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Abstract

Perinatal epidemiology is the study of the distribution, determinants and sequelae of
perinatal events. As randomised controlled trials are neither practical, feasible, nor
ethical in pregnant women, much of the information that has informed our
understanding of causal effects in perinatal epidemiology have been derived from
observational studies. Due to the non-random nature of observational data, perinatal
epidemiological studies are often prone to various types of bias. Yet there remains a

lack of clarity around the magnitude or direction of such biases.

Simulation is a powerful tool that has the potential to quantify the influence of bias in
aetiological associations. Simulation involves computational experiments in which
pseudo random sampling generates data to replicate bias mechanisms, enabling the
illustration and quantification of multiple types of bias (selection, confounding and
information), and facilitating the rapid testing of simulation models under multiple
scenarios. Despite the seemingly benefits of simulation to quantitative bias analysis,
there has been limited evidence of their application in perinatal epidemiology.

This thesis considered the utility of simulation to quantify the influence of bias in

perinatal epidemiology through three inter-related aims:

1. To review and explore the existing literature on the application of simulation
methods as an approach to quantify the influence of bias in perinatal epidemiology.

2. To design, implement and analyse a series of simulation studies to quantify the
magnitude and direction of bias in perinatal epidemiology to address issues from
methodological challenges that may lead to spurious inference on associations
between pregnancy exposures and adverse birth outcomes.

3. Todevelop a framework for the application of simulation to quantify bias in perinatal

epidemiology.

To address the specific aims of this thesis, various studies and simulation
methodologies were undertaken. The findings from a systematic review identified that
simulation was effective in the quantification of bias in perinatal epidemiology;
however, there was a lack of uniformity in the design, implementation and reporting of

simulation studies. The limitations of these studies reinforced the need for a framework
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to guide perinatal epidemiologists on the development of simulation studies to quantify
bias. The application of simulation in included studies in this thesis demonstrated its
broad utility in perinatal epidemiology. Simulation methods were employed with
traditional epidemiological regression modelling and the e-value for confounding to
investigate the role of unmeasured confounding in association between pregnancy
complications across successive pregnancies. Here, the application of simulation
strengthened the validity of the epidemiological findings. Simulation studies extricated
the role of the collider in selection bias mechanisms and its influence on mediated
associations, providing methodologies and reproducible simulation code that can be
applied by other researchers to quantify the influence of bias across a range of
perinatal epidemiological associations. Lastly, a framework was developed to guide
epidemiologists on the design, implementation and reporting of simulation studies to

guantify bias.

Taken together, this body of work demonstrated that simulation is a potent method to
guantify the influence of bias in perinatal epidemiology. The methods demonstrated in
this thesis have to potential to aid epidemiologists to increase their understanding of,

and quantify, the influence of pervasive bias mechanisms in perinatal epidemiology.
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Home > News at Curtin Media release » Study shows preterm birth risk most strongly linked to pre-eclampsia

(/NEWS/CATEGORY/)

Study shows preterm birth risk most strongly linked
to pre-eclampsia

09 DEC 20211 Yasmine Phillips

& Copy Link o2 Share || Print II

Women who gave birth to a premature baby after developing pre-eclampsia were 17 times more
likely to experience another preterm birth if pre-eclampsia emerged again, new Curtin University
research has found.

The study, published in the British Journal of Obstetrics and Gynaecology, examined more than
125,000 women who experienced two consecutive singleton births in Western Australia from
1998 to 2015,

About 27,000 babies are born prematurely — or before 37 weeks' gestation — across Australia
each year, with preterm birth the leading cause of death and morbidity in children up to five
years of age in the developed worid.
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Lead author and PhD candidate Jennifer Dunne, from Curtin's School of Population Health, said
the findings showed the strongest link between preterm birth and pregnancies complicated by
pre-eclampsia, a serious pregnancy condition that is usually characterised by high blood
pressure, protein in the uring and severe swelling,

“When both pregnancies were complicated by pre-eclampsia, the risk of a subsequent preterm
firth increased 10-fold after an initial term birth and 17-fold when the first birth was preterm,
comparad to women who had an uncomplicated first pregnancy,” Ms Dunne said.

“This study also found that there was a three-fold higher risk of women experiencing a
subsequent case of pre-aeclampsia after a preterm birth in the first pregnancy that was not
complicated by pre-eclampsia.

“Until recently, a first birth at full term was considered a reduced risk for a preterm delivery in the
next pregnancy. However, there is emerging evidence that a complicated first pregnancy,
regardless of whether the baby was delivered early or at full term, increases the subsequent risk
of a baby being born prematurely”

Ms Dunne said the main pregnancy complications examined included pre-eclampsia, placental
abruption (the detachment from the wall of the womb), small-for-gestational age and perinatal
death (a stillbirth or a neonatal death in the first 28 days).

“Having any of the four complications in their first pregnancy puts women at an increased risk of
a preterm birth in their next pregnancy, regardless of whether that first birth ended at full term ar
preterm,” Ms Dunne said,

“Likewise, women whose first pregnancy ended in a preterm delivery were at an increased risk
for each pregnancy complication in the second pregnancy.

“The findings of this study will help clinicians to better identify women who are at an increased
risk of a either a preterm birth or complications in their subsequent pregnancies. Further
research is now needed to reveal the specific pathways that explain these strang links between
pregnancy complications and preterm births, whether they be genetic, pathological, and
hehavioural or ather recurrent issues.”

The research was supervised by Professor Gavin Pereira and co-authored by Dr Gizachew
Tessema, also from Curtin's School of Population Health.

The full paper, ‘“The role of confounding in the association between pregnancy complications
and subsequent preterm birth: o cohort study’, can be viewed online here

{httpsiobgyn.onlinelibrarywiley.com/doilepdMONNN471-052 817007),

254
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Thesis Outline

This thesis has seven chapters comprising an introduction to the topic (Chapter One),
five original research chapters (Chapters Two to Six) and a discussion (Chapter
Seven). The original research is a combination of published manuscripts (Chapters

Two to Four) and two manuscripts under peer review (Chapter Five and Six).
Chapter One: Introduction

The aim of this opening chapter was to include sufficient background information on
key concepts of importance in the application of simulation to the quantification of the
influence of bias. Bias from selection, information and confounding is pervasive in
perinatal aetiology. Data that informs perinatal epidemiological studies is left truncated
as the sample population is restricted to a pre-specified gestational cut-off. Bias from
confounding is impactful due to causal factors that are unmeasured or unknown to a
study. Moreover, the physiology of pregnancy is complicated, with many influencing
factors that are potentially yet undiscovered. Bias compromises the validity of a study.
Yet, the practice of quantifying the influence of bias in perinatal epidemiological studies
remains low. The application of simulation, empirical computer experiments, have the
potential to quantify the influence of multiple types of bias on a range of exposure-
outcome associations commonly found in perinatal epidemiology. However, there is a
lack of guidance for researchers in the design, implementation and analysis of
simulation studies for the prime purpose of bias analysis. This chapter placed the

contribution of this thesis amongst these knowledge gaps.
Chapter Two: The application of simulation to quantify bias

The first step of this PhD project was to map out how simulation had been applied as
a method to quantify bias in perinatal epidemiology. To fill this knowledge gap, a
systematic review was conducted of the application of simulation as a method to
quantify the magnitude and influence of bias in reproductive and perinatal
epidemiology. The findings indicated that, although the number of simulation studies
remained low, there was increasing application for bias analysis in more recent years.
There was a lack of conformity in the design, implementation, analysis and reporting

of the included simulation studies. Few studies provided simulation code, which
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impeded the reproducibility of their results. These limitations informed
recommendations for best practice in the application of simulation to quantify the
influence of bias, which underpinned the design, implementation and analysis of
subsequent simulation studies in this thesis (Chapter Four and Five) and the
development of a framework (Chapter Six). This chapter (Publication One) was peer-
reviewed and published in Annals of Epidemiology.

Chapter Three: The role of confounding

This chapter examined the role of confounding in the association between
complications in first pregnancy and the subsequent risk of preterm birth. The study
applied traditional epidemiological methods (regression models) to measure the
associations between pre-eclampsia, placental abruption, small-for-gestational age
and perinatal deaths (stillbirth and neonatal death within 28 days of birth) with
subsequent preterm birth. Included in this study was a brief simulation in which a
relevant but unknown confounder of maternal obesity was simulated to determine its
influence on the observed associations between pregnancy complications and
subsequent preterm birth. To measure the role of confounding, the e-value for
confounding was computed to determine the magnitude of unmeasured confounding
in the observed associations. The main finding of this study indicated that recurrent
confounding was unlikely as any such unmeasured confounder would have to be
uncharacteristically large explain away the observed associations between pregnancy
complications and subsequent preterm birth. This chapter (Publication Two) was peer-
reviewed and published in BJOG: An International Journal of Obstetrics &

Gynaecology.
Chapter Four: Bias due to left truncation

Chapter Four quantified the magnitude and influence of bias from the use of left
truncated birth data in the association between advancing maternal age and stillbirth.
The bias mechanism occurs as the cause of the left truncation (restriction to
pregnancies that survived past 20 gestational weeks) was influenced by both the
exposure and an unmeasured factor, which also affected the outcome. The simulation
was based on an observed cohort and range of plausible parameters derived from
published literature. The findings of this simulation study revealed that the exclusion

of early pregnancy losses (prior to 20 gestational weeks) produced minimal bias in the

Thesis Outline 2
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association between advancing maternal age and stillbirth. This study (Publication
Three) was peer-reviewed and published in Scientific Reports.

Chapter Five: Bias in mediated associations

This chapter quantified the influence of bias due to unmeasured confounding in the
association between maternal obesity and caesarean section delivery when mediated
by the pregnancy complication of pre-eclampsia. The magnitude and direction of bias
was quantified under the three most common scenarios: 1) mediator-outcome
confounding, 2) mediator-outcome confounding affected by the exposure, and 3)
exposure-mediator confounding. The simulation was based on an observed cohort
and a range of plausible parameters. The strongest evidence of bias was due to
exposure-mediator confounding, contrasting with the mediator-outcome confounding
which produced minimal bias. This study (Publication Four) has been submitted to

Statistics in Medicine.
Chapter Six: A framework to apply simulation to bias analysis

Chapter Six introduced a framework for the application of simulation to quantify the
magnitude and direction of biases in perinatal epidemiology. This framework provides
guidance to researchers in the design, implementation and reporting of simulation
studies for the prime purpose of bias analysis. Underpinning this framework are five
steps: 1) study aim, 2) causal logic, 3) data generation processes, 4) implementation,
and, 5) reproducibility of the study. Included in this chapter is a reproducible simulation
which demonstrated the implementation of the frame to quantify bias. This study

(Publication Five) has been submitted to the European Journal of Epidemiology.
Chapter Seven: Discussion

This final chapter discusses the thesis research outcomes and summarises the
relevance of each of the chapters in achieving the thesis aims. This chapter also
highlights the strengths and limitations of the thesis, discusses the significance of
simulation as a method for bias analysis in perinatal epidemiology, and makes

suggestions for future research.
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Chapter One: Introduction

This chapter provides a comprehensive introduction and description to the application
of simulation to quantifying bias in perinatal epidemiology. It begins with a brief
overview of causal inference and bias mechanisms commonly found in perinatal
epidemiological studies. It then provides background to simulation and the role it can
play in quantifying the influence of bias. This introductory chapter also highlights the
knowledge gaps that are filled by this PhD project and includes the research aim and

objectives of the thesis.
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1.1Background

Pregnancy is often a time of joy for families. Yet, for some mothers and babies,
pregnancy can be a dangerous period. The physiology of pregnancy is complex.
Understanding the causal associations between exposures and outcomes is
challenging due to many unseen and possibly unforeseen factors. Increasing our
understanding of the complex causal associations between exposures during
pregnancy and adverse outcomes will improve the quality of the evidence-based
information that many clinicians and families rely upon. Epidemiology mainly focuses
on the distributions and determinants of diseases in a specific population. Since its
earliest inception, the field of epidemiology has expanded from a singular focus on
infectious diseases to broader chronic and non-communicable diseases. To support
this aetiology, formalised assumptions and statistical methods have been developed
to ensure our understanding of cause and effect. More recently, the rapid growth in
computing power has increased the feasibility of analysing big datasets using complex
methodologies in epidemiology. However, the application of such data is prone to
various types of bias due to the non-random nature of observational studies. The
application of simulation methods, which are computer-based experiments using
pseudo-generated data, are placed to improve causality in epidemiology, as they can
guantify the magnitude and direction of multiple types of bias mechanisms that distort

exposure-outcome associations derived from observational studies.

1.2Complications of pregnancy

Although pregnancy is a natural life transition, both mothers and babies are
susceptible to many adverse events during the pregnancy period. Perinatal
epidemiology has been instrumental in identifying risk factors for these adverse
events, leading to the development of medical interventions and practices that
improved health outcomes associated with pregnancy and birth.! In Australia, these
improvements have resulted in very low maternal mortality rates of 6 deaths per
100,000 women giving birth,? compared to the average global rate of 12 deaths per
100,000 women giving birth in high-income countries.® Yet, Australia continues to
report a higher perinatal mortality rate (9.1 deaths per 1,000 women giving birth),?
compared to the standardised average in high-income countries (4 deaths per 1,000

women giving birth).2 Contributing to high perinatal mortality rate were stillbirths which
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accounted for 6.82 deaths per 1,000 women giving birth, with the underlying causes
remaining unexplained in up to half of all Australian stillbirths.*

Changing demographics in Australia, as in many similar high-income countries, are
presenting new challenges in reducing adverse events during pregnancy. Two main
challenges relevant to this thesis are the increasing prevalence of advanced maternal
age (= 35 years) and the increasing prevalence of maternal obesity (body mass index
(BMI) = 30kg/m?), both of which are associated with an increased incidence of
pregnancy complications and adverse birth outcomes.> ¢ Some evidence shows that
in high-income countries the delay in reproduction to later years is often attributed to
access to effective contraception, greater workforce participation, and difficulties in
finding a life partner.” Advances in assisted reproductive technologies have also
contributed to an increase in the prevalence of very advanced maternal age (i.e.
women who are greater than 45 years at the time of birth).2 Globally, the prevalence
of obesity in women of reproductive ages is increasing, significantly impacting
maternal and perinatal outcomes in women entering pregnancy with a higher BMI.°
Over 20% of all births in Australia in 2015 were to women who were clinically obese,
which is defined as a BMI = 30kg/m?2.10- 11 Perinatal epidemiologists have established
a strong association between advancing maternal age and maternal obesity with a
range of adverse outcomes,* ¢ 12 with the incidence increasing monotonically for each
additional year of maternal age and unit increase in BMI.12 13 Further, there is evidence
that the risk factors associated with advanced maternal age and maternal obesity are
increased in the presence of comorbidities, such as gestational mellitus diabetes and
hypertensive disorders.'> 14 These risk factors and comorbidities are also
independently associated with increased risk of pregnancy loss, perinatal mortality,

sequelae of fetal growth restriction, and congenital malformations.1? 14-16

Early pregnancy losses (prior to 20 gestational weeks) are not an uncommon outcome
of pregnancy.l” Although the exact aetiology of miscarriage (also known as
spontaneous abortions) remains unknown, they are widely acknowledged to result
from a complex interaction between multiple factors (environmental, genetic,
hormonal, and immunology).1”-?° Advancing maternal age has been reported as a
strong independent risk factor for early pregnancy loss in the first trimester, with
evidence of an incremental increase in risk for each year after 30 years.1” Women who

are overweight (BMI 25- 29.9kg/m?) or obese (BMI = 30kg/m?) are also at increased
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risk of early pregnancy loss, with the reported risk almost 40% higher in mothers who
are obese compared to those with a normal BMI (BMI 18.5- 24.9kg/m?).%%

Adverse outcomes and complications of pregnancy relevant to studies contained in
this thesis include stillbirth, preterm birth, pre-eclampsia, placental abruption and
small-for-gestational age. Stillbirth is defined as the fetal death of a baby either
antepartum (fetal death prior to the birth of a baby of 220 gestational weeks or >400
grams birthweight) or intrapartum (fetal death of the baby during labour).?? Despite the
absolute risk of stillbirth being low in high-income countries, such as Australia, it has
not declined in line with advances in perinatal and obstetric care.?® There is a strong
interaction between stillbirths and preterm birth (defined as a birth prior to the 37
gestational week of pregnancy),?? with 80% of all stillbirths in high-income countries
being born preterm.?* Pre-eclampsia, characterised by the presence of hypertension
or proteinuria in pregnancy,?® is the most common serious medical disorder of
pregnancy.?® In Australia, the prevalence of mild and severe pre-eclampsia is 5-10%
and 2%, respectively.?” Pre-eclampsia is also associated with adverse events in
Australia, accounting for between 5-10% of preterm birth, 10% of perinatal mortality
and 15% of maternal mortality.?® Placental abruption results from the early separation
of the placenta from the lining of the uterus before labour has progressed beyond the
second stage.?® This relatively rare, yet very serious, pregnancy complication occurs
in between 0.5-1.5% of pregnancies in high-income countries.?® Adverse pregnancy
outcomes resulting from placenta abruption include preterm birth, asphyxia, stillbirth
or perinatal mortality.?® Small —for-gestational age babies generally have a birthweight
below the 10" percentile for babies of the same gestational age and sex.3° Babies that
are small-for-gestational age have more than twice the risk of stillbirth?®> and an
increased risk for neonatal death (death within 28 days of birth)3! compared to babies
that are not small-for-gestational age.

There is a complex interplay between the above pregnancy outcomes (stillbirth,
preterm birth, pre-eclampsia, placental abruption and small-for-gestational age) that
may be due to biological and environmental exposures that are not fully understood.
It has been purported that there are shared underlying mechanisms underpinning the
complex interaction between pregnancy complications.3? Often referred to as the
Great Obstetrical Syndrome, ischemic placental diseases are thought to be associated

with disorders of the placental,3® preterm birth,3* intrauterine growth and stillbirth.35 36
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Furthermore, advancing maternal age and increments in BMI are associated with each
of the aforementioned pregnancy outcomes. Increasing our understanding of how a
pregnancy exposure can influence perinatal outcomes is imperative to informing the
creation of effective preventative health that seeks to improve health outcomes for

mothers and babies.

1.3Causal inference

Historically, much of epidemiology was concerned with establishing association (i.e.
smoking is a cause of lung cancer);®” however, there have been increasing
movements by experts in the field towards establishing true causal inference in recent
decades.®** Causal inference can be defined in basic terms as the process of
determining that an exposure was the ‘true cause’ of the effect or outcome that was
observed.*?> More broadly, causal inference can be considered a multi-disciplinary
science, comprising areas of philosophy, biostatistics, epidemiology, artificial
intelligence and machine learning.3” This contrasts with traditional epidemiological

methods which are broadly interested as to whether an effect is present or not.*

Common criteria for establishing causation in modern epidemiology are what came to
be known as the Bradford Hill's Criteria;*® comprising a list of nine aspects to be
considered by researchers to distinguish between causal and non-causal associations
(strength; consistency; specificity; temporality; biological gradient; plausibility;
coherence; experimental evidence; analogy).*®> Despite the wide acceptance of
Bradford Hill’s Criteria, the criterion has remained controversial overtime as to whether
they are too prescriptive for establishing causation.**4’ It should be noted, however,
that Hill considered the above criteria to be viewpoints,*3 and it is generally considered
that not all the criterion have to be met for causation to exist.*3 Over time, the
interpretation of each criterion has evolved to accommodate complementary research
tools and data methods, yet the underlying checklist continues to guide researchers.*

In general, establishing causation is a complicated process as a given outcome could
be caused by more than one causal mechanism; thereby, the joint action of multi-
causality must be considered with any of the components having either strong or weak
effects.*! To complicate matters further, the strength of an effect may alter an outcome,
or the effects themselves may not necessarily influence the outcome at the same

time.*! It is therefore unsurprising that one of the requirements of a good study design
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that can infer causality is expert knowledge on the topic of interest.*® A qualitive
approach that is similar to Hill's “consistency” is triangulation. Triangulation occurs in
aetiological epidemiology when different methodological associations containing
different sources of bias are compared to determine if the obtained effect estimates is
similar.0 Here, it would be expected that the effect estimates would only be the same
if all sources were unbiased. Although a promising method to establish causal
inference, a limitation of triangulation is access to data and considerations around the
pooling of such data.>® Consequently, there are no exact criteria that can be universally
applied to determine the true validity of a causal inference. However, sources of
potential bias need to be identified and their influence either removed or quantified to

reduce uncertainty around causal effects.

One of the earliest advocates for causality, and possibly less known in statistical
science, was Barbara Stoddard Burks, who obtained her PhD from Stanford University
in 1929.%! During her academic career in social science, she applied causal diagrams
(originally developed by Sewall Wright, a biometrician)®? to explain her research and
identified colliders (a common effect of two variables) and their biasing influence.> A
more well-known study of the influence of selection bias is the Berkson'’s bias, which
came to light in 1946.>* This type of bias arose in a case-control study in which the
case and the controls were not comparable as the probability of hospitalisation was
higher amongst cases who had two or more diseases compared to the controls from
a healthy population.>® Since the mid-19™ century, there has been a rapid growth in
statistical methods to minimise the influence of bias. However, due to the non-random
nature of observational studies they are prone to various biases (selection,
confounding and information) that cannot be accounted for fully using statistical
methods. As it is not possible to completely remove bias, it is often recommended that
epidemiologist employ caution when interpreting their results. Consequently, it is
important that epidemiologists identify and quantify the influence of potential biases in

order to reduce uncertainty prior to reporting causal associations.

1.40verview of bias in perinatal epidemiology
Quite simply, bias can be conceived as some deviation from the truth. In epidemiology,
bias can result from systematic errors in the study design or data analysis that

consistently produce an incorrect estimate of the exposure-outcome association.%® By
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contrast with random error in which there is a chance difference between the observed
and true association, systematic errors do not decrease as the study size increases.>®

Perinatal epidemiological studies are vulnerable to unique methodological challenges
that can lead to biased exposure-outcome associations if not adequately addressed.
A major challenge for researchers is that the study population themselves are
incompletely observable due to high attrition from conception to when a pregnancy
has been established.>” Although the true attrition rate remains unknown, it is
estimated that there are 2,500 early pregnancy losses per 10,000 implantations®’ due
to spontaneous and induced abortion. As the detection of early pregnancy loss is not
always clinically diagnosed nor apparent to women, there are feasibility issues in
conducting longitudinal studies to identify all conceptions due to methodological
complexities (i.e. difficulty in identifying the cohort of women who did not intend to
become pregnant and had a missed miscarriage) and associated monetary

expenditure.5®

Moreover, perinatal epidemiology often relies on birth registries that are restricted to
pregnancies that survive beyond a specified gestational age.>® In Australia, as in many
high-income countries, birth datasets are restricted to pregnancies that survive past
20 gestational weeks or have a birth weight >400 grams.®° This is a selection bias as
the individuals in the sample (women with a pregnancy beyond 20 gestational weeks)
differ systematically from the population of interest (i.e. pregnant women). A further
source of selection bias is that in some cases the birth datasets are restricted to live
births,5* thus conditioning on the ‘survival’ leads to distorted associations.
Inadvertently, conditioning on a collider variable, a variable that is a common effect of
an exposure and outcome, can lead to specious exposure-outcome associations.®?
Further challenging for researchers is conditioning on intermediaries/mediator
variables that lie on the causal pathway.>® Such challenges are evident in the difficulty
of handling gestational age or birthweight variables that lie on the causal pathway
between exposures and outcomes,®® as intersecting birthweight-specific and

gestational age-specific mortality curves can lead to paradoxical associations.%3

The influence of unmeasured confounders, a variable that is related to the exposure
and outcome which may account for the observed association, is a broader
epidemiological issue. However, it is highly unlikely that any association observed in

perinatal exposure-outcomes is not subject to some degree of bias from confounders

Chapter One 10



that are either unavailable in the dataset or even unknown to the researcher. This is
particularly true when we consider that exposures during the pre-conception period,
which are often unavailable, can lead to adverse events over the life-course of the

pregnancy and beyond.%4 65

Misclassification bias is particularly pertinent in perinatal epidemiology due to the
potential for measurement error of exposure(s), potential confounder(s) and
outcome(s).®® A previous cause for concern was the potential for misclassification of
gestational age due to the varied methods of calculation (fetal ultrasound
measurement; first day of the last menstrual period; time of in vitro fertilisation; based
on clinical judgement after birth);%¢ however, the increased use of fetal ultrasound in
many countries has reduced this potential bias. In recent years, there has been
increasing awareness of the potential for misclassification in the ascertainment of
environmental exposures.®”-89 Further, due to left truncation of birth datasets there is
potential for misclassification of the true interpregnancy or interbirth intervals due to
unobservable early pregnancy losses.’® It should also be noted that misclassification
bias can be introduced during the data analysis phase by researchers through
categorisation of continuous data,’* including varying cut off consideration used for
exposure or outcome variables. This is particularly pertinent in sibling comparison
studies, where the categorising of variables such as the interpregnancy interval and
birthweight for gestational age percentile may compromise statistical power and can

introduce selection bias for discordant pairs.”?

The above is a brief and selective summary of the types of biases that are likely to be
impactful when conducting perinatal epidemiological studies. This thesis will focus
primarily on three interrelated influences of bias relevant to perinatal epidemiology;
selection bias, collider bias and the influence of unmeasured confounders. The
descriptions of these types of bias will be expanded throughout this chapter and
guantified through simulation studies in chapters three (bias due to confounding),
chapter four (selection bias and collider bias) and chapter five (collider bias and bias

due to confounding).

Confounding
A confounder is an extraneous variable that influences both the exposure and outcome
of interest but is not part of their causal pathway (Figure 1.1).72 Nearly all observational

studies will adjust for measured confounders’* using methods such as stratification,
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multivariate linear regression, and logistic regression.”® Therefore, consideration must
be given to identifying the appropriate set of confounders to adjust for in order to
produce plausible associations’® as confounding can result when researchers fail to
correctly adjust for all relevant confounders, leading to the masking of the true
exposure-outcome associations.”” An overestimation of the effect sizes can occur
when researchers adjust for apparent differences between study groups when they do
not exist.”® Traditionally, strategies to decide whether a variable is a confounder that
should be adjusted for largely rely on statistical approaches, such as forward and
backward stepwise selection,’® the change in time approach,’® or penalised
regression.” More promisingly, a review®® of 299 observational studies published in
2015 found that 50% of authors reported using prior knowledge or causal graphs for
selecting confounding variables; yet 37% of the included studies failed to provide

sufficient detail on their methods of variable selection.

One conundrum in perinatal epidemiology is where to include prior pregnancy
outcomes as a confounder. Many epidemiologists do adjust for prior pregnancy
outcomes as they are often predictive of future adverse outcomes; however, this is not
an appropriate method when the aim is to produce unbiased estimate of an exposure
on an current outcome as the prior outcome is likely associated with current outcome
and the exposure.8! Here, adjustment for the prior pregnancy outcome can produce a
bias effect as this seemingly confounder variable may be a collider variable.!
Therefore, it is strongly recommended that causal diagrams or direction acyclic graphs
(DAGSs) are used to explore the nature of the proposed causal association to identify

relevant confounders.’6: 81,82

Exposure Outcome

N

Confounder

Figure 1.1 Causal diagram showing the causal pathway between an exposure and
outcome in the presence of a confounder

Even with the best attempts to address confounding in perinatal epidemiology, there
will always remain some degree of residual confounding®® largely due to omission of

relevant variables that were unknown to the study, those that cannot be measured or
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those variables that are yet undiscovered.®* Furthermore, measurement errors in the
classification of confounding variables can also contribute to residual confounding.8®
In instances when a moderate effect is evident, epidemiological observations may be
considered less robust to bias due to difficulties in controlling for unknown or
unobservable confounders that can distort the results and be responsible for creating
an observed association that may not be exist.”® To take one example, if a study is
reporting the association between a maternal exposure and perinatal outcome, the
association may not be due to the maternal exposure but to a factor that directly affects
both the exposure and outcome that is unknown to the study or not included in the
available clinical dataset.” 74 8 Determining if an observed association is due to
unmeasured confounding is critical to determining plausible causal effects; however,
guite often unmeasured confounding is not adequately addressed in epidemiological

studies.87-89

Collider bias

In contrast to the aforementioned bias associated with failure to control for
confounding, incorrectly conditioning on a common effect of exposure and outcome
(through restriction, stratification, or regression adjustment) will induce collider bias.*°
Thus conditioning on a collider, or a variable influenced by the collider, will induce
biased association exposure-outcome associations.®? A simple form of collider bias
can be viewed in Figure 1.2 in which the collider is a variable in which two arrows
collide. Adjusting for this variable in a regression model will induce a specious
association between the exposure and the outcome? through the causal pathway of
Exposure — Collider—Outcome that was previously blocked.2° In general, it is strongly
advised that epidemiologists use causal diagrams or DAGS to distinguish between

confounders and colliders during the study design phase.®*

Exposure *» Qutcome

Collider
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Figure 1.2 Causal diagram showing the causal pathway between an exposure and
outcome in the presence of a collider variable

Examples of a collider variable that can be incorrectly adjusted for in perinatal
epidemiology is gestational age and birthweight as they lie on the causal pathway
between exposure and outcomes.®>%4 Preterm birth and low birth weight are predictors
of infant morbidity and mortality but may also be due to other pathological factors that
cause both preterm birth and low birth weight and infant morbidity and mortality.®3 %4
Consequently, the practice of stratifying on a potential intermediate has previously led
to the intersection of gestational age-specific and birthweight-specific mortality
curves.®® This has been evidenced when low birth-weight infants from populations
with higher infant mortality have better survival rates compared to low birth-weight
infants from a lower-risk population. As Basso and Wilcox (2009)°? explained, this can
result from the presence of unmeasured confounders influencing the variable of birth
weight and making it a collider. This bias results as conditioning on (or including in a
regression analysis) a collider opens a back-door causal pathway between the
exposure and outcome that leads to biased exposure-outcome associations.3® As you
can see in Figure 1.3, when the variable of LBW is influence by an unmeasured
confounder, which also influences the outcome, then the variable of LBW becomes a
collider variable. Conditioning on LBW (or including it in a regression analysis) opens
a back-door pathway between the exposure and the outcome via Exposure — LBW

«— U — Outcome.

Exposure — |LBW | ——— OQutcome

Figure 1.3 Causal diagram showing the causal pathway between an exposure and
outcome in the presence of a mediator. There is a causal pathway between an
exposure and outcome when low birth-weight (LBW) is a mediator on the pathway
between the exposure and the outcome but is also influenced by an unmeasured
confounder (U) that also influences the outcome. Here LBW is a collider variable.
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Conditioning on LBW will open a backdoor causal pathway from Exposure — LBW
«— U — Outcome that can lead to biased exposure-outcome effect estimates.

Collider bias resulting from restriction and stratification will be discussed in more

detail under selection bias.

Selection bias

Selection bias results from factors related to the selection of the study cohort. In its
simplest form, selection bias indicates that participants in a study are systematically
different from those that were not included.®> Random sampling is the most effective
method to prevent selection bias, yet this is not possible in observational studies.®®
Rather, the onus is largely upon the researchers to ensure that measures to prevent
or minimise the influence of selection bias are enacted during the study design period.
Although selection bias can never be completely controlled in observational studies, it
is important for perinatal epidemiologists to have a comprehensive understanding of
the various avenues in which selection bias can lead to spurious associations. Bias
from selection commonly occurs when the exposure and outcome, or even a cause of
these variables, influences the probability of being selected into the study population.®’
This is pertinent in perinatal epidemiology where the selection into a pregnancy cohort
is restricted to pregnancies that survive beyond a specified gestational period
(generally 20 gestational weeks in high-income countries).%® Left truncation is missing
person-time information, where time zero is not detected in the timeline.>® % 9 |t is
imbedded in all perinatal epidemiology studies as women are recruited after
conception.1®® Consequently, an unknown proportion of the source population is
absent due to pregnancy losses prior to the enrolment period.l® Bias from left
truncation casts doubt on the validity of observational studies in which truncation
varies by risk factors associated with the outcome of interest.%! Birth datasets from
which perinatal epidemiologist draw their effect estimates are left truncated. In high-
income countries, such as Australia and the US, selection into a birth dataset is
restricted to those pregnancies that survive beyond 20 gestational weeks or >4009g
birth weigth.>® In low and middle-income countries, selection into a birth cohort is
restricted to pregnancies that survive beyond 28 gestational weeks or >1000g birth
weight.12 Furthermore, in many countries birth datasets are often restricted to live-

births, thereby excluding all pregnancy losses from 20 gestational weeks including
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neonatal deaths.'%® This left truncation results in a type of selection bias called live-
birth bias.®!: 194106 However, the issue of left truncation is not solely linked to birth
datasets. All perinatal studies as subjected to left truncation as recruitment into a
cohort is often restricted until some pre-specified point when the pregnancy is deemed
viable.'%” Moreover, studies that are interested in pre-pregnancy exposures are
additionally left truncated as women with sub-fertility or those who chose not to

become pregnancy are excluded.%®

The bias mechanism that underpins left-truncation bias and live birth bias is called
collider-stratification. This bias mechanism results from conditioning on a collider that
represents a variable that is either restricted or stratified. The most famous example
is the smoking birth-weight paradox originally described by Yerushalmy!%® in 1971.
Here, neonatal mortality rates among low birth-weight infants of smokers were found
to be substantially lower than the neonatal mortality rates among low birth-weight
infants of non-smokers; conversely, with the reverse true at higher birth-weights.1%°
Since then, this study has been replicated in different studies and populations (altitude
vs low altitude,®® infants of older vs young mothers,'1° ethnicity''!). More commonly
called the ‘birthweight’ paradox, these effects occur regardless of whether the
conditioned intermediate is birth-weight or gestational length.1*?> Below, | have
presented the most common example of the smoking birthweight paradox. If we
consider the example in Figure 1.4, birthweight is a collider variable, blocking the
causal pathway it is on (Smoking — Birthweight) ensuring that the only causal pathway
is the direct association between the exposure and outcome (Smoking — Neonatal
mortality). By stratifying on the variable of birthweight, a spurious association is
induced between smoking and neonatal mortality through the collider birthweight and

the unmeasured confounder (Smoking — Birthweight < U — Neonatal mortality).

e

Smoking ——— Birthweight Neonatal mortality
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Figure 1.1 Causal diagram showing the causal pathway between an exposure and
outcome in the presence of collider-stratification. There is a causal pathway between
an exposure of smoking and an outcome of neonatal mortality in the presence of a
collider variable of birthweight and an unmeasured confounder. This causal diagram
depicts the smoking ‘birthweight’ paradox, which is depicted by collider-stratification
resulting from stratifying on the collider variable of birthweight.

Depletion of susceptibles

A variation of collider-stratification bias is depletion of susceptibles. Here, the
susceptibles are individuals who have a higher baseline risk or are more susceptible
to the outcome.''?® Overtime, a depletion of these susceptibles will lead to an overall
decrease in the prevalence of individuals that are at risk of the outcome within the
study cohort.''# In general, this depletion of susceptibles will lead to an attenuation of
effect size towards the null by amounts that increase with the incidence of the
outcome, the variance of the susceptibility and the impact of the susceptibility on the

outcome.105

Depletion of susceptibles bias can operate independently or in conjunction with
collider-stratification mechanism; whereby there is an even greater depletion of
susceptibles. This is because the depletion is dependent on the joint effects of the
exposure and the unmeasured variable U (Figure 1.5). A potential example of this type
of bias is in environmental epidemiology where nitrogen dioxide exposure in
pregnancy is associated with an increased risk of preterm birth.1> Here, it is plausible
that the exposure of NO2 could induce early pregnancy loss preferentially in those
people who also have the factor U, which may be a genetic influence. This group is a
subset of pregnancies that are susceptible to the outcome of preterm birth that is

differential from individual who are only exposed to NO2.

Exposure —— | Collider Outcome
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Figure 1.5 Causal diagram showing the causal pathway between an exposure and
outcome in the presence of depletion of susceptibles. There is a causal pathway
between an exposure and outcome in the presence of a collider variable and an
unmeasured confounder. This causal diagram depicts collider bias with the depletion
of susceptibles. When there is an interaction between the exposure and the
unmeasured variable U (as depicted by the red dashed line) there is an increase in
the prevalence of the collider for those individuals that are exposure to both the
exposure and the unmeasured variable U.

M bias

Another variation of the collider-stratification bias is M bias, which occurs when the
collider-stratification bias results through variables that are ancestors of the exposure
and outcome (Figure 1.6).11% 117 Here, the collider variable has no causal association
with the exposure or the outcome. Rather, it is indirectly association with both the
exposure and the outcome through the causes (ancestors) of the exposure and the
outcome.!'® 117 The bias is a results of Berkson’s paradox®* as both the independent
unmeasured confounders Ul and U2 become dependent once the collider variable is

conditioned.116. 117

Ul uz2

. "

Collider

Exposure > Outcome

Figure 1.6 Causal diagram showing the causal pathway between an exposure and
outcome in the presence of M-bias. There is a causal pathway between an exposure
and outcome in the presence of a collider variable and two ancestor unmeasured
confounders Ul and U2. This causal diagram depicts M-bias where the two
independent variables of U1 and U2 become dependent when conditioning on the
collider variable leading to a spurious association.

1.5Statistical approaches to minimise bias
Much bias can be minimised through a good study design, thus reducing the
propensity of a study to bias from poor selection processes, misclassification of

variables, and the inclusion of important confounding factors. However, as previously
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discussed, it is not possible to address all study design issues that lead to biased
exposure-outcome associations, particularly in perinatal epidemiology, where we rely
on clinical or administrative data that is left truncated and many variables on causal
pathways that are unobservable. Not surprisingly, there is a large body of statistical
tools (sensitivity analysis, stratified, analysis, matching, and regression) to minimise
the effect biases from selection, information, and confounding. As it is not possible to
describe every statistical tool, below is a summary of the most accessible and

commonly implemented statistical tools by perinatal epidemiologist.

Selection bias is generally minimised by techniques such as propensity score
matching!*® and probability weighting (inverse probability weighting).*'® However,
limitations of these methods are the reliance on information of the entire population?°
and their assumption of no influence of unmeasured confounding.1® 1° A number of
distinct methods are available to help researchers to mitigate the effects of bias from
confounding, the most promising of which seems to be the G-methods, comprising of
G-formula, marginal structure models and structured nested models.*?! These
methods create models using different exposure scenarios to generate potential
outcome effects, under a less restrictive set of conditions compared to standard
regression models.*??> Multiple imputation provides a general purpose approach to
handle information bias due to missing data.'?® Traditional approaches employed by
researchers include replacing missing values with values imputed some an observed
data, using a missing category indicator or carrying forward the last value.*?3 All these
approaches to minimise bias from missing data can lead to bias themselves. Further,
none of the above-mentioned methods to minimise the influence of bias are able to
guantify the influence of bias when the bias interacts between the exposure, the

outcome and unmeasured confounding.

1.6E-values

E-values were investigated as they are the most commonly used approach to the
assessment of the potential influence of unmeasured confounding. E-values provide
an alternative method for sensitivity analysis of unmeasured confounding in
observational studies and were included in Chapter 3. Although not a method to
minimise bias, the uptake of e-value has been strong in the epidemiological
community??* since the original ground-breaking paper in 2017.1%°> The most popular

e-value is for confounding, which assess the strength of the effect size needed to
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explain away potential bias. The e-value'?® calculates the minimum strength of the
exposure-confounder and outcome-confounder association needed for the
confounder to completely explain the observed exposure-outcome association. Here,
a small e-value would indicate that a small amount of bias from unmeasured
confounding would be required to explain away an observed effect,'?> or that the effect
sizes observed are not robust to bias from unmeasured confounding. Conversely, a
large e-value would indicate that a larger amount of bias from unmeasured
confounding would be required to explain the observed effect.?> Also reported is the
e-value for the lower limit of the 95% confidence interval which represents the level of
confounding from unmeasured or unknown variables required to render the interval

estimate null.126

The e-value for confounding has proven to be a highly topical method?4 127-133
Criticisms levelled include their relationship with effect estimates is monotonic!24 130
and that they are prone to potential misinterpretations?4 130. 133 py researchers.
Determining how small an e-value would need to be to be of concern remains
unclear;'3 however, the author’'s recommend that researchers should interpret the e-
value within the context of their research question.'3* The e-value was originally
proposed as an alternative to sensitivity analysis,'?® yet critics have argued that e-
values cannot provide valid and precise estimates of effects that could only be
obtained using more complex sensitivity analysis methods.1?#4 127, 130, 133 Eyrther
criticism include that focusing on bias from unmeasured confounding is oversimplified
as bias required to explain away an observed effect could be due to other sources of
bias (selection and information) that may act together.*?” However supporters of the
e-values for confounding acknowledge that e-values are first step in calculating of the
amount of potential bias from unmeasured confounding, rather than to replace more
complicate analysis to identify missing values or quantify measurement error.1%8 122 To
address these concerns, the authors VanderWeelee and Mathur (2020) responded
with a best-practice guideline for reporting of e-values.'3? In addition to the e-value for
confounding, e-values have been developed for selection bias,'3® misclassification
bias and multiple types of bias;'3¢ although their uptake has lagged by comparison to

that of the e-value for confounding.
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1.7The application of simulation

Epidemiologists derive effect estimates of an exposure on an outcome in specific
populations, using sample data from a representative population. However, it is rare
for researchers to have full access to data that would enable unbiased exposure-
outcome associations. Simulation studies are empirical studies in which missing data
can be simulated,**"-149 based on observed cohorts or prior published literature, to test
biased assumptions and draw clearer associations that may be closer to the ‘true
association’. A simulation itself can be considered a computational experiment that
requires the creation of data by a pseudo-random sampling method,**° which is the

use of an algorithm to generate values that follow a given distribution. 4% 142

In health research, simulation studies are more widely used to test and compare the
performance of statistical methods to minimise the influence of bias.**® However, they
are under-utilised in their application to quantify bias more broadly in epidemiology.
The quantification of bias is often an intractable problem that cannot be fully solved by
closed form mathematical expressions. One of the key assets of simulation studies is
that they enable epidemiologists to increase their understanding of the influence of a
range of bias in aetiological associations. This results as the actual process of
generating the data requires epidemiologists to fully immerse in the causal pathways
between an exposure and outcome. Unlike mathematical solutions, the process of
generating a simulation usually begins with a causal diagram or a DAG. Parameters
in a simulation study can be fully simulated or based on observed data, which can
inform the exposure, outcome and confounder variables, thereby, ensuring that the
simulation model has real-world context. The main advantage of simulation studies is
that multiple scenarios can be generated in which the biased parameters of interest
can be varied (i.e. such as values for unknown or unmeasured confounding variables
that possibly influence the exposure-outcome association). Due to increased
computing power, the running of simulation models is fast and multiple scenarios can

be run within a short time-frame.

The reasons that simulation studies are more commonly conducted by statisticians
rather than epidemiologist remains speculative; a lack of guidance in the design and
implementation of simulation studies,*®® lack of skills in statistical modelling*® and a
lack of interest in exploring new research methods have been cited as potential

barriers.'3° Further negating the application of simulation to quantify the influence of
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bias in perinatal epidemiology, is the oft-cited reports that simulation studies are prone
to poor design, analysis and reporting.'3° In response to the negativity surrounding
simulation studies, a number of researcher groups have attempted to educate
researchers and reviewers on the design, implementation and reporting of a good
quality simulation study; however their purpose has been largely limited to simulation
as a tool to test the performance of statistical methods.13% 143145 |n 2013 the
STRengthening Analytical Thinking for Observational Studies (STRATOS) group4®
was established to educate and upskills researchers in the application of simulation
studies. Recent outputs by STRATOS members include a platform for planning for
planning simulation studies with a focus on testing statistical methods*3® and more
relevant to this PhD project a tutorial on quantifying misclassification bias.4¢ Although
these publications have been positively received, uptake of simulation studies with the
prime purpose of quantifying the influence of bias in epidemiology has remained
limited

Simulation methods have evolved from a foundation of bias analysis methods, which
traditionally applied mathematical formulae to compare an observed dataset with a
hypothetical dataset.*® In 2014, a seminal paper was published by Lash et al.,4” which
informed best practices when quantifying the influence of bias under the overarching
term ‘quantitative bias analysis’.**® Although not a guide to simulation as a method,
their paper provides a direction for the assignment of plausible values to bias
parameters in order to determine the influence of bias on exposure-outcome
associations.**® Types of quantitative bias analysis techniques include simple
sensitivity analysis, multidimensional analysis, probabilistic analysis and multiple bias
analysis.1#% 150 With the exception of multiple bias modelling, these approaches are
limited to analysing one type of bias at a time. Additional limitations of the application
of these methods include the ability to only assess fixed variables, ! inability to assess
multiple biases at once!®? or in the case of multiple bias modelling, the biases must be
independent of each other;*®3 none of which reflect reality (see Table 1.1 for further

details).

Table 1.1 Types of bias analysis methods and their characteristics

Bias analysis Bias parameters | Number of biases | Limitations
method analysis
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Simple sensitivity
analysis

One fixed value
assigned to each
bias parameter

One at a time

Assess only fixed
one variable

Multidimensional
analysis

More than one
value assigned to

One at a time

Assess multiple
fixed variables

each bias
parameters
Probabilistic Probability One at atime Cannot assess
analysis distributions multiple biases
assigned to each
bias parameter
Multiple bias Probability Multiple biases at | Bias are
modelling distributions once independent of
assigned to bias each other

parameters

Previous simulation studies in perinatal epidemiology applied simulation methods to
explain paradoxical associations, such as the smoking birth-weight paradox.100. 101, 154,
Yet, simulation methods have the potential to quantify the influence of bias under more
commonly applied scenarios, particularly when the epidemiological effects reported
seem to conform to expectations. The application of simulation can quantify multiple
types of biases simultaneously, moving away from the quantitative bias analysis
methods proposed by Lash et al.147: 150 in which the type of bias should be prioritised
by order of the bias that is deemed to be most impactful on the observed association.
Some additional limitations under the quantitative bias analysis methods proposed by
Lash et al.1#” was the assertion that bias analysis was only essential when the findings
were informing action or policy, or when it is expected that the bias could explain a
finding. By contract, simulation methods can provide a tool to quantify the magnitude
and direction of multiple types of bias simultaneously that can be rapidly tested under
multiple scenarios. The application of simulation can provide new knowledge on the
influence of bias on common perinatal aetiological associations that are potentially

biased yet seem to conform to expectations.

As highlighted earlier in this chapter, bias is ubiquitous in perinatal epidemiology and
guantifying the influence of various types of bias is valuable step in strengthening the
validity of epidemiological studies. However, there remains a lack of good practice in
the design, implementation, and analysis of simulation studies that quantify bias,®

which is further compounded by a lack of confidence in the application of simulation
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as a method to facilitate bias analysis by researchers.’®® In order for perinatal
epidemiologists to develop the skillset required to apply simulation methods to quantify
the influence of multiple biases across a range of research questions, a unifying

framework of quantitative bias analysis methods and simulation methods is required.

1.8Summary of gaps in knowledge

Bias is omnipresent in perinatal epidemiology, yet it is rarely quantified. Bias is
generally addressed by researchers qualitatively through a descriptive explanation of
different potential sources of bias in their studies, which is generally limited to the
discussion section of research papers. Researchers rarely discuss the influence of
bias on the direction and magnitude on their observed effects nor quantify the extent

to which bias could influence their results.

The left truncation of data is evident in all perinatal studies as the sample population
will always be restricted to pregnancies that reach a pre-specified gestational age cut-
off. Further complicating the aetiology of perinatal associations is the influence of
factors that are unknown to the study, unmeasured or undiscovered. The influence of
these ‘unmeasured confounders’ on variables that are mediators, or variables that are
either restricted or stratified on, can create a collider bias mechanism when those
‘unmeasured confounders’ also influence the outcome; threating the validity of
exposure-outcome associations. The applied simulation studies conducted in this PhD
thesis were focused on this collider bias mechanism that resulted from common
occurrences in perinatal epidemiology, that is selection bias that results from the left
truncation of birth data and the influence of unmeasured confounding on mediators
(i.e. pregnancy complications) that are often mediate an association between
pregnancy exposures and adverse birth outcomes. The studies conducted in this
thesis also addressed changing demographics in Australia and other high-income
countries, focusing on exposures of advancing maternal age and maternal obesity,
their association with early pregnancy loss and other adverse outcomes, such as
stillbirth and pregnancy complications of caesarean section delivery, preterm birth,

pre-eclampsia, placental abruption, and small-for-gestational age.

A hypothesis of this PhD project is that if the mechanisms that lead to bias in
paradoxical associations (such as the ‘smoking —birthweight’ paradox) hold true, then
these same bias mechanisms would also lead to distorted effect estimates in other

observational associations, even when the results seem to conform to expectations.
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Simulations are powerful tools that can increase our undertaking of potential biases in
epidemiology. They have the potential to quantify the magnitude and direction of
multiple biases that influence the associations between exposures and outcomes
under commonly applied scenarios in perinatal epidemiology. However, to date it is
unknown the full extent to which simulation methods have been applied to quantify the
influence of bias in perinatal epidemiology.

It is not expected or common for researchers to conduct even a basic analysis of bias
when they share their research findings. This presents a problem when those same
results are used to inform policy to drives improvements in population health. The lack
of guidance in the design, implementation and analysis of simulation studies to
guantify bias likely hinders their application by perinatal epidemiologists. A framework
is required to assist epidemiologists to undertake simulation studies for the purpose of
undertaking quantitative bias analysis. This will make simulation methodologies
accessible to perinatal epidemiologists and, thereby, increase understanding of the
causal mechanisms that have the potential to distort the observed effects of perinatal

exposures on birth outcomes.

1.9Thesis aims and objectives

The overarching aim of this thesis was to determine the utility of simulation methods
to quantify the influence of a range biases commonly found in perinatal epidemiology.
To achieve this, the thesis is organised into three inter-related study aims and

objectives that addressed the knowledge gaps identified in the above chapter.

Aim1: To review and explore the existing literature on the application of simulation

methods as an approach to quantify the influence of bias in perinatal epidemiology.
Objective 1.1: To systematically search, compile, synthesis and critically review the
current evidence on the application of simulation to quantify the magnitude and
direction of bias in perinatal and reproductive epidemiology (Chapter Two).

Aim 2: To design, implement and analyse a series of simulation studies to quantify
the magnitude and direction of bias in perinatal outcomes to address issues from
methodological challenges that may lead to spurious inference on associations

between pregnancy exposures and adverse birth outcomes.
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Objective 2.1: To investigate the consequences of unmeasured confounding on
the association between pregnancy complications over two successive
pregnancies (Chapter Three).

Objective 2.2: To quantify the influence bias resulting from the use of left-truncated
datasets (birth registries) in which early pregnancy losses prior to 20 gestational
weeks are excluded (Chapter Four).

Objective 2.3: To quantify the influence of unmeasured confounding in mediated
associations (Chapter Five).

Aim 3: To develop a framework for the application of simulation to quantify bias in

perinatal epidemiologists.

Objective 3.1: To incorporate best practice for the application of simulation methods
to quantify the influence of bias into a framework to guide researchers in the design,
implementation, analysis and reporting of simulation studies in perinatal epidemiology
(Chapter Six).

The studies that were conducted to fulfil this aim and objectives are described in
Chapters two to Six.

Chapter One 26



Chapter Two: The application of simulation to quantify bias

This chapter addressed Aim 1 and Objective 1.1 of the thesis.

Aim 1: To review and explore the existing literature on the application of simulation

methods as an approach to quantify the influence of bias in perinatal epidemiology.
Objective 1.1: To systematically search, compile, synthesise and critically review the
current evidence on the application of simulation to quantify the magnitude and

direction of bias in perinatal and reproductive epidemiology.

The content of this chapter is covered by Publication One. It provides a synthesised
summary of the application of simulation to quantify the influence of bias in
reproductive and perinatal epidemiology. As limiting this review to perinatal
epidemiology would exclude by design all reproductive factors that could potentially
introduce bias later in the perinatal period, a decision was made to include, rather than
exclude reproductive epidemiology, thereby enhancing the understanding of the
application of simulation to quantify the influence of bias. This chapter highlighted
specific areas for improvement in the development, analysis and reporting of
simulation methods that would enable researchers to better quantify the magnitude

and direction of bias in reproductive and perinatal epidemiology.

The version that appears in this thesis is of an article that has been through peer-
review with Annals of Epidemiology but has not been through the copyediting process.
The contribution of co-authors, Professor Gavin Pereira, Dr Gizachew A. Tessema

and Milica Ognjenovic are detailed in the author attribution statements in Appendix A.

Dunne J, Tessema GA, Ognjenovic M, Pereira G. Quantifying the influence of bias in
reproductive and perinatal epidemiology. Annals of Epidemiology 2021;63:86-101.
doi:10.1016/j.annepidem.2021.07.033

A copy of this publication has been provided in Appendix C. Supplementary material

for this chapter are available in Appendix D.
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2.1 Abstract

The application of simulated data in epidemiological studies enables the illustration
and quantification of the magnitude of various types of bias commonly found in
observational studies. This was a review of the application of simulation methods to
the quantification of bias in reproductive and perinatal epidemiology and an
assessment of value gained. A search of published studies available in English was
conducted in August 2020 using PubMed, Medline, Embase, CINAHL, and Scopus. A
gray literature search of Google and Google Scholar, and a hand search using the
reference lists of included studies was undertaken. Thirty-nine papers were included
in this study, covering information (n =14), selection (n = 14), confounding (n = 9),
protection (n=1), and attenuation bias (n=1). The methods of simulating data and
reporting of results varied, with more recent studies including causal diagrams. Few
studies included code for replication. Although there has been an increasing
application of simulation in reproductive and perinatal epidemiology since 2015,
overall this remains an underexplored area. Further efforts are required to increase
knowledge of how the application of simulation can quantify the influence of bias,
including improved design, analysis and reporting. This will improve causal
interpretation in reproductive and perinatal studies.

2.2 Introduction

Reproductive and perinatal epidemiology seeks to establish the effects of exposures
on maternal and neonatal outcomes before, during and after pregnancy.'*® As
randomised controlled trials cannot always be conducted in pregnant women for
ethical reasons®’, well-designed observational studies have provided information to
increase the understanding of causal effects in reproductive and perinatal health.®’
Due to the non-random nature of observational studies, they can be prone to bias,®’
influencing causal inference. Bias results from systematic errors in study design,
conduct or data analysis, and unlike random error, does not decrease as study size
increases.®® To strengthen the validity of associations drawn from observational

studies, it is therefore important to identify and evaluate potential sources of bias.

Reproductive and perinatal studies are vulnerable to unique methodological
challenges. The study population themselves are widespread from preconception to
birth stages, and include populations that are difficult to define, such as women who

may conceive in the future.!®” Proving an additional challenge is that the study
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populations are incompletely observed due to high attrition from the preconception
period through to birth.1” Thereby, by the time pregnancy is established, an extensive
cohort attrition has already occurred; estimated to be 2,500 early pregnancy losses
per 10,000 implantations.>” Consequently, the use of birth register datasets, which are
generally restricted to specific periods and in many cases live births, can introduce
bias because the sample is thus restricted.>® Conditioning on intermediaries that are
on the causal pathway also proves problematic.>® Conditioning on a collider, a
common effect of the exposure and outcome, or a variable influenced by the collider,
can induce a specious association between the exposure and outcome.®? One such
example of such challenges in perinatal epidemiology is how to deal with gestational-
age-specific or birth-weight-specific associations that lie on the causal pathway
between exposure(s) and an outcome.>® Reproductive and perinatal epidemiological
studies are also impacted by information bias, a measurement error of exposures,
outcomes and potential confounders.®® For example, gestational age can be
calculated using various methods: fetal ultrasound measurement, first day of the last
menstrual period, time of in vitro fertilisation, or based on clinical judgement after
birth.%5 All these measures are prone to some degree of misclassification, not all of
which are at random.%¢ Additionally, information bias can be introduced during the data
analysis phase, such as the incorrect categorisation of continuous data.”* Thus,
selection, confounding and information bias are ubiquitous in reproductive and

perinatal research,%® 157 compromising study validity.*>®

Quantitative bias analysis methods to estimate systematic errors in epidemiology are
available,**” the basic principle of which is to assign plausible values to bias
parameters to determine the influence of bias.'*® However, there are a number of
limitations in the available methods. Sensitivity analysis, a standard practice, only
assesses one binary variable independently.*>! A limitation of multiple bias analysis
modelling is the assumption that the bias are independent, which may not reflect
actuality.*®>® More recent methods have been developed to calculate the effects of
unmeasured mediators; however, unless the mediator is binary the study will require
a large number of parameters.1?® In recent years, quantitative bias analysis methods
have been expanded to include simulation,'*® empirical experiments that involve
applying epidemiological modelling to simulated bias parameters.’3® Computer

simulations comprise a broad range of computational practices that vary across
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disciplinary fields.'®® This review is interested in simulations that replicate complex
causal structures, thereby allowing the illustration and quantification of bias by
comparing scenarios for the observed association with alternative scenarios.4® One
of the main benefits of simulation is that it enables researchers to conduct numerous
experiments, exploring complex causal pathways between exposures and outcomes.
This has been greatly facilitated by technological advances that have led to improved
computation speed at lower cost. While simulation as a method is well-established,*>°
there is a paucity of research using simulations to quantify bias across epidemiology
in general.'*® The reasons for the limited application of simulation as a method to
guantify bias in reproductive and perinatal epidemiology could be due to several
factors. Notably, there is a lack of guidance in the design and implementation of
simulation,*®* combined with researchers with a limited skillset in statistical
modelling'*° and a lack of interest in exploring new research methods.3® Further to
this, adoption of simulation may be impeded by negative reports that studies that use

simulation are prone to poor design, analysis and reporting.13°

Although the problems of bias in observational studies are well-acknowledged,
reviews of the application of methods to address this bias remain limited.¢° Further,
no study has documented how simulation methods have been applied in the
guantification of bias in reproductive or perinatal epidemiology, which would otherwise
be of interest to those who would wish to apply simulation within this field. To address
this, we aimed to systematically review the published literature to provide an
assessment of the value gained in reproductive and perinatal research, and to identify

best practices in the application of simulation in the quantification of bias.

2.3 Methods

Search strategy

A systematic search of four databases (PubMed, Medline, EMBASE, CINAHL and
Scopus) was conducted from the start of indexing to the 315t August 2020. Search
strategies for each database used the particular databases controlled vocabulary (e.g.,
medical subject headings (Mesh) terms) and free-text terms (Appendix D). A search
on Google and Google Scholar was undertaken to identify gray literature (i.e. literature
that has not been formally published in a peer-reviewed indexed format) using
simulation methods in perinatal and reproductive epidemiology. A combination of key

terms were used: simulat* AND bias AND (reproductive OR perinatal). Due to the large
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nature of search results in Google Scholar, the search was limited to the first 100
results returned sorted by relevance. To capture articles that may have been indexed
incorrectly, further data collection was completed using a systematic retrospective
snowball sample. Here, a hand search was conducted using the reference lists of
included studies to identify additional relevant articles. All references were exported to
Endnote X9 (Thomson Reuters).

Study selection

Studies identified by the search strategy were initially screened for eligibility by the
primary author. The initial eligibility criteria, based on an abstract and title screen, was:
1) examination of the bias types as defined in the search, and 2) focused on
reproductive or perinatal outcomes as defined in the search (Appendix D). Studies
were excluded using a priori exclusion criteria as follows: 1) does not include
reproductive or perinatal outcomes in humans, 2) are conference abstracts, review
papers (systematic, narrative or literature), editorials or opinion letters, and 3) are not
published in English. Studies that fulfilled these criteria were obtained for a full-text
review to determine if simulated data is applied as a method to quantify bias. Studies
were excluded if the details of the simulation process were not included in the article.
Title and abstract screening were undertaken by the primary author. For the full-text
screening, a second independent reviewer (MO) conducted a dual review for a sub-
sample (20%) of the records. When conflicts for including/excluding articles between
the two reviewers occurred, a third independent reviewer (GT) was involved for a final

decision.

Data extraction

Studies were retrieved for inclusion through a two-stage process according to the
inclusion/exclusion criteria specified above. The key characteristics and methodology
details were tabulated and discussed. Standard bibliographic information (authors,
and journal year of publication) was extracted. Additionally, the objectives of each
study were extracted, type of bias, exposure and outcomes, original cohort (if any),
simulation method, simulation analysis, simulation results, author’s conclusions, and
the key findings of the simulation study. Studies were reported according to the type
of bias. We reported study features such as the use of causal diagrams and statistical

software, including the availability of code.
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2.4 Results

Our searches returned 1,390 records through bibliographic databases and an
additional 171 records from gray literature searches. After removing duplicates 913
unique titles and abstracts remained of which 90 articles were retrieved for full-text
screen. Of the 90 studies eligible for the full-text screening, 51 were excluded
(Appendix D). The principal reason for exclusions were that the studies did not quantify
bias as the primary aim study (n=31). Other reasons for exclusion included not
applying simulation or where the application of simulation were not core to the article
(n=8). Eight studies did not apply simulated data and four studies applied simulation
for the purpose of learning in a clinical environment. A total of 39 articles met the
inclusion criteria as the studies applied simulation methods to the quantification of bias
in reproductive or perinatal epidemiology. The process of study identification,
screening and inclusion is summarised in Figure 2.1. The included studies covered
three main areas of bias: information (n =14), selection (n = 14) and confounding (n =
9). One study quantified protection bias, defined by the authors as ‘the effect of the
ability to protect against giving birth to an unintended child’ in measures of time-to-
pregnancy.®! Another study investigated the effects of attenuation in study designs
used to determine the cumulative probability of pregnancy.'%? Overall, perinatal
outcomes were examined in 27 studies and 12 studies examined reproductive
outcomes. The timeline of the studies ranged from 1983 to 2019, with 18 studies
published since 2015 (Figure 2.2). See Appendix D for a summary of the study
characteristics.
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Records identified through Additional records identified
database searching through other sources
(n =1390) (n=171)

Records after duplicates removed
(n=913)

Records excluded with reasons
\ (n =823):

Title/abstract screen »| Not outcomes of interest: 770
(n=913) Review paper: 21

Not human research: 16

Basic science: 9

Demographic paper: 4

Letter: 1

\ 4 Poster: 2

Full-text articles

assessed for eligibility

(n=90)
Full-text articles excluded, with reasons
(n =51):

Primary aim not bias: 31
Simulation not core: 8

A4 Did not use simulated data: 8
Studies included in Simulation based research: 4

review

A 4

(n = 39)

Figure 2.1 Flowchart of the study selection process
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Figure 2.2 Number of included studies (n=39) by publication year

Information bias

Of the studies that quantified information bias, all quantified misclassification bias. The
earliest published reproductive study®® investigated reporting errors resulting from
collecting self-reported data in a time-to-pregnancy study, producing bias towards the
null. One study'%* investigated the potential magnitude of error resulting from loss to
follow up in studies of fertility, noting that the return of pregnant drop-outs to the study
biased cumulative pregnancy rates.'®* Four studies examined misclassification bias
associated with gestational age. One study'%®> examined misclassification bias caused
by errors in gestational age on spontaneous abortion studies. Another study?6®
evaluated the impact of misspecifying the distributions of weight gain and gestational
age using directed acyclic diagrams to inform the simulation. A later study'®’ specified
a model that investigated Gaussian measurement error in gestational age on the
subsequent risk of preterm birth, finding that parameter estimation was mostly
unbiased. Lastly, a study!®® used gestational age at arrest of development to reduce
misclassification bias for time-varying exposures on the risk of miscarriage. Three
articles investigated misclassification bias in studies of the impact of pollutants on

perinatal outcomes. The first study®® applied simulation to estimate bias in relative risk
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estimates due to exposure misclassification in disinfection by-product in birthweight
studies. A 2016 study®’ evaluated the impact of uncertainty in estimated
Perfluorooctanoic acid drinking-water concentrations on estimated serum
concentrations and pre-eclampsia. A later study®® applied simulation to determine the
impact of maternal residential mobility during pregnancy on identifying critical windows
of susceptibility to term low birth weight from weekly exposure to particulate matter
less than or equal to 10um in aerodynamic diameter (PMio). A study from 2014169
evaluated bias arising from misclassification of pre-pregnancy body mass index and
its association with early preterm births. Another study,'’® guantified the extent to
which current measures of gestational weight gain could bias the relationship between
maternal weight gain and risk of preterm birth. One study'’* demonstrated how the
correction for misclassification in a time-varying exposure of influenza vaccination
using survival analysis. Another study!’? demonstrated that bias increased with
advancing gestational age at antiretroviral therapy initiation and the introduction of
gestational age measurement error. The final study investigated the ability of the
propensity score to reduce confounding bias in the presence of non-differential
misclassification of treatment.1’®> The authors showed in the presence of even
moderate misclassification, all methods (adjustment, weighting, matching and

stratification) increased bias estimates.1’3

Selection bias

Of the three studies that examined bias in reproductive outcomes, the earliest!’4
evaluated how the availability of contraception and induced abortion might bias studies
of time trends in couple’s fertility. The second reproductive study'’ focused on
selection bias in pregnancy samples for time-to-pregnancy, with the authors finding
that even when fecundity decreased with age, the estimation of the effect of age
showed the opposite trend. Another reproductive study®® investigated bias from left
truncation in time-to-pregnancy, demonstrating that fixed or variable differential left
truncation can bias results either towards or away from the null. A perinatal study®®
investigated left truncation bias in spontaneous abortion studies when the exposure is
maternal smoking, with the simulation suggesting that a difference in 10 days or more
in gestational age at entry biased the odds ratio of spontaneous abortion by more than
20%. Lisonkova and Joseph!®! investigated whether left truncation bias could explain

the negative association between smoking and pre-eclampsia, finding a protective
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effect of pre-eclampsia given smoking even in simulations that did not require
assumptions about early pregnancy loss. Kinlaw and colleagues!® then examined the
sensitivity of the assumptions in the Lisonkova and Joseph study, suggesting that the
earlier study’s results were highly dependent on assumptions regarding the strength
of association between abnormal placentation and pre-eclampsia, resulting in less
bias than the Lisonkova and Joseph study!®' suggested. Another study'®* also
examined the smoking pre-eclampsia paradox with results indicating that the biased
effect of smoking was estimated to reduce the odds of pre-eclampsia by 28% and after

stratification by gestational age at delivery by 75%.

Three studies examined collider-stratification bias. The first study'’® investigated the
‘birthweight’ paradox, where birthweight specific mortality curves cross after
stratification by smoking status. Another study®* quantified selection bias when
adjusting for gestational age, which was considered as the collider variable where
preterm birth was a predictor for neonatal mortality. Here, conditioning on the collider
of gestational age led to the reversal of exposure-outcome association.* A later study
on the effect of asthma medication during pregnancy on major congenital
malformations!’” evaluated the potential impact of selection bias due to conditioning
on a collider of delivery after 20 weeks gestation. This study found that selection bias
could be partially mitigated by controlling for other variables that are not colliders, on
exposure-outcome pathway.’” One study'’® quantified the impact of initial selection
into the national birth dataset on different associations between well-established risk
factors and pregnancy outcomes. Another study!’® illustrated how selection bias
affecting studies restricted to very preterm births should be carefully interpreted, as
pre-eclampsia can appear to reduce the risk of adverse neonatal outcomes. A later
study'’? hypothesized that the lower risk of preterm birth amongst women who initiate
antiretroviral therapy during pregnancy compared to those already receiving therapy
is due to selection bias. In this study, selection bias increased with advancing
gestational age at therapy initiation and the introduction of gestational age
measurement error.l’? Another study®® used simulation to demonstrate how
conditioning on live birth can induce selection bias in studies of drug effects on
pregnancy complications when fetal death is a competing risk or is also caused by the

complication. Another study'®! quantified both selection and misclassification bias in

Chapter Two 36



studies of reproductive abortion-related mortality, applying explicit assumptions in a
multiple-bias analysis model.

Confounding bias

The earliest reproductive paper in this review examined bias arising from inadequate
statistical control that impacts gravidity and gravidity-specific relative risks.*®? Another
study'®® quantified potential sources of bias related to seasonal variation in
reproductive failures, demonstrating that seasonal planning differences in subfecund
females lead to variations in reproductive failures. A later study'®* found that
differential persistence in pregnancy attempts, which are age-dependent, leads to the
observation that older women conceive faster on average unless unsuccessful waiting
times are considered. The final reproductive study® highlighted fixed cohort bias in
pregnancy studies when estimating the effects of seasonal exposures on birth
outcomes. When shorter and longer pregnancies are missing, bias can be substantial,
changing the estimated effect of temperature on gestational length.18 One perinatal
study*®® postulated that the relationship between birthweight and mortality could be
explained by confounding factors that decrease birthweight and also increase
mortality. The same authors expanded their previous model in a later study®? to
demonstrate that the addition of a simple exposure could produce a paradoxical
reversal of risk among small babies. A later study*®’ considered the effects of time-
varying covariates such as weight gain on preterm delivery when their mutual
dependence relies on gestational age. The study suggested that failure to account for
confounding effects of time on gestational weight gain produced a stronger association
between higher weight gain and later delivery.18” One study'®® investigated bias when
gestational age acting as a mediator between maternal asthma and small for
gestational age. Here, the authors consider small for gestational age to be an
absorbing variable, that is the observed association between the exposure and small
for gestational age solely reflected the direct effect of the exposure on birth weight. 188
The final perinatal study*®® used simulation to quantify cluster-level confounding of the
effect of caesarean section on the Apgar score, finding that preferential within-cluster
matching approach showed a good performance in the presence of big and small

clusters.

Simulation methods
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Of the 39 included studies, 24 studies based their simulations on an original cohort;
three studies based their simulations on previously published papers with the
remaining twelve studies creating hypothetical cohorts. Key findings related to the
types of bias investigated and the simulation methods applied are summarised in
Table 2.1. Nine studies used Monte Carlo simulation methods for data generation.
One study used a hidden Markov model to account for measurement error in
gestational age.'®” The primary method of statistical analysis was logistic regression,
with sixteen studies reporting odds ratios. Cox regression models were used to
calculate hazard ratios in eight studies. Relative risks were reported in six studies. Two
reproductive studies®® 186 produced mortality curves and one'’® produced Kaplan-
Meier curves for waiting time-to-pregnancy. One perinatal study produced generate

birthweight-specific mortality curves stratified on a binary risk factor of interest.154

Eleven studies used causal diagrams to represent their causal research question and
inform their simulation studies. One reproductive study applied a causal diagram in a
study of time trends in fertility.2’* Two perinatal studies used a directed acyclic diagram
(DAG) where gestational age was the potential mediator between the exposure of
interest and birth weight.®* 18 A study on information bias, used DAGs to depict the
correlation between weight gain and gestational age longitudinally across gestation
before building simulations.'® Three studies used DAGSs to describe the smoking-pre-
eclampsia paradox.10% 154 176 Another study used a DAG to illustrate collider-
stratification bias when conditioning on live birth.18 Two studies used DAGs to
illustrate bias resulting from restriction to live births in pharmacological studies,*’” 18
and one study illustrated measurement error in a pharmacological study.’? Nineteen
studies disclosed their statistical software. R were the most commonly used in eight
studies, Five authors used SAS, four used STATA, one used Microsoft Excel and an
early study (from 1993) used BASIC. One study used a combination of R and
MATLAB. Six studies made their code available online and two others agreed to make
code available upon request. (Appendix D contains a checklist for the application of

simulation in studies that quantify bias using observational data).
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Table 2.1 Summary of the key findings related to the types of bias investigated and simulation

methods applied by the included studies (n=39).

N (%)
Type of bias examined Information 14 (36)
Selection 14 (36)
Confounding 9 (23)
Protection 1(2.5)
Attenuation 1(2.5)
Multiple types 4 (10)
Area of main focus Perinatal 27 (69)
Reproductive 12 (31)
Source of data for simulation Register/database 24 (61)
Simulation 12 (31)
Previous study 3(8)
Causal diagram provided Yes 11 (28)
Source of bias parameters Previous study 28 (72)
Not stated 11 (28)
Simulation iterations Reported in study 24 (62)
Minimum 100
Mode 1,000
Maximum 100,000
Code availability Available online 6 (15)
Type of software used Available upon request 2 (5)
R 8 (21)
SAS 5(13)
STATA 4 (10)
Other* 3(8)

*Other included Microsoft Excel, Basic and Matlab
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2.5 Discussion

Although it is standard practice to report potential sources of bias, this review
highlights that few reproductive and perinatal epidemiological studies have applied
simulation to quantitatively evaluate bias. This is the first review of the application of
simulation to quantifying the influence of bias, providing a catalogue of diverse
application in the field. This is an important topic due to the potential to improve causal
inference by providing context for observational results. Our findings highlight that
although simulation is a promising method for quantifying the influence of bias, it
remains infrequently utilised in reproductive and perinatal studies. Nonetheless, there
has been a significant increase in its application to evaluate bias in this specific field
since 2015. As might be expected, there were considerable differences in how the
simulations were designed, presented, and reported, revealing a range of specific

areas where improvement can be made.

One of the main advantages of simulation is the potential to investigate scenarios that
were not directly observed or cannot be directly observed, scenarios in which the true
underlying causal effect of an exposure on an outcome can be bounded but is
generally unknown.*®® This is particularly relevant in perinatal research where the
study population is incompletely observable, in part due to perinatal databases
restricting to specified gestational time-periods in pregnancy. This issue is not unique
to registries, as prospective cohorts are also usually limited to “recognised”
pregnancies. As evidenced in this review, such left truncation can result in bias toward
the null, bias away from the null, and loss of precision.® 100. 101, 190 |mportantly,
simulating a population for unmeasured confounders can not only improve precision
but can potentially highlight the impact of rare pathologies on adverse outcomes.®?
Further, simulation can illustrate bias when stratifying on an intermediate such as
gestational age or birth weight, which can lead to unexpected results such as the
intersection of mortality curves.®? % 186 Simulation can also demonstrate whether
collider-stratification results in a level of bias that would be of concern,®? 98 179, 180, 186
as the incorrect handling of colliders can yield paradoxical associations. 92 8. 179, 180,
186 This is a valid concern for researchers, as conditioning on a collider such as
gestational length will introduce bias, regardless of whether that collider is restricted
on or adjusted for in a model.1”® As demonstrated in this review, simulation is a

valuable method to correct estimates for potential measurement error. A true
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representation of the causal pathway would typically consider more than one type of
bias, yet only four of the reviewed studies considered more than one type of bias.1®
172,179, 181 However, it remains unclear whether there is a lack of confidence or lack of
interest by researchers has led to the limited application of simulation in multiple bias

analysis in reproductive and perinatal epidemiology.

This review highlighted several attributes that were common to the included studies.
The first is the use of causal diagrams to inform the development of the simulation.
Causal diagrams are powerful tools that can aid researchers in constructing models
based on hypothesized biologic mechanisms in order to produce the least biased
effect estimates possible.*®! Considerable literature has been published on the best
approach to the application of causal diagrams, more recently with perinatal
examples.19% 192 Despite the evidence that information bias has a clear and helpful
representation within the causal diagram framework,'®® there remains limited
application of causal diagrams in the wider epidemiological context. The second
attribute common to the included studies was the careful selection of bias parameters
to represent effect sizes within the bounds of associations. A common caveat
acknowledged in the included studies was that the simulation was only as good as the
assumptions that informed the parameters.100. 101, 154,172,177, 181 Bjas parameters and
the causal structures that underpin the simulations are largely based on researcher
knowledge and previously published literature. Although such caveats are
unavoidable, a general limitation of the included studies was the lack of clarity from
where the estimated bias parameters were derived. Overall, a limitation of the
application of simulation in epidemiology, which was also evidenced in this review, is
that the simulations are often over-simplified and do not reflect the true complexity of
the true causal association. Nonetheless, the application of simulation was an
improvement, as it accounted for greater complexity of the underlying true causal

pathways than observational studies alone.

Scientific evidence is strengthened by the replication of important findings by multiple
independent studies; however, replication may not be always feasible due to costs
and difference in the context where the epidemiological population data were drawn.%
An attainable minimum standard can be reproducibility, where independent
investigators subject their original data to their analysis and interpretations based on

published protocols and code.*®* The reporting of simulation protocols and the release
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of code are important considerations in reproductive and perinatal epidemiology,*3°
enabling researchers to identify bias scenarios commonly found in all reproductive and
perinatal research questions. However, only a handful of included studies in this
review shared their code in the public domain. Increasing study reproducibility can
elucidate processes that produce contradictory results. A working example of
contradictory results was evident in this review in regards to the paradoxical inverse
association between maternal smoking and pre-eclampsia.'®® %1 One study proposed
that left truncation bias was responsible for a protective effect of maternal smoking on
pre-eclampsia, based on the assumption that there was no direct effect of smoking on
pre-eclampsia but an indirect effect through abnormal placentation.’®® Another
research group examined the sensitivity of these conclusions, constructing a new
simulation model using published estimates to frame their bias parameters.1®° These
authors concluded that under more empirical assumptions, bias from left truncation
does not fully account for the inverse association between maternal smoking and pre-
eclampsia.l® Rather, when left truncation may result from the exposure, researchers
should describe the target population and parameter of interest prior to assessing

potential bias.1%0

There are no published guidelines for the development and application of simulation
studies in epidemiology for the purpose of bias analysis. A 2014 paper provided a
guide for conducting and presenting guantitative bias analysis research studies,
highlighting the importance of diagrams to establish causal pathway and the careful
selection bias parameter.'¥” In recent years, several epidemiological studies have
been published under the framework of quantitative bias analysis.% As evidenced in
this review, the number of studies publishing under the quantitative bias analysis
framework is limited!®® compared to the number of studies applying simulation in bias
analysis. This may indicate that a broader approach for the development, analysis and
reporting of studies applying simulation in bias analysis is required. In 2013 the
STRengthening Analytical Thinking for Observational Studies (STRATOS) group was
established to guide health researchers to meet the rapid development of statistical
methodology.’*° Recently, members of the STRATOS simulation study panel
published a guide on the application of statistical simulations in health research, which
included a helpful example of measurement error in confounding and exposure

variables.#® Yet it could be considered a potential missed opportunity to consider the
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impact of bias more holistically, including complications from selection bias and the
dangers of stratifying or adjusting for colliders in observational studies. Overall, there
remains a lack of guidance to inform researchers of the practical steps in the
development, analysis and reporting of simulation for the quantification of the influence

of multiple types of bias in observational epidemiological studies.

The strength of this review was a comprehensive search strategy that included
keyword searches and citations indexes of key sources of simulation in reproductive
and epidemiology studies that investigated bias. This review also considered the
application of simulated data to different types of bias in the broad research areas of
reproductive and perinatal health. Our search strategy restricted studies to those that
described simulation methods within the paper. Consequently, we may have excluded
studies that included simulation methods in supplementary material or those
guantifying bias through other methods. Due to a lack of formal critical appraisal tools
for simulation studies, an additional limitation is that this study did not conduct a quality
assessment of the included studies. Although the included studies’ primary aims
centred on bias analysis with simulation as an integral component, the simulation itself
was not always their central focus. As such, the studies did not need to report all
important aspects of their simulations to achieve their study aims. Finally, as we
intended to identify the extent to which simulation has been applied in the field, the
types of applications of simulation, and potential advantages of simulation, we did not
evaluate the degree to which the simulations in each study were effective in achieving
the respective individual study aims.

2.6 Conclusion

The use of simulation to quantify bias in reproductive and perinatal epidemiology
remains relatively limited. The use of causal diagrams and the reporting of simulation
code is minimal. The current applications and examples of simulation demonstrated
that such techniques can be implemented to more comprehensively investigate
associations. Simulation should be considered as a complementary method in
observational studies, rather than a competing method of analysis. It is possible that
the potential of simulation to address common issues of bias in reproductive and
perinatal epidemiology is under-emphasized due to an overall lack of knowledge in the
process of their application, lack of the necessary computational skillset among

researchers in the field, lack of a well-established reporting standard, or possibly the
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lack of knowledge on potential applications. Increased adoption could be achieved
through a more holistic approach to research regarding simulation methodology, which
might include cataloguing successful applications of simulation, development of
protocols for reporting of simulations studies, complementary application of simulation

in observational studies to address bias and sharing of simulation code.
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Chapter Three: The role of confounding

This chapter contributed to Aim 2 and fully met Objective 2.1 of the thesis.

Aim 2: To design, implement and analyse a series of simulation studies to quantify
the magnitude and direction of bias in perinatal outcomes to address issues from
methodological challenges that may lead to spurious inference on associations
between pregnancy exposures and adverse birth outcomes.
Objective 2.1: To investigate the consequences of unmeasured confounding on
the association between pregnancy complications over two successive

pregnancies.

The content of this chapter is covered by Publication Two. This study investigated the
consequences of unmeasured confounding on the association between
(preeclampsia, placental abruption, small-for-gestational age and perinatal deaths)
with a subsequent preterm birth. Using e-values and a simulation, this study
demonstrated that recurrent confounding is unlikely as any such unmeasured
confounder would have to be uncharacteristically large explain away the observed

associations.

The version that appears in this thesis is of an article that has been through peer-
review with BJOG: An International Journal of Obstetrics & Gynaecology but has not
been through the copyediting process. The contribution of co-authors, Professor Gavin
Pereira and Dr Gizachew A. Tessema are detailed in the author attribution statements

in Appendix A.

Dunne J, Tessema GA, Pereira G. The role of confounding in the association between
pregnancy complications and subsequent preterm birth: a cohort study. BJOG: An
International Journal of Obstetrics & Gynaecology 2022;129:4-101. doi:10.1111/1471-
0528.17007

A copy of this publication has been provided in Appendix C. Supplementary material

for this chapter are available in Appendix E.
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3.1Abstract
Objectives
To estimate the degree of confounding necessary to explain the associations between

complications in first pregnancy and the subsequent risk of preterm birth.

Design

Population based cohort study.

Setting

Western Australia.

Participants
Women (n=125,473) who gave birth to their first and second singleton children
between 1998 and 2015.

Main outcome measures

Relative risk of the subsequent preterm birth (<37 gestational weeks) with
complications of pre-eclampsia, placental abruption, small-for-gestational age and
perinatal death (stillbirth and neonatal death within 28 days of birth). We derived e-
values to determine the minimum strength of association for an unmeasured
confounder to explain away an observed association.

Results

Complications in first pregnancy were associated with higher risk of a subsequent
preterm birth. Relative risks were significantly higher when the complication was
recurrent, with the exception of first term perinatal death. The association with
subsequent preterm birth was strongest when pre-eclampsia was recurrent. The risk
of subsequent preterm birth with pre-eclampsia was 11.87 (95% confidence interval
(CI) 9.52 to 14.79) times higher after a first term birth with pre-eclampsia and 64.04
(95% CI 53.58 to 76.55) times higher after a preterm first birth with pre-eclampsia,
than an uncomplicated term birth. E-values were 23.22 and 127.58 respectfully.

Conclusions

The strong associations between recurrent pre-eclampsia, placental abruption and
small-for-gestational age with preterm birth supports the hypothesis of shared
underlying causes that persist from pregnancy to pregnancy. High e-values suggest
that recurrent confounding is unlikely, as any such unmeasured confounder would

have to be uncharacteristically large.
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3.2Introduction

There is strong evidence that a previous preterm birth is a predictor of a subsequent
one,%6-198 syggesting the presence of persistent causal factors in the mother or her
environment.*®® The assumption that a term birth in first pregnancy can be considered
sufficient to imply a reduced risk for a future preterm birth has been refuted by recent
studies.?%-202 These studies reported that term first births, complicated by either pre-
eclampsia, placental abruption, small-for-gestational age, stillbirth or neonatal death,
were associated with elevated risks of subsequent preterm birth, leading the authors
of those studies to conclude that there are likely shared underlying pathologic

mechanisms persisting from pregnancy to pregnancy.2°0-202

One pathway that explains the association between complicated term birth and
subsequent preterm birth is that the complications can also reoccur.?%3 204 Recurrence
has been well-established for pre-eclampsia,?®® placental abruption®°® and small-for-
gestational age,?®” complications pertaining to ischemic placental diseases,?’ with
these complications acting as risk factors for preterm birth.19-1% Another more
complex explanation is that each complication is associated with an increased risk of
other complications,?%% 208 which is supportive of the hypothesis of shared underlying
mechanisms.?%3  Further supportive of a shared underlying mechanism are
observations for associations with preterm birth in the “reverse” direction. For example,
more recent studies have established associations between preterm first birth and risk

of pre-eclampsia®®* and stillbirth?%® in the next birth.

The most well-cited candidate for the shared underlying mechanism is the Great
Obstetrical Syndrome,32 ischemic placental diseases that are associated with
disorders of deep placentation,33 preterm birth,3* and late stillbirth.3> 3¢ However, the
shared causal pathway is not necessarily biological. Environmental confounders such
as socio-economic status, income, age, education and body mass index have
previously been identified as risk factors for pregnancy complications?°? and preterm
birth.?1° If environmental risk factors and underlying biological mechanisms that cause
complications of pre-eclampsia, placental abruption, small-for-gestational age and
perinatal death are shared with preterm birth, these associations would persist from
pregnancy to pregnancy. Although incomplete control for confounding is inevitable in
non-randomised studies,’® 77 it is possible to estimate the amount of confounding

needed to explain away observed associations, which would thereby allow qualitative
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assessment as to whether such confounding is likely. We hypothesise that the
associations between pregnancy complications exist and that they are largely
explained by recurrence of the complications themselves. We aimed to estimate the
magnitude of these associations and to establish the degree of evidence for shared
underlying pathways by estimating the degree of confounding necessary to explain
away these associations.

3.3Methods

Data sources

We conducted a retrospective population-based cohort study using perinatal records
from the Midwives Notification System in Western Australia (WA), a statutory data
collection of all live births and stillbirths with either a final gestational length of 220
weeks or a birth weight > 400 grams.?!! This de-identified and validated dataset?'? was
cross-referenced with Death Registrations obtained from the WA Registry of Births,
Deaths and Marriages using a linkage key provided by the Data Linkage Branch of the
WA Department of Health.?13 Hospitalisation records were identified from Hospital
Morbidity Data Collection for WA using the Australian Modification of International
Classification of Diseases (ICD-10-AM) coded diagnostic information for pregnancy
complications.?!* As data on chronic co-morbidities and smoking status were not
routinely and comprehensively collected until 1998, analysis was restricted to women
who gave birth (live birth or stillbirth) within the period 1998-2015.

Study cohort

The study cohort consisted of women who delivered their first two singleton births (live
birth or stillbirth) in WA, during the period 1998-2015. From a starting population of
299,166 women who gave birth during this period, we sequentially excluded: multiple
births (n=3,276; 1.1%); duplicate parity (n=28; <0%); parity greater than 1 (n=36,892;
12.3%); gestational age <20 or >= 45 weeks (n=76; <0%); birth weight by gestational
age z score > 5 (n=6; <0%); women with only one birth (n=133,415; 44.6%). After
these exclusions, the final eligible study population was 125,473 women with first and
second births (live birth or stillbirth) in WA (Figure 3.1).
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in Western Australia, 1998-2015
(N=299,166)

[Women who gave birth (live birth or stillbirth)

( Excluded: multiple gestation births

| > (N=3276)

v

Eligible: singleton births
(N=295,890)

Excluded: duplicate parity (N=28) and parity >
1 (N=36,892)

|
v

v

Eligible: parity 0 and 1
(N=258,970)

Excluded: gestational age null, < 20 or = 46

| weeks (N=76)

v

v

(N=258,894)

f Excluded: birth weight by gestational age z

| 'L score > 5 (N=6)

v

score < 5 (N=258,888)

Excluded: women who only birthed once

|
(N=133,415)

v

|
|
|
|
|

Eligible: women with both parity 0 and 1
(N=125,473)

|

Eligible: women with first and second births
(live birth or stillbirth)
(N=125,473)

[ Eligible: gestational ages 20-46 weeks }
{ Eligible: birth weight by gestational age z }

Figure 3.1 Selection of eligible birth records included in this study, Western Australia,
1998-2015

Exposure and outcome ascertainment

The four variables used to identify a shared pathway were pre-eclampsia, placental
abruption, small-for-gestational age, and perinatal death (hereon complications). Pre-
eclampsia (ICD-9: 642.4, 642.5, 642.6, 642.7 and ICD-10: 011, 014, 015) and
placental abruption (ICD-9: 641.20 and ICD-10: 045) were obtained from hospital
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discharge ICD-9 and ICD-10 diagnosis. Small-for-gestational age was derived using
the Australian national centiles and defined with the 3" percentile for singleton births
to exclude more constitutionally mall births.?*®> Perinatal death included stillbirths and
neonatal deaths, where stillbirth is defined as fetal death after 20 gestational weeks or
= 400 grams birthweight, and neonatal death is the death of a live born baby in the
first 28 days of life. Preterm birth was defined as a live birth or stillbirth delivered before

37 weeks of gestation. Gestational age at birth was derived from dating ultrasounds.?'®

Based on the hypothesis that the complications and preterm birth share common
mechanisms, complications in the first pregnancy (exposure) would be associated with
the risk of preterm birth in the second pregnancy (outcome). Similarly, preterm birth in
the first pregnhancy (exposure) would be associated with complications in the second
pregnancy (outcome). Associations were investigated separately for each
complication (hereon primary complication). Because associations can be induced by
the recurrence of complications independent of preterm birth, and recurrence of
preterm birth independent of complications, outcomes and exposures were
categorised with levels to account for such recurrence. Specifically, for the association
between first pregnancy complication and preterm birth in the second pregnancy we
defined (i) six exposure groups: uncomplicated term birth, uncomplicated preterm
birth, term birth without primary complication (i.e. had a complication other than the
primary complication), term birth with primary complication, preterm birth without
primary complication (i.e. had a complication other than the primary complication), and
preterm birth with the primary complication and (ii) three preterm outcomes: preterm
birth with no complications, preterm birth including the primary complication, and
complicated preterm birth excluding the primary complication. To avoid introducing
collider bias from conditioning on preterm birth, the association between preterm birth
in first pregnancy was limited to pregnancy complications at second term birth.

Confounders

Adjustment was made for known confounders that may contribute to the associations
between complications and preterm birth. These factors included maternal age,
ethnicity, smoking during pregnancy, year of delivery, socio-economic status, inter-
pregnancy interval and change of father between the first and second birth. To avoid
introducing bias from factors that may have changed since first pregnancy, maternal

age, smoking, year of delivery, and socio-economic status were adjusted at the time
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of first pregnancy. Ethnicity was classified as Caucasian, Aboriginal Torres Strait
Islander and other. Smoking during pregnancy was dichotomised as non-smoking vs
smoking. Socio-economic status was derived by the Australian Bureau of Statistics as
the Socio-Economic Indexes of Areas (SEIFA) at a geographic area for the maternal
residence at the time of birth, with lower values indicating an area that is relatively
disadvantaged compared to an area with a higher score.?!’ Inter-pregnancy interval
was defined as the length of time between the delivery date of the first pregnancy and

the estimated conception date of the second pregnancy.

Statistical analysis

We used robust Poisson regression models to calculate relative risks with 95%
confidence intervals for the association between complications in the first pregnancy
and the risk of preterm birth in second pregnancy. The Poisson model was chosen
because the results approximate those obtained from a log-binomial model when the
outcome is rare and the sample sizes are large,?'® and overcome problems with
convergence?® commonly associated with log-binomial models. Robust standard
errors were applied to derive the confidence intervals. Separate models were run for
each primary complication (pre-eclampsia, placental abruption, small-for-gestational
age, and perinatal death), with reference set as uncomplicated first term pregnancy.
When preterm birth in first pregnancy was the exposure and pregnancy complications
at term the outcome, the reference was term birth in the first pregnancy. We presented
unadjusted relative risks and relative risks after adjustment for potential confounding

variables.

E-values provide a method to gauge the minimum strength of association required to
explain away exposure-unmeasured confounders and unmeasured confounder-
outcomes associations.'?®> A large e-value indicates that considerable unmeasured
confounding is needed to expound an observed effect estimate. Conversely, a small
e-value indicates that less unmeasured confounding is needed to explain an observed
effect estimate.?®> The e-value for the lower limit of the 95% confidence interval is the
level of confounding needed to render the interval estimate null, and thereby alter
inference.??° To address the potential impact of bias from unmeasured confounding in
our study, e-values were calculated and presented for the unadjusted and adjusted

relative risks.

Simulation
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We undertook a brief simulation exercise to determine if the inclusion of a well-
established known confounding variable could explain the association between
complications in the first pregnancy and subsequent preterm birth. Body mass index
(BMI) is a commonly adjusted confounder in perinatal studies; yet is unavailable in the
WA data prior to 2016. As maternal height and maternal weight were readily available
for births delivered after 2012, we were able to directly estimate BMI and thereby
derive obesity (BMI = 30kg/m?) for the period 2012-2015. We then applied logistic
regression to simulate obesity at the first birth that was not associated with preterm
second birth while preserving the correlations in the data between obesity and the
other observed variables. Applying the same statistical approach as the main analysis,
we re-analysed the data adjusting for the same confounders as before but with the
addition of the new simulated obesity. A simulation was run for each exposure-
outcome association, with iteration until convergence of the new obesity-adjusted
relative risks, which was defined as no change at the third decimal place.

All data analyses and simulations were conducted using R v4.0.5.22}

3.4Results

Study population characteristics

In total, 125,493 women had two consecutive births (live birth or stillbirth) in WA
between 1998 and 2015. Women were more likely to be in the 25-29 years age group
(33.3%) at first birth, Caucasian (83.9%), and reported not smoking during pregnancy
(86.5%) (Table 3.1). The majority of the study sample had a SEIFA score greater than
1000 (58.4%) which is slightly above the national average (50%).%1” The most common
inter-pregnancy interval was 24-59 months (34.1%). The prevalence of preterm birth
in first pregnancy was 7.4%, pre-eclampsia was 4.5%, placental abruption was 0.3%,
small-for-gestational age was 3%, and, perinatal death was 0.9%. The prevalence of
preterm birth in an uncomplicated second pregnancy was 3.7%.
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Table 3.1 Characteristics of the 125,473 women who gave birth between 1998 and 2015 in

Western Australia.

Characteristics

N (%)

Maternal age at first-birth (years):
<20

20-24

25-29

30-34

35-39

40+

Ethnicity:

Caucasian

Aboriginal Torre Strait Islander
Other

Maternal smoking status at first-birth:

No

Yes

SEIFA score at first-birth:
<700

700-800

800-900

900-1000

>1000

Missing
Inter-pregnancy interval (months):
<6

6-11

12-17

18-23

24-59

60-120

>120

Year at first-birth:
1998-1999
2000-2004
2005-2009

18,352 (14.6)
21,747 (17.3)
41,779 (33.3)
37,250 (29.7)
6,103 (4.9)
242 (0.2)

105,293 (83.9)
5,470 (4.4)
14,710 (11.7)

108,518 (86.5)
16,955 (13.5)

279 (0.2)
1,044 (0.8)
8,443 (6.7)
32,664 (26.1)
73,312 (58.4)
9,731 (7.8)

4,108 (3.3)
18,759 (15)
28,534 (22.7)
23,229 (18.5)
42,731 (34.1)
7,326 (5.8)
786 (0.6)

22,421 (17.9)
38,307 (30.5)
43,766 (34.9)

Chapter Three

53



2010-2016 20,979 (16.7)
Outcome in 1% pregnancy:

Preterm 9,240 (7.4)
Term 116,233 (92.6)
Pre-eclampsia 5,644 (4.5)
Placental abruption 435 (0.3)
Small-for-gestational age 3,781 (3)
Perinatal death 1,174 (0.9)

Association between complications at first birth and preterm second birth

The strongest associations were observed between first pregnancy pre-eclampsia and
subsequent preterm birth when both pre-eclampsia and preterm birth were recurrent
(RR 67.69, 95% CI 56.82 to 80.63) (Table 3.2). The risk of subsequent preterm birth
remained elevated when first pregnancy was term and pre-eclampsia was recurrent
(RR 11.94, 95% CI 9.60 to 14.86). There was insufficient evidence to suggest that first
preterm birth complicated by pre-eclampsia confers greater risk on subsequent
complicated preterm birth without recurrent pre-eclampsia (RR 3.67, 95% CI 2.49 to
5.42), than an uncomplicated preterm birth (RR 3.70, 95% CI 3.21 to 4.27).
Corresponding e-values for associations that involved either recurrence of pre-
eclampsia or recurrence of preterm birth were high (> 6). In the absence of recurrence
of pre-eclampsia or preterm birth, smaller associations were observed. Strong
associations were also observed between placental abruption in first term pregnancy
and subsequent preterm birth (RR 11.79, 95% CI 4.37 to 31.83) when placental
abruption was recurrent. When the first preterm birth was complicated by placental
abruption, the risk of a subsequent preterm birth remained elevated when placental
abruption was recurrent (RR 10.47, 95% CI 3.37 to 32.51) and when the subsequent
pregnancy was complicated without recurrent placental abruption (RR 10.80, 95% ClI
6.69 to 18.00). Corresponding e-values for the associations of the recurrence of
placental abruption and preterm birth were high (>20). There was a weak association
between first term pregnancy with placental abruption and subsequent complicated
preterm birth without recurrent placental abruption (RR 1.35, 95% CI 0.34 to 5.37).
There was no association between first term birth with placental abruption and the
subsequent risk of uncomplicated preterm birth. Corresponding e-values were low (<2)

with confidence limits of 1.
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Table 3.2 Relative risk and assessment of unmeasured confounding in the association between complications in first pregnancy and preterm

1% pregnancy

Preterm birth with no

complications?

2"4 pregnancy

Complicated preterm birth including
primary complication?

Complicated preterm birth
excluding primary complication?®

Complication status

Term no complication

Pre-eclampsia:
Term®

Preterm’

Placental abruption:

Terme®

Pretermf

Small —for-

gestational age:

Termé®

Pretermf

Perinatal death:

Chapter Three

Adjusted* RR
(95% ClI)

Reference®

1.22 (1.05, 1.41)
3.70 (3.21, 4.27)

1.00 (0.51, 1.98)
5.40 (4.16, 7.01)

1.62 (1.42, 1.84)
3.66 (2.86, 4.69)

E-value® for RR
(lower 95% CI°)

Reference®

1.73 (1.29)
6.87 (5.58)

1.04 (1)
10.27 (7.78)

2.62 (2.20)
6.78 (5.16)

Adjusted* RR

(95% CI)

Reference?

11.87 (9.52, 14.79)
64.04 (53.58, 76.55)

11.79 (4.37, 31.83)
10.47 (3.37, 32.51)

4.30 (2.78, 6.66)

32.68 (19.87, 53.74)

E-value® for RR
(lower 95% CI°)

Reference?

23.22 (18.53)
127.58 (106.65)

23.08 (8.20)
20.43 (6.20)

8.07 (5.00)
64.86 (39.24)
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Adjusted* RR
(95% ClI)

Referenced

1.75 (1.29, 2.38)
3.67 (2.49, 5.42)

1.35 (0.34, 5.37)

10.80 (6.49,
18.00)

2.39 (1.83, 3.11)

9.69 (6.60, 14.25)

E-value® for RR
(lower 95% CI°)

Referenced

2.89 (1.89)
6.80 (4.41)

2.03 (1)
21.10 (12.45)

4.21 (3.06)
18.87 (12.67)



Terme 3.00 (2.22, 4.05) 5.45 (3.87) 1.29 (0.32, 5.17) 1.90 (1) 2.80 (0.91, 8.61)  5.04 (1)

Preterm' 4.22 (3.61, 4.93) 7.91 (6.68) 5.23 (3.36, 8.14) 9.93 (6.17) 12.72 (8.90, 24.93(17.28)
18.18)

acomplications included are pre-eclampsia, placental abruption, small-for-gestational age and perinatal death; ® The e-values for the effect
estimates are the minimum strength of association on the risk ratio scale that an unmeasured confounder would need to have with both the
exposure and outcome to fully explain away the association between preterm birth in first pregnancy and complications in the second term
pregnancy; ¢ The e-values for the limit of the 95% confidence interval (Cl) closest to the null denote the minimum strength of association on the
risk ratio scale that an unmeasured confounder would need to have to shift the confidence interval to include the null value; ¢ uncomplicated
term birth; ©term birth with primary complication; " preterm birth with primary complication

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth, inter-
pregnancy interval, and change of father between first and second birth.
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The associations were strong when small-for-gestational age and preterm birth were
recurrent (RR 32.68, 95% CI 19.87 to 53.74) compared to a first term uncomplicated
pregnancy. Preterm birth in first pregnancy confers a greater risk on the subsequent
risk of complicated preterm birth when small-for-gestational was not recurrent (RR
9.69, CI, 6.60 to 14.25), in contrast to the subsequent risk of preterm birth without
complications (RR 3.6, 95% CI 2.86 to 4.69). Corresponding e-values for associations
that involved recurrence of small-for-gestational age were high (> 6). In the absence
of recurrence of preterm birth or small-for-gestational age, smaller associations were
observed, with first term pregnancy complicated by small-for-gestational age weakly
associated with subsequent uncomplicated preterm birth (RR 1.62, 95% CI 1.42 to
1.84) with a corresponding e-value (2.20). There was a stronger association between
a first preterm birth with perinatal death and subsequent complication preterm birth
without recurrent perinatal death (RR 12.72, CI 8.90 to 18.18) compared to when the
subsequent pregnancy was uncomplicated (RR 4.22, 95% CI 3.62 to 4.93) and when
perinatal death was recurrent (RR 5.34, Cl 3.36 to 8.14). Conversely, the risk of
subsequent preterm birth was higher after a first term birth with perinatal death (RR
3.00, 95% CI 2.22 to 4.05), compared to when perinatal death was recurrent (RR 1.29,
95% CI1 0.32 to 5.17). The corresponding e-values were 5.45 and 1.90 respectively.

Association between preterm first birth and complications at second birth

When we compared women whose first pregnancy ended in preterm birth to those
with a first term birth, there was an increased risk of each complication in second
pregnancy. This was particularly true for pre-eclampsia, for which we observed a
three-fold higher risk after preterm birth in the first pregnancy (Table 3.3). Generally,
there was very slight attenuation after adjustment for known confounders in models

when preterm birth was considered the exposure or the outcome of interest.
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Table 3.3 Relative risk and assessment of unmeasured confounding in the association between preterm birth in first pregnancy and complications

in the second term pregnancy

1S'[
pregnancy

Pre-eclampsia

2"d pregnancy

Placental abruption

Small-for-gestational age

Perinatal death

Adjusted*  E-value?®for
RR RR (lower

b
@swcy — 95%CP)

Term birth Reference Reference

Preterm 3.58 6.62 (5.69)
birth (3.12 to
4.11)

Adjusted*
RR

(95% Cl)

Reference

1.71

(1.03 to
2.83)

E-value? for
RR (lower
95% CIb)

Reference

2.81 (1.22)

Adjusted*
RR

(95% Cl)

Reference

1.85
(1.60 to 2.15)

E-value? for
RR (lower 95%
CIb)

Reference

3.11 (2.57)

Adjusted* E-value? for

RR RR

(95% CI) (lower 95%
CIP)

Reference Reference

1.02 1.14 (1)

(0.53to

1.93)

2The e-values for the effect estimates are the minimum strength of association on the risk ratio scale that an unmeasured confounder would
need to have with both the exposure and outcome to fully explain away the association between preterm birth in first pregnancy and
complications in the second term pregnancy; ® The e-values for the limit of the 95% confidence interval (Cl) closest to the null denote the
minimum strength of association on the risk ratio scale that an unmeasured confounder would need to have to shift the confidence interval to

include the null value.

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth, inter-
pregnancy interval, and change of father between first and second birth.
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Simulation results

After the simulated confounder of obesity was included, each model was iterated 50
times until convergence was achieved at the third decimal point. When the outcome
was uncomplicated preterm birth, there was no difference in relative risks from any of
the complications in first pregnancy. There were marginal differences in the relative
risks after the simulated confounder was included when the outcome was a
subsequent preterm birth complicated with the recurrent pregnancy complication.
Overall, the simulation demonstrated that the inclusion of the confounder obesity did

not alter the relative risks.

3.5Discussion

This study examined the role of confounding in the association between pregnancy
complications across two subsequent pregnancies. Women with previous pre-
eclampsia, small-for-gestational age or perinatal death in first pregnancy were at
increased risk for a subsequent preterm birth, regardless of whether their first birth
was term or preterm. Placental abruption was the exception with an increased risk of
uncomplicated subsequent preterm birth observed only after a first preterm birth.
Moreover, preterm birth in first pregnancy was associated with an increased risk of
complications in second pregnancy, excluding perinatal death. We were able to
demonstrate that substantial confounding would be required to explain away the
strong associations observed. Maternal obesity was simulated, demonstrating that the
inclusion of a single well-established confounder is not enough to weaken the strong
observed associations.

The findings that pre-eclampsia, small-for-gestational age, and perinatal death in a
first pregnancy, at either term or preterm, present an increased risk of a subsequent
preterm birth support the hypothesis of shared underlying mechanisms. This is
reinforced by the findings that preterm birth in the first pregnancy increased the risk of
pre-eclampsia, placental abruption, and small-for-gestational age in the next
pregnancy. We found that placental abruption at first term birth was not a risk for a
subsequent uncomplicated preterm birth. Moreover, the increased risk of subsequent
preterm birth with a recurrence of placental abruption was higher after a term birth
compared to preterm. These findings may result from situations in which an elective
delivery at term occurs before spontaneous labour, leading to uncertainty regarding

the true recurrence rate of placental abruption.??2 The strong effect for the associations
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between recurrent pre-eclampsia, placental abruption, and small-for-gestational age
on preterm birth suggests the presence of strong maternal specific factors that persist
from pregnancy to pregnancy. The exception was perinatal death, for which we
observed higher risks for a subsequent preterm birth when the complication was not
recurrent after a first term birth. This may in part be due to the variability in the influence
of placental causes for stillbirth??> and neonatal death??* compared to the other
complications, and increased health surveillance after the occurrence of said
complication in first pregnancy.??®> Adjustment for known confounders had almost no
influence on the point estimates of associations between pregnancy complications
suggesting the true causal mechanisms are a complex interplay between

environmental and biological factors.3?

To explore the sensitivity of our results to confounding, we applied e-values, a
relatively new method to quantify the minimum strength of association an unmeasured
confounder would need to explain away the exposure-outcome relation.*?® Interpreting
the e-value within the context of our effect sizes, the large e-values suggest large
unmeasured confounder(s) are required to explain away the strength of the
association between complications of pregnancy. In particular, an unmeasured
confounder would have to be extremely high to explain the association between pre-
eclampsia in a preterm first birth and a subsequent preterm birth with recurring pre-
eclampsia (e-value 127.58). Although it is improbable that a single unmeasured
variable could confound the strong associations evidenced between pregnancy
complications and subsequent preterm birth, we included a simulated variable of
maternal obesity as a sensitivity analysis. As expected, simulated maternal obesity did
not influence the effect size, supporting previous observations that the shared and
unknown underlying mechanisms are a possible interaction between complex

biological and environmental exposures. 32

Comparison to other studies

Our study is the first to report the results of associations between pregnancy
complications and subsequent risk of preterm birth for first births at term and preterm.
Although direct comparison to other studies is constrained by differences between
exposure and reference groups, several past studies support our findings.125 196-19,
202,204, 206, 209, 226-229 There is consistent evidence for the recurrence of preterm birth,1%-

198 most notably when the previous preterm birth occurred with early onset pre-
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eclampsia.?%? 227 One study reported an increased risk for recurrent placental
abruption after a term first birth compared to preterm birth,??® another study reported
almost three-fold higher odds of preterm birth (compared to a term birth) after a small-
for-gestational preterm birth,??6 and a study reported that previous all-cause infant
death (up to 365 days post-birth) was associated with a two-fold increase in the risk of
a subsequent preterm birth.??° Only two studies considered the reverse associations
between a first preterm birth and complications,?%* 20° with one study reporting an
increased risk of term pre-eclampsia in second pregnancy?°4 and the other reporting
a higher risk of stillbirth, after preterm birth.2%° The findings of these studies support
the premise of shared underlying mechanisms between pregnancy complications and

preterm birth.

More recently, researchers have turned their attention to the subsequent risk of
preterm birth from complications when the first birth is term.1%-1%8 Finding similar
results to ours, a study from Norway?°! reported a two-fold increase in the risk of
preterm birth when the previous births were term with at least one complication (pre-
eclampsia, placental abruption, small-for-gestational age, stillbirth or neonatal
mortality) compared to an uncomplicated first term birth. Consistent with our study, the
authors also found little evidence for confounding by known demographic and lifestyle
factors.?%! Findings from another study provide further support that complications of
pre-eclampsia, small-for-gestational age, and perinatal mortality at first term birth
increased the subsequent risk of preterm birth.2°2 A study from the United States
reported similar associations between subsequent preterm birth for first term
complications (small-for-gestational age, placental abruption and neonatal death);
however, a protective association was observed between term births with pre-
eclampsia and subsequent preterm birth.2%° An alternative explanation for these
results is that the adjustment for placental abruption and small-for-gestational age
(potential mediators) introduced collider bias.?*® The findings of these studies add
weight to the hypothesis that there are shared underlying causal mechanisms

influencing outcomes even when the first birth is term.

Strengths and limitations
This study provided a comprehensive analysis considering multiple scenarios of the
interactions between pregnancy complications. A strength was the application of e-

values to measure the strength of potential confounding required to explain results. An
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additional strength of this study was that pregnancy complications for this analysis
were drawn from population-based birth data, linking each woman across two
pregnancies, enabling the study of relatively rare outcomes with precision. Inevitably,
as with most observational studies, these data may also be prone to a degree of
misclassification. Furthermore, our findings are not necessarily generalisable to higher
order parities than those included in our cohort, although it is uncertain as to why
underlying causal pathways would differ. Another limitation is that we were also not
able to include women who gave birth to their first child or subsequent child out of the

state.

3.6Conclusion

The evidence for shared casual risk factors between pregnancy complications and
preterm birth in this study is strong. The high e-values indicate that substantial
confounding would be needed to explain away these associations. However, these
findings alone do not provide direct evidence that the shared risk factors are of
placental origin or biological origin. Further research is required to elucidate specific
pathways that explain these associations whether genetic or pathologic, behavioural

or other recurrent mechanisms.
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Chapter Four: Bias due to left truncation

This chapter contributed to Aim 2 of the thesis and met Objective 2.2.

Aim 2: To design, implement and analyse a series of simulation studies to quantify
the magnitude and direction of bias in perinatal outcomes to address issues from
methodological challenges that may lead to spurious inference on associations

between pregnancy exposures and adverse birth outcomes.

Objective 2.2: To quantify the influence bias resulting from the use of left-truncated
datasets (birth registries) in which early pregnhancy losses prior to 20 gestational

weeks are excluded.

The content of this chapter is covered by Publication Three. This chapter quantified
the magnitude and influence of bias due the use of left truncated birth data in the
association between advancing maternal age and stillbirth in a simulation study. This
simulation study is reproducible with published code and a full disclosure of the

informing data parameters.

The version that appears in this thesis is of an article that has been through peer-
review with Scientific Reports but has not been through the copyediting process. The
contribution of co-authors, Professor Gavin Pereira, Dr Gizachew A. Tessema and Dr
Amanuel T. Gebremedhin are detailed in the author attribution statements in Appendix
A.

Dunne J, Tessema GA, Gebremedhin AT, Pereira G. Bias in the association between
advanced maternal age and stillbirth using left truncated data. Scientific Reports
2022;12:19214. doi:10.1038/s41598-022-23719-3

A copy of this publication has been provided in Appendix C. Supplementary material

for this chapter are available in Appendix F.
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4.1 Abstract

The left-truncation of birth datasets to those that survive past a specified gestational
age (usually 20 gestational weeks) leads to biased exposure-outcome associations in
perinatal epidemiology. Here, the exposure itself may impact selection into the study.
Collider-stratification bias results when the cause of this restriction (early pregnancy
loss) is influenced by the exposure and an unmeasured confounder. The aim of this
study is to estimate the magnitude of bias resulting from left truncated data in the
association between advanced maternal age and stillbirth. We simulated data for the
causal pathway under a collider-stratification mechanism. Using an original birth
cohort and a range of plausible values we simulated parameters for the prevalence of
early pregnancy loss, and unmeasured confounder U and odds ratios for selection
effects (maternal age — early pregnancy loss, U — pregnancy loss, U — stillbirth).
We compared the simulation scenarios to the observed birth cohort that was truncated
to pregnancies that survived beyond 20 gestational weeks. We found evidence of
marginal downward bias, which was most prominent for women aged 40+ years.
Overall, we conclude that the magnitude of bias due to left truncation is minimal in the

association between advanced maternal age and stillbirth.

4.2Introduction

It is considered that women with advanced maternal age (>35 years of age) have an
increased risk of stillbirth.> However, the magnitude of this increased risk is unclear
when using birth data that is restricted to pregnancies that survive beyond a specified
gestational week,®’ as the exposure may impact selection into the study and thus mask
the true observation of outcomes. In high-income countries, selection into a study is
generally restricted to pregnancies that survive beyond 20 gestational weeks.%® Thus,
the use of left truncated birth registries and cohort studies that recruit women during a
specific period of pregnancy, will produce biased estimates in perinatal exposure-
outcome associations. The mechanism that leads to these biased associations is
collider stratification bias. This occurs as conditioning on a collider, a common effect
of an exposure and an outcome, induces a correlation between the exposure and a
confounder.?3! As the confounder also affects the outcome, conditioning on the collider
leads to a specious association that is either strengthened or reversed between the
exposure and outcome.?3? The most well-known example of collider-stratification bias

in perinatal epidemiology is the birth-weight paradox.2'? In this example, stratifying on
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birth weight produces a cross-over of the birth-weight mortality curves, such that low
birth weight babies with smoking mothers have a lower mortality rates than low birth
weight babies with non-smoking mothers.1%® However, the collider-stratification
mechanism that underpins bias resulting from left truncated data is more difficult to
address analytically as selection is based on an attrition processes that we cannot

observe in data, i.e. early pregnancy loss.

With estimates of 2,500 early pregnancy losses per 10,000 implantations,®” an
extensive cohort attrition has already occurred prior to pregnancy being established
due to spontaneous and induced abortion. The exact aetiology of spontaneous
abortion remains unclear, although it is widely acknowledged that they result from
interaction between hormonal, immunology, genetic and environmental factors.1”-20
Parental age is considered to be a strong risk factor for early pregnancy loss,*’: 233 with
the risk of early pregnancy loss slightly elevated in younger mothers before rising
sharply in older mothers (235 years).1” The continuing trend of advanced maternal age
and high rates of stillbirth in high-income countries have led many researchers to
examine the association between the exposure of advanced maternal age and the
outcome of stillbirth, defined as fetal death at 20 gestational weeks or more. Advancing
maternal age (235 years) has been identified is an independent risk factor for stillbirth,>
with the increased risk of stillbirth not accounted for by increased prevalence of other
maternal comorbities.?® In studies that use left truncated datasets (i.e. missing
pregnancies prior to 20 gestational weeks), the differential impact of maternal age on
early pregnancy loss will lead to biased estimates in the relationship between
advanced maternal age and stillbirth. Whether the bias is of concern will depend on
its magnitude and direction, which remain unclear. Because early pregnancy losses
are unobserved, simulations are a useful tool for exploring the influence of bias
resulting from such left truncated data on the effects of exposure prior to pregnancy
on birth outcomes.?3* In this simulation study, we aimed to quantify the influence of
bias due to left truncation and selection in utero on the association between the
exposure of advancing maternal age and the risk of stillbirth in a population

representative of high-income countries.
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4.3Methods

The motivation for this study was to quantify the influence of bias due to left truncated
birth data in the association between advanced maternal age at conception and
stillbirth. Using data from the Midwives Notification Systems (MNS) in Western
Australia, we compared effect estimates with those from simulated models in which
we adjusted for the influence of selection bias under a range of plausible scenarios.
For this study, we considered early pregnancy loss as fetal death prior to 20
gestational weeks; and stillbirth when fetal deaths occurred at 20 gestational weeks

or later.212

Observed cohort

The observed cohort consisted of women who had a singleton birth in Western
Australia between 1998 and 2015 (births=483,466), derived from the MNS.?'? This de-
identified and validated dataset contains all births in Western Australia with either a
gestational length 220 gestational weeks or a birth weight > 400 grams.?? We cross-
referenced the MNS with Death Registrations obtained from the WA Registry of Births,
Deaths and Marriages using a linkage key provided by the Data Linkage Branch of the
WA Department of Health.?!3 Hospitalisation records were identified from the Hospital
Morbidity Data Collection for WA using the Australian Modification of International
Classification of Diseases (ICD-9:779.9; ICD-10:P45 and P96.9) coded diagnostic
information for stillbirth.2** We categorised maternal age into five- year age groups
(20-24, 25-29, 30-34, 35-39 and 40+ years). As the primary interest of this study is the
biological impact of advancing age on stillbirth, women younger than 20 years were

excluded in both the observed cohort and simulation study.

Bias structure

The causal diagram (Figure 4.1) illustrates the bias resulting from restriction to births
that survive past 20 gestational weeks. Here, the exposure A (maternal age, a proxy
for aging) affects early pregnancy loss L. An unmeasured confounder U is causally
associated with increased risk of pregnancy loss L and the outcome of stillbirth S. Both
the exposure A and the unmeasured confounder U independently affect early
pregnancy loss L, which is a collider. Thus, by excluding pregnancies that end in loss
prior to 20 weeks gestation (L=1), or conditioning on L, a back-door pathway is opened

from maternal age to stillbirth through the pregnancy loss L and the unknown
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confounder U. This bias is commonly known as collider-stratification bias. An
assumption implicit in the causal diagram is that maternal age causes early pregnancy
loss, however, after attaining a gestational length close to viability (here 20 gestational

weeks), maternal age has no direct influence on risk of stillbirth.

Figure 4.1 Directed acyclic graph of the structure of collider-stratification bias. The
exposure maternal age A affects early pregnancy loss L, which is also affected by
the independent risk factor U, inducing a back-door pathway between exposure A
and the outcome of stillbirth S.

Simulation

To quantify the influence of the collider-stratification bias on the association between
advanced maternal age and stillbirth, we simulated a population of 500,000
conceptions which is approximately the number of births in the observed cohort. We
generated data for the maternal age exposure A, unmeasured confounder U, early
pregnancy loss L and the outcome of stillbirth S. Maternal age variable A was normally
distributed, with the mean and standard deviation derived from the Gaussian
distribution of age in the observed cohort. As per the observed cohort, we categorised
maternal age into five-year age groups. The early pregnancy loss variable L, the
unmeasured variable U and the stillbirth variable S were binary variables. The
prevalence of L (11.) was set to 12.8%,7 20%23° and 30%2%¢ to reflect a realistic range
of early pregnancy loss as reported in high-income countries. The baseline prevalence
of S was set to 0.7% to reflect the incidence of stillbirth in the observed cohort. We set
the prevalence of U (my) to 0.15, 0.30 and 0.50, to reflect a range of plausible
scenarios.

The overall causal pathway [A -> L <- U -> S] that represents the collider-stratification

bias was broken down to smaller pathways [A-> L, U ->L, U ->S], which we deemed
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‘selection effects’. All selection effects were modelled in terms of odds ratios (ORs) so
that simulation probabilities were bounded between 0 and 1. For the selection effect
A -> L, we assigned each individual an underlying risk of early pregnancy loss based
on their biological age at conception, which was drawn from a Bernoulli model based
on results from a 2019 Norwegian study?’ of the effects of maternal age on early
pregnancy loss. The Norwegian study!’ reported the lowest risk of miscarriage among
women aged 25-29 (9.8%), with an absolute lowest risk at age 27 (9.5%) and the
highest risk at age 45 (53.6%). As we were unable to ascertain the increasing risk of
early pregnancy loss for women aged older than 45 years, we limited our simulation
study to women aged between 20 and 45 years. In our Bernoulli model we used non-
parametric regression to capture the nonlinearity of the association between the
exposure and early pregnancy loss using LOESS (locally weighted scatterplot

smoothing)?3” (Figure 4.2).
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Figure 4.2 Risk of early pregnancy loss according to maternal age with locally
weighted scatterplot smoothing curve.

The probability of early pregnancy loss for each conception i (assuming a monotonic

risk by maternal age) was estimated using the equation below:

exp(By + B1A; + BoU)
1+exp(Bo+ BiA + BoU)

P(L;) =

Selection effects for U -> L and U -> S were set to an equal OR from a range of 1.5,
2.0, 2.5 and 3.0. To isolate the bias mechanism we firstly assumed a true null effect
of maternal age on stillbirth (i.e. there is no direct causal effect of A -> S). We further
considered a scenario in which there was an interaction between the unmeasured
confounder U and maternal age A on early pregnancy loss L in conjunction with the
collider-stratification mechanism. Often called depletion of susceptibles, the
interaction of A*U increases the prevalence of early pregnancy loss for those that are
exposed to both the exposure A and U (Appendix F). Selection effects for A*U were
set to an equal OR as with the selection effects for U -> L and U -> S, with a range set
to 1.5, 2.0, 2.5 and 3.0. To enable a direct comparison with the observed cohort, we
then considered a third scenario in which we assumed a true effect of maternal age
on stillbirth A -> S (Appendix F). Here each individual was assigned a probability of
stillbirth drawn from a Bernoulli model based on the risk of stillbirth from their biological
age of the observed cohort at conception (Appendix F). To capture the nonlinearity of
this direct association between the exposure maternal age A and the outcome of
stillbirth S we conducted non-parametric regression with LOESS.?3’

Analysis

We estimated the OR for the association between the exposure and outcome in the
observed cohort and the simulated populations. We performed logistic regression of
stillbirth with maternal age as the exposure to obtain the OR, which approximates the
risk ratio because the outcome of stillbirth is rare in Western Australia.?*® We
exponentiated the mean of the point estimates obtained from 100 iterations for each
scenario to obtain ORasjL=0 , Which represents the OR for the effect of A on S for

pregnancies in which early pregnancy loss did not occur (L=0). We then derived the
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percentile-based 95% simulation intervals (SlI) of the OR mean using 500 bootstrap
replications.

We initially examined the collider-stratification bias under a range of plausible
assumptions by varying the selection effects (ORuL and ORuys) and the prevalence of
both L and U as described above. In the first scenario, the simulation is conducted
under the null hypothesis of no association between advancing maternal age A with
the exposure of stillbirth S. In the second scenario we simulated a collider-stratification
mechanism with an association between the exposure A and the unmeasured
confounder U. As in the first scenario, we conducted the simulation under a hypothesis
of no association between advancing maternal age A and stillbirth S. In both scenario
one and scenario two we assumed that there is no causal effect, and therefore the
value of ORas|L.=0 Was set to 1. Consequently, we interpreted the results such that the

greater the departure of ORas|L=0 from 1 the greater the magnitude of the bias.

For the third scenario in which we assumed a true effect of A -> S, we were able to
undertake a direct comparison with the observed cohort. For ORas|L=0 in this scenario,
we simulated collider-stratification mechanism without an association between
exposure A and the unmeasured confounder U and assumed a true effect of the
exposure A on the outcome stillbirth S. Here the greater difference between ORAas|L=0
and ORas (the observed cohort without the simulated bias), the greater the magnitude
of bias. Furthermore, to eliminate possible model misspecification due to the
categorisation of maternal age, we undertook a sensitivity analysis in which we
simulated the true null association between the exposure maternal age A and the
outcome of stillbirth S with input parameters 1. =0.20, Tmy=0.15, ORuy.=1.5, ORys=1.5
for each whole year of maternal age (Appendix F). All data analyses and simulations

were conducted using R v4.0.5.239

4 .4Results

Overall, the bias was minimal under a true null association between the exposure
maternal age A and the outcome of stillbirth S. In scenario one, we considered a
collider-stratification bias where the exposure maternal age A and the unmeasured
confounder U independently effected early pregnancy loss (Appendix F). Here the

magnitude of bias was generally weak for women aged 35-39 years, with departure
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from 1 not evidenced until the selection effects (ORuL and ORus) were set to a
minimum of 2.5 and regardless of the values of . and 1Ty. For example, the ORAas|L=0
for women aged 35-39 years was 0.98 (Sl 0.97 to 0.99) with input parameters of 1.
=0.128, 1uy=0.30, ORy=3.0, ORuys=3.0. For women aged 40+ years there was
evidence of increasing bias when the magnitudes of the selection effects increased
(ORuL and ORus) regardless of the values of . and my (Figure 4.3). The largest
departure from the null for women aged 40+ years was evident with input parameters
of m.=0.128, my=0.30, ORu.=3.0, ORys=3.0 (ORas|L.=0 0.92 SI 0.90 to 0.94).
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Figure 4.3 Collider-stratification bias of ORas|.=o -1 under the true null effect of
maternal age on stillbirth for women aged 40+ years, where the bias represents the
departure from the null. Average odds ratio (ORas|L=0) with Tm.= 0.20 and with varying
input parameters for 1y (0.15, 0.30, 0.50) and the selection effects ORyL and ORuys
(1.5, 2.0, 2.5, 3.0). Each scenario was iterated 100 times.

In the second scenario, when we considered the collider-stratification mechanism with
an interaction between the exposure A and the unmeasured confounder U, we found
a greater departure from the null for women aged 40+ compared to scenario one. In
this scenario, we also found that the magnitude of the bias increased with increasing
values of . and Ty (Figure 4.4). The strongest evidence of bias was evident in women
aged 40+ years with m_=0.30, my=0.30, ORy =3.0, ORys=3.0 (OR 0.87 Sl 0.84 to
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0.89) (Appendix F). For women aged 35-39 years, there no evidence of bias when
the selection effects (ORuL, ORus, ORau) were set to 1.5 and 2.0, regardless of the
values of 1r. and 11y, The greatest departure from the null was evidenced (ORAas|L=0
0.98 S1 0.97 to 0.99) when 1. =0.30, ORyL=3.0, ORus=3.0, ORAu=3.0 and 11y was set
to either 0.15, 0.30 or 0.50.
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Figure 4.4 Collider-stratification bias of ORas|.=o -1 under the true null effect of
maternal age on stillbirth for women aged 40+ years with an interaction between
exposure A and the unmeasured confounder U, where the bias represents the
departure from the null. Average odds ratio (ORas|L=0 ) with T1.=0.30 and with varying
input parameters for 1y (0.15, 0.30, 0.50) and the selection effects (ORuL, ORus, ORAu
). Each scenario was iterated 100 times.

In the observed cohort, the association between maternal age and stillbirth presented
as a U-shape, with the lowest risk for women aged 25-29 (OR 0.98 95% CI 0.90 to
1.17). The ORas for women aged 35-39 years was 1.23 (95% CI 1.11 to 1.37),
increasing to 1.74 (95% CI 1.42 to 2.12) for women aged 40+. In scenario three we
simulated the biased collider-stratification pathway (without interaction between the
exposure A and the unmeasured confounder U) with a direct effect of the exposure A
on the outcome S (with data drawn from the observed cohort). We found evidence of
minimal downward bias when we compared the results from this simulation with the

observed cohort in which we assumed there was no influence from unmeasured
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confounders nor selection bias (Appendix F). Women aged 35-39 years had an ORas
of 1.23 (95% CI 1.11 to 1.37) in the observed cohort which was only marginally higher
than the average ORasii=0 of 1.21 in the simulated scenario three. The greater
departure from the results of the observed cohort for women aged 35-39 years
(ORas|L=01.18 SI 1.17 to 1.20) was evident with input parameters of 1r.=0.20, 1y=0.30,
ORuyL=3.0, ORuys=3.0. In the observed cohort, women aged 40+ years had an ORas of
1.74 (95% CI 1.42 to 2.12) and we found a greater departure from the observed cohort
in general (Figure 4.5). For example, with input parameters of parameters .= 0.20,
1u=0.30, ORuL=3.0, ORus=3.0 the ORas|.=0 for women aged 40+ years was 1.58 (Sl
1.56 to 1.61).

ny=0.15 11,=0.30 11,=0.50

ORs;1=0 . .

Selection effects (ORy;, ORysand ORy4y)

Figure 4.5 The upper straight line represents the results of the observed cohort for women
aged 40+ years assuming no influence of an unmeasured confounder or selection bias. The
lower lines represent the collider-stratification bias of ORas-0 assuming a true effect of
maternal age on stillbirth for women aged 40+ years without an interaction between exposure
A and the unmeasured confounder U. Average odds ratio with 11.=0.20 and with varying input
parameters for 1y (0.15, 0.30, 0.50) and the selection effects (ORu. and ORys). Each scenario
was iterated 100 times.

When we simulated the true null association between exposure maternal age A and
the outcome of stillbirth S (input parameters .= 0.20, my=0.15, ORy.=1.5, ORus=1.5)
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by each maternal age in the sensitivity analysis, we found that the structure of bias
was similar to when maternal age was categorised by 5-year age groups (Appendix
F).

4.5Discussion

Establishing the magnitude and direction of bias from unobserved early pregnancy
losses on exposure-outcome associations is essential in improving our understanding
of aetiological associations in perinatal epidemiology. In this simulation study, we
guantified the magnitude and direction of bias due to left truncation and selection in
utero on the association between the exposure of advancing maternal age and the risk
of stillbirth. Our findings suggest that the exclusion of early pregnancy loss in perinatal
epidemiological studies likely biases effect estimates downwards. However, we found
that the magnitude of bias was generally marginal, with a maximum ORAas|.=0 of 0.87
for women aged 40+ years when we considered a true null effect of advancing
maternal age on stillbirth. The strength of this bias was primarily dependent on the
selection effects of the unmeasured confounder on the collider of early pregnancy loss
L (ORuL), the exposure of advancing maternal age A (ORau) and the outcome of
stillbirth S (ORus).

Direct comparison to other studies was constrained by differences between exposure-
outcome associations and the structure of the collider-stratification bias; however, the
small magnitude of bias in this study is consistent with other studies that examined the
collider-stratification mechanism for other perinatal outcomes,100 101, 104, 105, 154, 176, 180,
240 such as the smoking-birthweight paradox.190. 101, 112, 154 Qur findings, and those of
others, suggest that the bias resulting from a collider-stratification mechanism would
need to be very strong to produce an association that reverses the observed causal
effects, and that this would primarily occur in scenarios where the effect of the
unmeasured confounder would be quite large. It remains uncertain as to whether it is
plausible that such a large causal effect would remain unknown or unobservable. On
this basis, we limited the selection effects of U (ORuL and ORys) to a realistic range
from 1.5 to an upper limit of 3.0. We found that the stronger the selection effects of U
(ORuL and ORuys), the stronger the magnitude of bias regardless of the prevalence of
early pregnancy loss L or the prevalence of the unmeasured confounder U. Simulation

studies that considered an interaction between an unmeasured confounder and the
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exposure found evidence of a stronger magnitude of bias in comparison to simulations
without an interaction effect.194 195 Often called depletion of susceptibles, this
interaction between the susceptible factor (in our study this would be advancing
maternal age) increases the depletion of early pregnancy loss among those who
experience the unmeasured confounder.%: 241 Although our study showed an
increase in the magnitude of bias when we considered a depletion effect, it was only
evident for women aged 40+ years. One of the benefits of this study was that we could
directly compare the difference between ORasji=o and ORas (the observed cohort
without the simulated bias). Here, we found that the magnitude of downward bias was
negligible for women aged 35-39 years and minimal for women aged 40+. Overall, our
findings indicate that the influence of bias due to left truncation and selection in utero
is not sufficient to have a substantial effect on the strength of the association between

advancing maternal age and stillbirth.

As simulation studies are only as valid as their assumptions, we used published
literature and an observed cohort to support our assumptions of the magnitude of the
underlying causal effects when quantifying the influence of bias in the association
between advancing maternal age and stillbirth. Advancing maternal age has
previously been established as a strong independent risk factor for early pregnancy
loss in the first trimester,'” with risks increasing incrementally after the age of 30 years.
Although the absolute risk of second trimester pregnancy loss is small in comparison
to first semester, there is an incremental increase for women of advancing age.?*?
Using data from a 2019 Norwegian study'’we were able to model this incremental
increase in risk of early pregnancy loss L prior to 20 gestational weeks for each year
of maternal age from 20 to 45 years in our simulations. We accounted for a variety of
early pregnancy loss scenarios from 12.8%'" a mid-range of 20%2%%° and an upper
level of 30%.2%6 As our simulations are hypothetical scenarios in which all conceptions
are selected, it is also likely that induced abortions would present a small competing
risk to stillbirth. However, the Norwegian study,'’ from which our lowest prevalence
(12.8%) of early pregnancy loss is derived, did correct for induced abortions, finding
very little difference in the overall estimate of miscarriage.'’” Although the absolute risk
of stillbirth is low in high-income countries, it has not declined in recent decades
despite advances in perinatal and obstetric care.?® For women aged 40+ years, the

risk of stillbirth increases earlier in pregnancy than for younger women, with a women
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aged 40+ having a greater risk of stillbirth at 39 gestational weeks compared to a
younger women at 41 weeks.?*? Using data from our large observed cohort in Western
Australia, we built models that accounted for the differential impact of the exposure
advancing age A on the outcome of stillbirth S in a high-income setting. Our careful
definition of our exposure variable advancing maternal age A, accounting for the
differential impact on the early pregnancy loss L and stillbirth S, ensure our simulations

are reflective of real world interactions between variables.

The exact biological mechanism of the higher risk of maternal age remains uncertain,
with many of the potential shared risk factors for early pregnancy loss and stillbirth
unobservable prior to the outcome. Possible suggestions include utero-placental
dysfunction predisposing some women to adverse fetal outcomes including early
pregnancy loss and stillbirth.® Infections can increase risk of early pregnancy loss and
stillbirth, infecting the fetus via the placenta 243 with many infections asymptomatic.
Fetal chromosomal abnormalities are the most common cause of early pregnancy loss
in the first trimester, accounting for 50% of non-recurrent pregnancy losses.?*4 245
There is an increased chromosomal anomaly rate (approx. 20%) in women aged 35+
years compared to younger women in sporadic and recurrent pregnancy losses.?46
Here, chromosomal anomalies would be an ideal candidate for the unobserved
variable in our second simulation scenario. Increasing advanced age predisposes
mothers to increasing risk of chromosomal anomalies that increase the risk of early
pregnancy loss. Notwithstanding the collider-stratification mechanism, unmeasured
confounders can lead to biased exposure-outcome effect estimates in either direction.
Making assumptions about such confounders that are unobservable or unknown is
challenging for researchers. Given the existence of causal factors that are not
measured or remain to be discovered, researchers will continue to be required to make
reasonable assumptions in relation to the strength and role of such unobservable

confounders in the causal pathway, as we have done in our simulation study.

Quite often, the influence of collider-stratification bias is only examined when
unexpected associations are observed in epidemiological studies.100 10, 105, 154, 176, 240
As the use of left truncated data is ubiquitous in perinatal in epidemiology, due to
restriction of studies until a time when pregnancy is either observed or deemed viable,

the quantification of bias should be no less important in studies when an expected
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association is observed. Nonetheless, there are some caveats for interpreting our
simulation results. The estimates in our simulation study are based on simple
scenarios with all the variables having a binary response. We further assumed that
there are no other forms of bias such as misclassification, nor the effects of multiple
unmeasured confounders. There may also be a mediator variable, such as a
pregnancy disease, that mitigates the association between advancing maternal age
and stillbirth. An additional limitation of this study on the effect of ageing on stillbirth is
that we did not consider selection bias prior to conception; that is women of advancing

maternal age have a higher risk of infertility.?*’

In this simulation study, we have quantified the magnitude and influence of bias from
left-truncated perinatal data caused by studying cases prevalent from a specified
gestation age, rather than including all cases in a conception or pregnancy cohort. We
know that conditioning on the collider (early pregnancy loss prior to 20 weeks
gestational weeks) will produce biased estimated in perinatal exposure-outcome
associations. Using realistic assumptions, we found the magnitude of bias was
generally minimal when using data that is left truncated due to early pregnancy loss
on the association between the exposure of advancing maternal age and the outcome
of stillbirth. When we considered a true association between the exposure and
outcome, we observed a small downward bias which was stronger for women aged
40+ years. In our specific research question, in which the exposure is advancing
maternal age, our findings indicated that the influence of bias due to selection in utero
(and thereby left truncation) is not sufficient to have a substantial effect on the
association with stillbirth. That is not to say that other researchers, with a different
research question, would not find stronger evidence of bias when using left truncated
birth data. However, as we demonstrated in this simulation, the strength of the bias is
driven primarily by the prevalence and strength of the unmeasured confounder U
rather than selection in utero. Although it is unlikely that such large unmeasured
confounders exist, researcher should consider the influence of collider-stratification

bias when using left-truncated data within the context of their own studies.
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Chapter Five: Bias in mediated associations

This chapter contributed to Aim 2 of the thesis and met Objective 2.3.

Aim 2: To design, implement and analyse a series of simulation studies to quantify
the magnitude and direction of bias in perinatal outcomes to address issues from
methodological challenges that may lead to spurious inference on associations

between pregnancy exposures and adverse birth outcomes.

Objective 2.3: To quantify the influence of unmeasured confounding in mediated

associations.

The content of this chapter is covered by Publication Four. This study quantified the
magnitude and direction of bias from unmeasured confounding in the association
between maternal obesity and caesarean section delivery when mediated by the
pregnancy complication of pre-eclampsia. This study is reproducible with published

code and a full disclosure of the informing data parameters.

The version that appears in this thesis is of an article that has been submitted for peer-
review to Statistics in Medicine. The contribution of co-authors, Professor Gavin
Pereira, Dr Gizachew A. Tessema and Dr Amanuel T. Gebremedhin are detailed in

the author attribution statements in Appendix A.

Supplementary material for this chapter are available in Appendix G.
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5.1Abstract
Background:
Bias from unmeasured confounding has the potential to distort mediated exposure-
outcome associations. The aim of this simulation study was to quantify the influence
of unmeasured confounding in the association between maternal obesity and
caesarean section delivery when mediated by the pregnancy complication of pre-

eclampsia.

Methods:

Bias from unmeasured confounding in the mediated association was simulated under
three common scenarios: 1) mediator-outcome confounding, 2) mediator-outcome
confounding affected by the exposure, and 3) exposure-mediator confounding. Using
an observed cohort from Western Australia, we simulated data for a range of values
for the prevalence of maternal obesity, pre-eclampsia, caesarean section delivery and
an unmeasured confounder U. We also simulated the odds ratio for the selection
effects (maternal obesity — pre-eclampsia, maternal obesity — U, pre-eclampsia —
caesarean section delivery, U — maternal obesity, U — pre-eclampsia, U —
caesarean section delivery) based on realistic assumptions drawn from the observed
cohort and prior published literature.

Results:

Overall, we found the strongest bias due to exposure-mediator confounding, producing
an upward bias that increased with the prevalence and the strength of U. Bias due to
mediator-outcome confounding was minimal; however, when we simulated the
mediator-outcome confounding affected by the exposure, there was evidence of an
upward bias.

Conclusion:

In all three scenarios, the influence of bias from unmeasured confounding association
between maternal obesity and caesarean section when mediated by pre-eclampsia
was dependent on the prevalence and the strength of the unmeasured confounder U.
Bias was strongest in scenarios in which there was an association between maternal

obesity and the unmeasured confounder U.

Chapter Five 79



5.2 Introduction

There is a strong association between maternal obesity and having a caesarean
section delivery.?*8 249 However, it is likely that the true association is mediated by
other pregnancy complications that are on the causal pathway between the exposure
of maternal obesity and the outcome of caesarean section delivery.?%°: 251 Determining
the true association between exposure and outcomes when there are mediating
variables proves a statistical challenge for researchers.”” 252 253 For example, it is
inadvisable to condition on a variable that occurs after the exposure, as that variable
may have been caused by the exposure itself and may mediate the causal pathway
between the exposure and the outcome.®* 220 One solution to address this dilemma is
the use of causal mediation analysis which is based on the assumption of temporal
precedence of the exposure, mediator and the outcome, i.e. exposures precede the
mediator and the mediator precedes the outcome.?°2254 However, one of the main
limitations of causal mediation analysis is the reliance on strict assumptions, including
the assumption of no unmeasured confounding.?52 253. 255 Yet for many associations
from etiological observational studies, there is likely to be at least some degree of
confounding from variables that are unknown to the study or unobserved.” A recent
review?>® of the application of mediation analysis methods used in observational
epidemiological studies (published between 2015 and 2019) found that only three out
of the 174 included studies undertook a sensitivity analysis for unmeasured
confounding when mediation was the primary analysis. This might indicate the
difficulty for researchers to apply methods, such as the application of the potential
outcomes framework,?®” to address the influence of unmeasured confounders in

mediated associations when conducting observational studies.

Although obesity per se is not acknowledged in clinical guidelines as an indication for
caesarean section delivery,?>® the body of research to date has only focused on the
total effect of maternal obesity on caesarean section delivery.248-250, 259-266 That
maternal obesity has been identified as an independent risk factor for caesarean
section deliveries has significant implications due to the associated risks of surgical
and anaesthetic complications.?® After delivery, obese women (body mass index
(BMI) 2 30 kg/m?) are at increased risk of postpartum haemorrhage, post-partum
anaemia, and endometriosis compared to mothers whose BMI is within the normal

range (18.5 to 24.9 kg/m?).258 The risk of wound infection also doubles for every 5-unit
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increase in BMI.2%® Thus, medical experts recommend caution when planning to
undertake a caesarean section delivery in women with a high BMI (= 30 kg/m?).2%¢ A
systematic review and meta-analysis?*® suggested pregnancy complications of pre-
eclampsia, gestational diabetes and macrosomia as possible mediators in the
association between maternal obesity and caesarean section delivery. This simulation
study will investigate the influence of unmeasured confounding on the association
between maternal obesity and caesarean-section delivery when mediated by the
pregnancy complication of pre-eclampsia. Pre-eclampsia is defined as the presence
of hypertension or proteinuria in pregnancy,?® and is strongly associated with maternal

obesity?%” and caesarean section delivery.268

Mediation analysis is a relevant approach to determine the association between
maternal obesity and caesarean section delivery when accounting from the influence
of possible mediators but its value is limited in the presence of unmeasured
confounding in the mediated associations. If unmeasured confounding is present, the
estimates for the direct and indirect (mediated) effects may be over- or under-
estimated. In such cases, where a potential unmeasured confounder affects the
mediator and the outcome (known as mediator-outcome confounding), conditioning
on the mediator (which acts as a collider as it is the common descendant of the
exposure and the unmeasured confounder) can lead to a specious association.?31: 232
However, this phenomenon of collider bias due to unmeasured confounding can also
materialise in the mediator-outcome confounding affected by the exposure and
exposure-mediator confounding. The purpose of this simulation study was to quantify
the magnitude and direction of the influence of unmeasured confounding on the
association between maternal obesity and caesarean section delivery when mediated
by the pregnancy complication of pre-eclampsia, under three common scenarios: 1)
mediator-outcome confounding, 2) mediator-outcome confounding affected by the

exposure, and 3) exposure-mediator confounding.

5.3Methods

We quantified the magnitude and direction of bias resulting from the influence of
unmeasured confounding in the association between the exposure (maternal obesity)
and the outcome (caesarean section delivery) when mediated by a pregnancy

complication (pre-eclampsia) under three scenarios: 1) mediator-outcome
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confounding, 2) mediator-outcome confounding affected by the exposure, and 3)
exposure-mediator confounding. As per the World Health Organization criteria,?®® we

defined the exposure of maternal obesity as a BMI greater than or equal to 30 kg/m?2.

Observed cohort

Our simulation cohort was derived from an observed cohort in Western Australia,
which provided data on maternal obesity, pre-eclampsia and caesarean section
delivery. The observed cohort consisted of women who had a singleton birth between
2012 and 2015 (n =128,167) and was obtained from the Midwives Notification System,
a de-identified and validated dataset containing all births in Western Australia with
either a gestational length = 20 gestational weeks or a birth weight > 400 grams.?%?
The data was limited to collection from the period 2012-2015 as data on maternal
height and maternal weight were unavailable prior to that period. Therefore, we were
only able to directly estimate BMI and thereby derive obesity (BMI =30 kg/m?) for the
period 2012-2015. We identified hospitalisation records from the Hospital Morbidity
Data Collection for West Australia using the Australian Modification of International
Classification of Diseases (pre-eclampsia ICD-9:624.4, 624.5, 624.7 and ICD-10:011,
014; caesarean section delivery ICD-9:669.7 and ICD-10:082) coded diagnostic

information for pre-eclampsia and caesarean section delivery.?#

Bias structure

The causal diagram (Figure 5.1) illustrates the bias mechanisms resulting from the
influence of unmeasured confounding when we adjust for a mediator variable under
the three scenarios: 1) mediator-outcome confounding (Figure 5.1a); 2) mediator-
outcome confounding affected by the exposure (Figure 5.1b); and 3) exposure-
mediator confounding (Figure 5.1c). In Figure 1la, an unmeasured confounder U is
causally associated with increased risk of pre-eclampsia and the outcome of
caesarean section delivery. Here, both maternal obesity exposure and the
unmeasured confounder U independently affect pre-eclampsia, rendering it a collider
variable. Thus, by adjusting for pre-eclampsia in a model, a back-door pathway is
opened from maternal obesity to caesarean section delivery through the mediator pre-
eclampsia and the unknown confounder U. This bias is commonly known as collider
bias and leads to inflation or deflation of the exposure on the outcome due to mediator-

outcome confounding. Figure 5.1b is an extension of Figure 5.1a with an additional

Chapter Five 82



unidirectional association between the exposure and U in conjunction with mediator-
outcome confounding. In Figure 5.1c, there is exposure-mediator confounding when
U affects both the exposure and the mediator. Here there is no direct influence U on
the outcome. In all three scenarios, the influence of the unmeasured confounding U
and the exposure variable on the mediator of pre-eclampsia have led to a collider bias
mechanism, which has the potential to distort the observed effect.

(a) mediator-outcome confounding

. Pre-eclampsia
- 7 N

Maternal Caesarean Section

N
Obesity Delivery
|
U

(b) mediator-outcome confounding affected by the exposure

.
)_,.,_,." N
“-\A .
Maternal Caesarean Section
Obesity " Delivery
e

(c) exposure-mediator confounding
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Figure 5.1 (a-c). Directed acyclic graphs representing the collider bias in the
association between obesity and caesarean section delivery when mediated by the
pregnancy complication of pre-eclampsia and in the presence of an influencing
unmeasured confounding U.

Simulation

To quantify the influence of the collider bias on the mediated association between
maternal obesity and caesarean section delivery, we simulated a population of
128,000 conceptions, which was approximately the number of births in the observed
cohort during the study period (2012-2015). We generated data for the maternal
obesity exposure OB, the mediator pre-eclampsia PE, an unmeasured confounder U,
and the outcome of caesarean section delivery CS. All variables were binary. The
baseline prevalence of maternal obesity OB was derived from a binomial distribution
with a probability of 20% based on the observed cohort. The baseline prevalence of
CS was set to 34.5% to reflect the incidence of caesarean section delivery CS in the
observed cohort. We set the prevalence of U (11y) to 0.15, 0.30 and 0.50, to reflect a

range of potential conditions.

We considered each causal pathway as selection effects [OB — PE, PE —CS, U —
PE, U — CS, OB —U, and U—OB], which were modelled in terms of odds ratios
(ORs), with simulation probabilities bounded between 0 and 1. The selection effects
of [OB — PE, PE —CS] were ORs derived from the observed cohort. Selection effects
[U—-PE, U—-CS, OB —U, and U—OB] for the influence of the unmeasured confounder
U were varied and set to an equal OR of 1.5, 2.5 and 3.5. The probability of PE was

estimated using the formulae:

exp(Bo + B10B + B,U)
1+exp (Bo+ B10B + B,U)

P(PE | OB,U) =
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(Scenario 1)

exp(By + B10B + B,U + B3;0B.U)
1+exp (o + B10B + B,U+ [30B.U)

P(PE | OB,U) =

(Scenario 2 and 3)

As we are only interested in quantifying the influence of bias from unmeasured
confounding (indirect association), we assumed a true null direct effect of maternal
obesity OB on caesarean section delivery CS (i.e. there is no direct causal effect of
OB — CS in the causal diagram in Figure 5.1). The probability formula for the outcome
of caesarean section delivery is presented below for scenarios 1 and 2:

exp (Yo + V1PE + y1U)
1+ exp (yo + 71PE + y1U)

P(CS | PE,U) =
The probability formula for the outcome of caesarean section delivery for scenario 3
is:

exp (Yo + v1PE)
1+ exp (yo + y1PE)

P(CS | PE,U) =

Analysis

We performed logistic regression of caesarean section delivery CS with maternal
obesity OB when mediated by pre-eclampsia PE to obtain ORs in the simulated
population. To obtain the ORs, we exponentiated the mean of the point estimates
obtained from 100 iterations for each scenario, which represent the ORs for the effect
of OB on CS when mediated by pre-eclampsia PE. Percentile-based 95% simulation
intervals (SI) of the OR mean were derived using 500 bootstrap replicates. The collider
bias was examined under a range of plausible assumptions by varying the selection
effects (ORu.re, ORu.cs, ORos.u, ORu.08, and ORog.u) and the prevalence of U as
described above. This simulation models were conducted under the null hypothesis of
no direct causal effect of maternal obesity OB on caesarean section delivery CS. As
such, we interpreted the results that the greater the departure of OR from 1, the greater
the magnitude of the bias. All data analyses and simulations were conducted using R
v4.0.5.2% Reproducible code for each scenario is available in the supplementary

materials.
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5.4Results

Overall, we found that bias resulting from the influence of unmeasured confounding
increased across each of the scenarios from mediator-outcome confounding to
mediator-outcome confounding affected by the exposure, with the strongest bias
results from exposure-mediator confounding. When we simulated mediator-outcome
confounding in the association between maternal obesity and caesarean-section
delivery, we found that the magnitude of bias was generally weak and in an upward
direction (Figure 5.2). For example, the ORcs-ojpe,u Was 1.03 (95% Sl 1.03 to 1.03)
with input parameters of TTu=0.15, ORupe=1.5, ORucs=1.5. The magnitude of the bias
did not increase until input parameters were set to Tu=0.50, ORupPe=3.5, ORucs=3.5,
producing the maximum result of ORocsjpe 1.04 (95% SI 1.04 to 1.05).

n,=0.15 n,=0.30 n,=0.50
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Figure 5.2 Collider bias of OR cs-ojpe,u -1 under the true null effect of maternal obesity
OB on caesarean section delivery CS when mediated by pre-eclampsia PE and the
presence of one unmeasured confounder U (Scenario 1: mediator-outcome
confounding). Bias represents the departure from the null. Average odds ratio OR
cs~olpe,u With varying input parameters for 1y (0.15, 0.30, 0.50) and the selection
effects ORu.re and ORu.cs (1.5, 2.5, 3.5). Each scenario was iterated 100 times.
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There was stronger evidence of upwards bias when we extended scenario 1 to include
the influence of the exposure on the unmeasured confounder (scenario 2) (Figure 5.3).
Here, the minimum bias for ORcs-ope,u Was 1.04 (95% Sl 1.03 to 1.04) with input
parameters of Tu=0.15, ORu.re=1.5, ORu.cs=1.5. The magnitude of the bias increased
when the prevalence of the unmeasured confounder U and the strength of the
selection effects (ORure, ORucs and OREeu) increased. This produced a strong biased
ORocsipe,u 0f 1.10 (95% SI 1.09 to 1.10) when the parameters were set to TTu=0.50,
ORu.pe=3.5, ORu.cs=3.5 and ORpe.u=3.5.

n,=0.15 n,=0.30 n,=0.50

0.04
0.04
]
004

003
003
1
003

ORCS"OBIPE,U -1

0.02
0.02
0.02

0.01
001
1
001

0.00
0.00

15 25 3

0.00

15 25 3 15 25 3

Selection effects (OR pr ORycsand ORgp )

Figure 5.3. Collider bias of OR cs-ospe,u -1 under the true null effect of maternal
obesity OB on caesarean section delivery CS when mediated by pre-eclampsia PE
and the presence of one unmeasured confounder U (Scenario 2: mediator-outcome
confounding when affected by the exposure). Bias represents the departure from the
null. Average odds ratio OR cs-ope with varying input parameters for 1y (0.15, 0.30,
0.50) and the selection effects ORu.pe, ORu.csand ORos.u (1.5, 2.5, 3.5). Each scenario
was iterated 100 times.

Scenario 3 (exposure-mediator confounding) produced the strongest evidence of
upwards bias from the influence of unmeasured confounding in the mediated
association between maternal obesity and caesarean-section delivery. For example,
the ORcs-oppe was 1.04 (95% S| 1.04 to 1.04) with input parameters of ORu.pe=1.5,
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ORu.0e=1.5 and when the Tu was 0.15 and 0.30. The strongest evidence of bias
occurred when the input parameters were set to mu=0.50, ORuy.pe=3.5, ORuy.0s=3.5,
producing the maximum result of ORcs-ope 1.17 (95% SI 1.17 to 1.18). Results for

each scenario are presented in tabular format in the supplementary materials.
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Figure 5.4 Collider bias of OR cs-ope -1 under the true null effect of maternal obesity
OB on caesarean section delivery CS when mediated by pre-eclampsia PE and the
presence of one unmeasured confounder U (Scenario 3: exposure-mediator
confounding). Bias represents the departure from the null. Average odds ratio OR
cs~ojpe With varying input parameters for 1y (0.15, 0.30, 0.50) and the selection effects
ORu.re and ORu.0g (1.5, 2.5, 3.5). Each scenario was iterated 100 times.

5.5Discussion

To increase our understanding of exposure-outcome associations in epidemiological
studies, we must disentangle potential causal pathways that link exposures with
outcomes. Despite the strong assumptions required, causal mediation analysis
continues to be a commonly applied tool, leading to uncertainty of the validity of results
reported by causal mediation analysis studies. As assumptions about unmeasured

confounders cannot be tested using observed data, simulations are a powerful tool to

Chapter Five 88



determine the influence of bias due to confounding in epidemiological associations.
The purpose of this simulation study was to quantify the magnitude and direction of
bias in mediated associations due to the influence of unmeasured confounding under
three common scenarios. The strongest bias was evident when we considered the
influence of exposure-mediator confounding on the mediated association between
maternal obesity and caesarean section delivery. The bias was marginal under
mediator-outcome confounding, however, it increased when there was an effect of the
exposure on the mediator-outcome confounding. Overall, we found that the strength
of the bias in the mediation associations was influenced by the prevalence and
strength of the influencing unmeasured confounder U.

The prevalence of obesity in women of reproductive ages is increasing globally,
significantly impacting maternal and perinatal outcomes in women when they enter
pregnancy with a higher BMI.® In parallel, caesarean section delivery rates are also
increasingly common, having risen by 14% globally since 1990.27° As of 2014,
Australia had a caesarean section delivery rate of 34 per 100 live births, exceeding
the OECD (Organisation for Economic Co-operation and Development) average of 28
per 100 live births.?”* This has also been evidenced in Western Australia, with the
incidence of caesarean section delivery of 34.8% in our observed cohort. In 2019, a
group of experts in the US proposed a framework?’2 for the impact of maternal obesity
on the risk of caesarean section delivery in which they posited that obesity operates
through potential mediating pathways including but not limited to pregnancy
complications and pregnancy comorbidities. Our simulation study examined one
potential causal pathway via the pregnancy complication of pre-eclampsia, the most
common reason for therapeutic interruption of pregnancy.2%® Maternal obesity is a risk
factor for all types of pre-eclampsia, with a raise in BMI increasing the risk, from mild
to severe forms.?6” There are a number of potential influencing factors in the inter-
related relationship between maternal obesity, pre-eclampsia and caesarean section
delivery that are not necessarily readily available to researchers when conducting a
mediation analysis. One such plausible factor is leptin, a hormone that is secreted from
adipose tissue that is controlled by the obesity gene,?” with increasing percent of body
fat associated with increasing concentrations of leptin. Leptin also plays an important
role during pregnancy with the placenta producing leptin, thereby high levels of

maternal leptin levels in obesity can adversely impact fetal growth and development.274
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Furthermore, leptin can inhibit the intensity and frequency of myometrial contractions
which can lead to caesarean-section delivery.?’> As leptin concentrations are higher
in women with pre-eclampsia,?’® leptin is a potential unmeasured influencing factor in
scenario 1 and 2. Another plausible factor worth considering is maternal deficit in
dietary intake, particularly in calcium, protein, essential vitamins and essential fatty
acids.?®” Maternal obesity is associated with insulin resistance and systemic
inflammation, mechanisms that are conductive to pre-eclampsia, supporting scenario
3. As the physiology of pregnancy is complicated, it is possible that there are other
factors that are impactful on the association between the exposure of maternal obesity,
the outcome of caesarean section delivery and the mediator of pre-eclampsia that

remain unknown or are yet to be fully elucidated.

As the presence of unmeasured confounding can rarely be ruled out in epidemiological
associations,’”* quantifying the influence of bias from unmeasured confounding is
essential to increase our understanding of causal effects in mediated associations.
Simulation is a valuable tool to advance our understanding of the influence of bias in
such mediated associations,?3* as through the data generation process it is possible
to examine multiple scenarios in which bias can be corrected for. Simulation studies
been used to test bias resulting from misclassification of variables in mediation
analysis.?’’-?82 |n more recent years, a number of bias methods have been proposed
to explore the sensitivity of mediation analysis to the influence of unmeasured
confounding;252 253, 255, 283-287 however, many of these methods have focused on
mediator-outcome confounding?%® 283 285 287 qor are often reliant on specific
assumptions.?84 286 |n this study, we have simulated models in which the effect of the
unmeasured confounding on the outcome given the exposure and mediator, and the
relationship between each variable is pre-specified, based on assumptions drawn from
an observed cohort or published literature. We found that the mediated association
was more sensitive to the influence of the unmeasured confounder from the exposure-
mediator compared to the mediator-outcome, a finding that was shared with simulation
study?8! that undertook a sensitivity analysis of the influence of unmeasured
confounding on the direct and indirect effects. As it is not uncommon for the effect of
a pregnancy exposure on an outcome to be mediated through a complication of
pregnancy, this simulation model can be applied to other perinatal epidemiological

associations.
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Quite often in perinatal epidemiology, the association between maternal exposures
and adverse outcomes are mediated by other complications. The influence of
unmeasured confounders can create a collider bias mechanism that has the potential
to distort the mediated association. Quantifying the influence of this bias cannot be
undertaken using observational data, therefore simulations studies such as this,
enable the quantification of the influence of unmeasured confounding under a number
of scenarios that replicate real world examples. The simulations here evaluated the
sensitivity of unmeasured mediator-outcome, mediator-outcome when affected by the
exposure and exposure-mediator confounding. However, a limitation of these
simulations is that they are based on simple scenarios, the most prominent is that
there is only one mediator variable in each of the scenarios. However, we undertook
the simulations under strong associations (high prevalence and strength of the
influence of the unmeasured confounder U) which would also be taken to represent
the influence of multiple mediators. Additionally, to minimise the complexity and
maintain the interpretability of the simulation scenarios, we assumed that there was
no misclassification in any of the variables and that all variables were binary. Finally,
like any metric, BMI is an imperfect as a measure to determine maternal obesity and
adiposity?8® but is relevant to this topic and has been almost universally adopted in

past studies.

In this simulation study, we calculated the effect of maternal obesity on caesarean
section delivery in the presence of a mediator of pre-eclampsia and the influence of
an unmeasured confounder U. In our three simulation scenarios, the influence of the
unmeasured confounder U created a collider of the mediator of pre-eclampsia, leading
to biased estimates in the mediated exposure-outcome association. We found
evidence of bias across all three scenarios, with the strongest evidence due to the
influence of exposure-mediator confounding, which was closely followed by the
mediator-outcome confounding affected by the exposure. Further, we found that the
strength of the bias was directly related to the prevalence and strength to the
unmeasured confounder, with the weakest evidence of bias presenting when the
prevalence of the unmeasured confounder was small (15%) and the strength of the
OR was minimal (OR 1.5) across all three scenarios. We recommend that all

researchers undertake analysis to investigate the mechanisms in which the influence
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of unmeasured confounding can impact their mediated exposure-outcome

associations, in addition to causal mediation analysis.
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Chapter Six: A framework to apply simulation to bias analysis

This chapter fulfilled Aim 3 and objective 3.1 of the thesis.

Aim 3: To develop a framework for the application of simulation to quantify bias in perinatal
epidemiologists.
Objective 3.1: To incorporate best practice for the application of simulation methods to
quantify the influence of bias into a framework to guide researchers in the design,

implementation, analysis and reporting of simulation studies in perinatal epidemiology.

The content of this chapter is covered by Publication Five. This study provides a framework
to guide epidemiologists in the design, implementation and reporting of simulation studies
with the prime purpose of quantifying the influence of bias in aetiological associations. This
framework includes a simulation study to demonstrate the application of the framework to
quantify bias in the association between maternal BMI and preterm birth. This chapter was
written in the style of an educational note, translating the simulation methods applied in this
thesis through the provision of an education tool for epidemiologists in the application of

simulation to quantify the influence of bias.

The version that appears in this thesis is of an article that has been submitted for peer-review
to European Journal of Epidemiology. The contribution of co-authors, Professor Gavin
Pereira and Dr Gizachew A. Tessema are detailed in the author attribution statements in

Appendix A.

Supplementary material for this manuscript is available in Error! Reference source not
found.H.
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6.1 Abstract

Due to the observational nature of epidemiological studies, they are prone to one or more
type of bias (information, selection, confounding). In particular, reproductive and perinatal
epidemiological studies are subject to unique methodological challenges due to
unobservable events from pre-conception to birth and the clustering of outcomes across
successive pregnancies or multiple births. Therefore, to strengthen the validity of
associations drawn from observational studies, it is important that researchers are able to

identify and evaluate potential sources of bias.

Simulations studies involve computational methods to create data by pseudo-random
sampling. They are ideal to quantify bias as the process of generating data allows greater
control of the biased parameters of interest. Commonly used to test statistical methods,
simulation studies are under-used in epidemiology, yet have the potential to quantify the
influence of a range of biases simultaneously on aetiological associations. Current simulation
studies in reproductive and perinatal epidemiology lack uniformity in their design, analysis,
and reporting. The absence of guidance in the application of simulation to quantify the

influence of bias has hampered researchers and peer reviewers.

This paper proposes a framework to guide epidemiologists in the application of simulation
studies to quantify the magnitude and direction of biases in epidemiological studies. Using a
perinatal example, we applied the framework to a simple simulation that quantified the
influence of selection bias on the association between maternal BMI and preterm birth. This
framework was aimed with highlighting the application of simulation methods to quantify the
influence of various types of bias common in observational research, and to increase their

application in the practice of quantitative bias analysis in epidemiological studies.
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6.2 Introduction

Due to the non-random nature of observational studies, they are prone to various
biases.%® A great deal of literature has been published to increase the understanding
of the influence of bias in observational studies,’# 117. 158, 170, 231, 232, 289 including the
development of methods to minimise their influence. 19 122, 290-292 However, much less
consideration has been given to quantifying the influence of bias on reported
exposure-outcome associations.?®® To strengthen the validity of associations drawn
from observational studies, researchers need to be able to identify and evaluate
potential sources of bias. Simulation studies are one method that can aid researchers
in quantifying the influence of bias in aetiological associations. In short, simulations
are computational methods that allow greater control when generating important bias
parameters. This enables researchers to create models that represent complex real-
life conditions, which can then be tested under a range of scenarios. However, a
potential barrier to the application of simulation studies in epidemiology is its seemingly
complicated application and the lack of guidance in their design, implementation and

reporting.

Research conducted by Lash et al.1#-1%0. 169 propagated the term quantitative bias
analysis in epidemiology. Their 2014 paper'*’ provided a list of best practices when
guantifying the influence of bias. The same authors later developed an online tool in
which epidemiologist can assign plausible values to bias parameters in order to
determine the influence of bias.*® Despite the diligent guidance of Lash et al., the
uptake of quantitative bias analysis methods in epidemiology has remained low with a
recent systematic review identifying only 24 standalone bias analysis studies that
applied their framework over a 14 years period.*® Although it should be noted that a
further 123 undertook a bias analysis as a secondary analysis which is encouraging;°®
however, these numbers are overshadowed by the vast number of epidemiological
studies published in the same period. A more recent paper!®® published by the same
research group, critiqued three examples of what the authors deemed suboptimal bias
analysis studies. Here, the authors noted that attention to good practices in the
presentation, explanation and interpretation of bias remains lacking.>> We concur with
their statements and believe that quantitative bias analysis is a worthwhile endeavour

that should be undertaken to strengthen the validity of epidemiological studies.
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Some of the limitations of the early quantitative bias analysis methods was the
assertion that bias should only be analysed under recommended situations, such that
the findings of a study were informing policy development or when it was expected
that bias could explain away a finding.'#’ It is the assertion of the authors of this paper
that bias should be quantified if there is plausibility of an influence on exposure-
outcome associations that may alter inference. The application of a causal diagram
will be sufficient to determine if there is any such influence. Simulation methods also
enable the quantification of multiple types of bias simultaneously, moving away from
the need to prioritised the quantification of bias by the order of the most influential
factor.!4” However, the design of high-quality simulations that reflect complex
situations that lead to biased exposure-outcome associations can be challenging for
researchers. Furthermore, assessing the integrity of published simulation studies is
both challenging for reviewers and other researchers. Simulation studies and concerns
about their reporting has been an issue for a long time, with the first paper guiding the
reporting of computational statistical results published in 1975.2% Since then, there
have been several papers guiding researchers to improve the planning,
implementation, and reporting of their simulation studies with the specific aim of testing
or comparing statistical methods.3% 143-145 The STRengthening Analytical Thinking for
Observational Studies (STRATOS) group'*® was created to meet the increased
interest in the application of simulation in statistical methodology. This initiative has a
broad interest in the application of statistical simulation in health research.4¢ A 2018
paper by Morris et al.,**® produced a primer of a detailed systematic approach to
planning simulation studies for the purpose of testing statistical methods.'*® A more
recent paper provided a tutorial on generating Monte Carlo simulations in
epidemiology for quantitative bias analysis; however, a framework to guide
researchers and reviewers on the application of simulation methods for the prime
purpose of quantifying the influence of bias in epidemiological modelling remains

lacking.?34

Simulation as a method for quantitative bias analysis has the potential to assess the
influence of multiple types of bias through the design, implementation and analysis of
simulation models that reflect true causal pathways between exposures and
outcomes. One of the main benefits of simulation studies in epidemiology is the ability

to conduct numerous experiments on the complex causal pathway between exposures
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and outcomes to ascertain the magnitude and direction of multiple biases.
Technological advances in recent decades have led to improved computation speed
at a lower cost, with complex simulations being able to run on hardware that is easily
accessible, which in theory should have supported the increased adoption of
simulation studies in epidemiology. In order for researchers to become more confident
in the application of simulation to quantify the influence of multiple biases across a
range of epidemiological research questions, a unifying framewaork of quantitative bias
analysis methods and simulation methods is required. The purpose of this paper is to
introduce epidemiologists to the benefits of using simulation studies to quantify the
magnitude and direction of biases. Building on the prior work of experts in simulation
modelling and quantitative bias analysis methods, we aim to provide a primer
framework to guide researchers on the design, implementation, analysis, and reporting

of simulation studies for the prime purpose of quantitative bias analysis.

6.3Framework

As with any other study, when planning a simulation study to quantify bias, researchers
should first produce a protocol detailing how the study will be designed, implemented,
and analysed for transparency and to facilitate understanding. A good simulation study
protocol should document the specific aims of the studies, a graphical display of the
causal association, the procedures for generating data, details of how the study will
be implemented, analysed and reported, and the simulation source code to support
the reproducibility of the study. The framework proposed here will provide guidance to
epidemiologists to quantify the magnitude and direction of potential biases that
undermine the validity of exposure-outcome associations. See Figure 6.1 for the
proposed framework on the design, implementation, analysis, and reporting of
simulation studies to quantify the influence of bias. This framework was informed by
the findings of the previously published review of the application of simulation to
guantify bias in reproductive and perinatal epidemiology?3* and drew inspiration from
previously published frameworks for bias analysis#’- 297 or simulation studies to test

and compare statistical methods.137-139, 146

The framework is supported by a demonstrated simulation example of selection bias
in perinatal epidemiology. All observational studies are prone to bias; however,

selection bias is particularly problematic in perinatal epidemiology. A major challenge
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for researchers is that the study population itself is difficult to define as only
pregnancies to fertile couples can be observed.'®” Furthermore, by a time when
pregnancy is recognised an extensive attrition of the conceptions has already
occurred® due to spontaneous and induced abortions. Further compounding this
selection bias, is that most epidemiologists rely on birth data obtained from
administrate databases that are left truncated,?%* with selection into a study restricted
to those pregnancies that survive pass a specified gestational age; ranging from 16
gestational weeks in Nordic countries to 28 gestational weeks in low and middle-

income countries.®°
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outcome and type of bias

4

2. Logic:

1. Aim:
State the research purpose and define the target population, exposure, ]
Use causal graphs or directed acyclic graphs to explain the influence of bias J

U

3. Data:
Identify the sample population, data sources, bias parameters and the data
generation methods

U

4. Implementation:
Clearly state methods of analysis and report appropriately

4

5. Reproducibility:
Identify software used for analysis and provided code

Figure 6.1 Flowchart of the framework for applying simulation to quantifying bias in
observational studies.

1. Aim
State the research purpose, define exposure and outcomes, the target population and,
the types of bias(es) to be quantified
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1.1 Purpose of the simulation — explain the background and clearly state the aim of the
simulation in the research study

1.2 Exposure(s) and outcome(s) — define the exposure and outcomes which will be
included in the simulation model

1.3Target population — clearly define the population of interest to the study

1.4Type(s) of bias — state the types of bias that the simulation model will be quantifying

The simulation study should have clearly defined aims that are established prior to
commencement of the study. The overarching purpose of a simulation study for bias
analysis requires detailed description of the types of biases to be quantified. The aims
should also clearly state the research question of interest and the target population. It
should also include a defined exposure, outcome and any other variables that are
considered on the causal pathway between the exposure and outcome when
guantifying bias.

2. Logic

Use causal diagrams to explain the influence of bias

2.1 Graphs — describe the influence of bias using causal diagrams or direct acyclic

graphs.

It would be remiss of any researcher that aims to undertake a simulation study to omit
a causal diagram that conceptualises the causal associations between each of the
relevant variables (exposure, outcomes and other variables). The most popular
graphical tool for causal diagrams is directed acyclic graphs (DAGs).??® DAGs provide
researchers with a tool to graphically represent and increase understanding of causal
associations between exposures and outcomes.?®® Akin to conceptual diagrams,
DAGs operate with formal rules which define causal effect and increase the
identification of bias.?®® Each variable is depicted as nodes, which are connected to
each other by unidirectional arrows or arcs to depict the hypothesised relationships
between them.?®3 300 The arrow between two nodes assumed the existence and
direction of a causal relationship; however, it does not denote the magnitude nor the
direction (i.e. positive or negative) of that relationship.?°3 3%° A DAG is considered
acyclic as no variable (node) can cause itself at a particular moment in time.293 30
Further, DAGs are not able to determine if the causal relationship is linear or non-

linear, nor if the relationship is parametric or not. The absence of a direct effect of one
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variable on another is evidenced by the absence of an arrow between them.301
However, it is important to note that the arrows themselves are not completely
deterministic. In perinatal research questions this would mean that not all women who
are exposed will experience an outcome, rather that the exposure is hypothesised to

cause the outcome in at least some of the women.29°

The benefit of using a tool like DAGs is that they make unstated relationships between
variables explicit. This can help researchers to decide which variables to collect, which
variables to adjust for, to differentiate between a confounder and a collider and to
identify the sources of bias.”® 8 A recent review ° of the application of DAGs to identify
confounders in applied health research noted inconsistencies in reporting of technical
details (target estimand(s) of interest, the DAG and the DAG-implied adjustment sets).
The authors then identified eight recommendations for the application of DAGs to
improve utility and transparency.® Tools that enables the application of DAGs include
the popular online user-friendly interface of DAGitty and the DAGitty R software

packages.3%? Modules for the application of DAGs are also available in STATA.

3. Data
Identify the sample population, data sources, bias parameters and the data generation
methods

3.1 Population — provide clear details of the base population

3.2 Data sources — clearly state the data sources that inform the simulation. This could

be an observed cohort or data from previously published literature.

3.3 Bias parameters — provide the parameters applied to the model that drive the

influence of the bias

3.4 Data generation — report how probability distributions were assigned to the bias

parameters

As one of the main benefits of simulation studies is their ability to quantify the
influences of multiple types of biases under different scenarios; an important step in
producing a valid study is the explicit description of the data generating mechanisms
for each variable. These data-generating mechanisms are based on the causal
diagram or a previously created DAG. The pre-specified assumptions that inform this

data generation could be derived from an observed cohort or based on prior published
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research. To ensure the transportability of bias parameters that inform the simulation
model, it is important that the sources of these assumptions are explicitly stated and
described in detail. If the simulated dataset is derived from an observed cohort,
important details of that observed cohort should be reported, including when the data
was collected, by what means and the general characteristics of the sample, including
whether the dataset has previously been validated.

Variables that are endogenous (i.e. changed by its relationship with another variable)
should be represented by a probability formula. The distribution of all other variables
is determined by variable type. For example, the researcher may assume that
dichotomous variables are binomially distributed, and continuous variables are either
normally or uniformly distributed. The relationships between each variable in the model
must be specified and it is recommended to include probability distribution formulae
for all endogenous variables. Data-generation can be undertaking using statistical
software popular with epidemiologists such as SAS, STATA and R programming,
including functions to facilitate the simulation of data. Alternatively, programming

languages such as Python, C and C++ are also viable.

4. Implementation

Clearly state methods of analysis and report appropriately

4.1 Analysis — clearly state the analysis methods applied to the simulation. Details
should include all methods, results, diagnostics, and code used during the

implementation of the model.

4.2 Reporting results — restate the assumptions of the simulation and clearly report the

results, focusing on whether the model explains the reported estimate.

As in standard epidemiological studies, the selection of an appropriate statistic is an
important step that should be considered during the study design period. Regression
modelling is one of the most commonly applied analysis methods in aetiological
epidemiology.3°2 Models include but are not limited to linear regression for continuous
outcomes, logistic regression for binary outcomes, Cox regression for time-to-event
data, and Poisson regression for frequencies and rates.2%* Prior to conducting the
analysis, consideration should be given how to store estimates after each iteration.

Researchers should also decide how they will summarise the estimates once all the
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iterations have been performed. Simulation can generate a large amount of results
that need to be summarised and displayed in a clear and concise manner, with
graphical displays preferred over tabular format.3°> The number of times a simulation
will be iterated should be considered a prior. The greater the number of iterations, the
less random error will be present. However, an additional consideration in determining
the number of iterations should be available computational power. After each
simulation iteration has been performed and each estimate stored and summarised, it
is necessary to evaluate the performance of the simulation model from different
scenarios or observed data. Evaluating the performance of the simulation study to
provide a meaningful measure of the influence of bias can be achieved by a
comparison of the simulated vs observed data or comparison of different bias

mechanism scenarios.

5. Reproducibility
Identify software used for analysis and provide source code
5.1 Model assumptions - if assumptions of the model are summarised in the methods

section, use online appendices to elaborate on their details.

5.2 Software - the software used for data analysis should be highlighted in the
methods, including and any relevant packages or functions.

5.3 Code sharing - all source code for the simulation should be made available online,

preferably without necessitating a request from the researcher(s).

A cornerstone of scientific research is its replication. Scientific evidence is
strengthened when important findings can be replicated by multiple independent
researchers using different datasets.1% However, in some circumstances replicating
an epidemiological finding may be limited due to lack of generalisation across different
demographic populations. Yet, a basic minimum any research study should be
achieving is reproducibility, whereby independent researchers can test the reliability
of a prior finding using the same data and methods.3% However, reproducibility itself
can only be achieved when the data, code, methodology and the software is

available.3% A recent review of the application of simulation in reproductive and
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perinatal epidemiology found only six out of 39 simulation studies made their source

code available online.234

6.4 An example of simulation to quantify the influence of bias

In this section, we present a simple simulation study that quantifies the influence of
bias in the association between maternal body mass index (BMI) and preterm birth to
demonstrate the application of the above framework. The methods applied in this
study have been inspired by a previous published study that quantified selection bias
in the association between maternal advancing age and stillbirth.2%4 Each subsection

of the framework is highlighted in the subsequent text.

Aim

The aim of this simulation study is to quantify the influence of selection bias
(Framework: 1.1; 1.4) on the association between the exposure of maternal BMI and

the outcome of preterm birth (Framework: 1.2) in pregnancies in Western Australia
between 2012 and 2015 (Framework: 1.3).

Causal logic

The bias mechanism as illustrated in the causal diagram (Figure 6.2) results from the
exclusion of miscarriage prior to 20 gestational weeks, a restriction commonly applied
in birth datasets in high-income countries. The exposure of maternal BMI affects
miscarriage, which is influenced by an unknown or unmeasured confounder U
(possibly a genetic factor) that also influences the outcome of preterm birth. Here, the
selection of pregnancies that survive beyond 20-gestational weeks induced a back-
door causal pathway from the exposure to the outcome via the collider variable of
miscarriage and U. Commonly known at the collider-stratification bias, the left
truncation of pregnancy and birth studies can lead to distorted exposure-outcome

associations (Framework: 2.1).

— T

BMI Miscarriage Preterm birth
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Figure 6.2 Directed acyclic graph depicting the causal structure of selection bias in
the association between maternal body mass index (BMI) and preterm birth.
Commonly referred to as collider-stratification bias, the exposure maternal BMI affects
miscarriage, which is also affected by the independent risk factor U, inducing a back-
door pathway between exposure and the outcome of preterm birth.

Data

The simulated data in study was derived from an observed birth cohort in Western
Australia. It included all women (n=124,806) who had a singleton birth between 2012
and 2015 (Framework: 3.1) derived from the Midwives Notification Systems, a de-
identified and validated dataset that captures >99% of all births in the jurisdiction with
a gestational age length 220 gestational weeks or a birth weight > 400 grams?'?
(Framework: 3.2). We then simulated a population of 125,000 conceptions, with data
generated for the variables of BMI, miscarriage, U and preterm birth. The baseline
prevalence of miscarriage was set to 20%, which is a commonly reported statistic for
pregnancy loss prior to 20 gestational weeks.?3® The baseline prevalence of BMI and
preterm birth were derived from the observed birth cohort. The prevalence of U was
varied from a low prevalence of 15% to 20%, 40% and 50%.

The causal pathway (highlighted in red) [BMI— Miscarriage < U — Preterm birth]
represent the collider-stratification mechanism. We can further break this causal
pathway down [BMI — Miscarriage, Miscarriage <— U and U — Preterm birth]. Each
pathway can be deemed a selection effect, with a simulated probability bounded
between 0 and 1. The selection effect BMI — Miscarriage was drawn from a Bernoulli
model based on a study3°’ that reported the effect of BMI on miscarriage using
Australian data. The selection effects of U = Miscarriage and U — Preterm birth were
modelled in terms of equal odds ratios from modestly strong to very strong effect: OR
1.5, 2.5, 3.5 (Framework: 3.3).

The probability formula (Framework: 3.4) for miscarriage for each conception in the
study can be represented by the below equation where BMI represent BMI, M
miscarriage and U the unmeasured confounder:

exp (Bo + B1BMI + B,U)

P(M | BMI,U) =

As we are only interested in quantifying the influence of bias, we assumed a true null

effect of BMI on preterm birth in this simulated example. Therefore, the probability
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formula for the outcome of preterm birth is represented by the below formula
(Framework: 3.4):

exp (Yo + v1Ui)

P(PTB|U) =
( 1) 1+ exp (yo + v1Uy)

Implementation

Simple logistic regressions were performed of preterm birth with BMI to obtain the
odds ratio. The mean of the point estimate was obtained from 100 iterations for each
scenario. The percentile-based 95% simulation intervals (Sl) of the OR mean were
derived using 500 bootstrap replications. For the purpose of interpretation, the results
of BMI were categorised as follows: underweight (BMI < 18.5 kg/m?), normal (set as
reference) (BMI 18.5- 24.99 kg/m?), overweight (BMI 25- 29.9kg/m?) and obese (BMI
> 30kg/m?). All data analysis and simulation were conducted using R v4.2.1%%

(Framework 4.1).

This simulation indicated that the influence of bias due to collider-stratification was
marginal in the association between maternal BMI and preterm birth, and only
prominent for women that met the BMI criteria for underweight. When the prevalence
of U was strong (50%) and the strength of the selection effects (U - miscarriage and
U - Preterm birth) were set to an equal OR 3.5, there was evidence of a downwards
bias was for women that were underweight (OR 0.92 95% SI 0.92 to 0.93). Using the
same parameters, there was a marginal upwards bias for women with a BMI that meet
the criteria for overweight (OR 1.04 95% Sl 1.04 to 1.05) and obese (1.04 95% Sl
1.04-1.05) (Framework: 4.2).
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Figure 6.3 Collider-stratification bias of OR of body mass index on preterm birth,
where the bias represents the departure from the null. Average odds ratio when the
prevalence of U was 50% and the selection effects for U - miscarriage and U >
Preterm birth ranged from 1.5, 2.5 to 3.5 for women who were underweight,
overweight, and obese. Each scenario was iterated 100 times.

Reproducibility

An extract of the simulation function in R programming (Framework 5.2) to quantify
the influence of selection bias on the association between maternal BMI and preterm
birth is included below (Figure 6.4) The full reproducible code for the simulation model
undertaken in this framework is available in the supplementary materials (Framework:
5.1: 5.3). This will enable other researchers to reproduce this simple example of

collider-stratification bias.
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results=foreach(i=1:100,.packages=c("MASS","sandwich","Imtest","tidyverse","Rlab","dplyr","matrix

Stats"),.combine=rbind) %dopar% {

rboundednorm <- function(n, mymean, mysd, min = 15, max = 40) {

a = pnorm(c(min, max), mymean, mysd)

z = runif(n, a[1], a[2])

gnorm(z, mymean, mysd)}
n=128000;pU=0.50;min.bpL=19.43;0r1=3.5;bY=0.738;0r2=3.5
set.seed(i)
bias <- data.frame("id" = 1:n) %>%
mutate(BMI= rboundednorm(n, mymean=BMI.mean, mysd=BMlI.sd), #create BMI

bMiscarriage = (min.bpL +
BMI.to.misc(BMIvec=BMI,min.BMI=x2[p2==min(p2)],min.risk=min(p2)))/100,

b_Miscarriage = bMiscarriage / (1 - bMiscarriage),
U =rbern(n, pU),
prob_Miscarriage = plogis(log(b_Miscarriage) + log(or1)*U),
Miscarriage = rbern(n, prob_Miscarriage), #miscarriage
pPTB = plogis(log(bY) + log(or2)*U),
PTB = rbern(n, pPTB)) %>% #preterm birth
mutate(BMI_cat = cut(BMI,breaks=c(15, 18.5, 25, 30,Inf),
labels=c("underweight","normal", "overweight", "obese"), include.lowest=TRUE),
BMI_cat = relevel(BMI_cat, ref ="normal"))#set normal BMI as reference
#fit a logistic model
log_model <- bias %>% gim(formula = PTB ~ BMI_cat, family = binomial(link = "logit"),
data = ., subset = Miscarriage==0)
ct=coeftest(log_model, vcov = sandwich)
ci=confint(ct)

c(ct[-1,1],ci[-1,1],ci[-1,2])

Figure 6.4 Extract of R code for simulation study to quantify the influence of selection
bias on the association between maternal body mass index and preterm birth.
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6.5Conclusion

This framework included in this paper will provide guidance to epidemiologists in the
application of simulation methods to quantify the magnitude and direction of bias under
a range of plausible scenarios. A benefit of simulation methods is that the influence
of multiple types of bias can be computed in one model. This enables researchers to
investigate bias mechanisms that replicated complex real-life scenarios. However, for
researchers unexperienced with computation simulation, it is preferable to start with a
small uncomplicated simulation model and build towards increased complexity. The
included simulation example is one such simple example, including only four variables.
It is intended to provide epidemiologists with a working demonstration that they can
apply to their own work and research questions. This simple simulation is fully

reproducible using the R code provided.

In this paper, we proposed a framework to apply simulation methods to quantify the
influence of bias in epidemiology. However, it should be noted that even adhering to
the best of frameworks will not necessarily guarantee that a study is deemed optimal
or valid. Nonetheless, adhering to the framework provided here will ensure that
simulation studies that seek to quantify the influence of bias in epidemiological
associations have provided sufficient details to enable the wider research community

to validate their findings and advance our collective knowledge.
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Chapter Seven: Discussion

This thesis project addressed the overall aim of demonstrating that the application of
simulation is a powerful tool in quantifying the influence of bias in perinatal
epidemiology. Further, this thesis project has filled the knowledge gaps identified in
Chapter One and achieved each of the three specific aims of the thesis. This chapter
presents a summary of the main findings from each of the five publications that
addressed the specific aims of the thesis, explores the significance of the findings and

includes recommendations for future research.
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This thesis project achieved the overall aim of demonstrating the application of
simulation to quantify the influence of bias in perinatal epidemiology. Using three inter-
related study aims and objectives, this thesis addressed the knowledge gaps identified
in Chapter One. The systematic review in Chapter two demonstrated that simulation
had utility in the quantification of bias; however, the method was under-applied and
there was a lack of conformity in study design, implementation, analysis and reported

was noted.

This thesis adds to quantitative bias analysis methods by demonstrating the suitability
of simulation as a methodology to support bias analysis. Chapter Three demonstrated
simulation as a complementary method to traditional epidemiological methods. One of
the main benefits of simulation is the ability to quantify multiple types of bias
simultaneously. This was demonstrated in Chapters Four and Five, in which applied
simulation studies quantified the influence of bias under common mechanisms in
perinatal epidemiology, in particular the influence of left truncation bias on perinatal
exposure-outcome associations. The included framework in Chapter Six extends on
recommended best practices in quantitative bias analysis by providing a targeted
educational tool to guide epidemiologists in the application of simulation to quantify
bias.

7.1 The application of simulation to quantify bias
Aim 1: To review and explore the existing literature on the application of simulation

methods as an approach to quantify the influence of bias in perinatal epidemiology.

A systematic review was carried out at the onset of this PhD project (Publication One)
to fulfil the first aim of the thesis. Based on this systematic review,?** there was a
limited number publications applying simulation methods to quantify bias in
reproductive and perinatal epidemiology (n=39), ranging in time from 1983 to 2019.
The included simulation studies presented a heterogeneity in their design,
implementation and reporting of their results. Nonetheless, this review?3* did highlight
some clear best practices in the application of simulation to quantifying bias; including
the use of causal diagrams to illustrate the influence of the bias(es) and a clear
declaration of data parameters that informed the development of the simulation

models. Few studies included the simulation code, reducing the reproducibility of their
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studies; however, the practice of sharing simulation code was becoming increasingly
common in studies published post 2015.

This was the first and only review?** of the application of simulation as a method to
guantify the influence of bias in perinatal epidemiology. The included studies
demonstrated that simulation is beneficial in the quantification the magnitude and
strength of bias and has potential to be applied more comprehensively to investigate
bias in perinatal associations. Since 2019, only three studies%4 195 308 were published
that applied simulation to quantify the influence of bias in reproductive or perinatal
epidemiology, independent of the research included in this PhD project. The lack of
research activity in bias analysis during the course of the PhD (April 2020 to April
2023) could be contributed to the Covid-19. It is plausible that during this time
epidemiologists temporarily moved away from methods-based research to focus on
tracking and preventing the spread of Covid-10 globally. Nonetheless, this paucity of
simulation studies to quantify bias in perinatal epidemiology reinforces the need for
guidance to support perinatal epidemiologist on best practices in the application of

simulation to quantify the influence of bias.

In 2021, two studies®* 19 applied simulation to quantify the influence of live-birth bias
on environmental exposures in perinatal epidemiology, with both studies also
guantifying the influence of depletion of susceptibles. The first simulation study
reported that exposure to environmental hazards induced a live-birth bias, which was
increased for women who were socially vulnerable.'®* The second simulation study?°®
was undertaken to try to explain a previously reported3®® paradoxical association
between exposure to nitrogen dioxide during pregnancy and the subsequent
development of autism spectrum disorder in offspring. The findings of both studies%*
105 indicated that bias was strongest when both live-birth bias and the depletion of
susceptibles mechanisms were present. The most recent study by Jayaweera and
colleagues (2023)3%8 used a Monte Carlo simulation to estimate self-managed abortion
effectiveness account for bias from misclassification of self-reported outcomes and
selection bias due to loss of follow-up. They found that bias-adjusted estimates were
similar to the observed effect estimated in a cross-sectional study, with the level of
bias dependent on the chosen bias parameters. These recent studies included

important factors that meet the requirements of best practice in applying simulation to
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quantify the influence of bias; including the use of causal diagrams, the clear
declaration of data sources and bias parameters, and the inclusion of reproducible

simulation code.

The findings of this study indicated the simulation methods are an important tool in
guantitative bias analysis; however, the lack of simulation studies undertaken in
reproductive and perinatal epidemiology suggests a clear need for a framework to
upskill epidemiologist in their application. This review highlighted best practices for the
application of simulation to quantify bias which informed the subsequent development
of the simulation studies included in this thesis, and the development of a framework
to guide researchers in their study design, implementation, analysis and reporting of
simulation studies to quantify bias in perinatal epidemiology as presented in Chapter
Six.

7.2 Quantifying the magnitude and direction of bias in perinatal epidemiology

Aim 2: To design, implement and analyse a series of simulation studies to quantify
the magnitude and direction of bias in perinatal epidemiology to address issues from
methodological challenges that may lead to spurious inference on associations

between pregnancy exposures and adverse birth outcomes.

The role of confounding

Unmeasured confounding is routinely acknowledged in research papers yet its impact
on aetiological associations is rarely addressed. The influence of unmeasured
confounding in the association between pregnancy complications and a subsequent
preterm birth was investigated in Chapter Three to address objective 2.1 of this thesis.
Traditional epidemiological methods (regression models) were combined with
simulation and the e-value for confounding to estimate the degree of confounding
necessary to explain the observed associations between complications in first
pregnancy and the subsequent risk of a preterm birth (Publication Two)310.

The simulation in this study generated data for maternal obesity, a potentially
important confounding variable as it is considered a risk factor for the development of
pregnancy complications and preterm birth.®: 9 267. 311 By re-analysing the original data
and adjusting for the same observed confounders plus the new simulated maternal
obesity, this simple simulation demonstrated that the inclusion of a single confounder

was not enough to weaken the observed associations between pregnancy
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complications across two successive pregnancies. This is unsurprising given the
strengths of the associations and their subsequent e-values that were observed in the
study. E-values for confounding are a powerful tool to determine how robust the
observed association are to bias.?> 132220 The high e-values observed in this study
suggest that any unmeasured confounding would have to be extremely high to explain
away the observed associations, particularly for the association between pre-
eclampsia in a preterm first birth and a subsequent preterm birth with recurring pre-
eclampsia (e-value 127.58). It is highly improbable that a single unmeasured
confounder, or multiple unmeasured confounders working together, could explain

away the observed association.

The findings of this Western Australian study supported the previous evidence from
the US?%0 202 gnd Norway,?°! that a previous pregnancy complicated by pre-
eclampsia, placental abruption, small-for-gestational age or perinatal death can
increase the risk of a subsequent preterm birth, regardless of whether the first birth
was preterm or term. This would indicate that there are shared and unknown
underlying mechanisms that influences the recurrence of a pregnancy association
across successive pregnancies.®? A plausible candidate for these mechanisms is the
emerging evidence that latent cardiovascular disease risk factors could explain the
associations between pregnancy complications across successive pregnancies.3'?
This hypothesis is supported by the circular relationship between cardiovascular
disease and pregnancy complications, with markers of cardiovascular disease, such
as obesity, hypertension and diabetes, increasing the risk of pregnancy
complications3®'3, and pregnancy complications themselves predicting the subsequent

development of cardiovascular disease.3'4

The study®° demonstrated how simulation and novel methods, such as the e-value,
can support traditional epidemiological methods by providing evidence to strengthen

the validity of observed associations.

Bias due to left truncation
Much of the evidence on perinatal epidemiological effects are derived from pregnancy
data that is left truncated. This is problematic when examining aetiological

associations between an exposure in early pregnancy and a subsequent adverse
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perinatal event, as the cause of the exposure could influence selection into the study
cohort. The influence of bias due to the application of left-truncated datasets (birth
registries), in which early pregnancy losses prior to 20 gestational weeks are excluded,
was quantified in Chapter Four to address objective 2.2 of the thesis. A simulation
study was undertaken to quantify the magnitude and direction of bias due to the left
truncation of birth data in the association between advanced maternal age and stillbirth
(Publication Three).?®* This study hypothesised that bias occurs when early pregnancy
loss (<20 gestational weeks) is influenced by both the exposure and the unmeasured
confounder, creating a backdoor causal pathway between the exposure of advancing
maternal age and the outcome of stillbirth. The mechanism for this bias is commonly

referred to as collider-stratification.

The findings of this study strongly suggested that for left truncation bias to be
influential, the prevalence and strength of the unmeasured confounder must be strong.
Specific to this study, an unmeasured confounder would have to be highly prevalent
(250%) in the population of pregnant women and have an impactful effect (OR = 3.0)
to produce significant bias. It is unlikely that such plausible confounders exist that
would be capable of inducing such strong bias. In this simulation study, evidence of
marginal bias was only found for women aged 40+ years, which is comprehensible
given that this group had the most susceptibility to early pregnancy loss and stillbirth,
in comparison to the other age categories. Similar findings were also reported by US
based researchers!%4 105 that examined live-birth bias, a bias that results from collider-
stratification mechanism in studies that restrict their birth dataset to pregnancies that
results in live-births only.?” A study by Leung et al.1% attempted to explain away the
protective effect of the ambient air pollutant of nitrogen dioxide during pregnancy on
the subsequent development of autism spectrum disorder in early childhood.96: 309
This causal association was purported to results from live-birth bias ,where the OR
was per 5.85 parts per billion increase in nitrogen dioxide exposure during pregnancy
(median, 16.8 ppb; range, 7.5-31.2 ppb) was 0.77 (95% confidence interval: 0.59,
1.00), when mutually adjusting for post-natal exposure to nitrogen dioxide.106: 309
Leung et al. could only replicate the bias when both collider-stratification bias and the
depletion of susceptibles mechanisms worked together and the prevalence of U was
75% with an OR strength of 3.0.1%° This seems to suggest that bias mechanisms from

one selection event alone are not sufficient to produce such an inverse association;
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there may, in fact, be a combination of biasing factors from misclassification, mediation
and selection bias acting together to produce spurious inverse associations.

As demonstrated in my study, bias due to left-truncation is not likely to be sufficient to
substantially distort exposure-outcome associations in perinatal epidemiological
studies. As the application of left truncated data is pervasive in perinatal in
epidemiology, these findings will be reassuring to perinatal epidemiologist who are

interested in the association between pregnancy exposures and perinatal outcomes.

Bias in mediated associations

The handling of mediator variables in perinatal epidemiology can be problematic,
particularly the mediator of gestational age or birthweight. Adjusting for mediators of
gestational age or birthweight will produce intersecting birthweight-specific and
gestational age-specific mortality curves can lead to paradoxical associations.’* 92 157,
186 However, it is not uncommon for pregnancy complications to mediate associations
between an exposure in pregnancy and a subsequent adverse outcome. Causal
mediation analysis is a method that enables researchers to separate the total effect of
an exposure-outcome association into a direct and indirect effect (mediated). Yet,
causal mediation analysis is highly restricted to the strict assumption that there is no
influence of unmeasured confounders.?%? 253 25 The influence unmeasured
confounding on a mediator will render that mediator a collider and lead to biased
results.?3% 232 Chapter Five addressed objective 2.3 of the thesis: to quantify the
influence of unmeasured confounding in mediated associations. To estimate the
magnitude and direction of bias from unmeasured confounding in the association
between maternal obesity and caesarean section delivery when mediated by the
pregnancy complication of pre-eclampsia, a simulation study (Publication Four)
guantified the collider bias mechanism in mediated associations under three common
scenarios: 1) mediator-outcome confounding, 2) mediator-outcome confounding

affected by the exposure, and 3) exposure-mediator confounding.

The findings indicated that bias was strongest when the unmeasured confounder
influenced the mediator of pre-eclampsia and the exposure of maternal obesity
(exposure-mediator confounding). This confounding scenario has received less
attention from researchers compared to mediator-outcome confounding,2%5: 283. 287

which produced very minimal bias in my study. These findings are important,
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particularly when using observational data as the exposure itself cannot be
randomised. However, as per the previous simulation study (Publication Three)?%* we
found that the strength of the bias was directly related to the prevalence and strength
of the unmeasured confounder, with the weakest evidence of bias presenting when
the prevalence of the unmeasured confounder was small (15%) and the strength of
the OR was minimal (OR 1.5) across all three scenarios. The findings of this study
support the need to undertake a quantitative bias analysis to investigate the
mechanisms in which the influence of unmeasured confounding can impact their

mediated exposure-outcome associations, in addition to causal mediation analysis.

7.3A framework to guide the application of simulation for bias analysis
Aim 3: To develop a framework for the application of simulation to quantify bias in

perinatal epidemiologists.

Chapter Six addressed a key research gap on the lack of guidance for perinatal
epidemiologists in the application of simulation methods for the purpose of bias
analysis, and addressed the final aim of the thesis. The requirement for a practical
guide on the application of simulation was further evidenced in the systematic review
(Publication One)?34, which found a lack of conformity in the methods of designing,
implementing and reporting of simulation studies for bias analysis in reproductive and
perinatal epidemiology. Furthermore, the identification of best practices from the
systematic review informed the development of this framework (Publication Five) to
guide perinatal epidemiologists in the design, implementation and reporting of
simulation studies to quantify the influence of bias in perinatal aetiological

associations.

The framework is composed of five steps to guide perinatal epidemiologist through the
development of simulation studies to quantify bias: 1) clearly define the aim, including
the research purpose, the target population, exposure and outcome, 2) use causal
diagrams to explain the influence of potential biases, 3) identify the sample population,
data sources, bias parameters and the data generation methods, 4), clearly state the
methods of analysis and report appropriately, and 5) provide reproducible code. This
framework also included a simulation study, which provides a building block for
perinatal epidemiologist to start undertaking quantitative bias analysis for their own

research questions.
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Applying the framework to the included simulation studies in this thesis (Publication
Three and Four), | first clearly identified the study aim and then created a causal
diagram to illustrate the bias mechanisms. | explicitly declared the sources of my data
and the assumptions that informed the development of the simulation model. In both
the simulation studies, an observed cohort from Western Australia informed the
simulated population. This data for this observed cohort was derived from probabilistic
linked datasets in Western Australia, including the Midwives Notification System and
the WA Registry of Births, Deaths and Marriages using a linkage key provided by the
Data Linkage Branch of the WA Department of Health.2** Both simulation studies
undertook logistic regression modelling to calculate the biased estimate of the
exposure on the outcome. Results were subsequently reported using figures and
tables. | also included my simulation code. By following all five steps of the framework,

| have ensured that my simulation studies have high reproducibility.

Both the simulation example included in the framework, and the simulation studies
undertaken in this thesis, are fully reproducible. Researchers can use the provided
simulation code to determine the influence of bias in their exposure-outcome
associations. Implementing the steps highlighted in this framework will enable the
standardisation of reporting, reproducibility, better comparisons between studies and
consequently improve research synthesis. The provision of this framework can
advance our collective knowledge about bias mechanisms and the nature in which
they can distort our observed associations; thereby improving causal inference in
perinatal epidemiology.

7.4Significance

This thesis has made a significant contribution to the field of quantitative bias analysis
by 1) demonstrating that simulation methods are powerful tool quantity the influence
of bias, 2) undertaking simulation studies that quantified the magnitude and direction
under multiple bias mechanisms, and 3) developing a framework to guide other

researchers to apply simulation to quantify bias.

The initial review (Publication One) indicated that simulation studies are a potentially
powerful tool in quantitative bias analysis; however, they are under-utilised in perinatal
epidemiology. This thesis demonstrated that simulation methods can be used to

supplement traditional epidemiological methods to account for important variables that
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are unavailable to a study in Publication Two. As demonstrated in Publication Three
(bias due to left truncation) and Publication Four (bias in mediated associations),
simulation models can replicate complex bias mechanisms that may be unknown or
seen by researchers. Furthermore, the simulation studies demonstrated that it is
possible to test simulation models under multiple scenarios and quantified the

influence of multiple types of bias simultaneously.

A significant contribution of this thesis was the quantification of the influence of left
truncated birth data in perinatal epidemiological studies. Although, live-birth bias has
been previously explored as a bias mechanism, in countries such as Australia and
many European countries, birth data includes stillbirths so live-birth bias is not an
issue. This restriction of data to only include pregnancies that survived past 20
gestational weeks was problematic when researchers were drawing associations
between exposures in early pregnancy and adverse perinatal outcomes. Quantifying
the magnitude and direction of this bias can assure perinatal epidemiologists that the
influence of bias on the observed exposure-outcome associations is minimal. —

assuming that they is no other influencing bias mechanism.

Much research has been dedicated to developing methods in which the influence of
mediator-outcome confounding in mediation analysis. However, the findings of
publication four indicate that mediator-outcome bias is insignificant, with the strong
bias evidence in the exposure-mediator association. Although, ours in not the first
study to find these results. These findings should act as a cautionary note to other
researchers to carefully draw their causal association using a diagram.

The final significant contribution to perinatal epidemiology was the development of a
framework to guide other researchers to undertake simulation studies to quantify bias.
This framework provides five steps to guide perinatal epidemiologist in the
development, implementation and reporting of simulation studies to quantify bias. The
inclusion of a simulation study will reinforce the steps of the framework, providing a
visualisation of a simple simulation study which can act as a building block for other

research questions.

7.5Strengths and limitations
The systematic review was novel, as no similar review had previously undertaken that

investigated the application of simulation to quantify bias in reproductive and perinatal
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epidemiology. This systematic review was also an important step of the thesis as it
identified best practices in the application of simulation, which later informed the
development of the simulation studies and underpinned the steps in the framework to

guide perinatal epidemiologist on the application of simulation to in bias analysis.

This thesis demonstrated that simulation can supplement traditional epidemiological
methods by generating data for important variables that are missing from perinatal
datasets. Quite often bias is only quantified in perinatal epidemiology in an attempt to
explain away an association that seems counter-intuitive. Therefore, a strength of this
thesis was the application of simulation studies to quantify bias in common perinatal
associations when the results seem to conform to expectations. That the research
guestions quantified bias in associations that are relevant to the changing
demographics (i.e. advancing maternal age and increasing maternal obesity) of

perinatal research in high-income countries is an additional strength.

The outputs of the simulation studies addressed important bias mechanisms,
particularly increasing our understanding of the collider bias mechanism which
underpins selection biases and its influence in mediated associations. A strength of
the simulation studies included the clear use of DAGs to map the causal pathway
between exposure and outcomes, highlighting bias mechanisms that may be
otherwise hidden to researchers. The data source for the included studies was derived
from probabilistic linked datasets in Western Australia, which are routinely validated
and are of high quality.3'® A major strength of the simulation studies was the inclusion
of the simulation code, which can be adapted by other researchers to replicate their
study findings using their own data. A major output of this thesis was the development
of a framework to guide the development, implementation and reporting of simulation
studies to quantify bias. This filled a much needed research gap and has the potential
to increase the application of simulation and the undertaking of quantitative bias
analysis. The simulation approach adopted in this thesis captures the sensitivity of
results to different assumptions and types of bias, ensuring high quality inference. This
approach can provide a stronger evidence-base for the effect of preventative actions,

policy interventions and clinical practice.

A limitation of simulation models is that simplifying assumptions must be made. Such

assumptions arise, for example, from the examination of a limited set of factors in the
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causal model, the need to hold some aspects of the study parameters constant while
varying others, or the practical need to limit to a specific range of parameters to
improve interpretation. Therefore, a common criticism of quantitative bias analyses is
that the scenarios are not truly representative of real-world situations. However, the
work completed in this PhD thesis should be considered a building block on which
more complex simulations can be built to replicate more complicated bias
mechanisms. An additional limitation of the simulation studies may be the inclusion of
only one unmeasured confounder in the simulation models. However, it may be
considered that an unmeasured confounder that is both strong in prevalence and
strength may comprise multiple smaller unmeasured confounders. An additional
limitation of the simulation models included in this thesis is that the included variables
were categorical. This is not uncommon in perinatal epidemiology where risk factors
and outcomes often have binary classifications. The same principles apply to
simulation studies when risk factors and outcomes occur on a continuum. The model
family, link function and error distributions can be amended accordingly. The inclusion
of time-varying exposures or risk factors was not explicitly modelled in the simulation
models included in this thesis. As simulations are based on substantive knowledge of
the data generating mechanisms, time-varying exposures prove challenging due to
the need to observe individuals over time. Nonetheless, my approach to the design of
the included simulations, which included explicit specifications of the theoretical model
in the form of DAGS, is generalisable to time-varying factors, which can be included in
the DAG by including time in the definition of the variable.3® A final limitation is that
the included simulations did not quantify bias from misclassification, which is a
common source of bias, particularly when exposure or outcome assessment is
challenging (e.g. environmental exposures, latent variables, self-reported states, and
non-specific diagnostic criteria). This was beyond the scope of this PhD thesis as the
inclusion of misclassification of the exposure and/or outcome in addition to selection
bias and bias from the influence of confounding would generate an impractical number
of combinations to investigate in a single thesis. Nonetheless an achievable activity

when using simulation methods and should be considered for future research.

7.6Direction for future research
This thesis demonstrated that simulation methods are a powerful tool to quantifying

the influence of bias in perinatal epidemiology. As established in this thesis, simulation
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methods do not have to be complicated; they can complement traditional
epidemiological studies to strengthen the validity of results. For example, simulation
can generate data for important variables that are omitted from a dataset - variables
that could potentially explain the observed exposure-outcome association. Simulation
can also correct for misclassified variables, a common source of bias due to
inaccuracies in the exposure, outcome and confounding variables. Simulations of this
nature are a relatively simple exercise that should be achievable for all perinatal
epidemiologists. The increase of well-designed pre-conception cohort studies may
provide richer data, including a better set of adjustment variables. However, there
would always remain a degree of bias from confounders that are unknown (i.e. not yet
discovered) and bias from self-reported variables, such as maternal smoking.
Therefore, future researchers should consider the use of simulation to account for
omitted variables in statistical modelling and to correct for misclassified variables; this
will prevent the reporting of biased estimated effects and improve causal inference in

perinatal epidemiology.

The simulation studies included in this thesis made use of DAGs to illustrate bias
mechanisms. This is a practice that all perinatal epidemiologist should undertake prior
to their data analysis. Graphically drawing the associations between variables will
reveal potential sources of bias that may not be obvious to researchers otherwise.
DAGs are useful in identifying collider variables, particularly those that may be
mistaken for confounders. One such example is M Bias, where bias results from
conditioning on a variable that is caused by two other variables, one of which is the
cause of the exposure and the other is the cause of the outcome.3'” A naive approach
may involve adjustment for all three variables - the collider, the cause of the exposure
and the cause of the outcome - believing that such adjustment will “control” for any
spurious associations attributable to all pathways involving these variables, when in
fact it will lead to a bias of the observed associations, the direction of which can be
either upward or downward. To avoid the perils of such hidden bias mechanisms,
perinatal epidemiologists must draw a DAG to illustrate the causal relationship
amongst their set of included variables prior to undertaking data analysis. Ideally, the
inclusion of a DAG should be mandated in peer-reviewed publications that report

perinatal aetiological associations.
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Although DAGs are a vital tool to illuminate complex bias mechanisms that are more
difficult to avoid in perinatal research, they only tell us one part of the bias analysis
story. In order to increase our understanding of the consequences of bias
mechanisms, we must undertake a quantitative analysis to determine the magnitude
and direction of the influence of bias on perinatal aetiological associations. The
undertaking of simulation studies to quantify bias is a worthwhile activity that enables
researchers to strengthen the validity of perinatal associations drawn from
observational studies. The included simulation studies in this thesis have high
reproducibility, which combined with the provision of a framework on the application
of simulation to quantify bias, makes simulation methodologies more accessible to
researchers. Bias analysis is a very important facet of epidemiological research;
therefore, more research that quantifies the influence of bias is necessary. The
application of simulations is an achievable methodology that all perinatal
epidemiologist need to develop skills in. To strengthen the validity of perinatal
associations, future researchers should apply simulation to quantify bias in addition to

the reporting of traditional epidemiological methods.

Moving forward, perinatal epidemiologists need to apply simulation to increase our
understanding of paradoxical associations, an intractable problem in perinatal
epidemiology and one that cannot necessarily be resolved by closed form
mathematical expressions. Using the traditional example of the birthweight paradox,
researchers have tried to explain the protective effect of maternal smoking on neonatal
mortality®* 109112, 176 (or pre-eclampsial® 101 154) from different bias mechanisms
(collider-stratification due to conditioning on birth weight®# 100, 101, 109-112, 154, 166, 176 g
gestational age!®* and left truncation? 318) Despite numerous attempts, researchers
have not been able to fully explain this inverse association. It is plausible that
mechanisms required to induce such strong bias is due to a complex interaction
between bias mechanisms of selection, confounding and misclassification. Simulation
has the potential to solve this riddle, elucidating these obscure mechanisms that can
lead to paradoxical associations. These counter-intuitive associations are also likely
subjected to publication bias and therefore their prevalence in perinatal epidemiology
may be underestimated. Future researchers should apply simulation methodologies
to increase our understanding of these complex and elusive bias mechanisms that

have the potential to obfuscate perinatal aetiological associations.
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7.7Conclusion

This thesis has confirmed that simulation is a dynamic tool to quantifying the influence
of bias in perinatal epidemiology. There should be no doubt that quantification of bias
is a worthwhile activity, as it enables researchers to strengthen the validity of perinatal
associations drawn from observational studies. Simulation methodologies have a
number of advantages that make them integral to quantitative bias analysis.
Simulations can account for data that is missing, misclassified and replicate complex
bias mechanisms that are often not obviously visible to researchers, nor are
answerable by closed form mathematical expressions. Simulations can rapidly
conduct numerous experiments to test bias mechanisms across a range of scenarios

that represent real-life situations.

The simulation studies in this thesis have demonstrated the application of simulation
to quantify important bias mechanisms that are common to perinatal epidemiology.
The included studies extricated the role of the collider in selection bias and mediated
associations, providing a methodology that can be applied to quantify the influence of
bias across a range of perinatal epidemiological associations. The development of a
framework supports perinatal epidemiologists to develop skills in the quantification of
bias; thereby increasing the breadth of studies that undertake quantitative bias
analysis in epidemiology. Taken together, the included studies make the application

of simulation to quantify bias more accessible to perinatal epidemiologists.

The ubiquity of bias in observational studies necessitates further research to provide
clarity on the influence of bias mechanisms common to perinatal epidemiological
studies. Researchers should consider the application of simulation studies to quantify
the magnitude and direction of such bias mechanisms in addition to traditional
epidemiological methods. Moving forward, simulation methodologies have the
potential to explain paradoxical associations and elucidate the complex bias

mechanisms from which they evolve.
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Purpoze: The application of simulated data in epidemiclogical studies enables the illustration and quan-
tification of the magnitwde of various types of bias commaonly found in observational studies. This was a
review of the application of simulation metheds to the quantification of bias in reproductive and perina-
tal epidemiclogy and an assessment of value gained.

Methods: A search of published studies available in English was conducted in Awgust 2020 using PubMed,
Medline, Embase, CINAHL, and Scopus. A gray literature search of Google and Google Scholar, and a hand
search using the meference lists of induded studies was undertaken.

Results: Thirty-nine papers were induded in this study, covering information (n - 14), selection (n - 14),
confounding [n — 9), protection (n — 1), and attemmation bias (n — 1). The methods of simulating data
and reporting of resulis varied, with more recent studies including causal diagrams. Few studies included
codde for replication.

Condusions: Although there has been an increasing application of simulation in reproductive and peri-
natal epidemiology since 2015, overall this remains an underexplored area. Further efforts are requined
to increase knowledge of how the application of simulation can quantify the influence of bias, includ-
ing improved design, analysis and reporiing. This will improve causal interpretation in reproductive and

perinatal studies.

i 2021 Hsevier Inc. All nights reserved.

Introduction

Reproductive and perinatal epidemiology seeks o establish the
effects of exposures on marernal and neonatal ourcomes before,
during and after pregnancy [1]. As randomized comtrolled trials
cannot always be conducted in pregnant women for ethical rea-
sons [2], well-designed observarional studies have provided infor-
marion 1w increase the understanding of causal effects in repro-
ductive and perinatal health [2). Due w the non-random namre
of observarional studies, they can be prone w bias [2], influencing

The amhors declare that they have 0o known competing fnancial inerests or
personal relatonships that could have appeared 10 influence the work repored in
his paper.
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1047-2757 /0 2021 Elsevier e All TgNIs eserved.
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causal inference, Bias results from systemartic errors in study de-
sign, conduct or data analysis, and unlike random error, does not
decrease as siudy size increases [1]. To smrengrhen the validity of
associations drawn from observational studies, i is therefore im-
portant o identify and evaluate potential sources of bias.
Reproductive and perinatal smudies are vulnerable o unique
methodological challenges. The smudy population themselves are
widespread from preconceprion o birth stages, and include pop-
ularions thar are difficult to define, such as women who may con-
ceive in the furure [4]. Proving an additional challenge is thar the
study populations are incomplerely observed due o high amrition
from the preconception period rthrough o birch [4). Thereby, by
the time pregnancy is established, an extensive cohort amrition
has already ocourred; estimared to be 2500 early pregnancy losses
per 10,000 implantations [5). Consequently, the use of birth regis-
ter darasers, which are generally restricted w specific periods and
in many cases live births, can introduce bias because the sam-
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ple i thus restricted |G Conditioning oo intermediaries that are
on the cassal pathway also proves problematic 6] Comditioning
on a collider, 2 common effect of the exposure and outcome, or
a variable infleenced by the mollider, can induce a specious asso-
ciation bebween the exposure and outcome |7). Ome soch exam-
ple of such chall=nges in perinatal epidemiology i= how io deal
with gestational-age-specific or birth-weight -specific associations
that lie om the cansal paihway between exposure(s) and an out-
come |G Reproductive and perinatal epidemiological studies are
also impacted by information bias, 2 measurement sror of expo-
sures, outcomes amd potential confoanders |E). For example, ges-
tational age can be cabculated using various methods: fetal whra-
soumd measurement, first day of the last menstnual period, time of
in vitro fertilization, or based on dinical judgement after birth |E).
Al thess measunes are prose 1o some degree of misclassification,
not all of which are at random |E|. Additionally, information bias
can be introduced during, the data analysis phase. such as the in-
corrert cabegorization of continwous data [9]. Thus, selection, con-
Toumding amd information bizs are whiquitous in repodoctive and
perinatal research |4,6], compromizing study valsdity [ 10].

(antitative bias analysis methods to estimate systematic ermors
in epademiclogy are available |11, the basic principle of which is
it assign plausihle valwes io bias parameters to determine the in-
fluence of bizs |12] Howeser, there are 2 number of limitations
in the available methods. Semsitivity amabysis, 2 standard practice,
only assesses one binary wariable independently [13). & limata-
tion of multiple bias analysis modelling i the assumption that
the bias are indepemdent, which may not eeflect achuality | 14)
More recent methods have been developed o cakoulate the -
fects of ummeasuwred medistors: however, unless the medator s
binary the study will require 2 large number of paramssters | 15).
In recemt years, quantitative bias anabysis methods have been ex-
panded to mchsde simulation [12), empincal experiments that in-
vohe applying epidemiological modelling 1o simulated bias param-
eters 1G] Computer simulations comprise a broad range of mm-
putationzl practices that vary across disciplinary Gelds | 17). This
review is interested in simulations that replicate complex caasal
stractures, therehy allowing the illusiration amd quantification of
bias by comparimg scenarios for the observed assocation with al-
termative soenarios |18, One of the maim benefits of simualation
is that it emables researchers to conduct numenns experiments,
exploring complex causal pathways beiween exposures amd out-
comes. This has beem greatly Gcilitated by technological advances
that have led o improved compotation speed at lower cost. While
simmlation as 2 method is well-sgtahblished |I7] theee is 2 pascity
of research using smulitions o quantify bizx across epidemialogy
in gemeral | 1G], The reasons for the limited application of simm-
latiom as a method to quandify bias in reproducive and perinatal
epidenviology could be due to several Gotors. Notably, there i a
lack of guidamce m the design and implememtation of simualation
| ¥ combimed with researchers with a limited skillset = statis-
tical modelling [19] and a lack of mterest in exploring mew e-
search methods |16 Farther to this, adoptioa of simulation may
be mpeded by negative reports that shedies that use simualation
are prone to poor design, analysis and reporting | 16

Although the problems of bias in observalional studies are well-
acknowledged, reviews of the application of methods o address
this bias remain limited [20] Furtber, mo shady bhas domumented
how simulation methods have bren applied in the quantification of
bias im reproductive or perinatal epidemiology, which would oth-
emwise be of inberest to those who would wizh to apply simulation
within this field To address this, we aimed o systematically re-
view the published literature to provide an assessment of the value
gaimed in reproductive and perinatal research, and o identify best
practices in the application of simulation in the quantification of
bias.

Appendices

Amnak of Epvlemuioiagy £7 (27 ) 85 10
Mezthiods
Seardh strategy

A systematic s=arch of four databases (PubMed, Medline, EM-
BASE, CONAHL and Scopus) was conducted from the start of in-
dexing to the August 31, 2020, Search strategies for sach database
used the particular databases controlled wocabulary [e.g. medical
subjert headings [Mesh) terms) and free-text berms [ Appemdin AL
A search on Googles and Google Scholar was umdertaken to iden-
tify Eray literature {Le liberature that has not been formally pub-
liskeed in a peer-reviewed mdexed format) wsing smulation meth-
odds in perinatal amd reproductive epidemiclory. A combination of
key terms were used: simulat' AND bizs AND (reproductive OR
perinatal) D= ta the large nature of search resal=s in Google
Scholar, the search was limsted to the Grst 100 resulis reburmed
sorted by relevamce. To capture antickes that may hawe beem in-
dexed incorrecthy. farber data collection was completsd wsing a
systematic retrospedtive smowhall sampls. Here, 2 hand search was
mumducted wsing the reference Bsts of incheded studies to demtify
additional redevant articles. Al references wene exported o Emd-
note X3 (Thomson Reuters)

Study selection

Studies idemtified by the search srategy were initially scosened
for eligibility by the prmary author. The initial eligibality criteria,
based on am abstract and title screem, was: 1) examination of the
bias types as defimed m the search, amd ) fooased on reproduoc-
tive or perimatal outromes as defined in the search [ Appendix A)
Srudies were exclded vsing @ pnon exclasion criteria as follows:
1) does not inchede reproducivee or perinatal outromes in humans,
2] are conference abstracts, review papers | i, narmative ar
literature), editorials or apinion letters, amd 3) are not published in
Englich. Studies that fulfill=d these criteria were obtainsd for a fall-
text review 1o determine if simulated data is applisd as 2 method
1o guantify bias. Stadies were exdsded if the details of the simu-
lation process were not imcluded | the article. Title and abstract
screening, were usddertaken by the primany asthor. For the full-text
screening, a second imd reviewer (MO comducted a dual
reviews for a sub-sample [205) of the reconds. When conflices for
inchiding/exchuding articles between the tao reviewers ocoureed, a
third independent reviewser (GT) was invobeed for a final decision

Dato =ctradion

Studies were reinieved for inchision through a two-stage: jir-

cess aoronding to the inclasion andfor exclusion criteria

above. The key charscteristics and methodiology details weres tabu-
lated and discusssd. Standard bibliographic miormation [authors,
amd journal year of publication) was extracbed. Additionally, the
objedives of each study were extracied, type of bias, exposure amd
outromes, orginal cobort (5 any], simulation method, simulatson
amalysis, simulation resulis, asthor’s conchisions, and the key fimd-
ings of the simalation stsdy. Shudies were reported accordimg o
the type of bias. We reported shidy featuees such as the use of
causal dizgrams and statistical software, mcuding, the awilability
af code.

Rezuliz

Our searches returmed 1390 records through  bibliographic
databases amd an additional 171 reconds from gray lEeraioe
searches. After emoving duplicates 913 unigue tithes and abstracts
remained of which B0 artickes were refrieved for full-dext screen.
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OF thee 90 studies eligibde for the full text screenimg, 51 were ex-
cluded (See Appendiz B for reasons for full-text exclusions). The
principal reasom for exchesions were that the shoedies did not gquan-
tify hias o= the primary aim stady (v = 91). (ther reasons for ex-
clasion imcladed not applying smubition or where the application
al simulation were not core to the articlks [(n = 8] Fight stodies
did not apply simalated data and four studies applied simulation
for the purpose of leamning im a dinical environment. & total of 59
artick=s met the inclusion criteria as the studies applied simula-
tson methods to the quantification of bias in reproducine or peri-
natal spidemiclogy. The process of study identification, screening
amdl inchusion i summarised in Figure 1. The incuded shudies cov-
ered three main areas of bias: infommation (n = 4], selection [n
= 14} and onfousding (n = 9% One shady quamtified prolection
bias, defined by the authors as the effect of the ahility 1o protect
against giving birth io an umintemded child” in measures of tine-bo-
pregnancy [21) Another study investigated the offects of attenua-
thon in stady designs used to determines the oumulative probahility
af pregrancy |22]. Overall, perinatal outcomes were examinesd in
27 shadies and 12 shadies sxamined reproductive ostcomes. The
timelime of the shudies ranged from 1983 to 2009, with 18 shedies
published since 2015 (Fig. 2} See Appendio C for a summary of the
study charactenishics.

Informanon s

OF the studies that quantified information bias, all quantifed
misclassification bias. The earfiest published reproductive study
|1 investigated reporting ermors resulting from collecting ==
reporied data m a time-bo-pregnancy study, producing bias bo-
wards the mull One shedy [24)] imvestigated the pobentizl magmi-

Appendices

e of error resulting from loss to follow ap in shadies of fertility,
noting that the retum of pregmamt drop-outs 1o the study bizsed
cumulative pregnancy rales [24) Four siudies examimed misclas-
sification bias assocated with gestational age. One shdy [25) ex-
amimed misclassification bias caused by ermors in gestational age
on spontaneows abortion studies. &nother shady [26] evaluated the
imipact of mis specifying the distribations of weight gain and ges-
tational age using directed acyclic diagrams to inform the simula-
ton. A later shady [27) specfied a model that imvestigated Gans-
sian measurement emmor in gestational age on the subssquent risk
of preterm birth, findimg that parameter estimation was mostly un-
biased. Lastly, a study [28] used gestational age at arest of de-
velopment o reduce misdassification bias for time-varying expo-
sures on the nsk of miscamage. Three atides imvestigated mis-
dassification bias in studies of the impact of pollutants on peri-
natal outcomes. The first study |29] applied simulation io esti-
mabe bizs in relative risk etimates doe (0 exposure misclassifica-
tian in disinfertian by-product in binkweight sudies. & 2016 shady
|20 evaluabed the impact of uncertainty m edtimated Perfluono:c-
tanoic acil drinking-water conoentrations on estimated serum con-
centrations and pre-sclampsia. A later shady [31)] applied simula-
ton to determine the impact of mabermal residential mobility dur-
ing pregmancy on idemtifying critical windiows of susceptibility o
term loswe hirth weight from weekly exposare to particalate mat-
ter less than or equal to Mgy in ssmdymamic diameter (PML
A shady from 20047 evaluated bizs argsing from misclassification
al pre-pregruncy body mass index and its association with sardy
preterm births. Ancther study [13), quantified the extent to which
curmrent measures of gestational weight gain could bias the mela-
tonship betwern matermal weight gaim and sk of preterm hirth.
One study | 34) demonstrated how the correction for misclassifica-
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tion in & timee-warying exposure of influenza vaconation using sur-
wival amalysis. Another sudy [35) demonstrated that bias moreased
with advancing gestational age at amtiretroviral therapy mitiation
amdl the introdwction of gestational age measarement ermor. The
final study imeesiigated the ability of the propensity scoee bo -
duce confounding bias in the presence of non-differential misclas-
sification of treatment [36) The authors showed im the presenoe of
even maderate misclassification, all methods (adjustment, weight-
ing, matchimg and stratification) increased bias estimates [36G]

Felaction bias

OF the three shadies that examimed bizs in reproductiee out-
comes, the earliest | 37| evaluated how the availability of contra-
ceprion and mdwoed shortion might bizs studies of time trends i
couple’s fertility. The second reproductive siudy | 58] forused o
selection bias im pregramcy samples for time-to-pregnancy, with
the authors finding that even when feoumdity decreased with aze,
the estimation of the effect of age showed the opposite trend. An-
otber reprduciive study | 3] imvestigated bias fom left tnmca-
tion in time-to-pregnancy, demonstrating that foed or varizhle dif-
Teremtial b=t tnmcation can bizs resulis either towands or sy
from the null A perinatal study |40] imeestigated lefit truncation
hias in spontamecus abortion studies when the exposure i mater-
nal smoking, with the simulation suggestimg that a difference in
10 darys or more i gestational age at entry biased the odds ratio
of spontaneous abortion by more than 206 Lsonkova amd Joseph
|41] investigated whether lefi truncation bias could explain the
negative associdtion betwesn smoking amd pre-edampsia, Gnding
a probective effect of pre-sclampsia gven smoking evem in sim-
ulations that did mot require assumptions about early pregnancy
loss. Kinlaw et al [42) then examined the semsitivity of the as-
sumptions in the Lisonkowa and Joseph study, sugzesting that the
earlier shady’s results were highly dependent om assamplions re-
garding the strength of association betwesn abnommal placentation
amtl pre-eclampsia, resulting in less bias than the Lisonkowa amed
Joseph study [41 | suggested. Another study [49)] also examined the
smoking pre-eclampsia paradox with results indicating that the bi-
ased effect of smoking was estimated to reduce the odds of pre-
eclamypsia by 28L and after stratification by gestational age at de-
livery by THE

Appendices

Thres studies examined collider-stratification bias. The first
study |44] investigated the ‘hirthweight' paradox, where birth-
weight speaiic mortality curves cross afber siratification by smok-
ing stats. Another shudy |45) quantified selection bias when ad-
justimg, for gestational age, which was considered as the oollider
variable where preterm birth was a predicior for neonatal mortal-
ity. Here, comditioning on the oollider of gestational age bed o the
reversal of exposmare-ouicome association [45) A later shady oa the
effect of asthma medication durimg pregnancy on major congeni-
tal malformations [46] svalated the potential impact of sslection
bias due bo conditioming on a collider of delivery after 20 weeks
gestation. This shidy foumd that selection bias coukd be partially
mitigated by controdling for other varables that are not colliders,
on exposure-ntcome pathway [4G6]. One shudy |47 quantified the
impact of initial scection into the national birth dataset on dif-
ferent associations between well-established risk Gotors and preg-
nancy oulcomes. Another shudy |48) illustrated how seection bias
affecting, shadies restricted o very pretemm births should be care-
fully imterpreted, 2= pre-edampsia can appear o redwce the nisk
of adverse neonatal outromes. & Liter shody [55) hypothesized that
ke koweer risk of preterm birth amongs women who imitiabe an-
tiretroviral therapy during pregnancy compared to thaose already
receiving therapy is due to seection bias. In this shedy, selection
hias increased with advancing gestational age al therapy initiztson
and the intraduction of gestational age me=asarement emor [15)
Anather study |49] used simmlation to demonsirate how condilion-
ing on live birth can mduce selection bias in shidies of drug effecs
on pregnancy complications when fetal death is a competimg, risk
or & also cawsed by the complication. Another stady |50] quan-
tified both selection amd misdassification bias in studies of repro-
ductive abortion-related mortality, applying explict assumptions in
a multiple-bias anabysiz model.

Confounding biss

The =ariest reproductiee paper i this review examimed bias
amsing from inadequate statistical comtrod that impacts gravidity
aml gravidity-specific relative risks [51) &nother study [52) quan-
tified potential souroes of bias relabed to seasonal variation in re-
productive Giluees, demonstrating that seasonal plasming diffes-
ences | subferund females lead to vanations m reproducte fail-
ures. & later study |53) found that differential persistence in preg-
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nancy atiempis, which are age-dependent, bads to the obsera-
tion that older women conceive faster on average unless ansuc-
cessful waiting times are considered. The final reprodoctive shady
| 54| highlighted fixed cobon bizs in pregnancy studies when esti-
mating the effects of srasonal exposures om binh oulcomes. When
shorter and longer pregnancies are missing, bias can be subsiantial,
changing the estimated effect of temperatare on gestational length
|54). One perinatal shady |55 posalated that the relationship be-
tween birthweigit and mortality could be explained by confoumd-
ing [actors that decrease birthweight amd als increase montality.
The same authors expanded their previous model im0 a Liber shady
|55) to demonsirate that the addition of a smple exposune could
produce 2 paradoxical reversal of risk among, small babies. & later
sty |57) considered the effects of time-varying covariates such
as weight gain on preterm defivery when their motual depen-
dence pelies on gestational age. The study suggested that Gilore
1o acroamt for confounding effects of tme on gestational weight
gaim produced a simnger association between higher weight gain
amd later delivery |57). One study 58] mvestigated bias when ges-
tational age acting a= a mediator bebween maternal asthma amd
small for gestational age. Here, the amtbors consider small for ges-
tational age 1o be an absorbing vaniable, that is the observed a=<o-
ciation between the exposure and small for gestational age solely
reflected the direct effect of the sxposure om bith weeight [58] The
final pennatal study |59) vsed simulation o quantify cluster-lesel
confoumding of the effect of carsarean section on the Apgar score,
finding that preferential within-clster matching approach showed
a good performance in the presence of big and small clusters.

Simaekation methods

OF the 19 included studies, 24 studes based their smulations
on an original color; three shidies based their simualations on pre-
wiously published papers with the remaiming twehee studies creat-
ing hypothetical cohorts. Koy Gndings related to the types of bias
investigated and the simalation methods applisd are summarized
in Table 1. Mine stidies wsed Monte Cardo simulaticn methods for
data gemeration. One study used a hidden Markow mode to 2
count for measarement ermor in gestational age |27 The primary
method of statistical analysis was logistic regression, with sixteen
shudies reporting odds ratios. Cox regression models were wsed
o caloalate hazand ratios in sght shidies. Belative risks were me-
ported m six Sudies. Two reproductee. studies [55,56) produced
mortality curves and one | 18] produced Kaplan-Meier curees for
wailimg, time-io-pregnancy. One perinatal siudy produced  generate
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hirthweight-specific monality cunees stratified om a binary risk fac-
lor of mlerest [44]

Elven studies used cansal dizgrams o represemt their cansal
reseapch question and informe their ssmulation shadies. One repro-
ductive shudy applied 3 causal diagram im a study of time trends
in fertility [47) Two perinatal shedies used a direced acyelic dia-
gram (&G whers gestational age was the potential mediator be-
tween the sxposure of interest amd binth weeight [45,58] A siudy
on mformation bias, used D&Gs 1o depict the cormelation befwesn
weight gain and gestational aze longiwdinally across gestation be-
fore buildimg smulations [26] Three studies used DAGs 1o describe
the smoking-pre-echmpsa parsdoe [42-44] Anctber sudy vsed a
DAL 1o illustrate collider-stratification bizs wihen conditioming on
Iive hirth [459). Two studies used D&Cs o dlustrate bas resulting
from restriction to lve birtks in pharmacological shadies 46,449,
amd one study ilhestrated measuremsest ermor in 2 pharmacological
study |35 Nimeteen studies disclosed their statistical software. R
weme the most commonly wsed in eight studies, Five authors wsed
EAS, four used STATA, one used Microsoft Excel and an early sindy
(from 129%) used BASIC One shody used a combination of R amd
MATLAE. Six studies made their code availabde online and two oth-
ers agreed to make oode aailable upon request. [Appendic I con-
laims a chedkdist for the application of simulaison in shadies that
quantify bias using observational data).

Discussion

Although it is standand practice to report pobential sources. of
bias, this review highlights that few repmoductive amd perimatal
epidemmiological shidies have quantitatieely evaluated bizs This is
ke first review of the application of simmlation to quamtifying the
influence of bias, providimg a catalogee of diverse application i
ke fiedd. This is an importam! 1opic due to the potential o improve
causal inference by providing costext for chsenational results, Our
fimding= highlight thar althowgh simulation is a promising metbod
for quantifymg the inflsence of bias, it remains infrequestly uti-
lized in reproductive and pennatal studies. Monetbheless, there has
been a significant increase inits application 1o evaluate bias in this
specific feld since M015% As neight be expected, thers were con-
siderable differences im how the smulitions were desigmed, pre-
senbed, and reported, pevealing a range of specific areas where im-
provement can be made.

Une of the main advantages of simalation is the potential to
imeestigate scenarios thal were not directly observed or cannot be
directly ohserved, scenarios in which the tne underlying causal =f-
fert of an exposure om an outcome can be bounded but is gen-
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erally unkmown || This is particulardy relevant in perinatal me-
search where the shady population is mmompletely ohservable, i
part due to perinatal databases restricting to specified gestational
time-periods im pregnancy. This isase is nof unigue o registries, as
prospective cohorts are also usnaally limited to “recognized” preg-
nancies. Az evidenced im this revieve, such left truncation can resolt
in bias towward the mall, bias away from the null, and loss of pre-
cision [|41,446163] Importamtly, simalatimg a population for un-
measured confounders can not only improve precision but can po-
tentially highlight the impact of rare pathologies on adwerse oot-
comies | 5G], Further, smnulation cam illustrae bizs when stratifng
on an iMermediate such 2= gestatsonal age or birth weight, which
can lead 1o unexpected resals such as the imlersedtion of mor-
tality curves |[445556) Simulation cam also demonstrate whether
collider-stratification results in a level of bizs that would be off con-
cern |42-44.4952), as the incorredt hamdlimg of colliders can yield
paradoxical associations [42-444962) This = a valid concem for
rescarchers, as cosditioning on a collider mach as gestational length
will introduce bias, regardless of wihether that collider i restricted
on ar adjusted for in 2 model [52). &s demonsirated m this revies,
simmulation is a valuable method o commect estimates for poben-
tial measurement ermoc A tnee representation of the cawssal path-
way would typically consider more tham one type of bias, yet anly
Tour of the reviewed siudies considered more than ome type of bias
|65 50068 However, it remnains umclear whether there is a lack
af coafidence or Lick of interest by researchers has led to the lim-
ited application of smuolation in muliple bias analysis m eeproduc-
tive amd perinatal epidemiology.

This rewiew highlighted several attributes that were commoa to
the inchuded studies. The first is the use of cassal diagrams o in-
form the development of the simulation. Causal diagrams are powe-
erful iools that can aid researchers in constructing models hased
on hypothesized biologic mechamisms in order 1o prodece the k=ast
biased effect estimates possible G4 Considerable literature has
beem published on the best approach to the application of causal
di ., mone recently with perinatal examples 64,65 Despite
the evidence that imformation bias has a dear and helpful repre-
sentation within the causal dizgram Framework |GG, there remains
limited application of causal diagrams in the wider epidemiological
context. The sscond altribute commen to the induded shidies was
the carefial selection of bias pammeters o represent sffect sizes
within the bounds of associations. & common caveal ackmowledged
in the imcheded studies was that the simulation was oaly a= good
a= the assumptions that informed the parameters 1541 4040650).
Bias paramssters and the causal structares that anderpim the sim-
ulations are largely bazed om researcher kmowledge and  previ-
ously published literature. Although sach caveats are unavoidable,
a gemeral limitation of the included studies was the lack of clar-
ity from where the estimated bias parameters were derived. Over-
all a limitatiom of the application of simulation in epademinlogy,
which was also evidenced in this revewe, s that the smulitions
are aften over-simpliied and do not reflect the true complexity of
the true camsal assoration. Monetheless, the application of simmla-
fion was an improvement, as it accounted for greater complexity
of the undedying tnee cansal pathveays than observational sudies
abone.

Scientific evidemce is strengibensd by the replication of mpor-
tant fndings by multiple mdependent shadies; howewer, replication
may not be ahways feasible dee o costs amd difference in the con-
text where the epidemiological population data were drawn [G7)
Am attamable minimum stasedard can be reproduchility, where in-
dependent investigalors subyject their original data to their anaby-
=zis amd interpretations based on published protocols and code |G7).
The reporting of simulation protocols and the redease of mode ame
important considerations m reprocuctive and perinatal epidemi-
alogy [1G], enabling researchers o identify bias scenarios om-
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meanly foand in all reproductive and perinatal research questions.
However, anly 2 handiful of inchuded studies in this review shamed
their code in the public domain, Increasing stidy reprocucibility
can hindate processes that produce contradictory results. & work-
ing example of contradictony results was evident in this review in
regards o the paradoxical mwverse associstion between matemnal
smioking and pre-edampsia [41,42)0 One study propossd that lefi
truncation bias was responsible for a protective effect of mater-
nal smoking om pre-edampsia, based on the assumiption that thene
was no direct effect of smokimg on pre-eclampsia but an indirect
effect through abnormal placentation |41). Another research group
examined the semsitivity of these condusions, constnecting & new
simulation model using published estimates to frame their bias pa-
rameters |42) These authors condudisd that umder more emypiri-
cal assumptions, bizs from left truncation doss not fully acoount
for the imerse association between maternal smoking amd pre-
eclampsia [42] Rather, when ket truncation may result from the
expasure, researchers should desoribe the target population amd
parameter of interest prior o assessing potential bias [42)

There are no published poidelines for the development and ap-
pication of simulation shadies in epidemiology for the purpose of
bias amabysis. A 20M paper provided a gaide for conducting amd
presenting quanditative bias anabysis research sudies, highlighting
the importance of diagams o establish causal pathway and the
careful selection bizs parameter [[1]. In recent years, several epi-
demiclogical studies have been published under the famework of
quantitative bias analysis [GB| Az ewidemced in this review, the
number of studies publishing under the quantitative bias anaby-
sis framework is limited [%2] compared to the sumber of shad-
ies applying simulation im bias amalysis. This may indicate that a
broader approach for the development, analbysis and reporting of
stidies applying simulation in bizs amalysis is requieed. In 2003
the STRemgibeming Analytical Thinkimg for Obserctional Shedies
(5THATOS) group was established to guide health researchers to
meet the rapid development of statistical methodology | B Re-
cently, members of the STRATOS simulation study paned publisbed
a guide on the application of satistical smulations in health re-
search, which inchided a helpful example of measurement eror
in confounding, and exposure variables |IE) Yet it could be con-
sidered a polential mizsed cpportunity to oonsider the mmpact of
bias more holistically, imcluding complications from selection bias
amil e dangers of stratifying or adjusting for oolliders m ohserva-
tional studies. Overall, there remains a lack of guidance 1o inform
reszarchiers of the practical steps in the development, analysis amd
reporting of simulation for the quantification of the miluemce of
multiple types of bias m ohservational spidemiological sthdies.

The siremgth of this review was a ive search strab-
egy that inchided keyword smarches and oitations indexes of key
sowrres of simulation i\ reproductive and epidemiology  shedies
that mwestigated biss. This review also considersd the application
of simulated data o different types of bizs im the broad research
ameas of reproductive and perinatal health. Our search strategy me-
stricted shadies to those that described simalation methods within
the paper. Conseqoently we may have excluded sthidies that in-
cluded simulation methods in sapplementary matenial or those
quantifying bias through other methods. Due o a bck of formal
critical appraizal tools for simulation studies, an additional limita-
tion is that this shudy did not meduct a quality assessment of the
inchided studies. Although the inclsded shudies” primary aims cen-
tered on bias analysis with smublition as an integral component,
the smulation itsell was not abways their et forus. Az such,
ke studies did ot need o report all imporant aspects of their
simulations bo achieve their study aims. Finally, a5 we intended to
identify the extent to which simulation has been applied in the
field, the types of applications of simulation, and potential advan-
tages of simulation, we did not evaluate the degeee to which the
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simmlations in each study were effective in achieving the mespec-
tive indevichial shady aims.

Conclusion

Thie u== of simulation to quastify bias in reprodective and peri-
natal epidemiology remains relatively limited. The use of causal di-
agrams amd the reporting of simulation code s minimal. The oo
remt applications and examples of simulation demonstrated that
such techmiques cam be implemented to more comprehensively in-
westigate associations. Simulation should be considersd 2= 2 tom-
plementary method i observational studies, rather than 2 compst-
ing method of analysiz. It is possible that the potential of simula-
tian to address common issues of bias s reproductive and peri-
natal epsdemiclogy is utnder-emphasized due (o an overll lack of
knowledge in the process of their application, Lick of the neoes-
sary momputational skillset among researchers in the feld, lack
of a well-esiablished reporting standard, or possibly the lade of
knowledge on potemtial applications. Increased adoption could be

Amas of Enulemiiagy 57 (207 85 19

achieved thmugh a mone holistic approach o research regarding
simulation methodology, which might inchide cataloguing sucress-
fusl applications of simulation, development of protocols for report-
ing of simulations studies, complementary application of simula-
tion in observational shudies to address bias, amd sharing of sim-
lation code.
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Appendix B. Records excleded at fall-text screening with
rEIS0NS

L Adebayo et al. Analyzing infamt monality with geoadditee
cabegorical regression models: A case study for Migeria. Eoo-
momics and Hueman Biclogy 2004, 2 r2atoadd
EBeazon for exclusion: The primary aim is mol o quantify
bias,

2 Aiken et al Management of fetal malposition in the seoomd
stage of labor: A propensity score analysis. American Joarnal
off Obstetrics and Gymecology 2015 212[3 5335 1-1357
Eea=on for exclusion: This study did not use siomlated dala.

1. Bamg et al. Estimating treatmen! effects in shadies of perina-
tal transmission of HIV. Biostatistics 2004 5123143
Beazons for exclusion: The primary aim is not bo quantify
bias,

4 Baszo o al The performance of several mdicators im defect-
img recall bias. Epidemiology 15997 &1)-269-274
Beazons for exclusion: The primary aim is not bo quantify
bias,

i Brubaker et al. Vaginal progesterone in women with twin
gestations complicabed by short cerix: A& retrospecive oo-
hart study. BJDG 2015 1245 712-TIS
Beazoms for exchesion: This study did mot use simmlabed
data

i Chasmsaithong et al. Utenne anery palsatility index m the
first trimester: assessment of intersonodiagramer and inber-
sampling, site measuremend differemces. Journal of Maternal-
Fetal amd Neonatal Medicine 5018 3] 1722702283
Beazons for exclusion: The primary aim is not bo quantify
bias,
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. Cies et al. Population pharmamiimetics of gemtamicm in

mennaies with hypoxemic-ischemic ey rece-
mg controlled bypothermia. Pharmarotherapy: The Journal
of Human Phamacology & Drug Therapy 2008 38{117:11:20-
114
Rezsons for exclusion: The primary aim is not o quantify
bias.

. Cirillo et al The human factor: does the operator peformuing

the embryo transfer significantly impact the opcde outcome?
Human Esproductson 2020 3502):275-282

Rezsons for exclusiom: This study did mot use smmulabed
data

. De Olperira et al. & random-censoring Poizson mode] for un-

derreported data. Statistics in Medicme 2017 36 30):48573-
4R

Rezsons for exclusion: The primary aim is not o quantify
bias.

. Ding «t al. Estimating effect of environmental contansinants

om women's subfecundity for the MoBa study data with
an outrome-dependent sample scheme. Riostatishics 2014
15{4):G36-650

Rezsons for exclusion: The primary aim is not o quantify
bias.

Garmd et al. A coarsensd maultinomial regression mode] for
permatal mother to child transmission of HIY. BMC Medical
Eezearch Methodology 2008 B 1)-46-46

Rezsons for exclusion: The primary aim is not o quantify
bias.

. Hatch et al. Fvahaation of s=lection bizs i an memet-hassd

shudy of pregrancy planmers. Epideminlogy 2006 27 112498
14
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Beasons for exchesion: This study did mot use simulated
data

14 Hetnke et al Quantification of slection bias in studies of
risk factors for birth defects among Ivehirths, Paediatric &
Perinatal Epidemiology 500 34(5):655-6564
Eeazons for exclusion: The application of simulation was
mat core o the paper.

4. Honein &t al. Modeling the potential public health impact of

ancy ohesity on adwerse fetal and infant ot romes.
Obesity 2003 20{B)c 12761283
Erasoms for exclusion: The primary aim s not to quantify
bias.

15 Horom et al A population-based apprach to analyzing
palses in time series of hormone data. Statistics in Medicine
2007 B 1E) 25 IG-2580
Beasons for exclusion: The primary aim is not b0 guantify
baas.

6. Howards ef al. Adjusting for bias due o incomplete case as-
certainment in case-comtrod studies of birth defeds. Practice
of Epidemiclogy 2015 |81(8):585607
Beasons for exclusion: The application of simulation was
neot core fo this papern

I7. Janssen =t al. Towands mticmal dosing algorithms for van-
comycim in meonates and infants based on population phar-
macokinetic modelimg. Antimicrobial Agents & Chemother-
apy 206 GN2)101E-1021
Beasons for exclusion: The primary aim is not b0 guantify
bias,

I8 Jamg o al Cassal Mediation Analysix in the Presence of
a Mizdassified Binary FExposure. Epidemiological Methods
0 1(E)

Eeazons for exclusion: The primary aim 5 not o quastify
bias,

. Eim o al. Rexible Bayesian bumam fecondity models.
Bayesian Analysis 2012 7{4):771-500
Beasons for exclusion: The primary aim is not b0 guantify
b,

2 Kim = al A model-based approach 1o detection limits in
studying environmental exposures and human  fecundity.
Statistics in Biomedicine 2019 11:524-547
Eeazons for exclusion: The application of smuolation is not
core o the study.

2L Eone et al Heckman-type selection models to oblain unbi-
asedl estimates with missing measares outrome: theoretical
considerations and am application io missing birth weight
data. BMC Medical Research Methodology 2019 11 k211
Beasons for exclusion: The primary aim is not b0 gquantify
bias.

22 Kovarevic et al. Fetal aortic valvuloplasty: investigating insti-
tutiomal bias in surgical decision-making. hrasound im Ob-
shetmics & Gymerology 2014 4405538544
Eeazons for exchasion: This is simulation based research

21 L. On the heterogemesty of (erundabiliy. Lifetime Data
Anabysis FEG 2(4):400-415
Erazons for exclusion: The primary aim s not to quastify
bias.

24. Manuel = al. Mabched case-control daia with a misclassified
exposure: what can be dome with instrumental warizhles?
Biostatistics 2019 0:1-18
Eeasoms for exclusion: The application of simulation was
meal rore fo the shady

25 Marston et al. The effects of HIV on f=rtility by infection du-
ration: evidemce from African population cohorts before an-
tiretrovical treatment availability. AILE 2007 30 1):561-57%
Beasons for exclusion: The study did not wse simulated
data
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26, Molitor o al. Uksing Bayesiam graphical models to model
biases in observational studies amd to combine multiple
sounces of data: application of low bink weight and water
disinfection by-products. Journal of Royal Statistical Society
HM 1TERSGYT
Reazon for exchusion: The application of sinmulation was not
core bo the

Z7. Madler et al Clinicians can accurately assign Apgar scores bo
viden recorndings of simulated meonatal resuscilations. Simu-
lation im Healthcare: Joumnal of the Society for Medical Sim-
ulation 3010 H4):204-212
Eeasons for exclasion: This is simulation based research.

28, Uem et al 'What happened fo the I in Ghama? Affican
Journal of Reprodudive Health 2005 527691
Reasons for exclusiom: The primary aim is nol to quastify
bias.

2. Parry et al Am online tool for investigating climical deci-
sion making. Information for Health and Social Care 2004
oy 1)-75-85
Reazons for exchasion: This is simulation based research.

3. Pao et al Semiparametric mode and inferenos for spon-
taneous abortion data with a cared proporison amd bizsed
samplimg. Biostatistics 2018 19(1]-54-1
Reasons for exclusiom: The primary aim is nol to quastify
bias.

11 Radin et all Maternal recall smor in retrospectively reported
time-io-pregnancy: an assessment amd bias analysis. Pasdi-
atric and Perinatal Epsdemiclogy 2005 25(6):5%-588
Reazons for exclusion: The application of simulation was
mal rore fo this paper.

12, Rosenbaum. Coafidence imenals for ummommon bt dra-
matic responses (o treatment. Biometrics 2007 G34)-1164-
17
Reasoms for exclasiom: This study did mot use smulated
data.

13, Boussom et al. Stabilizing cumulative incidence estimation of
pregnancy outcome with delayed entries. Biometrical Joarnal
OIS G 1S e
Reasons for exclusion: The application of simulation was
mol e o the paper.

. Sallmen et al Sdeclion bias due io parsty-conditioning
m shadies of time tremds in fertility. Epidemiology 2005
H 18590
Reasons for exclusion: The application of simulation was
mal rore o the paper.

15, Sampzon =t al Predictive performance of 2 gemtamicn
population pharmacokinetic model im neonates  recenving
full-body hypothermiz Themapeotic Dneg Momitoning 2004
5 5)-5E4-5H0
Reasons for exclusiom: The primary aim is nol to quastify
bias.

3. Shaffer et al Analysis of necsmatal climical trials with twin
births. BMC Medical Research Methodology 2008 9(1:12-21.
EReasons for exclusion: The primary am is not to quantify
bias.

7. Slager et al Stoppage: an issue for sgregation amalyss. Ge-
metic Epidemiclogy 2000 20-528-139
Reasons for exclusion: The primary am is not to quantify
beias.

38. Stort-Maller o al. Increased risk of omfacal clefis associ-
ated with malemal obesity: case-control shedy and Monte
Carlo-based bias amalysis. Paediatric & Perimatal Epidenviol-
ogy 2010 245)c502-512
Reasons for exclusion: The primary am is not to quantify
beias.
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. Takada et al. Practical approaches fior design and analbysis of
clinical trials of mfertility treatments: cossover designs and
the Mamtel-Hansel method are ecommended. Pharmacen-
tical Statistics: Jourmal of the Pharmaceotical Industry 2005
4[5 198204
Erasons for exclusion: The primary aim is not o quantify
bias.

40 YWan Eckelen et al A omparimn of the beta-geomeinc
madel with landmarking for dynamic prediction of time bo
pregmancy. Riometrical Journal 2009 G2 1 175-190
Eeazons for exclusion: The primary aim is not to quastify

bias.

4L ¥Wan 0= o al Imfluence of cui-off wilue on prewalence of
short cervical kemgih. Ultrasound in Obstetrics & Gynerology
2007 493330005
Eeazons for ewclusion: The primary aim is not bo quastify
bias.

42 Yenkatacharya. An examination of a certain bias due to tnan-
catiom in the context of simulation models of human rep-
duction. The Indian Joumal of Statistics 1960 31]3[4)-07-
41z
Eeasons for exchasion: This primary aim is not the applica-
tion of simulation to quantify bas.

41 Weinberg et al Efficiency and bias im shadies of carly preg-
mamcy boss. Epidemiology 1992 311722
Reasons for exclusion: The primary aim i not to guantify
bias.

44 Weinberg at al. Fitfalls imheremt in retrospectivee dme-bo-
event studies: the sxample of time to pregnancy. Statistics
im Medicine 1593 12:BG7-879
Reasons for exchasion: This is a statistical sudy whose pri-
mary aim s nat the quantification of bias.

4 Wilbaux = al Characterizing and forecasting individual
weight chumges in term neonates. Jouwmal of Pediatrics 2006
173 10 - 007
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Eexsons for exclusion: The primary aim is to mot to quantify
ba=.

46, Williams & Nix. Bias in risk estimation: application to
Dowwn’s syndmome screenmg. Statistics in Medicine 2002
I 1T 24552500
Eeasons for exchasiom: The primary aim is the demonsira-
tiom of a mesthod.

7. Wilsom et al. Confounder selection via pemalized credible re-
gioms. Biometrics 2004 70{4):852-861
Eexsons for exclusion: The primary aim s not the applica-
tion of a simulation o quantify bizx

48, Wilsom et al. Bayesian distribuied lig imteraction madels
to identify perinatal wimdows of vulmerability in childeen’s
bealth. Biostatistics 2017 18[3):537-552
Reasons for exclusion: The primary aim is nol to quastify
bias

4. Yland et al. Methodological approaches to analyzing IVF data
with multiple cycles. Human Eeproduction 2009 34 3): 548
557

Rexsons for exclasion: The shady did not apply sirriulﬂiun
50, Fekavat =t al A computational model of 15-AG
during pregnancy. Physiological Beports 2017 5 M) I.H?E
Reasons for exclusion: The primary aim is mol to quastify
bias.
51 Telop et al Cardiae arrest during pregramcy- ongping dini-
cal comundrune American Joumal of Obstetrics & Gymecology

HOIE 2015 15161
Eexsons for exclhesion: The study applied ssmulation based
research.
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ci:_ndrriﬂ:inunlli: studies quantifying bias (n = 19] in the
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Appendix [L Checklist for the application of simulation in
studies that quantify bizs usimg ohservational data

Seion ke

Fermmnmend aisn

&m
L1 Purpase of che simulazion

L2 Exprsure{s) and oumcomefs)
hl_;rﬂqs;uu

21 Cansal
13 Probehikiry formnls {epional)
[

11 Poputaion

13 Bias parameners

::Ih:gm-n-u

4.1 Summumire analysis of (e simulxan
4 Repom resule of simplxan

Li'u.':Eqm

Explain £he harkground and clearty Saie che 3im of the Smulaton in che ressarch sudy.
Define the exposire and ouiromes tha will be included in the simularion model
Staie che Types of b tiar che simulazion model will be quamtilying.

Describe the samlanon Ioga using cassl diagranes.
Provide derails on any probabilry formula vha will amlorm rhe simulxion.

Provide ciear dewails of the base poplarion, in whether an cohon i e or the
popuLasion i::ﬁr:lllrd.lrtmpq-.lim Hmﬂqmilrd.. mu?r?’mpm in derads tha
iorm the daxer

Cleaty =ne v dana sources than inderm the sammlanon of the population andjor the assmpisme of
the model

Provide the paramerers applied 1o the moded, and derails of the source of these parameners. B usigg

published liperamre, als incdnde rleenes.

Repon hiow probabiliny disTibmions were 2msgaed 10 the bils paramerers.

Cleanty =ene (be anahyss mechods applied oo e simulxan Decals should sschde 2l medods,
resles, IS and rode eed durdg e mesiaronal the model

Remiare nhe asumpions of the samlaron and repan the resules, Ioosing on whesher the
moded explains e reponed esimane.

Il azsimpmions of the model are sEmEarEed in the meobnds o, se mline Jppendces o
plaborae on devads, inciuding profability lonmlzs.

5.2 Splvware Prowide a2 clear Saemen of e sirware med m o ende e smnknon
Code shariag Muir the tode awilable, preferably ankne with the published paper.
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The role of confounding in the association
between pregnancy complications and
subsequent preterm birth: a cohort study
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Objective To extiimate the degree of confounding necesary toe
explain the associations between complications inoa st
pregnancy ardd the subscquent risk of preterm birth,

Design Population-based oohort stsdy.

Setting Western Australia.

Population Waomen (n = 115 473) who gave barth to their hirst
and second singleton children b 15498 and 2015,

Main outoome measures Belative risk (ER) of a subscguent
preterm birth (<37 weeks of gestation) with complications of pre
eclampsia, placental abruption, small-for-gestational age and
perinatal death (stillbirth and neonatal death within 28 days of
birth]. We derived e-values to determine the minimum strength
ol assedation for an unmeasured condounding factor b oxplain
away an obscrved assocation

Besults Complications in a hrst pregnancy were associated with an
increased risk of a subsequent preterm birth. Relative risks wene
sigmificantly higher when the complication was recurrent, with the
exception of Arst-term perinatal death. The asociation with

mbspquent preterm birth was strongest when pre-edampsia was
recurrent. The risk of subsequent preterm birth with pre
eclampsia was 1187 (95% C1 952-14.79) times higher after a first
term birth with pre-ecdlampsia, and 6404 [95% (1 53.58 76.55)
time= higher after a preterm first birth with pre-eclampsa, than
an uncompdicated term birthe The e valoess were 2332 and 12758,
respectively.

Condhsions The strong assnciations hetween recament pre
eclampsia, placental abruption and small-tor-gesational ape with
preterm hirth supports the hypothesis of shaned underlying
causes that persist from pregnancy to pregnancy. [ligh e-values
mggest that recurrent confounding & unlikdy, as any such
unmeasured confounding factor would have o be
uncharacteristically large.

Kcywords Confounding. e values, placenial abrneption, pre
eclampsia, preterm birth, small-for-gestational age.

Tweetable abstract FFrst pregmancy comiplications are associated
with a higher risk of subseguent prelerm bisth, with evidence
grongest for pregnancies complicated by pre-eclampsia.

Plegse oite this paper g Dunme )., Tesema G, Pereima G - The role of confisundsng m che ssecinion bewesn pregmancy complications. and sebisquent

pretenm birk: o cobory sisdy. BP0 022179390 BS54,

Introduction

There is strong evidence that a previous preterm birth is a
pradictor of a subsequent preterm birth,'™ supgesting the
presence of persistent causal factors in the mother or her
environment.” The assumption that 2 term birth in first
pregoancy can be considered sufficient to imply a reduced
risk for a future preterm binh has been refuted by recent
studies™™ These siudies reported that term first births
complicated by pre-eclampsia, placental abruption, small-
for-gestational — age,  stillbirth  or  poomsatal  death  were

associated with elevated risks of subsequent preterm birth,
leading, the authors o conclude that there are likely shared
underlying pathological mechanisms persisting from prog-
MEACY Lo pregnancy.”

One pathway that explaing the association bebween com-
plicated term birth and subsequent preterm birth is that
the complications can also recccur™ Recurrence has been
will established for pre-echumnpsia," placestal abruption''
and  small-for-pestational  age,"” complications linked 1o
ischaemic placental diseases,” with these complications act-
ing a5 risk factors for preterm binth.™ Apother more
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commplen explanation is that each complication is associated
with an incresed risk of other complications" which is
supportive of the hypothesis of shared underdying mecha-
misnes" Further supportive of a shared underlying mecha-
mism are ohservtions for asodations with preterm birth in
the “reverse” direction. For example, mone recent studies
have established associations between preterm first birth and
visk of pre-eclampsia™ and stillbirth™ in the mext birth.

The maost well-cited candidates for the shared underlying
mechanism are the great obsietrical sprdrormes,"” schaemic
placental discases that are associated with disorders of deep
placentztion,™ preterm bieth'™ and ke stillbingd, ™" How-
evied, the shared causal pathway is sot necessarily biobogical.
Envirommental confounding factors sech as socio-eoonmmic
status, income, age, education and body mass index have
previously been identified as risk factors for pregnancy
complications’ and preterm birth.™ If envirommental risk
factors and underlying biological mechanisms that  couse
commplications of pre-eclumpsia, placental abruption, smeall-
for-gestational age and perinatal death are shared with pre-
term birth, these asociations would persist from pregnancy
w pregnancy. Although incomplete contiol for confouwnd-
ing is inevitable in non-randomised studies,™ ™ it is possi-
be o estimate the extent of confounding needed 1o
explain away observed associations, which would theseby
allow qualitative assesment as o whether sech confound-
ing is likely. We hypothesise that the associations hetween
pregnancy complications exist and that they are kargely
explained by the recurrence of the complications  them-
selves. 'We aimed to estimate the magnitude of these associ-
ations amd o establish the degree of evidence for shared
uwmderlying pathways by estimating the degree of confound-
ing necessary o explain away these associations.

Methods

Data sources

We conducted a retrospective population-hased  cohort
study wsing perinatal reconds from the Midwives Motifica-
tion System in Western Australia (WAJ, a statutory data
collection of all live births and stillbirths with cither a
final gestational length of =20 weeks or a birthweight of
=40 2™ This de-identified and validated dataset™ was
cross-referenced with desth registrations obtained from
the WA Registry of Births, Deaths and Marriages wsing a
linkape key provided by the Data Linkage Branch of the
WA Department of Health ™ Hospitalisation secords were
identified from the Hospital Morbidity Data Collection
for WA wsing the Auvstralian Modification of International
Classification of Diseases (1CD-10-AM) coded diagnostic
infermation for pregnancy complications.™ As daia on
chronic co-morbidities and smoking stalus were nol rou-
tinely and comprehensively collected wntil 1998, amalysis

Pregnancy complications and subsequent preterm birth

was restricted o women who gave birth (live birnth or
stillbirth) within the period 19982015

Study cohort
The stuedy cohort consisted of women who delivered their
first two singleton births (live birth or stillbind) i WA,
during the peried 19982015 From a starting population
of 299 166 women who gave birth during this period, we
sequentially excluded: multiple births (n = 3276 1L.1%);

duplicate parity (s = 28; <0%); parity of =1 (n = 36 892
123 pestational age <20 or =45 weeks (r = Thg <0%a);
hirthweight by gestational age s-soore of =5 (r = & <00

amd women with only one birth (= 133 415 44.6%).
After these exclusions, the fimal digible study population
was 125 473 womsen with first and second births (live birth
or stillbirth) in WA {Figure 1).

Exposure and outcome ascertainment
The four variables wsed to identify a shared pathway wene
pre-eclampsia, placental shroption, small-for-gestational ape
and perimital death (heren referred 10 as “complications).
Pre-oclamgsia (B9, 6424, 6425, 64006, 6127 ICD-10,
o1, 4, 015) and plecental sbraption (TCD-%9, 641.20; 1CD-
1, 045) were obdained from hospital discharge BCD-9 and
ICD-10 diagnosis. Soall-for-geatational age was derived using
the Australian matioenal centiles and defimed as the thind per-
centile for singleton births, o0 a5 o exchede more constitu-
tiosally sl birtha™ Perinatal death included stillbiths and
nevamtal desths, where stillbinth is defined a3 fetal death afier
M oweeks of pestation or with birthweights of =00 g, and
nevwatal death is the death of a livebom baby in the firss 28
days of life. Preterm birth was defimed as a live birth or still-
birth delivered before 57 weeks of gestation. Gestatiomal ape
at birth was derived from dating wlirassunds ™

Based on the hypothesis that the complications and pre-
term birth share common mechanisms, complications in
the first pregrancy (exposurne) would be associated with the
risk of preterm birth in the second pregnancy (outcsme).
Similarly, preterm bieth in the frst pregmancy {exposure)
would be associated with complications in the second preg-
nancy {outcome). Associations wene investigated separately
for each complication (herein referred 1o as primary com-
plication’). Becawse associations can be imduced by the
recurfence of complications independent of preterm birth,
amd recurrence of preterm binh independent of complica-
tiomns, outcomes and exposures were categorised with levels
o account for such recurfence. Specifically, for the associa-
tion between  frst-progmancy complications and  preterm
hirth in the second pregnancy we defined: (i) six exposune
proaups, incdeding wncomplicated term birth, uncomplicated
preterm birth, term birth without primary complication
(iie. had a complication other than the primary complica-
tion), term birth with primary complication, pretenm birth

& M1 dohn Wiy & Sons Lid
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Drunine et al.

.
Women wha gave birth (live birth or stillbirth) in
Western Australia, 19U8-2015

(N=299,106) . .
e | Excluded: multiple gestation births
L -k (N=3,276)
Eligible: singleton hirths
(N=295,590) - .
, “, ‘txcluded: duplicate parity (N=28) and parity = 1
' (N=36,892)
™ L9 ’
Eligible: parity 0 and 1
(N=258 970 - -
I ~ Excluded: pestattonal age null, < 200 or = 46 wecks
¥ ® O (N=TH)
Eligible: pestational ages 2046 wecks - g
[N=25H %14) p N
\ [ Excluded: birth weight by gestational age z score =
+ ® 5 (MN=6)
.
Eligible: birth weight by gestational age = score : ’
=5 (N=258 484)
- | - Excluded: women who only birthed once
¥ =L (MN=133.415)
.
Eligible: women with both parity () and 1
(N=1254T73)

'

Eligible: women with first and second births (lve
hirth or stillhirth)
(N=125473)

e

Figure 1. Selection of eligible bith reconds included in this study, Westem faebalia, 1998 2005

without primary complication {ie had a complication
other than the primary complication) and preterm birth
with the primary complication; and (i) three preterm out-
oo, including preterm birth with no complications, pre-
terim  birth  incleding  the primary  complication  and
complicated preterm birth excluding the primary complica-
tign. T avoid introducing collider bias from conditioning
on preterm birth, the asociation between preterm birh in
the first prepmancy was limited o pregnancy complications
at the second term birthe

Confounding factors
Adjustment was made for known confounding Factors that
ey contfibute to the associations betwesn complications

and  preterm birthe These factors induded  maternal age,
cthnicity, smoking during  pregnancy, vear of  delivery,
soCio-economic status, inter-pregnancy interval and change
of father between the first and secomd birth. Too avoid
introducing bias from factors that may have changed since
the first pregnancy, maternal age, smoking, year of deivery
and socio-economic status were adjusted at the tdme of the
first prepgmancy. Ethnicity was dlassified as white, Aboriginal
Torres Strait Islander and other. Smoking during, pregnancy
wits dichotomised as non-smoking versus smoking, Socio-
coonommic status was derivied by the Australian Bureau of
Sratistics as the Socio-Economic Indexes of Ares (SEIFA)
at a geographic arey for the maternal eesidence at the time
of birth, with lower wvalues indicating an area that s
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relatively  disadvantaged compared with an arca with a
higher score™ Tnter-pregnancy interval was defined as the
length of time between the delivery date of the first preg-
mancy amd the estimated conception date of the second
PrEgRancy.

Statistical analysis
Wi used robust Poisson regression models to calculate rela-
tive risks with 95% confidence intervals for the association
between complications in the frst pregmancy and the risk
of preterm birth o the second pregnancy. The Poisson
medel was chosen because the resulls approximate those
obitained from a log-binomial model when the outoome is
rare and the sample sives are large,™ and overcome the
proflems with comwergence commuonly associated with log-
binomial models™ Robust standard ermors were appliod 1o
derive the confidence intervals. Separate models were run
for each primary complication  (pre-eclampsia, placental
absruption, small-for-gestational age and perimatal death],
with the reference set as uncomplicated  first-term preg-
mancy. When preterm birth in the first pregnancy was the
cxposure and pregiancy complications at term the owt-
oo, the reference was term birth in the first pregoancy.
Wi presented wnadjested  relative risks and  relative risks
after adjustment for potential confounding factors,

E-values provide a method o gauge the minimum
strength of assocation required to explain away womea-
sured exposure confounding factors and wnmeasured con-
founder—outcome asociations.® A large evalue indicates
that considerable unmesered confounding is peaded 1w
cxpound an observed effect estimate. Comversely, a small e
value indicates that les unmesered confounding is needed
to explain an observed effect estimate.™ The e-value for the
loweer limit of the 95% confidence interval is the levd of
comfounding pecded to render the interval estimate noll,
and thereby alter the inference.™ To address the potential
impract of bias from wnmesared confounding in our study,
e-wialues were caloulated amd presented for the unadjusted
amd adjusted relative risks

Simulation

We undertook a briel simulation exercise to determine
whether the inclusion of a well-established kiown con-
founding factor could explain the association betwesn oom-
plications in the first pregmancy and subsequent pretenm
birth. Body mass index (BMI) is a commonly adjusted con-
founding factor in perimatal studies, yet is unavailzhle in
the WA data prior to 2016, As maternal height and mater-
mal weight wene readily available for births deivered afier
N2, we were able to direcly estimate BMI and thereby
derive obesity (BMI 30 keg/m™) for the period 20022015
Wi then applied bogistic regression o simulate obesity at
the first birth that was nol associated with preterm second

Pregnancy complications and subsequent preterm birtk

hirth while preserving the correlations i the data between
obesity and the other observed varables. Applying the scame
statistical approach as the main analysis, we re-analysed the
data adjusting for the same confounding Boiors as befone
but with the sddition of the new simulated obesity. A sim-
ulation was mun for each exposure—ouloome asociation,
with iteration  until convergence of the new  obesity-
adjusted relative risks, which was defined as no dange at
the thind decimal place.

All data analyses and simulations were conducted wsing
w405

Results
Study population characteristics

In wotal, 125 493 women had two consecutive births (live
birth or stillvicth) in WA betwesn 1998 and 2015 Woamnen
were more likely to be aged 2529 years (33.3%) at first
hirth, white (83.9%) and reported not smoking during
pregnancy (B6.5%) [(Table 1). The majority of the study
sample had a SEIFA score of =1000 (584%), which is
dightly above the mational average (5091 The mvost codn-
modn intef-pregoancy interval was 24-59 months (34.1%).
In the first pregnancy the prevalence of preterm birth was
T A%, pre-eclumpsia was 4.5%, placental abruption  was
0.5%, small-for-gestational age was 3%, and perinatal death
was 1.9%., The prevalence of preterm birth in an uncompli-
cated second pregnancy was 5.0,

Assodations between complications at the first
birth and second preterm birth

The strongest associations were observed  between  pre-
eclampsia in the first pregmancy and subsequent pretenm
hirth when both pre-eclampsia and  preterme birth were
recurfent (BRI 6769, 95 C1 56 82-80.63) (Table 2). The
risk of subsequent preterm birth remained elevated when
the first pregnancy wias term and when pre-eclampsia was
recurfent (R 1194, 95% CI 9.60-14.86). There was inswi-
ficient evidence to suggest that a first preterm birth compli-
cated by pre-eclampsia confers greater risk on subsequent
complicated preterm birth withowt recurrent pre-eckamypsia
(RR 367, 95% O 249-542) than an unoomplicated pre-
term birth (BRI 350, 95% C1 3.21-4.27). Corresponding e-
values for associations that involved either the recurrence
of pre-eclampsia or the recurence of preterm birth were
high {=6). In the ahsence of recurmence of pre-edampsia or
preterm birth, smaller associations were observed. Strong
associations wene also observed between placental abrup-
tion in a first term pregnancy and subsequent  preterm
birth (KR 1179, 95% CI 4.57-31.83) when placental abrup-
tion was recurrent. When the first preterm birth was com-
plicated by placental abroption, the risk of & subsequent
preterm birth remained elevated when placental abwuption
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Table 1. Chamcieristcs of the 125 473 women whio goase birth
between 1998 and M5 n Western Sardralia

Characternstics m [5)
Ratemal age at fist birth {years)
=20 18 352 (14.6)
M 24 M M7
5 4 T3
30 a7 50T
35 G107 4%
4l 242 (D2
Ethnikity
White: 105 293 {E1.9)
Ahoriginal Torme Strat kander SAT0 (4.4
Cther 14 10 {11.7)
Rdatemal smoking stalus st first birth
M 108 518 {B6.5)
Ve 16 055 {11.5)
SEIFA seore at firad birth
<70 902
TO0 00 1044 {083
BOO 900 Ba4T (6T
SO0 1000 A2 Gid (6.1)
=1000 73 32 (B4
Miszing 973 78
Inter-pregnarcy imlerval {maonthe)
s 4108 (3.3
6 11 18 759 {15)
12 17 28 534327
18 33 23 3 {18.5)
24 54 42 T3 (34.1)
Bl 120 ]
=10 TR (06
Year at first birth
1990 1999 22 41 {179
000 2004 38 307 {(30.5)
05 2009 43 Tok (34.9)
M 2016 20 o070 {16.7)
Ouicome in first pregrnancy
Pretesm D240 7 4
Term 116 2373 {92.6)
Pre-edamgria Gedd 4.5
HMacental abruption A435{0.3)
Srnall-for-gestational age e @
Perinatal death 1174 {09

was recurrent (RE 10047, 95%% O] 3.37-3251) and when
the subsequent pregnancy was complicated without recwr-
rent placental abruption (KRR DS, 95% C1 6.659—18.00).
Corresponding e-values for the associations of the recwr-
remce of plecental abruption amd preterm bimth were high
(=20). There was a weak sssociation between a first term
pregoancy with placental abruption and & subsequent com-
plicated preterm birth without recurrent placental abrup-
tion (RR 135, 95% CI 034-537). There was no

association etween a first term binh with placental abewp-
tion amd the subsequent risk of uncomplicated pretenm
birth. Correcsponding e-values were low (<) with confi-
dence limits of 1.

The associations were strong when small-for-gestational
age and preterme birth were recurrent (RR 3268, 95% 1
19.87-53.74) compared with a first term wiscomplicated
pregnancy. Preterm bicth in the first pregnancy confiers a
greater risk on the subsequent risk of complicated preterm
barth when small-for-gestational age was not recurrent {RR
964, 959% CI 6be0-14.25%), in contrast o the subsequent
risk of preterm birth withowt complications (BRI 3.6, 95%
Gl 2ae1.69). Cornsponding e-valees for associations that
involved recurrence of small-for-gestational age were high
(=6). In the absence of recurrence of preterm birth or
small-for-gestational  ape,  smaller  sssociations  were
olwerved, with a first erm pregnancy  complicated by
srmall-for-gestational age weakly associated with a subse-
quent uncomplicated preterm birth (RR 162, 9%% (1
1LAZ-1.84), with a corresponding e-value (2.20). There
wils 4 stronger association between a first preterm birth
with perinatal death and & subseguent complicated pre-
term birth withowt recurrent perinatal death (RE 1272,
95t C1 B90-18.18), compared with when the subsequent
pregmancy was uncomplicated (RE 422, 9%% CI 362
4.93) and when perinatal deaxth was recurrent (RE 5354,
95t Ol 336-8.11). Conversely, the risk of subsequent
preterm birth was higher after a first term birth with peri-
matal death (BR300, 95% C1 2202-4.05), compared with
when perinatal death was recwrrent (RRO1.2%9, 95% (1
0.32-517). The corresponding e-values were 545 and
190, respectively.

Associations between preterm first birth and
complications at sccond birth

When we compared women whose first pregoancy emded
in preterm birth with women with a first term birth, there
wias an incrswed risk of sach complication in second preg-
mncy. This was particulardy tree for pre-eclampsia, for
which we observed a three-fold higher risk afier preterm
birth in the first pregnancy (Tabde 3). Generally, there was
very slight attenuation after sdjustment for known con-
founding fFactors in models when preterm birnh was consid-
ered the exposure or the outcome of interest.

Simulation results

After the simulated confounding Bacor of obesity was
included, ecach model was iterated S0 timses wntil conver-
gence was achieved at the third decimal point. When the
cutcomee was uncomplicated preterm birth, there was no
differemoe in relative risks from any of the complications in
first pregmancy. There were margingl differences in the rela-
tiwe risks afier the simulated confounding Recior  was
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Table 2. Relative risk ard @
barth i the second pregrancy

Pregnancy complications and subsequent preterm birth

1 of unmessured confounding in the asodation between complications in the first pregnancy and pretem

First pregnancy Second pregnandy
complication™
Complication Adjusted®  e-walue® for Adijusted® e-walue® for Adjusted? e-value® for
status RE [95% 1) KR {lower R (95% ) RE (lower kR (55% O} RR (lower 95% 1%
95% ) 95% O
Term, no complications Refeenoe? Redereneed RErlerores® Refrenoed fied prence Ry o
Pre-eclampeis
Term® 122{1.05 1.41) 1730129 A7 {952 1479 2327 (1853) 1750129 2.30) 2.89 (1.89)
Preterm’ I70{221 437) 687 (558 6404 (5158 76.55) 127.5B{106.65) 367 (249 5.42) 680 (4.41)
Macental abruption
Term® 1.00{051 158y 1.04(1) N7H{437 N A% 2308 (B30 135 (034 5.37) 2403 0)
Preterm! 540 {416 7.01) 1027 (7.78) 1047 (337 251) 2043 6.0 10.B0 (649 18.00) 21.10(12.45)
Small-for-ge=tational age
Term" 162 (142 184y 262 (2200 430278 665 .07 (500 239 (183 3.11) 421 (3.06)
Preterm’ 166 (286 469) 678(516) 3268 {19.87 53.74) 6486 (39.24) 969 (660 1425) 1887 (12.67)
Pernatal death
Term® I00({2 23 405) 545 (3487) 1.29 (032 5.17) 1.90 1) 280 (091 861) 504 (1)
Preterm! 422 (361 493) 791 (B6E) 533(136 B14) 993 {617 1272 (@90 18.18) 2493(17.28)

“Complications induded are pre-echmpeis, placental abption, small-for-gestational age and perinatal death.
*The evalees for the efie estimates ane the minimom srength of asccistion on te risk otio scake Bat an unmessured cordounding Tacar
woull need 1o have with both the sxpoure and the oulcome 10 fully explain aeary the saciation betseen preterm birth i the fist pregnancy

and complications n the wcond 1erm pregnancy.

The evalues for the limit of the 95% Ol dosest to the null denote: the: minimum strength of asociation on the ek ratio scake that an
unmersuned confounding factor would need 1o shift the confidence interval 1o inchude the null walue

Hncomplicated tesm birth.
*Term birth with primary complication.
"Preterm birth with prmary comgiication.

Taljusted for ethnicty, matermal age at frs binh, smoking status o first birth, soco-economic status at first birth, tme period of first birth, inber-

pregnancy indersal and change of Eather bebween first and second birth.

included when the outcome was a subsequent preterm birth
commplicated with a recurrent pregrancy complication. Owver-
al, the simubation demonstrated that the inclusion of the
comfounding Eector of obesity did not alter the relative risks.

Discussion

This study examined the role of confounding in the sssoci-
ation between pregnancy complications across two subse-
quent prepnancics. Women with previous  pre-eclampsia,
somall-for-pestational age or perinatal death in the first
pregnancy were al increased risk for a subsequent pretern
birth, regardless of whether their first birth was term or
preterm. Placental abruption was the exception, with an
incressed risk of uncomplicated subsequent preterm birth
olserved only after a frst preterm birth, Moreower, pre-
term birth in the first pregrancy wis associated with an
incressed sk of complications: in a second  pregnancy,

excleding perinatal death. We were able o demonstrate
that substantial confounding would be required to explain
away the strong sssociations observed. Maternal obesity
was simulated, demonstrating that the indusion of a single
will-gstablished  confounding  factor s ol enough o
wiaken the strong observed associations.

The findings that pre-edlampsia, small-for-gestational age
and perinatal death in a first pregnancy, at either term or
preferm, present an increased sk of @ subsequent preterm
hirth support the hypothesis of shared underlying mecha-
nisms. This s reinforced by the fndings that preterm birth
in the first pregmancy incrssed the risk of pre-ecampsia,
placental abruption and  small-for-gestational age in the
next pregnancy. We found that placental abruption in a
first term birth wis not a sk for a subsequent uncompli-
cated preterm birth. Moreover, the increased risk of subse-
quent  preterm binh with a  recurrence of  placental
abruption was higher afier a term birth compared with a
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Table 3. Relatier risk and aseement of unmeasured confounding in the Fsockstion betwesn greterm birth in a first pregnancy and

complications in the second term pregnancy

First Second pregnancy
pregnancy
Pre-edampsia Placental abruption Small-for- Perinatal death
gestational age
Adjusted” e-walus®® Adljusted” e-value™™ Adjusted* E-waluc®* Adjusted” e-walue®™
RR {55% ) for RR R (95% OO} for BR (lower  RR (55% ) for RR IR {95% CI) fior RR
(lewer 9% % (e} (lower lower
a5% ﬂ:::. g% ﬂ:::. g5 ﬂ::i]
Term birth Rederenoe Felorenoe Referenoe Felereme Red i Releenoe Referenoe Frlereroe
Pretesmn 158 G662 (569) 1.7 F2E101 28 1485 AN sN 1.02 1.14 (1)
irth (312 4.11) (1.03 248% (160 >15) 053 193

*Adjusted for ethnicity, maternal age at fed birth, smoking status ab first birth, soco-economic status at first birth, Sme perod of fist brth,
imer-pregnancy merval and change of father between firt and second birth

**The evales for the effect estimates are the minimam rength of seoeciation on the sk atie scale that an unmeasured condounding facsor
wanild meesd 10 hawe with both the sxpossre and the outcome to hully explain seay the asociation betseen preserm binb in the st pregnaney

arel complcatons in the seoord tem pregnancy.

***The o-vales for the mit of the 35% O dosest 1o the null denobe the minimum sirength of asocation on the sk afio scale that an
unmesrsuned confounding facor would need 1o shift the confidence indersal 1o include the null valse.

preterm birth, These Gndings may result from situations in
which an elective delivery at term occurs before sponta-
neous kabour, lawding o uncertainty regarding the true
recurrence rate of placental abruption.™ The strong effect
for associations between recurrent pre-eclampsia, placental
ahruption and small-for-gestational age with preterm binth
sugpests the presence of stromg maternal-specific Faciors
that persist from pregmancy o pregnancy. The exceplion
wis pennatal death, for which we observed higher risks for
@ subsequent preterm birth when the complication was mot
recurrent after a first termn birth, This may in pan be dee
tor the warighility in the influence of plcental causes for
stillbirth™ and seonatsl death,™ compared with the other
complications, and with increased health swrveillance after
the ocowrrence of those complications in the frst preg-
mancy."' Adjustment for known confounding factors had
almost no influence on the point estimates of asociations
between pregmancy complications, sugpesting that the true
crosal mechanisms are a complex interplay bebween envi-
ronmental and biological factors.'™

T explore the sensitivity of ouwr results o confounding
we applied e-values, a redatively new method to gquantify the
i strengith of an asociation that an enmeasored
confoumding Fctor would need to explain away the expo-
suse—outeome selationship. ™ Interpreting the e-value within
the context of owr effect sizes, the large e-values sugpest that
large  unmesared  confounding  facors are required 1o
explain away the strength of the asociations betweamn com-
plcations of pregmancy. In particular, an unmesured con-
foanding Factor would Tave to be extremely high to explain

the association between pre-eclampsia in a preterm first
barth amd a subsequent preterm birth with recurring pre-
ecclampsin (e-value 127 58]0 Although it & improbable that a
sneple wnimssured variable could confound the sthong asso-
ciations evidenced betwesn pregnancy complications and a
subsoquent preterm binth, we incleded a simuobated variable
of maternal obesity a8 a sensitivity analysis. As expected,
smudated mastermal obesity did oot influence the effect siee,
supporting  previous  obserations that  the  shased  and
wnknown underlying mechanisms are @ possibde interaction
between complex biological and envirsnmental exposures,”™

Comparison with other studics

Owr study s the st o report the resulis of associations
betwern pregmancy complications and  subsequent risk of
preterm birth for first births at werm and preterm. Althowgh
direct comparison with other studies s constrained by dil-
ferences between exposure and reference growps, several past
studies support oer findings. "W Thew b5 consis-
tent evidence for the recurrence of preterm birth,"™ most
motably when the previous preterm binh ocowrred  with
crly-onset  pre-cchampsia”™ One  stody  reporied  an
increased risk for recwrrent placental shroption after 2 term
first hirth, compared with preterm birth” another study
reported  alimost theee-fold  higher odds of preterm binth
(oompared with a term birth]) after a small-for-gestational
preterm birth,* and a study reported that previous all-cause
infant death (up to 365 days post-birth) was associated with
a two-fold increase in the nsk of a subsequent preterm
birth* Oy two studies considerad the reverse associations
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between a first preterm binth and complications,"™™ with
oive sty reporting an incrssed risk of term pre-eclampsia
in 2 secomd preprancy’” and the other reporting a higher
risk of stillbirth after preterm birth,"™ The findings of these
studies support the premise of shared wnderfying  medha-
misis between pregnancy complications amd preterm birth.
More recently, rescarchers have tunned their attention o the
sulmequent risk of preterm binth from complications shen the
first hirth i term.™ Finding similar results to owrs, a study
fromn Morway reported a two-fold incrsese i the risk of pre-
erim birth when the previous births were term with at least
o complication {pre-eclampsia, placentad abeuption, woedl-
for-gestational age, stillbirth or seonatal mortality), companed
with an wocomplicated first term birth® Consistent with our
shuedy, the authors alse found lintke evidence for confounding
by known demographic and lifestyle Bctors® Findings from
amotheer study provide furher support that complications of
prre-cclumpsia, small-for-gestations] age and perinatal mostality
al a first termy birth icreased the subsequent risk of pretenm
birth.” A study from the USA seported similar associstions
between @ subsegquent preterm birth and complications. {soedl-
for-pestational age, plcental abruption and peonatal dessth) in
a fest term birth; however, @ profeciive asociation  was
observed between term births with pre-edlampsia amd  subse-
quent preterm birth” An sliernative explaation for these
mesults is that the adjustment for plecemtal shroption  amd
simall-for-gestationad age (potential mediators) introduced ool-
lider bize™ The fndings of these stedies add weight w the
hypothesis that there are shared widerlying cusal mechanisms
influsncing outcomes, even when the first birh is tenm

Strengths and limitations of study

This stedy provided @ comprebensive analysis considering
multiphe scepanos of the inlersctions bebween  pregnancy
complications. A strength was the application of e-values 1o
msksune the strength of potential confounding required o
explin the resulis. An additionsl strength of this study was
that pregiancy complications for this apalysis were drawn
frovm population-based birth data linking each womnean acnoss
two pregnancics, cmabling the study of relatively rare out-
o with precision. Inevitaldy, o owith most olseraational
studics, these data may also be proae tooa degree of misclas-
sification. Purthermore, ouwr fimdings are nol necessarily gen-
eralisable to higher onder parities than those incheded in our
cohort, although it is unceriain as o why the underlying
vl pathways would differ. Another limitation is that we
were nol abde we inclede women who gave birth to their fiest
child or a subseguent child out of the state.

Conclusion

The evidence for shared cassal risk factors between preg-
mncy complications and preterm birth in this study s

Pregnancy complications and subsequent preterm barth I

stroing. The high e-values indicate that substantial comn-
founding would be needed to explain away these associa-
tions, Howewver, these findings alome do nod provide direct
evidence that the shared risk factors are of placental ongin
or biological origin. Further research is required to eleci-
date  specific pathways that  explain  these  associations,
whether genetic, pathologic, behaviowral or other pecurrent
mechanizms.
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Figure 51. Causal diagram illustrating the potential cao-
sal relationship between complications in a first pregnancy
and subsequent preterm birth.

Table 51, Prevalence of complications in second preg-
mancy in the subsequent risk of preterm birth.

Table 52, Relative nsk for the asociation bebween com-
plications in the first pregnancy and pretesm binh in the
second  pregnancy.

Table $3. E-value for wnmeasured confounding of the
refative risk of subsequent preterm birth from complica-
tions in the first pregnancy.

Table S4. Relative rsk for the asociation bebween com-
plications in the first pregnancy amd pretesm binh in the
secennd pregoancy afier simulating obesity, B
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Bias in the association

between advanced maternal age
and stillbirth using left truncated
data

Jennifer Dunne'*", Gizachew A. Tessema’?, Amanuel T. Gebremedhin® & Gavin Pereira™*

Restriction to analysis of births that survive past a specified gestational age (typically 20 weeks
gestation) leads to biased exposure-outcome associations. This bias ocours when the cause of
restriction (early pregnancy loss) is influenced by both the exposure and unmeasured factors that
also affect the outcome. The aim of this study is to estimate the magnitude of bias resulting from left
truncated data in the association between advanced maternal age and stillbirth. We simulated data
for the causal pathway under a collider-stratification mechanism. Simulation parameters were based
on an observed hirth cohort from Western Australia and a range of plausible values for the prevalence
of early pregnancy loss, unmeasured factor U and the odds ratios for the selection effects. Selection
effects included the effects of maternal age on early pregnancy loss, U on early pregnancy loss, and Uf
on stillbirth. We compared the simulation scenarios to the observed birth cohort that was truncated
to pregnancies that survived beyond 20 gestational weeks. We found evidence of marginal downward
bias, which was most prominent for women aged 40+ years. Overall, we conclude that the magnitude
of bias due to left truncation is minimal in the association between advanced maternal age and
stillbirth.

It is considered that women with advanced maternal age (> 35 years of age) have an increased risk of stillbirth'.
However, the magnitude of this increased risk is unclear when using birth data that is restricted to pregnancies
that survive beyond a specified gestational week?, as the exposure may impact selection into the study and thus
mask the true observation of outcomes. In high-income settings, selection into a study is generally restricted to
pregnancies that survive beyond 20 gestational weeks®, a time when pregnancy is considered dinically viable.
Thus, the use of left truncated birth registries and cohort studies that recruit women during a specific period
of pregnancy, will produce biased estimates in perinatal exposure-outcome associations. The mechanism that
leads to these biased associations is collider stratification bias. This occurs as conditioning on a collider, a com-
mon effect of an exposure and an cutcome, induces a correlation between the exposure and a confounder?. If
the confounder also affects the outcome, conditioning on the collider leads to a specious association that is
either strengthened or reversed between the exposure and outcome®. The most well-known example of collider-
stratification bias in perinatal epidemioclogy is the birth-weight paradox®. In this example, stratifying on birth
weight produces a cross-over of the birth-weight martality curves, such that low birth weight babies with smoking
maothers have a lower mortality rates than low birth weight babies with non-smoking mothers”. However, the
collider-stratification mechanism that underpins bias resulting from left truncated data is more difficult to address
analytically as selection is based on an attrition processes that we cannot observe in data, i e early pregnancy loss.

With estimates of 2500 early pregnancy losses per 10,000 implantations®, an extensive cohort attrition has
already occurred prior to pregnancy being established due to spontaneous and induced abortion. The exact
aetiology of spontaneous abortion remains unclear, although it is widely acknowledged that they result from
interaction between hormaonal, immunology, genetic and environmental factors®'. Parental age is considered
to be a strong risk factor for early pregnancy loss'"", with the risk of early pregnancy loss slightly elevated in
younger mothers before rising sharply in older mothers (= 35 years)". The continuing trend of advanced maternal
age and high rates of stillbirth in high-income settings have led many researchers to examine the association
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Figure 1. Directed acyclic graph (DAG) of the structure of collider-stratification bias. The exposure maternal
age A affects early pregnancy loss L, which is also affected by the independent risk factor U, inducing a back-
door pathway between exposure A and the outcome of stillbirth 5.

between the exposure of advanced maternal age and the outcome of stillbirth, defined as fetal death at 20 ges-
tational weeks or more. Advancing maternal age (=35 years) has been identified is an independent risk factor
for stillbirth!, with the increased risk of stillbirth not accounted for by increased prevalence of other maternal
comaorbities™. In studies that use left truncated datasets (i.e. missing pregnancies prior to 20 gestational weeks),
the differential impact of maternal age on early pregnancy loss will lead to biased estimates in the relationship
between advanced maternal age and stillbirth. Whether the bias is of concern will depend on its magnitude and
direction, which remain unclear. Becanse carly pregnancy losses are unobserved, simulations are a useful tool
for exploring the influence of bias resulting from such left truncated data on the effects of exposure prior to
pregnancy on birth outcomes'®. In this simulation study, we aimed to quantify the influence of bias due to left
truncation and selection in utero on the association between the expaosure of advancing maternal age and the
risk of stillbirth in a population representative of high-income settings.

Methods

The motivation for this study was to quantify the influence of bias due to left truncated birth data in the associa-
tion between advanced maternal age at conception and stillbirth. Using data from the Midwives Notification
Systems (MNS) in Western Australia, we compared effect estimates with those from simulated models in which
we adjusted for the influence of selection bias under a range of plausible scenarios. For this study, we considered
early pregnancy loss as fetal death prior to 20 gestational weeks; and stillbirth when fetal deaths occurred at 20
gestational weeks or later®.

Observed cohort.  The observed cohort consisted of women who had a singleton birth in Western Aus-
tralia between 1998 and 2015 (births = 483.466), derived from the MNS'*. This de-identified and validated data-
set contains all births in Western Australia with either a gestational length =20 gestational weeks or a birth
weight > 400 g'*. We cross-referenced the MNS with Death Registrations obtained from the WA Registry of
Births, Deaths and Marriages using a linkage key provided by the Data Linkage Branch of the WA Department
of Health"’. Hospitalisation records were identified from the Hospital Morbidity Data Collection for WA using
the Australian Modification of International Classification of Diseases (ICD-9:779.9; ICD-10:P45 and P96.9)
coded diagnostic information for stillbirth*®. We categorised maternal age into five- year age groups (20-24,
25-29, 30-34, 35-39 and 40+ years). As the primary interest of this study is the biological impact of advancing
age on stillbirth, women younger than 20 years were excluded in both the observed cohort and simulation study.

Bias structure. The cansal diagram (Fig. 1) illustrates the bias resulting from restriction to births that sur-
vive past 20 gestational weeks. Here, the exposure A (maternal age, a proxy for aging) affects early pregnancy loss
L. An unmeasured confounder U is causally associated with increased risk of pregnancy loss L and the outcome
of stillbirth §. Both the exposure A and the unmeasured confounder U independently affect early pregnancy loss
L, which is a collider. Thus, by excluding pregnancies that end in loss prior to 20 weeks gestation (L =1}, or con-
ditioning on L, a back-door pathway is opened from maternal age to stillbirth through the pregnancy loss L and
the unknown confounder U. This bias is commanly known as collider-stratification bias. An assumption implicit
in the causal diagram is that maternal age causes early pregnancy loss, however, after attaining a gestational
length close to viability (here 20 gestational weeks), maternal age has no direct influence on risk of stillbirth.

Simulation. To quantify the influence of the collider-stratification bias on the association between advanced
maternal age and stillbirth, we simulated a population of 500,000 conceptions which is approximately the num-
ber of births in the observed cohort. We generated data for the maternal age exposure A, unmeasured confounder
U, early pregnancy loss L and the ontcome of stillbirth 5. Maternal age variable A was normally distributed, with
the mean and standard deviation derived from the Gaussian distribution of age in the observed cohort. As per
the observed cohort, we categorised maternal age into five-vear age groups (20-24; 25-29; 30-34; 35-39; 40-45)
and excluded mothers younger than 20 years. The early pregnancy loss variable L, the unmeasured variable U
and the stillbirth variable § were binary variables. The prevalence of L (m;) was set to 12.8%"", 20%'" and 30%%
to reflect a realistic range of early pregnancy loss as reported in high-income settings. The baseline prevalence of
$ was set to 0.7% to reflect the incidence of stillbirth in the observed cohort. We set the prevalence of U (m) to
0.15, 0.30 and 0.50, to reflect a range of plausible scenarios.

The overall cansal pathway [A— L+ U—5] that represents the collider-stratification bias was broken down to
smaller pathways [A=sL, U=sL, U'=+5], which we deemed ‘selection effects” All selection effects were modelled
in terms of odds ratios (ORs) so that simulation probabilities were bounded between 0 and 1. For the selection
effect A=+L, we assigned each individual an underlying risk of early pregnancy loss based on their biological age
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Figure 2. Risk of early pregnancy loss according to maternal age with locally weighted scatterplot smoathing

CUrve,

at conception, which was drawn from a Bernoulli model based on results from a 2019 Norwegian study' of the
effects of maternal age on early pregnancy loss. The Norwegian study" reported the lowest risk of miscarriage
among women aged 25-29 (9.8%), with an absolute lowest risk at age 27 (9.5%) and the highest risk at age 45
(53.6%). As we were unable to ascertain the increasing risk of early pregnancy loss for women aged older than
45 years, we limited our simulation study to women aged between 20 and 45 years_ In our Bernoulli model we
used non-parametric regression to capture the nonlinearity of the association between the exposure and early
pregnancy loss using LOESS {locally weighted scatterplot smoothing)® (Fig. 2).

The probahility of early pregnancy loss for each conception i (assuming a monotonic risk by maternal age)
was estimated using the equation below:

exp (fy + By + Fall))
1+ expifhy + Bidy + fali)’

Selection effects for U=+L and U—+5 were set to an equal OR from a range of 1.5, 2.0, 2.5 and 3.0. To isalate
the bias mechanism we firstly assumed a true null effect of maternal age on stillbirth (ie. there is no direct causal
effect of A—5). We further considered a scenario in which there was an interaction between the unmeasured
confounder U7 and maternal age 4 on early pregnancy loss L in conjunction with the collider-stratification mecha-
nism. Often called depletion of susceptibles, the interaction of A*U increases the prevalence of early pregnancy
lass for those that are exposed to both the exposure A and U (Fig. 51). Selection effects for AL were set to an
equal OR as with the selection effects for U—:> Land U=, with a range set to 1.5, 2.0, 2.5 and 3.0. To enable a
direct comparison with the observed cohort, we then considered a third scenario in which we assumed a true
effect of maternal age on stillbirth A—S$ (Fig. 52). Here each individual was assigned a probability of stillbirth
drawn from a Bernoulli model based on the risk of stillbirth from their biological age of the observed cohort at
conception (Fig. 53). To capture the nonlinearity of this direct association between the exposure maternal age A

and the outcome of stillbirth § we conducted non-parametric regression with LOESS®.

Pilyy =

Analysis. We estimated the OR for the association between the exposure and outcome in the observed
cohort and the simulated populations. We performed logistic regression of stillbirth with maternal age as the
expaosure to obtain the OR, which approximates the risk ratio because the outcome of stillbirth is rare in Western
Australia™. We exponentiated the mean of the point estimates obtained from 100 iterations for each scenario to
obtain OR,g . which represents the OR for the effect of A on § for pregnancies in which early pregnancy loss
did not occur (L=0). We then derived the percentile-based 95% simulation intervals (1) of the OR mean using
500 bootstrap replications.

We initially examined the collider-stratification bias under a range of plausible assumptions by varying the
selection effects (ORy, and OR,) and the prevalence of bath L and 7 as described above. In the first scenario,
the simulation is conducted under the null hypothesis of no association between advancing maternal age 4 with
the exposure of stillbirth 5. In the second scenario we simulated a collider-stratification mechanism with an
association between the exposure A and the unmeasured confounder U. As in the first scenario, we conducted
the simulation under a hypothesis of no association between advancing maternal age A and stillbirth 5. In both
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Figure 3. Collider-stratification bias of OR 4., — 1 under the true null effect of maternal age on stillbirth for
women aged 40+ years, where the bias represents the departure from the null. Average odds ratio {OR . ) with
.. 0.20 and with varying input parameters for my, (015, 0.30, 0.50) and the selection effects OR; and ORy; (1.5,
2., 2.5, 3.0). Each scenario was iterated 100 times.

scenario one and scenario two we assumed that there is no causal effect, and therefore the value of O
was set to I Consequently, we interpreted the results such that the greater the departure of OR 5., from 1 the
greater the magnitude of the bias.

For the third scenario in which we assumed a true effect of A—5, we were able to undertake a direct com-
parison with the observed cohort. For OR g, in this scenario, we simulated collider-stratification mechanism
without an association between exposure A and the unmeasured confounder U and assumed a true effect of the
exposure A on the outcome stillbirth 5. Here the greater difference between OR 5., and OR 4 (the observed
cohort without the simulated bias), the greater the magnitude of bias. Furthermore, to eliminate possible model
misspecification due to the categorisation of maternal age, we undertook a sensitivity analysis in which we
simulated the true null association between the exposure maternal age A and the outcome of stillbirth 5 with
input parameters m =0.20, my=0.15, OBy, = 1.5, ORys= 1.5 for each whole year of maternal age (Fig. 55). All
data analyses and simulations were conducted using R v4.0.5%.

Ethical approval. This study was conducted in accordance with the principles of the Declaration of Hel-
sinki. Ethical approval for this study was obtained from the H Research Ethics Committee, Department of
Health, Western Australia (HREC approval 2016/51) with a waiver of participants’ informed consent, particu-
larly due to the implausibility of obtaining retrospective consent for de-identified secondary data.

Results
Owverall, the bias was minimal under a true null association between the exposure maternal age A and the out-
come of stillbirth 5. In scenario one, we considered a collider-stratification bias where the exposure maternal age
A and the unmeasured confounder U independently effected early pregnancy loss (Table 51). Here the magnitude
of bias was generally weak for women aged 35-39 years, with departure from 1 not evidenced until the selection
effects (OR,;, and OR ) were set to a minimum of 2.5 and regardless of the values of m; and m,.. For example,
the OR, 5., for women aged 35-39 years was 0.98 (51 0.97 to 0.99) with input parameters of m; = 0.128, m;=0.30,
ORyy = 3.0, ORyx=3.0. For women aged 40 + years there was evidence of increasing bias when the magnimdes of
the selection effects increased (ORy; and OR;x) regardless of the values of m; and my, (Fig. 3). The largest
from the null for women aged 40+ years was evident with input parameters of ;= 01128, m,=0.30, ORp = 3.0,
OR 5= 3.0 (OR, 5., 0.92 ST 0.90 to 0.94).

In the second scenario, when we considered the collider-stratification mechanism with an interaction between
the exposure A and the unmeasured confounder U, we found a greater departure from the null for women aged
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Figure 4. Collider-stratification bias of OR - — | under the true null effect of maternal age on stillbirth for
women aged 40+ years with an interaction between exposure A and the unmeasured confounder U7, where the
bias represents the departure from the null. Average odds ratio (OR.g;..) with 7. 0.30 and with varying input
parameters for my, (0.15, 0.30, 0.50) and the selection effects (OR,,, ORy; OR,,). Each scenario was iterated
100 times.

40+ compared to scenario one. In this scenario, we also found that the magnitude of the bias increased with
increasing vahies of m, and my, (Fig. 4). The strongest evidence of bias was evident in women aged 40+ years with
=030, my=0.30, ORyy = 30, ORys=3.0 (OR 0.87 SI 0.84 to 0.89) (Table $2). For women aged 35-39 years,
there no evidence of bias when the selection effects (OR;, OR;;; OR,) were set to 1.5 and 2.0, regardless of
the values of m, and my, The greatest departure from the null was evidenced (OR 5., 0.98 51 0.97 to 0.99) when
mp=0.30, OR,, = 3.0, ORyy= 3.0, OR ;= 3.0 and m,, was set to either 0.15, 0.30 or 0.50.

In the observed cohort, the association between maternal age and stillbirth presented as a U-shape, with the
lowest risk for women aged 25-29 (OR 0,98 95% CI 0.90 to 1.17). The OR,; for women aged 35-39 years was
1.23 (95% CI 1.11 to 1.37), increasing to 1.74 {95% CI 1.42 to 2.12) for women aged 40+. In scenario three we
simulated the bizsed collider-stratification pathway (without interaction between the exposure A and the unmeas-
ured confounder U) with a direct effect of the exposure A on the outcome 5§ (with data drawn from the observed
cohort). We found evidence of minimal downward bias when we compared the results from this simulation with
the observed cohort in which we assumed there was no influence from unmeasured confounders nor selection
bias (Table $3). Women aged 35-3% years had an OR ;5 of 1.23 (95% CI 1.11 to 1.37) in the observed cohort
which was only marginally higher than the average OR ;- of 1.21 in the simulated scenario three. The greater
departure from the results of the observed cohort for women aged 35-39 years (OR .o 118 51 117 to 1.20) was
evident with input parameters of m,_ 0.20, 7= 0.30, ORy, =30, ORyy=3.0. In the ohserved cohort, women aged
40+ years had an OR . of 1.74 (95% CI 1.42 to 2.12) and we found a greater departure from the observed cohart
in general (Fig. 5). For example, with input parameters of parameters m,. 0.20, m;,=0.30, ORy; = 3.0, OR ;=30
the OR 45, ., for women aged 40+ years was 158 (51 1.56 to 1.61).

When we simulated the true null association between exposure maternal age A and the outcome of stillbirth §
(input parameters @y 0.20, ny=0.15, ORyy = 1.5, ORyy= 1.5) by each maternal age in the sensitivity analysis, we
found that the structure of bias was similar to when maternal age was categorised by 5-year age groups (Fig. 55).

Discussion

Establishing the magnitude and direction of bias from unobserved early pregnancy losses on exposure-outcome
associations is essential in improving our understanding of aetiological associations in perinatal epidemiology.
In this simulation study, we quantified the magnitude and direction of bias due left truncation and selection in
utero on the association between the exposure of advancing maternal age and the risk of stillbirth. Our findings
suggest that the exclusion of early pregnancy loss in perinatal epidemiological studies likely biases effect estimates
downwards. However, we found that the magnitude of bias was generally marginal, with a maximum OR, g,
of 0.87 for women aged 40 + years when we considered a true null effect of advancing maternal age on stillbirth.
The strength of this bias was primarily dependent on the selection effects of the unmeasured confounder on the
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Figure 5. The upper straight line represents the results of the observed cohort for women aged 40+ years

assuming no influence of an unmeasured confounder or selection bias. The lower lines represent the collider-
stratification bias of OR g, assuming a true effect of maternal age on stillbirth for women aged 40+ years
without an interaction between exposure A and the unmeasured confounder U. Average odds ratio with m,..
0.20 and with varying input parameters for @y, (0.15, 0.30, 0.50) and the selection effects {ORy, and OR;5). Each
scenario was iterated 100 times.

collider of early pregnancy loss L (OR,,, ), the exposure of advancing maternal age A (OR, ) and the outcome
of stillbirth § {OR, ).

Direct comparison to other studies was constrained by differences between exposure-outcome associations
and the structure of the collider-stratification bias; however, the small magnitude of bias in this study is consistent
with other studies that examined the collider-stratification mechanism for other perinatal outcomes*=*2, such
as the smoking-hirthweight paradox®*-27"_ Our findings, and those of others, suggest that the bias resulting
from a collider-stratification mechanism would need to be very strong to produce an association that reverses
the observed causal effects, and that this would primarily occur in scenarios where the effect of the unmeasured
confounder would be quite large. It remains uncertain as to whether it is plansible that such a large causal effect
would remain unknown or unobservable. On this bagis, we limited the selection effects of 7 (OR,, and OR ;) to
a realistic range from 1.5 to an upper limit of 3.0. We found that the stronger the selection effects of U7 (OR,;, and
OR,,). the stronger the magnitude of bias regardless of the prevalence of early pregnancy L or the prevalence of
the unmeasured confounder U. Simulation studies that considered an interaction between an unmeasured con-
founder and the exposure found evidence of a stronger magnitude of bias in comparison to simulations without
an interaction effect™-*. Often called depletion of susceptibles, this interaction between the susceptible factor (in
our study this would be advancing maternal age) increases the depletion of early pregnancy loss among those
who experience the unmeasured confounder®-4. Although our study showed an increase in the magnitude of
bias when we considered a depletion effect, it was only evident for women aged 40+ years. One of the benefits
of this study was that we could directly compare the difference between OR ., , and OR,; {the observed cohort
without the simulated bias). Here, we found that the magnitude of downward bias was negligible for women aged
35-39 years and minimal for women aged 40+. Overall, our findings indicate that the influence of bias due to left
truncation and selection in utero is not sufficient to have a substantial effect on the strength of the association
between advancing maternal age and stillbirth.

As simulation studies are only as valid as their assumptions, we used published literature and an observed
cohort to support our assumptions of the magnitude of the underlying causal effects when quantifying the
influence of bias in the association between advancing maternal age and stillbirth. Advancing maternal age has
previously been established as a strong independent risk factor for early pregnancy loss in the first trimester!!,
with risks increasing incrementally after the age of 30 years. Although the absolute risk of second trimester
pregnancy loss is small in comparison to first semester, there is an incremental increase for women of advancing
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age™. Using data from a 2019 Norwegian study'' we were able to model this incremental increase in risk of early
pregnancy loss L prior to 20 gestational weeks for each year of maternal age from 20 to 45 years in our simula-
tions. We accounted for a variety of early pregnancy loss scenarios from 12.8% ' a mid-range of 20%" and an
upper level of 30%™. As our simulations are hypothetical scenarios in which all conceptions are selected, it is
also likely that induced abortions would present a small competing risk to stillbirth. However, the Norwegian
study"’, from which our lowest prevalence (12.8%) of early pregnancy loss is derived, did correct for induced
abortions, finding very little difference in the overall estimate of miscarriage'. Although the absolute risk of
stillbirth is low in high-income countries, it has not declined in recent decades despite advances in perinatal
and obstetric care. For women aged 40 + years, the risk of stillbirth increases earlier in pregnancy than for
younger women, with a women aged 40 + having a greater risk of stillbirth at 39 gestational weeks compared
to a younger women at 41 weeks™. Using data from our large observed cohort in Western Australia, we built
models that accounted for the differential impact of the exposure advancing age A on the ootcome of stillbirth §
in a high-income setting. Our careful definition of our exposure variable advancing maternal age A, accounting
for the differential impact on the early pregnancy loss L and stillbirth §, ensure our simulations are reflective of
real world interactions between variables.

The exact biological mechanism of the higher risk of maternal age remains uncertain, with many of the poten-
tial shared risk factors for early pregnancy loss and stillbirth unobservable prior to the outcome. Possible sugges-
tions include utero-placental dysfunction predisposing some women to adverse fetal outcomes including early
pregnancy loss and stillbirth™. Infections can increase risk of early pregnancy loss and stillbirth, infecting the
fetus via the placenta” with many infections asymptomatic. Fetal chromosomal abnormalities are the most com-
mon cause of early pregnancy loss in the first trimester, accounting for 50% of non-recurrent pregnancy losses™*.
There is an increased chromosomal anomaly rate (approc. 20% ) in women aged 35 + years compared to younger
women in sporadic and recurrent pregnancy losses". Here, chromosomal anomalies would be an ideal candidate
for the unobserved variable in our second simulation scenario. Increasing advanced age predisposes mothers to
increasing risk of chromosomal anomalies that increase the risk of early pregnancy loss. Notwithstanding the
collider-stratification mechanism, unmeasured confounders can lead to biased exposure-outcome effect estimates
in either direction. Making assumptions about such confounders that are unobservable or unknown is chal-
lenging for researchers. Given the existence of causal factors that are not measured or remain to be discovered.
researchers will continue to be required to make reasonable assumptions in relation to the strength and role of
such unobservable confounders in the causal pathway, as we have done in our simulation stdy.

Quite often, the influence of collider-stratification bias is only examined when unexpected associations are
observed in epidemiclogical studies™ . As the use of left truncated data is ubiquitous in perinatal in epidemi-
ology, due to restriction of studies until a time when pregnancy is either observed or deemed viable, the quan-
tification of bias should be no less important in studies when an expected assodation is observed. Nonetheless,
there are some caveats for interpreting our simulation results. The estimates in our simulation study are based
on simple scenarios with all the variables having a binary response. We further assumed that there are no other
forms of bias such as misclassification, nor the effects of multiple unmeasured confounders. There may also be
a mediator variable, such as a pregnancy disease, that mitigates the association between advancing maternal age
and stillbirth. An additional limitation of this study on the effect of ageing on stillbirth is that we did not consider
selection bias prior to conception; that is women of advancing maternal age have a higher risk of infertility*'.

In this simulation study, we have quantified the magnitude and influence of bias from lefi-truncated perinatal
data caused by studying cases prevalent from a specified gestation age, rather than induding all cases in a con-
ception or pregnancy cohort. We know that conditioning on the collider {early pregnancy loss prior to 20 weeks
gestational weeks) will produce biased estimated in perinatal exposure-outcome associations. Using realistic
assumptions, we found the magnitude of bias was generally minimal when using data that is left truncated due
to early pregnancy loss on the association between the exposure of advancing maternal age and the outcome
of stillbirth. When we considered a true association between the exposure and outcome, we observed a small
downward bias which was stronger for women aged 40 + years. In our specific research question, in which the
exposure is advancing maternal age, our findings indicated that the influence of bias due to selection in utero
(and thereby left truncation) is not sufficient to have a substantial effect on the association with stillbirth. That
iz not to say that other researchers, with a different research question, would not find stronger evidence of hias
when using left truncated birth data. However, as we demonstrated in this simulation, the strength of the bias is
driven primarily by the prevalence and strength of the unmeasured confounder U rather than selection in utero.
Although it is unlikely that such large unmeasured confounders exist, researcher should consider the influence
of collider-stratification bias when using left-truncated data within the context of their own studies.

Data availability

The data that supports the findings of this study are owned by the government departments who approved
the linkage and use of the data for this stdy. The current Human Research Ethics Committee approvals were
obtained for public sharing and presentation of data on results only, meaning the unit-record level data used in
this study cannot be shared by the authors. The steps involved in seeking permission for the use of the original
data in this study is the same for all researchers. Researchers who wish to replicate our results can apply directly
to Data Linkage, Department of Health, Western Australia. The steps to apply for data are described at hitps://
wwwdatalinkage-wa org.an.
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Appendix D Supplementary material for Publication One

Supplementary Table S2.1 Search strategy by database

Simulat* AND Bias AND (Perinatal OR Reproductive)

Bias

Perinatal OR

Reproductive

Pubmed (includes simulat*[tiab] with the below search terms)

Bias[mh] OR

Selection bias*[tiab] OR
confound* bias*[tiab] OR
collider*[tiab] OR truncat*
bias*[tiab] OR censor*
bias*[tiab] OR misclass*
bias*[tiab] OR measurement
bias*[tiab]

Pregnancy[mh] OR
Pregnancy
complications[mh] OR
Infant Death[mh] OR Fetal
Development[mh] OR

*birth*[tiab] OR
perinatal[tiab] OR
neonatal[tiab] OR fetal[tiab]
OR foetal[tiab] OR
abortion[tiab] OR pregnancy
termination[tiab] OR
preterm[tiab] OR premature
labour[tiab] OR small for
gestational age[tiab] OR
macrosomia[tiab] OR
anomalies[tiab] OR
malformations[tiab] OR
defects[tiab] OR pregnancy
hypertension[tiab] OR
placenta previaftiab] OR
placenta praeviaftiab] OR
intrauterine growth
retardation[tiab] OR
pregnancy loss[tiab] OR

Reproductive
techniques[mh] OR
Embryonic and Fetal
Development[mh] OR
Fertilization[mh] OR
Fertility[mh] OR

fecund*tiab] OR
placent*[tiab] OR
reproductive tech*[tiab] OR
blastocyst transfer[tiab] OR
tubal embryo[tiab] OR
fertil*[tiab] OR test-tube[tiab]
OR steril*[tiab]
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premature rupture

membranes[tiab]

Medline (includes simulat*:ti,ab with the below search terms)

Bias/exp OR Pregnancy/exp OR Reproductive
Selection bias*.ti,ab OR Pregnancy techniques/exp OR

complications/exp OR Infant | Embryonic and Fetal
Confound* bias*.ti,ab OR

collider* bias*.ti,ab OR

truncat* bias*.ti,ab OR

Death/exp OR Fetal Development/exp OR
Development/exp OR Fertilization/exp OR

Fertility/exp OR
censor* bias*.ti,ab OR

misclass* bias*.ti,ab OR birth*.ti,ab OR perinatal.ti,ab
measurement bias*.ti,ab OR neonatal.ti,ab OR fecund*.ti,ab OR
fetal.ti,ab OR foetal.tiab OR | Placent*.ti,ab OR
abortion.ti,ab OR pregnancy reproductive tech*.ti,ab OR
blastocyst transfer.ti,ab OR
tubal embryo.ti,ab OR
fertil*.ti,ab OR test-tube.ti,ab

OR steril*.ti,ab

termination.ti,ab OR
preterm.ti,ab OR premature
labour.ti,ab OR small for
gestational age.ti,ab OR
macrosomia.ti,ab OR
anomalies.ti,ab OR
malformations.ti,ab OR
defects.ti,ab OR pregnancy
hypertension.ti,ab OR
placenta previa.ti,ab OR
placenta praevia.ti,ab OR
intrauterine growth
retardation.ti,ab OR
pregnancy loss.ti,ab OR
premature rupture

membrane.ti,ab

EMBASE (includes simulat*:ti,ab with the below search terms)
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Bias/exp OR
Selection bias*.ti,ab OR

Confound* bias*.ti,ab OR
collider* bias*.ti,ab OR
truncat* bias*.ti,ab OR
censor* bias*.ti,ab OR
misclass* bias*.ti,ab OR

measurement bias*.ti,ab

Pregnancy/exp OR
Pregnancy
complications/exp OR Infant
Death/exp OR Fetal

Development/exp OR

birth*.ti,ab OR perinatal.ti,ab
OR neonatal.ti,ab OR
fetal.ti,ab OR foetal.ti,ab OR
abortion.ti,ab OR pregnancy
termination.ti,ab OR
preterm.ti,ab OR premature
labour.ti,ab OR small for
gestational age.ti,ab OR
macrosomia.ti,ab OR
anomalies.ti,ab OR
malformations.ti,ab OR
defects.ti,ab OR pregnancy
hypertension.ti,ab OR
placenta previa.ti,ab OR
placenta praevia.ti,ab OR
intrauterine growth
retardation.ti,ab OR
pregnancy loss.ti,ab OR
premature rupture

membrane.ti,ab

Reproductive
techniques/exp OR
Embryonic and Fetal
Development/exp OR
Fertilization/exp OR
Fertility/exp OR

fecund*.ti,ab OR
placent*.ti,ab OR
reproductive tech*.ti,ab OR
blastocyst transfer.ti,ab OR
tubal embryo.ti,ab OR
fertil*.ti,ab OR test-tube.ti,ab
OR steril*.ti,ab

CINAHL (includes TI simulat*

AND AB simulat* with the below search terms)

MH Bias OR

MH Pregnancy OR MH

“Pregnancy complications”

MH “Reproductive
techniques” OR MH

“Embryonic and Fetal
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Tl “selection bias*” OR AB
“selection bias™ OR Tl
“confound* bias*”OR AB
“confound* bias* OR TI
“collider* bias*” OR AB
“collider* bias* OR TI
“truncat* bias* OR AB
“truncat* bias*” OR Tl
“censor* bias* OR AB
“censor* bias*”OR TI
“misclass* bias*”OR AB
“misclass* bias* OR TI
“measurement bias* OR AB

*7

“measurement bias

OR MH “Infant Death” OR
MH “Fetal Development” OR

TI *birth* OR AB *birth* OR
Tl perinatal OR AB perinatal
OR Tl neonatal OR AB
neonatal OR Tl feta OR AB
fetal OR TI foetal OR AB
foetal OR Tl abortion OR AB
abortion OR TI “pregnancy
termination” OR AB
“pregnancy termination” OR
Tl preterm OR AB preterm
OR TI “premature labour”
OR AB “premature labour”
OR TI “small for gestational
age” OR AB “small for
gestational age” OR TI
macrosomia OR AB
macrosomia OR TI
anomalies OR AB
anomalies OR TI
malformations OR AB
malformations OR TI
defects OR AB defects OR
Tl “pregnancy hypertension”
OR AB “pregnancy
hypertension” OR TI
“placenta previa” OR AB
“placenta previa” OR TI
“placenta praevia” OR AB
“placenta praevia” OR Tl
“intrauterine growth
retardation” OR AB

“intrauterine growth

Development” OR MH
Fertilization OR MH Fertility
OR

Tl fecund* OR AB fecund*
OR Tl placent* OR AB
placent* OR TI “reproductive
tech*” OR AB “reproductive
tech*” OR Tl “blastocyst
transfer” OR AB “blastocyst
transfer” OR TI “tubal
embryo” OR AB “tubal
embryo” OR Tl fertile* OR
AB fertil* OR TI test-tube
OR AB test-tube OR TI
steril* OR AB steril*
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retardation” OR Tl
“pregnancy loss” OR AB
“pregnancy loss” OR TI
“premature rupture
membranes” OR AB
“premature rupture

membranes”

SCOPUS (includes ALL(simul

at*) with the below search terms)

TITLE-ABS-KEY (“selection
bias*” OR "confound* bias*”
OR “collider* bias*” OR
“truncat* bias*” OR “censor*
bias*” OR “misclass* bias*”

OR “measurement bias™”)

TITLE-ABS-KEY(Pregnancy
OR {Pregnancy
complication} OR {Infant
Death} OR {Fetal
Development} OR

*birth* OR perinatal OR
neonatal OR fetal OR foetal
OR abortion OR “pregnancy
termination” OR preterm OR
“premature labour” OR
“small for gestational age”
OR macrosomia OR
anomalies OR
malformations OR defects
OR “pregnancy
hypertension” OR “placenta
previa” OR “placenta
praevia” OR “intrauterine
growth retardation” OR
“pregnancy loss” OR
“premature rupture

membranes”)

TITLE-ABS-
KEY({Reproductive
techniques} OR {Embryonic
and Fetal Development} OR
Fertili?ation OR Fertility OR

fecund* OR placent* OR
“reproductive tech*” OR
“blastocyst transfer” OR
“tubal embryo” OR fertil* OR
test-tube OR steril*)
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Supplementary Table S2.2 Records excluded at full-text screening with reasons

1.

10.

11.

12.

Adebayo et al. Analyzing infant mortality with geoadditive categorical regression models:
A case study for Nigeria. Economics and Human Biology 2004, 2(2):229-244
Reason for exclusion: The primary aim is not to quantify bias.

Aiken et al. Management of fetal malposition in the second stage of labor: A propensity
score analysis. American Journal of Obstetrics and Gynecology 2015 212(3):335e1-335e7
Reason for exclusion: This study did not use simulated data.

Bang et al. Estimating treatment effects in studies of perinatal transmission of HIV.
Biostatistics 2004 5(1):31-43
Reasons for exclusion: The primary aim is not to quantify bias.

Basso et al. The performance of several indicators in detecting recall bias. Epidemiology
1997 8(3):269-274
Reasons for exclusion: The primary aim is not to quantify bias.

Brubaker et al. Vaginal progesterone in women with twin gestations complicated by short
cervix: A retrospective cohort study. BJOG 2015 122(5):712-718
Reasons for exclusion: This study did not use simulated data.

Chaemsaithong et al. Uterine artery pulsatility index in the first trimester: assessment of
intersonodiagramer and intersampling site measurement differences. Journal of Maternal-
Fetal and Neonatal Medicine 2018 31(17):2276-2283

Reasons for exclusion: The primary aim is not to quantify bias.

Cies et al. Population pharmacokinetics of gentamicin in neonates with hypoxemic-
ischemic encephalopathy receiving controlled hypothermia. Pharmacotherapy: The
Journal of Human Pharmacology & Drug Therapy 2018 38(11):1120-1129

Reasons for exclusion: The primary aim is not to quantify bias.

Cirillo et al. The human factor: does the operator performing the embryo transfer
significantly impact the cycle outcome? Human Reproduction 2020 35(2):275-282
Reasons for exclusion: This study did not use simulated data.

De Oliveira et al. A random-censoring Poisson model for underreported data. Statistics in
Medicine 2017 36(30):4873-4892
Reasons for exclusion: The primary aim is not to quantify bias.

Ding et al. Estimating effect of environmental contaminants on women’s subfecundity for
the MoBa study data with an outcome-dependent sample scheme. Biostatistics 2014
15(4):636-650

Reasons for exclusion: The primary aim is not to quantify bias.

Gard et al. A coarsened multinomial regression model for perinatal mother to child
transmission of HIV. BMC Medical Research Methodology 2008 8(1):46-46
Reasons for exclusion: The primary aim is not to quantify bias.

Hatch et al. Evaluation of selection bias in an internet-based study of pregnancy planners.
Epidemiology 2016 27(1):98-104
Reasons for exclusion: This study did not use simulated data.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Heinke et al. Quantification of selection bias in studies of risk factors for birth defects
among livebirths. Paediatric & Perinatal Epidemiology 2020 34(6):655-664
Reasons for exclusion: The application of simulation was not core to the paper.

Honein et al. Modeling the potential public health impact of prepreghancy obesity on
adverse fetal and infant outcomes. Obesity 2013 21(8):1276-1283
Reasons for exclusion: The primary aim is not to quantify bias.

Horton et al. A population-based approach to analyzing pulses in time series of hormone
data. Statistics in Medicine 2017 36(16):2576-2589
Reasons for exclusion: The primary aim is not to quantify bias.

Howards et al. Adjusting for bias due to incomplete case ascertainment in case-control
studies of birth defects. Practice of Epidemiology 2015 181(8):595-607
Reasons for exclusion: The application of simulation was not core to this paper.

Janssen et al. Towards rational dosing algorithms for vancomycin in neonates and infants
based on population pharmacokinetic modeling. Antimicrobial Agents & Chemotherapy
2016 60(2):1013-1021

Reasons for exclusion: The primary aim is not to quantify bias.

Jiang et al. Causal Mediation Analysis in the Presence of a Misclassified Binary Exposure.
Epidemiological Methods 2019 1(8)
Reasons for exclusion: The primary aim is not to quantify bias.

Kim et al. Flexible Bayesian human fecundity models. Bayesian Analysis 2012 7(4):771-
800
Reasons for exclusion: The primary aim is not to quantify bias.

Kim et al. A model-based approach to detection limits in studying environmental exposures
and human fecundity. Statistics in Biomedicine 2019 11:524-547
Reasons for exclusion: The application of simulation is not core to the study.

Kone et al. Heckman-type selection models to obtain unbiased estimates with missing
measures outcome: theoretical considerations and an application to missing birth weight
data. BMC Medical Research Methodology 2019 19(1):231

Reasons for exclusion: The primary aim is not to quantify bias.

Kovacevic et al. Fetal aortic valvuloplasty: investigating institutional bias in surgical
decision-making. Ultrasound in Obstetrics & Gynecology 2014 44(5):538-544
Reasons for exclusion: This is simulation based research.

Lau. On the heterogeneity of fecundability. Lifetime Data Analysis 1996 2(4):403-415
Reasons for exclusion: The primary aim is not to quantify bias.

Manuel et al. Matched case-control data with a misclassified exposure: what can be done
with instrumental variables? Biostatistics 2019 0:1-18
Reasons for exclusion: The application of simulation was not core to the study.

Marston et al. The effects of HIV on fertility by infection duration: evidence from African
population cohorts before antiretroviral treatment availability. AIDS 2017 31(1):S61-S76
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26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Reasons for exclusion: The study did not use simulated data.

Molitor et al. Using Bayesian graphical models to model biases in observational studies
and to combine multiple sources of data: application of low birth weight and water
disinfection by-products. Journal of Royal Statistical Society 2009 172:615-637
Reason for exclusion: The application of simulation was not core to the study.

Nadler et al. Clinicians can accurately assign Apgar scores to video recordings of
simulated neonatal resuscitations. Simulation in Healthcare: Journal of the Society for
Medical Simulation 2010 5(4):204-212

Reasons for exclusion: This is simulation based research.

Osei et al. What happened to the IUD in Ghana? African Journal of Reproductive Health
2005 9(2):76-91
Reasons for exclusion: The primary aim is not to quantify bias.

Parry et al. An online tool for investigating clinical decision making. Information for Health
and Social Care 2004 29(1):75-85
Reasons for exclusion: This is simulation based research.

Piao et al. Semiparametric model and inference for spontaneous abortion data with a
cured proportion and biased sampling. Biostatistics 2018 19(1):54-70
Reasons for exclusion: The primary aim is not to quantify bias.

Radin et al. Maternal recall error in retrospectively reported time-to-pregnancy: an
assessment and bias analysis. Paediatric and Perinatal Epidemiology 2015 29(6):576-588
Reasons for exclusion: The application of simulation was not core to this paper.

Rosenbaum. Confidence intervals for uncommon but dramatic responses to treatment.
Biometrics 2007 63(4):1164-1171
Reasons for exclusion: This study did not use simulated data.

Rousson et al. Stabilizing cumulative incidence estimation of pregnancy outcome with
delayed entries. Biometrical Journal 2019 61:1290-1302
Reasons for exclusion: The application of simulation was not core to the paper.

Sallmen et al. Selection bias due to parity-conditioning in studies of time trends in fertility.
Epidemiology 2015 26(1):85-90
Reasons for exclusion: The application of simulation was not core to the paper.

Sampson et al. Predictive performance of a gentamicin population pharmacokinetic model
in neonates receiving full-body hypothermia. Therapeutic Drug Monitoring 2014 36(5):584-
589

Reasons for exclusion: The primary aim is not to quantify bias.

Shaffer et al. Analysis of neonatal clinical trials with twin births. BMC Medical Research
Methodology 2009 9(1):12-21.
Reasons for exclusion: The primary aim is not to quantify bias.
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37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

Slager et al. Stoppage: an issue for segregation analysis. Genetic Epidemiology 2001
20:328-339
Reasons for exclusion: The primary aim is not to quantify bias.

Stott-Miller et al. Increased risk of orofacial clefts associated with maternal obesity: case-
control study and Monte Carlo-based bias analysis. Paediatric & Perinatal Epidemiology
2010 24(5):502-512

Reasons for exclusion: The primary aim is not to quantify bias.

Takada et al. Practical approaches for design and analysis of clinical trials of infertility
treatments: crossover designs and the Mantel-Hansel method are recommended.
Pharmaceutical Statistics: Journal of the Pharmaceutical Industry 2015 14(3):198-204
Reasons for exclusion: The primary aim is not to quantify bias.

Van Eekelen et al. A comparison of the beta-geometric model with landmarking for
dynamic prediction of time to pregnancy. Biometrical Journal 2019 62(1):175-190
Reasons for exclusion: The primary aim is not to quantify bias.

Van Os et al. Influence of cut-off value on prevalence of short cervical length. Ultrasound
in Obstetrics & Gynecology 2017 49(3):330-336
Reasons for exclusion: The primary aim is not to quantify bias.

Venkatacharya. An examination of a certain bias due to truncation in the context of simulation
models of human reproduction. The Indian Journal of Statistics 1969 31(3/4):397-412
Reasons for exclusion: This primary aim is not the application of simulation to quantify

bias.

Weinberg et al. Efficiency and bias in studies of early pregnancy loss. Epidemiology 1992
3(1):17-22
Reasons for exclusion: The primary aim is not to quantify bias.

Weinberg et al. Pitfalls inherent in retrospective time-to-event studies: the example of time
to pregnancy. Statistics in Medicine 1993 12:867-879
Reasons for exclusion: This is a statistical study whose primary aim is not the

guantification of bias.

Wilbaux et al. Characterizing and forecasting individual weight changes in term neonates.
Journal of Pediatrics 2016 173:101-107
Reasons for exclusion: The primary aim is to not to quantify bias.

Williams & Nix. Bias in risk estimation: application to Down's syndrome screening.
Statistics in Medicine 2002 21(17):2495-2509
Reasons for exclusion: The primary aim is the demonstration of a method.

Wilson et al. Confounder selection via penalized credible regions. Biometrics 2014
70(4):852-861
Reasons for exclusion: The primary aim is not the application of a simulation to quantify

bias.
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48. Wilson et al. Bayesian distributed lag interaction models to identify perinatal windows of
vulnerability in children's health. Biostatistics 2017 18(3):537-552
Reasons for exclusion: The primary aim is not to quantify bias.

49. Yland et al. Methodological approaches to analyzing IVF data with multiple cycles. Human
Reproduction 2019 34(3):549-557
Reasons for exclusion: The study did not apply simulation.

50. Zekavat et al. A computational model of 1,5-AG dynamics during pregnancy. Physiological
Reports 2017 5(16):13375
Reasons for exclusion: The primary aim is not to quantify bias.

51. Zelop et al. Cardiac arrest during pregnancy: ongoing clinical conundrum. American

Journal of Obstetrics & Gynecology 2018 219(1):51-61
Reasons for exclusion: The study applied simulation based research.

Appendices 196



Supplementary Table S2.3 Summary of the characteristics of the studies quantifying bias (n=39) in the review.

First author (year of publication)

Aim(s) of the
simulation

Key findings of the
simulation

Author’s conclusion

Olsen (1983)

Baird (1991)

Appendices

To demonstrate bias
resulting from the
inadequate control of
exogenous effects in
gravidity and
pregnancy order
specific rates.

To examine reporting
errors from collecting
data on time-to-
pregnancy.

In the simulated scenarios
where the number of women
with low gravidity is high in
the exposed group, the odds
ratio will be too low when
using inadequate statistical
control. Conversely, high
numbers of women with high
gravidity in the exposed
group will lead to an
overestimated odds ratio.

Substantial power was lost in
detecting weak exposures yet
exposures that reduce
fecundability by 50%, could
still be detected with 80%
power in samples of about
100 women (half of which
were exposed to a possible
toxin).
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Stratification based on either
pregnancy order or gravidity
alone can occasionally
produce misleading results.

Data from a brief measure of
time-to-pregnancy can
produce bias toward the null
and concomitant loss of
power due to non-differential
misclassification. Women with
short and long times to
pregnancy had less
misclassification compared to
women who required 5-13
menstrual cycles to conceive.



Doody (1993)

Basso (1995)

Basso (2000)

Appendices

To investigate the
potential magnitude of
error resulting from
loss to follow up in
studies of fertility.

To evaluate the
influence of the
magnitude of bias on
seasonal patterns of
reproductive failures.

To determine whether
a differential
persistence in
pregnancy attempt is a
source of bias in time-
to-pregnancy
estimates.

Using a range of clinical
plausible assumptions, very
large deviations were noted
from loss to follow-up in the
direction of elevated
cumulative pregnancy rates.
On a percentage basis, the
largest effects were seen in
groups that have the lowest
monthly fecundity rates and
the lowest cure ratios.

Under conditions that were
more extreme than those
observed in the original
cohort, bias related to
differential pregnancy
planning was marginal in the
simulation.

Simulating moderate changes
in planning behaviour
modified the waiting time
distributions significantly.
Persistence in trying to
become pregnant was age-
related.
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Loss to follow-up can lead to
a systematic error in the
reporting of excess
pregnancy, raising fecundity
rates. The later return of
pregnant drop-outs to the
study introduced major
confounding effects in the
simulation. These effects
were most evident in women
with lower fecundity rates,
lower ‘cured’ women (where
‘cured’ is fertility restored due
to treatment), higher drop-
outs, and higher pregnant
drop-out return rates.

Correcting for seasonal
patterns in reproductive
failures may eliminate bias
associated with the seasonal
variation in pregnancy
planning.

Time-to-pregnancy studies
are vulnerable to bias due to
differential compliance in
pregnancy planning. Relative
risk measures can be biased
up to 20% under realistic
circumstances.



Juul (2000)

Sallmen (2005)

Wright (2005)

Basso (2006)

Appendices

To demonstrate
selection bias
associated with
restriction to completed
pregnancies in
retrospective study
designs.

To evaluate whether
contraception and
induced abortion might
bias the direct study of
time trends in fertility.

To examine bias due
to exposure
misclassification from
the use of weighted
and unweighted
exposure metrics
(disinfection by-
product) on fetal
development.

To explore
confounding bias in the
observed association

The simulation showed that
even if each women’s
fecundity decreased with age,
estimation of the effect of age
may show the opposite trend
when restricted to completed
pregnancies.

Comparing bias across two
study designs, the strength of
the bias is weaker in infertility
study designs compared to
time-to-pregnancy study
designs; however the bias
remains substantial

The simulation showed that
the attenuation of the true
effect of the exposure was
diminished when town mean
concentrations with large
variability were down-
weighted.

An observed steep gradient
of risk for small babies at
term could be produced by
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The different fecundability
classes (high fecund; low
fecund; age-dependent)
becomes differentially
distorted in the various age
groups when the sampling
based on completed
pregnancies.

Dependent on the study
design (time-to-pregnancy or
infertility) access to effective
contraception and elective
abortion can bias the fertility
rates, despite no actual
change in fertility.

The weighted town mean
analysis produced less
misclassification bias; but at
the cost of greater variability
in the effect estimates
compared to the unweighted
results.

A high rate of mortality in
small babies could be
explained by the presence of



Howards (2006)

Nohr (2006)

Howards (2007)

Appendices

between birth weight
and neonatal mortality.

To examine
misclassification bias
caused by errors in
gestational age.

To evaluate two
methods for
constructing
confidence limits for
estimates of selection
bias of relative risk
estimates in perinatal
cohort studies.

To assess the
magnitude of bias
introduced by fitting

rare confounders, impacting
associations between fetal
growth and mortality.

In this simulation, errors in
gestational age dating did not
bias Cox regression if 1) the
error is not differential by
exposure, 2) differential error
by exposure is small, or 3)
due to the tail of the
distributions.

The effect of differential
participation was modelled,
resulting in small estimated
effect on the risk estimates,
even after adjustment for
minimal confounding.
Although some of the
confidence intervals were
wide, the bias was never
larger than sixteen.

The simulation suggested
that bias in the odds ratio will
exceed 20% when average
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rare and unmeasured
confounders that underlie the
association of birth weight
with mortality.

Pregnancies ending in
spontaneous abortion are
more likely to have errors in
their gestational ages than
pregnancies ending in live
birth. However, bias resulting
from these errors is likely to
be marginal.

The two methods (logarithm
of relative odds ratio and non-
parametric bootstrap) used to
compute confidence intervals
gave very similar results with
the simulation study showing
coverage probabilities were
close to the 95% nominal
level. As the logarithm of
relative odds ratio is simpler
to implement, it is a valid
choice when the selection
bias is modest.

For variables where the
exposure is associated with
entry time, logistic regression



Basso (2009)

Key (2009)

Appendices

logistic versus Cox
models using left-
truncated data.

To demonstrate the
intersection of mortality
curves due to the
presence of
unmeasured
confounders.

To quantify the effects

of protection bias from

accidental pregnancies
on fecundity in time-to-
pregnancy studies.

gestational age at entry for
the exposed versus the
unexposed differs by ten days
or more. This was observed
due to possible
socioeconomic factors, such
as education and ethnicity.

In this simulation model, the
addition of a simple exposure
(one that reduces birth weight
and independently increases
mortality) reversed the risk of
mortality among small babies.
Furthermore, the model
explicitly showed how the mix
of high- and low-risk babies
within a given stratum of birth
weight produced lower
mortality for high-risk babies
at low birth weights.

To see a change in the trend
of fecundity, the simulations
required extreme and
implausible trends in
accidental pregnancies and
unrealistic sample sizes.
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may be subject to bias. Given
that left truncation in studies
may be related to exposure or
important covariates, Cox
regression model may be a
better fit.

The intersection of mortality
curves can be explained by
the presence of confounding
variables and the unequal mix
of those variables across the
birth weight distribution.

Protection bias probably does
exist, however it is
guantitatively not very
important. In any study of
fecundity trends or cross-
cultural differences, the
proportion of accidental
pregnancies can be used to
screen for the presence of this
bias.



Whitcomb (2009)

Strand (2011)

Wilcox (2011)

Appendices

To quantify the
collider-stratification
bias between smoking
and neonatal death.

To quantify fixed
cohort bias when
estimating the effects
of season and
seasonal exposures on
birth outcomes.

To explore bias
resulting from
adjustment when
gestational age is a
mediator.

When birth weight is a proxy
for other causally related
variables, inclusion in
regression models of
neonatal mortality generates
an over-adjustment.

Using a fixed cohort does not
only bias the estimated
effects of the season (e.g.,
month of conception), but can
also bias the estimated
effects of seasonal exposures
(e.g. air pollution and
temperature).

The simulations
demonstrated that under
plausible conditions, reversal
of exposure-outcome
associations can occur due to
collider bias.
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This study illustrated that
when the birth weight—
mortality relation is subject to
substantial uncontrolled
confounding, the bias on
estimates of effect adjusted
for birthweight may be
sufficient to yield opposite
causal conclusions. Therefore
a factor that posed increased
risk now appears protective.

This study demonstrated that
the size of the fixed cohort
bias can be substantial,
causing great changes in the
months that most affect
gestational length and
changed the estimated effect
of temperature on gestational
length.

Unmeasured risk factors
complicate inference about
the risk of morbidity outcomes
due to immaturity alone.
Adjustment for gestational
age is likely to produce biased
estimates.



Ahrens (2012)

Hutcheon (2012)

Schisterman (2013)

LaSh319318318319319319319319319319319319319319319318317317316

(2014)

Appendices

To correct for exposure
misclassification when
using survival analysis
with a time-varying
exposure

To quantify bias from
conventional
gestational weight gain
measures on the
relationship between
maternal weight gain
and risk of preterm
birth.

To demonstrate
selection bias using
truncated data in a
time-to-pregnancy
study.

To evaluate the
direction, magnitude,
and uncertainty in
estimates as a result of
misclassification bias
from pre-pregnancy

Correction for
misclassification bias in a
simulation could result in a
much greater change in effect
estimates depending on the
magnitude and pattern of
exposure misclassification.

Bias was likely due to a
positive correlation between
the adequacy ratio and
gestational duration, resulting
from increased differences
between observed and
expected weights as the
pregnancy progressed.

Fixed or variable non-
differential left truncation will
results in a loss of precision.
Fixed or variable differential
left truncation will result in a
bias either towards or away
from the null, including a loss
of precision.

The applications of
probabilistic-bias analysis to
frequency-weighted datasets
using simulation enabled the
same conceptual correction
to be applied to each data
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In this simulation, correction
for misclassification of
prenatal influenza vaccination
resulted in an adjusted hazard
ratio that was slightly higher
and less precise than the
conventional analysis.

Conventional measures of
gestational weight gain
introduce a significant degree
of bias when assessing the
relationship between
gestational weight gain and
risk of preterm birth < 32
gestational weeks.

Null-bias can be induced
when events occur prior to
truncation time. When deaths
occur before the truncation
time, identifying if these prior
events are likely associated
with exposure is important.

Probabilistic bias analyses
suggested that the
association between
underweight and early
preterm birth was
overestimated by the



Lisonkova (2015)

Arpino (2016)

Avanasai (2016)

Appendices

body mass index on
early preterm births.

To determine whether
left truncation bias
could explain the
paradoxical
association between
smoking and pre-
eclampsia.

To reduce bias due to
cluster level
confounders (hospitals
and sample size) on
estimates of caesarean
section treatment on
the 5-min Apgar score.

To evaluate the impact
of bias in estimated

record. This allowed the
covariates required for
adjustment to account for
misclassification.

The simulation yielded a
protective effect of pre-
eclampsia given smoking.
This protective effect of
smoking was also evident in
simulations that did not
require assumptions about
early pregnancy loss rates.

The simulations suggest that
when the average cluster size
is about 100 units, the bias of
within cluster matching can
be rather high. With smaller
clusters of size 50, the results
were even more negative
when using pure within-
cluster matching. The
proposal of a preferential
within-cluster matching is a
better alternative in these
cases.

Using variables for
uncertainty exposures
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conventional approach.
However, the associations
between over-weight
categories and early preterm
birth were underestimated.

Left truncation bias due to
differential rates of early
pregnancy loss among
smokers is a reasonable
explanation for the inverse
association between maternal
smoking and pre-eclampsia.

The preferential within-cluster
matching approach,
combining the advantages of
within-cluster and between
cluster matching, showed a
relatively good performance
both in the presence of big
and small clusters.

The correlated exposure
uncertainty can substantially



Gerdts (2016)

Hinkle%® (2016)

Appendices

perfluorooctanoate
drinking-water
concentrations on the
association with pre-
eclampsia.

To quantify selection
and misclassification
bias in reproductive
abortion-related
mortality.

To evaluate the impact
of mis-specifying the
distributions of weight
gain and gestational
age.

allowed for specification of
correlations in exposure
measurement errors across
years and individuals with
shared exposure sources, in
contrast to standard
epidemiological models that
assume independence of the
measurement errors.

Using simulated data in
multiple-bias analysis allowed
for explicit assumptions to
replace implicit assumptions
through the quantification of
selection bias and
sensitivity/specificity.

Adjusting for gestational age,
total weight gain will obtain
unbiased estimates of the
true association with neonatal
mortality, assuming no
unmeasured confounding.
The simulation model
permitted flexibility in
identifying the most
appropriate relationship
between potential
confounders with the
exposure and outcome.
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change estimated
perfluorooctanoate serum
concentrations, but results
had only minor impacts on the
association between
perfluorooctanoate and pre-
eclampsia.

After adjustment for selection
bias, misclassification, and
random error, there was
approximately 20% increase
in the reported proportion of
abortion related deaths.

Using directed acyclic graphs
and simulation, gestational
weight gain is recognised as a
time-varying exposure. There
was no true association
between weight gain and
neonatal mortality. Adjusting
for gestational age achieved
unbiased estimates of the
association between total
gestational weight gain and
neonatal mortality.



Luque-Fernandez (2016)

Mitchell (2016)

Kinlaw (2017)

Appendices

To determine if
selection bias could
explain the paradoxical
association between
smoking pregnancy
and pre-eclampsia as
being a consequence.

To investigate bias due
to effect of gestational
age on the time-
varying confounder of
gestational weight gain
and it's association
with preterm delivery.

To examine the
sensitivity of Lisonkova
& Joseph simulation
study on the inverse
association between

Applying a simulated
probabilistic sensitivity
analysis, the inverse
association of smoking on
pre-eclampsia shifted from a
28% risk reduction to a non-
significant bias-adjusted
effect of 22% risk increase of
pre-eclampsia for smokers
compared with non-smokers.

The results of the simulations
suggest that the survival
model with interpolated
gestational weight gain
performs extremely well
under various effect sizes,
with no discernible bias and
nominal coverage. When
weight was measured only
intermittently, an unbiased
and precise hazard ratio
estimate can be achieved.

The simulation confirmed that
the previous findings by
Lisonkova and Joseph (2015)
are highly dependent on
assumptions regarding the
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Selection bias is evident from
two sources. The first is
conditioning on the collider of
gestational weeks at delivery.
The second source is the
omittance of important
confounders associated with
smoking and pre-eclampsia,
given that some pregnancies
will not be selected into the
population because they are
left truncated.

Hazard ratio estimates can be
accurately and precisely
estimated under a survival
model with linear interpolation
of weight gain. This study
emphasised the importance of
accounting for the
confounding effect of time.
Not doing so could result in
misleading inference.

Left truncation does not
appear to fully explain the
inverse association between
smoking and pre-eclampsia.
Conceptualizing early loss as



Lefebvre (2017)

Albert (2018)

Appendices

maternal smoking and
pre-eclampsia.

To investigate
confounding bias from
small-for-gestational
age on birthweight
related outcomes.

To examine
measurement error in
gestational age on
subsequent risk of
preterm birth.

strength of association
between abnormal
placentation and pre-
eclampsia. Other factors
might introduce additional
biasing pathways from
smoking to pre-eclampsia.

The simulations highlight that
in addition to gestational age,
both outcome variables (low)
birthweight and small-for-
gestational age must be
considered in studies that rely
on these perinatal outcomes.

Under the correctly specified
model assuming a Gaussian
distributed measurement
error, parameter estimation is
nearly unbiased. For all,
except the polynomial terms
for the regression relating
gestational age to birth
weight, the average
asymptotic standard errors
are close to the reported
Monte Carlo estimates. This
suggests the variance
estimation for important
parameter estimates
performs well.
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a competing event for pre-
eclampsia clarifies the
consequences of analytic
decisions intended to address
potential collider bias.

Small-for-gestational age is
an absorbing variable: the
observed association between
the exposure and small-for-
gestational age solely reflects
the direct effect of the
exposure on birth weight.

The authors showed the
importance of properly
accounting for measurement
error in transition probabilities
across multiple pregnancies.
Analyses with the hidden
Markov models found that the
odds ratio for smoking on
preterm birth was
substantially larger when the
first pregnancy was not
preterm.



Schnitzer (2018)

Snowden (2018)

Stoner (2018)

Appendices

To assess the extent of An advantage of the

selection bias due to
the delayed inclusion
of pregnancies.

To examine bias in
associations from
studies restricted to
preterm births are
potentially biased.

To quantify selection
bias in the effect of
immediate versus
delayed antiretroviral
therapy initiation on

simulation study is the ability
to investigate the estimation
bias, standard error, and
power of the statistical
estimator.

The simulation provided a
simple demonstration of
collider-stratification bias,
calculated (i.e. gestational
length is ‘conditioned on’)
when there is uncontrolled
mediator-outcome
confounding, regardless of
whether gestational length is
‘restricted on’ or adjusted for
in a model.

Non-differential measurement
error generally produced bias
toward the null. In this

simulation with selection bias,
increased measurement error

208

Not all sources of bias
threaten the overall validity of
the conclusions; it is important
to investigate the potential
size of bias in relation to effect
estimates. While delayed
pregnancy can produce
substantial bias in pregnancy
drug studies, simulation is an
effective method for producing
estimates of the size of the
bias.

Among very preterm births,
nearly all babies are born with
pathologies that increase the
risk of adverse outcomes.
Babies exposed to one factor
(e.g. pre-eclampsia) are
compared with babies who
have a mix of other
pathologies; thereby,
selection bias affects studies
carried out among very
preterm births.

Selection bias increases with
1) lower thresholds of
prematurity when women
initiate treatment later in
pregnancy, and 2)



Suarez (2018)

Sundermann (2018)
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preterm birth in HIV-
infected women.

To estimate collider-
stratification bias when
conditioning on live
birth.

To quantify bias from
misattributed exposure
time on estimates of
miscarriage risk.

increased the number of
preterm births and the
number who were excluded
as they delivered prior to
initiation of treatment.

When unmeasured covariates
are positively associated with
exposures, confounding is
introduced into the exposure-
outcome relationship in
addition to selection bias.
Bias is thereby no longer
predictable and is dependent
on which bias is stronger,
confounding or selection.

Exposures after arrest of
development are unlikely to
affect pregnancy outcome.
Using estimated gestational
arrest at development instead
of miscarriage to determine
time at risk, allowed for more
precise estimate of the risk of
pregnancy loss associated
with time-varying exposures.
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measurement error in
gestational age dating.

A downward bias was
observed in the relative risk
estimates of antidepressant
use and pre-eclampsia when
restricted to live birth, but only
when the covariates of obesity
was not associated with
antidepressant use. This
study demonstrated that if the
exposure of interest is also a
strong risk factor for stillbirth,
substantial bias can result.

Using gestational age at
arrest of development to
assign time at risk reduced
the misclassification bias and
variance of effect estimates
for time-varying exposures.



Warren (2018)

Wood (2018)

Eijkemans (2019)

To quantify the impact
of exposure
misclassification from
maternal residential
mobility during
pregnancy on defining
weekly exposure to air
pollution.

To investigate the
ability of the propensity
score to reduce
confounding bias in the
presence of non-
differential
misclassification of
treatment.

To investigate bias in
study designs that
estimate the
cumulative probability
of preghancy.

The simulation study showed
that the distance travelled
may be a more important
factor in terms of exposure
misclassification than the
proportion of the population
who move during pregnancy.
Mobilising larger distances
would increase the
geographical variability of
ambient air pollution and
therefore lead to larger
exposure classification.

The simulation demonstrated
that the impact of sensitivity
and specificity on bias is
strongly related to prevalence
of exposure: as exposure
prevalence decreases and/or
outcomes are continuous
rather than categorical, the
effect of misclassification is
magnified.

The simulations showed that
all four study designs
(incident cohort; prevalent
cohort; preghancy-based;
current duration approach)
analysed by proportional
hazards regression suffered

Even when a larger proportion
of the pregnant population
moves residence a short
distance from their usual
vicinity between conception
and delivery, there is relatively
little impact on critical window
identification for PM1o and
term low birth weight.

Propensity score matching
more often produced
estimates with worse
coverage and greater bias,
although in the presence of
even moderate
misclassification, all methods
(adjustment, weighting,
matching and stratification)
increased in bias.

Focusing on the effect of
exposures during the first six
months of unprotected
intercourse through censoring
partly removes bias from
attenuation.
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from attenuation bias.
However, this bias could be
reduced by censuring
analysis at six months follow-

up.
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Supplementary Table S2.4 Checklist for the application of simulation in studies that

guantify bias using observational data

Section/subsection

Recommendation

1. Aim

1.1 Purpose of the

simulation

1.2 Exposure(s) and
outcome(s)

1.3 Type(s) of bias

2. Logic

2.1 Causal graphs

2.2 Probability
formula (optional)

3. Data

3.1 Population

3.2 Data sources

3.3 Bias parameters

3.4 Data generation

4. Implementation

Appendices

Explain the background and clearly state the aim of the simulation

in the research study.

Define the exposure and outcomes that will be included in the

simulation model.

State the types of bias that the simulation model will be
quantifying.

Describe the simulation logic using causal diagrams.

Provide details on any probability formula that will inform the

simulation.

Provide clear details of the base population, including whether an
original cohort is used or the population is simulated. If the
population is simulated, describe the assumptions in details that

inform the dataset.

Clearly state the data sources that inform the simulation of the

population and/or the assumptions of the model.

Provide the parameters applied to the model, and details of the
source of these parameters. If using prior published literature, also

include references.

Report how probability distributions were assigned to the bias

parameters.
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4.1 Summarise Clearly state the analysis methods applied to the simulation.
analysis of the Details should include all methods, results, diagnostics and code

simulation used during the implementation of the model.

4.2 Report results of  Restate the assumptions of the simulation and clearly report the
simulation results, focusing on whether the model explains the reported

estimate.
5. Reproducibility

5.1 Model If assumptions of the model are summarised in the methods
assumptions section, use online appendices to elaborate on details, including

probability formulas.

5.2 Software Provide a clear statement of the software used to conduct the
simulation.

5.3 Code sharing Make the code available, preferably online with the published
paper.
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Appendix E Supplementary material for Publication Two

Uncontrolled common causes of complications and preterm birth

v

COH’Ip“C&tIOﬂS Pregnancy 1 Preterm bll"[h pregnancyZ

[includes complications]

Obesity [Common causes of complications and preterm birth]

Supplementary Figure S3.1. This causal diagram illustrates the potential causal relationship
between complications in first pregnancy and subsequent preterm birth. Obesity represents a
simulated confounder. Second pregnancy complications are included in the outcome of
preterm birth to prevent collider bias that would be induced by conditioning on them when
estimating the effect of first pregnancy complications on subsequent preterm birth. [variable]
represents the adjustment of known confounders. Uncontrolled common causes of

complications and preterm birth are not included in the model.
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Supplementary Table S3.1 Prevalence of complications in second pregnancy in the subsequent risk of preterm birth

1%t pregnancy

2" pregnancy

Preterm birth with no complications? Complicated preterm birth including

primary complication?

Complicated preterm birth excluding

primary complication?

Complication
status

ReferenceP

Pre-eclampsia

Placental
abruption

Small-for-
gestational
age

Perinatal
death

Pre-
eclampsia:

PEQ2°
PE03¢

Appendices

N(%) N(%0)

Yes No Unknown Yes No Unknown

3,897 (3.7) 103,240 (95.5) 901 (0.8) - - -
- - - 252 (0.2) 103,240 (95.5) 4,636 (4.3)
- - - 154 (0.1) 103,240 (95.5) 4,734 (4.4)
- - - 145 (0.1) 103,240 (95.5) 4,743 (4.4)
- - - 467 (0.4) 103,240 (95.5) 4,421 (4.1)
1,315 (19.8) 5,175 (77.8) 160 (2.4) 77 (1.2) 5,175 (77.8) 1,398 (21)
225 (6.9) 3,386 (91.3) 66 (1.8) 20 (0.5) 3,386 (91.3) 301 (8.1)

215

Yes

649 (0.6)
742 (0.7)

754 (0.7)

434 (0.4)

83 (1.2)
46 (1.2)

N(%)

No

103,240 (95.5)
103,240 (95.5)

103,240 (95.5)

103,240 (95.5)

5,175 (77.8)
3,386 (91.3)

Unknown

4,239 (3.9)
4,146 (3.8)

4,134 (3.8)

4,454 (4.1)

1,392 (20.9)
275 (7.4)

Total

108,128

108,128
108,128

108,128

108,128

6,650
3,707



PEO4¢
PEOS
PE06Y
Missing

Placental
abruption:

PA02°
PA03¢
PA04e
PAO5f
PAOGS
Missing

Small-for-
gestational
age:

SGAO02°¢
SGA03¢
SGA04¢
SGA05f
SGAO069
Missing

Perinatal
death:

Appendices

185 (4.4)

201 (17.9)

174 (11.9)
0(0)

1,469 (18.4)
432 (5.5)
8(3.7)
174 (16.7)
45 (20.6)

*

1,469 (18.4)
215 (4.6)
225 (6.6)
166 (19.1)

55 (14)
0 (0)

3,839 (91.8)
855 (76)
1054 (72.1)
215 (98.2)

6,135 (76.9)
7,235 (91.7)
203 (93.5)
794 (76.1)
156 (71.6)

*

6,135 (76.9)
4,296 (92.3)
3,078 (90.9)
654 (75.1)
296 (75.1)
65 (100)

158 (3.8)
69 (6.1)
234 (16)

*

370 (4.6)
221 (2.8)
6(2.8)
76 (7.3)
17 (7.8)

*

370 (4.6)

143 (3.1)

84 (2.5)

51 (5.9)

43 (10.9)
0 (0)

115 (2.7)
21 (1.9)
208 (14.2)
0(0)

31 (0.4)
19 (0.2)

*

9(0.9)

*

0(0)

27 (0.3)
9(0.2)
25 (0.7)
5 (0.6)
18 (4.6)
0(0)

3,839 (91.8)
855 (76)
1054 (72.1)
215 (98.2)

6,135 (76.9)
7,235 (91.7)
203 (93.5)
794 (76.1)
156 (71.6)

*

6,135 (76.9)

4,296 (92.3)

3,078 (90.9)
654 (75.1)
296 (75.1)
65 (100)

228 (5.5)
249 (22.1)
200 (13.7)

*

1,808 (22.7)
634 (8)
10 (4.6)

241 (23.1)
59 (27.1)

*

1,812 (22.7)
349 (7.5)
284 (8.4)
212 (24.3)
80 (20.3)

0 (0)

216

43 (1)
48 (4.3)
26 (1.8)

0(0)

338 (4.2)
199 (2.5)
67 (6.4)
14 (6.4)

*

342 (4.3)

131 (2.8)

59 (1.7)

46 (5.3)

25 (6.3)
0 (0)

3,839 (91.8)
855 (76)
1054 (72.1)
215 (98.2)

6,135 (76.9)
7,235 (91.7)
203 (93.5)
794 (76.1)
156 (71.6)

*

6,135 (76.9)

4,296 (92.3)

3,078 (90.9)
654 (75.1)
296 (75.1)
65 (100)

300 (7.2)
222 (19.7)
382 (26.1)

*

1,501 (18.8)
454 (5.8)
12 (5.5)
183 (17.5)
48 (22)

*

1,497 (18.8)
227 (4.9)
250 (7.4)
171 (19.6)
73 (18.5)

0(0)

4,182

1,125

1,462
219

7,974
7,888
217
1,044
218

7,974
4,654
3,387
871
394
65



PDO2¢ 1,469 (18.4)

PDO3¢ 401 (5.1)
PD04¢ 39 (12.6)
PDO5 71 (17.7)
PDO6Y 150 (17.4)
Missing 0 (0)

6,135 (76.9)
7,172 (92)
266 (85.8)
294 (73.1)

657 (76)
0(0)

370 (4.6)
222 (2.8)
5 (1.6)
37(9.2)
57 (6.6)
0(0)

69 (0.9)
52 (0.7)
13 (3.2)
22 (2.5)
0(0)

6,135 (76.9)
7,172 (92)
266 (85.8)
294 (73.1)

657 (76)
0(0)

1,770 (22.2)
571 (7.3)
42 (13.5)
95 (23.6)
185 (21.4)

0(0)

300 (3.8)
167 (2.1)
24 (6)
35 (4.1)
0 (0)

6,135 (76.9)
7,172 (92)
266 (85.8)
294 (73.1)

657 (76)
0(0)

1,539 (19.3)
456 (5.8)
41 (13.2)
84 (20.9)
172 (19.9)

0(0)

7,974
7,795
310
402
864

acomplications included are pre-eclampsia, placental abruption, small-for-gestational age and stillbirth; ® uncomplicated term birth; ¢
uncomplicated preterm birth; ¢ term birth without primary complication; ©term birth with primary complication; " preterm birth without primary

complication; ¢ preterm birth with primary complication
*observations with less than 5 counts were not reported
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Supplementary Table S3.2 Relative risk for the association between complications in first pregnancy and preterm birth in the second

pregnancy

1% pregnancy

Preterm birth with no complications?

2" pregnancy

Complicated preterm birth including

primary complication?

Complicated preterm birth excluding

primary complication?

Complication

status

No complication

Pre-eclampsia:
PEO2¢
PE03¢
PEOQ4¢

PEO5'

PEOG®

Placental
abruption:

Appendices

Unadjusted RR
(Ch

Reference®

5.45 (5.15 t0 5.77)
1.88 (1.67 t0 2.13)
1.24 (1.07 to 1.43)

5.12 (4.50 t0 5.82)

3.81 (3.31 to 4.39)

Adjusted* RR
(Ch)

Reference®

5.16 (4.87 t0 5.46)
1.67 (1.48 to 1.89)
1.22 (1.05 to 1.41)

4.35 (3.80 to 4.98)

3.70 (3.21 t0 4.27)

Unadjusted RR
(Ch

Reference®

6.02 (4.67 to 7.76)
2.41 (1.53 to 3.80)

11.94 (9.60 to
14.86)

9.85 (6.34 to 15.29)

67.69 (56.82 to
80.63)

Adjusted* RR (CI)

Reference®

5.38 (4.52 t0 7.53)
2.27 (1.43 to 3.58)

11.87 (9.52 to
14.79)

10.10 (6.38 to
15.99)

64.04 (53.58 to
76.55)
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Unadjusted RR (CI)

Reference®

2.53 (2.01t0 3.17)
2.15 (1.59 to 2.89)
1.77 (1.30 to 2.41)

8.51 (6.39 t0 11.32)

3.85 (2.62 t0 5.68)

Adjusted* RR (CI)

Reference®

2.37 (1.89 t0 2.97)
1.83 (1.35 t0 2.47)
1.75 (1.29 to 2.38)

6.81 (5.06 t0 9.16)

3.67 (2.49 10 5.42)



PA02°
PA03!
PA04e

PAO5'

PAQG?

Small-for-
gestational age:

SGAOQ2°
SGA03¢
SGA04°
SGAOD5'
SGAO06¢

Perinatal death:
PD02¢

PDO3¢
PDO4®
PDO5'
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5.20 (4.92 to 5.49)
152 (1.38 t0 1.67)
1.02 (0.52 t0 2.01)

4.83 (4.21 to 5.55)

6.02 (4.65 to 7.80)

5.20 (4.92 to 5.49)
1.28 (1.12 to 1.47)
1.83 (1.61 to 2.09)
5.44 (4.74 t0 6.26)
4.21 (3.30 to 5.38)

5.20 (4.92 t0 5.49)

1.42 (1.29 to 1.57)
3.44 (2.56 t0 4.62)
5.23 (4.24 t0 6.46)

4.93 (4.66 t0 5.22)
1.42 (1.29 to 1.56)
1.00 (0.51 to 1.98)

4.11 (3.56 t0 4.75)

5.40 (4.16 to 7.01)

4.94 (4.67 10 5.22)
1.26 (1.10 to 1.44)
1.62 (1.42 to 1.84)
4.63 (4.00 to 5.36)
3.66 (2.86 to 4.69)

4.93 (4.67 10 5.22)

1.34 (1.21 to0 1.48)
3.00 (2.22 to 4.05)
4.65 (3.76 t0 5.76)

3.83 (2.30 t0 4.96)
1.76 (1.09 to 2.83)

12.97 (5.85 to
34.68)

7.52 (3.86 to 14.68)

12.67 (4.08 to
39.29)

3.12 (2.07 t0 4.71)
1.49 (0.76 t0 2.92)
5.74 (3.76 10 8.77)
5.41 (2.23 to 13.15)

40.87 (25.36 to
65.86)

2.47 (1.92 t0 3.18)

1.60 (1.20 to 2.13)
1.66 (0.42 t0 6.61)
9.40 (5.48 to 16.13)

3.25 (2.21 t0 4.78)
1.62 (1.00 to 2.61)

11.79 (4.37 to
31.83)

6.39 (3.16 t0 12.92)

10.47 (3.37 to
32.51)

2.89 (1.92 to 4.35)
1.51 (0.77 to 2.97)
4.30 (2.78 t0 6.66)
5.73 (2.33 to 14.09)

32.68 (19.87 to
53.74)

2.34 (1.82 to 3.00)

1.52 (1.14 to 2.02)
1.29 (0.32 t0 5.17)
8.09 (4.72 to 13.85)
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7.32 (6.45 t0 8.30)
3.75 (3.21 to 4.38)
1.37 (0.34 t0 5.44)

10.91 (5.57 to 13.87)

11.54 (6.95 to 19.16)

7.28 (6.43 t0 8.25)
4.08 (3.40 to 4.90)
2.59 (1.9 to 3.37)
9.06 (6.79 to 12.09)
10.74 (7.32 to 15.76)

11.14 (9.63 to 12.87)

5.44 (4.55 t0 6.49)
2.66 (0.86 t0 8.24)

18.03 (12.13 to
26.79)

6.99 (6.15 to 7.94)
3.57 (3.05 t0 4.17)
1.35 (0.34 10 5.37)

10.12 (7.86 to
13.02)

10.80 (6.49 to
18.00)

7.00 (6.16 t0 7.94)
4.02 (3.34 10 4.83)
2.39 (1.83 t0 3.11)
8.18 (6.07 to 11.03)
9.69 (6.60 to 14.25)

10.69 (9.23 to
12.39)

5.14 (4.30 to 6.14)
2.80 (0.91 to 8.61)

16.19 (10.89 to
24.07)



PDO6? 500 (4.31105.79) 4.22(3.61t104.93) 7.20 (472t010.96) 523(3.36t08.14)  12.08(8.63t016.91) 12.72(8.90 to
18.18)

acomplications included are pre-eclampsia, placental abruption, small-for-gestational age and stillbirth; ® uncomplicated term birth; ¢
uncomplicated preterm birth; ¢ term birth without primary complication; ©term birth with primary complication; " preterm birth without primary
complication; ¢ preterm birth with primary complication

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth, inter-
pregnancy interval, and change of father between first and second birth.
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Supplementary Table S3.3 E-values for unmeasured confounding of the relative risk of subsequent preterm birth from complications

in first pregnancy

1% pregnancy

Preterm birth with no complications?

2" pregnancy

Complicated preterm birth including

primary complication?

Complicated preterm birth excluding

primary complication?

Complication

status

No complication
Pre-eclampsia:
PE0O2P

PEO3®

PE04¢

PEOS'

PEO0G?

Placental
abruption:

PA02°
PAO3®

Appendices

E-value
unadjusted RR
(lower 95% CI)

Reference®

10.37 (9.77)
3.17 (2.72)
1.78 (1.35)
9.71 (8.48)
7.08 (6.07)

9.86 (9.31)
2.40(2.10)

E-value adjusted*

RR (lower 95%
Cl)

Reference®

9.78 (9.20)
2.73 (2.32)
1.73 (1.29)
8.17 (7.07)
6.87 (5.58)

9.34 (8.80)
2.19 (1.90)

E-value
unadjusted RR
(lower 95% CI)

Reference®

11.52 (8.81)
4.26 (2.43)
23.38 (18.69)
19.18 (12.16)
134.87 (113.18)

6.21 (4.02)
2.91 (1.41)

E-value adjusted*

RR (lower 95%
Cl)

Reference®

11.14 (8.50)
3.96 (2.22)
23.22 (18.53)
19.68(12.23)
127.58 (106.65)

5.95 (3.84)
2.61(1.0)
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E-value
unadjusted RR
(lower 95% CI)

Reference®

4.49 (3.44)
3.71 (2.57)
2.94 (1.93)
16.50 (12.27)
7.17 (4.67)

14.11 (12.38)
6.96 (5.88)

E-value
adjusted* RR
(lower 95% CI)

Reference®

4.18 (2.19)
3.05 (2.03)
2.89 (1.89)
13.09 (9.59)
6.80 (4.41)

13.49 (11.78)
6.59 (5.55)



PA04
PAO5f
PA0GY

Small-for-
gestational age:

SGA02°
SGAO03°
SGAD4¢
SGAOD5'
SGAO06¢

Perinatal death:
PD02°
PD03¢
PD04¢
PDO5f
PDO06Y

1.16 (1)
9.14 (7.89)
11.52 (8.76)

9.86 (9.31)
1.88 (1.49)
3.07 (2.60)
10.36 (8.94)
7.89 (6.05)

9.86 (9.31)
2.20 (1.90)
6.34 (4.56)
9.94 (7.94)
9.47 (8.09)

1.04 (1.0)
7.69 (6.59)
10.27 (7.78)

9.34 (8.81)
1.84 (1.44)
2.62 (2.20)
8.73 (7.47)
6.78 (5.16)

9.34 (8.80)
2.02 (1.72)
5.45 (3.87)
8.78 (7.00)
7.91 (6.68)

25.44 (9.18)
14.53 (7.17)
24.83 (7.63)

5.70 (3.57)
2.35 (1)
10.96 (7.00)
10.29 (3.88)
81.24 (50.3)

4.38 (3.25)
2.58 (1.69)
2.70 (1)
18.29 (10.44)
13.87 (8.92)

23.08 (8.20)
12.27 (5.78)
20.43 (6.20)

5.22 (3.23)
2.39 (1)

8.07 (5.00)
10.94 (4.10)
64.86 (39.24)

4.10 (3.04)
2.40 (1.54)
1.90 (1)
15.66 (8.91)
9.93 (6.17)

2.08 (1.0)
21.30 (16.62)
22.57 (13.38)

14.04 (12.33)
7.63 (6.25)
4.62 (3.40)
17.61 (13.07)
20.97 (14.13)

21.76 (18.75)
10.35 (8.58)
4.77 (1)
35.55(23.77)
23.65 (16.75)

2.03 (1.0)
19.73 (15.21)
21.10 (12.45)

13.47 (11.81)
7.50 (6.14)
4.21 (3.06)
15.85 (11.61)
18.87 (12.67)

20.87 (17.94)
9.75 (8.06)
5.04 (1)
31.87 (21.26)
24.93(17.28)

acomplications included are pre-eclampsia, placental abruption, small-for-gestational age and stillbirth; ® uncomplicated term birth; €

uncomplicated preterm birth; ¢ term birth without primary complication; ¢ term birth with primary complication; T preterm birth without primary
complication; 9 preterm birth with primary complication

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth,

inter-pregnancy interval, and change of father between first and second birth.
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Supplementary Table S3.4 Relative risk for the association between complications in first pregnancy and preterm birth in the second

pregnancy after simulating obesity

1%t pregnancy

Preterm birth with no

complications?

2" pregnancy

Complicated preterm birth including

primary complication?

Complicated preterm birth excluding

primary complication?

Complication
status

No complication
Pre-eclampsia:
PEO2°

PEO03¢

PE04®

PEO5f

PEOG®

Appendices

Adjusted* RR

(Cn

Reference®

5.16 (4.87 to
5.46)

1.67 (1.48 to
1.89)

1.22 (1.05 to
1.41)

4.35 (3.80 to
4.98)

3.70 (3.21 to
4.27)

Simulation

adjusted* RR

(Cn

Reference®

5.16 (4.87 to
5.46)

1.67 (1.48 o
1.89)

1.22 (1.05 to
1.41)

4.35 (3.80 to
4.98)

3.70 (3.21 to
4.27)

Adjusted* RR (CI)

Reference®

5.83 (4.52 t0 7.53)

2.27 (1.43 t0 3.58)

11.87 (9.52 to 14.79)

10.10 (6.38 to 15.99)

64.04 (53.58 to
76.55)

Simulation
adjusted* RR (CI)

Reference®

5.83 (4.51 10 7.52)

2.36 (1.43 0 3.58)

11.90 (9.55 to 14.84)

10.09 (6.38 to 15.97)

63.87 (53.43 to
76.35)
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Adjusted* RR (CI)

Reference®

2.37 (1.89 t0 2.97)

1.83 (1.35 t0 2.47)

1.75 (1.29 to 2.38)

6.81 (5.06 t0 9.16)

3.67 (2.49 t0 5.42)

Simulation
adjusted* RR (CI)

Reference®

2.37 (1.89 t0 2.97)

1.83 (1.35 t0 2.47)

1.75 (1.29 to 2.38)

6.80 (5.06 t0 9.16)

3.67 (2.49 t0 5.41)



Placental

abruption:

PAO2°

PAO3

PAO4®

PAO5f

PAQG?

Small-for-

gestational age:

SGAOQ2°

SGA03¢

SGA04°

SGAOD5'

SGAO06¢

Perinatal death:

Appendices

4.93 (4.66 to
5.22)

1.42 (1.29 to
1.56)

1.00 (0.51 to
1.98)

4.11 (3.56 to
4.75)

5.40 (4.16 to
7.01)

4.94 (4.67 to
5.22)

1.26 (1.10 to
1.44)

1.62 (142 to
1.84)

4.63 (4.00 to
5.36)

3.66 (2.86 0
4.69)

4.93 (4.66 t0
5.22)

1.42 (1.29 to
1.56)

1.00 (0.51 to
1.98)

4.11 (3.56 t0
4.75)

5.40 (4.16 to
7.01)

4.94 (4.67 to
5.22)

1.26 (1.10 to
1.44)

1.62 (142 to
1.84)

4.63 (4.00 to
5.36)

3.66 (2.86 t0
4.69)

3.25 (2.21 10 4.78)
1.62 (1.00 to 2.61)
11.79 (4.37 to 31.83)
6.39 (3.16 t0 12.92)

10.47 (3.37 to 32.51)

2.89 (1.92 to 4.35)
1.51 (0.77 to 2.97)
4.30 (2.78 10 6.66)
5.73 (2.33 to 14.09)

32.68 (19.87 to
53.74)

3.24 (2.20 10 4.77)

1.62 (1.00 to 2.62)

11.98 (4.45 to 32.27)

6.33 (3.13 to 12.80)

10.50 (3.39 to 32.59)

2.89 (1.92 to 4.35)

1.50 (0.76 to 2.96)

4.31 (2.78 10 6.67)

5.72 (2.33 to 14.06)

32.89 (19.98 to

54.13)
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6.99 (6.15 to 7.94)

3.57 (3.05 t0 4.17)

1.35 (0.34 t0 5.37)

10.12 (7.86 to 13.02)

10.80 (6.49 to 18.00)

7.00 (6.16 to 7.94)

4.02 (3.34 10 4.83)

2.39 (1.83 t0 3.11)

8.18 (6.07 to 11.03)

9.69 (6.60 to 14.25)

6.98 (6.15 t0 7.93)

3.57 (3.05 t0 4.17)

1.35(0.34 t0 5.39)

10.11 (7.86 to 13.01)

10.84 (6.50 to 18.05)

6.99 (6.16 t0 7.93)

4.03 (3.35 t0 4.84)

2.38 (1.83 10 3.11)

8.19 (6.07 to 11.04)

9.64 (6.56 to 14.18)



PDO02°¢

PD03¢

PDO4¢

PDO5f

PDOG6®

4.93 (4.67 to
5.22)

1.34 (1.21 to
1.48)

3.00 (2.22 to
4.05)

4.65 (3.76 t0
5.76)

4.22 (3.61to
4.93)

4.93 (4.67 10
5.22)

1.34 (1.21 to
1.48)

3.00 (2.22 o
4.05)

4.65 (3.76 10
5.76)

4.22 (3.61to
4.93)

2.34 (1.82 to 3.00)

1.52 (1.14 t0 2.02)

1.29 (0.32105.17)

8.09 (4.72 to 13.85)

5.23 (3.36 t0 8.14)

2.34 (1.82 to 3.00)
152 (1.14 10 2.02)

1.29 (0.32105.17)

8.09 (4.72 to 13.85)

5.22 (3.36 t0 8.14)

10.69 (9.23 to 12.39)
5.14 (4.30 to 6.14)
2.80 (0.91 to 8.61)
16.19 (10.89 to

24.07)
12.72 (8.90 to 18.18)

10.68 (9.21 to 12.37)
5.14 (4.30 t0 6.15)
2.81 (0.91 to 8.66)
16.14 (10.87 to

24.00)
12.71 (8.90 to 18.17)

acomplications included are pre-eclampsia, placental abruption, small-for-gestational age and stillbirth; ® uncomplicated term birth; €
uncomplicated preterm birth; ¢ term birth without primary complication; © term birth with primary complication; " preterm birth without primary

complication; 9 preterm birth with primary complication

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth,

inter-pregnancy interval, and change of father between first and second birth.
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Appendix F Supplementary material for Publication Three

Supplementary Figure S4.1 Directed acyclic graph (DAG) of the structure of collider-stratification bias with
interaction between the exposure and the unmeasured confounder U. The exposure maternal age A affects
early preghancy loss L, which is also affected by the independent risk factor U, inducing a back-door pathway
between exposure A and the outcome of stillbirth S. When there is an interaction between A and U (depicted
by dashed line), there is an increase in the prevalence of early pregnancy loss L for those that are exposed

to both the exposure maternal age A and the unmeasured confounder U.
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Supplementary Figure S4.2 Directed acyclic graph (DAG) of the structure of collider-stratification bias. The
exposure maternal age A affects pregnancy loss L, which is also affected by the independent risk factor U,
inducing a back-door pathway between exposure A and the outcome of stillbirth S. Here, there is a true effect

of maternal age A on the outcome of stillbirth S.
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Proportion of stillbirths by maternal age
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Supplementary Figure S4.3 Risk of stillbirth according to maternal age based on a non-parametric
regression model with locally weighted scatterplot smoothing to capture the nonlinearity of the association
between maternal age and the outcome of stillbirth.
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Supplementary Figure S4.4 Collider-stratification bias of ORasj.=0 under the true null effect of maternal age on stillbirth for women aged 35-39 years. Average

odds ratio assuming with .- 0.20 and varying input parameters for 1y and the selection effects (ORuL and ORys). Each scenario was simulated 100 times.
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Supplementary Figure S4.5 Average odds ratio (OR) for the association between the exposure maternal age A and the outcome of stillbirth S over 100

simulations assuming a true null effect the and input of one unmeasured confounder U by each maternal year.
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Supplementary Table S4.1 Average odds ratio (OR) and 95% simulation intervals (Sls) for the association between the exposure maternal age A and the

outcome of stillbirth S over 100 simulations assuming a true null effect and the input of one unmeasured confounder U.

Selection effects Average OR for maternal age on stillbirth (95% SI)
m u ORyLand ORys 20-24 25-29 30-34 35-39 40+
0.128 0.15 15 1.00 (0.98 to 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 to 1.01)
2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.95 to 1.00)
2.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.96 (0.94 to 0.98)
3.0 1.00 (0.99 to 1.02) 1.00 (0.99 to 1.01) Ref 0.98 (0.98 to 0.99) 0.94 (0.92 to 0.96)
0.30 1.5 0.99 (0.98 t0 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01)
2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.97 (0.95 t0 0.99)
2.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.94 (0.92 to 0.96)
3.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.98 (0.97 to 0.99) 0.92 (0.90 t0 0.94)
0.50 1.5 1.00 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 to 1.01)
2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.97 (0.95 t0 0.99)
2.5 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.99 (0.98 to 1.00) 0.94 (0.92 to 0.96)
3.0 1.00 (1.00to 1.01) 1.01 (1.00 to 1.01) Ref 0.98 (0.98 to 0.99) 0.93 (0.91 t0 0.94)
0.20 0.15 1.5 0.99 (0.98 t0 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01)
2.0 1.00 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.00)
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2.5

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.99 (0.98 to 1.00)

0.96 (0.94 to 0.99)

3.0

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.98 (0.97 to 0.99)

0.95 (0.93 to 0.97)

0.30

15

0.99 (0.98 t0 1.01)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.99 (0.96 t0 1.01)

2.0

1.00 (0.98 to 1.01)

1.00 (0.99 to 1.01)

Ref

1.00 (0.99 to 1.01)

0.97 (0.94 to 0.99)

2.5

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.99 (0.98 to 1.00)

0.95 (0.92 to 0.97)

3.0

1.00 (0.99 to 1.01)

1.00 (1.00 to 1.01)

Ref

0.98 (0.97 to 0.99)

0.93 (0.91 to 0.95)

0.50

15

0.99 (0.98 t0 1.01)

1.00 (0.99 to 1.01)

Ref

1.00 (0.99 to 1.01)

0.99 (0.97 t0 1.01)

2.0

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

1.00 (0.99 to 1.01)

0.97 (0.95 to 0.99)

2.5

1.00 (0.99 to 1.01)

1.00 (1.00 to 1.01)

Ref

0.99 (0.98 to 1.00)

0.95 (0.93 to 0.98)

3.0

1.00 (0.99 to 1.01)

1.01 (1.00 to 1.01)

Ref

0.98 (0.97 to 0.99)

0.93 (0.91 to 0.95)

0.30

0.15

15

1.00 (0.98 to 1.01)

0.99 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.02)

0.99 (0.96 to 1.02)

2.0

1.00 (0.98 to 1.01)

1.00 (0.99 to 1.01)

Ref

1.00 (0.99 to 1.01)

0.98 (0.95 to 1.01)

2.5

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.99 (0.98 to 1.01)

0.96 (0.94 to 0.99)

3.0

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.99 (0.98 to 1.00)

0.95 (0.93 to 0.98)

0.30

15

0.99 (0.98 to 1.01)

1.00 (0.99 to 1.01)

Ref

1.00 (0.99 to 1.01)

0.99 (0.96 to 1.02)

2.0

1.00 (0.98 to 1.01)

1.00 (0.99 to 1.01)

Ref

1.00 (0.99 to 1.01)

0.98 (0.75 to 1.26)

2.5

1.00 (0.99 to 1.01)

1.00 (1.00 to 1.01)

Ref

0.99 (0.98 to 1.00)

0.95 (0.92 to 0.98)

3.0

1.00 (0.99 to 1.01)

1.00 (1.00 to 1.01)

Ref

0.98 (0.97 to 0.99)

0.94 (0.91 to 0.96)
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0.50 15 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.02) 1.00 (0.97 to 1.03)
2.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01)
2.5 1.00 (0.99 to 1.01) 1.01 (1.00 to 1.01) Ref 0.99 (0.98 to 1.00) 0.96 (0.94 to 0.99)
3.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.98 (0.97 to 0.98) 0.94 (0.92 to 0.96)

ORAas|L=0 0dds ratio for the association between the exposure maternal age A and the outcome stillbirth S when early pregnancy loss L is set to 0; Sl simulation
intervals; 1. early pregnancy loss; Ty unmeasured confounder; ORy. odds ratio for the association between the unmeasured confounder U and early

pregnancy loss L; ORys odds ratio for the association between the unmeasured confounder U and stillbirth S
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Supplementary Table S4.2 Average odds ratio (OR) and 95% simulation intervals (Sl) for the biased association between maternal age A and stillbirth S over

100 simulations for one single unmeasured U, assuming a true null effect of maternal age A on stillbirth S and an interaction between U and the exposure of

maternal age A.

Selection effects Average OR for maternal age on stillbirth (95% SI)
TTL TTu ORUL, ORUS ORAU 20-24 25-29 30-34 35-39 40+
0.128 0.15 15 0.99 (0.98t0 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 t0 1.01)
2.0 0.99 (0.98t0 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.00)
2.5 0.99 (0.98 to 1.00) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.97 (0.95t0 0.99)
3.0 0.99 (0.98 to 1.00) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.96 (0.93t0 0.97)
0.30 1.5 0.99 (0.98 t0 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 t0 1.02)
2.0 0.99 (0.98t0 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.00)
2.5 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (1.00 to 1.01) 0.96 (0.94 to 0.98)
3.0 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.95 (0.93 10 0.97)
0.50 1.5 0.99 (0.98t0 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 1.00 (0.98to 1.02)
2.0 0.99 (0.98t0 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.00)
2.5 0.99 (0.98 to 1.00) 0.99 (0.99 to 1.00) Ref 1.00 (1.00 to 1.01) 0.97 (0.95t0 0.99)
3.0 0.99 (0.98 to 1.00) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.95 (0.93 10 0.97)
0.20 0.15 15 0.99 (0.98t0 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 t0 1.01)
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2.0

0.99 (0.98 to 1.01)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.98 (0.95 to 1.00)

2.5

0.99 (0.98 to 1.01)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.96 (0.93 to 0.98)

3.0

0.99 (0.98 t0 1.01)

1.00 (0.99 to 1.00)

Ref

0.99 (0.98 to 1.00)

0.94 (0.92 to 0.96)

0.30

1.5

0.99 (0.98 to 1.00)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.99 (0.96 to 1.01)

2.0

0.99 (0.98 to 1.00)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.97 (0.95 to 0.99)

2.5

0.99 (0.98 to 1.00)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.94 (0.92 to 0.96)

3.0

0.99 (0.98 to 1.00)

1.00 (0.99 to 1.00)

Ref

0.99 (0.98 to 1.00)

0.92 (0.90 to 0.94)

0.50

15

0.99 (0.98 to 1.00)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.99 (0.96 to 1.01)

2.0

0.99 (0.98 to 1.01)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.97 (0.95 to 0.99)

2.5

0.99 (0.98 to 1.00)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.94 (0.92 to 0.96)

3.0

0.99 (0.98 to 1.00)

1.00 (0.99 to 1.00)

Ref

0.99 (0.98 to 1.00)

0.92 (0.90 to 0.94)

0.30

0.15

15

0.99 (0.98 to 1.01)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.98 (0.95 to 1.01)

2.0

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

1.00 (0.99 to 1.01)

0.96 (0.93 to 0.99)

2.5

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.99 (0.98 to 1.00)

0.93 (0.90 to 0.96)

3.0

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.98 (0.97 to 0.99)

0.90 (0.88 t0 0.92)

0.30

15

0.99 (0.98 to 1.01)

1.00 (0.99 to 1.00)

Ref

1.00 (0.99 to 1.01)

0.98 (0.95 to 1.00)

2.0

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

1.00 (0.99 to 1.01)

0.94 (0.92 to 0.97)

2.5

1.00 (0.98 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.99 (0.98 to 1.00)

0.91 (0.88 to 0.93)

3.0

1.00 (0.99 to 1.01)

1.00 (0.99 to 1.01)

Ref

0.98 (0.97 to 0.99)

0.87 (0.84 to 0.89)
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0.50 15 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.95 to 1.00)
2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.95 (0.92 to 0.97)
2.5 1.00 (0.99 to 1.01) 1.01 (1.00 to 1.01) Ref 0.99 (0.98 to 1.00) 0.92 (0.89 to 0.94)
3.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.98 (0.98 to 0.99) 0.88 (0.86 to 0.90)

ORAas|L=0 0dds ratio for the association between the exposure maternal age A and the outcome stillbirth S when early pregnancy loss L is set to 0; Sl simulation

intervals; 1. early pregnancy loss; Ty unmeasured confounder; ORy. odds ratio for the association between the unmeasured confounder U and early

pregnancy loss L; ORys odds ratio for the association between the unmeasured confounder U and stillbirth S; ORau odds ratio for the association between the

advanced maternal age A and the unmeasured confounder U
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Supplementary Table S4.3 Average odds ratio (OR) and 95% simulation intervals (Sls) for the association between the exposure maternal age A and the

outcome of stillbirth S over 100 simulations assuming a true effect and the input of one unmeasured confounder U.

Selection effects

Average OR for maternal age on stillbirth (95% SI)

20-24 25-29 30-34 35-39 40+

Original Cohort (OR 95% Cl) 1.16 (1.05 to 1.29) 0.98 (0.90 to 1.17) Ref 1.23 (1.11to 1.37) 1.74 (1.42 10 2.12)
m T ORu.and ORus 20-24 25-29 30-34 35-39 40+

0.128 | 0.15 15 0.94 (0.93 to 0.95) 0.94 (0.93 to 0.95) Ref 1.21 (1.20 to 1.23) 1.71 (1.67 to 1.74)

2.0 0.94 (0.93 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.22 to 1.35) 1.69 (1.66 to 1.71)

2.5 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.95) Ref 1.20 (1.19 to 1.22) 1.67 (1.64 to 1.69)

3.0 0.95 (0.94 to 0.96) 0.95 (0.94 to 0.96) Ref 1.19 (1.18 to 1.21) 1.62 (1.60 to 1.65)

0.30 15 0.94 (0.93 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.22) 1.69 (1.66 to 1.72)

2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.95) Ref 1.21 (1.19 to 1.22) 1.67 (1.64 to 1.69)

2.5 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.21) 1.62 (1.60 to 1.65)

3.0 0.95 (0.94 to 0.96) 0.95 (0.94 to 0.96) Ref 1.19 (1.18 to 1.20) 1.58 (1.55 to 1.60)

0.50 15 0.94 (0.93 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.23) 1.67 (1.65 to 1.71)

2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.21 (1.20 to 1.22) 1.66 (1.64 to 1.69)

2.5 0.95 (0.94 to 0.96) 0.95 (0.95 to 0.96) Ref 1.20 (1.19 to 1.21) 1.61 (1.59 to 1.63)
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3.0 0.95 (0.94 to 0.96) 0.95 (0.95 to 0.96) Ref 1.19 (1.18 to 1.20) 1.57 (1.55 to 1.59)

020 | 0.15 15 0.94 (0.93 to 0.95) 0.94 (0.93 to 0.95) Ref 1.21 (1.20 to 1.23) 1.70 (1.67 to 1.74)
2.0 0.94 (0.93 to 0.95) 0.94 (0.93 to 0.95) Ref 1.21 (1.19 to 1.22) 1.69 (1.66 to 1.72)

2.5 0.94 (0.93 to 0.96) 0.95 (0.94 to 0.95) Ref 1.20 (1.19 to 1.21) 1.66 (1.63 to 1.69)

3.0 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.95) Ref 1.19 (1.18 to 1.20) 1.63 (1.60 to 1.66)

0.30 15 0.94 (0.92 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.22) 1.69 (1.66 to 1.72)

2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.95) Ref 1.21 (1.19 to 1.22) 1.66 (1.63 to 1.69)

2.5 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.21) 1.62 (1.60 to 1.65)

3.0 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.96) Ref 1.18 (1.17 to 1.20) 1.58 (1.56 to 1.61)

0.50 15 0.94 (0.93 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.23) 1.69 (1.66 to 1.72)

2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.21 (1.20 to 1.22) 1.65 (1.62 to 1.68)

2.5 0.95 (0.94 to 0.96) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.21) 1.62 (1.60 to 1.64)

3.0 0.95 (0.94 to 0.96) 0.95 (0.95 to 0.96) Ref 1.19 (1.18 to 1.20) 1.58 (1.56 to 1.61)

030 | 0.15 15 0.94 (0.93 to 0.96) 0.94 (0.93 to 0.95) Ref 1.21 (1.20 to 1.23) 1.69 (1.66 to 1.73)
2.0 0.94 (0.93 to 0.96) 0.94 (0.94 to 0.95) Ref 1.21 (1.19 to 1.22) 1.67 (1.64 to 1.71)

2.5 0.94 (0.93 to 0.96) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.22) 1.66 (1.62 to 1.70)

3.0 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.95) Ref 1.20 (1.18 to 1.21) 1.63 (1.60 to 1.67)

0.30 1.5 0.94 (0.92 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.23) 1.68 (1.65 to 1.72)
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2.0

0.94 (0.93 to 0.95)

0.95 (0.94 to 0.96)

Ref

1.20 (1.19 to 1.22)

1.66 (1.63 t0 1.69)

2.5

0.94 (0.93 to 0.95)

0.95 (0.94 to 0.96)

Ref

1.19 (1.18 to 1.21)

1.63 (1.60 to 1.66)

3.0

0.94 (0.93 to 0.95)

0.95 (0.94 to 0.96)

Ref

1.18 (1.17 to 1.20)

1.59 (1.56 to 1.63)

0.50

1.5

0.94 (0.93 to 0.95)

0.95 (0.94 to 0.95)

Ref

1.21 (1.20 to 1.23)

1.68 (1.64 to 1.71)

2.0

0.95 (0.93 to 0.96)

0.95 (0.94 to 0.96)

Ref

1.21 (1.19 to 1.22)

1.67 (1.63 to 1.70)

2.5

0.95 (0.93 to 0.96)

0.96 (0.95 to 0.96)

Ref

1.20 (1.18 to 1.21)

1.63 (1.60 to 1.66)

3.0

0.95 (0.93 to 0.96)

0.95 (0.94 to 0.96)

Ref

1.18 (1.17 to 1.19)

1.59 (1.55 to 1.62)

ORAas 0dds ratio for the association between the advanced maternal age A and the outcome of stillbirth S; S| simulation intervals; 11, early pregnancy loss; Ty

unmeasured confounder; ORy. odds ratio for the association between the unmeasured confounder U and early pregnancy loss L; ORys odds ratio for the

association between the unmeasured confounder U and stillbirth S; ORas odds ratio for the association between the advanced maternal age A and the

outcome of stillbirth S
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Simulation code

age->early pregnancy loss<-U-=stillbirth

n sample size

p prevalence of U

min.bpl baseline risk of early pregnancy loss (derived from Figure 1)
orl odds ratio for the U-early pregnancy loss effect

bY baseline odds of exposure (derived from original cohort)

or2 odds ratio for the U-stillbirth effect

Results = foreach ( i=1:100, _packages = ¢["MASS" "sandwich” "Imtest” "tidyverse” "Rlab","dplyr","matrixStats”), .combine=rbind) %dopar? {
rboundednorm <- function(n, mymean, mysd, min = 20, max = 45) {
a = pnorm{c{min, max), mymean, mysd)
z = runif(n, a[1], a[2])
gnorm(z, mymean, mysd)}
n=500000;p=0.5;min.bpL=9.25;0r1=1.5:bY=0.007;0r2=1.5
set.seed(i)
bias =- data.frame("id" = 1:n) %>%
mutate(age = rboundednorm(n, mymean=age mean_std, mysd=age.sd_sid),
bpL = {min.bpL + age to.misc(agevec=age min.age=x2 2[p2.2==min(p2.2)],min.risk=min{p2.2))}100,
bL = bpL /{1 - bpL},
U = rbemnin,p),
prob_loss = plogis(log(bL) + log(or1)*U],
loss = rbern(n, prob_loss),
pY = plogis{log(bY) + log(or2)*U),
Y =rbemnin, pY)) %=%
mutate(age cat = cut{age, breaks=c({10, 20, 24, 29, 35, 40, Inf),
labels=c("<20", "20-24", "25-29", "30-34", "35-39", "40+"), include_ lowest=TRUE],
age_cat = relevel(age_cat, ref ="30-34")#30-34 years set as reference
# fit a logistic model among live births
log_model <- bias %>% glm(formula =Y ~ age_cat family = binomial(link = "logit™)
data = ., subset = loss==0)
ct=coeftest{log_model, vcov = sandwich)
ci=confint{ct)
cfct[-1,1],ci[-1,1].ci[-1.2])



Appendix G Supplementary material for Publication Four

Supplementary Table S5.1 Average odds ratio (OR) and 95% simulation intervals (Sls) for

the mediator-outcome confounding (Scenario 1) on the association between the exposure

maternal obesity OB and the outcome of caesarean birth delivery CS with a mediator of pre-

eclampsia PE (assuming a true null direct effect) over 100 simulations and the input of one

unmeasured confounder U.

Selection effects Average OR for maternal obesity on
caesarean delivery (95% SI)

Ty ORuypeand ORycs
0.15 15 1.03 (1.02 to 1.02)

2.5 1.03 (1.03 to 1.03)

35 1.03 (1.03 to 1.03)
0.30 15 1.03 (1.02 to 1.03)

2.5 1.03 (1.03 to 1.03)

35 1.03 (1.03 t0 1.04)
0.50 15 1.03 (1.02 to 1.03)

2.5 1.03 (1.03 to 1.04)

3.5 1.04 (1.04 to 1.05)

S| simulation intervals; Ty unmeasured confounder; ORy.pe 0dds ratio for the association
between the unmeasured confounder U and the mediator of pre-eclampsia; ORy.cs odds
ratio for the association between the unmeasured confounder U and caesarean section

delivery
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Supplementary Table S5.2 Average odds ratio (OR) and 95% simulation intervals (SIs) for

the mediator-outcome confounding affected by the exposure (Scenario 2) on the association
between the exposure maternal obesity OB and the outcome of caesarean birth delivery CS
with a mediator of pre-eclampsia PE (assuming a true null direct effect) over 100 simulations

and the input of one unmeasured confounder U.

Selection effects Average OR for maternal obesity on
caesarean delivery (95% SI)

TTu ORu,pE, ORy.csand ORogy
0.15 15 1.04 (1.03 to 1.04)

2.5 1.06 (1.06 to 1.06)

35 1.08 (1.07 to 1.08)
0.30 15 1.04 (1.04 to 1.04)

2.5 1.06 (1.06 to 1.07)

35 1.08 (1.08 to 1.09)
0.50 15 1.04 (1.04 to 1.04)

2.5 1.07 (1.07 to 1.07)

3.5 1.10 (1.09 to 1.10)

S| simulation intervals; Ty unmeasured confounder; ORy.pe 0dds ratio for the association
between the unmeasured confounder U and the mediator of pre-eclampsia; ORy.cs odds
ratio for the association between the unmeasured confounder U and caesarean section
delivery; ORog.u 0dds ratio for the association between the exposure of maternal obesity and
the unmeasured confounder U
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Supplementary Table S5.3 Average odds ratio (OR) and 95% simulation intervals (SIs) for

the exposure-mediator confounding affected by the exposure (Scenario 3) on the association

between the exposure maternal obesity OB and the outcome of caesarean birth delivery CS

with a mediator of pre-eclampsia PE (assuming a true null direct effect) over 100 simulations

and the input of one unmeasured confounder U.

Selection effects Average OR for maternal obesity on
caesarean delivery (95% SI)

Ty ORu.reand ORuy.os
0.15 15 1.04 (1.04 to 1.04)

2.5 1.08 (1.08 to 1.08)

3.5 1.13 (1.12t0 1.13)
0.30 15 1.04 (1.04 to 1.04)

2.5 1.10 (1.09 to 1.10)

35 1.16 (1.15t0 1.16)
0.50 15 1.05 (1.04 to 1.05)

2.5 1.11 (1.11to 1.11)

35 1.17 (1.17 t0 1.18)

S| simulation intervals; Ty unmeasured confounder; ORy.pe 0dds ratio for the association

between the unmeasured confounder
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Simulation code

library(boot)
library(foreach)
#Scenario 1: Mediator-outcome confounding

#n sample size 128000

#pe prevalence of preeclampsia (2.75) based on observed data

#pU prevalence of U

#orl odds ratio for the OB->PE effect (OR1.99)based on observed data
#or?2 odds ratio for the U-> PE effect (varied)

#bY baseline odds of outcome based on MNS

#or3 odds ratio for the PE-> CS effect (OR2.39) based on observed data
#or4 odds ratio for the U-> CS effect (varied)

resl=foreach(i=1:100,.packages=c("MASS","sandwich","Imtest","tidyverse","Rlab","dpl
yr","matrixStats"),.combine=rbind) %dopar% {
n=128000;pe=0.0275;pU=0.50;0r1=1.99;0r2=1.5;bY=0.3454;0r3=2.39;0r4=1
.5
set.seed(i)
bias <- data.frame("id" = 1:n) %>%
mutate(obesity = rbinom(n,size=1,prob=0.20),
bPE = plogis(log(pe) + log(orl)*obesity),
b_PE =DbPE / (1 - bPE),
U =rbern(n, pU),
prob_PE = plogis(log(b_PE) + log(or2)*U),
PE = rbern(n, prob_PE),
pCS = plogis(log(bY) + log(or3)*PE+ log(or4)*U),
CS =rbern(n, pCS))
log model <- glm(formula = CS ~ obesity, family = binomial(link = "logit"), data
= bias)
ct=coeftest(log model, vcov = sandwich)
ci=confint(ct)
c(ct[-1,1],ci[-1,1],ci[-1,2])

meanf = function(myvar,index){return(mean(myvar[index],na.rm=TRUE))}
set.seed(123)
myboot = boot(data=res1,statistic=meanf,R=500)

ORmean = boot(data=res1[,1],statistic=meanf,R=500)
exp(ORmean$t0)

ORCI = boot.ci(ORmean, conf=0.95,type="perc")
exp(ORCI$perc|,4:5])
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Mod1 <- paste("OR ", formatC(exp(ORmean$t0),digits=2,format="f"),"
(",formatC(exp(ORCI$perc|,4]),digits=2,format="f"),

"",formatC(exp(ORCI$perc|,5]),digits=2,format="f"),")",sep="")
Mod1

#Scenario 2: Mediator-outcome confounding affected by the exposure

#n sample size 128000

#pe prevalence of preeclampsia (2.75) based on observed data

#pU prevalence of U

#orl odds ratio for the OB-> PE effect (OR1.99)based on observed data
#or?2 odds ratio for the U-> PE effect (varied)

#bY baseline odds of outcome based on MNS

#or3 odds ratio for the PE-> CS effect (OR2.39) based on observed data
#or4 odds ratio for the U-> CS effect (varied)

#or5 odds ratio for the OB-> U effect (varied)

res2=foreach(i=1:100,.packages=c("MASS","sandwich","Imtest","tidyverse","Rlab","dpl
yr","matrixStats"),.combine=rbind) %dopar% {
n=128000;pe=0.0275;pU=0.3;0r1=1.99;0r2=1.5;bY=0.3454;0r3=2.39;0r4=1.
5;0r5=1.5
set.seed(i)
bias <- data.frame("id" = 1:n) %>%
mutate(obesity = rbinom(n,size=1,prob=0.20),
bPE = plogis(log(pe) + log(orl)*obesity),
b_PE =bPE / (1 - bPE),
U =rbern(n, pU),
prob_PE = plogis(log(b_PE) + log(or2)*U + log(or5)),
PE = rbern(n, prob_PE),
pCS = plogis(log(bY) + log(or3)*PE+ log(or4)*U),
CS =rbern(n, pCS))
log_ model <- glm(formula = CS ~ obesity, family = binomial(link = "logit"), data
= bias)
ct=coeftest(log_model, vcov = sandwich)
ci=confint(ct)
c(ct[-1,1],ci[-1,1],ci[-1,2])

meanf = function(myvar,index){return(mean(myvar[index],na.rm=TRUE))}
set.seed(123)
myboot = boot(data=res2,statistic=meanf,R=500)

ORmean = boot(data=res2[,1],statistic=meanf,R=500)
exp(ORmean$t0)

ORCI = boot.ci(ORmean, conf=0.95,type="perc")
exp(ORCI$perc[,4:5])
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Mod2 <- paste("OR ", formatC(exp(ORmean$t0),digits=2,format="f"),"
(",formatC(exp(ORCI$perc|,4]),digits=2,format="f"),

"",formatC(exp(ORCI$perc|,5]),digits=2,format="f"),")",sep="")
Mod?2

#Scenario 3: Exposure-mediator confounding

#n sample size 128000

#pe prevalence of preeclampsia (2.75) based on observed data

#pU prevalence of U

#orl odds ratio for the OB->PE effect (OR1.99) based on observed data
#or?2 odds ratio for the U-> PEeffect - vary

#bY baseline odds of outcome based on MNS

#or3 odds ratio for the PE->CS effect (OR2.39) based on observed data
#or4 odds ratio for the U->O0B effect - vary

res3=foreach(i=1:100,.packages=c("MASS","sandwich","Imtest","tidyverse","Rlab","dpl
yr","matrixStats"),.combine=rbind) %dopar% {
n=128000;pe=0.0275;pU=0.15;0r1=1.99;0r2=1.5;0r3=2.39;bY=0.3454;0r4=1
.5;
set.seed(i)
bias <- data.frame("id" = 1:n) %>%
mutate(
U = rbern(n, pU),
p_obesity=plogis(log(0.2/(1-0.2)) + log(or4)*U)
obesity=rbern(n,p_obesity),
bPE = plogis(log(pe) + log(orl)*obesity),
b_PE =DbPE / (1 - bPE),
prob_PE = plogis(log(b_PE) + log(or2)*U),
PE = rbern(n, prob_PE),
pCS = plogis(log(bY) + log(or3)*PE),
CS =rbern(n, pCS))
log_model <- bias %>% glm(formula = CS ~ obesity, family = binomial(link =
"logit"), data=.)
ct=coeftest(log_model, vcov = sandwich)
ci=confint(ct)
c(ct[-1,1],ci[-1,1],ci[-1,2])

meanf = function(myvar,index){return(mean(myvar[index],na.rm=TRUE))}
set.seed(123)
myboot = boot(data=res3,statistic=meanf,R=500)

ORmean = boot(data=res3[,1],statistic=meanf,R=500)
exp(ORmean$t0)

ORCI = boot.ci(ORmean, conf=0.95,type="perc")
exp(ORCI$perc|,4:5])
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Mod3 <- paste("OR ", formatC(exp(ORmean$t0),digits=2,format="f"),"
(",formatC(exp(ORCI$perc|,4]),digits=2,format="f"),

"",formatC(exp(ORCI$perc[,5]),digits=2,format="f"),")",sep="")
Mod3
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Appendix H Supplementary material for Publication Five

Supplementary Table S6.1 Framework for the application of simulation in studies that

quantify bias using observational data

Section/subsection

1. Aim

1.1 Purpose of the simulation

1.2 Exposure(s) and outcome(s)

1.3 Target population

1.4 Type(s) of bias

2. Logic
2.1 Graphs
3. Data

3.1 Population

3.2 Data sources

3.3 Bias parameters

Recommendation

Explain the background and clearly state the aim of the
simulation study.

Define the exposure(s), outcome(s), and other relevant
variable(s) that will be included in the simulation study

Clearly define the population of interest to the study

State the types of bias that the simulation model will be
quantifying.

Describe the influence of bias using causal diagrams or
direct acyclic graphs.

Provide clear details of the base population.

Clearly state the data sources that inform the simulation.
This could be an observed cohort or data from previously
published literature.

Provide the parameters applied to the model that drive
the influence of the bias
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3.4 Data generation

4. Implementation

4.1 Analysis of simulation

4.2 Report results of the
simulation

5. Reproducibility

5.1 Model assumptions

5.2 Software

5.3 Code sharing

Report how probability distributions were assigned to the

bias parameters.

Clearly state the analysis methods applied to the
simulation. Details should include all methods, results,
diagnostics, and programming code used to implement
the analysis.

Restate the assumptions of the bias analysis and clearly
report the results, focusing on whether the model
explains the reported estimate.

If assumptions of the model are summarised in the
methods section, use online appendices to elaborate on
details.

Provide a clear statement of the software used to conduct

the simulation.

Make the code available, preferably online with the
published paper.
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Simulation code

SIMULATION STUDY: BMI AND PTB FRAMEWORK EXAMPLE
Underweight <18.5; Normal 18.5-24.9; Overweight 25-29.9; Obese >30

INSTALL PACKAGES & LIBRARIES

HoH HHF HH

#install.packages("doParallel”, repos="http://cran.r-project.org")
#install.packages("foreach", repos="http://cran.r-project.org")
#install.packages("boot", repos="http://cran.r-project.org")
library(foreach)

library(doParallel)

library(boot)

# SET PARALLEL COMPUTING

num.clusters=detectCores()-1
registerDoParallel(num.clusters)
getDoParWorkers() #Number of clusters used

# MISCARRIAGE AS A FUNCTION OF BMI

# BMI~miscarriage association as per
https://pubmed.ncbi.nlm.nih.gov/35232386/

# x BMI in whole levels from 15 to 40

# y Proportion of miscarriage

x1 <- seq(15, 40, 1)

yl <-
100*c(0.21,0.21,0.205,0.205,0.20,0.20,0.19,0.19,0.195,0.20,0.20,0.20
5,0.21,0.22,0.23,0.23,0.24,0.24,0.245,0.25,0.25,0.26,0.26,0.27,0.27,
0.27)

#Model for miscarriage based on BMI

#Local regression smoother. Smoothness controlled by "span"
model <- loess(yl~x1l,span=2/3)

summary (model)

#New data with a finer granularity

x2 <- seq(15, 40, 0.01) #new BMI

p2 <- predict(model,newdata=x2) #prediction of miscarriages at these
new BMI

#Plot - good fit

plot(x1l, yl, xlab = "maternal BMI", ylab = "Proportion of
miscarriage", main = "Proportion of miscarriage by BMI")
lines(x2, p2)
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#Check BMI at which miscarriage is lowest
x2[p2==min(p2)] #21.96 BMI
min(p2) #19.43

#Function to estimate theoretical probability of miscarriage

assuming risk does not increase until the aforementioned BMI of
21.96

BMI.to.misc <- function(BMIvec,min.BMI,min.risk){
misc=predict(model, newdata=BMIvec)
misc[BMIvec<=min.BMI]=misc[BMIvec>min.BMI]=0
misc[BMIvec>min.BMI]=misc[BMIvec>min.BMI]-min.risk
return(misc)

}

#Plot - good fit from BMI of 21.96
min.risk=min(p2)

plot(xl, yl, xlab = "Maternal BMI", ylab = "Proportion of
miscarriage"”, main = "Proportion of miscarriage by BMI",pch=19,
cex.lab=1.5, col.lab="blue", axes=F, frame.plot=TRUE)

lines(x1,
min.risk+BMI.to.misc(BMIvec=x1,min.BMI=x2[p2==min(p2)],min.risk=min(
p2)), pch=19) #Very good fit.

# SET SIM PARAMETERS

# mean of normally distributed exposure.

BMI.mean=26.02 ## Derived from observed data

# sd standard deviation of normally distributed exposure
BMI.sd=5.59 ## Derived from observed data

# SIMULATION MODEL

#BMI -> Miscarriage <- U -> PTB

# BMI->M->U<-PTB

#n sample size 125000 (close match to selected sample from
observed data)

#pEPL prevalence of M set to 20% - represents a common
statistic for miscarriage

#pU prevalence of U - range from moderate to high (20:50)

#min.bpL  Minimum risk of early pregnancy loss set to 19.43
(derived from Bernoulli model)

#orl odds ratio for the U-> EPL effect range from RR of
1.5;2;3
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f#tor2 odds ratio for the U->PTB effect range from RR of 1.5;2;3
#bY baseline prevalence of PTB based on MNS (set to 7.38%)

results=foreach(i=1:100, .packages=c("MASS", "sandwich","1lmtest","tidy
verse","Rlab","dplyr","matrixStats"),.combine=rbind) %dopar% {
rboundednorm <- function(n, mymean, mysd, min = 15, max = 40) {
a = pnorm(c(min, max), mymean, mysd)
z = runif(n, a[1], a[2])
gnorm(z, mymean, mysd)}
n=128000;pU=0.50;min.bpL=19.43;0r1=3.5;bY=0.738;0r2=3.5
set.seed(i)
bias <- data.frame("id" = 1:n) %>%
mutate(BMI= rboundednorm(n, mymean=BMI.mean, mysd=BMI.sd),
bMiscarriage = (min.bpL +
BMI.to.misc(BMIvec=BMI,min.BMI=x2[p2==min(p2)],min.risk=
min(p2)))/100,b_Miscarriage = bMiscarriage / (1 -
bMiscarriage),
U = rbern(n, puU),
prob_Miscarriage = plogis(log(b_Miscarriage) +
log(orl)*u),
Miscarriage = rbern(n, prob_Miscarriage), #miscarriage
pPTB = plogis(log(bY) + log(or2)*U),
PTB = rbern(n, pPTB)) %>% #preterm birth
mutate(BMI_cat = cut(BMI,breaks=c(15, 18.5, 25, 30,Inf),
labels=c("underweight","normal"”, "overweight", "obese"),
include.lowest=TRUE),BMI cat = relevel(BMI cat, ref
="normal"))
#fit a logistic model
log model <- bias %>% glm(formula = PTB ~ BMI_cat, family =
binomial(link = "logit"),data = ., subset = Miscarriage==0)
ct=coeftest(log_model, vcov = sandwich)
ci=confint(ct)
c(ct[-1,1],ci[-1,1],ci[-1,2])

meanf =
function(myvar,index){return(mean(myvar[index],na.rm=TRUE))}
myboot = boot(data=results,statistic=meanf,R=500)

ORmeanUnderweightboot =
boot(data=results[,1],statistic=meanf,R=500)

exp (ORmeanUnderweightboot$t0)

ORCIUnderweightboot = boot.ci(ORmeanUnderweightboot,
conf=0.95, type="perc")

exp (ORCIUnderweightboot$perc[,4:5])
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ORmeanOverweightboot =
boot(data=results[,2],statistic=meanf,R=500)

exp (ORmeanOverweightboot$t0)

ORCIOverweightboot = boot.ci(ORmeanOverweightboot,
conf=0.95, type="perc")

exp(ORCIOverweightboot$perc[,4:5])

ORmeanObeseboot = boot(data=results[,3],statistic=meanf,R=500)
exp (ORmeanObeseboot$t0)

ORCIObeseboot = boot.ci(ORmeanObeseboot, conf=0.95,type="perc")
exp (ORCIObeseboot$perc[,4:5])

#bind results into one line
SimulationResults <- paste("Underweight OR ",
formatC(exp(ORmeanUnderweightboot$t0),digits=2,format="f"),"
",formatC(exp(ORCIUnderweightboot$perc[,4]),digits=2,format="f"),
",",formatC(exp(ORCIUnderweightboot$perc|[,5]),digits=2,format=
"£"),")"," Overweight OR ",
formatC(exp(ORmeanOverweightboot$t0),digits=2,format="f"),

",formatC(exp(ORCIOverweightboot$perc[,4]),digits=2,format="f"),","
,formatC(exp(ORCIOverweightboot$perc|[,5]),digits=2,format="f"),")","
Obese OR ",

formatC(exp(ORmeanObeseboot$t0),digits=2,format="f")," (",formatC(exp
(ORCIObeseboot$perc[,4]),digits=2,format="f"),",",formatC(exp(ORCIOb
eseboot$perc[,5]),digits=2,format="f")

,")",Sep:"" )
SimulationResults
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Women who gave birth to a premature baby after developing pre-eclampsia were 17 times more
likely to experience another preterm birth if pre-eclampsia emerged again, new Curtin University
research has found.

The study, published in the British Journal of Obstetrics and Gynaecology, examined more than
125,000 women who experienced two consecutive singleton births in Western Australia from
1998 to 2015,

About 27,000 babies are born prematurely — or before 37 weeks' gestation — across Australia
each year, with preterm birth the leading cause of death and morbidity in children up to five
years of age in the developed world.
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Lead author and PhD candidate Jennifer Dunne, from Curtin's School of Population Health, said
the findings showed the strongest link between preterm birth and pregnancies complicated by
pre-eclampsia, a serious pregnancy condition that is usually characterised by high blood
pressure, protein in the urine and severe swelling.

“When both pregnancies were complicated by pre-eclampsia, the risk of a subsequent preterm
birth increased 10-fold after an initial term birth and 17-fold when the first birth was preterm,
comparad to women who had an uncomplicated first pregnancy,” Ms Dunne said.

“This study also found that there was a three-fold higher risk of women experiencing a
subsequent case of pre-eclampsia after a preterm birth in the first pregnancy that was not
complicated by pre-eclampsia.

“Until recently, a first birth at full term was considered a reduced risk for a preterm delivery in the
next pregnancy. However, there is emerging evidence that a complicated first pregnancy,
regardless of whether the baby was delivered early or at full term, increases the subsequent risk
of a baby being born prematurely.”

Ms Dunne said the main pregnancy complications examined included pre-eclampsia, placental
abruption {the detachment from the wall of the womb), small-for-gestational age and perinatal
death (a stillbirth or a neonatal death in the first 28 days).

“Having any of the four complications in their first pregnancy puts women at an increased risk of
a preterm birth in their next pregnancy, regardless of whether that first birth ended at full term or
preterm,” Ms Dunne said.

“Likewise, women whose first pregnancy ended in a preterm delivery were at an increased risk
for each pregnancy complication in the second pregnancy.

“The findings of this study will help clinicians to better identify women who are at an increased
risk of a either a preterm birth or complications in their subsequent pregnancies. Further
research is now needed to reveal the specific pathways that explain these strang links between
pregnancy complications and preterm births, whether they be genetic, pathological, and
behavioural or other recurrent issues.”

The research was supervised by Professor Gavin Pereira and co-authored by Dr Gizachew
Tessema, also from Curtin's School of Population Health.

The full paper, “The rofe of confounding in the association between pregnancy camplications
and subsequent preterm birth: o cohort study’. can be viewed online herg

{hitps:fobgyn.anlinelibrary.wiley.com/dol/epdMONMMNA471-052817007),
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