline{3}$	${ }^{4} 2$	5.4	6.6	$\underline{ } 18$	${ }^{2}$	10.2	$\underline{1} 4$	12
NuT．											
14		0．03\％	． 3.38	0．02\％	0．20\％	0.02	0.084	0．05\％	0.16%	0.218	
0.005	－0．01\％	－0．01\％	－0．06\％	－0．036	0．00\％	－0．15\％	0．00\％	－0．02\％	0.07	0.12%	
0.14%		0.146	0.144	0.14%	0.14%	0.14	0.14	0.44	0.1	0.146	
－0．09\％	－0．09\％	－0．09\％	－0．09\％	－0．09\％	－0．09\％	－0．09	0.094	－0．094	0.004	－0．096	0.004
－0．1\％．	0.11%	0.11%	0.16%	0.96	0.16%	0.216	0.174	0.20	0.15%	0.096	
0.02%	0．03\％	． 0.02%	－0．06\％	－0．046	0.006	－0，09	0.014	0.07	0.016	0.046	
	－0．10	0.13	－0．0\％	－0．046	－0．20\％					0．35\％	

\％$=$	$\square \square^{\circ} \mathrm{O}$		4	\bigcirc
\＃\％				
\％ 26	\％			
3 ${ }^{\circ} \mathrm{O}$				
36	\％29\％			
	GG\％$\square^{\text {g }}$			
\％	\％${ }^{\circ} \mathrm{O}$			
\％\square^{6}				
2ั 2 Z		骨边		
－－				

mixture

$-$
 最㱐
 $\begin{array}{r}\text { 童 } \\ \text { 音胃 } \\ \hline\end{array}$
 童
 Velocity Mases Prow Sta Vol ${ }^{\text {Cas faw }}$ Veloceity $\begin{array}{r}8 \\ \frac{5}{1} \\ \hline \\ \hline\end{array}$ 皆 | Denain |
| :--- |
| Mach Number |
| $\begin{array}{l}\text { Preasure } \\ \text { Temperature }\end{array}$ | 童最者

Table G 12-8: Comparison of vent pipe model predictions with Hysys simulation in pressure range 600-1000 KPa gauge for DBNGP gas

mixture Presaure
Temperature
Mass Flow
Std. Vol Gas Flow
Velosity
Density
Mach Number
Presure
Temperture

Appendix H

13.1 Vent Pipe Model Program

Units Inlet Static Pressure, $\mathbf{P a}_{\mathbf{A}}$	Outlet Static Pressure, \mathbf{P}_{2}	Units	Inlet Static Temperature, T_{1}	Outlet Static Temperature
KPag $\quad 500.0$	0.0	${ }^{\circ} \mathrm{C}$	19.00	-8.73
KPa abs 601.3	101.3	${ }^{\circ} \mathrm{K}$	292.15	264.42
Gas Properties				
Pressure Drop	500.0	KPa	Calculate for pas properties	
Temperature Drop	27.73	${ }^{\circ} \mathrm{C}$	Calaite	
Exit Gas Temperature	-8.73	${ }^{\circ} \mathrm{C}$	User options on approaching sonic conditions	
Exit Pipe Wall Temperature	11.51	${ }^{\circ} \mathrm{C}$		
Exit Recovery Factor	0.725			
Inlet Mach Number	0.1287		Inlet Pressure	
Outlet Mach Number	0.7268		Inle Fessure	
Max Mass Flowrate	52.73 -	kghr	Outlet Pessure	
Std. Vol Flowrate	43.04	$\mathrm{m}^{3} / \mathrm{hr}$	Vert Lengrt	
Flow Condition	Subsonic ($0<\mathrm{M}<0.8$)			
Stagnation Temperature	19.69	${ }^{\circ} \mathrm{C}$		
Stagnation Enthalpy	292.27	KJ/kg		
Critical Pressure	-30.76	KPa G		
Critical Temperature	-30.01	${ }^{\circ} \mathrm{C}$	Take a snap-shot of pas properties	
Critical Length	12.08	m	Snap Shot	
Friction Factor	0.02			
Reynold's Number	144883			
Exit Velocity	237.75	$\mathrm{m} / \mathrm{sec}$		

Vent Pipe Model ${ }^{\text {© }}$

Figure H 13-1: Vent pipe model user specification sheet

[^0]
Interpolation of Property Relation

Static Function XYinterpolate(xyarray As Variant, x, y As Single) As Single
Dim n1, M1 As Integer
Dim x1, x2, y1, y2, Ry1x1, Ry1x2, Ry1x1x2, Ry2x1, Ry2x2, Ry2x1x2 As Single
x1 = Application.HLookup(x, xyarray, 1)
$\mathrm{n} 1=$ Application.Match(x1, xyarray.Rows(1), 0)
$\mathrm{x} 2=$ xyarray. $\operatorname{Cells}(1, \mathrm{n} 1+1)$.Value
y1 = Application.VLookup(y, xyarray, 1)
M1 = Application.Match(y1, xyarray.Columns(1), 0)
y2 $=$ xyarray.Cells (M1 $+1,1$).Value
Ry1x1 $=$ xyarray.Cells(M1, n1)
Ry1x2 $=$ xyarray.Cells(M1, n1 + 1)
Ry1x1x2 $=(x-x 1) /(x 2-x 1) *(R y 1 x 2-R y 1 x 1)+R y 1 x 1$
Ry2x1 $=$ xyarray.Cells(M1 $+1, \mathrm{n} 1$)
Ry2x2 $=$ xyarray.Cells $(\mathrm{M} 1+1, \mathrm{n} 1+1)$
Ry2x1x2 $=(x-x 1) /(x 2-x 1) *(R y 2 x 2-R y 2 x 1)+R y 2 x 1$
XYinterpolate $=(\mathrm{y}-\mathrm{y} 1) /(\mathrm{y} 2-\mathrm{y} 1) *(\operatorname{Ry2x} 1 \mathrm{x} 2-\operatorname{Ry} 1 \mathrm{x} 1 \mathrm{x} 2)+\operatorname{Ry} 1 \mathrm{x} 1 \mathrm{x} 2$
End Function
Static Function Log10(x)
$\log 10=\log (\mathrm{x}) / \log (10)$
End Function

Serghides approximation to Colebrook-White Equation for calculating friction factor:

Function MoodyFrictFactor(Nre, rel_rough)
If Nre > 2000 Then

$$
\begin{aligned}
& \mathrm{a}=-2 * \log 10(\text { rel_rough } / 3.7+12 / \text { Nre }) \\
& \mathrm{b}=-2 * \log 10(\text { rel_rough } / 3.7+2.51 * \mathrm{a} / \text { Nre }) \\
& \mathrm{c}=-2 * \log 10(\text { rel_rough } / 3.7+2.51 * \mathrm{~b} / \text { Nre }) \\
& \text { MoodyFrictFactor }=\left(\mathrm{a}-(\mathrm{b}-\mathrm{a})^{\wedge} 2 /(\mathrm{c}-2 * \mathrm{~b}+\mathrm{a})\right)^{\wedge}-2
\end{aligned}
$$

Else
MoodyFrictFactor $=64 / \mathrm{Nre}$
End If
End Function

Initial estimate of friction factor using Von-Karman equation

Function VonKarmanFrictFactor(rel_rough)
If rel_rough > 0 Then
$\mathrm{a}=2 * \log 10($ rel_rough / 3.7)
$b=-1 * a$
$\mathrm{c}=1 / \mathrm{b}$
VonKarmanFrictFactor $=\mathrm{c}^{\wedge} 2$
Else
VonKarmanFrictFactor $=$ "Pipe is smooth"
End If
End Function

Non-Linear equations for predicting T_{2} and \mathbf{M}_{1}

Function equation1(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) As Double
"Main Equation for T2
equation $1=($ temp $1 /$ temp 2$)-((1+($ constA $*$ Mach $1 *$ Mach $1 *(($ press1 $*$ press 1$) /$ $(\operatorname{press} 2 * \operatorname{press} 2)) *($ temp2 / temp1) $)) /(1+(\operatorname{constA} *$ Mach1 * Mach1 $)))$

End Function

Function equation2(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1, fricf, Lenght, Diameter) As Double
'Main equation for M1

```
equation2 = (((((2 * constA * Compressibility) - (1 / Compressibility) - (3 *
constA)) * ((Application.ln((press1 * press1) / (press2 * press2))) +
(Application.ln(temp2 / temp1)) + (Application.ln((1 + (constA * Mach1 * Mach1))
/ (1 + (constA * ((press1 * press1) / (press2 * press2)) * (temp2 / temp1) * Mach1 *
Mach1)))))) + ((1 / (Mach1 * Mach1)) * (1 - (1 / (((press1 * press1) / (press2 *
press2)) * (temp2 / temp1)))))) * (Compressibility / Gamma)) - ((fricf * Lenght) /
Diameter)
```

End Function

Function equation3(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) As Double
'derivative of eqn 1 with respect to T 2 which is treated as X 1 in our case

```
equation3 = (-1) * ((temp1 / (temp2 * temp2)) + ((a * Mach1 * Mach1 * ((press1 * press1) /
```

$(\operatorname{press} 2 * \operatorname{press} 2)) *(1 /$ temp1) $) /(1+(\operatorname{constA} * M a c h 1 *$ Mach1 $))))$

End Function

Function equation4(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) As Double
'derivative of eqn 1 with respect to mach1 which is treated as X2 in our case
equation4 $=(-1) *((((1+(\operatorname{const} A *$ Mach1 $*$ Mach1 $)) *(\operatorname{constA}) *(($ press1 $*$ press1) $/$ $(\operatorname{press} 2 * \operatorname{press} 2)) *(\operatorname{temp} 2 / \operatorname{temp} 1) *(2 *$ Mach1 $))-((1+(\operatorname{constA} *$ Mach1 * Mach1 * $((\operatorname{press} 1 * \operatorname{press} 1) /(\operatorname{press} 2 * \operatorname{press} 2)) *($ temp2 / temp1) $)) *(2 * \operatorname{constA} *$ Mach1 $)) /((1+$ $(\operatorname{constA} * \operatorname{Mach} 1 * \operatorname{Mach} 1)) *(1+(\operatorname{constA} *$ Mach1 * Mach1) $)))$

End Function

Function equation5(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) As Double
'derivative of eqn 2 with respect to T 2 which is treated as X 1 in our case
equation5 $=((((2 *$ constA $*$ Compressibility $)-(1 /$ Compressibility $)-(3 *$ constA $)) *((1 /$ temp2) - (1/((1/(constA * ((press1 * press1) / (press2 * press2)) * (Mach1 * Mach1) * (1/ temp1)) $)+($ temp2 $))$)) $)+(1 /(($ Mach1 * Mach1 $) *((\operatorname{press} 1 * \operatorname{press} 1) /(\operatorname{press} 2 * \operatorname{press} 2)) *$ $($ temp2 $*$ temp2 $) *(1 /$ temp1 $)))) *($ Compressibility / Gamma $)$

End Function

Function equation6(press1, press2, temp1, temp2, Compressibility, Gamma, constA, Mach1) As Double
'derivative of eqn 2 with respect to mach1 which is treated as X2 in our case
equation6 $=(((2 *$ constA $*$ Mach $1 *((2 *$ constA $*$ Compressibility $)-(1 /$ Compressibility $)$ $-(3 * \operatorname{constA}))) *((1 /(1+(\operatorname{constA} *$ Mach1 * Mach1))$)-(1 /((1 /((p r e s s 1 * \operatorname{press} 1 *$ temp2) $/(\operatorname{press} 2 * \operatorname{press} 2 * \operatorname{temp} 1)))+(\operatorname{constA} * \operatorname{Mach} 1 *$ Mach1) $)))$) $((2 /($ Mach1 * Mach1 * Mach1) $) *(1-(1 /((\operatorname{press} 1 * \operatorname{press} 1 * \operatorname{temp} 2) /(\operatorname{press} 2 * \operatorname{press} 2 * \operatorname{temp} 1)))))) *$ (Compressibility / Gamma)

End Function

Calculations and Experimental flow comparisons

```
Option Explicit
Public Sub OutletPressureGoalSeek()
Dim ws As String
ws = "Controlling sheet"
Worksheets(ws).Range("AR10").GoalSeek
    Goal:=Range("outletpressureKPaG").Value + 101.325,_
    ChangingCell:=Worksheets(ws).Range("Error")
End Sub
Public Sub experimentflowcal()
Dim ws, ws1 As String
Dim rangeIP, rangeOP, rangeMF, rangeIT, rangeOT As Range
Dim x, StartInletPressure, StartOutletPressure, bob As Variant
ws = "Controlling sheet"
ws1 = "Experiment Flow Calculation"
Set rangeIP = Worksheets(ws1).Range("StartIP:EndIP")
Set rangeOP = Worksheets(ws1).Range("StartOP:EndOP")
Set rangeMF = Worksheets(ws1).Range("StartMF:EndMF")
Set rangeIT = Worksheets(ws1).Range("StartIT:EndIT")
Set rangeOT = Worksheets(ws1).Range("StartOT:EndOT")
'StartInletPressure = Worksheets(ws).Range("InletPressureKPaG")
'StartOutletPressure = Worksheets(ws).Range("OutletPressureKPaG")
For Each x In rangeIP
    If x.Value > 150 Then
        If x.Value < x.Offset(0, 1).Value Then
            x.Value = ""
            x.Offset(0, 1).Value = ""
            Else
                Worksheets(ws).Range("InletPressureKPaG") = x.Value
                    Worksheets(ws).Range("OutletPressureKPaG") = x.Offset(0, 1).Value
                    Worksheets(ws).Range("InletTemperatureDegC") = x.Offset(0, 3).Value
                    'bob = x.Offset(0, 1).Value + 101.325
                    'Worksheets(ws).Range("AK2").GoalSeek ,
                    ' Goal:=bob,
                    ' ChangingCell:=Worksheets(ws).Range("Y4")
                    Call OutletPressureGoalSeek
                    Call SnapShotOfControllingSheet
```

End If
End If
Next x

MsgBox "all done"
End Sub

Functions for Vent Pipe Model Program

```
Function Mass_Flux(Mach1, Density, Compressibility, Gamma, R, Temperature) As Double
    Mass_Flux = Mach1 * Density * Application.WorksheetFunction.Power(Compressibility
    * Gamma * R * Temperature, 0.5)
End Function
Function Mass_Flow(MassFlux, Diameter) As Double
    Dim Area As Double
    Area =(Application.WorksheetFunction.pi()/4)*
    Application.WorksheetFunction.Power(Diameter, 2)
    Mass_Flow = MassFlux * Area
End Function
Function Velocity(MassFlux, Density)
    Velocity = MassFlux / Density
End Function
Function Mach2(Mach1, Pressure1, Pressure2, Temperature1, Temperature2)
    Mach2 = Mach1 * (Pressure1 / Pressure2) * Application.WorksheetFunction. Power
    ((Temperature2 / Temperature1), 0.5)
End Function
Function Reynolds(Diameter, Velocity, Density, Viscosity)
    Reynolds = (Diameter * Velocity * Density) / Viscosity
End Function
Function Area(Diameter)
    Area =(Application.WorksheetFunction.pi()/4)*
    Application.WorksheetFunction.Power(Diameter, 2)
End Function
```


Newton's Iteration Method

Public Sub Newton_Iteration_Method()
Dim ws As String
Dim a, b, c, d, e, f, Ro, A1, B1, C1, D1, G1, Gi, mu1, P1, P2, T1, Z1, A_Constant, Pipe_Rel_Roughness, P_Length, P_Diameter As Variant
Dim T2i, M1i, M2i, mi, Vi, Rei, fi, Iterations As Variant
Dim i, j As Variant
On Error Resume Next
ws = "Mass Flow Rate"

P1 = Worksheets(ws).Range("Inlet_Pressure").Value
P2 = Worksheets(ws).Range("Outlet_Pressure").Value
T1 = Worksheets(ws).Range("Inlet_Temperature").Value
Z1 = Worksheets(ws).Range("Inlet_Compressibility").Value
G1 = Worksheets(ws).Range("Inlet_specific_heat_ratio").Value
D1 = Worksheets(ws).Range("Inlet_Density").Value
mu1 = Worksheets(ws).Range("Inlet_Viscosity").Value
Ro = Worksheets(ws).Range("Gas_Constant").Value
A_Constant $=$ Worksheets(ws).Range("Inlet_A").Value
Pipe_Rel_Roughness = Worksheets(ws).Range("Pipe_Roughness").Value / Worksheets(ws).Range("Pipe_Diameter").Value
P_Length = Worksheets(ws).Range("Pipe_Length").Value
P_Diameter $=$ Worksheets(ws).Range("Pipe_Diameter").Value
'Initial estimates
T2i = Worksheets(ws).Range("Inlet_Temperature").Value
$\mathrm{M} 1 \mathrm{i}=0.01$
fi $=$ VonKarmanFrictFactor(Pipe_Rel_Roughness)
Iterations $=10$
For $\mathrm{i}=1$ To Iterations
For $\mathrm{j}=1$ To 20
$\mathrm{a}=$ equation3(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i)
$\mathrm{c}=$ equation4 $(\mathrm{P} 1, \mathrm{P} 2, \mathrm{~T} 1, \mathrm{~T} 2 \mathrm{i}, \mathrm{Z} 1, \mathrm{G} 1$, A_Constant, M1i)
$\mathrm{b}=$ equation5(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i)
$\mathrm{d}=$ equation6(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i)
$\mathrm{e}=$ equation1 $(\mathrm{P} 1, \mathrm{P} 2, \mathrm{~T} 1, \mathrm{~T} 2 \mathrm{i}, \mathrm{Z} 1, \mathrm{G} 1$, A_Constant, M1i)
$\mathrm{f}=$ equation2(P1, P2, T1, T2i, Z1, G1, A_Constant, M1i, fi, P_Length, P_Diameter)
$A 1=d *((a * d)-(b * c))$
$\mathrm{B} 1=\mathrm{b} /((\mathrm{b} * \mathrm{c})-(\mathrm{a} * \mathrm{~d}))$
$\mathrm{C} 1=\mathrm{c} /((\mathrm{b} * \mathrm{c})-(\mathrm{a} * \mathrm{~d}))$
$\mathrm{D} 1=\mathrm{a} /((\mathrm{a} * \mathrm{~d})-(\mathrm{b} * \mathrm{c}))$
$\mathrm{T} 2 \mathrm{i}=\mathrm{T} 2 \mathrm{i}-((\mathrm{A} 1 * \mathrm{e})+(\mathrm{B} 1 * \mathrm{f}))$
$\mathrm{M} 1 \mathrm{i}=\mathrm{M} 1 \mathrm{i}-((\mathrm{B} 1 * \mathrm{e})+(\mathrm{D} 1 * \mathrm{f}))$

$$
j=j+1
$$

Next ${ }^{j}$
'New friction factor using moody

$$
\begin{aligned}
& \mathrm{Gi}=\text { Mass_Flux_(M1i, D1, Z1, G1, Ro, T2i) } \\
& \mathrm{mi}=\text { Mass_Flow(Gi, P_Diameter) } \\
& \mathrm{Vi}=\text { Velocity(Gi, D1) } \\
& \text { Rei }=\text { Reynolds_(P_Diameter, Vi, D1, mu1) } \\
& \text { fi }=\text { MoodyFrictFactor(Rei, Pipe_Rel_Roughness) } \\
& \text { Next i } \\
& \text { M2i = Mach2(M1i, P1, P2, T1, T2i) } \\
& \text { MsgBox M2i }
\end{aligned}
$$

End Sub
Snap-Shot Module
Public Sub SnapShotOfControllingSheet()
Dim ws, ws1, cell As String

```
ws = "Snap Shot"
ws1 = "Controlling sheet"
cell = Worksheets(ws).Range("A8").Address
'cell = "SnapShotDateTime"
On Error Resume Next
Err.Clear
```

Worksheets(ws).Range(cell).End(xlDown).Offset(1,0).Value $=$ Date
Worksheets(ws).Range(cell).End(xlDown).Offset(0,0).NumberFormat = "dd-mmm' yy"
Worksheets(ws).Range(cell).End(xlDown).Offset(1, 0).NumberFormat = "dd-mmm' yy"
Worksheets(ws).Range(cell).End(xlDown).Offset(0,1).Value = Range("PipeScheduleNo")
Worksheets(ws).Range(cell).End(xlDown).Offset(1, 0).NumberFormat = "general"
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 2).Value = Range("PipeSizeInch")
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 2).NumberFormat $=" 0.000 "$
Worksheets(ws).Range(cell).End(xlDown).Offset($(0,3)$. Value $=$ Range("PipeLenghtm")
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 3).NumberFormat = "0.000"
Worksheets(ws).Range(cell).End(xlDown).Offset(0,4).Value =
Range("SurfaceRoughness").Value
Worksheets(ws).Range(cell).End(xlDown).Offset(0, 4).NumberFormat = "0.000"
Worksheets(ws).Range(cell).End(xlDown).Offset(0,5).Value =
Range("InletPressureKPaG").Value
Worksheets(ws).Range(cell).End(xlDown).Offset(0,5).NumberFormat $=" 0.00 "$

Worksheets(ws).Range(cell).End(xlDown).Offset(0,6).Value

[^1]Program for determining thermodynamic properties from REFPROP (Lemmon, Huber, and McLinden 2009). Formatted accordingly for vent pipe model by Farhan Rajiwate

Option Explicit

Private Const FluidsDirectory As String = "fluids $\backslash "$
Private Const MixturesDirectory As String = "mixtures $\backslash "$
Private Const MaxComps As Integer $=20$
Private Declare Sub SETUPdll Lib "REFPROP.DLL" (i As Long, ByVal hfld As String, ByVal hfmix As String, ByVal hrf As String, ierr As Long, ByVal herr As String, ln1 As Long, $\ln 2$ As Long, $\ln 3$ As Long, $\ln 4$ As Long)

Private Declare Sub SETREFdll Lib "REFPROP.DLL" (ByVal hrf As String, ixflag As Long, x0 As Double, h0 As Double, s0 As Double, t0 As Double, p0 As Double, ierr As Long, ByVal herr As String, ln1 As Long, ln2 As Long)

Private Declare Sub SETMIXdll Lib "REFPROP.DLL" (ByVal hmxnme As String, ByVal hfmix As String, ByVal hrf As String, ncc As Long, ByVal hfile As String, x As Double, ierr As Long, ByVal herr As String, $\ln 1$ As Long, $\ln 2$ As Long, $\ln 3$ As Long, $\ln 4$ As Long, $\ln 5$ As Long)

Private Declare Sub SETMODdll Lib "REFPROP.DLL" (i As Long, ByVal htype As String, ByVal hmix As String, ByVal hcomp As String, ierr As Long, ByVal herr As String, ln1 As Long, $\ln 2$ As Long, $\ln 3$ As Long, $\ln 4$ As Long)

Private Declare Sub GERG04dll Lib "REFPROP.DLL" (nc As Long, iflag As Long, ierr As Long, ByVal herr As String, ln1 As Long)

Private Declare Sub TPRHOdll Lib "REFPROP.DLL" (t As Double, p As Double, x As Double, j As Long, i As Long, d As Double, ierr As Long, ByVal herr As String, In As Long)

Private Declare Sub THERM2dll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, p As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, Z As Double, hjt As Double, aH As Double, G As Double, kappa As Double, beta As Double, dPdD As Double, d2PdD2 As Double, dPdT As Double, dDdT As Double, dDdP As Double, spare1 As Double, spare2 As Double, spare3 As Double, spare4 As Double)

Private Declare Sub THERM3dll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, kappa As Double, beta As Double, isenk As Double, kt As Double, betas As Double, bs As Double, kkt As Double, thrott As Double, pi As Double, spht As Double)

Private Declare Sub THERMdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, p As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, hjt As Double)

Private Declare Sub THERM0dll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, p As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, a As Double, G As Double)

Private Declare Sub ENTROdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, s As Double)

Private Declare Sub ENTHALdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, h As Double)

Private Declare Sub CVCPdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, cv As Double, cp As Double)

Private Declare Sub PRESSdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, p As Double)

Private Declare Sub AGdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, a As Double, G As Double)

Private Declare Sub DPDDdll Lib "REFPROP.DLL" (t As Double, rho As Double, x As Double, dPdD As Double)

Private Declare Sub DPDD2dll Lib "REFPROP.DLL" (t As Double, rho As Double, x As Double, d2PdD2 As Double)

Private Declare Sub DPDTdll Lib "REFPROP.DLL" (t As Double, rho As Double, x As Double, dPdT As Double)

Private Declare Sub DDDPdll Lib "REFPROP.DLL" (t As Double, rho As Double, x As Double, dDdP As Double)

Private Declare Sub DDDTdll Lib "REFPROP.DLL" (t As Double, rho As Double, x As Double, dDdT As Double)

Private Declare Sub DHD1dll Lib "REFPROP.DLL" (t As Double, rho As Double, x As Double, dHdT_D As Double, dHdT_P As Double, dHdD_T As Double, dHdD_P As Double, dHdP_T As Double, dHdP_D As Double)

Private Declare Sub SATTdll Lib "REFPROP.DLL" (t As Double, x As Double, i As Long, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub SATPdll Lib "REFPROP.DLL" (p As Double, x As Double, i As Long, t As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub SATDdll Lib "REFPROP.DLL" (d As Double, x As Double, kph As Long, kr As Long, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub SATHdll Lib "REFPROP.DLL" (h As Double, x As Double, kph As Long, nroot As Long, k1 As Long, T1 As Double, P1 As Double, D1 As Double, k2 As Long, T2 As Double, P2 As Double, d2 As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub SATEdll Lib "REFPROP.DLL" (e As Double, x As Double, kph As Long, nroot As Long, k1 As Long, T1 As Double, P1 As Double, D1 As Double, k2 As Long, T2 As Double, P2 As Double, d2 As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub SATSdll Lib "REFPROP.DLL" (s As Double, x As Double, kph As Long, nroot As Long, k1 As Long, T1 As Double, P1 As Double, D1 As Double, k2 As Long, T2 As Double, P2 As Double, d2 As Double, k3 As Long, t3 As Double, p3 As Double, d3 As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub CV2PKdll Lib "REFPROP.DLL" (icomp As Long, t As Double, rho As Double, cv2p As Double, csat As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub CSATKdll Lib "REFPROP.DLL" (icomp As Long, t As Double, kph As Long, p As Double, rho As Double, csat As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub DPTSATKdll Lib "REFPROP.DLL" (icomp As Long, t As Double, kph As Long, p As Double, rho As Double, csat As Double, dpdtsat As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub TPFLSHdll Lib "REFPROP.DLL" (t As Double, p As Double, x As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub TDFLSHdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub PDFLSHdll Lib "REFPROP.DLL" (p As Double, d As Double, x As Double, t As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub PHFLSHdll Lib "REFPROP.DLL" (p As Double, h As Double, x As Double, t As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub PSFLSHdll Lib "REFPROP.DLL" (p As Double, s As Double, x As Double, t As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, h As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub PEFLSHdll Lib "REFPROP.DLL" (p As Double, e As Double, x As Double, t As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub THFLSHdll Lib "REFPROP.DLL" (t As Double, h As Double, x As Double, i As Long, p As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub TSFLSHdll Lib "REFPROP.DLL" (t As Double, s As Double, x As Double, i As Long, p As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, h As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub TEFLSHdll Lib "REFPROP.DLL" (t As Double, e As Double, x As Double, i As Long, p As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub DHFLSHdll Lib "REFPROP.DLL" (d As Double, h As Double, x As Double, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub DSFLSHdll Lib "REFPROP.DLL" (d As Double, s As Double, x As Double, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, e As Double, h As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub DEFLSHdll Lib "REFPROP.DLL" (d As Double, e As Double, x As Double, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub HSFLSHdll Lib "REFPROP.DLL" (h As Double, s As Double, Z As Double, t As Double, p As Double, d As Double, Dl As Double, Dv As Double, xliq As

Double, xvap As Double, q As Double, e As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub ESFLSHdll Lib "REFPROP.DLL" (e As Double, s As Double, Z As Double, t As Double, p As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, h As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, In As Long)

Private Declare Sub CCRITdll Lib "REFPROP.DLL" (t As Double, p As Double, V As Double, x As Double, cs As Double, ts As Double, Ds As Double, ps As Double, ws As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub FPVdll Lib "REFPROP.DLL" (t As Double, d As Double, p As Double, x As Double, f As Double)
'private Declare Sub SPECGRdll Lib "REFPROP.DLL" (t As Double, d As Double, p As Double, Gr As Double)

Private Declare Sub TQFLSHdll Lib "REFPROP.DLL" (t As Double, q As Double, x As Double, kq As Long, p As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub PQFLSHdll Lib "REFPROP.DLL" (p As Double, q As Double, x As Double, kq As Long, t As Double, d As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, e As Double, h As Double, s As Double, cv As Double, cp As Double, w As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub ABFL1dll Lib "REFPROP.DLL" (a As Double, b As Double, x As Double, i As Long, ByVal ab As String, dmin As Double, dmax As Double, t As Double, p As Double, d As Double, ierr As Long, ByVal herr As String, ln1 As Long, $\ln 2$ As Long)

Private Declare Sub ABFL2dll Lib "REFPROP.DLL" (a As Double, b As Double, x As Double, kq As Long, ksat As Long, ByVal ab As String, tbub As Double, tdew As Double, pbub As Double, pdew As Double, Dlbub As Double, Dvdew As Double, ybub As Double, xdew As Double, t As Double, p As Double, Dl As Double, Dv As Double, x As Double, y As Double, q As Double, ierr As Long, ByVal herr As String, ln As Long, ln2 As Long)

Private Declare Sub DBFL2dll Lib "REFPROP.DLL" (d As Double, b As Double, x As Double, i As Long, ByVal ab As String, t As Double, p As Double, Dl As Double, Dv As Double, xliq As Double, xvap As Double, q As Double, ierr As Long, ByVal herr As String, \ln As Long, $\ln 2$ As Long)

Private Declare Sub CRITPdll Lib "REFPROP.DLL" (x As Double, tc As Double, pc As Double, dc As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub VIRBdll Lib "REFPROP.DLL" (t As Double, x As Double, b As Double)

Private Declare Sub DBDTdll Lib "REFPROP.DLL" (t As Double, x As Double, dbt As Double)

Private Declare Sub VIRCdll Lib "REFPROP.DLL" (t As Double, x As Double, c As Double)

Private Declare Sub TRNPRPdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, eta As Double, tcx As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub FGCTYdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, f As Double)

Private Declare Sub DIELECdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, de As Double)

Private Declare Sub SURFTdll Lib "REFPROP.DLL" (t As Double, d As Double, x As Double, sigma As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub SURTENdll Lib "REFPROP.DLL" (t As Double, rhol As Double, rhov As Double, xl As Double, xv As Double, sigma As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub MELTTdll Lib "REFPROP.DLL" (t As Double, x As Double, p As Double, ierr As Long, ByVal herr As String, In As Long)

Private Declare Sub MLTH2Odll Lib "REFPROP.DLL" (t As Double, P1 As Double, P2 As Double)

Private Declare Sub MELTPdll Lib "REFPROP.DLL" (p As Double, x As Double, t As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub SUBLTdll Lib "REFPROP.DLL" (t As Double, x As Double, p As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub SUBLPdll Lib "REFPROP.DLL" (p As Double, x As Double, t As Double, ierr As Long, ByVal herr As String, ln As Long)

Private Declare Sub WMOLdll Lib "REFPROP.DLL" (x As Double, wm As Double)
Private Declare Sub XMASSdll Lib "REFPROP.DLL" (xmol As Double, xkg As Double, wmix As Double)

Private Declare Sub XMOLEdll Lib "REFPROP.DLL" (xkg As Double, xmol As Double, wmix As Double)

Private Declare Sub QMASSdll Lib "REFPROP.DLL" (qmol As Double, xl As Double, xv As Double, qkg As Double, xlkg As Double, xvkg As Double, wliq As Double, wvap As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub QMOLEdll Lib "REFPROP.DLL" (qkg As Double, xlkg As Double, xvkg As Double, qmol As Double, xl As Double, xv As Double, wliq As Double, wvap As Double, ierr As Long, ByVal herr As String, \ln As Long)

Private Declare Sub INFOdll Lib "REFPROP.DLL" (icomp As Long, wmm As Double, ttrp As Double, tnbpt As Double, tc As Double, pc As Double, dc As Double, Zc As Double, acf As Double, dip As Double, Rgas As Double)

Private Declare Sub LIMITXdll Lib "REFPROP.DLL" (ByVal htyp As String, t As Double, d As Double, p As Double, x As Double, tmin As Double, tmax As Double, dmax As Double, pmax As Double, ierr As Long, ByVal herr As String, ln1 As Long, ln2 As Long)

Private Declare Sub LIMITKdll Lib "REFPROP.DLL" (ByVal htyp As String, icomp As Long, t As Double, d As Double, p As Double, tmin As Double, tmax As Double, dmax As Double, pmax As Double, ierr As Long, ByVal herr As String, $\ln 1$ As Long, $\ln 2$ As Long)

Private Declare Sub SETKTVdll Lib "REFPROP.DLL" (icomp As Long, jcomp As Long, ByVal hmodij As String, fij As Double, ByVal hfmix As String, ierr As Long, ByVal herr As String, ln1 As Long, $\ln 2$ As Long, $\ln 3$ As Long)

Private Declare Sub GETKTVdll Lib "REFPROP.DLL" (icomp As Long, jcomp As Long, ByVal hmodij As String, fij As Double, ByVal hfmix As String, ByVal hfij As String, ByVal hbinp As String, ByVal hmxrul As String, ln1 As Long, ln2 As Long, ln3 As Long, $\ln 4$ As Long, $\ln 5$ As Long)

Private Declare Sub GETFIJdll Lib "REFPROP.DLL" (ByVal hmodij As String, fij As Double, ByVal hfij As String, ByVal hmxrul As String, $\ln 1$ As Long, $\ln 2$ As Long, $\ln 3$ As Long)

Private Declare Sub PREOSdll Lib "REFPROP.DLL" (i As Long)
Private Declare Sub SETAGAdll Lib "REFPROP.DLL" (ierr As Long, ByVal herr As String, $\ln 1$ As Long)
'Used to call Refprop:
Private herr As String * 255, herr2 As String * 255, hfmix As String * 255, hfmix 2 As String * 255, hrf As String * 3, htyp As String * 3, hmxnme As String * 255

Private hfld As String * 10000
Private nc As Long, phase As Long
Private $x(1$ To MaxComps) As Double, xliq(1 To MaxComps) As Double, xvap(1 To MaxComps) As Double, xmm(1 To MaxComps) As Double, xkg(1 To MaxComps) As Double, xmol(1 To MaxComps) As Double, wmix As Double

Private ierr As Long, ierr2 As Long, kq As Long, kr As Long

Private t As Double, p As Double, d As Double, Dl As Double, Dv As Double, q As Double, wm As Double, tz As Double, pz As Double, dz As Double, dd As Double

Private e As Double, h As Double, s As Double, Cvcalc As Double, Cpcalc As Double, w As Double

Private tmin As Double, tmax As Double, dmax As Double, pmax As Double
Private tc As Double, pc As Double, dc As Double
Private tbub As Double, tdew As Double, pbub As Double, pdew As Double, Dlbub As Double, Dvdew As Double, ybub(1 To MaxComps) As Double, xdew(1 To MaxComps) As Double

Private eta As Double, tcx As Double, sigma As Double, hjt As Double, de As Double
Private wmm As Double, ttrp As Double, tnbpt As Double, Zc As Double, acf As Double, dip As Double, Rgas As Double

Private $t U n i t s(10)$ As String, taUnits(10) As String, pUnits(10) As String, dUnits(10) As String, vUnits(10) As String, hUnits(10) As String, sUnits(10) As String, wUnits(10) As String, visUnits(10) As String, tcxUnits(10) As String, stUnits(10) As String

Private tUnits2 As String, taUnits2 As String, pUnits2 As String, dUnits2 As String, vUnits2 As String, hUnits2 As String, sUnits2 As String, wUnits2 As String, visUnits2 As String, tcxUnits2 As String, stUnits2 As String

Private FldOld As String
Private Z As Double, aHelm As Double, Gibbs As Double, xkappa As Double, beta As Double

Private dPdD As Double, d2PdD2 As Double, dPdT As Double, dDdT As Double, dDdP As Double

Private spare1 As Double, spare 2 As Double, spare3 As Double, spare4 As Double
Private Const CtoK $=273.15 \quad$ 'Exact conversion
Private Const FtoR $=459.67$ 'Exact conversion
Private Const RtoK $=5 / 9$ 'Exact conversion
Private Const HtoS $=3600$ 'Exact conversion

Private Const ATMtoMPa $=0.101325$
Private Const BARtoMPA $=0.1$
Private Const KGFtoN $=98.0665 / 10$
Private Const INtoM $=0.0254$
Private Const FTtoM $=12 *$ INtoM
'Exact conversion 'Exact conversion
'Exact conversion
'Exact conversion
'Exact conversion

Private Const LBMtoKG $=0.45359237$ 'Exact conversion
Private Const CALtoJ $=4.184 \quad$ 'Exact conversion (tc)
'private Const CALtoJ $=4.1868$ (${ }^{\text {pure water) }}$
Private Const MMHGtoMPA $=$ ATMtoMPa $/ 760$ 'Exact conversion
Private Const INH2OtoMPA $=0.000249082$
Private Const BTUtoKJ $=$ CALtoJ * LBMtoKG * RtoK
Private Const LBFtoN $=$ LBMtoKG * KGFtoN
Private Const IN3toM3 $=\mathrm{INtoM} * \mathrm{INtoM} * \mathrm{INtoM}$
Private Const FT3toM3 $=$ FTtoM $*$ FTtoM $*$ FTtoM
Private Const GALLONtoM3 = IN3toM3 * 231
Private Const PSIAtoMPA $=$ LBMtoKG / INtoM / INtoM * KGFtoN / 1000000
Private Const FTLBFtoJ $=$ FTtoM * LBFtoN
Private Const HPtoW $=550$ F FLLBFtoJ
Private Const BTUtoW $=$ BTUtoKJ * 1000
Private Const LBFTtoNM $=$ LBFtoN $/$ FTtoM
Private CompFlag As Integer
Function Setup(FluidName)
Dim a As String, ab As String, FluidNme As String, FINme As String
Dim i As Integer, sum As Double, sc As Integer, ncc As Integer, nc2 As Long, mass As Integer
Dim hRef As Double, sRef As Double, Tref As Double, pref As Double
Dim htype As String * 3, hmix As String * 3, hcomp As String * 60
Dim RPPrefix As String, FluidsPrefix As String, MixturesPrefix As String
Dim xtemp(1 To MaxComps) As Double
ierr $=0$
herr $=$ " $"$
FlNme = FluidName

If $\operatorname{InStr}($ FluidName, "error") Then Exit Function
If InStr (FluidName, "Inputs are out of range") Then Exit Function
If FluidName $=$ FldOld Then Exit Function
FldOld = " $"$
Call CheckName(FluidName)
RPPrefix = Environ("RPPrefix")
If RPPrefix = "" Then
FluidsPrefix $=$ FluidsDirectory
MixturesPrefix $=$ MixturesDirectory
Else
FluidsPrefix = RPPrefix \& " \backslash " \& FluidsDirectory
MixturesPrefix = RPPrefix \& " \backslash " \& MixturesDirectory
End If
hrf = "DEF"
hfmix = FluidsPrefix \& "hmx.bnc"
On Error GoTo ErrorHandler:
ChDrive (Application.ActiveWorkbook.Path)
ChDir (Application.ActiveWorkbook.Path)
On Error GoTo 0
$a=" n$
For $\mathrm{i}=1$ To MaxComps: $\mathrm{xtemp}(\mathrm{i})=0$: Next
mass $=0$
If $\operatorname{InStr}(\mathrm{UCase}($ FluidName), ".MIX") Then
'Open MixturesPrefix \& FluidName For Input As \#1
'Line Input \#1, ab
'Line Input \#1, ab
'Input \#1, nc2
'For $\mathrm{i}=1$ To nc2
' Line Input \#1, ab
' $\mathrm{a}=\mathrm{a}$ \& FluidsPrefix \& ab \& "|"
'Next
'For $\mathrm{i}=1$ To nc2
' Input \#1, xtemp(i)
'Next
'Close 1
'hfld = a
hmxnme $=$ MixturesPrefix \& FluidName
Call SETMIXdll(hmxnme, hfmix, hrf, nc2, hfld, xtemp(1), ierr, herr, 255\&, 255\&, 3\&, 10000\&, 255\&)

ElseIf InStr(FluidName, ",") Or InStr(FluidName, ";") Then
FluidNme $=$ Trim(FluidName)
If InStr(FluidNme, ";") Then sc $=1$ Else sc $=0$
If UCase(Right(FluidNme, 4)) = "MASS" Then mass = 1: FluidNme = Trim(Left(FluidNme, Len(FluidNme) - 4))

$$
\mathrm{nc} 2=0
$$

Do
If $\mathrm{sc}=0$ Then $\mathrm{i}=\operatorname{InStr}($ FluidNme, ",") Else $\mathrm{i}=\operatorname{InStr}($ FluidNme, ";")
If $\mathrm{i}=0$ Then $\mathrm{i}=\operatorname{Len}($ FluidNme $)+1$
$\mathrm{nc} 2=\mathrm{nc} 2+1$
If nc2 > MaxComps Then ierr = 1: herr = Trim2("Too many components"): Exit Function
$\mathrm{ab}=\operatorname{Trim}(\operatorname{Left}($ FluidNme, $\mathrm{i}-1))$
Call CheckName(ab)
If $\operatorname{InStr}($ LCase(ab), ".fld") $=0$ Then $\mathrm{ab}=\mathrm{ab}+$ ".fld"
$\mathrm{a}=\mathrm{a}$ \& FluidsPrefix \& ab \& "|"
FluidNme $=\operatorname{Mid}($ FluidNme, $\mathrm{i}+1)$
If $\mathrm{sc}=0$ Then $\mathrm{i}=\operatorname{InStr}($ FluidNme, ",") Else $\mathrm{i}=\operatorname{InStr}($ FluidNme, ";")
If $\mathrm{i}=0$ Then $\mathrm{i}=\operatorname{Len}($ FluidNme $)+1$
xtemp(nc2) $=\operatorname{CDbl}(\operatorname{Left}(F l u i d N m e, ~ \mathrm{i}-1))$

FluidNme $=\operatorname{Trim}(\operatorname{Mid}($ FluidNme, $\mathrm{i}+1))$
Loop Until FluidNme = " "
sum $=0$
For $i=1$ To nc2: sum $=$ sum $+\operatorname{xtemp}(i):$ Next
If sum <= 0 Then ierr = 1: herr = Trim2("Composition not set"): Exit Function
For $\mathrm{i}=1$ To nc2: $\operatorname{xtemp}(\mathrm{i})=\operatorname{xtemp}(\mathrm{i}) /$ sum: Next
hfld $=\mathrm{a}$
If nc2 < 1 Then ierr = 1: herr = Trim2("Setup failed"): Exit Function
'To load the GERG-2004 pure fluid equations of state rather than the defaults 'that come with Refprop, call the GERG04dll routine with a 1 as the second input.
'Call GERG04dll(nc2, 1\&, ierr, herr, 255\&)
Call SETUPdll(nc2, hfld, hfmix, hrf, ierr, herr, 10000\&, 255\&, 3\&, 255\&)
ElseIf InStr(FluidName, "/") <> 0 And InStr(FluidName, "(") <> 0 Then
FluidNme $=$ Trim(FluidName)
If UCase(Right(FluidNme, 4)) $=$ "MASS" Then mass $=1$: FluidNme $=$ $\operatorname{Trim}(\operatorname{Left}($ FluidNme, Len(FluidNme) - 4))
$\mathrm{nc} 2=0$
Do
i = InStr(FluidNme, "/")
If $\operatorname{InStr}($ FluidNme, "(") < i Then i $=\operatorname{InStr}(F l u i d N m e, ~ "(")$
If $\mathrm{i}=0$ Then $\mathrm{i}=\operatorname{Len}($ FluidNme $)+1$
$\mathrm{nc} 2=\mathrm{nc} 2+1$
If nc2 > MaxComps Then ierr $=1$: herr $=$ Trim2("Too many components"): Exit Function
$\mathrm{ab}=\operatorname{Trim}(\operatorname{Left}($ FluidNme, $\mathrm{i}-1))$
Call CheckName(ab)
If $\operatorname{InStr}($ LCase(ab), ".fld" $)=0$ Then $a b=a b+$ ".fld"
$\mathrm{a}=\mathrm{a} \&$ FluidsPrefix \& $\mathrm{ab} \& " \mid "$
FluidNme $=\operatorname{Trim}(\operatorname{Mid}($ FluidNme, i$))$
If Left(FluidNme, 1$)=$ "/" Then FluidNme $=$ Trim(Mid(FluidNme, 2) $)$

Loop Until Left(FluidNme, 1$)=$ " $("$
FluidNme $=\operatorname{Mid}($ FluidNme, 2)
If Right(FluidNme, 1$)="$)" Then FluidNme $=$ Trim(Left(FluidNme, Len(FluidNme) -1$)$)
$\mathrm{ncc}=0$
Do
i = InStr(FluidNme, "/")
If $\mathrm{i}=0$ Then $\mathrm{i}=\operatorname{Len}($ FluidNme $)+1$
$\mathrm{ncc}=\mathrm{ncc}+1$
If ncc > MaxComps Then ierr $=1$: herr $=$ Trim2("Too many components"): Exit Function
$\operatorname{xtemp}(\mathrm{ncc})=\operatorname{CDbl}(\operatorname{Left}($ FluidNme, $\mathrm{i}-1))$
FluidNme $=\operatorname{Mid}($ FluidNme, $\mathrm{i}+1)$
Loop Until FluidNme = " "
sum $=0$
For $\mathrm{i}=1$ To nc2: sum $=$ sum + xtemp(i): Next
If sum $<=0$ Then ierr $=1$: herr $=$ Trim2("Composition not set"): Exit Function
For $\mathrm{i}=1$ To nc2: $\operatorname{xtemp}(\mathrm{i})=\mathrm{xtemp}(\mathrm{i}) /$ sum: Next
hfld $=\mathrm{a}$
If nc2 < 1 Then ierr = 1: herr = Trim2("Setup failed"): Exit Function
'To load the GERG-2004 pure fluid equations of state rather than the defaults 'that come with Refprop, call the GERG04dll routine with a 1 as the second input.
'Call GERG04dll(nc2, 1\&, ierr, herr, 255\&)
Call SETUPdll(nc2, hfld, hfmix, hrf, ierr, herr, 10000\&, 255\&, 3\&, 255\&)
Else
$\mathrm{nc} 2=1$
If $\operatorname{InStr}($ LCase(FluidName), ".fld") $=0$ And $\operatorname{InStr}($ LCase(FluidName), ".ppf") $=0$ Then FluidName = FluidName + ".fld"

If $\operatorname{InStr}($ FluidName, " $\$ ") Then
hfld $=$ FluidName
Else
hfld = FluidsPrefix \& FluidName

End If

'...Use call to SETMOD to change the equation of state for any of the
'.....pure components from the default (recommended) values.
'.....This should only be implemented by an experienced user.
'If $\operatorname{InStr}($ LCase(hfld), "argon") <> 0 And nc2 $=1$ Then
' hcomp = "FE1": htype = "EOS": hmix = hcomp
' Call SETMODdll(nc2, htype, hmix, hcomp, ierr, herr, 3\&, 3\&, 60\&, 255\&)
'End If

Call SETUPdll(nc2, hfld, hfmix, hrf, ierr, herr, 10000\&, 255\&, 3\&, 255\&)
End If

If mass Then

$$
\begin{aligned}
& \text { For } \mathrm{i}=1 \text { To nc2 } \\
& \qquad \operatorname{xkg}(\mathrm{i})=\operatorname{xtemp}(\mathrm{i})
\end{aligned}
$$

Next
Call XMOLEdll(xkg(1), xtemp(1), wmix)
End If
If ierr $<=0$ Then

$$
\begin{aligned}
& \mathrm{nc}=\mathrm{nc} 2 \quad \text { 'If setup was successful, load new values of nc and } x() \\
& \text { For } \mathrm{i}=1 \text { To nc } \\
& x(\mathrm{i})=\text { xtemp(} \mathrm{i})
\end{aligned}
$$

Next
Setup = FluidName
FldOld $=$ FlNme
'Use the following line to calculate enthalpies and entropies on a reference state
'based on the currently defined mixture, or to change to some other reference state.
'The routine does not have to be called, but doing so will cause calculations
'to be the same as those produced from the graphical interface for mixtures.
Call SETREFdll(hrf, 2\&, x(1), hRef, sRef, Tref, pref, ierr, herr, 3\&, 255\&)
Else
Setup $=$ Trim2 (herr)
FldOld $=$ " $"$
End If
Exit Function
ErrorHandler:
Resume Next
End Function

Sub CheckName(FluidName)

Restart:
If Left(FluidName, 1) $=\operatorname{Chr}(34)$ Then
FluidName $=\operatorname{Mid}($ FluidName, 2): GoTo Restart
End If
If Right(FluidName, 1) $=\operatorname{Chr}$ (34) Then
FluidName $=$ Left(FluidName, Len(FluidName) - 1): GoTo Restart
End If
If UCase(FluidName) = "AIR" Then FluidName = "nitrogen;7812;argon;0092;oxygen;2096"

If UCase(FluidName) $=$ "CARBON DIOXIDE" Then FluidName = "CO2"
If UCase(FluidName) $=$ "CARBON MONOXIDE" Then FluidName $=$ "CO"
If UCase(FluidName) = "CARBONYL SULFIDE" Then FluidName = "COS"
If UCase(FluidName) = "CYCLOHEXANE" Then FluidName = "CYCLOHEX"
If UCase(FluidName) $=$ "CYCLOPROPANE" Then FluidName $=$ "CYCLOPRO"
If UCase(FluidName) = "DEUTERIUM" Then FluidName = "D2"

> If UCase(FluidName) $=$ "HEAVY WATER" Then FluidName = "D2O" If UCase(FluidName) $=$ "HYDROGEN SULFIDE" Then FluidName = "H2S" If UCase(FluidName) $=$ "IBUTANE" Then FluidName = "ISOBUTAN" If UCase(FluidName) $=$ "ISOBUTANE" Then FluidName = "ISOBUTAN" If UCase(FluidName) $=$ "ISOPENTANE" Then FluidName = "IPENTANE" If UCase(FluidName) $=$ "NEOPENTANE" Then FluidName = "NEOPENTN" If UCase(FluidName) $=$ "ISOHEXANE" Then FluidName = "IHEXANE" If UCase(FluidName) $=$ "NITROUS OXIDE" Then FluidName = "N2O" If UCase(FluidName) $=$ "PARAHYDROGEN" Then FluidName = "PARAHYD" If UCase(FluidName) = "PROPYLENE" Then FluidName = "PROPYLEN" If UCase(FluidName) = "SULFUR HEXAFLUORIDE" Then FluidName = "SF6" End Sub

Sub CalcSetup(FluidName, InpCode, Units, Prop1, Prop2)
Call Setup(FluidName)
If ierr > 0 Then Exit Sub
Call ConvertUnits(InpCode, Units, Prop1, Prop2)
herr = ""
$q=0: t=0: p=0: d=0: D l=0: D v=0: e=0: h=0: s=0:$ Cvcalc $=0:$ Cpcalc $=0: w=0$
End Sub

Sub CalcProp(FluidName, InpCode, ByVal Units, ByVal Prop1, ByVal Prop2)
Dim iflag1 As Integer, iflag2 As Integer
ThisWorkbook.Activate
$q=0: t=0: p=0: d=0: D l=0: D v=0: e=0: h=0: s=0:$ Cvcalc $=0:$ Cpcalc $=0: w=0$
If IsMissing(Prop1) Then iflag1 $=1$
If iflag1 $=0$ Then
If $\operatorname{Len}(\operatorname{Trim}(\operatorname{Prop} 1))=0$ Then iflag $1=2$

If iflag1 $=0$ Then If $\operatorname{CDbl}(\operatorname{Prop} 1)=0$ And Prop1 $<>$ " 0 " Then ierr $=1$: herr $=$ Trim2("Invalid input: ") + Prop1: Exit Sub

End If
If IsMissing(Prop2) Then iflag2 $=1$
If iflag2 $=0$ Then
If $\operatorname{Len}(\operatorname{Trim}(\operatorname{Prop} 2))=0$ Then iflag2 $=2$
If iflag2 $=0$ Then If $\operatorname{CDbl}($ Prop2 $)=0$ And Prop2 $\langle>$ " 0 " Then ierr $=1$: herr $=$ Trim2("Invalid input: ") + Prop2: Exit Sub

End If
If IsMissing(InpCode) Then InpCode = " "
Call CalcSetup(FluidName, InpCode, Units, Prop1, Prop2)
If $\operatorname{UCase}(\operatorname{Left}(\operatorname{InpCode}, 4))=$ "CRIT" Then
Call CRITPdll(x(1), t, p, d, ierr, herr, 255\&)
If ierr $=0$ Then Call THERMdll(t, d, $x(1), p c, e, h, s$, Cvcalc, Cpcalc, w, hjt)
Exit Sub
ElseIf UCase(Left(InpCode, 4)) = "TRIP" Then
If nc <> 1 Then ierr = 1: herr = Trim2("Can only return triple point for a pure fluid"): Exit Sub

Call INFOdll(1, wmm, t, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas)
Call SATTdll(t, x(1), 1, p, d, Dv, xliq(1), xvap(1), ierr, herr, 255\&)
If ierr $=0$ Then Call THERMdll(t, d, $\mathrm{x}(1), \mathrm{pc}, \mathrm{e}, \mathrm{h}, \mathrm{s}$, Cvcalc, Cpcalc, w, hjt)
Exit Sub
End If

If iflag1 Then ierr $=1$: herr $=$ Trim2("Inputs are missing"): Exit Sub
If ierr >0 Then Exit Sub
If InpCode <> "" Then Call Calc(InpCode, Prop1, Prop2, iflag1, iflag2)
End Sub

Sub Calc(InputCode, Prop1, Prop2, iflag1, iflag2)

Dim a As String, Input1 As String, Input2 As String, InpCode, 1 As Integer, pp As Double

$$
\text { ierr }=0
$$

herr $=" "$
InpCode $=$ Trim $($ UCase $($ InputCode $))$
Input2 = " "
Input1 $=\operatorname{Left}(\operatorname{InpCode}, 1)$
If Len(InpCode $)=2$ Then Input2 $=\operatorname{Mid}(\operatorname{InpCode}, 2,1)$
If Len(InpCode $)=3$ And $\operatorname{Right}(\operatorname{InpCode}, 1)=" \& "$ Then Input2 $=\operatorname{Mid}(\operatorname{InpCode}, 2,1)$
If $\operatorname{Left}(\operatorname{InpCode}, 2)=$ "TP" Or Left $(\operatorname{InpCode}, 2)=$ "PT" Then Input2 $=\operatorname{Mid}(\operatorname{InpCode}, 2,1)$

If Input $1=$ " T " Then $\mathrm{t}=$ Prop1: If iflag $1>=1$ Then GoTo Error1
If Input $1=$ "P" Then $p=$ Prop1: If iflag $1>=1$ Then GoTo Error1
If Input1 = "D" Then $\mathrm{d}=$ Prop1: If iflag1 >= 1 Then GoTo Error1
If Input1 $=$ "V" And Prop1 $<>0$ And Len(InpCode) $=2$ Then $d=1 /$ Prop1: Mid(InpCode, $1,1)=$ "D": If iflag $1>=1$ Then GoTo Error1

If Input $1=$ "E" Then $\mathrm{e}=$ Prop1: If iflag $1>=1$ Then GoTo Error 1
If Input1 $=$ "H" Then $h=$ Prop1: If iflag $>=1$ Then GoTo Error1
If Input $1=$ "S" Then $s=$ Prop1: If iflag $1>=1$ Then GoTo Error1
If Input1 = "Q" Then $q=$ Prop1: If iflag $1>=1$ Then GoTo Error1
If Input2 $=$ " T " Then $\mathrm{t}=$ Prop2: If iflag2 $>=1$ Then GoTo Error2
If Input2 $=$ " P " Then $p=$ Prop2: If iflag2 $>=1$ Then GoTo Error2
If Input2 = "D" Then $\mathrm{d}=$ Prop2: If iflag2 >= 1 Then GoTo Error2
If Input2 $=$ "V" And Prop2 <> 0 And Len(InpCode) $=2$ Then $\mathrm{d}=1 /$ Prop2: Mid(InpCode, $2,1)=$ " D ": If iflag2 >= 1 Then GoTo Error2

If Input2 $=$ " E " Then $\mathrm{e}=$ Prop2: If iflag2 $>=1$ Then GoTo Error2
If Input2 $=$ "H" Then $h=$ Prop2: If iflag2 >= 1 Then GoTo Error2
If Input2 $=$ " S " Then $\mathrm{s}=$ Prop2: If iflag2 $>=1$ Then GoTo Error2
If Input2 = "Q" Then $q=$ Prop2: If iflag2 >= 1 Then GoTo Error2
phase $=2$

If $\operatorname{Len}(\operatorname{InpCode})>1$ Then If UCase $(\operatorname{Mid}(\operatorname{InpCode}, 2,1))=$ "L" Then phase $=1$

For $\mathrm{i}=1$ To nc

$$
\operatorname{xliq}(i)=0: \operatorname{xvap}(i)=0
$$

Next
If Left(InpCode, 1) = "T" And $\mathrm{t}<=0$ Then herr = Trim2("Input temperature is zero"): Exit Sub
'Calculate saturation values given temperature
If InpCode $=$ "TL" Or InpCode $=$ "TLIQ" Or InpCode $=$ "TVAP" Then
Call SATTdll(t, x(1), phase, p, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255\&)
If $(\mathrm{p}=0$ Or $\mathrm{Dl}=0)$ And ierr $=0$ Then ierr $=1$: herr = Trim2("Inputs are out of range"): Exit Sub
$\mathrm{d}=\mathrm{Dl}: \mathrm{q}=0$
If phase $=2$ Then $d=D v: q=1$
Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt)
'Calculate saturation values given pressure
ElseIf InpCode $=$ "PL" Or InpCode $=$ "PLIQ" Or InpCode $=$ "PVAP" Then
Call SATPdll(p, x(1), phase, t, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255\&)
If $(\mathrm{p}=0$ Or $\mathrm{Dl}=0)$ And ierr $=0$ Then ierr $=1$: herr = Trim2("Inputs are out of range"): Exit Sub
$\mathrm{d}=\mathrm{Dl}: \mathrm{q}=0$
If phase $=2$ Then $d=D v: q=1$
Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt)
'Calculate saturation values given density
ElseIf InpCode $=$ "DL" Or InpCode $=$ "DLIQ" Or InpCode $=$ "DVAP" Then
Call SATDdll(d, x(1), 1\&, kr, t, p, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255\&)
Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt)
$\mathrm{q}=\mathrm{kr}-1$
ElseIf InpCode $=$ "TPL" Or InpCode $=$ "PTL" Then
Call TPRHOdll(t, p, x(1), 1\&, 0\&, d, ierr, herr, 255\&)
$\mathrm{Dl}=\mathrm{d}: \mathrm{Dv}=\mathrm{d}: \mathrm{q}=990$
Call THERMdll(t, d, x(1), pp, e, h, s, Cvcalc, Cpcalc, w, hjt)
ElseIf InpCode $=$ "TPV" Or InpCode $=$ "PTV" Then
Call TPRHOdll(t, p, x(1), 2\&, 0\&, d, ierr, herr, 255\&)
$\mathrm{Dl}=\mathrm{d}: \mathrm{Dv}=\mathrm{d}: \mathrm{q}=990$
Call THERMdll(t, d, x(1), pp, e, h, s, Cvcalc, Cpcalc, w, hjt)
ElseIf InpCode = "TP" Or InpCode = "PT" Then
Call TPFLSHdll(t, p, x(1), d, Dl, Dv, xliq(1), xvap(1), q, e, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "TD" Or InpCode = "DT" Then
Call TDFLSHdll(t, d, x(1), p, Dl, Dv, xliq(1), xvap(1), q, e, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "TD\&" Or InpCode = "DT\&" Then
'Do not perform any flash calculation here
Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt)
$q=990$
ElseIf InpCode = "TH" Or InpCode = "HT" Then
Call THFLSHdll(t, h, x(1), 2\&, p, d, Dl, Dv, xliq(1), xvap(1), q, e, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode $=$ "TS" Or InpCode $=$ "ST" Then
Call TSFLSHdll(t, s, x(1), 1\&, p, d, Dl, Dv, xliq(1), xvap(1), q, e, h, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "TE" Or InpCode = "ET" Then
Call TEFLSHdll(t, e, x(1), 2\&, p, d, Dl, Dv, xliq(1), xvap(1), q, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode $=$ "TQ" Or InpCode $=$ "QT" Then
Call TQFLSHdll(t, q, x(1), 1\&, p, d, Dl, Dv, xliq(1), xvap(1), e, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "PD" Or InpCode = "DP" Then
Call PDFLSHdll(p, d, x(1), t, Dl, Dv, xliq(1), xvap(1), q, e, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode $=$ "PH" Or InpCode $=$ "HP" Then
Call PHFLSHdll(p, h, x(1), t, d, Dl, Dv, xliq(1), xvap(1), q, e, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "PS" Or InpCode = "SP" Then
Call PSFLSHdll(p, s, x(1), t, d, Dl, Dv, xliq(1), xvap(1), q, e, h, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode $=$ "PE" Or InpCode $=$ "EP" Then
Call PEFLSHdll(p, e, x(1), t, d, Dl, Dv, xliq(1), xvap(1), q, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode $=$ "PQ" Or InpCode $=$ "QP" Then
Call PQFLSHdll(p, q, x(1), 1\&, t, d, Dl, Dv, xliq(1), xvap(1), e, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode $=$ "DH" Or InpCode $=$ "HD" Then
Call DHFLSHdll(d, h, x(1), t, p, Dl, Dv, xliq(1), xvap(1), q, e, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode $=$ "DS" Or InpCode $=$ "SD" Then
Call DSFLSHdll(d, s, x(1), t, p, Dl, Dv, xliq(1), xvap(1), q, e, h, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode $=$ "DE" Or InpCode $=$ "ED" Then
Call DEFLSHdll(d, e, x(1), t, p, Dl, Dv, xliq(1), xvap(1), q, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "HS" Or InpCode = "SH" Then

Call HSFLSHdll(h, s, x(1), t, p, d, Dl, Dv, xliq(1), xvap(1), q, e, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "TMELT" Then
Call MELTTdll(t, x(1), p, ierr, herr, 255\&)
If ierr $=0$ Then Call TPFLSHdll(t, p, x(1), d, Dl, Dv, xiq(1), xvap(1), q, e, h, s, Cvcalc, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "PMELT" Then
If $\mathrm{p}=0$ Then ierr $=1$: herr $=$ Trim2("Input pressure is zero"): Exit Sub
Call MELTPdll(p, x(1), t, ierr, herr, 255\&)

If ierr $=0$ Then Call TPFLSHdll(t, p, x(1), d, Dl, Dv, xiq(1), xvap(1), $\mathrm{q}, \mathrm{e}, \mathrm{h}, \mathrm{s}, \mathrm{Cvcalc}$, Cpcalc, w, ierr, herr, 255\&)

ElseIf InpCode = "TSUBL" Then
Call SUBLTdll(t, $\mathrm{x}(1)$, p, ierr, herr, 255\&)
If ierr $=0$ And $p=0$ Then ierr $=1$: herr $=$ Trim2("No sublimation line available")
If ierr $=0$ Then

$$
q=1
$$

$$
\mathrm{d}=\mathrm{p} / 8.314472 / \mathrm{t}
$$

Call TPRHOdll(t, p, x(1), 2\&, 1\&, d, ierr, herr, 255\&)
Call THERMdll(t, d, x(1), pp, e, h, s, Cvcalc, Cpcalc, w, hjt)
End If
ElseIf InpCode = "PSUBL" Then
If $\mathrm{p}=0$ Then ierr $=1$: herr $=$ Trim2("Input pressure is zero"): Exit Sub
Call SUBLPdll(p, x(1), t, ierr, herr, 255\&)
If ierr $=0$ And $t=0$ Then ierr $=1$: herr $=$ Trim2("No sublimation line available")
If ierr $=0$ Then
$\mathrm{q}=1$
$\mathrm{d}=\mathrm{p} / 8.314472 / \mathrm{t}$
Call TPRHOdll(t, p, x(1), 2\&, 1\&, d, ierr, herr, 255\&)
Call THERMdll(t, d, x(1), pp, e, h, s, Cvcalc, Cpcalc, w, hjt)
End If
Else
ierr $=1$: herr = Trim2("Invalid input code")
End If
If ($\mathrm{q}<=0.000001$ Or $q>=0.999999$) And Cvcalc $=-9999980$ Then Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt)

Exit Sub
Error1:
ierr $=1$: herr = Trim2("First property missing"): Exit Sub
Error2:
ierr $=1$: herr = Trim 2 ("Second property missing"): Exit Sub
End Sub
Function Temperature(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Temperature = ConvertUnits("-T", Units, t, 0)
End Function
Function Pressure(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Pressure $=$ ConvertUnits("-P", Units, $\mathrm{p}, 0$)
End Function
Function Density(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Density = ConvertUnits("-D", Units, d, 0)
End Function
Function CompressibilityFactor(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call INFOdll(1, wmm, ttrp, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas)
CompressibilityFactor $=\mathrm{p} / \mathrm{d} / \mathrm{t} /$ Rgas
End Function
Function LiquidDensity(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr <> 0 Then LiquidDensity $=$ Trim2(herr): Exit Function
If $\mathrm{q}<0$ Or $\mathrm{q}>1$ Then
LiquidDensity $=$ Trim2("Inputs are single phase")
Else
CompFlag $=1$
LiquidDensity = ConvertUnits("-D", Units, Dl, 0)

CompFlag $=0$
End If
End Function
Function VaporDensity(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr $<>0$ Then VaporDensity $=$ Trim2(herr): Exit Function
If $q<0$ Or $q>1$ Then
VaporDensity = Trim2("Inputs are single phase")
Else
CompFlag $=2$
VaporDensity = ConvertUnits("-D", Units, Dv, 0)
CompFlag $=0$
End If
End Function
Function Volume(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Dim V As Double
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Volume $=0$
If $\mathrm{d}<=0$ Then Volume $=$ Trim2("Density is zero"): Exit Function
$\mathrm{V}=1 / \mathrm{d}$
Volume $=$ ConvertUnits("-V", Units, V, 0)
End Function

Function Energy(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Energy = ConvertUnits("-H", Units, e, 0)
End Function

Function Enthalpy(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Enthalpy = ConvertUnits("-H", Units, h, 0)
End Function

Function Entropy(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Entropy = ConvertUnits("-S", Units, s, 0)
End Function

Function IsochoricHeatCapacity(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
IsochoricHeatCapacity $=$ ConvertUnits("-S", Units, Cvcalc, 0)
End Function

Function cv(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
cv = ConvertUnits("-S", Units, Cvcalc, 0)
End Function

Function IsobaricHeatCapacity(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
IsobaricHeatCapacity $=$ ConvertUnits("-S", Units, Cpcalc, 0)
End Function

Function cp(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
cp $=$ ConvertUnits("-S", Units, Cpcalc, 0)

End Function

Function SpeedOfSound(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
SpeedOfSound = ConvertUnits("-W", Units, w, 0)
End Function

Function Sound(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Sound $=$ ConvertUnits("-W", Units, w, 0)
End Function

Function LatentHeat(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Dim hl As Double, hv As Double
InpCode $=$ Trim $($ UCase $(\operatorname{InpCode}))$
If Left(InpCode, 1$)=$ "T" Then
Call CalcSetup(FluidName, "T", Units, Prop1, Prop2)
If ierr $\langle>0$ Then LatentHeat $=$ Trim2(herr): Exit Function
If nc <> 1 Then LatentHeat = Trim2("Can only be calculated for pure fluids"): Exit Function

Call INFOdll(1, wmm, ttrp, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas)
t = Prop 1
If $\mathrm{t}<=0$ Then LatentHeat $=$ Trim2("Input temperature is zero"): Exit Function
If $\mathrm{t}>\mathrm{tc}$ Then LatentHeat $=$ Trim2("Temperature is greater than the critical point temperture"): Exit Function

Call SATTdll(t, x(1), 1\&, p, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255\&)
If $(\mathrm{p}=0$ Or $\mathrm{Dl}=0)$ And ierr $=0$ Then ierr $=1$: LatentHeat $=$ Trim2("Inputs are out of range"): Exit Function

ElseIf Left(InpCode, 1) = "P" Then

Call CalcSetup(FluidName, "P", Units, Prop1, Prop2)
If ierr $\langle>0$ Then LatentHeat $=$ Trim2(herr): Exit Function
If nc <> 1 Then LatentHeat = Trim2("Can only be calculated for pure fluids"): Exit Function

Call INFOdll(1, wmm, ttrp, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas)
p = Prop1
If $\mathrm{p}<=0$ Then LatentHeat = Trim2("Input pressure is zero"): Exit Function
If $\mathrm{p}>\mathrm{pc}$ Then LatentHeat $=$ Trim2("Pressure is greater than the critical point pressure"): Exit Function

Call SATPdll(p, x(1), 1\&, t, Dl, Dv, xliq(1), xvap(1), ierr, herr, 255\&)
If $(\mathrm{t}=0$ Or $\mathrm{Dl}=0)$ And ierr $=0$ Then ierr $=1:$ LatentHeat $=$ Trim2("Inputs are out of range"): Exit Function

Else
LatentHeat $=$ Trim2("Valid inputs are only 'T' or 'P'"): Exit Function
End If
If ierr $<>0$ Then LatentHeat $=$ Trim2(herr): Exit Function
Call THERMdll(t, Dl, x(1), p, e, hl, s, Cvcalc, Cpcalc, w, hjt)
Call THERMdll(t, Dv, $\mathrm{x}(1)$, p, e, hv, s, Cvcalc, Cpcalc, w, hjt)
LatentHeat $=$ ConvertUnits("-H", Units, hv - hl, 0)
End Function

Function HeatOfVaporization(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

HeatOfVaporization $=$ LatentHeat(FluidName, InpCode, Units, Prop1, Prop2)
End Function

Function JouleThompson(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt)
JouleThompson = ConvertUnits("-J", Units, hjt, 0)

End Function

Function IsentropicExpansionCoef(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt)
Call INFOdll(1, wmm, ttrp, tnbpt, tc, pc, dc, Zc, acf, dip, Rgas)
Call WMOLdll(x(1), wm)
If $d=0$ Then
IsentropicExpansionCoef $=\mathrm{w}^{\wedge} 2 /$ Rgas $/ \mathrm{t} * \mathrm{wm} * 0.001$
Else
IsentropicExpansionCoef $=\mathrm{w}^{\wedge} 2 * \mathrm{~d} / \mathrm{p} * \mathrm{wm} * 0.001$
End If
End Function

Function IsothermalCompressibility(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4)

IsothermalCompressibility $=$ Trim2("Infinite")
If $\mathrm{d}>1 \mathrm{E}-20$ And Not (xkappa $=-9999990$ Or xkappa $>1 \mathrm{E}+15$) Then IsothermalCompressibility $=1 /$ ConvertUnits("-P", Units, $1 /$ xkappa, 0)

End Function

Function VolumeExpansivity(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, beta, $\mathrm{dPdD}, \mathrm{d} 2 \mathrm{PdD} 2$, $\mathrm{dPdT}, \mathrm{dDdT}, \mathrm{dDdP}$, spare1, spare2, spare3, spare4)

VolumeExpansivity = 1 / ConvertUnits("-A", Units, $1 /$ beta, 0)

End Function

Function AdiabaticCompressibility(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, beta, $\mathrm{dPdD}, \mathrm{d} 2 \mathrm{PdD} 2, \mathrm{dPdT}, \mathrm{dDdT}, \mathrm{dDdP}$, spare1, spare2, spare3, spare4)

Call WMOLdll(x(1), wm)
AdiabaticCompressibility = Trim2("Infinite")
If d>1E-20 And w <> 0 Then AdiabaticCompressibility = $1 /$ ConvertUnits("-P", Units, $1 /$ ($1 / \mathrm{d} / \mathrm{w}^{\wedge} 2 / \mathrm{wm} * 1000$), 0)

End Function

Function AdiabaticBulkModulus(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4)

Call WMOLdll(x(1), wm)
If $\mathrm{p}=0$ Then
AdiabaticBulkModulus $=0$
Else
AdiabaticBulkModulus $=$ ConvertUnits("-P", Units, $\left.\mathrm{w}^{\wedge} 2 * \mathrm{~d} * \mathrm{wm} * 0.001,0\right)$
End If
End Function

Function IsothermalExpansionCoef(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4)

Call WMOLdll(x(1), wm)
If $\mathrm{p}=0$ Then
IsothermalExpansionCoef $=1$
Else
IsothermalExpansionCoef $=\mathrm{d} / \mathrm{p}$ * dPdD
End If
End Function

Function IsothermalBulkModulus(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
Call THERM2dll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, Z, hjt, aHelm, Gibbs, xkappa, beta, dPdD, d2PdD2, dPdT, dDdT, dDdP, spare1, spare2, spare3, spare4)

Call WMOLdll(x(1), wm)
If $p=0$ Then
IsothermalBulkModulus $=0$
Else
IsothermalBulkModulus = ConvertUnits("-P", Units, d * dPdD, 0)
End If
End Function

Function Quality(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr >0 Then Quality $=$ Trim2(herr): Exit Function
Quality = q
If $\mathrm{q}=990$ Then Quality $=$ Trim2("Not calculated")
If $q=998$ Then Quality $=$ Trim2("Superheated vapor with $T>T c$ ")
If $q=999$ Then Quality $=$ Trim2 $($ "Supercritical state $(T>T c, p>p c)$ ")
If $q=-998$ Then Quality $=$ Trim2("Subcooled liquid with $p>p c$ ")

Function LiquidMoleFraction(FluidName, Optional InpCode, Optional Units, Optional Prop1, Optional Prop2, Optional i)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr >0 Then LiquidMoleFraction $=$ Trim2(herr): Exit Function
If $\mathrm{i}<1$ Or $\mathrm{i}>\mathrm{nc}$ Then LiquidMoleFraction = Trim2("Constituent number out of range"): Exit Function

If $\mathrm{q}<0$ Or $\mathrm{q}>1$ Then
LiquidMoleFraction $=x(i)$
Else
LiquidMoleFraction $=x \operatorname{liq}(i)$
End If
If nc $=1$ Then LiquidMoleFraction = Trim2("Not applicable for a pure fluid")
End Function

Function VaporMoleFraction(FluidName, Optional InpCode, Optional Units, Optional Prop1, Optional Prop2, Optional i)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr >0 Then VaporMoleFraction $=$ Trim2(herr): Exit Function
If i < 1 Or i>nc Then VaporMoleFraction = Trim2("Constituent number out of range"): Exit Function

If $\mathrm{q}<0$ Or $\mathrm{q}>1$ Then
VaporMoleFraction $=x(i)$
Else
VaporMoleFraction $=\operatorname{xvap}(\mathrm{i})$
End If

If nc $=1$ Then VaporMoleFraction = Trim2("Not applicable for a pure fluid")
End Function

Function Viscosity(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr >0 Then Viscosity $=$ Trim2(herr): Exit Function
If $t=0$ Or $d=0$ Then Viscosity $=$ Trim2("Inputs out of range"): Exit Function
Call TRNPRPdll(t, d, x(1), eta, tcx, ierr2, herr2, 255\&)
If $q>0.000001$ And $q<1-0.000001$ Then eta $=-9999999$
Viscosity = ConvertUnits("-U", Units, eta, 0)
If eta $=0$ Then Viscosity $=\operatorname{Trim2} 2$ ("Unable to calculate property")
End Function

Function ThermalConductivity(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr >0 Then ThermalConductivity $=$ Trim2(herr): Exit Function
If $\mathrm{t}=0$ Or $\mathrm{d}=0$ Then ThermalConductivity $=$ Trim2("Inputs out of range"): Exit Function
Call TRNPRPdll(t, d, x(1), eta, tcx, ierr2, herr2, 255\&)
If $q>0.000001$ And $q<1-0.000001$ Then $\operatorname{tcx}=-9999999$
ThermalConductivity $=$ ConvertUnits("-K", Units, tcx, 0)
If tcx $=0$ Then ThermalConductivity $=$ Trim2("Unable to calculate property")
End Function

Function Prandtl(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)
Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr >0 Then Prandtl $=$ Trim2(herr): Exit Function
If $t=0$ Or $d=0$ Then Prandtl $=$ Trim2("Inputs out of range"): Exit Function
Call TRNPRPdll(t, d, x(1), eta, tcx, ierr2, herr2, 255\&)
If $q>0.000001$ And $q<1-0.000001$ Then Prandtl $=$ Trim2("Undefined"): Exit Function
If tcx $=0$ Or eta $=0$ Then Prandtl $=$ Trim2("Unable to calculate property")

Call THERMdll(t, d, x(1), p, e, h, s, Cvcalc, Cpcalc, w, hjt)
Call WMOLdll(x(1), wm)
Prandtl $=$ eta $*$ Cpcalc $/$ tcx $/$ wm $/ 1000$

End Function

Function SurfaceTension(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr >0 Then SurfaceTension $=$ Trim2(herr): Exit Function
If $\mathrm{t}=0$ Then SurfaceTension $=$ Trim2("Input temperature is zero"): Exit Function
If $\mathrm{q}>=0$ And $\mathrm{q}<=1$ Then
Call SURFTdll(t, Dl, xliq(1), sigma, ierr2, herr2, 255\&)
Else
Call SURFTdll(t, d, x(1), sigma, ierr2, herr2, 255\&)
End If
SurfaceTension $=$ ConvertUnits("-N", Units, sigma, 0)
If sigma $=0$ Or ierr2 $\langle>0$ Then SurfaceTension $=$ Trim2("Inputs out of range")
End Function

Function DielectricConstant(FluidName, InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcProp(FluidName, InpCode, Units, Prop1, Prop2)
If ierr >0 Then DielectricConstant $=$ Trim2(herr): Exit Function
If $q>0.000001$ And $q<1-0.000001$ Then DielectricConstant $=$ Trim2("Undefined"): Exit Function

If $t=0$ Then DielectricConstant $=$ Trim2("Inputs out of range"): Exit Function
Call DIELECdll(t, d, x(1), de)
DielectricConstant $=$ de
End Function

Function MolarMass(FluidName, Optional InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcSetup(FluidName, "", Units, Prop1, Prop2)
Call WMOLdll(x(1), wm)
MolarMass $=\mathrm{wm}$
End Function

Function MoleFraction(FluidName, i)
Call CalcProp(FluidName, "", "", 0, 0)
If ierr >0 Then MoleFraction $=$ Trim2(herr): Exit Function
If $\mathrm{i}<1$ Or i > nc Then MoleFraction = Trim2("Constituent number out of range"): Exit Function

MoleFraction $=x(i)$
If nc $=1$ Then MoleFraction $=$ Trim2("Not applicable for a pure fluid")
End Function

Function MassFraction(FluidName, i)
Call CalcProp(FluidName, "", "", 0, 0)
If ierr >0 Then MassFraction $=$ Trim2(herr): Exit Function
If $\mathrm{i}<1$ Or i > nc Then MassFraction = Trim2("Constituent number out of range"): Exit Function

Call XMASSdll(x(1), xmm(1), wm)
MassFraction $=\mathrm{xmm}(\mathrm{i})$
If nc $=1$ Then MassFraction $=$ Trim2("Not applicable for a pure fluid")
End Function
'Change molar composition to mass composition
'Prop1 - Prop20 are the molar values for the components in the mixture.
'i specifies which component's mole fraction is returned. If zero, the molar mass is returned

Function Mole2Mass(FluidName, i, Prop1, Prop2, Optional Prop3, Optional Prop4, Optional Prop5, Optional Prop6, Optional Prop7, Optional Prop8, Optional Prop9, Optional Prop10, Optional Prop11, Optional Prop12, Optional Prop13, Optional Prop14, Optional Prop15, Optional Prop16, Optional Prop17, Optional Prop18, Optional Prop19, Optional Prop20)

Dim j As Integer, xkg2(1 To MaxComps) As Double, xmol2(1 To MaxComps) As Double, wmix 2 As Double, sum As Double

For $\mathrm{j}=1$ To MaxComps: $\mathrm{xmol} 2(\mathrm{j})=0$: Next
xmol2(1) = Prop1
$x \operatorname{mol} 2(2)=\operatorname{Prop} 2$
If Not IsMissing(Prop3) Then $x m o l 2(3)=$ Prop3
If Not IsMissing(Prop4) Then $\mathrm{xmol} 2(4)=$ Prop4
If Not IsMissing(Prop5) Then xmol2(5) = Prop5
If Not IsMissing(Prop6) Then xmol2(6) = Prop6
If Not IsMissing(Prop7) Then xmol2(7) = Prop7
If Not IsMissing(Prop8) Then $x m o l 2(8)=$ Prop8
If Not IsMissing(Prop9) Then xmol2(9) = Prop9
If Not IsMissing(Prop10) Then $x m o l 2(10)=$ Prop10
If Not IsMissing(Prop11) Then xmol2(11) = Prop11
If Not IsMissing(Prop12) Then xmol2(12) = Prop12
If Not IsMissing(Prop13) Then $\operatorname{xmol2}(13)=$ Prop13
If Not IsMissing(Prop14) Then $x m o l 2(14)=$ Prop14
If Not IsMissing(Prop15) Then xmol2(15) $=$ Prop15
If Not IsMissing(Prop16) Then $x m o l 2(16)=$ Prop16
If Not IsMissing(Prop17) Then xmol2(17) = Prop17
If Not IsMissing(Prop18) Then $x m o l 2(18)=$ Prop18
If Not IsMissing(Prop19) Then $x m o l 2(19)=$ Prop19
If Not IsMissing(Prop20) Then $x m o l 2(20)=$ Prop20
Call CalcSetup(FluidName, "", "", 0, 0)
If ierr >0 Then Mole2Mass $=$ Trim2(herr): Exit Function
If $\mathrm{i}<0$ Or i > nc Then Mole2Mass = Trim2("Index out of Range (greater than number of components in mixture)"): Exit Function
sum $=0$
For $\mathrm{j}=1$ To nc
sum $=\operatorname{sum}+\operatorname{xmol} 2(j)$
Next
If $\operatorname{Abs}($ sum - 1) > 0.0001 Then Mole2Mass = Trim2("Composition does not sum to 1 "): Exit Function

Call XMASSdll(xmol2(1), xkg2(1), wmix2)
If $\mathrm{i}=0$ Then 'Molar mass of mixture
Mole2Mass $=$ wmix 2
Else 'Mass fraction
Mole2Mass $=$ xkg2(i)
End If
End Function
'Change mass composition to molar composition
'Prop1 - Prop20 are the mass values for the components in the mixture.
'i specifies which component's mass fraction is returned. If zero, the molar mass is returned
Function Mass2Mole(FluidName, i, Prop1, Prop2, Optional Prop3, Optional Prop4, Optional Prop5, Optional Prop6, Optional Prop7, Optional Prop8, Optional Prop9, Optional Prop10, Optional Prop11, Optional Prop12, Optional Prop13, Optional Prop14, Optional Prop15, Optional Prop16, Optional Prop17, Optional Prop18, Optional Prop19, Optional Prop20)

Dim j As Integer, xkg2(1 To MaxComps) As Double, xmol2(1 To MaxComps) As Double, wmix2 As Double, sum As Double

For $\mathrm{j}=1$ To MaxComps: $\operatorname{xkg} 2(\mathrm{j})=0$: Next
$\operatorname{xkg} 2(1)=$ Prop1
$\operatorname{xkg} 2(2)=\operatorname{Prop} 2$
If Not IsMissing(Prop3) Then xkg2(3) = Prop3
If Not IsMissing(Prop4) Then $x k g 2(4)=$ Prop4
If Not IsMissing(Prop5) Then xkg2(5) = Prop5
If Not IsMissing(Prop6) Then xkg2(6) = Prop6
If Not IsMissing(Prop7) Then xkg2(7) = Prop7

If Not IsMissing(Prop8) Then xkg2(8) = Prop8
If Not IsMissing(Prop9) Then xkg2(9) = Prop9
If Not IsMissing(Prop10) Then $\operatorname{xkg} 2(10)=$ Prop10
If Not IsMissing(Prop11) Then $\operatorname{xkg} 2(11)=$ Prop11
If Not IsMissing(Prop12) Then xkg2(12) = Prop12
If Not IsMissing(Prop13) Then $\operatorname{xkg} 2(13)=$ Prop13
If Not IsMissing(Prop14) Then xkg2(14) = Prop14
If Not IsMissing(Prop15) Then $\operatorname{xkg} 2(15)=$ Prop15
If Not IsMissing(Prop16) Then $\operatorname{xkg} 2(16)=$ Prop16
If Not IsMissing(Prop17) Then xkg2(17) = Prop17
If Not IsMissing(Prop18) Then $\operatorname{xkg} 2(18)=$ Prop18
If Not IsMissing(Prop19) Then $x k g 2(19)=$ Prop19
If Not IsMissing(Prop20) Then xkg2(20) = Prop20
Call CalcSetup(FluidName, "", "", 0, 0)
If ierr >0 Then Mass2Mole $=$ Trim2(herr): Exit Function
If $\mathrm{i}<0$ Or $\mathrm{i}>\mathrm{nc}$ Then Mass2Mole $=$ Trim2("Index out of Range (greater than number of components in mixture)"): Exit Function
sum $=0$
For $\mathrm{j}=1$ To nc

$$
\text { sum }=\operatorname{sum}+\operatorname{xkg2} 2(j)
$$

Next
If $\operatorname{Abs}($ sum - 1$)>0.0001$ Then Mass2Mole $=$ Trim2("Composition does not sum to 1 "): Exit Function

Call XMOLEdll(xkg2(1), xmol2(1), wmix2)
If $\mathrm{i}=0$ Then 'Molar mass of mixture
Mass2Mole $=$ wmix2
Else 'Mole fraction

$$
\text { Mass2Mole }=\text { xmol2(i) }
$$

End If
End Function

Function EOSMax(FluidName, Optional InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcSetup(FluidName, "", Units, Prop1, Prop2)
If nc >1 Then
Call LIMITXdll("EOS", 300\#, 0\#, 0\#, x(1), tmin, tmax, dmax, pmax, ierr2, herr2, 3\&, 255\&)

Else
Call LIMITKdll("EOS", 1, 300\#, 0\#, 0\#, tmin, tmax, dmax, pmax, ierr2, herr2, 3\&, 255\&)
End If
If IsMissing(InpCode) Then InpCode = " "
If InpCode $=$ " P " Or InpCode $=$ " p " Then
EOSMax = ConvertUnits("-P", Units, pmax, 0)
ElseIf InpCode = "D" Or InpCode $=$ "d" Then
EOSMax = ConvertUnits("-D", Units, dmax, 0)
Else
EOSMax = ConvertUnits("-T", Units, tmax, 0)
End If
End Function

Function EOSMin(FluidName, Optional InpCode, Optional Units, Optional Prop1, Optional Prop2)

Call CalcSetup(FluidName, "", Units, Prop1, Prop2)
If $\mathrm{nc}>1$ Then
Call LIMITXdll("EOS", 300\#, 0\#, 0\#, x(1), tmin, tmax, dmax, pmax, ierr2, herr2, 3\&, 255\&)

Else
Call LIMITKdll("EOS", 1, 300\#, 0\#, 0\#, tmin, tmax, dmax, pmax, ierr2, herr2, 3\&, 255\&)
End If
If IsMissing(InpCode) Then InpCode = " "

If InpCode $=$ "P" Or InpCode $=$ " p " Then

$$
\text { EOSMin }=0
$$

ElseIf InpCode = "D" Or InpCode = "d" Then
EOSMin $=0$
Else
EOSMin = ConvertUnits("-T", Units, tmin, 0)
End If
End Function

Function ErrorCode(InputCell)

ErrorCode $=$ ierr
End Function

Function ErrorString(InputCell)
ErrorString $=$ Trim2(herr)
End Function

Function Trim2(a)
'All error messages call this routine to add the pound sign (\#) to the beginning of the line.
'If you do not want this error code, simply remove the ["\#" +] piece below.
'It can also be changed to any other symbol(s) you desire.
If Left(a, 1) <> "\#" Then
Trim2 = "\#" + Trim(a)
Else
Trim $2=\operatorname{Trim}(\mathrm{a})$
End If
End Function

Function UnitConvert(InputValue, UnitType As String, OldUnits As String, NewUnits As String)

'UnitType is one of the following letters (one character only in most cases):		
'UnitType	Unit name	SI units
' T T	Temperature	K
' P P	Pressure	Pa
' D	Density or specific volume	e $\mathrm{mol} / \mathrm{m}^{\wedge} 3$ or $\mathrm{kg} / \mathrm{m}^{\wedge} 3\left(\right.$ or $\mathrm{m}^{\wedge} 3 / \mathrm{mol}$ or $\left.\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)$
' H E	Enthalpy or specific energy	y $\mathrm{J} / \mathrm{mol}$ or J / kg
S E	Entropy or heat capacity	J/mol-K or J/kg-K
' W	Speed of sound	m / s
' U	Viscosity	$\mathrm{Pa}-\mathrm{s}$
' K	Thermal conductivity	W/m-K
' JT	Joule Thompson	K/Pa
' L L	Length	m
' A	Area	$\mathrm{m}^{\wedge} 2$
' V	Volume	$\mathrm{m}^{\wedge} 3$
' M	Mass	kg
' F F	Force N	N
' E E	Energy	J
' Q	Power	W
' N	Surface tension	N/m

Dim Value As Double, Tpe As String, Unit1 As String, Unit2 As String
Dim Drct As Integer, Gage As Integer, Vacm As Integer
Dim MolWt As Double, Rgas As Double

If Not IsNumeric(InputValue) Then UnitConvert $=0$: Exit Function
If NewUnits $=$ " $"$ Then UnitConvert $=$ InputValue: Exit Function
Value $=$ InputValue
Tpe $=\operatorname{UCase}($ Trim $($ UnitType $))$
Unit1 $=$ UCase $($ Trim(OldUnits) $)$
Unit2 $=$ UCase(Trim(NewUnits))

Rgas $=8.314472$
Call WMOLdll(x(1), wm)
If CompFlag = 1 Then Call WMOLdll(xliq(1), wm)
If CompFlag $=2$ Then Call WMOLdll(xvap(1), wm)
$\mathrm{MolWt}=\mathrm{wm}$

For Drct $=1$ To -1 Step -2
\qquad
' Temperature Conversion

If Tpe $=$ "T" Then
If Unit1 = "K" Then
ElseIf Unit1 = "C" Then
Value $=$ Value + Drct $*$ CtoK
ElseIf Unit1 = "R" Then
Value $=$ Value $*$ RtoK ${ }^{\wedge}$ Drct
ElseIf Unit1 = "F" Then
If $\operatorname{Drct}=1$ Then
'Value $=$ RtoK $*($ Value + FtoR $) \quad$ 'Does not give exactly zero at 32 F
Value $=($ Value -32$) *$ RtoK + CtoK
Else
'Value $=$ Value $/$ RtoK - FtoR 'Does not give exactly 32 at 273.15 K

$$
\text { Value }=(\text { Value }- \text { CtoK }) / \text { RtoK }+32
$$

End If
Else
UnitConvert = Trim2("Undefined input unit"): Exit Function
End If
\qquad

[^2]```
 Value = Value * (BARtoMPA * 1000) ^ Drct
 ElseIf Unit1 = "ATM" Then
 Value = Value * ATMtoMPa ^ Drct
 ElseIf Unit1 = "KGF/CM^2" Or Unit1 = "KG/CM^2" Or Unit1 = "ATA" Or Unit1 =
"AT" Or Unit1 = "ATMA" Then
 Value = Value * (KGFtoN / 100) ^ Drct
 ElseIf Unit1 = "PSI" Or Unit1 = "PSIA" Then
 Value = Value * PSIAtoMPA ^ Drct
ElseIf Unit1 = "PSF" Then
 Value = Value * (PSIAtoMPA / 144) ^ Drct
ElseIf Unit1 = "MMHG" Or Unit1 = "TORR" Then
 Value = Value * MMHGtoMPA ^ Drct
ElseIf Unit1 = "CMHG" Then
 Value = Value * (MMHGtoMPA * 10) ^ Drct
ElseIf Unit1 = "INHG" Then
 Value = Value * (MMHGtoMPA * INtoM * 1000) ^ Drct
ElseIf Unit1 = "INH2O" Then
 Value = Value * INH2OtoMPA ^ Drct
ElseIf Unit1 = "PSIG" Then
 If Drct = 1 Then
 Value = PSIAtoMPA * Value + ATMtoMPa
 Else
 Value = (Value - ATMtoMPa) / PSIAtoMPA
End If
Else
UnitConvert = Trim2("Undefined input unit"): Exit Function
End If
If Gage <>0 And Drct \(=1\) Then Value \(=\) Value + ATMtoMPa
If Vacm <> 0 And Drct \(=1\) Then Value \(=\) ATMtoMPa - Value
```

$\qquad$
' Density Conversion
'----------------------------------------------------------------------------
ElseIf Tpe = "D" Then
If Value $=0$ Then Value $=1 \mathrm{E}-50$
If Unit1 = "MOL/DM^3" Or Unit1 = "MOL/L" Or Unit1 = "KMOL/M^3" Then
ElseIf Unit1 = "MOL/CM^3" Or Unit1 = "MOL/CC" Then
Value $=$ Value $* 1000{ }^{\wedge}$ Drct
ElseIf Unit1 = "MOL/M^3" Then
Value $=$ Value $/ 1000^{\wedge}$ Drct
ElseIf Unit1 = "KG/M^3" Then
Value $=$ Value $/$ MolWt ${ }^{\wedge}$ Drct
ElseIf Unit $=$ "KG/DM^3" Or Unit1 $=$ "KG/L" Then
Value $=$ Value $*(1000 / \text { MolWt })^{\wedge}$ Drct
ElseIf Unit1 = "G/DM^3" Or Unit1 = "G/L" Then
Value $=$ Value $*(1 / \mathrm{MolWt}){ }^{\wedge}$ Drct
ElseIf Unit1 = "G/CC" Or Unit1 = "G/CM^3" Or Unit1 = "G/ML" Then
Value $=$ Value * $(1000 / \text { MolWt })^{\wedge}$ Drct
ElseIf Unit1 = "G/DM^3" Then
Value $=$ Value $*(1 / \mathrm{MolWt}){ }^{\wedge}$ Drct
ElseIf Unit1 = "LBM/FT^3" Or Unit $1=$ "LB/FT^3" Then
Value $=$ Value $*(\text { LBMtoKG } / \text { FT3toM3 } / \text { MolWt })^{\wedge}$ Drct
ElseIf Unit1 = "LBMOL/FT^3" Then
Value $=$ Value $*(\text { LBMtoKG } / \text { FT3toM3 })^{\wedge}$ Drct
ElseIf Unit1 = "SLUG/FT^3" Then
Value $=$ Value $*(\text { LBMtoKG } / \text { FT3toM3 } / \text { MolWt } * \text { KGFtoN } / \text { FTtoM })^{\wedge}$ Drct
ElseIf Unit1 = "LB/GAL" Then
Value $=$ Value $*(\text { LBMtoKG } / \text { GALLONtoM3 } / \text { MolWt })^{\wedge}$ Drct
$\qquad$
' Specific Volume Conversion
ElseIf Unit1 = "DM^3/MOL" Or Unit1 = "L/MOL" Or Unit1 = "M^3/KMOL" Then
Value $=1 /$ Value
ElseIf Unit1 = "CM^3/MOL" Or Unit $1=$ "CC/MOL" Or Unit1 $=$ "ML/MOL" Then
Value $=1000 /$ Value
ElseIf Unit1 = "M^3/MOL" Then
Value $=1 /$ Value $/ 1000$
ElseIf Unit1 = "M^3/KG" Then
Value $=1 /$ Value $/$ MolWt
ElseIf Unit1 = "DM^3/KG" Or Unit1 = "L/KG" Then
Value $=1000 /$ Value $/$ MolWt
ElseIf Unit1 = "CC/G" Or Unit1 = "CM^3/G" Or Unit1 = "ML/G" Then
Value $=1000 /$ Value $/$ MolWt
ElseIf Unit1 = "DM^3/G" Then
Value $=1 /$ Value $/$ MolWt
ElseIf Unit1 = "FT^3/LBM" Or Unit $1=$ "FT^3/LB" Then
Value $=1 /$ Value * $($ LBMtoKG $/$ FT3toM3 $/$ MolWt $)$
ElseIf Unit1 = "FT^3/LBMOL" Then
Value $=1 /$ Value $*($ LBMtoKG $/$ FT3toM3 $)$
ElseIf Unit1 = "FT^3/SLUG" Then
Value $=1 /$ Value $*($ LBMtoKG $/$ FT3toM3 $/$ MolWt * KGFtoN $/$ FTtoM $)$
Else
UnitConvert = Trim2("Undefined input unit"): Exit Function
End If
If $\mathrm{Abs}($ Value $)<1 \mathrm{E}-30$ Then Value $=0$

```
'--
 Specific Energy and Enthalpy Conversions
'--
ElseIf Tpe = "H" Then
If Unit1 = "J/MOL" Or Unit1 = "KJ/KMOL" Then
ElseIf Unit1 = "KJ/MOL" Then
 Value = Value * 1000 ^ Drct
ElseIf Unit1 = "MJ/MOL" Then
 Value = Value * 1000000 ^ Drct
ElseIf Unit1 = "KJ/KG" Or Unit1 = "J/G" Then
 Value = MolWt ^ Drct * Value
ElseIf Unit1 = "J/KG" Then
 Value = (MolWt / 1000) ^ Drct * Value
ElseIf Unit1 = "M^2/S^2" Then
 Value = (MolWt / 1000) ^ Drct * Value
ElseIf Unit1 = "FT^2/S^2" Then
 Value =(MolWt / 1000 * FTtoM ^ 2) ^ Drct * Value
ElseIf Unit1 = "CAL/MOL" Or Unit1 = "KCAL/KMOL" Then
 Value = CALtoJ ^ Drct * Value
ElseIf Unit1 = "CAL/G" Or Unit1 = "KCAL/KG" Then
 Value =(CALtoJ * MolWt) ^ Drct * Value
ElseIf Unit1 = "BTU/LBM" Or Unit1 = "BTU/LB" Then
 Value =(BTUtoKJ / LBMtoKG * MolWt) ^ Drct * Value
ElseIf Unit1 = "BTU/LBMOL" Then
 Value = (BTUtoKJ/ LBMtoKG)^ Drct * Value
Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
End If
```

```
'--
 ' Entropy and Heat Capacity Conversions
'--
ElseIf Tpe = "S" Then
 If Unit1 = "J/MOL-K" Or Unit1 = "KJ/KMOL-K" Then
 Value = Value
 ElseIf Unit1 = "KJ/MOL-K" Then
 Value = Value * 1000 ^ Drct
 ElseIf Unit1 = "KJ/KG-K" Or Unit1 = "J/G-K" Then
 Value = MolWt ^ Drct * Value
 ElseIf Unit1 = "J/KG-K" Then
 Value = (MolWt / 1000) ^ Drct * Value
ElseIf Unit1 = "BTU/LBM-R" Or Unit1 = "BTU/LB-R" Then
 Value = (BTUtoKJ / LBMtoKG / RtoK * MolWt)^ Drct * Value
ElseIf Unit1 = "BTU/LBMOL-R" Then
 Value = (BTUtoKJ / LBMtoKG / RtoK) ^ Drct * Value
 ElseIf Unit1 = "CAL/G-K" Or Unit1 = "CAL/G-C" Or Unit1 = "KCAL/KG-K" Or Unit1
= "KCAL/KG-C" Then
 Value =(CALtoJ * MolWt) ^ Drct * Value
 ElseIf Unit1 = "CAL/MOL-K" Or Unit1 = "CAL/MOL-C" Then
 Value = CALtoJ ^ Drct * Value
ElseIf Unit1 = "FT-LBF/LBMOL-R" Then
 Value = (FTLBFtoJ / LBMtoKG / RtoK / 1000)^ Drct * Value
ElseIf Unit1 = "CP/R" Then
 Value = Rgas ^ Drct * Value * 1000
Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
End If
```

' Speed of Sound Conversion
'--------------------------------------------------------------------------

ElseIf Tpe = "W" Then
If Unit1 = "M/S" Then
ElseIf Unit1 = "M^2/S^2" Then
Value $=\operatorname{Sqr}($ Value $)$
ElseIf Unit1 = "CM/S" Then
Value $=$ Value $/ 100^{\wedge}$ Drct
ElseIf Unit1 = "KM/H" Then
Value $=$ Value * (1000 / HtoS $)^{\wedge}$ Drct
ElseIf Unit1 = "FT/S" Then
Value $=$ Value * FTtoM ${ }^{\wedge}$ Drct
ElseIf Unit1 = "IN/S" Then
Value $=$ Value $*$ INtoM ${ }^{\wedge}$ Drct
ElseIf Unit1 = "MILE/H" Or Unit1 = "MPH" Then
Value $=$ Value $*($ INtoM $* 63360 / H t o S) ~ \wedge ~ D r c t ~$
ElseIf Unit1 = "KNOT" Then
Value $=$ Value * $0.5144444444{ }^{\wedge}$ Drct
ElseIf Unit1 = "MACH" Then
Value $=$ Value * Sqr(1.4 * 298.15 * 8314.51 / 28.95853816) ^ Drct
Else
UnitConvert = Trim2("Undefined input unit"): Exit Function
End If
$\qquad$

- Viscosity Conversion
$\qquad$
ElseIf Tpe = "U" Then

```
If Unit1 = "PA-S" Or Unit1 = "KG/M-S" Then
ElseIf Unit1 = "MPA-S" Then 'Note:This is milliPa-s, not MPa-s
 Value = Value / 1000 ^ Drct
ElseIf Unit1 = "UPA-S" Then
 Value = Value / 1000000 ^ Drct
ElseIf Unit1 = "G/CM-S" Or Unit1 = "POISE" Then
 Value = Value / 10^ Drct
ElseIf Unit1 = "CENTIPOISE" Then
 Value = Value / 1000 ^ Drct
ElseIf Unit1 = "MILLIPOISE" Or Unit1 = "MPOISE" Then
 Value = Value / 10000 ^ Drct
 ElseIf Unit1 = "MICROPOISE" Or Unit1 = "UPOISE" Then
 Value = Value / 10000000 ^ Drct
 ElseIf Unit1 = "LBM/FT-S" Or Unit1 = "LB/FT-S" Then
 Value = Value * (LBMtoKG / FTtoM) ^ Drct
 ElseIf Unit1 = "LBF-S/FT^2" Then
 Value = Value * (LBFtoN / FTtoM ^ 2) ^ Drct
ElseIf Unit1 = "LBM/FT-H" Or Unit1 = "LB/FT-H" Then
 Value = Value * (LBMtoKG / FTtoM / HtoS) ^ Drct
 Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
 End If
'--
 ' Thermal Conductivity Conversion
'--
ElseIf Tpe = "K" Then
 If Unit1 = "MW/M-K" Then
 ElseIf Unit1 = "W/M-K" Then
```

```
 Value = Value * 1000 ^ Drct
ElseIf Unit1 = "G-CM/S^3-K" Then
 Value = Value / 100 ^ Drct
ElseIf Unit1 = "KG-M/S^3-K" Then
 Value = Value * 1000 ^ Drct
ElseIf Unit1 = "CAL/S-CM-K" Then
 Value = Value * (CALtoJ * 100000) ^ Drct
ElseIf Unit1 = "KCAL/HR-M-K" Then
 Value = Value * (CALtoJ * 100000 * 1000 / 100 / 3600) ^ Drct
ElseIf Unit1 = "LBM-FT/S^3-F" Or Unit1 = "LB-FT/S^3-F" Then
Value = Value * (1000 * LBMtoKG * FTtoM / RtoK) ^ Drct
ElseIf Unit1 = "LBF/S-F" Then
Value = Value * (1000 * LBFtoN / RtoK) ^ Drct
ElseIf Unit1 = "BTU/H-FT-F" Then
Value = Value * (1000 * BTUtoW / HtoS / FTtoM / RtoK) ^ Drct
Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
End If
'---
' Joule-Thomson Conversion
'---
Elself Tpe = "JT" Then
 If Unit1 = "K/MPA" Or Unit1 = "C/MPA" Then
 ElseIf Unit1 = "K/KPA" Or Unit1 = "C/KPA" Then
 Value = Value * 1000 ^ Drct
 ElseIf Unit1 = "K/PA" Or Unit1 = "C/PA" Then
 Value = Value * 1000000 ^ Drct
 ElseIf Unit1 = "C/ATM" Then
```

$$
\text { Value }=\text { Value } / \text { ATMtoMPa } \wedge \text { Drct }
$$

ElseIf Unit1 = "C/BAR" Then
Value $=$ Value $/$ BARtoMPA ${ }^{\wedge}$ Drct
ElseIf Unit1 $=$ "K/PSI" Or Unit1 $=$ "K/PSIA" Then
Value $=$ Value $/$ PSIAtoMPA ${ }^{\wedge}$ Drct
ElseIf Unit1 = "F/PSI" Or Unit1 = "F/PSIA" Or Unit1 = "R/PSIA" Then
Value $=$ Value $/(\text { PSIAtoMPA } / \text { RtoK })^{\wedge}$ Drct
Else
UnitConvert = Trim2("Undefined input unit"): Exit Function
End If
$\qquad$
' Length Conversion

ElseIf Tpe = "L" Then
If Unit $1=$ "METER" Or Unit $1=$ " $\mathrm{M}^{\prime}$ " Then
ElseIf Unit1 = "DM" Then
Value $=$ Value $/ 10^{\wedge}$ Drct
ElseIf Unit1 = "CM" Then
Value $=$ Value $/ 100^{\wedge}$ Drct
ElseIf Unit1 = "MM" Then
Value $=$ Value $/ 1000{ }^{\wedge}$ Drct
ElseIf Unit1 = "KM" Then
Value $=$ Value $* 1000^{\wedge}$ Drct
ElseIf Unit1 = "INCH" Or Unit1 = "IN" Then
Value $=$ Value $*$ INtoM ${ }^{\wedge}$ Drct
ElseIf Unit1 = "FOOT" Or Unit1 = "FT" Then
Value $=$ Value $*$ FTtoM ${ }^{\wedge}$ Drct
ElseIf Unit1 = "YARD" Or Unit $1=$ "YD" Then

```
 Value = Value * (INtoM * 36) ^ Drct
 ElseIf Unit1 = "MILE" Or Unit1 = "MI" Then
 Value = Value * (INtoM * 63360) ^ Drct
 ElseIf Unit1 = "LIGHT YEAR" Then
 Value = Value * 9.46055E+15 ^ Drct
 ElseIf Unit1 = "ANGSTROM" Then
 Value = Value / 10000000000# ^ Drct
 ElseIf Unit1 = "FATHOM" Then
 Value = Value * (FTtoM * 6) ^ Drct
 ElseIf Unit1 = "MIL" Then
 Value = Value * (INtoM / 1000) ^ Drct
 ElseIf Unit1 = "ROD" Then
 Value = Value * (INtoM * 16.5* 12) ^ Drct
 ElseIf Unit1 = "PARSEC" Then
 Value = Value * (30837400000000#* 1000) ^ Drct
Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
 End If
'---
' Area Conversion
ElseIf Tpe = "A" Then
 If Unit1 = "METER^2" Or Unit1 = "M^2" Then
 ElseIf Unit1 = "CM^2" Then
 Value = Value / 10000 ^ Drct
 ElseIf Unit1 = "MM^2" Then
 Value = Value / 1000000 ^ Drct
 ElseIf Unit1 = "KM^2" Then
```

```
 Value = Value * 1000000 ^ Drct
ElseIf Unit1 = "INCH^2" Or Unit1 = "IN^2" Then
 Value = Value * (INtoM ^ 2) ^ Drct
ElseIf Unit1 = "FOOT^2" Or Unit1 = "FT^2" Then
 Value = Value * (FTtoM ^ 2) ^ Drct
ElseIf Unit1 = "YARD^2" Or Unit1 = "YD^2" Then
 Value = Value * ((INtoM * 36)^2)^ Drct
ElseIf Unit1 = "MILE^2" Or Unit1 = "MI^2" Then
 Value = Value * ((INtoM * 63360) ^ 2) ^ Drct
ElseIf Unit1 = "ACRE" Then
 Value = Value * ((INtoM * 36) ^ 2 * 4840) ^ Drct
 ElseIf Unit1 = "BARN" Then
 Value = Value * 1E-28 ^ Drct
 ElseIf Unit1 = "HECTARE" Then
 Value = Value * 10000 ^ Drct
 Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
 End If
'---
 Volume Conversion (Note: not specific volume)
'--
ElseIf Tpe = "V" Then
 If Unit1 = "METER^3" Or Unit1 = "M^3" Then
 ElseIf Unit1 = "CM^3" Then
 Value = Value / 1000000 ^ Drct
 ElseIf Unit1 = "LITER" Or Unit1 = "L" Or Unit1 = "DM^3" Then
 Value = Value / 1000 ^ Drct
ElseIf Unit1 = "INCH^3" Or Unit1 = "IN^3" Then
```

$$
\begin{aligned}
& \text { Value }=\text { Value } * \text { IN3toM3 }{ }^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "FOOT^3" Or Unit1 = "FT^3" Then } \\
& \text { Value }=\text { Value } *(\operatorname{IN} 3 t o M 3 * 12 \wedge 3)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "YARD^3" Or Unit1 = "YD^3" Then } \\
& \text { Value }=\text { Value } *\left(\text { IN3toM3 } * 36^{\wedge} 3\right)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "GALLON" Or Unit1 = "GAL" Then } \\
& \text { Value }=\text { Value } * \text { GALLONtoM3 }{ }^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "QUART" Or Unit1 = "QT" Then } \\
& \text { Value }=\text { Value } *(\text { GALLONtoM3 } / 4)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "PINT" Or Unit1 = "PT" Then } \\
& \text { Value }=\text { Value } *(\text { GALLONtoM3 } / 8)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "CUP" Then } \\
& \text { Value }=\text { Value } *(\text { GALLONtoM3 } / 16)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "OUNCE" Then } \\
& \text { Value }=\text { Value } *(\text { GALLONtoM3 } / 128)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "TABLESPOON" Or Unit } 1=\text { "TBSP" Then } \\
& \text { Value }=\text { Value } *(\text { GALLONtoM3 } / 256)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "TEASPOON" Or Unit1 = "TSP" Then } \\
& \text { Value }=\text { Value } *(\text { GALLONtoM3 } / 768)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "CORD" Then } \\
& \text { Value }=\text { Value } *(\text { FT3toM3 } * 128)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "BARREL" Then } \\
& \text { Value }=\text { Value } *(\text { GALLONtoM3 } * 42)^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "BOARD FOOT" Then } \\
& \text { Value }=\text { Value } *(\text { IN3toM3 * 144 })^{\wedge} \text { Drct } \\
& \text { ElseIf Unit1 = "BUSHEL" Then } \\
& \text { Value }=\text { Value } * 0.03523907016688{ }^{\wedge} \text { Drct } \\
& \text { Else } \\
& \text { UnitConvert = Trim2("Undefined input unit"): Exit Function }
\end{aligned}
$$

## End If

```
'--
' Mass Conversion
'---
ElseIf Tpe = "M" Then
 If Unit1 = "KG" Then
 ElseIf Unit1 = "G" Then
 Value = Value / 1000 ^ Drct
 ElseIf Unit1 = "MG" Then 'milligram
 Value = Value / 1000000 ^ Drct
 ElseIf Unit1 = "LBM" Or Unit1 = "LB" Then
 Value = Value * LBMtoKG ^ Drct
 ElseIf Unit1 = "GRAIN" Then
 Value = Value * (LBMtoKG / 7000) ^ Drct
 ElseIf Unit1 = "SLUG" Then
 Value = Value * (KGFtoN * LBMtoKG / FTtoM) ^ Drct
ElseIf Unit1 = "TON" Then
 Value = Value * (LBMtoKG * 2000) ^ Drct
 ElseIf Unit1 = "TONNE" Then
 Value = Value * 1000 ^ Drct
 Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
 End If
'--
' Force Conversion
```

$\qquad$

Elself Tpe = "F" Then

```
 If Unit1 = "NEWTON" Or Unit1 = "N" Then
 ElseIf Unit1 = "MN" Then 'milliNewtons
 Value = Value / 1000 ^ Drct
ElseIf Unit1 = "KGF" Then
 Value = Value * KGFtoN ^ Drct
 ElseIf Unit1 = "DYNE" Then
 Value = Value / 100000 ^ Drct
 ElseIf Unit1 = "LBF" Then
 Value = Value * LBFtoN ^ Drct
 ElseIf Unit1 = "POUNDAL" Then
 Value = Value * (LBMtoKG * FTtoM) ^ Drct
 ElseIf Unit1 = "OZF" Then
 Value = Value * (LBFtoN / 16) ^ Drct
 Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
 End If
'--
' Energy Conversion
'--
ElseIf Tpe = "E" Then
 If Unit1 = "JOULE" Or Unit1 = "J" Then
 ElseIf Unit1 = "KJ" Then
 Value = Value * 1000 ^ Drct
 ElseIf Unit1 = "MJ" Then
 Value = Value * 1000000 ^ Drct
 ElseIf Unit1 = "KW-H" Then
 Value = Value * (HtoS * 1000) ^ Drct
 ElseIf Unit1 = "CAL" Then
```

```
 Value = CALtoJ ^ Drct * Value
 ElseIf Unit1 = "KCAL" Then
 Value = Value * (CALtoJ * 1000) ^ Drct
 ElseIf Unit1 = "ERG" Then
 Value = Value / 10000000 ^ Drct
 ElseIf Unit1 = "BTU" Then
 Value = Value * (BTUtoKJ * 1000) ^ Drct
 ElseIf Unit1 = "FT-LBF" Then
 Value = Value * FTLBFtoJ ^ Drct
 Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
 End If
'--
' Power Conversion
'--
ElseIf Tpe = "Q" Then
 If Unit1 = "WATT" Or Unit1 = "W" Then
 ElseIf Unit1 = "KWATT" Or Unit1 = "KW" Then
 Value = Value * 1000 ^ Drct
 ElseIf Unit1 = "BTU/S" Then
 Value = Value * BTUtoW ^ Drct
ElseIf Unit1 = "BTU/MIN" Then
 Value = Value * (BTUtoW / 60) ^ Drct
 ElseIf Unit1 = "BTU/H" Then
 Value = Value * (BTUtoW / HtoS) ^ Drct
ElseIf Unit1 = "CAL/S" Then
 Value = Value * CALtoJ ^ Drct
ElseIf Unit1 = "KCAL/S" Then
```

```
 Value = Value * (CALtoJ * 1000) ^ Drct
 ElseIf Unit1 = "CAL/MIN" Then
 Value = Value * (CALtoJ / 60) ^ Drct
 ElseIf Unit1 = "KCAL/MIN" Then
 Value = Value * (CALtoJ / 60 * 1000) ^ Drct
 ElseIf Unit1 = "FT-LBF/S" Then
 Value = Value * FTLBFtoJ ^ Drct
ElseIf Unit1 = "FT-LBF/MIN" Then
 Value = Value * (FTLBFtoJ/60) ^ Drct
 ElseIf Unit1 = "FT-LBF/H" Then
 Value = Value * (FTLBFtoJ / HtoS) ^ Drct
 ElseIf Unit1 = "HP" Then
 Value = Value * HPtoW ^ Drct
 Else
 UnitConvert = Trim2("Undefined input unit"): Exit Function
 End If
'---
' Surface Tension Conversion
ElseIf Tpe = "N" Then
 If Unit1 = "N/M" Then
 ElseIf Unit1 = "MN/M" Then
 Value = Value / 1000 ^ Drct
 ElseIf Unit1 = "DYNE/CM" Or Unit1 = "DYN/CM" Then
 Value = Value / 1000 ^ Drct
 ElseIf Unit1 = "LBF/FT" Then
 Value = Value * LBFTtoNM ^ Drct
Else
```


# UnitConvert = Trim2("Undefined input unit"): Exit Function 

## End If

End If
Unit1 $=$ Unit2

## Next Drct

UnitConvert $=$ Value

## End Function

## Sub SetupUnits(i)

'Warning: If any of these are changed (to make them the default) after the program has run, ' you will need to exit Excel and restart it so that it reinitializes

## 'Refprop Units

$$
\begin{aligned}
& \text { tUnits2 }=\text { "K" } \\
& \text { taUnits2 }=" \mathrm{~K} " \\
& \text { pUnits2 }=\text { "kPa" } \\
& \text { dUnits2 }=\text { "mol/dm^3" } \\
& \text { vUnits2 }=\text { "dm^3/mol" } \\
& \text { hUnits2 }=~ " \mathrm{~J} / \mathrm{mol} " \\
& \text { sUnits2 }=\text { "J/mol-K" } \\
& \text { wUnits2 }=\text { "m/s" } \\
& \text { visUnits2 }=\text { "uPa-s" } \\
& \text { tcxUnits2 }=\text { "W/m-K" } \\
& \text { stUnits2 }=" \mathrm{~N} / \mathrm{m} "
\end{aligned}
$$

'Default units: (SI)

$$
\begin{aligned}
& \text { tUnits }(0)=" \mathrm{~K} " \\
& \text { taUnits }(0)=" \mathrm{~K} " \\
& \text { pUnits }(0)=\text { "MPa" }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{dUnits}(0)=" \mathrm{~kg} / \mathrm{m}^{\wedge} 3 " \\
& \mathrm{vUnits}(0)=" \mathrm{~m} \wedge 3 / \mathrm{kg} " \\
& \text { hUnits }(0)=" \mathrm{~kJ} / \mathrm{kg} " \\
& \text { sUnits }(0)=" \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}^{\prime} \\
& \text { wUnits }(0)=" \mathrm{~m} / \mathrm{s} " \\
& \text { visUnits }(0)=" \mathrm{uPa}-\mathrm{s} " \\
& \text { tcxUnits }(0)=" \mathrm{~mW} / \mathrm{m}-\mathrm{K}^{\prime} \\
& \text { stUnits }(0)=" \mathrm{mN} / \mathrm{m} "
\end{aligned}
$$

'Default units but with K switch to C (SI with C )

$$
\begin{aligned}
& \text { tUnits(5) }=\text { "C" } \\
& \text { taUnits(5) }=\text { "K" } \\
& \text { pUnits(5) }=\text { "MPa" } \\
& \text { dUnits(5) }=\text { "kg/m^3" } \\
& \text { vUnits(5) }=\text { "m^3/kg" } \\
& \text { hUnits(5) }=\text { "kJ/kg" } \\
& \text { sUnits(5) }=\text { "kJ/kg-K" } \\
& \text { wUnits(5) }=\text { "m/s" } \\
& \text { visUnits(5) }=\text { "uPa-s" } \\
& \text { tcxUnits(5) }=\text { "mW/m-K" } \\
& \text { stUnits(5) }=\text { "mN/m" }
\end{aligned}
$$

'Default units on a molar basis (Molar SI)

$$
\begin{aligned}
& \text { tUnits }(6)=\text { "K" } \\
& \text { taUnits }(6)=" \mathrm{~K} " \\
& \text { pUnits }(6)=" \mathrm{MPa} " \\
& \text { dUnits }(6)=\text { "mol/dm^3" } \\
& \text { vUnits }(6)=\text { "dm^3/mol" } \\
& \text { hUnits }(6)=\text { "J/mol" } \\
& \text { sUnits(6) }=\text { "J/mol-K" } \\
& \text { wUnits(6) }=\text { "m/s" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { visUnits(6) = "uPa-s" } \\
& \text { tcxUnits(6) }=\text { "mW/m-K" } \\
& \text { stUnits(6) }=\text { "mN/m" } \\
& \text { 'mks (mks) } \\
& \text { tUnits(1) = "K" } \\
& \text { taUnits(1) = "K" } \\
& \text { pUnits(1) }=\text { " } \mathrm{kPa} " \\
& \text { dUnits(1) }=\text { "kg/m^3" } \\
& \text { vUnits(1) }=\text { " } \mathrm{m}^{\wedge} 3 / \mathrm{kg} " \\
& h U n i t s(1)=" k J / k g " \\
& \text { sUnits(1) }=\text { "kJ/kg-K" } \\
& \text { wUnits }(1)=" \mathrm{~m} / \mathrm{s} " \\
& \text { visUnits(1) = "uPa-s" } \\
& \text { tcxUnits(1) = "W/m-K" } \\
& \text { stUnits }(1)=" \mathrm{mN} / \mathrm{m} " \\
& \text { 'cgs (cgs) } \\
& \text { tUnits(2) = "K" } \\
& \text { taUnits(2) }=\text { "K" } \\
& \text { pUnits(2) = "MPa" } \\
& \text { dUnits(2) }=\text { " } \mathrm{g} / \mathrm{cm}^{\wedge} 3 " \\
& \text { vUnits(2) }=\text { " } \mathrm{cm}{ }^{\wedge} 3 / \mathrm{g} " \\
& \text { hUnits(2) }=\mathrm{JJ} / \mathrm{g} " \\
& \text { sUnits(2) }=\text { "J/g-K" } \\
& \text { wUnits(2) }=\text { "cm/s" } \\
& \text { visUnits(2) = "uPa-s" } \\
& \text { tcxUnits(2) }=\text { "mW/m-K" } \\
& \text { stUnits(2) = "dyn/cm" } \\
& \text { 'English (E) } \\
& \text { tUnits(3) = "F" 'See comments above }
\end{aligned}
$$

$$
\begin{aligned}
& \text { taUnits(3) = "R" } \\
& \text { pUnits(3) = "psia" } \\
& \text { dUnits(3) }=\text { "lbm/ft^3" } \\
& \text { vUnits(3) }=\text { "ft^3/lbm" } \\
& \text { hUnits(3) = "Btu/lbm" } \\
& \text { sUnits(3) = "Btu/lbm-R" } \\
& \text { wUnits(3) = "ft/s" } \\
& \text { visUnits(3) }=\text { "lbm/ft-s" } \\
& \text { tcxUnits(3) = "Btu/h-ft-F" } \\
& \text { stUnits(3) = "lbf/ft" } \\
& \text { 'Mixed (M) } \\
& \text { tUnits(4) = "K" } \\
& \text { taUnits(4) }=\text { "K" } \\
& \text { pUnits(4) = "psia" } \\
& \text { dUnits(4) }=\text { " } \mathrm{g} / \mathrm{cm}^{\wedge} 3 " \\
& \text { vUnits(4) }=\text { "cm^3/g" } \\
& \text { hUnits }(4)=" \mathrm{~J} / \mathrm{g} " \\
& \text { sUnits(4) }=\text { "J/g-K" } \\
& w \operatorname{Units}(4)=" \mathrm{~m} / \mathrm{s} " \\
& \text { visUnits(4) = "uPa-s" } \\
& \operatorname{tcx} \operatorname{Units}(4)=" m W / m-K " \\
& \operatorname{stUnits}(4)=" \mathrm{mN} / \mathrm{m} "
\end{aligned}
$$

End Sub

Function ConvertUnits(InpCode, Units, Prop1, Prop2)
Dim i As Integer, at As String, bt As String, tConv As Double, DefaultUnits As Integer

If IsMissing(InpCode) Then InpCode = " "
If IsMissing(Units) Then Units = " "

If IsMissing(Prop1) Then Prop1 $=0$
If IsMissing(Prop2) Then Prop2 $=0$
If ierr > 0 Then ConvertUnits $=$ Trim2(herr): Exit Function
If tUnits2 = "" Then
Call SetupUnits(0) 'If Default units are changed, this needs to be called again. Normally it is skipped after the first entry

End If
'Change the 0 in the following line to 3 for default English units, 1 for mks, or 2 for cgs, etc.
DefaultUnits $=0$
$\mathrm{i}=$ DefaultUnits
'Do not change the order of the next 7 statements
If Left(UCase(Units), 2) = "SI" Then $\mathrm{i}=0 \quad$ 'SI
If UCase(Units) $=$ "SI WITH C" Or UCase(Units) $=$ "C" Then $\mathrm{i}=5$ 'SI with C
If Left(UCase(Units), 1 ) = "M" Then $\mathrm{i}=4$
If UCase(Units) $=$ "MOLAR SI" Then $\mathrm{i}=6$
If UCase(Units) $=$ "MKS" Then $\mathrm{i}=1$
If UCase(Units) $=$ "CGS" Then $\mathrm{i}=2$
If Left(UCase(Units), 1) = "E" Then $\mathrm{i}=3$
at $=\operatorname{UCase}(\operatorname{Left}(\operatorname{InpCode}, 1))$
$\mathrm{bt}=\mathrm{UCase}(\operatorname{Mid}(\operatorname{InpCode}, 2,1))$
If at $=$ " - " Then
ConvertUnits $=$ Prop1
If Prop1 >= -9999999 And Prop1 <= -9999900 Then
If Prop1 $=\operatorname{CLng}($ Prop1 $)$ Then
ConvertUnits = Trim2("Undefined")
Exit Function
End If
End If

```
'If Len(Trim(Prop1)) >0 Then
 If bt = "T" Then ConvertUnits = UnitConvert(Prop1, "T", tUnits2, tUnits(i))
 If bt = "A" Then ConvertUnits = UnitConvert(Prop1, "T", taUnits2, taUnits(i))
 If bt = "P" Then ConvertUnits = UnitConvert(Prop1, "P", pUnits2, pUnits(i))
 If bt = "D" Then ConvertUnits = UnitConvert(Prop1, "D", dUnits2, dUnits(i))
 If bt = "V" Then ConvertUnits = UnitConvert(Prop1, "D", vUnits2, vUnits(i))
 If bt = "H" Or bt = "E" Then ConvertUnits = UnitConvert(Prop1, "H", hUnits2, hUnits(i))
 If bt = "S" Then ConvertUnits = UnitConvert(Prop1, "S", sUnits2, sUnits(i))
 If \(b t=\) "W" Then ConvertUnits \(=\) UnitConvert(Prop1, "W", wUnits2, wUnits(i))
 If bt \(=\) "U" Then ConvertUnits \(=\) UnitConvert(Prop1, "U", visUnits2, visUnits(i))
 If bt = "K" Then ConvertUnits = UnitConvert(Prop1, "K", tcxUnits2, tcxUnits(i))
 If bt = "N" Then ConvertUnits = UnitConvert(Prop1, "N", stUnits2, stUnits(i))
 'End If
 If \(\mathrm{bt}=\mathrm{JJ}\) " Then
 tConv \(=1\)
 If tUnits \((\mathrm{i})=\) "R" Or tUnits \((\mathrm{i})=\) "F" Then \(\mathrm{tConv}=1 /\) RtoK
 ConvertUnits = Prop 1 * tConv / UnitConvert(1, "P", "kPa", pUnits(i))
End If
Else
If Len(Trim(Prop1)) >0 Then
 If at = "T" Then Prop1 = UnitConvert(Prop1, "T", tUnits(i), tUnits2)
 If at = "A" Then Prop1 = UnitConvert(Prop1, "T", taUnits(i), taUnits2)
 If at \(=\) " P " Then Prop1 \(=\) UnitConvert(Prop1, "P", pUnits(i), pUnits2)
 If at = "D" Then Prop1 = UnitConvert(Prop1, "D", dUnits(i), dUnits2)
 If at \(=\) " V " Then Prop1 \(=\) UnitConvert(Prop1, "D", vUnits(i), vUnits2)
 If at = "H" Or at = "E" Then Prop1 = UnitConvert(Prop1, "H", hUnits(i), hUnits2)
 If at = "S" Then Prop1 = UnitConvert(Prop1, "S", sUnits(i), sUnits2)
 If at \(=\) "W" Then Prop1 \(=\) UnitConvert(Prop1, "W", wUnits(i), wUnits2)
 If at = "U" Then Prop1 = UnitConvert(Prop1, "U", visUnits(i), visUnits2)
```

```
 If at = "K" Then Prop1 = UnitConvert(Prop1, "K", tcxUnits(i), tcxUnits2)
 If at = "N" Then Prop1 = UnitConvert(Prop1, "N", stUnits(i), stUnits2)
End If
If Len(Trim(Prop2)) > 0 Then
 If bt = "T" Then Prop2 = UnitConvert(Prop2, "T", tUnits(i), tUnits2)
 If bt = "A" Then Prop2 = UnitConvert(Prop2, "T", taUnits(i), taUnits2)
 If bt = "P" Then Prop2 = UnitConvert(Prop2, "P", pUnits(i), pUnits2)
 If bt = "D" Then Prop2 = UnitConvert(Prop2, "D", dUnits(i), dUnits2)
 If bt = "V" Then Prop2 = UnitConvert(Prop2, "D", vUnits(i), vUnits2)
 If bt = "H" Or bt = "E" Then Prop2 = UnitConvert(Prop2, "H", hUnits(i), hUnits2)
 If bt = "S" Then Prop2 = UnitConvert(Prop2, "S", sUnits(i), sUnits2)
 If bt = "W" Then Prop2 = UnitConvert(Prop2, "W", wUnits(i), wUnits2)
 If bt = "U" Then Prop2 = UnitConvert(Prop2, "U", visUnits(i), visUnits2)
 If bt = "K" Then Prop2 = UnitConvert(Prop2, "K", tcxUnits(i), tcxUnits2)
 If bt = "N" Then Prop2 = UnitConvert(Prop2, "N", stUnits(i), stUnits2)
 End If
End If
End Function
```


## References

Alessio, E., A. Carbone, G. Castelli, and V. Frappietro. 2002. Second-order Moving Average and Scalling of Stochastic time series. THe European Physical Journal B 27: 197200.

American Petroleum Institute. 2007. API RP 521-Pressure-relieving and Depressuring Systems, edited by A. P. Institute.

American Petroleum Institute. 2008. API RP 520 Part 1 Sizing, Selection and Installation of the Pressure-relieving devices in the Refineries, edited by A. P. Institute.

Bansal, R. K. 2005. Fluid mechanics and hydraulic machines. 9 ed. New Delhi: Laxmi Publications (P) Ltd.

Bellman, R. 1970. Method of Non-Linear Analysis. 2 vols. Vol. 1, Mathematics in Science and Engineering. New York: Academic Press, Inc.

Bernuth, R. D. V. 1990. Simple and Accurate Friction Loss Equation for Plastic Pipe. Journal of Irrigation and Drainage Engineering 116 (2): 294-298.

BOC Gases. 2006. BOC Gases Reference Manual. https://boc.com.au/boc_sp/au/downloads/reference_manuals/industrial/BOC_IPRM_ S03-IndGas.pdf (accessed

Botros, K. K., W. M. Jungowski, and M. H. Weiss. 1989. Models and Methods of Simulating Gas Pipeline Blowdown. The Canadian Journal of Chemical Engineering 67: 529-539.

Brkic`, D. 2011. Review of Explicit Approximations to the Colebrook Relation for Flow Friction. Journal of Petroleum Science and Engineering 77: 34-48.

Case, J., L. Chilver, and C. T. F. Ross. 1999. Strenght of Materials and Structures, ed M. Flynn. London: Arnold (accessed.

Chan, S. K., and W. A. Woods. 1992. On Rayleigh and Fanno Flows of Homogenous Equilibrium Two-phase fluids. International Journal of Heat and Fluid Flow 13 (3): 273-281.

Chen, J. R., S. Richardson, and G. Saville. 1995a. Modelling Of Two-Phase Blowdown From Pipelines-1. A Hyperbolic Model Based On Variational Principles. Chemical Engineering Science 50 (4): 695-713.

Chen, J. R., S. Richardson, and G. Saville. 1995b. Modelling of Two Phase Blowdown of Pipelines: II. A Simplified Numerical Method for Multi-component Mixtures. Chemical Engineering Science 50 (13): 2173-2187.

Chen, N. H. 1979. An Explicit Equation for Friction Factor in Pipe. Industrial and Engineering Chemistry Fundamentals 18 (3): 296-297.

Churchill, S. W. 1977. Friction-factor Equation Spans all fluid Flow Regimes. Chemical Engineering Journal 84 (24): 91-92.

Cochran, T. W. 1996. Calculate Pipeline Flow of Compressible Fluids. Chemical Engineering:

Colebrook, C. F. 1939. Turbulent Flow in Pipes, with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws. Journal of the Institute of Civil Engineers 11 (4): 133-156.

Cumber, P. S. 2001. Predicting Outflow From High Pressure Vessels. Transactions IChemE 79, part B: 13-22.

Eggers, R., and V. Green. 1990. Pressure Discharge from a Pressure Vessel Filled with $\mathrm{C}_{2}$. Journal of Loss Prevention in the Process Industries 3 (1): 59-63.

Ellenberger, P. 2010. Piping and Pipeline Calculations Manual Construction, Design Fabrication and Examination. Burlington : Elsevier Science and Technology (accessed.

Evanger, T., T. Bjorge, B. Magnussen, and A. Bratseth. 1995. Full-scale depressurization of a section of a rizer platform. Measurements and comparison with simulations. Journal of Harzardous Materials 46: 117-129.

Fairuzov, Y. V. 1998. Blowdown of Pipelines Carrying Flashing Liquids. AIChE Journal 44 (2): 245-254.

Farina, I. H. 1997. Critical Length Helps Calculate Compressible Flow. Chemical Engineering: 88-92.

Franz, D. D., and C. S. Melching. ND. Full Equations (FEQ) Model for the Solution of the Full, Dynamic Equations of Motion for One-Dimensional Unsteady Flow in Open Channels and through Control Structures. Chicago, Illinois: U.S. Geological Survey.

Franzini, J. B., E. J. Finnemore, and R. L. Daugherty. 1997. Fluid Mechanics with Engineering Applications. 9th ed: McGraw Hill.

Gebbeken, B., and R. Eggers. 1995. Blowdown of carbon dioxide from initially supercritical conditions. Journal of Loss Prevention in the Process Industries 9 (4): 285-293.

Glushkov, B., E. Selyanskaya, and S. Kas'yanov. 2003. Processing Gas-Dynamic Test Data On Compressors and Flow Sections for Air and Natural Gas. Chemical and Petroleum Engineering 39: 276-280.

Goh, C. B. 1989. Estimation of Flowrate Through a Ruptured Natural Gas Pipe. International Journal of Heat and Fluid Flow 10 (2): 173-178.

Govier, G. W., and K. Aziz. 1972. The Flow of Complex Mixtures in Pipes. New York: Van Nostrand Reinhold Co.

Gradle, R. J. 1984. Design of Gas Pipeline Blowdowns. Energy Processing Canada:

Hall, A. R. W., G. R. Butcher, and C. E. The. 1993. Proceedings of European Two Phase Flow Group Meeting, Transient Simulation of Two-phase Hydrocarbon Flows in Pipelines. Hannover, Germany: (accessed

Haque, A., S. Richardson, and G. Saville. 1992. Blowdown of pressure vessels I. Computer model. Transactions IChemE 70 (Part B):

Haque, A., S. Richardson, G. Saville, and G. Chamberlain. 1989. Rapid depressurization of pressure vessels. Journal of Loss Prevention in the Process Industries 3:

Haque, A., S. Richardson, G. Saville, G. Chamberlain, and L. Shirvill. 1992. Blowdown of pressure vessels II. Experimental validation of computer model and case studies. Transactions IChemE 70 (Part B):

Hervieu, E. 1991. Behaviour of a flashing liquid within a vessel following loss of containment. Application to propane.

Holditch, S. A., and R. R. Chianelli. 2008. Factors That Will Influence Oil and Gas Supply and Demand in the 21st Century. Harnessing Materials For Energy 33:

Hong, Y.-J., S.-J. Park, H.-B. Kim, and Y.-D. Choi. 2004. The Cool-down Characteristics of a Miniature Joule-Thomson Refrigerator. Cryogenics 46: 391-395.

Jain, A. K. 1976. Accurate Explicit Equation for Friction Factor. American Society Civil Engineers Journal of Hydraulic Engineering 102 (HY5): 674-677.

Jones, J. B., and G. A. Hawkins. 1986. Engineering Thermodynamics An Introductory Textbook. Second ed: John Wiley \& Sons, Inc.

Kaye, J. 1953. Survey of Friction Coefficients, Recovery Factors, and Heat-Transfer Coefficients for Supersonic Flow. Cambridge, Massachuetts: Massachusetts Institute of Technology.

Keenan, M. 2009. Brittle Fracture. http://www.communityhotline.com/News_ Photos/news_photos_DetailCustomer.php?newsid=2532 (accessed 28th December).

Khazrai, F., H. B. Haghighi, and H. Kordabadi. 2001. Avoid Brittle Fracture in Pressure Vessels. Hydrocarbon Processing. http://proquest.umi.com.dbgw.lis. curtin.edu.au /pqdweb?did=2311079201\&sid=1\&Fmt=3\&clientId=22212\&RQT=309\&VName=P QD (accessed

King, R. E. 2006. Auto-Refrigeration / Brittle Fracture Analysis of Existing Olefins Plants Translation of Lessons Learned to Other Processes. Journal of Hazardous Materials 142 (2007): 608-617.

Kirk-Burnnand, D. 2009. Gas Properties and DBNGP Data. Research Project Meeting. 05/06/2009, Perth.

Kunz, O., R. Klimeck, W. Wagner, and M. Jaeschke. 2007. The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures. Bochum, Germany: Groupe Europeen de Recherches Gazieres.

Lemmon, D. E. W., D. M. L. Huber, and D. M. O. McLinden. 2009. REFPROP Manual. Boulder: U. S. Department of Commerce.

Lloyd, D. K., and M. Lipow. 1962. Reliability: Management, Methods and Mathematics: Prentice-Hall.

Mackerle, J. 1999. Finite elements in the analysis of pressure vessels and piping, an addendum. International Journal of Pressure Vessels and Piping 76: 461-485.

Mahgerefteh, H., P. Saha, and I. G. Economou. 1999. Fast Numberical Simulation for Full Bore Rupture of Pressurized Pipelines. AIChE Journal 45 (6): 1191-1201.

Mahgerefteh, H., and S. M. A. Wong. 1999. A numerical blowdown simulation incorporating cubic equations of state. Computers and Chemical Engineering 23:

Marian, D. R., D. H. B. Vuthaluru, and V. Ghantala. PVBLOW: A Mathematical Model for Predicting Minimum Vessel Wall Temperatures for Pressure Vessels Undergoing Blowdown. Curtin Univerisity of Technology.

Maric, I. 2005. The Joule-Thomson effect in natural gas flow-rate measurements. Flow Measurement and Instrumentation 16: 387-395.

McAdams, W. H., L. A. Nicolai, and J. H. Keenan. 1946. Measurement of Recovery Factors and Coefficient of Heat Transfer in a Tube for Subsonic Flow of Air. American Institute of Chemical Engineers 42: 907-925.

McCabe, W. L., J. C. Smith, and P. Harriott. 2001. Unit Operations of Chemical Engineering. Sixth ed. Singapore: McGraw Hill.

Moody, M. L. 1947. An Approximate Formula for Pipe Friction Factors. Transaction of ASME 69: 1005-1011.

Nageshwar, G. D. 2003. Chemical Engineering Thermodynamics: Vipul Prakashan, India.
Nagy, I. 1992. Introduction to Chemical Process Instrumentation. Vol. 3. Amsterdam, The Netherlands: Elsevier Science Publishers.

Narasimhan, S., and C. Jordache. 2000. Data Reconciliation and Gross Error Detection An Intelligent Use of Process Data. Houstan, Texas: Gulf Publishing Company.

National Instruments. 2006. Reducing the Effects of Noise in a Data Acquisition System by Averaging. http://zone.ni.com/devzone/cda/tut/p/id/3947?submitted=yes.

Nijsing, R., and N. A. Brinkhof. 1996. Emergency Pressure RELIEF Calculations Using the Computer Package RELIEF. Journal of Hazardous Materials 46: 131-143.

Nolan, D. P. 1996. Handbook of Fire and Explosion Protection Engineering Principles for Oil, Gas, Chemical, and Related Facilities Noyes Publications (accessed.

Norris III, H., and Exxon Production Research Co. 1994. Hydrocarbon Blowdown From Vessels and Pipelines. In 69th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. New Orleans, LA, USA. SPE.

Norris III, H. L., Exxon Production Research Co, and U. o. T. R.C. Puls. 1993. Single-Phase or Multiphase Blowdown of Vessels or Pipelines. In 68th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. Houston. SPE.

Ortega, J. M., and W. C. Rheinboldt. 1970. Iterative Solution of Non-Linear Equations in Several Variables. Edited by W. Rheinboldt, Computer Science and Applied Mathematics. New York: Academic Press, Inc.

Ouyang, L.-b., and K. Aziz. 1995. Steady-state Gas Flow in Pipes. Journal of Petroleum Science and Engineering 14: 137-158.

Pareek, V. 2008. Introduction to HYSYS. ChE 312 Process Synthesis and Design 1. Lecture notes. Perth: Department of Chemical Engineering, Curtin University.

Parker, G. J. 1985. 'Pop' Safefy Valves: A Compressible Flow Analysis. International Journal of Heat and Fluid Flow 6 (4): 279-283.

Parker, G. J. 1989. Adiabatic Compressible Flow in Parallel Ducts: An Approximate but Rapid Method of Solution. International Journal of Heat and Fluid Flow 10 (2): 179-181.

Peng, D.-Y., and D. B. Robinson. 1976. A New Two-Constant Equation of State. Industrial \& Engineering Chemistry Fundamentals 15 (1): 59-64.

Prandtl, L. 2004. Prandtl's Essentials of Fluid Mechanics, ed H. Oertel. New York: Springer-Verlag New York, Inc (accessed 22/09/2010).

Ramirez, W. F. 1998. Computational Methods for Process Simulation. Second Edition ed. Boulder, Colorado: Butterworth-Heinemann.

Richardson, S., and G. Saville. 1991. Blowdown of Pipelines. In Offshore Europe Conference. Aberdeen. Society of Petroleum Engineers.

Richardson, S., and G. Saville. 1996. Blowdown of LPG Pipelines. Transactions IChemE 74 (Part B): 235-244.

Riggs, J. B., and M. N. Karim. 2006. Chemical and Bio-Process Control. Third ed. Lubbock, Texas: Ferret Publishing.

Roberts, T. A., I. Buckland, L. C. Shirvill, B. J. Lowesmith, and P. Salater. 2004. Design and Protection of Pressure Systems to Withstand Severe Fires. Process Safety and Environmental Protection 82 (B2): 89-96.

Romeo, E., C. Royo, and A. Monzon. 2002. Improved Explicit Equationsfor Estimation of the Friction Factor in Rough and Smooth Pipes. Chemical Engineering Journal 86 (3): 369-374.

Saad, M. A. 1993. Compressible Fluid Flow. 2 ed. New Jersey: Prentice Hall.
Serghides, T. K. 1984. Estimate Friction Factor Accurately. Chemical Engineering Journal 91 (5): 63-64.

Setzmann, U., and W. Wagner. 1991. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa . Journal of Physical and Chemical Reference Data 20 (6): 1061-1155.

Shackelford, J. F. 2005. Introduction to Materials Science for Engineers. In Mechanical Behaviour. Upper Saddle River, NJ: Pearson Education (accessed.

Shapiro, A. H. 1954. The Dynamics and Thermodynamics of Compressible Flow
The Ronald Press Company, New York.
Shapiro, A. H., and W. R. Hawthorne. 1947. The Mechanics and Thermodynamics of Steady One-Dimensional Gas Flow. Journal of Applied Mechanics: A-317-A-336.

Shi, W., M. Miyamoto, Y. Katoh, and J. Kurima. 2001. Choked Flow of Low Density Gas in a Narrow Parallel-plate Channel with Adiabatic Walls. International Journal of Heat and Mass Transfer 44: 2555-2565.

Shoemaker, D. P., C. W. Garland, and J. W. Nibler. 1996. Experiments in Physical Chemistry. 6th ed. New York: McGraw-Hill.

Skouloudis, A. N. 1992. Benchmark exercises on the emergency venting of vessels. Journal of Loss Prevention in the Process Industries 5 (2): 89-103.

Soave, G. 1972. Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chemical Engineering Science 27 (6): 1197-1203.

Soave, G. S. 1995. A Non-Cubic Equation of State for the Treatment of Hydrocarbon Fluid at Reservoir Conditions. Industrial and Engineering Chemistry Research 34: 39813994.

Sonnad, J. R., and C. T. Goudar. 2006. Turbulent Flow Friction Factor Calculation Using a Mathematically Exact Alternative to the Colebrook-White Equation. Journal of Hydraulic Engineering ASCE 132 (8): 863-867.

Speranza, A., and A. Terenzi. 2005. Blowdown of hydrocarbons pressure vessel with partial phase separation. (accessed

Spirax Sarco Limited. 2011. Air Receiver with Automatic Isolating Valves \& Blowdown Valve : Clipart Drawing. http://www.spiraxsarco.com/resources/cad/applications/ process/preview/tanks-and-vats.asp?drawing_id=341\&preview=clipart (accessed 05/06/2011).

Stoop, P. M., J. P. A. V. d. Bogaard, and H. Koning. 1985. Dynamic Loads on an RPV Vent Line Piping System during Hydrogen Relief. The International Journal of Pressure Vessel and Piping 18 (3): 183-208.

Stoop, P. M., J. P. A. V. d. Bogaard, and H. Koning. 1986. CHARME-01, A Thermohydraulic Code for the Calculation of Fast Transients Inside Piping Systems. The International Journal of Pressure Vessel and Piping 24 (2): 97-121.

Swamee, P. K., and A. K. Jain. 1976. Explicit Equations for Pipe-flow Problems. Journal of Hydraulic Engineering ASCE 102 (5): 657-664.

Tilley, B. J., and D. A. Shaw. 1990. SAFIRE Computer Program for Emergency Relief Sizing. In Emergency Relief System Design Using DIERS Technology - The Design Institute for Emergency Relief Systems (DIERS) Project ManualNew York: AIChE.

Weiss, M. H., K. K. Botros, and W. M. Jungowski. 1988. Simple Method Predicts Gas Blowdown Time. Oil and Gas Journal 86: 55-58.

West, A. H., D. Posarac, and N. Ellis. 2008. Assessment of Four Biodiesel Production Processes using HYSYS.Plant. Bioresource Technology 99: 6587-6601.

Westman, M. 1997. Rapidly Design Safety Relief Valve Inlet Piping Systems. Chemical Engineering Progress: 80-88.

Wisniak, J., and H. Avraham. 1996. On the Joule-Thomson effect inversion curve. Thermochimica Acta 286: 33-40.

Won, K. W., A. R. Smith, and G. A. Zeininger. 2005. Thermodynamic Methods for Pressure Relief Design Parameters. Fluid Phase Equilibria 241 (2006): 41-50.

Wood, D. J. 1966. An Explicit Friction Factor Relationship. Civil Engineering 36 (12): 6061.

Worth, B., H. Staedtke, and G. Franchello. 1993. RELAP5-EUR/MF, a System Code for Thermal-Hydraulic Networks. Ispra: Joint Research Council (JRC), European Commission.

Yuhu, D., G. Huilin, Z. Jing'en, and F. Yaorong. 2002. Mathematical Modelling of Gas Release Through Holes in Pipelines. Chemical Engineering Journal 92: 237-241.

Zigrang, D. J., and N. D. Slyvester. 1982. Explicit Approximations to the Solution of Colebrook's Friction Factor Equation. American Institute of Chemical Engineers Journal 28 (3): 514-515.
"Every reasonable effort has been made to acknowledge the owners of copyright material. I would be pleased to hear from any copyright owner who has been omitted or incorrectly acknowledged"


[^0]:    

[^1]:    Worksheets(ws).Range(cell).End(xlDown).Offset( 0,6 ).NumberFormat $=$ " 0.00 "

    Worksheets(ws).Range(cell).End(xlDown).Offset(0,7).Value =
    Range("PressureDrop").Value
    Worksheets(ws).Range(cell).End(xlDown).Offset( 0,7 ).NumberFormat $=" 0.00 "$

    Worksheets(ws).Range(cell).End(xlDown).Offset( 0,8 ).Value =
    Range("InletTemperatureDegC").Value
    Worksheets(ws).Range(cell).End(xlDown).Offset(0, 8).NumberFormat = "0.000"

    Worksheets(ws).Range(cell).End(xlDown).Offset(0,9).Value =
    Range("OutletTemperatureDegC").Value
    Worksheets(ws).Range(cell).End(xlDown).Offset(0, 9).NumberFormat = "0.000"
    Worksheets(ws).Range(cell).End(xlDown).Offset(0, 10).Value $=$ Range("InletMach").Value
    Worksheets(ws).Range(cell).End(xlDown).Offset(0, 10).NumberFormat = "0.0000"
    Worksheets(ws).Range(cell).End(xlDown).Offset $(0,11) \cdot$ Value
    Range("OutletMach").Value
    Worksheets(ws).Range(cell).End(xlDown).Offset $(0,11) \cdot$ NumberFormat $=" 0 \cdot 000 "$
    Worksheets(ws).Range(cell).End(xlDown).Offset( 0,12 ).Value =
    Range("PipeMaxMassFlowrate").Value
    Worksheets(ws).Range(cell).End(xlDown).Offset(0, 12).NumberFormat = "0.000"
    Worksheets(ws).Range(cell).End(xlDown).Offset $(0,13)$.Value $=$
    Range("PipeMaxNormalFlowrate").Value
    Worksheets(ws).Range(cell).End(xlDown).Offset(0, 13).NumberFormat = "0.000"
    'MsgBox "Values entered on Snap Shot Spreadsheet"
    End Sub

[^2]:    ' Pressure Conversion

    ElseIf Tpe = "P" Then
    Gage $=\operatorname{InStr}($ Unit1, "GAGE")
    Vacm $=\operatorname{InStr}($ Unit1, "VACM")
    If Gage $=0$ Then Gage $=\operatorname{InStr}($ Unit1, "_G")
    If Vacm $=0$ Then Vacm $=\operatorname{InStr}($ Unit1, "_V")
    If Gage <>0 And Drct $=-1$ Then Value = Value - ATMtoMPa
    If Vacm <> 0 And Drct $=-1$ Then Value $=$ ATMtoMPa - Value
    If Gage <> 0 Then Unit1 $=\operatorname{Trim}(\operatorname{Left}($ Unit1, Gage - 1) $)$
    If Vacm <> 0 Then Unit1 $=$ Trim(Left(Unit1, Vacm - 1))
    If Unit1 = "PA" Then
    Value $=$ Value $/ 1000000^{\wedge}$ Drct
    ElseIf Unit1 = "KPA" Then
    Value $=$ Value $/ 1000{ }^{\wedge}$ Drct
    ElseIf Unit1 = "MPA" Then
    Value $=$ Value
    ElseIf Unit1 = "GPA" Then
    Value $=$ Value * $1000{ }^{\wedge}$ Drct
    ElseIf Unit1 = "BAR" Then
    Value $=$ Value $*$ BARtoMPA ${ }^{\wedge}$ Drct
    ElseIf Unit1 = "KBAR" Then

