Prenatal Exposure to Ambient Air Pollution and Adverse Birth Outcomes: An Umbrella Review of 36 Systematic Reviews and Metaanalyses

Sylvester Dodzi Nyadanu^{1,2}*, Jennifer Dunne¹, Gizachew Assefa Tessema^{1,3}, Ben Mullins¹, Bernard Kumi-Boateng⁴, Michelle Lee Bell⁵, Bereket Duko¹, and Gavin Pereira^{1,6,7}

¹Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia

²Education, Culture, and Health Opportunities (ECHO) Ghana, ECHO Research Group International, P. O. Box 424, Aflao, Ghana

³School of Public Health, University of Adelaide, Adelaide, South Australia 5000, Australia ⁴Department of Geomatic Engineering, University of Mines and Technology, P. O. Box 237, Tarkwa, Ghana

⁵School of the Environment, Yale University, New Haven, CT 06511, USA

⁶Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473 Oslo, Norway ⁷enAble Institute, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia

*Correspondence: Sylvester Dodzi Nyadanu, sylvester.nyadanu@postgrad.curtin.edu.au

This is the accepted version published in *Environmental Pollution*, available at <u>https://doi.org/10.1016/j.envpol.2022.119465</u>

Abstract

Multiple systematic reviews and meta-analyses linked prenatal exposure to ambient air pollutants to adverse birth outcomes with mixed findings, including results indicating positive, negative, and null associations across the pregnancy periods. The objective of this study was to systematically summarise systematic reviews and meta-analyses on air pollutants and birth outcomes to assess the overall epidemiological evidence. Systematic reviews with/without meta-analyses on the association between air pollutants (NO₂, CO, O₃, SO₂, PM_{2.5}, and PM₁₀) and birth outcomes (preterm birth; stillbirth; spontaneous abortion; birth weight; low birth weight, LBW; small-for-gestational-age) up to 30th March 2022 were included. We searched PubMed, CINAHL, Scopus, Medline, Embase, and the Web of Science Core Collection, systematic reviews repositories, grey literature databases, internet search engines, and references of included studies. The consistency in the directions of the effect estimates was classified as more consistent positive or negative, less consistent positive or negative, unclear, and consistently null. Next, the *confidence* in the direction was rated as either *convincing*, probable, *limited-suggestive, or limited non-conclusive* evidence. Final synthesis included 36 systematic reviews (21 with and 15 without meta-analyses) that contained 295 distinct primary studies. PM_{2.5} showed more consistent positive associations than other pollutants. The positive exposure-outcome associations based on the entire pregnancy period were more consistent than trimester-specific exposure averages. For whole pregnancy exposure, a more consistent positive association was found for PM_{2.5} and birth weight reductions, particulate matter and spontaneous abortion, and SO₂ and LBW. Other exposure-outcome associations mostly showed less consistent positive associations and few unclear directions of associations. Almost all associations showed probable evidence. The available evidence indicates plausible causal effects of criteria air pollutants on birth outcomes. To strengthen the evidence, more high-quality studies are required, particularly from understudied settings, such as low-and-middle-income countries. However, the current evidence may warrant the adoption of the precautionary principle.

Keywords: air pollution, birth outcomes, birth weight, stillbirth, preterm birth, umbrella review.

1. Introduction

Increasing urbanisation and modernisation contribute to higher levels of environmental toxicants, among which air pollution is a significant contributor (Burnett et al., 2018; Rojas-Rueda et al., 2021). Globally, air pollution is ranked as the 5th leading risk factor for mortality. Air pollution causes one in every nine deaths worldwide from non-accidental mortality due to noncommunicable diseases such as lung cancer, chronic obstructive pulmonary disease, ischemic heart disease, stroke, and lower respiratory infections (Burnett et al., 2018; WHO, 2018) with a high economic burden (Di Renzo et al., 2015). As a ubiquitous environmental risk factor, air pollution has impacts on everyone with no geopolitical boundaries (Burnett et al., 2018; WHO, 2018). Notably, there is early evidence that some subpopulations such as people with chronic diseases, children, older adults, and pregnant women and their children in utero are more susceptible to the health outcomes associated with air pollution exposure (Di Renzo et al., 2015; Mannucci and Franchini, 2017; WHO, 2018). Air pollutants vary in chemical composition and physical characteristics and can have negative impacts on vulnerable groups differently and at multiple stages in the life course (Pereira et al., 2014; Slama et al., 2008; WHO, 2018). The general physiological changes associated with pregnancy (e.g., changes in the endocrine system, increased rates of inhalation and cardiac outputs) put pregnant women and the developing fetus at a potentially greater risk of air pollution exposure. This results in adverse pregnancy outcomes and elevated risk of morbidity from cardio-respiratory and neurodevelopmental disorders later in the life course (Di Renzo et al., 2015; Mannucci and Franchini, 2017; WHO, 2018).

Many air pollutants have negative impacts on human health and the environment (Manisalidis et al., 2020). Commonly regulated markers of ambient air pollution, the criteria air pollutants are nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), sulphur dioxide (SO₂), and particulate matter (PM) with aerodynamic diameter $\leq 2.5 \ \mu m \ (PM_{2.5})$ and $\leq 10 \ \mu m \ (PM_{10}) \ (WHO, 2006)$. Prenatal exposure to the criteria ambient air pollutants (hereon *pollutants*) has been documented as a potentially modifiable risk factor for adverse birth outcomes (Di Renzo et al., 2015; WHO, 2018). For example, even at concentrations lower than the 2005 World Health Organization (WHO) guideline annual average of $10 \ \mu g/m^3$, PM_{2.5} has been found as a contributor to the risk of birth outcomes (Slama et al., 2008; WHO, 2006; WHO, 2018). There are multiple relevant biological mechanisms by which pollutants can influence birth outcomes (Slama et al., 2008). Prenatal exposure to pollution initiates a sequence of pathophysiological responses, including oxidative stress, metabolic, cardiovascular, and immunoinflammatory alterations (Saenen et al., 2019; Slama et al., 2008). These responses have the potential to disrupt normal fetal development, resulting in adverse birth outcomes (Saenen et al., 2019; Slama et al., 2008). The associations can be modified by climatic factors, infection, obstetric conditions, socio-economic status, nutrition, and psychosocial environment (Dadi et al., 2020; Erickson and Arbour, 2014; Kannan et al., 2006).

Systematic reviews and meta-analyses (SRMAs) have the potential to improve upon precision, provide answers to unanswered questions, and settle conflicting findings in primary studies (Higgins et al., 2021). However, meta-analysis "also have the potential to mislead seriously, particularly if specific study designs, within-study biases, variation across studies, and reporting biases are not carefully considered." (Higgins et al., 2021). Several SRMAs have been conducted on the pollutants and birth outcomes with findings indicating greater risks, but also with inconsistent findings, including null association, and lower risks (Glinianaia et al., 2004; Lamichhane et al., 2015; Sapkota et al., 2010; Shah et al., 2011; Stieb et al., 2012; Sun et al., 2015; Zhang et al., 2016). As the number of SRMAs increase with varied quality, scope, and conclusions, umbrella reviews are recommended to systematically compare, contrast, and synthesise the emerging evidence from the SRMAs to provide overall concise direction and strength of the observed associations (Aromataris et al., 2015; Hartling et al., 2012). Except for one related broad summary of meta-analyses (Nieuwenhuijsen et al., 2013) that included only one meta-analysis (Sapkota et al., 2010), to our knowledge, no umbrella review has been conducted to systematically evaluate the exposure-outcome associations for ambient air pollution and adverse birth outcomes. This study aimed to provide an overall clear synthesis of the available epidemiological evidence through an umbrella review to evaluate if sufficient evidence is available to adopt the *precautionary principle*; protecting the health of pregnant women and their fetuses by minimising air pollution while scientific uncertainty is resolved (Martuzzi and Tickner, 2004).

2. Methods

2.1 Umbrella review methodology

This umbrella review involved a critical evaluation of SRMAs on the association between criteria air pollutants and adverse birth outcomes. The review was based on a published protocol (Nyadanu et al., 2020), prospectively registered in PROSPERO (CRD42020200387), and followed reporting guidelines, including PRISMA statement (Moher et al., 2009; Page et al., 2021) and JBI umbrella review guideline (Aromataris et al., 2015; Aromataris et al., 2020).

2.2 Eligibility criteria

Eligibility criteria were defined according to the PECOS (Participants, Exposures, Comparators, Outcomes, and Study design) statement (Woodruff and Sutton, 2014) as described in the published protocol (Nyadanu et al., 2020). Briefly, the 'Population' was pregnant women or *in utero* infants. 'Exposures' were the pollutants: NO₂, CO, O₃, SO₂, PM_{2.5}, and PM₁₀. 'Comparators' were pregnant women unexposed or exposed to lower levels of the exposures as compared to those with higher exposures. 'Outcomes' were the birth outcomes: preterm birth (PTB), pregnancy loss (spontaneous abortion or stillbirth), reduced birth weight, and fetal growth restriction (low birth weight, LBW; and small-for-gestational-age, SGA), and related outcomes such as very low birth weight. 'Study' designs were systematic reviews with or without meta-analyses that included quantitative human epidemiologic studies on the exposure-outcome associations of interest. Assisted reproductive technology studies were excluded. A review study was included if the review article specified inclusion or exclusion criteria, was based on the search of at least one electronic database and described the search strategy or protocol, reported results on the exposure-outcome association as the main objective, provided sufficient information on the included primary studies (Pieper et al., 2014) and included no fewer than three primary studies for the exposure-outcome association (Beltran et al., 2013).

2.3. Data Sources

We conducted a systematic search in (i) six major bibliographic databases: PubMed, CINAHL, Scopus, Medline/Ovid, Embase/Ovid, and Web of Science Core Collection; (ii) systematic reviews repositories: Cochrane Database of Systematic Reviews, JBI Database of Systematic Reviews and Implementation Reports, and Epistemonikos (www.epistemonikos.org/); (iii) electronic grey literature databases: OpenGrey (http://www.opengrey.eu/) and WorldWideScience.org; (iv) Internet search engines: Google and Google Scholar in Incognito mode, screening the first 200 search results (Bramer et al., 2017); (v) the World Health Organization website; and (vi) manually searched references of the identified eligible studies.

2.4. Study selection and data extraction

Searches were restricted to the English language with no limitations on the date of publication. We developed comprehensive search terms with the relevant medical subject heading (MeSH) terms, keywords, and previous reviews' search terms for advanced search in the databases (Table S1). An experienced librarian from the Faculty of Health Sciences, Curtin University was consulted to refine the search strategies. The literature search was conducted for the broader umbrella review described in the protocol (Nyadanu et al., 2020). The databases were searched on September 21, 2020, and with weekly alerts and updates up to 30th March 2022 using the same criteria. The titles and abstracts of all identified citations were imported into the *EndNote* library and duplicated records were excluded.

Studies were first screened for relevant titles and abstracts. The full texts of potentially eligible studies were retrieved and assessed comprehensively per the eligibility criteria. The JBI SUMARI was used to aid the selection process at the full-text level (Munn et al., 2019). Data were extracted from the selected studies with the data extraction tool (Nyadanu et al., 2020) and was piloted by two investigators (SN and JD). Study selection and data extraction were conducted independently by two investigators (SN and JD) and any disagreements were resolved by discussion or with a third investigator (GT, BM, and GP). Authors were contacted for additional or unclear information where necessary.

2.5. Risk of bias assessment

Two authors independently assessed the risk of bias (SN and JD) of the included reviews and any disagreements were resolved by discussion or with a third investigator (BD). The JBI standardised critical appraisal tool (Aromataris et al., 2020) for review studies and the JBI SUMARI software (Munn et al., 2019) was used. The 11 items were checked as 'yes' (1), 'unclear' or 'no' (0). Item 9 was scored not applicable (NA) for reviews without meta-analyses. The 'yes' items were summed to total scores, which were categorised as 0-5, 6-8, and 9-11 and rated 'high', 'moderate', and 'low' risk of bias, respectively.

2.6. Data Synthesis

The general characteristics and scope of the included reviews were presented using tables and figures such as forest plots and a map with textual descriptions. To account for multiple inclusion of primary studies (overlaps) in the review articles, we constructed separate citation matrices for systematic reviews with and without meta-analyses for computing the overlaps according to Corrected Covered Area (CCA) algorithm (Pieper et al., 2014);

$$CCA = \frac{N-r}{rc-r},$$

where *N* is the sum of the number of included primary studies (the total number of times studies appeared in the reviews) in the umbrella review, *r* is the total number of distinct indexed primary studies and *c* is the number of reviews. The CCA score $\leq 5\%$ implies slight, 6-10% moderate, 11-15% high, and >15% very high degrees of overlaps (Pieper et al., 2014). Overlap of primary studies across the reviews is unavoidable. However, higher overlap indicates that synthesised evidence in the umbrella review is based on different review studies that largely integrated the same primary studies. This could bias the results or decrease the confidence in the evidence as compared to low overlap (Pieper et al., 2014).

Systematic reviews without meta-analyses (hereon systematic reviews) were narratively synthesised. For systematic reviews with meta-analyses (hereon *meta-analyses*), we adapted the similar approaches described elsewhere (O'Donoghue et al., 2018; Rojas-Rueda et al., 2021; Sleddens et al., 2015a; Sleddens et al., 2015b) to provide overall epidemiological evidence. Specifically, the two updated grading scales (O'Donoghue et al., 2018) were adapted as described in our protocol (Nyadanu et al., 2020). Briefly, by considering the *consistency* in the direction and statistical significance of the metaanalyses results, each pollutant-outcome association was graded as demonstrating a more consistent positive association (++) in all results and without null in the confidence intervals, or a less consistent positive association (+) for which there was agreement in at least 75% of the results in the direction, otherwise a mixed/unclear or contradictory direction (0). Similarly, lower risks were graded more (--) or less (-) consistent negative associations. Consistently null association in all meta-analyses was graded (00). Where only one meta-analysis was available for a particular pollutant-outcome association, the criteria were applied to the included primary studies in the meta-analysis while considering agreement in the direction of association in at least 80% of the included primary studies (Zeiher et al., 2019). Next, informed by the benchmarks developed using Bradford Hills' guidelines for causation (Hill, 2015) as applied previously (O'Donoghue et al., 2018; Sleddens et al., 2015a; Sleddens et al., 2015b), the *confidence* in the observed direction or plausible causation was rated as; i) 'convincing evidence' (Ce), ii) 'probable evidence' (Pe), iii) 'limited-suggestive evidence' (Lse) and iv) 'limited, no conclusive evidence' (Lnce) by considering the level of strengths and weaknesses in the reported associations, including imprecision and heterogeneity in the meta-analyses results, and the number and quality/study designs of the pooled primary studies. Here, 'convincing evidence' of an observed direction or causality is that there is low heterogeneity and high precision in all pooled estimates and included at least two cohort studies of large sample sizes, and experimental studies (Nyadanu et al., 2020; O'Donoghue et al., 2018). Before the evidence synthesis, all effect estimates (odd ratios for dichotomous outcomes and beta coefficient for continuous outcomes) were standardised as an increase in exposure per $10 \ \mu g/m^3$ for PM_{2.5} and PM₁₀; 10 parts per billion (ppb) for NO₂, SO₂, and O₃; and 100 ppb for CO as described elsewhere (Klepac et al., 2018) and applied in one of the included meta-analyses (Li et al., 2020).

7. Protocol Amendments

Few amendments were made to the published protocol (Nyadanu et al., 2020). We did not use the AMSTAR2 critical appraisal tool for the further assessment of the methodological quality. Given that AMSTAR2 was originally developed for randomised and non-randomised intervention studies (Shea et al., 2017), modifying it within the context of environmental health studies may create discrepancies. Moreover, the JBI critical appraisal tool (Aromataris et al., 2020), which was more general as compared to the AMSTAR2, captured the necessary items for assessing the risk of bias of the included systematic reviews or meta-analyses. Also, considering the small number of meta-analyses for each pollutant-outcome association for each pregnancy period, we applied at least 75% agreement of meta-analyses in each direction of association for grading the *less consistent associations* as reported previously (O'Donoghue et al., 2018; Sleddens et al., 2015a; Sleddens et al., 2015b) instead of the 80% stated in the protocol (Nyadanu et al., 2020). We, however, maintained the 80% agreement in the direction of association for the included primary studies in instances where only one meta-analysis was available.

3. Results

3.1 Systematic literature search results

The initial literature search in the electronic databases identified a total of 3,663 records, of which 1,513 were retrieved after deduplications. Title and abstract screening excluded 1,460 records. An additional six potentially eligible studies were identified from the other search sources. The full-text assessment included 59 studies and 34 were further excluded for other reasons, including retraction (n =1), non-English (n = 4), a summary of reviews or general literature reviews (n = 16), unrelated outcomes or pollutants (n = 4), and fewer than three or insufficient details on the included primary studies (n = 9). From the prospective literature search based on the weekly databases' alerts and updates using the same criteria after the initial search up to 30^{th} March 2022, we added 11 additional reviews (Edwards et al., 2022; Gong et al., 2022; Ju et al., 2021; Luo et al., 2021; Rappazzo et al., 2021; Simoncic et al., 2020; Uwak et al., 2021; Walter et al., 2021; Xie et al., 2021; Zhang et al., 2021; Zhu et al., 2022). Thus, 36 systematic reviews, 15 (42%) without and 21 (58%) with meta-analyses were included in the final synthesis (Figure S1). The full lists of excluded studies after the full-text examination with reasons were provided (Table S2).

3.2 Characteristics of the included reviews

The detailed descriptions of the general characteristics of the included reviews were summarised (Tables 1 and 2 and Tables S3 and S4). The 36 SRMAs were published between January 2004 (Glinianaia et al., 2004) and October 2021 (Edwards et al., 2022; Gong et al., 2022) by authors from multiple countries (Figures S2 and S3). Most of the reviews (30 of 36, 83%) included primary studies from several countries, although some countries and regions of the world were more represented in the

included studies than others. The other six reviews were restricted to the USA (Bekkar et al., 2020; Heo et al., 2019; Thayamballi et al., 2020), China (Jacobs et al., 2017), Europe (Simoncic et al., 2020), and Australia (Walter et al., 2021). The 36 SRMAs included a total of 295 distinct primary studies that included eight multi-country studies (including one each from 33 African countries (Xue et al., 2019) and three South Asian countries (Xue et al., 2021), both based on Demographic Health Survey data) and 287 country-specific studies from 31 countries. The geographical distribution of the 287 country-specific primary studies was skewed towards studies from the USA, 113 (39%), and China, 44 (15%). South Asia and Africa each contributed only one study from India and Tanzania, respectively (Figure 1).

The included systematic reviews sourced literature from an average of four databases. Out of the 15 systematic reviews, three searched the literature in both English and Chinese languages (Jacobs et al., 2017; Luo et al., 2021; Yuan et al., 2019) while the remaining were restricted to only English. The number of primary studies included in each systematic review ranged from three (Edwards et al., 2022) to 82 (Tsoli et al., 2019), with an average of 27 primary studies. The 15 systematic reviews included a total of 211 unique primary studies with a moderate overlap of 6.8% (Table S5). Most of the systematic reviews (n=13) investigated the association between PM2.5 and LBW while only one review investigated the association between the pollutants with spontaneous abortion (SAB) (Grippo et al., 2018). Study design classifications varied among reviews. The total sample sizes studied ranged from 146,271 births (Ghosh et al., 2007) to 41,793,876 births (Heo et al., 2019) with an average of 12,792,818 births. The reported average ranges of the concentrations for particulate matter were 1.1-71.9 μ g/m³ for PM_{2.5} and 3.2-889.7 μ g/m³ for PM₁₀. The exposure levels of the gaseous pollutants reported (most likely for entire pregnancy periods, although specific pregnancy periods were not clearly stated) ranged from 9.4 -117.9 μ g/m³ for NO₂, 3.8 - 308 μ g/m³ for SO₂, 33 - 91.4 μ g/m³ for O₃, and 0.5 -17.8 mg/m³ for CO. The majority, 9/15 (60%) of the systematic reviews did not assess the risk of bias in the included primary studies. The majority, 9/15 (60%) of the systematic reviews explicitly stated having used systematic review guidelines, mostly PRISMA. Only one review had a protocol registered which is available at Open Science Foundation (Edwards et al., 2022). Two reviews, however, stated that a pre-specified review method was available but not registered or published prior to the conduct of the review (Shah et al., 2011; Tsoli et al., 2019) (Table 1). Other details were provided in Table S3.

The earliest meta-analysis, published in 2010 analysed the association between $PM_{2.5}/PM_{10}$ and LBW and PTB (Sapkota et al., 2010). The number of meta-analyses increased over time with 15 published between 2016-2021 (Figure S2) that investigated the various pollutants and birth outcomes. The majority, 14 of 21 (67%) meta-analyses (Table 2) were restricted to only PM_{2.5}/PM₁₀. Only one metaanalysis searched one electronic database (PubMed) (Simoncic et al., 2020) and the rest searched in two or more databases. Restriction to only English articles was typical but six meta-analyses included both English and Chinese (Gong et al., 2022; Ji et al., 2017; Li et al., 2017; Liu et al., 2017; Sun et al., 2015; Sun et al., 2016). The number of included primary studies per meta-analysis ranged from six to 62 with an average of 27. A total of 228 different primary studies were included with a moderate overlap of 7.6% (Table S5). The average number of births or pregnancies per meta-analysis was 12,149,542 births, ranging from 735,719 natural pregnancies (Zhu et al., 2022) to 57,960,152 births (Uwak et al., 2021). There were few unreported sample sizes for some included primary studies. From 11/21 (52%) of the meta-analyses that provided the exposure levels for the included primary studies, the reported mean concentrations of pollutants in the primary studies (most likely for entire pregnancy periods, although specific pregnancy periods were not clearly stated) ranged from 1.8-70.8 μ g/m³ for PM_{2.5}, 3.0-142.1 μg/m³ for PM₁₀, 6.2-36.6 ppb for NO₂, 1.1-12.2 ppb for SO₂, 13.4 -57.0 ppb for O₃, and 0.5 - 4.6 ppm for CO.

Two meta-analyses provided the prevalence ranges of 3.5-17.3% for LBW (Stieb et al., 2012) and 2.8-11.76% for PTB (Ju et al., 2021). The majority, 15/21 (71%) of the meta-analyses reported the risk of bias in the included primary studies, which were mostly rated low. Two meta-analyses had registered their protocols *a priori* (Uwak et al., 2021; Xie et al., 2021). Effect estimates were often reported as odds ratios and most meta-analyses did not indicate if other effect estimate metrics were converted or not. The pooled odds ratios were often reported as per $10 \ \mu g/m^3$ increment for particulate pollutants but the reference units for the gaseous pollutants differed greatly among meta-analyses (Table S4).

3.3 Risk of bias assessment

Out of the 10 maximum scorable points for systematic reviews using the JBI critical appraisal checklist, 12 systematic reviews scored 6-8 points (moderate risk of bias) and three reviews scored 9-10 points (low risk of bias). The major areas of weaknesses were limited sources of literature searched, searching a single electronic database (n = 5), lack of risk of bias assessment for included primary studies (n = 8), and critical appraisal (n = 12) or data extraction (n = 11) were not conducted independently by at least two authors (Figure S4). Out of the 11 scorable points (moderate risk of bias). The main reasons for lower scores were failure to appraise and report the risk of bias in the included primary studies (n = 5) and lack of at least two independent authors appraising the risk of bias (n = 7) (Figure S5).

3.5 Major findings

The detailed results from the systematic reviews were summarised in the supplemental material (Table S3). Earlier global systematic reviews indicated that there were some associations between the pollutants and birth outcomes, particularly for PM2.5/PM10. and SO2 but concluded that the available findings were generally either of "no effect", "very small", or "inconclusive" to provide convincing epidemiological evidence (Bonzini et al., 2010; Bosetti et al., 2010; Glinianaia et al., 2004; Shah et al., 2011). Three recent global systematic reviews showed that particulate matter, especially PM_{2.5} had been consistently linked in many observational studies to a higher risk of birth outcomes at varied prenatal periods (Grippo et al., 2018; Tsoli et al., 2019; Yuan et al., 2019). However, another recent systematic review restricted the inclusion to only primary studies that utilised the land-use regression model for exposure assessment that mainly investigated PM_{2.5} and NO₂ (Luo et al., 2021) and concluded otherwise. That review found that prenatal PM_{2.5} exposure increased the risk of reduced birth weight but with an unclear link with other birth outcomes investigated (Luo et al., 2021). The authors also observed that although NO₂ consistently showed an increase in the risk of reduced fetal growth and development, its association with PTB was unclear and the associations of other pollutants with birth outcomes were found to be generally uncertain (Luo et al., 2021). Similarly, another systematic review also found "insufficient or conflicting evidence" for an association of NO₂ and SO₂ with stillbirth and SAB (Grippo et al., 2018). However, a recent systematic review of the USA population indicated higher risks of PTB, LBW, and stillbirth following prenatal exposure to PM_{2.5} and ozone and with heightened risk among infants of Black-American mothers (Bekkar et al., 2020). A systematic review of studies from the Chinese population on the impacts of the six pollutants on birth weight, LBW, PTB, and stillbirth found only SO₂ to be consistently associated with LBW and PTB (Jacobs et al., 2017). Another systematic review that included nine primary studies conducted in Australia also indicated that there was some evidence for PTB and intrauterine growth retardation (IUGR) but stated that the discrepancies in the results hindered overall firm conclusions (Walter et al., 2021). A review on maternal relocation during pregnancy included three studies and found limited evidence of the influence of relocating into environments of different concentrations of pollutants on birth outcomes (Edwards et al., 2022).

Three systematic reviews (Ghosh et al., 2007; Heo et al., 2019; Westergaard et al., 2017) explored the associations between the pollutants and birth outcomes by maternal or neonatal underlying sociodemographic or obstetrical conditions. It was found that while females were at a higher risk of LBW, males were at a higher risk of PTB (Ghosh et al., 2007). Furthermore, a higher risk of term LBW was observed for neonates whose mothers smoked tobacco during pregnancy, were under/overweight or obese, or had lower socio-economic status (Westergaard et al., 2017). The third review that included studies from the USA population on exposure to particulate matter concluded "suggestive evidence" of higher risk of PTB and LBW in infants of Black-American mothers but "weak evidence" of higher risk for neonates of mothers with lower educational attainments (Heo et al., 2019).

The most frequently pooled exposure-outcome association was PM_{2.5} with LBW and PTB (n=7) during the entire pregnancy period. There was only one meta-analysis on the association between gaseous pollutants (O₃, SO₂, CO) and reduced birth weight (Stieb et al., 2012) (Table 2). The meta-analyses reported the pooled effect estimates based on single-pollutant models and the effect metric for dichotomous birth outcomes were odd ratios (ORs) with random effect model. The pooled effect estimates showed inconsistencies in terms of direction and magnitude of effects, statistical significance, precisions, and heterogeneities but publication bias was often found to be absent based on Egger's or Begg's test with funnel plots (Table S4). By geographical regions (defined as Asia, North or South America, Europe, Oceania), although with varied magnitude of the effect estimates, positive associations between particulate matters and birth weight (Gong et al., 2022; Uwak et al., 2021) and all pollutants and PTB (Ju et al., 2021) were found across all regions (Table S4). The direction of effect estimates, and consistency differed for each exposure-outcome association at different pregnancy periods, resulting in different gradings in the overall direction of the association. However, high heterogeneity, as high as 99% (Sun et al., 2015; Sun et al., 2016; Zhu et al., 2022), and imprecision were reported across almost all meta-analyses. Also, due to the nature of the exposure, no study included an experimental or randomised controlled trial (RCT). Consequently, the maximum possible confidence of the evidence according to the adopted classification was probable evidence (Pe). Thus, unless stated otherwise, the confidence of the evidence observed across exposure-outcome associations described below was probable evidence.

i) Birth weight reduction

 $PM_{2.5}$: Six meta-analyses examined the association with exposure over the entire pregnancy period, and the overall results showed a *more consistent positive association*. The largest pooled effect estimate was -28 g (95% CI = -48, -7) per 10 µg/m³ increase in exposure with heterogeneity of 94%, from 15 studies of 15,424,198 births (Uwak et al., 2021). For trimester-specific exposures, *less consistent positive associations* were observed for each trimester (Table 3, Figure 2).

*PM*₁₀: Entire pregnancy exposure from three meta-analyses (Lamichhane et al., 2015; Stieb et al., 2012; Uwak et al., 2021) showed a *less consistent positive association* with birth weight reduction. The largest reported pooled effect estimate was -10 g (95% CI = -14, -7) per 10 μ g/m³ increase in exposure with 0% heterogeneity based on five cohort studies of 477,123 births that adjusted for prenatal tobacco smoking (Lamichhane et al., 2015). All trimester-specific results showed *less consistent positive associations* (Table 3, Figure S6).

*NO*₂: The overall evidence from the results of one global study (Stieb et al., 2012) and one SRMA from Europe (Simoncic et al., 2020) was graded with a *less consistent positive association* for the entire pregnancy period, first and third trimesters. However, the second-trimester exposure showed an *unclear* or *contradictory direction* (Table 3 and Figure S7).

*O*₃: Only one meta-analysis (Stieb et al., 2012) was conducted that found a positive association between exposure during the entire pregnancy period with high heterogeneity; the effect estimate was -5 g (95% CI = -16, 6; $I^2 = 81\%$) per 10 ppb increase in exposure. This meta-analysis pooled four

cohort studies where two of the cohort studies each reported positive and negative associations with the change in birth weight. Given that only one meta-analysis was identified, applying the grading criteria to the results of the included primary studies (available in the original meta-analysis) indicated *unclear or contradictory direction* for the entire pregnancy period, first and third trimesters. However, the second-trimester exposure showed a *less consistent positive association* (Table 3).

*SO*₂: Only one meta-analysis was included that pooled three to six studies and found lower risks for the entire pregnancy period, second and third trimesters but higher risk for the first trimester (Stieb et al., 2012). In all pregnancy periods, the results of the included primary studies (available in the original meta-analysis) showed both higher and lower risks. Hence overall evidence was considered *unclear or contradictory direction* for each pregnancy period (Table 3).

CO: Only one meta-analysis pooled this exposure-outcome association for each pregnancy period based on four to eight cohort studies (Stieb et al., 2012). The pooled effect showed a 1 g decrease in birth weight for the entire pregnancy but no association for trimester-specific effects per 100 ppb increase in the exposure. However, less than 80% of the included primary studies reported both higher and lower risks for each pregnancy period. Hence the overall evidence was graded in *unclear or contradictory directions* for each pregnancy period (Table 3).

 $PM_{2.5}$ or PM_{10} by race/ethnicity: Two meta-analyses pooled the effect estimates by race or ethnicity for PM_{2.5} and PM₁₀ over the entire pregnancy exposure, dominated by studies conducted in the USA (Thayamballi et al., 2020; Uwak et al., 2021). Applying the grading criteria, the overall evidence for PM_{2.5} showed a *more consistent positive association* for White persons, a *less consistent positive association* for Hispanic persons and Black persons but an *unclear or contradictory direction* for Asian persons. The largest pooled effect estimate was -32 g (95% CI = -60, -4) per 10 µg/m³ increase in exposure among the White population (Uwak et al., 2021). Only one meta-analysis pooled results for PM₁₀ and birth weight association (Uwak et al., 2021). The overall evidence based on the results of the primary studies showed a *less consistent positive association* for White persons and *unclear or contradictory directions* for both Black and Hispanic persons (Table S6, Figure S8).

ii) Low birth weight (LBW)

 $PM_{2.5}$: Applying the grading criteria, the findings from seven meta-analyses based on 4 to 29 cohort studies for the entire pregnancy period were found to have a *less consistent positive association*. The largest pooled OR was 1.09 (95% CI =1.03, 1.15) per 10 µg/m³ increase in exposure with high heterogeneity (I² = 93%) based on 19 cohort studies that included 10,405,729 births (Sun et al., 2016). Considering four meta-analyses for each trimester, the overall evidence for each trimester showed a *less consistent positive association* (Table 4 and Figure S9).

 PM_{10} : For the entire pregnancy period, four meta-analyses reported positive associations which included the null (Ji et al., 2017; Sapkota et al., 2010) and without the null (Li et al., 2020; Stieb et al., 2012) in the confidence intervals. The largest pooled effect estimate indicated a higher risk of 5% per 10 µg/m³ increase in the exposure based on 23 cohort studies with 286,188 LBW cases, with OR of 1.05 (95% CI=1.03, 1.08; I²= 70%) (Li et al., 2020). The overall evidence was graded as a *less consistent positive association* for the entire pregnancy exposure. Regarding the trimester-specific risks, the overall evidence was *less consistent positive association* for the third trimester (Table 4 and Figure S10).

CO: From the results of two meta-analyses (Li et al., 2020; Stieb et al., 2012), the overall evidence of *less consistent positive association* was found for the entire pregnancy. The same pooled OR of 1.01 (95% CI=1.00, 1.01) per 100 ppb increase in exposure based on six and eight cohort studies with low to moderate heterogeneities were reported. The same two meta-analyses reported similar findings of *less consistent positive association* for the second trimester, but an *unclear or contradictory direction* for the first-trimester exposure and consistently *null association* for the third trimester (Table 4, Figure S11).

 NO_2 : Two meta-analyses reported on this exposure-outcome association (Li et al., 2020; Stieb et al., 2012). The overall evidence for the entire pregnancy period, first and second trimesters were found to

be *less consistent positive associations*. For the entire pregnancy exposure, the larger pooled OR was 1.03 (95% CI=1.01, 1.05) per 10 ppb increase in exposure with high heterogeneity ($I^2 = 90\%$) based on 23 cohort studies of 509,997 LBW cases (Li et al., 2020). The third trimester showed an *unclear or contradictory direction* (Table 4, Figure S12).

 O_3 : The results of two meta-analyses (Li et al., 2020; Stieb et al., 2012) indicated overall evidence of *unclear or contradictory directions* for the entire pregnancy period, first and second trimesters while the third trimester showed a *less consistent positive association* (Table 4, Figure S13).

 SO_2 : Two meta-analyses were reported for each pregnancy period (Li et al., 2020; Stieb et al., 2012) and found a *more consistent positive association* across the entire pregnancy exposure period. The larger OR of LBW was 12% with high heterogeneity (I^2 = 83%) based on 13 cohort studies of 171,360 LBW births with pooled OR of 1.12 (95% CI= 1.02, 1.24) per 10 ppb increase in exposure (Li et al., 2020). The results of both first and second trimesters showed *less consistent positive associations* while the third trimester was a *less consistent negative association* (Table 4, Figure S14).

iii) Small-for-gestational age (SGA)

 $PM_{2.5}$: The two meta-analyses on the association between SGA and PM_{2.5} considered the same primary studies (Zhang et al., 2016; Zhu et al., 2015). We, therefore, considered the two pooled results as one. The entire pregnancy period result from six cohort studies on 1,515,887 births indicated positive association with pooled OR of 1.15 (95% CI= 1.10, 1.20; I²= 0%) per 10 µg/m³ increase in exposure. The overall evidence was graded as a *less consistent positive association* for the entire pregnancy period based on the results of the included primary studies. Similarly, applying the grading criteria to the results of the primary studies, we graded the overall evidence as *unclear or contradictory direction* for the first trimester and *less consistent positive associations* for both second and third trimesters (Table S7).

iv) **Preterm birth (PTB)**

 $PM_{2.5}$: There were seven meta-analyses based on 4 to 31 cohort studies. The overall evidence for the entire pregnancy period was graded as a *less consistent positive association* and the largest pooled OR of PTB was 1.16 (95% CI=1.07,1.26; I²=17%) per 10 µg/m³ increase in the exposure based on four cohort studies conducted on 197,980 births (Stieb et al., 2012). The *unclear or contradictory direction* was observed for the first trimester. Both second and third trimesters, however, showed *a less consistent positive association*. The largest pooled OR of PTB per 10 µg/m³ increase in the exposure for second trimester was 1.09 (95% CI=0.82, 1.44; I² = 99%) based on five cohort studies conducted on 1,340,807 births and third trimester was 1.08 (95% CI=0.99, 1.17; I² = 92%) based on nine cohort studies conducted on 2,208,883 births (Sun et al., 2015) (Table 5, Figure 3).

 PM_{10} : From the reported pooled OR of three meta-analyses (Lamichhane et al., 2015; Sapkota et al., 2010; Stieb et al., 2012), the overall evidence showed a *less consistent positive association* for the entire pregnancy period. The largest pooled OR indicated 24% increased odds of PTB per 10 µg/m³ increase in the exposure with an OR of 1.24 (95% CI= 1.03, 1.45) with no heterogeneity (I² = 0%) based on two cohort studies of 9,294 births that adjusted for maternal tobacco smoking (Lamichhane et al., 2015). Regarding the trimester-specifics, we observed *less consistent negative associations* for both first and second trimesters but a *less consistent positive association* for the third trimester (Table 5 and Figure S15).

 NO_2 : Two global meta-analyses based on 20 primary studies (Ju et al., 2021) and six primary studies (Stieb et al., 2012), and one for the European region based on four studies (Simoncic et al., 2020) reported on this exposure-outcome association. The overall evidence was a *less consistent positive association* for the entire pregnancy period and the larger OR of PTB was 1.14 (95% CI= 0.81, 1.64) per 10 ppb increase in the exposure from four cohort studies of 80,458 European births with moderate heterogeneity (I² = 72%) (Simoncic et al., 2020). From two meta-analyses for each trimester exposure period, the overall evidence was a *less consistent negative association* for the first trimester, *unclear or contradictory direction* for the second trimester, and a *less consistent positive association* for the third trimester (Table 5, Figure S16).

CO: From the findings of two meta-analyses (Ju et al., 2021; Stieb et al., 2012), both entire pregnancy and first trimester exposure periods showed *unclear or contradictory directions* while the third trimester consistently showed a *null association*. One meta-analysis (Ju et al., 2021) evaluated the second trimester and the results of the three included primary studies indicated an *unclear or contradictory direction* (Table 5, Figure S17).

 O_3 : Two meta-analyses were reported for the entire pregnancy, and second and third trimesters (Ju et al., 2021; Stieb et al., 2012), and three meta-analyses were reported for the first trimester (Ju et al., 2021; Rappazzo et al., 2021; Stieb et al., 2012). The entire pregnancy and first and second trimesters showed *less consistent positive associations* while the third trimester was an *unclear or contradictory direction* (Table 5, Figure S18).

v) Stillbirth

 $PM_{2.5}$: The pooled OR from three meta-analyses (Siddika et al., 2016; Xie et al., 2021; Zhang et al., 2021) showed a *less consistent positive association* for the entire pregnancy period. The largest reported pooled OR was 1.15 (95% CI=1.07, 1.25) per 10 µg/m³ increase in the exposure with high heterogeneity (I² = 75%) based on six primary studies of 3,222,578 births (Xie et al., 2021). Trimester-specific exposures showed a *less consistent positive association* for the second trimester but *unclear or contradictory directions* for both the first and third trimesters (Table 6, Figure S19).

 PM_{10} . This was reported in three meta-analyses (Siddika et al., 2016; Zhang et al., 2021; Zhang et al., 2016) where two (Siddika et al., 2016; Zhang et al., 2016) published in the same year were duplicated (i.e., based on the same primary studies) and were considered as one result. The overall evidence for the entire pregnancy showed a *less consistent positive association* with a 1% higher risk per 10 µg/m³ increase in the exposure based on either two or four cohort studies. Regarding the trimester-specific associations, both first and second trimesters showed *unclear or contradictory directions* while the third trimester was a *less consistent positive association* (Table 6, Figure S20).

*NO*₂: This was investigated in two meta-analyses based on three to six cohort studies (Siddika et al., 2016; Zhang et al., 2021). The overall evidence for the entire pregnancy period and each of the three trimesters showed *less consistent positive associations*. The larger risk was 7% higher with OR of 1.07 (95% CI= 0.97, 1.18; $I^2 = 80\%$) per 10 ppb increase in the exposure based on three primary studies of 3,847,818 births for the entire pregnancy (Siddika et al., 2016). The pooled effect estimates were roughly similar for the first and third trimesters based on three to six primary studies (Table 6, Figure S21).

 SO_2 : The results of two meta-analyses (Siddika et al., 2016; Zhang et al., 2021) for the entire pregnancy period, pooled from three and six primary studies, showed a *less consistent positive association*. The larger pooled OR was 1.08 (95% CI= 0.95, 1.22; I² = 20%) per 10 ppb increase in the exposure from three primary studies of 3,847,818 births (Siddika et al., 2016). Both first and second trimesters indicated *unclear or contradictory directions* of associations while the third trimester was *a less consistent positive association* (Table 6, Figure S22).

CO: This was examined in two meta-analyses (Siddika et al., 2016; Zhang et al., 2021). The overall evidence across the entire pregnancy and the third trimester showed *unclear or contradictory directions* while both first and second trimesters consistently indicated *null association* based on three to six primary studies (Table 6, Figure S23).

 O_3 : Two meta-analyses pooled two to five primary studies for this exposure-outcome association (Siddika et al., 2016; Zhang et al., 2021). The overall epidemiological evidence was graded in *unclear or contradictory directions* for the entire pregnancy period and each of the three trimesters (Table 6, Figure S24).

vi) Spontaneous abortion (SAB)

 $PM_{2.5:}$ One meta-analysis reported on this exposure-outcome association and found a pooled OR of 1.20 (95% CI=1.01, 1.40) based on five primary studies conducted on 69,507 natural pregnancies with

high heterogeneity ($I^2 = 99\%$) (Zhu et al., 2022). Findings from the included primary studies showed a *more consistent positive association*.

 PM_{10} : Pooled OR from two meta-analyses (Zhang et al., 2016; Zhu et al., 2022) indicated a *more* consistent positive association. The larger pooled OR for 10 µg/m³ increment based on three primary studies (one each for cohort, case-control, and cross-sectional) on 515,932 total pregnancies during the first trimester found 34% higher odds of SAB, 1.34 (95% CI= 1.04, 1.72) with moderate heterogeneity (I² = 62.4%) (Zhang et al., 2016) (Table 6). There were no meta-analyses for the gaseous pollutants.

4. Discussion

4.1 Characteristics and quality of the reviews

The 36 included reviews published from January 2004 (Glinianaia et al., 2004) to October 2021 (Edwards et al., 2022; Gong et al., 2022) organised their evidence from 295 distinct observational studies (published between 1984-2021) of varied study designs, included eight multi-country studies and 287 country-specific studies from 31 countries. The included primary studies were dominated by studies from the USA (39%) and China (15%) and the limited or lack of studies from many regions, particularly in developing countries could introduce potential selection bias. This could impact the generalisability of the findings but may not necessarily change the overall epidemiological evidence. This is because subgroup analyses reported positive associations, particularly between the pollutants and birth weight and PTB across all geographical regions defined as South or North America, Europe, Asia, and Oceania (Ju et al., 2021; Uwak et al., 2021). For instance, subgroup analysis of 13 studies in the USA and four studies from "Other" countries indicated reduced birth weight by -19 (95% CI= -31, -6; $I^2 = 99\%$) and -2 (95% CI= -12, 9; $I^2 = 26\%$) per 10 µg/m³ increment in PM_{2.5} exposure during the entire pregnancy, respectively. Similarly, the authors reported pooled OR of LBW per 10 μ g/m³ increment in PM_{2.5} exposure during the entire pregnancy as 1.08 (95% CI=1.02, 1.14; I²= 94%) based on 14 studies in USA and 1.14 (95% CI=1.04, 1.25; I²= 36%) based on five studies in "Other" countries, respectively (Sun et al., 2016). Africa and South Asia each contributed only two studies to the evidence. Generally, regions with limited evidence that require particular attention from the academic and research community are Africa, Pacific Island, South Asia, Latin America, and the Caribbean. Some developed countries such as Germany, Russia, Finland, Israel, and Uruguay also contributed only one study each. Particulate matter was more studied than gaseous pollutants. The most extensively researched exposure-outcome associations were PM2.5 with LBW and PTB while stillbirth, SGA, and SAB were less frequently studied for all criteria pollutants.

Comparatively, review guidelines were more closely adhered to in systematic reviews with metaanalyses than those without meta-analyses. A previous overview study also observed similar nonadherence to available review guidelines for environmental health studies (Nieuwenhuijsen et al., 2013). The purpose of review guidelines is to aid consistency and systematic assessment, yet they have limitations and there is no consensus on the degree to which systematic reviews or meta-analyses should adhere to the available review guidelines. One key limitation is that such review guidelines were mainly designed for medical sciences (e.g., clinical trials) rather than environmental health sciences. Notable examples include the development and use of protocols, the approach to critical appraisal or risk of bias assessment of included studies, and methods for assessment of confidence in the body of evidence (Whaley et al., 2020). Another limitation is that the risk of bias assessment severely discounts work from rapidly developing areas of the world where the best available data are often of lower quality than that in more developed regions. An example of a review guideline for research synthesis in environmental health sciences is the Navigation Guide systematic review methodology (Woodruff and Sutton, 2014). This guideline was applied by one of the included studies (Uwak et al., 2021) while three other included studies adopted its risk of bias assessment tool (Edwards et al., 2022; Walter et al., 2021; Xie et al., 2021). A standard guideline specifically designed for systematic reviews in toxicology and environmental health research (COSTER) is now available for the planning and conduct of systematic reviews or meta-analyses in the field (Whaley et al., 2020).

Many of the included review studies were conducted collaboratively by experts from different parts of the world, including investigators from non-English language countries, although few studies included non-English articles. For example, some (25%) of the reviews searched articles written in Chinese languages in addition to English. The focus on English articles could also contribute to why some countries such as Germany and Russia contributed only one study each to the current epidemiological evidence. This means that although excluding non-English articles is considered a systematic bias with minimal effects (Dobrescu et al., 2021; Morrison et al., 2012), the inclusion of non-English studies, if resources allow, could contribute to further reducing selection bias and enhancing the generalisability of the findings (Jackson and Kuriyama, 2019).

4.2 Overall summary of the epidemiologic evidence and implications

4.2.1 Summary of the overall epidemiologic evidence

There was little detected publication bias across meta-analyses via funnel plots and Egger or Begg tests. However, some authors have recently suggested that instead of investigating publication bias with the p-value-based tests that are underpowered due to their dependency on the number of studies included in the meta-analyses, non-p-value-based methods (e.g., Luis Furuya-Kanamori; LFK index) should be used (Furuya-Kanamori et al., 2020). Also, publication bias could be further reduced if "negative results" have an equal chance of publication, irrespective of p-values, effect sizes, and statistical significance (Wasserstein et al., 2019). Another critical issue is the barrier to publishing due to high article processing charges (Vervoort et al., 2021). Rethinking the business model of the scientific publication to enhance "free-to-publish and free-to-access research" regardless of one's funding status or organisational affiliation has been suggested to promote the dissemination of evidence-based information for scientific and public health benefits (Vervoort et al., 2021).

The overall epidemiologic findings differed largely depending on the pollutant, birth outcome, and pregnancy period. Specifically, PM_{2.5} showed a more consistent positive association with reduced birth weight across the entire pregnancy exposure but less consistent positive associations for each trimester. Reduction in birth weight for trimester-specific exposure showed less consistent positive associations for PM_{2.5}, PM₁₀, and NO₂ during the first trimester, for PM_{2.5}, PM₁₀, and O₃ during the second trimester, and PM_{2.5}, PM₁₀, and NO₂ during the third trimester. For risk from exposure based on the whole pregnancy period, SO₂ showed a more consistent positive association with LBW but a less consistent positive association for the other criteria pollutants except O₃ which indicated contradictory or unclear direction. First-trimester exposure showed less consistent positive associations with the odds of LBW for all criteria pollutants except for CO and O₃ showing *contradictory or unclear directions*. For the second trimester, all criteria pollutants showed less consistent positive associations except for O₃ which showed contradictory or unclear direction with LBW. Except for PM2.5 and O3 found to be less consistent positive associations, other pollutants showed contradictory or unclear directions (PM₁₀ and NO₂), no association (CO), and less consistent negative association (SO₂) with the odds of LBW during third-trimester exposure. Similar findings were observed in related overviews (Lee, 2021; Steinle et al., 2020). There were less consistent positive associations of PTB with exposure to PM_{2.5}, PM₁₀, O₃, and NO₂ during the whole pregnancy period, only O₃ for first-trimester exposure, O₃ and PM_{2.5} for second-trimester exposure, PM_{2.5}, PM₁₀, and NO₂ for third-trimester exposure. For stillbirth, less consistent positive associations were observed for all criteria pollutants during the entire pregnancy period except for CO and O₃ which indicated *contradictory or unclear directions*. The trimester-specific exposure association with stillbirth showed less consistent positive associations for only NO₂ during the first trimester, for PM_{2.5} and NO₂ during the second trimester but for three pollutants (PM₁₀, NO₂, and SO₂) during the third trimester. Only particulate matter pollutants were

reported for SAB and both PM_{2.5} and PM₁₀ showed *more consistent positive associations*. For SGA, the pooled result was available for only PM_{2.5} and with *less consistent positive association* for the entire pregnancy, second and third trimesters but the direction of association was *contradictory or unclear* for the first-trimester exposure. Reduction in birth weight among different races/ethnicity across the entire pregnancy period with PM_{2.5} showed a *more consistent positive association* in White persons but *less consistent positive associations* in both Hispanic and Black/African-American persons. PM₁₀ showed a *less consistent positive association* in White persons but *contradictory or unclear directions* in Hispanic and Black/African-American persons. The results indicate that different criteria pollutants may have different critical exposure windows of susceptibility for each birth outcome and are also likely to be heterogeneous across different levels of the population and maternal characteristics.

4.2.2 Exposure-outcome associations across pregnancy periods

Generally, there was more evidence for associations between adverse birth outcomes and exposure to particulate matter than gaseous pollutants. This could be attributable to more observational studies or higher toxicity of the particulate matter as compared to the gaseous pollutants (Han et al., 2021; Manisalidis et al., 2020; Shaddick et al., 2020). This could also be due to greater measurement errors in the assessment of the gaseous as compared with the particulate matter pollutants. The overall epidemiologic evidence was largely stronger across the entire pregnancy than trimester-specific exposure averages. There are several possible explanations for this observation. Firstly, the tendency for pregnant women to be cautious of exposure to environmental stressors is high during early pregnancy (after pregnancy is recognised) but this consciousness decreases over time (Liu et al., 2017). As a result, time exposed to outdoor pollutants might increase when approaching the date of delivery and would result in higher risks for the whole pregnancy period and third-trimester exposures being more observable than those for first and second trimester exposures. Secondly, the potential of exposure misclassification for trimester exposure assignments is likely to be higher than that for the entire pregnancy due to the uncertainties in defining the pregnancy period, especially using the last menstrual period with known imprecision by relying on maternal self-reporting (Quinn et al., 2016). Moreover, although pregnancy may be counted from the first day of the last menstrual period, conception begins two weeks later, and uncertainties regarding the start of pregnancy could bias estimates observed for first trimester exposures, not necessarily towards the null. Finally, regressing a birth outcome in separate models for each trimester using trimester-specific averaged exposures without adjusting for the other trimesters was found to bias the estimates with the identification of inaccurate susceptible windows because each susceptible window can potentially span multiple windows (Wilson et al., 2017). Exposures of air pollution across different trimesters can be highly correlated in some locations and not in others. Furthermore, the potential aetiology of the pollutant may not strictly follow the obstetrically defined trimester calendars (Wilson et al., 2017). Hence accurate measurement of the gestational period and a shorter temporal exploration (e.g., days or weeks) is required and the specific definition of pregnancy time should be defined e.g., obstetric versus embryonic weeks (Quinn et al., 2016; Wilson et al., 2017). This could improve the identification of critical windows of susceptibility, help elucidate the biological mechanisms of specific stages of fetal development (Warren et al., 2020b; Wilson et al., 2017) and improve the ability to synthesise results of multiple studies. Additionally, a recent molecular epidemiologic study had indicated associations in pre-conception periods with a critical window spanning from 12 weeks before and 13 weeks into the gestational period for maternal PM_{2.5} exposure and reduced birth weight (Deyssenroth et al., 2021). There is therefore the need to include some pre-conception exposure periods to capture the full impacts of the pollutants on the birth outcomes when assessing chronic effects. Also, the available evidence was solely based on single-pollutant models which do not fully characterise the complex associations and interactions of multiple time-varying mixtures of the pollutants on birth outcomes (Wilson et al., 2019). There are emerging approaches to identify critical exposure windows and convoluted associations of multi-pollutants in exposure-lag-response associations such as the Bayesian kernel machine regression distributed lag model (Wilson et al., 2019) or a regression tree-based model for mixtures of exposures (Mork and Wilson, 2021). Despite the advantages of assessing exposure mixtures, a recent review identified the potential for increasing the existing measurement errors and biases in environmental exposure mixture research (Tanner et al., 2020).

4.2.3 Heterogeneity and sources

Inevitably, heterogeneity is expected in SRMAs (Higgins, 2008). This was quantified with I² statistics in the included meta-analyses and found to be high across almost all meta-analyses with values as high as 99% (Sun et al., 2015; Sun et al., 2016). Variability among the observational studies could be clinical heterogeneity (variability in characteristics of the participants, exposures, and outcomes) or methodological heterogeneity (variability in study designs, exposure assessment methods, and outcome definitions or assessments, risk of bias, and confounding adjustments) (Higgins et al., 2021). These variabilities from either clinical or methodological heterogeneity consequently manifest in the non-random differences in the effect estimates from the different studies pooled in the meta-analyses (Higgins et al., 2021). The high heterogeneity indicated that the observational studies were estimating different quantities of the effects but do not necessarily imply that the true exposure effect estimate varies (Higgins et al., 2021). The major sources of heterogeneity acknowledged in the included SRMAs and related previous overviews (Lee, 2021; Nieuwenhuijsen et al., 2013; Steinle et al., 2020) are differences in methodology and study designs, statistical analyses, sample size, population demographics, birth, and exposure data collections, including outcome definitions (especially stillbirth) and exposure assessment methods, adjusted confounding factors, geographical variability, and sources and chemical compositions of particulate matter. Where data permitted, the included SRMAs attempted to account for some of the sources of heterogeneity by restricting to cohort studies (Ju et al., 2021; Li et al., 2020; Liu et al., 2017) or 'low' or 'probably low' risk of bias studies (Uwak et al., 2021); stratifying by adjustment for maternal tobacco smoking (Lamichhane et al., 2015), exposure assessment methods (Gong et al., 2022; Ji et al., 2017; Sun et al., 2015; Sun et al., 2016), exposure dosage using WHO thresholds (Liu et al., 2017), region (Gong et al., 2022; Uwak et al., 2021); and many other subgroup analyses, but the heterogeneity persisted in most instances. Gong et al, however, observed very low heterogeneity with the closest effect estimates to the overall estimates for subgroup analysis of studies that assessed exposure with land-use regression models among other exposure assessment methods (Gong et al., 2022). This suggests the need for improved exposure assessment methods (Gong et al., 2022; Uwak et al., 2021). It is worth noting that subgroup analyses are observational by nature and non-randomised, hence findings from multiple subgroup analyses may also be difficult to interpret (Higgins et al., 2021). On the other hand, the high heterogeneity between studies could also be considered a strength to some extent as the epidemiological evidence on the ubiquitous air pollutants covers different levels of risks in different populations with diverse physical, biological, sociodemographic, and medical conditions, and genetic constitutions (Ghosh et al., 2021).

In the absence of RCTs, prospective cohort studies in which participants are recruited with a detailed collection of confounding factors and personalised space-time-activity exposure assessment could address some of the challenges (Steinle et al., 2013; Zhang et al., 2021). Population-based retrospective cohort designs provide the opportunity to recruit a large sample size to detect small effects at the population level. Therefore, improvement in the availability, coverage, and quality of routine perinatal data collections for retrospective cohort designs serves as a practical alternative because prospective cohort designs can be very costly in terms of funding and time, and infringement of privacy. Related SRMAs and overviews disclosed that maternal tobacco smoking (Gould et al., 2020; Stock and Bauld, 2020), illicit drug or alcohol intake (Patra et al., 2011), pregnancy complications (Liu et al., 2019), infections (Niyibizi et al., 2020; Thompson et al., 2019), nutritional status (Young and Ramakrishnan, 2020), and psychosocial conditions (Dadi et al., 2020) are known risk factors for birth outcomes. These

factors have potential modification and mediation effects but are rarely investigated in observational studies or SRMAs due to the dearth of information. Most of these and other important confounders could be collected by healthcare practitioners in the routine data as a collective effort towards a common goal of improving maternal and neonatal health, although other challenges would remain (e.g., the accuracy of maternal smoking data). One of the reviewed meta-analyses specifically found larger reductions in birth weight per 10 μ g/m³ increased in the particulate matter after adjusting for maternal tobacco smoking (Lamichhane et al., 2015). Thus, our observed overall epidemiological evidence is likely to be higher if relevant residual confounding, modifying, or mediating factors are adjusted. As reported previously, the 2008 Beijing Olympics 'natural experiment' due to air pollution reduction provided an opportunity to reduce residual confounding and exposure misclassification from which more convincing evidence of the higher risk of air pollution exposure on birth outcomes was found (Rich et al., 2015). The recent COVID-19 pandemic also offered another unique opportunity for the 'natural experiment' at a larger scale for both national and international collaborative investigations (Stock et al., 2021).

4.2.4 Combined associations and geodemographic variability

Other critical, yet unexplored areas are the synergistic associations of the pollutants with other closely related environmental stressors and the spatiotemporal exposure-outcome associations. The combined impacts of the criteria pollutants with related environmental exposures such as green vegetation and meteorological factors, especially extreme temperatures on birth outcomes (Zhang et al., 2021) has been evidenced recently (Sun et al., 2020). Also, despite the evolving spatiotemporal exposure assessments with modern advanced machine learning technology and integration of land-use regression models (Luo et al., 2021) and the distributed lagged effect modelling (Gasparrini et al., 2010; Wilson et al., 2017), empirical incorporation of the spatiotemporal variations in the exposure-outcome analysis has not received expected attention in the current body of evidence. Warren and colleagues (Warren et al., 2020a) recently demonstrated that ignoring spatial variation in the lagged effect of the parameters nullified the elevated association between PM_{2.5} and term LBW in selected gestational weeks. This implies that spatiotemporal variations also need to be considered in future studies and this could include geographically weighted regression models as exemplified elsewhere (Tu et al., 2016), an effective and efficient technique for targeted local public health interventions.

Another means of having a broader view of the spatial variability and relevant information on the sources and chemical compositions of the pollutants is by broadening the geodemographic coverage of the evidence. Geodemographically, the current evidence was heavily based on epidemiologic studies from the USA and China with limited studies from other developed countries. Paradoxically, the low-and-middle-income countries (LMICs) which are socio-demographically vulnerable and with invariably high exposure levels and high incidence of birth outcomes are missing in the current evidence. A global estimated PTB rate across 107 countries was recently estimated at 10.6% (14.84 million live PTB) and 81.1% (12.0 million) of these PTB were from Sub-Saharan Africa (SSA) and Asia (Chawanpaiboon et al., 2019). The LMICs also accounted for 98% of stillbirths, with threequarters in SSA and South Asia (Lawn et al., 2016). Notably, these regions are experiencing increasingly high concentrations of the criteria pollutants above WHO Air Quality Guidelines (AQGs) (Shaddick et al., 2020). The SSA region is suffering from 10 to 20-fold higher levels than the 2005 AQGs (Katoto et al., 2019) due to Saharan desert dust and biomass burning (Agbo et al., 2021). Thus, the LMICs are heavily polluted and have high burdens of birth outcomes but lacked related epidemiologic evidence, largely due to a lack of functional and reliable air quality monitoring data (Agbo et al., 2021; Amegah, 2018; Nyadanu et al., 2020) and population-based health registries for the related high-quality epidemiologic investigations (Frøen et al., 2016). A new global attributable burden analysis estimated that over 5.9 million PTB and 2.8 million LBW infants could be attributable to PM_{2.5} exposure during the entire pregnancy period in 2019 and the highest attributable burdens were estimated for SSA (Ghosh et al., 2021). Those authors further suggested that these burdens could have been prevented if $PM_{2.5}$ was reduced to theoretical minimum risk exposure levels of 2.4 to 5.9 µg/m³ in 2019 (Ghosh et al., 2021). It was also estimated that about a 78% reduction in the global LBW and PTB in 2019 could have been achieved by South Asia and SSA combined since they suffered the highest attributable burden (Ghosh et al., 2021). Similar disproportionate elevated impacts of $PM_{2.5}$ on health outcomes in LMICs were reported in another recent global study (Han et al., 2021). All these findings indicate that our observed epidemiological evidence of mostly *less consistent positive associations* could be an underestimation in the absence of evidence in high-exposure, high-outcome, and most vulnerable settings. Therefore, despite the known challenges in conducting related studies in these under-resourced regions, a call for an innovative investigation to have a glimpse of the state of pollutants and birth outcomes in LMICs as illustrated by Xue *et al* (Xue et al., 2021; Xue et al., 2019) cannot be overemphasised.

4.3 Plausible biological pathways and interdisciplinary approach

A complex interaction of environmental, maternal, placental, and fetal factors regulating fetal growth and development (Erickson and Arbour, 2014; Street and Bernasconi, 2020) makes the pathoaetiology of the air pollutant-birth outcome associations very complex to be postulated in a single biological pathway (Slama et al., 2008). Physiologically, suppressed maternal immunity, higher blood volume, greater metabolic rate, and the added nutritional requirements from the fetus among other factors increase maternal sensitivity and thus intensify the vulnerability of pregnant women and the developing fetuses to air pollutants (Westergaard et al., 2017). As a very sensitive period of susceptibility, exposure to any harmful substance during fetal development can have both *in* and *ex utero* adverse effects at birth and later in the life course (Di Renzo et al., 2015; Erickson and Arbour, 2014; WHO, 2018).

The pollutants enter the mother's cardiovascular system by inhalation and reach the embryo or fetus by way of fetoplacental translocation (Slama et al., 2008; WHO, 2018). Upon entry, the pollutants interact with the maternal biologic environment to generate excess oxidative free radicals and endocrine-disrupting chemicals (Li et al., 2019; Marczylo et al., 2016; Saenen et al., 2019). These trigger a cascade of maternal biological and physiological processes, including alterations in immunoinflammatory, cardiovascular, and respiratory systems, and induce placental modifications with negative impacts on fetal development and growth (Li et al., 2019; Marczylo et al., 2016; Saenen et al., 2019). Recent molecular epidemiologic mechanisms also showed that oxidative stress, global DNA methylation, mitochondrial DNA content alteration, and endocrine perturbations that cause placental reprogramming are potential pathways for the induced adverse association of particulate matter and birth outcomes (Deyssenroth et al., 2021; Li et al., 2019; Street and Bernasconi, 2020). Generally, the associations are more profound in the particulate matter than the gaseous pollutants, resulting in comparatively higher risks in particulate matter (Manisalidis et al., 2020). Again, this could also be due to more studies on the particulate matter as compared to gaseous pollutants and greater measurement errors in gaseous pollutants. Of particular interest among the gaseous pollutants is CO with a well-documented mechanism where CO binds to the haemoglobin to be transported across the placenta and reduces the availability of oxygen to the fetus (Ghosh et al., 2007; Glinianaia et al., 2004). Environmental epigenetics also indicated that birth outcomes are phenotypic manifestations of environmentally induced epigenetic toxicity through environment-gene interactions (Marczylo et al., 2016; Saenen et al., 2019). The impacts are shared synergistic interactions among maternal biologic, psychosocial, sociodemographic, and behavioural risk factors, obstetric or health conditions, and pollutants (Erickson and Arbour, 2014; Kannan et al., 2006; Slama et al., 2008). There can also be interplay among the exposures on the birth outcomes where the impacts of PM2.5 on birth weight and gestational age, could in turn make a considerable contribution to the LBW and PTB (Ghosh et al., 2021).

While advances in epidemiological methodologies, statistical analyses, and environmental exposure science technology are key, interdisciplinary approaches could contribute to understanding the biological mechanisms and providing convincing evidence of causal inference (Stingone et al., 2021). This is largely due to the complexities of environmental health science (Stingone et al., 2021) and the inability to conduct RCTs owing to ethical issues (Woodruff and Sutton, 2014). Stingone et al recently proposed an interdisciplinary framework for environmental health research that provides the opportunity to integrate epidemiology, clinical science, pathophysiology, toxicology, epigenetics, and bioinformatics (examples; genomics, proteomics, metabolomics) (Stingone et al., 2021), and social and biophysical sciences (Eisenhauer et al., 2021). As a result, causal inference on the associations between population-level environmental exposures and birth outcomes may be achievable (Eisenhauer et al., 2021; Stingone et al., 2021) even from under-resourced settings. For instance, Wang and colleagues demonstrated how DNA methylation measurement in cord blood or bloodspot can be used to predict prenatal exposures to NO₂ and PM_{2.5} in cohorts without explicitly measuring the exposures (Wang et al., 2021). We, therefore, require not only well-designed longitudinal studies but possibly integrating the environmental exposomes with the different omics to ascertain the biological signatures of the in utero exposures for prevention, diagnosis, and treatment of birth outcomes (Eisenhauer et al., 2021; Stingone et al., 2021; Street and Bernasconi, 2020).

5. Strengths and Limitations

This study is accorded with several strengths. To the best of our knowledge, this is the first umbrella review that comprehensively assessed, evaluated, and provided an overall global state of the epidemiological evidence on prenatal exposure to the six criteria air pollutants and birth outcomes, for which we assessed 36 systematic reviews and meta-analyses. We also developed a protocol registered in PROSPERO and elaborated it as a peer-reviewed article before the conduct of the review (Nyadanu et al., 2020). The literature search was comprehensive and conducted prospectively by activating database alerts which ensured regular updates of the results with new eligible studies. The review process followed standard guidelines. To depict the geographical variability of contributing countries or regions to the current epidemiological evidence, we mapped the locations with the number of the distinct primary studies included in the included reviews. The degree of overlap of the primary studies was also quantified with a validated index. We adapted a semi-quantitative objective approach to grade the overall direction of associations and the confidence for each pollutant-outcome association at differing pregnancy periods. We also summarised key themes that emerged from the included reviews' recommendations.

Some limitations are also associated with this study. The current epidemiological evidence is highly representative of two regions (the USA and China) and a few highly industrialised countries which may introduce selection bias and weaken the generalisation of the findings. However, this also indicated that evidence exists in both low-level (USA) and high-level (China) exposure settings. The limited evidence from the most vulnerable regions such as Africa, South Asia, and other LMICs is a serious limitation that requires urgent attention. We included only reviews reported in English which could result in potential English-based publication bias. This is, however, expected to be very minimal (Dobrescu et al., 2021; Morrison et al., 2012), particularly for an umbrella review. Multiple inclusion of primary studies is a known limitation of umbrella review but was estimated to be moderate in our study. All meta-analyses identified substantial heterogeneity of varied sources in the primary studies and there were no RCTs by default. Consequently, the available epidemiological evidence indicated *probable evidence* of causality for most of the pollutant-outcome associations. The grading approach might not be entirely objective, was limited to the number of studies, and consistency in direction of effect estimates and could not provide the overall magnitude of the effect estimates. We standardised the effect estimates across meta-analysis to compare results across studies. However, the implications

of a given increment (e.g., 10 ppb O_3) can differ across the regions. For example, that increment may be a small increase relative to baseline conditions for some areas and a large increase for others. Similarly, caution would be used when comparing results for PM₁₀ and PM_{2.5} as a given increment (e.g., 10 µg/m³) has a different relative meaning for these particle size fractions. The conclusions and recommendations evolving from this umbrella review should therefore be interpreted and applied within the context of the outlined strengths and limitations based on the available scientific evidence gathered from the 36 SRMAs.

6. Recommendations for research, practice, and policy

6.1 For primary studies

Further studies are required, particularly from LMICs and other developed countries that contributed a limited number of studies. Additional studies are also required on gaseous pollutants, small-forgestational-age, stillbirth, and spontaneous abortion. More well-designed and standardised observational studies with high-quality data, harmonised outcome definitions, and spatiotemporal exposure assessments could minimise the high heterogeneity. This could highlight where such heterogeneity reflects the true underlying systems (e.g., different effects due to different sources of particulate matter and thereby different chemical composition) versus heterogeneity that is not a reflection of true variation. Given that RCTs are unethical in this field, prospective cohorts with personal time-activity trajectory exposure monitoring are gold-standard and should be pursued if funding and time allow. However, acknowledging the logistical and practical issues for large-scale prospective cohort design, liaising with healthcare providers to improve the quality and volume of the routine health data collection and emerging advancements in epidemiological methodologies and analyses will help strengthen the evidence. Even here, important limitations exist (e.g., the additional burden to health care providers, the accuracy of some variables such as maternal smoking). Considering the peculiar multifactorial nature and complexities in this field, a multisectoral approach is urgently needed. This, including extensive exploration of the omics technologies, will help illuminate the biological pathways but also has potential for diagnosis, prevention, and treatment (Stingone et al., 2021). More detailed recommendations for observational studies provided by the included reviews are available (Tables S3 and S4). Briefly, the review authors recommended more refined methodological designs, including prospective or large population-based retrospective cohort studies for chronic effects and time-series or case-crossover studies for short-term effects on acute events (e.g., PTB, stillbirth, and SAB) using high-quality data and individual level spatiotemporal exposure assessment. Further approaches to reduce residual and spatial confounders and account for residential mobility were suggested. More studies at finer temporal scales for identifying the critical susceptible periods and biological pathways, potential effect modifications, and chemical compositions of particulate matter were also recommended.

6.2 For Systematic reviews and meta-analyses

The increment in exposure used to present effect estimates needs to be unified across meta-analyses. For systematic reviews without meta-analyses, counting of findings for the specific statistical direction of association with median or range of the effect estimates as exemplified in one of the included reviews (Bekkar et al., 2020) together with graphical displays, such as forest plots, and a concise level of evidence as indicated in Heo *et al* (Heo et al., 2019) is recommended. This will be more helpful than the general 'narrative synthesis' which has been associated with serious weaknesses (Campbell et al., 2020). Rather than the narrative synthesis, we recommend a semi-quantitative approach for a more objective synthesis of the evidence as applied elsewhere (Zeiher et al., 2019). This approach, however, should not be considered entirely objective. Future review authors may refer to the recently developed comprehensive guideline for synthesis without meta-analysis (SWiM) for systematic reviews examining quantitative effects (Campbell et al., 2020). The methodological quality of future

systematic reviews or meta-analyses needs to be improved by better adherence to the standard review guidelines, particularly the new COSTER guideline (Whaley et al., 2020). Also, the availability of review protocol could contribute to reducing the duplication or near-duplication of review studies in addition to other advantages reported in the review guidelines (Moher et al., 2009; Page et al., 2021; Whaley et al., 2020).

6.3 Policy action

The probable epidemiological evidence of cause-and-effect of prenatal exposure to the criteria air pollutants and birth outcomes warrants consideration of the precautionary principle which states that "when an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause-and-effect relationships are not fully established scientifically" (Martuzzi and Tickner, 2004). The precautionary action to prevent harm may be particularly necessary for particulate matter and to some extent SO₂ and NO₂ which often showed consistent positive associations with adverse birth outcomes, despite the difficulty in establishing causality with certainty. Clinicians and public health workers have a unique opportunity to educate pregnant women or women of reproductive age and raise the awareness about the potential risk of exposure to air pollutants and some precautions to be taken such as minimising outdoor activities or using particulate filter masks in polluted areas and consider pollution levels when choosing residential locations. Environmental policy and legislation such as enforcing new WHO air quality guidelines (WHO, 2021), increased investment into renewable energy sources, and transitioning towards "clean" fuels or new technologies to reduce or eliminate anthropogenic ambient air pollution may be helpful (Han et al., 2021; Pereira et al., 2021). Although there is no safe level, reducing the pollutants could substantially improve perinatal health and save lives (Pereira, 2021).

7. Conclusion

The toxic effects of the criteria air pollutants on human health are well known for outcomes such as mortality and hospital admissions, with growing evidence for reproductive and neonatal health. We found five more consistent positive associations for entire pregnancy period exposure, including exposure to PM_{2.5} and reduced birth weight (all populations and among White persons), both PM_{2.5} and PM₁₀ and SAB, and exposure to SO₂ and LBW. We observed several less consistent positive associations and few contradictory or unclear directions of association. We also found one each of more and less consistent negative associations and three instances where CO consistently showed no association. However, due to the high heterogeneity, imprecision, and absence of RCTs, the observed epidemiological pieces of evidence were classified as 'probable evidence', differing greatly among the pollutants, birth outcomes, and pregnancy periods. Particulate matter (PM2.5 or PM10), particularly PM_{2.5} was most studied and found to show a higher risk than gaseous pollutants. Among the gaseous pollutants, NO₂ and SO₂ often showed more *consistent positive associations* than CO and O₃. The positive associations across the entire pregnancy period showed more consistency than the trimesterspecific exposure averages. The supporting biological causal mechanisms are also currently limited, particularly for gaseous pollutants. The omics technologies and environmental epigenetics are, however, unfolding strong aetiological pathways for the particulate matter pollutants. Interdisciplinary research approaches and well-planned standardised epidemiological studies with broader geodemographic coverage, and biological mechanisms are recommended to strengthen the current evidence. This will contribute to providing evidence-based guidance or direction for mitigating the adverse associations of the pollutants on birth outcomes. In the interim, the current level of evidence and the large populations involved warrant the adoption of the precautionary principle. Health practitioners could play an active role in integrating and communicating the risks of prenatal air pollution exposure to women and policymakers.

Author contributions: SDN, GAT, BM, BK-B, and GP-conceptualisation of the study; SDN, JD, GAT, BM, BK-B, MLB, BD, and GP- methodology; SDN- drafted the initial manuscript; SDN, JD, GAT, BM, BK-B, MLB, BD, and GP- writing review and editing. All authors have read and agreed to the final version of the manuscript.

Funding: SDN, JD, and BD were supported with funding from the Curtin Postgraduate Research Scholarship. GAT was supported with funding from the Australia National Health and Medical Research Council, grant number 1195716. GP was supported with funding from the Australia National Health and Medical Research Council, grants number 1099655 and number 1173991, and the Research Council of Norway through Centre of Excellence, grant number 262700. The funders played no role in the design and implementation of the study and in the decision to publish the results.

Acknowledgments: We are very grateful to the funders. We thank Diana Blackwood, the Faculty of Health Sciences librarian of Curtin University for her expertise and technical support in developing the search strategy. We also appreciate the authors of all included reviews with a special thanks to the contacted corresponding authors that responded and provided additional information/clarification.

Competing Financial Interests: The authors declare they have no actual or potential competing financial interests.

References

- Agbo, K. E., Walgraeve, C., Eze, J. I., Ugwoke, P. E., Ukoha, P. O., Van Langenhove, H. 2021. A review on ambient and indoor air pollution status in Africa. Atmos. Pollut. Res. 12(2), 243-260. <u>https://doi.org/10.1016/j.apr.2020.11.006</u>.
- Amegah, A. K. 2018. Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa? Environ. Pollut. 241, 1132-1137. https://doi.org/https://doi.org/10.1016/j.envpol.2018.06.044.
- Aromataris, E., Fernandez, R., Godfrey, C. M., Holly, C., Khalil, H., Tungpunkom, P. 2015. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int. J Evid. Based Healthc. 13(3), 132-140. <u>https://doi.org/10.1097/xeb.0000000000055</u>.
- Aromataris, E., Fernandez, R., Godfrey, C. M., Holly, C., Khalil, H., Tungpunkom, P. (2020).
 Chapter 10: Umbrella Reviews. In: JBI Manual for Evidence Synthesis (E. Aromataris andZ. Munn, Eds.). The Joanna Briggs Institute, Australia. Available at https://synthesismanual.jbi.global. Accessed on 21 May 2020.
- Bekkar, B., Pacheco, S., Basu, R., DeNicola, N. 2020. Association of Air Pollution and Heat Exposure With Preterm Birth, Low Birth Weight, and Stillbirth in the US: A Systematic Review. JAMA Network Open, 3(6), e208243-e208243. <u>https://doi.org/10.1001/jamanetworkopen.2020.8243</u>.
- Beltran, A. J., Wu, J., Laurent, O. 2013. Associations of meteorology with adverse pregnancy outcomes: a systematic review of preeclampsia, preterm birth and birth weight. Int. J. Environ. Res. Public Health. 11(1), 91-172. <u>https://doi.org/10.3390/ijerph110100091</u>.
- Bonzini, M., Carugno, M., Grillo, P., Mensi, C., Bertazzi, P. A., Pesatori, A. C. 2010. Impact of ambient air pollution on birth outcomes: systematic review of the current evidences. Med. Lav. 101(5), 341-363.
- Bosetti, C., Nieuwenhuijsen, M. J., Gallus, S., Cipriani, S., La Vecchia, C., Parazzini, F. 2010. Ambient particulate matter and preterm birth or birth weight: a review of the literature. Arch. Toxicol. 84(6), 447-460. <u>https://doi.org/10.1007/s00204-010-0514-z</u>.
- Bramer, W. M., Rethlefsen, M. L., Kleijnen, J., Franco, O. H. 2017. Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. BMC Syst. Rev. 6(1), 245. <u>https://doi.org/10.1186/s13643-017-0644-y</u>.
- Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., et al. 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. PNAS. 115(38), 9592-9597. https://doi.org/10.1073/pnas.1803222115.
- Campbell, M., McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., et al. 2020. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ, 368, 16890. <u>https://doi.org/10.1136/bmj.16890</u>.
- Chawanpaiboon, S., Vogel, J. P., Moller, A.-B., Lumbiganon, P., Petzold, M., Hogan, D., et al. 2019. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet. Glob. Health. 7(1), e37-e46. https://doi.org/10.1016/S2214-109X(18)30451-0.
- Dadi, A. F., Miller, E. R., Bisetegn, T. A., Mwanri, L. 2020. Global burden of antenatal depression and its association with adverse birth outcomes: an umbrella review. BMC Public Health. 20(1), 173. <u>https://doi.org/10.1186/s12889-020-8293-9</u>.
- Deyssenroth, M. A., Rosa, M. J., Eliot, M. N., Kelsey, K. T., Kloog, I., Schwartz, J. D., et al. 2021. Placental gene networks at the interface between maternal PM2.5 exposure early in gestation and reduced infant birthweight. Environ. Res. 199, 111342. <u>https://doi.org/https://doi.org/10.1016/j.envres.2021.111342</u>.

- Di Renzo, G. C., Conry, J. A., Blake, J., DeFrancesco, M. S., DeNicola, N., Martin, J. N., Jr., et al. 2015. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. Int. J Gynaecol. Obstet. 131(3), 219-225. https://doi.org/10.1016/j.ijgo.2015.09.002.
- Dobrescu, A. I., Nussbaumer-Streit, B., Klerings, I., Wagner, G., Persad, E., Sommer, I., et al. 2021. Restricting evidence syntheses of interventions to English-language publications is a viable methodological shortcut for most medical topics: a systematic review. J. Clin. Epidemiol. 137, 209-217. <u>https://doi.org/https://doi.org/10.1016/j.jclinepi.2021.04.012</u>.
- Edwards, L., Wilkinson, P., Rutter, G., Milojevic, A. 2022. Health effects in people relocating between environments of differing ambient air pollution concentrations: A literature review. Environ. Pollut. 292, 118314. https://doi.org/https://doi.org/10.1016/j.envpol.2021.118314.
- Eisenhauer, E., Williams, K. C., Margeson, K., Paczuski, S., Hano, M. C., Mulvaney, K. 2021. Advancing translational research in environmental science: The role and impact of social sciences. Environ. Sci. Policy. 120, 165-172. https://doi.org/https://doi.org/10.1016/j.envsci.2021.03.010.
- Erickson, A. C., Arbour, L. 2014. The Shared Pathoetiological Effects of Particulate Air Pollution and the Social Environment on Fetal-Placental Development. J. Environ. and Public Health. 2014, 901017. <u>https://doi.org/10.1155/2014/901017</u>.
- Frøen, J. F., Myhre, S. L., Frost, M. J., Chou, D., Mehl, G., Say, L., et al. 2016. eRegistries: Electronic registries for maternal and child health. BMC Pregnancy and Childbirth. 16(1), 11. https://doi.org/10.1186/s12884-016-0801-7.
- Furuya-Kanamori, L., Xu, C., Lin, L., Doan, T., Chu, H., Thalib, L., et al. 2020. P value–driven methods were underpowered to detect publication bias: analysis of Cochrane review metaanalyses. J. Clin. Epidemiol. 118, 86-92. <u>https://doi.org/https://doi.org/10.1016/j.jclinepi.2019.11.011</u>
- Gasparrini, A., Armstrong, B., Kenward, M. G. 2010. Distributed lag non-linear models. Stat. Med. 29(21), 2224-2234. https://doi.org/10.1002/sim.3940.
- Ghosh, R., Causey, K., Burkart, K., Wozniak, S., Cohen, A., Brauer, M. 2021. Ambient and household PM2.5 pollution and adverse perinatal outcomes: A meta-regression and analysis of attributable global burden for 204 countries and territories. PLOS Med. 18(9), e1003718. g https://doi.org/10.1371/journal.pmed.1003718.
- Ghosh, R., Rankin, J., Pless-Mulloli, T., Glinianaia, S. 2007. Does the effect of air pollution on pregnancy outcomes differ by gender? A systematic review. Environ. Res. 105(3), 400-408. https://doi.org/10.1016/j.envres.2007.03.009.
- Glinianaia, S. V., Rankin, J., Bell, R., Pless-Mulloli, T., Howel, D. 2004. Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiol. 15(1), 36-45. https://doi.org/10.1097/01.ede.0000101023.41844.ac.
- Gong, C., Wang, J., Bai, Z., Rich, D. Q., Zhang, Y. 2022. Maternal exposure to ambient PM2.5 and term birth weight: A systematic review and meta-analysis of effect estimates. Sci. Total Environ. 807, 150744. <u>https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150744</u>.
- Gould, G. S., Havard, A., Lim, L. L., The Psanz Smoking In Pregnancy Expert, G., Kumar, R. 2020. Exposure to Tobacco, Environmental Tobacco Smoke and Nicotine in Pregnancy: A Pragmatic Overview of Reviews of Maternal and Child Outcomes, Effectiveness of Interventions and Barriers and Facilitators to Quitting. Int. J. Environ. Res. Public Health. 17(6). <u>https://doi.org/10.3390/ijerph17062034</u>
- Grippo, A., Zhang, J., Chu, L., Guo, Y., Qiao, L., Zhang, J., et al. 2018. Air pollution exposure during pregnancy and spontaneous abortion and stillbirth. Rev. Environ. Health. 33(3), 247-264. https://doi.org/10.1515/reveh-2017-0033.

- Han, C., Xu, R., Zhang, Y., Yu, W., Zhang, Z., Morawska, L., et al. 2021. Air pollution control efficacy and health impacts: A global observational study from 2000 to 2016. Environ. Pollut. 287, 117211. <u>https://doi.org/https://doi.org/10.1016/j.envpol.2021.117211</u>.
- Hartling, L., Chisholm, A., Thomson, D., Dryden, D. M. 2012. A descriptive analysis of overviews of reviews published between 2000 and 2011. PLoS One, 7(11), e49667. https://doi.org/10.1371/journal.pone.0049667.
- Heo, S., Fong, K. C., Bell, M. L. 2019. Risk of particulate matter on birth outcomes in relation to maternal socio-economic factors: a systematic review. Environ. Res. Lett. 14(12). https://doi.org/10.1088/1748-9326/ab4cd0.
- Higgins, J. P. T. 2008. Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. Int. J. Epidemiol. 37(5), 1158-1160. https://doi.org/10.1093/ije/dyn204.
- Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., et al. (2021). Analysing data and undertaking meta-analyses. In J. J. Deeks, J. P. T. Higgins, and D. G. Altman (Eds.), Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane. Available at <u>www.training.cochrane.org/handbook</u>. Accessed October 3, 2021.
- Hill, A. B. 2015. The environment and disease: association or causation? J. R. Soc. Med. 108(1), 32-37. <u>https://doi.org/10.1177/0141076814562718.</u>
- Jackson, J. L., Kuriyama, A. 2019. How Often Do Systematic Reviews Exclude Articles Not Published in English? J. Gen. Intern. Med. 34(8), 1388-1389. <u>https://doi.org/10.1007/s11606-019-04976-x.</u>
- Jacobs, M., Zhang, G., Chen, S., Mullins, B., Bell, M., Jin, L., et al. 2017. The association between ambient air pollution and selected adverse pregnancy outcomes in China: A systematic review. Sci. Total Environ. 579, 1179-1192. https://doi.org/10.1016/j.scitotenv.2016.11.100.
- Ji, Y., Song, F., Xu, B., Zhu, Y., Lu, C., Xia, Y. 2017. Association between exposure to particulate matter during pregnancy and birthweight: a systematic review and a meta-analysis of birth cohort studies. J. Biomed Res. <u>https://doi.org/10.7555/JBR.31.20170038.</u>
- Ju, L., Li, C., Yang, M., Sun, S., Zhang, Q., Cao, J., et al. 2021. Maternal air pollution exposure increases the risk of preterm birth: Evidence from the meta-analysis of cohort studies. Environ. Res. 202, 111654. <u>https://doi.org/10.1016/j.envres.2021.111654</u>.
- Kannan, S., Misra, D. P., Dvonch, J. T., Krishnakumar, A. 2006. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ. Health Perspect. 114(11), 1636-1642. <u>https://doi.org/10.1289/ehp.9081.</u>
- Katoto, P., Byamungu, L., Brand, A. S., Mokaya, J., Strijdom, H., Goswami, N., et al. 2019. Ambient air pollution and health in Sub-Saharan Africa: Current evidence, perspectives and a call to action. Environ. Res. 173, 174-188. <u>https://doi.org/10.1016/j.envres.2019.03.029.</u>
- Klepac, P., Locatelli, I., Korosec, S., Kunzli, N., Kukec, A. 2018. Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges. Environ. Res. 167, 144-159. <u>https://doi.org/10.1016/j.envres.2018.07.008.</u>
- Lamichhane, D. K., Leem, J. H., Lee, J. Y., Kim, H. C. 2015. A meta-analysis of exposure to particulate matter and adverse birth outcomes. Environ. Health Toxicol. 30, e2015011. https://doi.org/10.5620/eht.e2015011.
- Lawn, J. E., Blencowe, H., Waiswa, P., Amouzou, A., Mathers, C., Hogan, D., et al. 2016. Stillbirths: rates, risk factors, and acceleration towards 2030. Lancet. 387(10018), 587-603. <u>https://doi.org/https://doi.org/10.1016/S0140-6736(15)00837-5.</u>
- Lee, J. T. 2021. Review of epidemiological studies on air pollution and health effects in children. Clin. Exp. Pediatr. 64(1), 3-11. <u>https://doi.org/10.3345/cep.2019.00843.</u>

- Li, C., Yang, M., Zhu, Z., Sun, S., Zhang, Q., Cao, J., et al. 2020. Maternal exposure to air pollution and the risk of low birth weight: A meta-analysis of cohort studies. Environ. Res. 190, 109970. PMID: 32763280. <u>https://doi.org/10.1016/j.envres.2020.109970.</u>
- Li, X., Huang, S., Jiao, A., Yang, X., Yun, J., Wang, Y., et al. 2017. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environ. Pollut. 227, 596-605. https://doi.org/10.1016/j.envpol.2017.03.055.
- Li, Z., Tang, Y., Song, X., Lazar, L., Li, Z., Zhao, J. 2019. Impact of ambient PM2.5 on adverse birth outcome and potential molecular mechanism. Ecotoxicol. Environ. Saf. 169, 248-254. <u>https://doi.org/10.1016/j.ecoenv.2018.10.109.</u>
- Liu, C., Sun, J., Liu, Y., Liang, H., Wang, M., Wang, C., et al. 2017. Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies. Environ. Sci. Pollut. Res. Int. 24(22), 17976-17984. https://doi.org/10.1007/s11356-017-9363-0
- Liu, L., Ma, Y., Wang, N., Lin, W., Liu, Y., Wen, D. 2019. Maternal body mass index and risk of neonatal adverse outcomes in China: a systematic review and meta-analysis. BMC Pregnancy and Childbirth. 19(1), 105. <u>https://doi.org/10.1186/s12884-019-2249-z.</u>
- Luo, D., Kuang, T., Chen, Y.-X., Huang, Y.-H., Zhang, H., Xia, Y.-Y. 2021. Air pollution and pregnancy outcomes based on exposure evaluation using a land use regression model: A systematic review. Taiwan J. Obstet. Gynecol. 60(2), 193-215. <u>https://doi.org/https://doi.org/10.1016/j.tjog.2021.01.004.</u>
- Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E. 2020. Environmental and Health Impacts of Air Pollution: A Review [Review]. Front. Public Health. 8(14). <u>https://doi.org/10.3389/fpubh.2020.00014.</u>
- Mannucci, P. M., Franchini, M. 2017. Health Effects of Ambient Air Pollution in Developing Countries. Int. J. Environ. Res. Public Health. 14(9), 1048. <u>https://doi.org/10.3390/ijerph14091048.</u>
- Marczylo, E. L., Jacobs, M. N., Gant, T. W. 2016. Environmentally induced epigenetic toxicity: potential public health concerns. Crit. Rev. Toxicol. 46(8), 676-700. https://doi.org/10.1080/10408444.2016.1175417.
- Martuzzi, M., Tickner, J. A. (2004). The precautionary principle: protecting public health, the environment and the future of our children. WHO Regional Office for Europe, Copenhagen, Denmark. Available at https://www.euro.who.int/__data/assets/pdf_file/0003/91173/E83079.pdf. Accesed May 19, 2021.
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., The, P. G. 2009. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Med. 6(7), e1000097. <u>https://doi.org/10.1371/journal.pmed.1000097.</u>
- Mork, D., Wilson, A. 2021. Estimating perinatal critical windows of susceptibility to environmental mixtures via structured Bayesian regression tree pairs. Biometrics. n/a(n/a) <u>https://doi.org/10.1111/biom.13568</u>.
- Morrison, A., Polisena, J., Husereau, D., Moulton, K., Clark, M., Fiander, M., et al. 2012. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int. J. Technol. Assess. Health Care. 28(2), 138-144. <u>https://doi.org/10.1017/s0266462312000086.</u>
- Munn, Z., Aromataris, E., Tufanaru, C., Stern, C., Porritt, K., Farrow, J., et al. 2019. The development of software to support multiple systematic review types: the Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information (JBI SUMARI). Int. J. Evid. Based Healthc. 17(1):36-43. Doi: 10.1097/XEB.00000000000152.

- Nieuwenhuijsen, M. J., Dadvand, P., Grellier, J., Martinez, D., Vrijheid, M. 2013. Environmental risk factors of pregnancy outcomes: a summary of recent meta-analyses of epidemiological studies. Environ Health, 12, 6. <u>https://doi.org/10.1186/1476-069X-12-6</u>.
- Niyibizi, J., Zanré, N., Mayrand, M. H., Trottier, H. 2020. Association Between Maternal Human Papillomavirus Infection and Adverse Pregnancy Outcomes: Systematic Review and Meta-Analysis. J. Infect. Dis. 221(12), 1925-1937. <u>https://doi.org/10.1093/infdis/jiaa054.</u>
- Nyadanu, S. D., Tessema, G. A., Mullins, B., Kumi-Boateng, B., Bell, M. L., Pereira, G. 2020. Ambient Air Pollution, Extreme Temperatures and Birth Outcomes: A Protocol for an Umbrella Review, Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 17(22). <u>https://doi.org/10.3390/ijerph17228658</u>.
- O'Donoghue, G., Kennedy, A., Puggina, A., Aleksovska, K., Buck, C., Burns, C., et al. 2018. Socioeconomic determinants of physical activity across the life course: A "DEterminants of DIet and Physical ACtivity" (DEDIPAC) umbrella literature review. PLoS One, 13(1), e0190737. https://doi.org/10.1371/journal.pone.0190737.
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372, n71. <u>https://doi.org/10.1136/bmj.n71.</u>
- Patra, J., Bakker, R., Irving, H., Jaddoe, V. W., Malini, S., Rehm, J. 2011. Dose-response relationship between alcohol consumption before and during pregnancy and the risks of low birthweight, preterm birth and small for gestational age (SGA)-a systematic review and metaanalyses. BJOG. 118(12), 1411-1421. <u>https://doi.org/10.1111/j.1471-0528.2011.03050.x.</u>
- Pereira, G. 2021. Cut particulate air pollution, save lives. BMJ. 375, n2561. https://doi.org/10.1136/bmj.n2561.
- Pereira, G., Bell, M. L., Honda, Y., Lee, J.-T., Morawska, L., Jalaludin, B. 2021. Energy transitions, air quality and health. Environ. Res. Lett. 16, 020202. <u>https://doi.org/10.1088/1748-9326/abdaea.</u>
- Pereira, G., Bell, M. L., Lee, H. J., Koutrakis, P., Belanger, K. 2014. Sources of fine particulate matter and risk of preterm birth in Connecticut, 2000-2006: a longitudinal study. Environ. Health Perspect. 122(10), 1117-1122. <u>https://doi.org/10.1289/ehp.1307741.</u>
- Pieper, D., Antoine, S. L., Mathes, T., Neugebauer, E. A., Eikermann, M. 2014. Systematic review finds overlapping reviews were not mentioned in every other overview. J. Clin. Epidemiol. 67(4), 368-375. <u>https://doi.org/10.1016/j.jclinepi.2013.11.007.</u>
- Quinn, J. A., Munoz, F. M., Gonik, B., Frau, L., Cutland, C., Mallett-Moore, T., et al. 2016. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine. 34(49), 6047-6056. <u>https://doi.org/10.1016/j.vaccine.2016.03.045.</u>
- Rappazzo, K. M., Nichols, J. L., Rice, R. B., Luben, T. J. 2021. Ozone exposure during early pregnancy and preterm birth: A systematic review and meta-analysis. Environ. Res. 198, 111317. <u>https://doi.org/10.1016/j.envres.2021.111317.</u>
- Rich, D. Q., Liu, K., Zhang, J., Thurston, S. W., Stevens, T. P., Pan, Y., et al. 2015. Differences in Birth Weight Associated with the 2008 Beijing Olympics Air Pollution Reduction: Results from a Natural Experiment. Environ. Health Perspect. 123(9), 880-887. https://doi.org/10.1289/ehp.1408795.
- Rojas-Rueda, D., Morales-Zamora, E., Alsufyani, W. A., Herbst, C. H., AlBalawi, S. M., Alsukait, R., et al. 2021. Environmental Risk Factors and Health: An Umbrella Review of Meta-Analyses. Int. J. Environ. Res. Public Health. 18(2), 704. Doi:10.3390/ijerph18020704, <u>https://www.mdpi.com/1660-4601/18/2/704.</u>
- Saenen, N. D., Martens, D. S., Neven, K. Y., Alfano, R., Bové, H., Janssen, B. G., et al. 2019. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin. Epigenetics. 11(1), 124. <u>https://doi.org/10.1186/s13148-019-0688-z.</u>

- Sapkota, A., Chelikowsky, A. P., Nachman, K. E., Cohen, A. J., Ritz, B. 2010. Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Qual. Atmos. Health. 5(4), 369-381. <u>https://doi.org/10.1007/s11869-010-0106-3.</u>
- Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., Gumy, S. 2020. Half the world's population are exposed to increasing air pollution. NPJ Clim. Atmos. Sci. 3(1), 23. https://doi.org/10.1038/s41612-020-0124-2.
- Shah, P. S., Balkhair, T., Knowledge Synthesis Group on Determinants of Preterm, L. B. W. b. 2011. Air pollution and birth outcomes: a systematic review. Environ. Int. 37(2), 498-516. <u>https://doi.org/10.1016/j.envint.2010.10.009.</u>
- Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J., et al. 2017. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 358, j4008. https://doi.org/10.1136/bmj.j4008.
- Siddika, N., Balogun, H. A., Amegah, A. K., Jaakkola, J. J. 2016. Prenatal ambient air pollution exposure and the risk of stillbirth: systematic review and meta-analysis of the empirical evidence. Occup. Environ. Med. 73(9), 573-581. <u>https://doi.org/10.1136/oemed-2015-103086.</u>
- Simoncic, V., Enaux, C., Deguen, S., Kihal-Talantikite, W. 2020. Adverse Birth Outcomes Related to NO2 and PM Exposure: European Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 17(21). <u>https://doi.org/10.3390/ijerph17218116.</u>
- Slama, R., Darrow, L., Parker, J., Woodruff, T. J., Strickland, M., Nieuwenhuijsen, M., et al. 2008. Meeting report: atmospheric pollution and human reproduction. Environ. Health Perspect. 116(6), 791-798. <u>https://doi.org/10.1289/ehp.11074.</u>
- Sleddens, E. F., Kroeze, W., Kohl, L. F., Bolten, L. M., Velema, E., Kaspers, P., et al. 2015a. Correlates of dietary behavior in adults: an umbrella review. Nutr. Rev. 73(8), 477-499. <u>https://doi.org/10.1093/nutrit/nuv007.</u>
- Sleddens, E. F., Kroeze, W., Kohl, L. F., Bolten, L. M., Velema, E., Kaspers, P. J., et al. 2015b. Determinants of dietary behavior among youth: an umbrella review. Int. J. Behav. Nutr. Phys. Act. 12, 7. <u>https://doi.org/10.1186/s12966-015-0164-x.</u>
- Steinle, S., Johnston, H. J., Loh, M., Mueller, W., Vardoulakis, S., Tantrakarnapa, K., et al. 2020. In Utero Exposure to Particulate Air Pollution during Pregnancy: Impact on Birth Weight and Health through the Life Course. Int. J. Environ. Res. Public Health. 17(23), 8948. Doi:10.3390/ijerph17238948, https://www.mdpi.com/1660-4601/17/23/8948.
- Steinle, S., Reis, S., Sabel, C. E. 2013. Quantifying human exposure to air pollution—Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 443, 184-193. <u>https://doi.org/https://doi.org/10.1016/j.scitotenv.2012.10.098.</u>
- Stieb, D. M., Chen, L., Eshoul, M., Judek, S. 2012. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ. Res. 117, 100-111. <u>https://doi.org/10.1016/j.envres.2012.05.007.</u>
- Stingone, J. A., Triantafillou, S., Larsen, A., Kitt, J. P., Shaw, G. M., Marsillach, J. 2021. Interdisciplinary data science to advance environmental health research and improve birth outcomes. Environ. Res. 197, 111019. <u>https://doi.org/https://doi.org/10.1016/j.envres.2021.111019.</u>
- Stock, S., Zoega, H., Brockway, M., Mulholland, R., Miller, J., Been, J., et al. 2021. The international Perinatal Outcomes in the Pandemic (iPOP) study: protocol [version 1; peer review: 1 approved]. Wellcome Open Res. 6(21). https://doi.org/10.12688/wellcomeopenres.16507.1.
- Stock, S. J., Bauld, L. 2020. Maternal smoking and preterm birth: An unresolved health challenge. PLoS Med. 17(9), e1003386. <u>https://doi.org/10.1371/journal.pmed.1003386</u>.

- Street, M. E., Bernasconi, S. 2020. Endocrine-Disrupting Chemicals in Human Fetal Growth. Int. J. Mol. Sci. 21(4). <u>https://doi.org/10.3390/ijms21041430.</u>
- Sun, X., Luo, X., Zhao, C., Chung Ng, R. W., Lim, C. E., Zhang, B., et al. 2015. The association between fine particulate matter exposure during pregnancy and preterm birth: a metaanalysis. BMC Pregnancy Childbirth. 15, 300. <u>https://doi.org/10.1186/s12884-015-0738-2</u>.
- Sun, X., Luo, X., Zhao, C., Zhang, B., Tao, J., Yang, Z., et al. 2016. The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: A meta-analysis. Environ. Pollut. 211, 38-47. https://doi.org/10.1016/j.envpol.2015.12.022.
- Sun, Y., Ilango, S. D., Schwarz, L., Wang, Q., Chen, J.-C., Lawrence, J. M., et al. 2020. Examining the joint effects of heatwaves, air pollution, and green space on the risk of preterm birth in California. Environ. Res. Lett. 15(10), 104099. <u>https://doi.org/10.1088/1748-9326/abb8a3.</u>
- Tanner, E., Lee, A., Colicino, E. 2020. Environmental mixtures and children's health: identifying appropriate statistical approaches. Curr. Opin. Pediatr. 32(2), 315-320. https://doi.org/10.1097/MOP.00000000000877.
- Thayamballi, N., Habiba, S., Laribi, O., Ebisu, K. 2020. Impact of Maternal Demographic and Socioeconomic Factors on the Association Between Particulate Matter and Adverse Birth Outcomes: a Systematic Review and Meta-analysis. J. Racial and Ethn. Health Disparities. https://doi.org/10.1007/s40615-020-00835-2.
- Thompson, J. M., Eick, S. M., Dailey, C., Dale, A. P., Mehta, M., Nair, A., et al. 2019. Relationship Between Pregnancy-Associated Malaria and Adverse Pregnancy Outcomes: a Systematic Review and Meta-Analysis. J. Trop. Pediatr. 66(3), 327-338. <u>https://doi.org/10.1093/tropej/fmz068.</u>
- Tsoli, S., Ploubidis, G. B., Kalantzi, O.-I. 2019. Particulate air pollution and birth weight: A systematic literature review. Atmos. Pollut. Res. 10(4), 1084-1122. https://doi.org/10.1016/j.apr.2019.01.016.
- Tu, J., Tu, W., Tedders, S. H. 2016. Spatial variations in the associations of term birth weight with ambient air pollution in Georgia, USA. Environ. Int. 92-93, 146-156. <u>https://doi.org/10.1016/j.envint.2016.04.005.</u>
- Uwak, I., Olson, N., Fuentes, A., Moriarty, M., Pulczinski, J., Lam, J., et al. 2021. Application of the navigation guide systematic review methodology to evaluate prenatal exposure to particulate matter air pollution and infant birth weight. Environ. Int. 148, 106378. https://doi.org/10.1016/j.envint.2021.106378.
- Vervoort, D., Ma, X., Bookholane, H. 2021. Equitable Open Access Publishing: Changing the Financial Power Dynamics in Academia. Glob. Health: Sci. Pract. <u>https://doi.org/10.9745/GHSP-D-21-00145.</u>
- Walter, C. M., Schneider-Futschik, E. K., Hall, N. L., Sly, P. D., Head, B. W., Knibbs, L. D. 2021. The health impacts of ambient air pollution in Australia: A systematic literature review. Intern. Med. J. <u>https://doi.org/10.1111/imj.15415.</u>
- Wang, Y., Perera, F., Guo, J., Riley, K. W., Durham, T., Ross, Z., et al. 2021. A methodological pipeline to generate an epigenetic marker of prenatal exposure to air pollution indicators. Epigenetics. 1-9. <u>https://doi.org/10.1080/15592294.2021.1872926.</u>
- Warren, J., Luben, T., Chang, H. H. 2020a. A spatially varying distributed lag model with application to an air pollution and term low birth weight study. J. R. Stat. Soc. Ser. C Appl. Stat. 69 3, 681-696. Doi: <u>10.1111/rssc.12407</u>.
- Warren, J. L., Kong, W., Luben, T. J., Chang, H. H. 2020b. Critical window variable selection: estimating the impact of air pollution on very preterm birth. Biostatistics. 21(4), 790-806. https://doi.org/10.1093/biostatistics/kxz006.
- Wasserstein, R. L., Schirm, A. L., Lazar, N. A. 2019. Moving to a World Beyond "p < 0.05". Am. Stat. 73(sup1), 1-19. <u>https://doi.org/10.1080/00031305.2019.1583913.</u>

- Westergaard, N., Gehring, U., Slama, R., Pedersen, M. 2017. Ambient air pollution and low birth weight are some women more vulnerable than others? Environ. Int. 104, 146-154. https://doi.org/10.1016/j.envint.2017.03.026
- Whaley, P., Aiassa, E., Beausoleil, C., Beronius, A., Bilotta, G., Boobis, A., et al. 2020. Recommendations for the conduct of systematic reviews in toxicology and environmental health research (COSTER). Environ. Int. 143, 105926. https://doi.org/https://doi.org/10.1016/j.envint.2020.105926.
- WHO, World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide : global update 2005 : summary of risk assessment. https://apps.who.int/iris/handle/10665/69477. Accessed April 7, 2021.
- WHO, World Health Organization. (2018). Air pollution and child health: prescribing clean air: summary. <u>https://apps.who.int/iris/handle/10665/275545</u>. Accessed April 7, 2021.
- WHO, World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. <u>https://apps.who.int/iris/handle/10665/345329</u>. Accessed October 20, 2021.
- Wilson, A., Chiu, Y. M., Hsu, H. L., Wright, R. O., Wright, R. J., Coull, B. A. 2017. Potential for Bias When Estimating Critical Windows for Air Pollution in Children's Health. Am. J. Epidemiol. 186(11), 1281-1289. <u>https://doi.org/10.1093/aje/kwx184.</u>
- Wilson, A., Hsu, H.-H. L., Mathilda Chiu, Y.-H., Wright, R. O., Wright, R. J., Coull, B. A. (2019). Kernel Machine and Distributed Lag Models for Assessing Windows of Susceptibility to Environmental Mixtures in Children's Health Studies. arXiv:1904.12417. <u>https://ui.adsabs.harvard.edu/abs/2019arXiv190412417W</u>. Last revised September 22, 2021.
- Woodruff, T. J., Sutton, P. 2014. The Navigation Guide systematic review methodology: a rigorous and transparent method for translating environmental health science into better health outcomes. Environ. Health Perspect. 122(10), 1007-1014. <u>https://doi.org/10.1289/ehp.1307175.</u>
- Xie, G., Sun, L., Yang, W., Wang, R., Shang, L., Yang, L., et al. 2021. Maternal exposure to PM2.5 was linked to elevated risk of stillbirth. Chemosphere. 283, 131169.
- https://doi.org/10.1016/j.chemosphere.2021.131169.
- Xue, T., Guan, T., Geng, G., Zhang, Q., Zhao, Y., Zhu, T. 2021. Estimation of pregnancy losses attributable to exposure to ambient fine particles in south Asia: an epidemiological casecontrol study. Lancet Planet. Health. 5(1), e15-e24. <u>https://doi.org/10.1016/S2542-5196(20)30268-0.</u>
- Xue, T., Zhu, T., Geng, G., Zhang, Q. 2019. Association between pregnancy loss and ambient PM2·5 using survey data in Africa: a longitudinal case-control study, 1998-2016. Lancet Planet. Health. 3 5, e219-ee225. <u>https://doi.org/10.1016/S2542-5196(19)30047-6</u>.
- Young, M. F., Ramakrishnan, U. 2020. Maternal Undernutrition before and during Pregnancy and Offspring Health and Development. Ann. Nutr. Metab. 76(suppl 3)(3), 41-53. https://doi.org/10.1159/000510595.
- Yuan, L., Zhang, Y., Gao, Y., Tian, Y. 2019. Maternal fine particulate matter (PM2.5) exposure and adverse birth outcomes: an updated systematic review based on cohort studies. Environ. Sci. Pollut. Res. Int. 26(14), 13963-13983. <u>https://doi.org/10.1007/s11356-019-04644-x.</u>
- Zeiher, J., Ombrellaro, K. J., Perumal, N., Keil, T., Mensink, G. B. M., Finger, J. D. 2019. Correlates and Determinants of Cardiorespiratory Fitness in Adults: a Systematic Review. Sports Med. -Open, 5(1), 39. <u>https://doi.org/10.1186/s40798-019-0211-2.</u>
- Zhang, H., Zhang, X., Wang, Q., Xu, Y., Feng, Y., Yu, Z., et al. 2021. Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies. Environ. Pollut. 278, 116752. <u>https://doi.org/10.1016/j.envpol.2021.116752.</u>

- Zhang, K., Lu, Y., Zhao, H., Guo, J., Gehendra, M., Qiu, H., et al. 2016. Association between atmospheric particulate matter and adverse pregnancy outcomes in the population. Int. J. Clin. Exp. Med. 9(11), 20594-20604.
- Zhu, W., Zheng, H., Liu, J., Cai, J., Wang, G., Li, Y., et al. 2022. The correlation between chronic exposure to particulate matter and spontaneous abortion: A meta-analysis. Chemosphere. 286, 131802. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131802.
- Zhu, X., Liu, Y., Chen, Y., Yao, C., Che, Z., Cao, J. 2015. Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis. Environ. Sci. Pollut. Res. Int. 22(5), 3383-3396. <u>https://doi.org/10.1007/s11356-014-3458-7.</u>

Table 1. Characteristics of systematic reviews without meta-analysis, ordered from most recent to earliest publication											
First author, date [number of authors, countries]	Exposure type and range or IQR	Outcome	Number of Databases , grey literature searched	Search date range and languages applied	No. of primary studies, study design, coverage	Publication year range	Total births	Risk of bias tool	Quality rating summary	Reporti ng guidelin e	Evidence of pre- specified review protocol
1. Edwards (Edwards et al., 2022) 12/10/2021 [4; 3 UK and 1 Nepal]	PM _{2.5} , PM ₁₀ , NO ₂ , SO ₂ Ranges: NA	LBW, SGA, PTB	Db =3 Grey =No	01/1989 - 10/2020. English	3 total: all cohort	2010-2019	663,255	Adapted the Navigation Guide tool	2 'probably low' and 1 'probably high'.	PRISMA	Open Science Foundation
2. Walter (Walter et al., 2021), 08/06/2021 [6; all Australia]	PM _{2.5} , PM ₁₀ , NO ₂ , SO ₂ , O ₃ , CO. Ranges NA	LBW, BW, SGA, PTB	Db = 2 Grey = No	Inception - 01/07/2019. English	9 total: 8 cohort, 1 case- crossover. Australia	2006-2019	356382	NOS, Navigation Guide, and Mustafic's criteria	Moderate and high	PRISMA	No
3. Luo (Luo et al., 2021) 09/03/2021 [6; 5 China and 1 UK]	PM _{2.5} : 1.1- 20.1 μg/m ³ PM ₁₀ : 3.3 - 39.2 μg/m ³ NO ₂ : 9.4 - 64.1 μg/m ³ NO: 2.7 - 39.5 ppb NO _x : 19.6 - 102.8 ppb	PTB, BW, LBW, SGA	Db= 6 Grey = No	Inception - 01/05/2019. English and Chinese.	39 total: 35 cohort, 4 case-control	2007-2019	10,533,97 4	NOS	7-9	No	No
4. Bekkar (Bekkar et al., 2020) 18/06/2020 [4; all USA]	PM _{2.5} :1.3 - 6.9 μg/m ³ O ₃ : 7.1 - 11.5 ppb	PTB, LBW, and SB	Db= 3 Grey =2	01/01/2007 - 30/04/2019. English	51 total: (43 retrospectiv e cohort, 2 cross- sectional, 4 time series,	2007-2019	30,731,00 1	No	No	Arskey O'Malle y PRISMA	No

Tables Cable 1. Characteristics of systematic reviews without meta-analysis, ordered from most recent to earliest publication

5. Heo (Heo et al., 2019) 12/11/2019 [3; All USA]	PM ₁₀ , PM _{2.5} (PM _{2.5-10} , PM ₁ , PM _{0.1}) Ranges NA	PTB, LBW, SGA, and SB	Db=1 Grey = No	01/01/2000 - 07/07/2019. English	3 case- control. USA 44 total: 35 case- control, 5 cohort, 1 case- control/coho rt, 2 time- series, 1 ecologic. USA	1999-2019	41,793,87 6	No	No	STROB E, HEQAT, Cochran e.	No
6. Yuan (Yuan et al., 2019) 20/03/2019 [4; all China]	PM _{2.5} : 1.8 - 71.9 μg/m ³	BW, LBW, SGA, PTB	Db=1 Grey = No	01/2008 - 22/07/2017. English and Chinese.	42 total: 6 prospective, 35 retrospectiv e cohort and 1 nested case- control. Global	2008-2017	33,419,56 5	No	No	No	No
7. Tsoli (Tsoli et al., 2019) 31/01/2019 [3; 2 Greece and 1 UK]	PM _{2.5} , PM ₁₀ , PM _{2.5-10} , PM ₁ , TSP Ranges NA	TBW, TLBW	Db=2 Grey = No	Inception - 08/2018. English	82 total:: 73 cohort, 6 ecological, 2 case- control, 1 cross- sectional. Global	1997-2018	39,056,18 9	No	No	No	No#
8. Grippo (Grippo et al., 2018) 25/09/2018 [8; 3 USA and 5 China]	TSP, PM ₁₀ , PM _{2.5} , CO, SO ₂ , NO ₂ , O ₃ Ranges NA	SAB (miscarriag e) and SB	Db= 1 Grey = No	Inception - 03/2018. No language indicated	15 total: 3 each prospective cohort, retrospectiv e cohort, and time- series, 4	1998-2018	4,432,632	No	No	No	No

					case_control						
					and 1 each cross- sectional and						
					ecological. Global						
9. Westergaard (Westergaard	PM _{2.5} : 9.1 - 32.4 μg/m ³ NO ₂ : 13.4	TLBW	Db=2 Grey= No	Inception – 21/08/2016. English	6 total: 1 prospective, 4	2013-2016	5,149,128 births	No	No	No	No
et al., 2017) 06/04/2017 [4; 2 Denmark, 1	study) SO ₂ : NA O ₃ : NA				e and 1 nationwide longitudinal						
Netherlands, and 1 France]	SPM: NA				survey. Global.						
10. Jacobs (Jacobs et al.,	$PM_{2.5:} 61 \mu g/m^3$ (one	BW, LBW, PTB, SB	Db= 5	1980 - 2015. English and	17 total: 2 prospective	1995-2015	505,734 births	Berman and Parker	Stated but not reported	PRISMA	No
2017) 01/02/2017 [9; 8 Australia and 1 USA]	study) PM ₁₀ : 40 - 212 μg/m ³ , NO ₂ : 24 - 61		Grey = No	Chinese	cohort, 4 retrospectiv e cohort, 3 case-			(2002) criteria			
	μg/m ³ , SO ₂ : 16 -102 μg/m ³ CO ²				control, 1 case- crossover 7						
	814 - 1730 $\mu g/m^3$ $\Omega_3: 61 \ \mu g/m^3$				cross- sectional.						
11 01 1	(one study)	LDW		T di	40 + + 1 20	1007 2011	7 476 226		20/40	MOOGE	NT 4
11. Shah (Shah et al., 2011) (26/11/2010) [2; both Canada]	PM ₁₀ , PM _{2.5} , NO ₂ , SO ₂ , CO, O ₃ , TSP. Ranges NA	LBW, PTB, SGA/IUGR , BW	Db=3 Grey = No	Inception - 15/10/2010. English	40 total: 30 cohorts, 4 case- control, 5 ecological	1987-2011	7,476,326 births	Referred to their previous checklist	38/40 included studies had an overall moderate RoB, whereas 2	MOOSE	No*
					Global.				studies had a low RoB		

12. Bonzini (Bonzini et al., 2010) 09/2010 [6; All Italy]	PM _{2.5} : 5.1 - 25.4 μg/m ³ PM ₁₀ : 16.3 - 89.7 μg/m ³ NO ₂ : 10.4 - 117.9 μg/m ³ O ₃ : 33 - 91.4 μg/m ³ CO: 0.5-17.8 mg/m ³	PTB, LBW, SGA, BW	Db = 1 Grey = No	01/2004 - 12/2008. English.	18 total: 12 birth cohort, 1 matched case- control, 5 time-series.	2004-2008	1,987,093	No	No	No	No
13. Bosetti (Bosetti et al., 2010) 06/02/2010 [6; 5 Italy and 1 Spain]	PM _{2.5} : 5.3 - 21.9 μg/m ³ PM ₁₀ :3.2 - 889.7 μg/m ³ TSP: 68.5 - 375 μg/m ³	PTB, LBW, VLBW, SGA	Db= 1 Grey = No	1966 - 06/2009. English	30 total : 22 cross- sectional*, 4 time series, 3 case- control, 1 ecological Global	1995-2008	2,848,020	No	No	No	No
14. Ghosh (Ghosh et al., 2007) 09/05/2007 [4; all UK]	$\begin{array}{c} PM_{2.5}{:}\;10.3-\\ 43.0\;\mu g/m^3\\ PM_{10}{:}\;31.5-\\ 85.9\;\mu g/m^3\\ TSP{:}\;5.93\\ \mu g/m^3\\ CO{:}\;1.0-1.7\\ ppm\\ SO_{2}{:}\;3.8-308\\ \mu g/m^3\\ NO_{2}{:}\;12.1-\\ 43.5\;ppb\;O_{3}{:}\\ 18-27.23\\ ppb\end{array}$	BW, LBW, VLBW, PTB	Db=10 Grey = No	1966 -2005. English	5 total: 2 retrospectiv e cohort, 1 prospective cohort, 2 case- control. Global	1997-2004	146,271	Developed a checklist from other guidelines	4 studies were rated 'fully meet the quality criteria' and 1 rated 'satisfactory '	Cochran e.	No
15. Glinianaia (Glinianaia et al., 2004) 09/01/2004 [5; all UK]	TSP, TSPSO ₂ , PM ₁₀ , PM _{2.5} Ranges NA	LBW, VLBW, IUGR, PTB, and SB	Db=12 Grey =3	01/01/1996 - 31/12/2001. English	11 total: 8 cohorts, 1 case- control, 1 time-series, 1 ecological	1997-2001	Not provided for primary studies	No	No	CRD's Guidanc e and the U.K. National Health Service	No

Global	Centre
	for
	Reviews
	and
	Dissemi
	nation

Note: NO₂, Nitrogen dioxide; NO_x, Nitrogen oxides; CO, Carbon monoxide; O₃, Ozone; SO₂, Sulphur dioxide; PM_{2.5}, particulate matter at aerodynamic diameter \leq 2.5µm; PM₁₀, particulate matter with aerodynamic diameter \leq 10µm; TSP, total suspended particles; SPM, suspended particulate matter; µg/m³, micrograms per cubic meter; ppm, parts per million; ppb, parts per billion; NA, not available; IQR, interquartile range; PTB, preterm birth; BW, birth weight; LBW, low birth weight; TLBW, term low birth weight; VLBW, very low birth weight; SGA, small-for-gestational age; IUGR, intrauterine growth retardation; SB, stillbirth; SAB, spontaneous abortion; Db, database; NOS, Newcastle- Ottawa scale; USA, United States of America; UK, United Kingdom; PRISMA, Preferred Reporting Items for Systematic reviews and Meta-Analyses; MOOSE, The Strengthening the Reporting of Observational Studies in Epidemiology; STROBE, Strengthening the reporting of observational studies in epidemiology; HEQAT, Health Evidence Quality Assessment Tool. Statement[#] "A review protocol reporting inclusion and exclusion criteria was available during the screening process to consolidate reviewers' judgement. The review protocol was not registered." Statements^{*} "The methods adopted by our group for systematically reviewing birth outcomes of various determinants have been described previously and are briefly outlined below (Shahand Zao, 2009; McDonald et al., 2010). A decision was made a priori to systematically review these data rather than to perform meta-analyses, as heterogeneities were identified in previous reviews". *The cross-sectional used in this review included studies for birth cohorts classified in almost all reviews as retrospective cohort study design.
First author, date [number of authors, countries]	Exposure type and range or IQR	Outcome	Number of databases (Db) and grey literature searched	Search date range and languages applied	No. of primary studies and study designs, coverage	Publicati on year range	Total births	RoB tool	Quality rating summary	Reportin g guidelin es	Evidence of pre- specified review protocol
1. Gong (Gong et al., 2022) 04/10/2021 [5; 4 China and 1 USA]	PM2.5: Range: 8.43 -66.09 μg/m ³	TBW (continuou s outcome)	Db =6 Grey=No	Inception – 03/03/2021 . English and Chinese.	31 total: all cohort.	2008- 2021	24,824,520	NOS for quality assessme nt. GRADE handboo k to grade certainty of evidence	22/31 studies had high NOS score (\geq 7; high quality) and 9 had medium scores. 'Very low' quality of the effect estimates in all meta- analysis due to high heterogeneit y but moderate for the LUR- models subgroup	PRISMA	No
2. *Zhu (Zhu et al., 2022) 03/08/2021 [11; all China]	PM _{2.5} , PM ₁₀ Range: NA	SAB	Db=3 Grey=No	Inception – 01/02/2021 . English	6 total: 3 cohort, 3 case-control	2014- 2021	735,719 natural pregnancie s (65,726 SABs)	NOS for quality assessme nt. GRADE pro app to grade the certainty	All studies were "high quality" (NOS score \geq 7). GRADE results of PM2.5 and PM10 were	PRISMA	No

Table 2. Characteristics of systematic reviews with meta-analysis, ordered from recent to earliest.

3. Ju (Ju et al., 2021) 09/07/2021 [7; all China]	PM _{2.5} , PM ₁₀ , SO ₂ , NO ₂ , CO, O ₃ . Ranges: NA	PTB (including subtypes: moderate, very, and extremely PTB). 2.8 – 11.76%	Db=2 Grey=No	Inception - 10/2020. English	60 total: all cohort	1995- 2020	21, 872,454 (1,499, 479; 6.86% PTB)	of evidence NOS	both "moderate" Included only studies with a total score of 7–9 ('high quality')	No	No
4. Xie (Xie et al., 2021) 13/06/2021 [10; 9 China and 1 USA]	PM _{2.5} : 11.8 - 70.6 μg/m ³	Stillbirth	Db=4 Grey=No	Inception – 18/10/2020 . English	7 total: 6 cohorts and 1 case- control.	2012- 2020	4,342,251	Navigati on Guide RoB criteria	"Low" or "Probably low" risk of bias	PRISMA	PROSPERO
5. Rappazzo (Rappazzo et al., 2021) 12/05/ 2021 [4; all USA]	O ₃ : 17 - 57 ppb	РТВ	Db=2 Grey = 1	Inception - 31/01/2021 English	20 total:17 cohort, 3 case-control Global	2005 - 2021	5,031,661	ОНАТ	One high, and 9 each ranked medium and low confidence overall	No	No
6. Zhang (Zhang et al., 2021) 22/02/2021 [7; All China]	PM _{2.5} , PM ₁₀ , SO ₂ , NO ₂ , CO, O ₃ Ranges: NA	SB	Db=4 Grey=No	Inception – 11/12/2020 . No language indicated	14 total: 3 prospective and 5 retrospective cohorts, 2 case-control, 3 case- crossover, 1 time series. Global	2007- 2020	7,227,534	NOS and OHAT tools	"Most included studies showed "low" or "probably low" risk, and "were of high quality.	PRISMA	No
7. Uwak (Uwak et al., 2021) 25/01/2021 [13, All USA]	PM _{2.5} , PM ₁₀ , and PM _{2.5-10}	BW	Db=3 Grey=No	Inception 27/02/2020 . English	54 total: 43 retrospective , 9 prospective	2003- 2020	57,960,152	Navigati on Guide RoB	PM _{2.5} : 12/30 studies were rated overall as "low" or	Navigati on guide systemati c review	PROSPERO

	Ranges: NA				cohorts, 2 cross- sectional. Global.			criteria as	"probably low". PM ₁₀ : 10/29 studies were rated overall as "low" or "probably low" but high risk for all 5 studies on coarse PM.	methodol ogy	
8. Simonici (Simoncic et al., 2020) 03/11/2020 [4, All France]	PM _{2.5} , PM ₁₀ , NO ₂ Ranges: NA	BW/LBW, PTB, SGA	Db=1 Grey=No	Inception – 01/04/2020 . English	30 total: 20 cohorts, 9 ecological time series, 1 spatial. Europe	2002- 2019	3,466,265	Adapted from Croteau et al (2009) and Doi and Thalib (2008).	Minimum score was 0.806 out of 1.000	PRISMA	No
9. Thayamballi (Thayamballi et al., 2020) 08/09/2020 [4; all USA]	PM _{2.5} : 1.0- 7.6 μg/m ³ PM ₁₀ : 2.7 - 7.4 μg/m ³	BW, LBW/TLB W, PTB, SGA, Stillbirth	Db=4 Grey=No	Inception – 30/06/2018 . English	18 total. Unreported study design. USA	2007- 2017	17,779,343	Unclear	Unclear	No	No
10. Li (Li et al., 2020) 04/08/2020 [7, all China]	$PM_{2.5}$, PM_{10} , NO_2 , SO_2 , CO, and O_3 Ranges NA	LBW	Db=2 Grey=No	Inception – 06/2020.E nglish	54 total: all cohort Global	1997- 2020	27,087,009	NOS	High qualities: scores 7-9.	No	No
11. Ji (Ji et al., 2017) 30/05/2017 [6; All China]	PM _{2.5} and PM ₁₀ Ranges NA	TLBW	Db = 5 Grey = No	Inception – 06/03/2017 . English and Chinese	14 total: all cohort Global	2004- 2016	933,272	NOS	7 high quality and 7 moderate quality	PRISMA	No

12. Liu (Liu et al., 2017) 15/06/2017 [7; all China]	PM _{2.5} : 5.1- 70.8 μg/m ³	РТВ	Db=5 Grey=No	No date indicated English and Chinese	11 total: 7 retrospective and 3 prospective cohorts, 1 nested case- control. Global	2007- 2016	1,207,542	NOS	Average NOS score is 8	MOOSE	No
13. Li (Li et al., 2017) 28/04/2017 [17; all China]	PM _{2.5} : 1.8 - 22.1 μg/m ³	TLBW, PTB	Db=4 Grey=No	12/2015 - 07/2016 in English and Chinese	24 total : 19 retrospective cohort, 1 prospective cohort, 2 case-control, 1 and 1 cross- sectional. Global	2006- 2016	14,600,860	NOS and AHRQ	Mean score ranged 6 to 8	MOOSE	No
14. Zhang (Zhang et al., 2016) 30/11/2016 [8; All China]	PM _{2.5} , PM ₁₀ Ranges: NA	SGA/IUG R, SGA, SB, SAB	Db=4 Grey=No	Inception - 31/12/2015 . English	17 studies: 14 retrospective cohort, 2 case-control, 1 cross- sectional. Global.	2005- 2015	6,506,961	No	No	No	No
15. Siddika (Siddika et al., 2016) 24/05/2016 [4; 3 Finland and 1 Ghana]	PM 10, PM 2.5, NO2, SO2, CO, O3. Ranges: NA	SB	Db=3 Grey=No	Inception – 04/2015 "without any language restriction. "	11 total :1 prospective cohort, 5 retrospective cohort, 1 case-control, 1 case- crossover, 1 daily time- series, 2 ecological. Global	1984- 2015	4,467,963	NOS	Very high quality (3 studies), high quality (1 study).	No	No

16. Sun (Sun et al., 2016) 29/12/2015 [8, all China]	PM _{2.5} : 5.1- 43.8 μg/m ³	LBW, BW	Db=5 Grey=No	Inception – 03/2015. English and Chinese	32 total: 4 prospective and 28 retrospective cohorts. Global	2004- 2015	15,951,040	No	No	No	No
17. Sun (Sun et al., 2015) 18/11/2015 [7; 5 China and 2 Australia]	PM _{2.5} : 5.1- 22.1 μg/m ³	РТВ	Db=5 Grey=No	Inception – 12/2014. English and Chinese	19 total: 13 retrospective and 6 prospective cohort studies. Global	2005- 2014	6,091,718	NOS	The average NOS quality score is 8	PRISMA	No
18. Lamichhane (Lamichhane et al., 2015) 03/11/2015 [4; All Incheon, Korea]	PM _{2.5} : 5.1 -21.9 μg/m ³ PM ₁₀ : 3.0 - 142.1 μg/m ³	PTB, BW.	Db= 2 Grey = No	01/1980 - 04/2015. English	44 total: 40 cohort, 4 case-control. Global	2000- 2015	11,502,353	Downs and Black checklist s	"14 studies were rated as relatively high quality (score≥15) and 13 rated as relatively low quality (score <15)."	MOOSE	No
19. Zhu (Zhu et al., 2015) 28/08/2014 [6, all China]	PM _{2.5} Ranges: NA	BW, LBW, PTB, SGA, and stillbirth	Db= 3 Grey = 1	Inception – 01/03/2014 . English	26 total: 25 cohort studies and 1 case-control. Global	2005- 2014	10,719,453	No	No	No	No
20. Stieb (Stieb et al., 2012) 21/06/2012 [4, all Canada]	$\begin{array}{c} PM_{2.5}{:} 1.8\\ - 44.2\\ \mu g/m^3\\ PM_{10}{:} 3.3\\ - 89.7\\ \mu g/m^3\\ NO_2{:} 6.2\\ - 36.6\ ppb\\ SO_2{:} 1.1\\ - 12.2\ ppb\\ CO{:} 0.5\\ - 4.6\ ppm \end{array}$	BW, LBW/VLB W (3.5 - 17.3%), PTB (3.3 - 10.3%), SGA/IUG R	Db = 8 Grey = No	01/01/1980 -01/2011 English	62 total: 54 cohort, 6 case-control, 2 ecological. Global	1987- 2011	9,697,911	No	No	No	No

	O ₃ :13.4 - 34.1 ppb										
21. Sapkota (Sapkota et al., 2010) 23/11/2010 [5, all USA]	PM _{2.5} : 5.1 - 21.9 μg/m ³ PM ₁₀ : 11.8 - 71.1 μg/m ³	LBW/TLB W, PTB	Db= 2 Grey = No	Inception – 07/2009.N o informatio n on language	20 total: Unreported study designs. Global	2000- 2009	3,134,406	No	No	No	No

*Zhu et al (2022) included 6 articles with 7 studies because one cohort study additionally reported separate results from case-crossover design. Note: NO₂, Nitrogen dioxide; CO, Carbon monoxide; O₃, Ozone; SO₂, Sulphur dioxide; PM_{2.5}, particulate matter with aerodynamic diameter $\leq 2.5 \mu m$; PM₁₀, particulate matter with aerodynamic diameter $\leq 10 \mu m$; $\mu g/m^3$, micrograms per cubic meter; ppm, parts per million; ppb, parts per billion; NA, not available; IQR, interquartile range; PTB, preterm birth; BW, birth weight; LBW, low birth weight; TLBW, term low birth weight; VLBW, very low birth weight; SGA, small-for-gestational age; IUGR, intrauterine growth retardation; SB, stillbirth; SAB, spontaneous abortion; Db, database; RoB, Risk of bias; USA, United States of America; UK, United Kingdom; PRISMA, Preferred Reporting Items for Systematic reviews and Meta-Analyses; MOOSE, The Strengthening the Reporting of Observational Studies in Epidemiology; NOS, Newcastle-Ottawa Scale; OHAT, Office of Health Assessment and Translation; AHRQ, Agency for Healthcare Research and Quality; PROSPERO, International prospective register of systematic reviews.

Pollutant (incremental units)	Exposure period	Meta-analysis	Change in birthweight (g) (95% CI)	I ² (%)	Primary studies (n)	Total births (N)	Consistency, confidence
PM _{2.5}	Entire Pregnancy	Gong (2021)	-17 (-20, -13)	96	26	23,926,140	++, Pe
$(10 \mu g/m^3)$		Uwak (2021)	-28 (-48, -7)	94	15	15,424,198	
		Sun (2016)	-16 (-27, -5)	99	17	7,857,127	
		Lamichhane (2015)	-22 (-38, -6)	92	7	2,090,972	
		Zhu (2015)	-15 (-19, -10)	87	12	7,388,985	
		Stieb (2012)	-23 (-46, -1)	95	7	4,271,411	
	Trimester 1	Gong (2021)	-6 (-8, -3)	91	13	6,707,042	+, Pe
		Uwak (2021)	-7 (-15, 2)	87	11	3,547,223	
		Sun (2016)	-8 (-17, 0)	90	11	NA	
		Lamichhane (2015)	-6 (-20, 7)	88	5	1,261,503	
		Zhu (2015)	-7 (-14, 0)	82	7	5,153,167	
		Stieb (2012)	0 (-10, 9)	37	4	3,637,501	
	Trimester 2	Gong (2021)	-6 (-8, -4)	85	13	6,707,042	+, Pe
		Uwak (2021)	-6 (-11, -1)	68	11	3,547,223	
		Sun (2016)	-13 (-22, -3)	92	10	NA	
		Lamichhane (2015)	-11 (-19, -2)	82	4	1,257,650	
		Zhu (2015)	-8 (-15, -1)	85	5	4,742,687	
		Stieb (2012)	-15 (-34, 5)	75	4	3,634,129	
	Trimester 3	Gong (2021)	-5 (-8, -2)	94	20	10,361,367	+, Pe
		Uwak (2021)	-11 (-21, 0)	84	12	3,556,290	
		Sun (2016)	-10 (-17, -4)	86	13	NA	
		Lamichhane (2015)	-8 (-10, -5)	0	6	2,236,549	
		Zhu (2015)	-15 (-22, -8)	86	7	5,153,167	
		Stieb (2012)	-16 (-37, 1)	86	4	3,637,501	
PM ₁₀	Entire Pregnancy	Uwak (2021)	-9 (-17, 0)	84	8	2,679,928	+, Pe
$(10 \mu g/m^3)$		Lamichhane (2015)	-10 (-14, -7)	0	5	477,123	
		Stieb (2012)	-8 (-10, -7)	16	7	3,932,746	

Table 3. Association	between bir	th weight and	ambient air	pollution

	Trimester 1	Uwak (2021)	3 (-3, 10)	14	6	757,843	+, Pe
		Lamichhane (2015)	-1 (-5, 2)	0	4	507,286	
		Stieb (2012)	-2 (-4, 1)	67	10	4,505,769	
	Trimester 2	Uwak (2021)	-3 (-8, 1)	0	6	757,843	+, Pe
		Lamichhane (2015)	-7 (-14, 1)	68	4	507286	
		Stieb (2012)	-2 (-4, 0)	41	10	4,505,769	
	Trimester 3	Uwak (2021)	-7 (-11, -2)	0	7	766,910	+, Pe
		Lamichhane (2015)	-5 (-8, -2)	0	5	913,913	
		Stieb (2012)	-2 (-7, 3)	93	10	4,505,769	
СО	Entire Pregnancy	Stieb (2012)	-1 (-3, 1)	95	4	3,702,544	0, Pe
(100 ppb)	Trimester 1	Stieb (2012)	0 (-1, 0)	95	8	4,576,045	0, Pe
	Trimester 2	Stieb (2012)	0 (0, 0)	0	7	4,299,282	0, Pe
	Trimester 3	Stieb (2012)	0 (-1, 1)	91	7	4,299,282	0, Pe
NO ₂	Entire Pregnancy	Simonici (2020)	-3 (-12, 7)	28	6	86,680	+, Pe
(10 ppb)		Stieb (2012)	-14 (-22, -6)	85	10	3,780,571	
	Trimester 1	Simonici (2020)	-27 (-56, 2)	36	4	3,435	+, Pe
		Stieb (2012)	-2 (-10, 5)	90	11	4,259,729	
	Trimester 2	Simonici (2020)	-17 (-46, 13)	26	4	3,435	0, Pe
		Stieb (2012)	0 (-1, 1)	0	9	3,979,113	
	Trimester 3	Simonici (2020)	-3 (-26, 19)	32	5	12,502	+, Pe
		Stieb (2012)	-4 (-15, 7)	94	10	3,982,966	
O ₃	Entire Pregnancy	Stieb (2012)	-5 (-16, 6)	81	4	3,370,657	0, Pe
(10 ppb)	Trimester 1	Stieb (2012)	1 (-3, 5)	81	8	4,325,899	0, Pe
	Trimester 2	Stieb (2012)	-5 (-9, -2)	77	8	4,325,899	+, Pe
	Trimester 3	Stieb (2012)	-1 (-4, 1)	80	8	4,325,899	0, Pe
SO ₂	Entire Pregnancy	Stieb (2012)	15 (-15, 45)	80	3	3,718,863	0, Pe
(10 ppb)	Trimester 1	Stieb (2012)	-15 (-42, 12)	95	6	4,098,747	0, Pe
	Trimester 2	Stieb (2012)	9 (-9, 28)	66	4	3,808,425	0, Pe
	Trimester 3	Stieb (2012)	15 (-5, 35)	93	5	3,883,096	0, Pe

Note: NO₂, Nitrogen dioxide; CO, Carbon monoxide; O₃, Ozone; SO₂, Sulphur dioxide; PM_{2.5}, particulate matter with aerodynamic diameter $\leq 2.5 \mu m$; PM₁₀, particulate matter with aerodynamic diameter $\leq 10 \mu m$; BW, birth weight; OR, odd ratio; CI, confidence intervals; ppb, parts per billion; NA, Not available; I², Heterogeneity; '++' represents more consistent positive association; '+' represents less consistent positive association; '0' represents contradictory/unclear direction; Pe, probable evidence of the observed direction of exposure effect.

Pollutant (incremental units)	Exposure period	Meta-analysis	OR (95% CI)	I ² (%)	Primary studies (n)	Total births (N)	Consistency, confidence
PM _{2.5}	Entire	*Li (2020)	1.08 (1.04, 1.12)	86	29	536,218	+, Pe
$(10 \mu g/m^3)$	Pregnancy	Ji (2017)	1.04 (0.99, 1.09)	67	6	594,626	
		Li (2017)	1.05 (0.98, 1.12)	85	4	8,226,866	
		Sun (2016)	1.09 (1.03, 1.15)	93	19	10,405,729	
		Zhu (2015)	1.05 (1.02, 1.07)	40	6	5,691,348	
		Stieb (2012)	1.05 (0.99, 1.12)	86	5	4,160,105	
		Sapkota (2010)	1.09 (0.90, 1.32)	57	4	831,042	
	Trimester 1	Li (2020)	1.03 (0.97, 1.09)	95	19	NA	+, Pe
		Ji (2017)	1.01 (0.98, 1.03)	0	3	436,799	
		Li (2017)	1.00 (0.91, 1.11)	90	3	1,163,751	
		Sun (2016)	1.03 (0.93, 1.13)	87	7	NA	
	Trimester 2	Li (2020)	1.03 (0.98, 1.08)	92	20	NA	+, Pe
		Ji (2017)	1.15 (0.96, 1.38)	66	3	436,799	
		Li (2017)	1.00 (0.96, 1.03)	81	4	1,587,470	
		Sun (2016)	1.04 (0.95, 1.13)	80	7	NA	
	Trimester 3	Li (2020)	1.05 (1.01, 1.10)	92	20	NA	+, Pe
		Ji (2017)	1.17 (0.94, 1.46)	79	3	436,799	
		Li (2017)	1.03 (0.98, 1.09)	55	3	1,163,751	
		Sun (2016)	1.23 (0.96, 1.59)	99	8	NA	
PM ₁₀	Entire	Li (2020)	1.05 (1.03, 1.08)	70	23	286,188	+, Pe
$(10 \mu g/m^3)$	Pregnancy	Ji (2017)	1.01 (0.96, 1.08)	68	9	326,518	
		Stieb (2012)	1.05 (1.02, 1.07)	68	14	4,419,929	
		Sapkota (2010)	1.02 (0.99, 1.05)	55	11	1,935,404	
	Trimester 1	Li (2020)	1.02 (1.00, 1.05)	72	13	NA	+, Pe
		Ji (2017)	1.06 (0.99, 1.12)	20	7	315,469	
		Stieb (2012)	1.01 (0.97, 1.05)	42	7	1,153,736	

Table 4. Association between low birth weight (LBW) and ambient air pollution

		Sapkota (2010)	1.00 (0.97, 1.03)	NA	5	NA	
	Trimester 2	Li (2020)	1.01 (1.01, 1.02)	28	13	NA	+, Pe
		Ji (2017)	1.05 (0.99, 1.44)	23	6	313,955	
		Stieb (2012)	1.01 (0.98, 1.04)	23	7	1,153,736	
	Trimester 3	Li (2020)	1.00 (1.00, 1.01)	21	13	NA	0, Pe
		Ji (2017)	1.06 (0.97, 1.15)	50	7	315,469	
		Stieb (2012)	1.00 (0.98, 1.03)	13	7	1,153,736	
		Sapkota (2010)	1.00 (0.99, 1.01)	NA	7	NA	
СО	Entire	Li (2020)	1.01 (1.00, 1.01)	53	8	112,239	+, Pe
(100 ppb)	Pregnancy	Stieb (2012)	1.01 (1.00, 1.01)	38	6	4,543,308	
	Trimester 1	Li (2020)	1.01 (1.00, 1.01)	12	5	NA	0, Pe
		Stieb (2012)	1.00 (1.00, 1.01)	0	5	1,129,363	
	Trimester 2	Li (2020)	1.01 (0.99, 1.02)	54	5	NA	+, Pe
		Stieb (2012)	1.01 (1.00, 1.01)	0	4	900,278	
	Trimester 3	Li (2020)	1.00 (0.98, 1.02)	68	5	NA	00, Pe
		Stieb (2012)	1.00 (0.99, 1.01)	86	5	1,129,363	
NO ₂	Entire	Li (2020)	1.03 (1.01, 1.05)	90	23	509,997	+, Pe
(10 ppb)	Pregnancy	Stieb (2012)	1.02 (1.00, 1.04)	78	7	4,211,351	
	Trimester 1	Li (2020)	1.02 (1.01, 1.04)	11	12	NA	+, Pe
		Stieb (2012)	1.01 (0.99, 1.03)	0	5	1043794	
	Trimester 2	Li (2020)	1.01 (0.99, 1.04)	75	13	NA	+, Pe
		Stieb (2012)	1.02 (1.00, 1.04)	0	4	814,709	
	Trimester 3	Li (2020)	1.01 (0.97, 1.06)	78	13	NA	0, Pe
		Stieb (2012)	0.99 (0.93, 1.05)	70	5	1,043,794	
O ₃	Entire	Li (2020)	1.05 (1.01, 1.09)	90	14	311,189	0, Pe
(10 ppb)	Pregnancy	Stieb (2012)	1.00 (0.91, 1.12)	25	3	3,377,984	
	Trimester 1	Li (2020)	1.00 (0.95, 1.05)	79	9	NA	0, Pe
		Stieb (2012)	0.99 (0.95, 1.04)	0	5	1,002,748	
	Trimester 2	Li (2020)	1.02 (0.95, 1.09)	87	8	NA	0, Pe

		Stieb (2012)	0.97 (0.89, 1.07)	34	3	496,900	
	Trimester 3	Li (2020)	1.09 (0.99, 1.20)	96	9	NA	+, Pe
		Stieb (2012)	1.01 (0.92, 1.12)	76	5	1,002,748	
SO_2	Entire	Li (2020)	1.12 (1.02, 1.24)	83	13	171,360	++, Pe
(10 ppb)	Pregnancy	Stieb (2012)	1.06 (1.04, 1.10)	0	7	4,400,175	
	Trimester 1	Li (2020)	1.05 (1.00, 1.12)	65	10	NA	+, Pe
		Stieb (2012)	1.04 (0.98, 1.08)	58	5	889,204	
	Trimester 2	Li (2020)	1.02 (0.99, 1.05)	20	10	NA	+, Pe
		Stieb (2012)	1.02 (0.96, 1.08)	41	4	660,119	
	Trimester 3	Li (2020)	0.98 (0.95, 1.01)	45	10	NA	-, Pe
		Stieb (2012)	0.98 (0.94, 1.04)	59	6	963,875	

Note: NO₂, Nitrogen dioxide; CO, Carbon monoxide; O₃, Ozone; SO₂, Sulphur dioxide; PM_{2.5}, particulate matter with aerodynamic diameter $\leq 2.5 \mu m$; PM₁₀, particulate matter with aerodynamic diameter $\leq 10 \mu m$; LBW, low birth weight; OR, odd ratio; CI, confidence intervals; pp, parts per billion; NA, Not available; I², Heterogeneity; '++' represents more consistent positive association; '+' represents less consistent positive association; '+' represents less consistent positive association; '0' represents contradictory/unclear direction; '-' represents less consistent negative association; Pe, probable evidence of the observed direction of exposure effect. *Li (2020) reported number of LBW cases instead of total births for all exposures.

Pollutant (incremental units)	Exposure period	Meta-analysis	OR (95% CI)	I ² (%)	Primary studies (n)	Total births (N)	Consistency, confidence
PM _{2.5}	Entire	*Ju (2021)	1.07 (1.05, 1.10)	89	31	1,007,827	+, Pe
$(10 \mu g/m^3)$	Pregnancy	Liu (2017)	1.15 (0.99, 1.33)	85	7	882,479	
		Li (2017)	1.02 (0.93, 1.12)	97	6	4,098,419	
		Sun (2015)	1.13 (1.03, 1.24)	91	13	3,089,186	
		Zhu (2015)	1.10 (1.03, 1.18)	52	8	1,764,632	
		Stieb (2012)	1.16 (1.07, 1.26)	17	4	197,980	
		Sapkota (2010)	1.15 (1.14, 1.16)	0	6	517,760	
	Trimester 1	Ju (2021)	0.98 (0.96, 1.01)	97	26	920,837	0, Pe
		Liu (2017)	1.15 (1.05, 1.24)	33	9	1,041,382	
		Li (2017)	1.03 (1.00, 1.06)	70	5	1,371,800	
		Sun (2015)	1.08 (0.92, 1.26)	91	10	1,668,004	
		Zhu (2015)	0.96 (0.77, 1.21)	87	6	743,647	
		Stieb (2012)	0.85 (0.60, 1.20)	94	4	589,100	
		Sapkota (2010)	1.04 (0.73, 1.34)	NA	4	NA	
	Trimester 2	Ju (2021)	1.03 (1.00, 1.07)	97	23	880542	+, Pe
		Li (2017)	1.01 (0.93, 1.10)	98	4	1,367,947	
		Sun (2015)	1.09 (0.82, 1.44)	99	5	1,340,807	
		Zhu (2015)	0.90 (0.79, 1.03)	0	3	598,606	
	Trimester 3	Ju (2021)	1.02 (1.00, 1.04)	93	23	923,545	+, Pe
		Li (2017)	1.02 (0.99, 1.04)	59	4	1,367,947	
		Sun (2015)	1.08 (0.99, 1.17)	92	9	2,208,883	
		Zhu (2015)	0.97 (0.89, 1.05)	31	6	1,240,212	
		Stieb (2012)	1.05 (0.98, 1.13)	33	4	589,100	
		Sapkota (2010)	1.07 (1.00, 1.15)	NA	3	NA	
PM ₁₀	Entire	Ju (2021)	1.03 (1.01, 1.06)	92	15	210,850	+, Pe
(10 µg/m³)	Pregnancy	Lamichhane (2015)	1.24 (1.03, 1.45)	0	2	9,294	

Table 5. Association between PTB and ambient air pollution

		Stieb (2012)	1.16 (0.98, 1.38)	17	3	98,774	
		Sapkota (2010)	1.02 (0.99, 1.04)	73	8	1,047,489	
	Trimester 1	Ju (2021)	0.97 (0.94, 1.00)	97	16	263,928	-, Pe
		Lamichhane (2015)	0.99 (0.92, 1.07)	42	4	264,672	
		Stieb (2012)	0.98 (0.93, 1.03)	85	6	1,043,954	
		Sapkota (2010)	1.02 (0.97, 1.06)	NA	4	NA	
	Trimester 2	Ju (2021)	0.99 (0.96, 1.03)	98	14	257,476	-, Pe
		Lamichhane (2015)	0.97 (0.95, 0.99)	0	4	1,024,360	
		Stieb (2012)	0.97 (0.95, 0.99)	0	3	794,396	
	Trimester 3	Ju (2021)	1.01 (0.99, 1.02)	59	13	223,574	+, Pe
		Lamichhane (2015)	0.97 (0.86, 1.08)	58	3	229,967	
		Stieb (2012)	1.03 (1.01, 1.05)	20	6	1,043,954	
		Sapkota (2010)	1.02 (1.01, 1.03)	NA	5	NA	
СО	Entire	Ju (2021)	1.04 (1.00, 1.08)	95	5	71,906	0, Pe
(100 ppb)	Pregnancy	Stieb (2012)	1.00 (0.99, 1.02)	0	2	112,941	
	Trimester 1	Ju (2021)	0.99 (0.96, 1.02)	95	3	70,680	0, Pe
		Stieb (2012)	1.00 (0.99, 1.00)	92	5	911,850	
	Trimester 2	Ju (2021)	1.04 (0.96, 1.12)	96	3	68,920	0, Pe
	Trimester 3	Ju (2021)	1.00 (0.99, 1.02)	78	4	71,049	00, Pe
		Stieb (2012)	1.00 (1.00, 1.01)	0	5	911,850	
O ₃	Entire	Ju (2021)	1.07 (1.04, 1.10)	86	11	243,295	+, Pe
(10 ppb)	Pregnancy	Stieb (2012)	1.39 (0.62, 3.12)	89	2	98,449	
	Trimester 1	Ju (2021)	1.07 (1.04, 1.10)	91	11	304,353	+, Pe
		Rappazzo (2021)	1.06 (1.03, 1.10)	97	17	4,525,441	
		Stieb (2012)	1.10 (0.95, 1.28)	90	4	799,840	
	T.:	$I_{\rm H}$ (2021)	1.04 (1.00, 1.08)	95	8	293,593	+, Pe
	1 rimester 2	Ju (2021)	1.01 (1.00, 1.00)				,
	Trimester 2	Rappazzo (2021)	1.05 (1.02, 1.08)	97	15	4,713,201	
	Trimester 2	Ju (2021) Rappazzo (2021) Ju (2021)	1.07 (1.02, 1.03) 1.09 (1.03, 1.15)	97 96	15 8	4,713,201 201,663	0, Pe
	Trimester 2	Ju (2021) Rappazzo (2021) Ju (2021) Stieb (2012)	1.05 (1.02, 1.08) 1.09 (1.03, 1.15) 0.98 (0.93, 1.05)	97 96 44	15 8 4	4,713,201 201,663 799,840	0, Pe

(10 ppb)	Entire	Simonici (2020)	1.14 (0.81, 1.64)	72	4	80,458	
	Pregnancy	Stieb (2012)	1.08 (0.91, 1.28)	53	5	162,815	
	Trimester 1	Ju (2021)	0.94 (0.90, 0.99)	69	21	398,229	-, Pe
		Stieb (2012)	0.93 (0.80, 1.08)	89	6	807,681	
	Trimester 2	Ju (2021)	1.00 (0.94, 1.07)	95	18	390,413	0, Pe
		Stieb (2012)	1.01 (0.88, 1.18)	22	2	422,703	
	Trimester 3	Ju (2021)	1.14 (1.06, 1.21)	92	15	331,248	+, Pe
		Stieb (2012)	1.03 (0.98, 1.09)	20	6	807,681	
SO ₂ (10 ppb)	Entire Pregnancy	Ju (2021)	1.19 (0.95, 1.50)	83	8	158,735	0, Pe
	Trimester 1	Ju (2021)	0.95 (0.83, 1.09)	92	7	166,190	0, Pe
	Trimester 2	Ju (2021)	0.99 (0.89, 1.10)	85	6	160,122	0, Pe
	Trimester 3	Ju (2021)	0.97 (0.85, 1.10)	91	7	166,190	0, Pe

Note: NO₂, Nitrogen dioxide; CO, Carbon monoxide; O₃, Ozone; PM_{2.5}, particulate matter with aerodynamic diameter $\leq 2.5 \mu m$; PM₁₀, particulate matter with aerodynamic diameter $\leq 10 \mu m$; PTB, preterm birth; OR, odd ratio; CI, confidence intervals; pp, parts per billion; NA, Not available; I², Heterogeneity; '+' represents less consistent positive association; '0' represents contradictory/unclear direction; '-' represents less consistent negative association; Pe, probable evidence of the observed direction exposure effect; *Ju (2021) reported number of PTB cases instead of total births for all exposures.

Pollutant (incremental units)	Exposure period	Meta-analysis	OR (95% CI)	I ² (%)	Primary studies (n)	Total births (N)	Consistency, confidence
PM _{2.5}	Entire Pregnancy	Xie (2021)	1.15 (1.07, 1.25)	75	6	3,222,578	+, Pe
$(10 \mu g/m^3)$		Zhang (2021)	1.10 (1.07, 1.13)	62	7	4,647,479	
		Siddika (2016)	1.05 (0.99, 1.12)	0	2	3,745,243	
	Trimester 1	Xie (2021)	1.01 (0.90, 1.13)	87	6	3,892,183	0, Pe
		Zhang (2021)	0.96 (0.83, 1.09)	89	7	5,078,391	
		Siddika (2016)	1.11 (0.81, 1.51)	57	2	3,745,243	
	Trimester 2	Xie (2021)	1.06 (0.98, 1.14)	80	5	3,762,441	+, Pe
		Zhang (2021)	1.03 (0.94, 1.12)	82	6	4,855,016	
		Siddika (2016)	1.10 (0.86, 1.42)	48	2	3,745,243	
	Trimester 3	Xie (2021)	1.09 (1.01, 1.18)	79	4	3,180,667	0, Pe
		Zhang (2021)	1.09 (1.01, 1.18)	75	5	4,273,242	
		Siddika (2016)	1.00 (0.95, 1.05)	0	2	3,745,243	
PM ₁₀	Entire Pregnancy	Zhang (2021)	1.01 (0.96, 1.05)	17	4	1,88,661	+, Pe
$(10 \mu g/m^3)$		Siddika (2016) and Zhang (2016)*	1.01 (0.95, 1.09)	85	2	104,089	
	Trimester 1	Zhang (2021)	0.94 (0.83, 1.04)	94	6	2,471,949	0, Pe
		Siddika (2016) and Zhang (2016)	1.00 (0.94, 1.06)	54	2	104089	
	Trimester 2	Zhang (2021)	0.99 (0.92, 1.05)	77	5	2248574	0, Pe
		Siddika (2016) and Zhang (2016)	1.01 (0.91, 1.12)	81	2	104,089	
	Trimester 3	Zhang (2021)	1.04 (0.97, 1.11)	89	4	1,666,800	+, Pe
		Siddika (2016) and Zhang (2016)	1.02 (0.92, 1.13)	91	2	104,089	
СО	Entire Pregnancy	Zhang (2021)	1.00 (1.00, 1.00)	53	6	5,657,393	0, Pe
(100 ppb)		Siddika (2016)	1.01 (1.00, 1.02)	21	3	3,847,818	
	Trimester 1	Zhang (2021)	1.00 (1.00, 1.00)	52	6	5,657,393	00, Pe
		Siddika (2016)	1.00 (0.99, 1.01)	32	3	3,847,818	

Table 6. Association between stillbirth, spontaneous abortion (SAB) and ambient air pollution

	Trimester 2	Zhang (2021)	1.00 (1.00, 1.00)	38	5	5,434,118	00, Pe	
		Siddika (2016)	1.00 (0.99, 1.02)	64	3	3,847,818		
	Trimester 3	Zhang (2021)	1.00 (1.00, 1.00)	70	5	5,434,118	0, Pe	
		Siddika (2016)	1.01 (0.99, 1.03)	80	3	3,847,818		
O ₃	Entire Pregnancy	Zhang (2021)	1.02 (0.95, 1.09)	64	6	5,259,297	0, Pe	
(10 ppb)		Siddika(2016)	1.00 (0.97, 1.03)	20	2	3,128,844		
	Trimester 1	Zhang (2021)	1.06 (1.00, 1.11)	74	6	5,482,705	0, Pe	
		Siddika(2016)	1.00 (0.98, 1.02)	0	2	3,128,844		
	Trimester 2	Zhang (2021)	1.02 (0.97, 1.08)	74	5	5,259,330	0, Pe	
		Siddika (2016)	0.99 (0.94, 1.04)	69	2	3,128,844		
	Trimester 3	Zhang (2021)	0.96 (0.86, 1.06)	93	4	4,677,556	0, Pe	
		Siddika (2016)	1.01 (0.97, 1.06)	63	2	3,128,844		
SO ₂	Entire Pregnancy	Zhang (2021)	1.05 (0.96, 1.15)	7	б	5,657,493	+, Pe	
(10 ppb)		Siddika (2016)	1.08 (0.95, 1.22)	20	3	3,847,818		
	Trimester 1	Zhang (2021)	0.98 (0.83, 1.15)	73	б	5,657,493	0, Pe	
		Siddika (2016)	1.14 (0.88, 1.48)	81	3	3,847,818		
	Trimester 2	Zhang (2021)	0.96 (0.80, 1.14)	73	5	5,434,118	0, Pe	
		Siddika (2016)	1.01 (0.93, 1.10)	0	3	3,847,818		
	Trimester 3	Zhang (2021)	1.27 (0.98, 1.61)	89	5	5,434,118	+, Pe	
		Siddika (2016)	1.15 (0.85, 1.56)	82	3	3,847,818		
NO ₂	Entire Pregnancy	Zhang (2021)	1.05 (1.00, 1.11)	65	5	5,434,118	+, Pe	
(10 ppb)		Siddika (2016)	1.07 (0.97, 1.18)	80	3	3,847,818		
	Trimester 1	Zhang (2021)	1.01 (0.01, 1.06)	57	б	6,015,892	+, Pe	
		Siddika (2016)	1.04 (0.98, 1.09)	55	3	3,847,818		
	Trimester 2	Zhang (2021)	0.99 (0.95, 1.04)	59	б	6,015,892	+, Pe	
		Siddika (2016)	1.01 (0.95, 1.07)	66	3	3,847,818		
	Trimester 3	Zhang (2021)	1.04 (0.99, 1.10)	63	5	5,434,118	+, Pe	
		Siddika (2016)	1.02 (0.98, 1.05)	0	3	3,847,818		

SAB-PM _{2.5} (10 µg/m ³)	Trimester 1 or within 180 days of gestation	Zhu (2021)	1.20 (1.01, 1.40)	99	5	69,507	++, Pe
SAB-PM ₁₀	Trimester 1 or	Zhu (2021)	1.09 (1.02, 1.15)	79	5	12,741	++, Pe
$(10 \mu g/m^3)$	within 180 days of gestation	Zhang (2016)	1.34 (1.04, 1.72)	62	3	515,932	

*Two meta-analyses published in same year with complete duplicate and hence considered as one result.

Note: NO₂, Nitrogen dioxide; CO, Carbon monoxide; O₃, Ozone; SO₂, Sulphur dioxide; PM_{2.5}, particulate matter with aerodynamic diameter $\leq 2.5 \mu m$; PM₁₀, particulate matter with aerodynamic diameter $\leq 10 \mu m$; SAB, spontaneous abortion; OR, odd ratio; CI, confidence intervals; ppb, parts per billion; NA, Not available; I², Heterogeneity; '+' represents less consistent positive association; '0' represents contradictory/unclear direction; '-' represents less consistent negative; Pe, probable evidence of the observed direction of exposure effect.

Figures

Figure 1. Spatial distribution of 287 country-specific primary studies from 31 countries included in the 36 systematic reviews and meta-analyses on ambient air pollution and adverse birth outcomes. Note: Number of studies for US, United States (113); CA, Canada (12); ME, Mexico (1); RQ, Puerto Rico (1); PE, Peru (1); BR, Brazil (11); UY, Uruguay (1); TZ, Tanzania (1); AU, Australia (11); IN, India (1); CH, China (44); TW, Taiwan (5); JP, Japan (4); SK, South Korea (11); RS, Russia (1); IR, Iran (4); IS, Israel (1); IT, Italy (5); SP, Spain (10); FR, France (9); BE, Belgium (3); GM, Germany (1); CZ, Czech Republic (5); HR, Croatia (1); NL, Netherlands (4); UK, United Kingdom (8); PL, Poland (7); LH, Lithuania (2); SW, Sweden (5); FI, Finland (1); NO, Norway (2).

Figure 2. Forest plot of the association between change in birth weight (BW) per $10\mu g/m^3 PM_{2.5}$ increase at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dashed line represents change in birth weight of 0 grams. Note: $PM_{2.5}$, particulate matter with aerodynamic diameter $\leq 2.5\mu m$.

Figure 3. Forest plot of the association between preterm birth (PTB and fine particulate matter ($PM_{2.5}$) per $10\mu g/m^3$ increment) during different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dashed line represents the reference for null association of 1. Note: $PM_{2.5}$, particulate matter with aerodynamic diameter $\leq 2.5\mu m$.

Prenatal Exposure to Ambient Air Pollution and Adverse Birth Outcomes: An Umbrella Review of 36 Systematic Reviews and Metaanalyses

Sylvester Dodzi Nyadanu^{1,2}*, Jennifer Dunne¹, Gizachew Assefa Tessema^{1,3}, Ben Mullins¹, Bernard Kumi-Boateng⁴, Michelle Lee Bell⁵, Bereket Duko¹, and Gavin Pereira^{1,6,7}

¹Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia
²Education, Culture, and Health Opportunities (ECHO) Ghana, ECHO Research Group International,
P. O. Box 424, Aflao, Ghana
³School of Public Health, University of Adelaide, Adelaide, South Australia 5000, Australia
⁴Department of Geomatic Engineering, University of Mines and Technology, P. O. Box 237, Tarkwa, Ghana
⁵School of the Environment, Yale University, New Haven, CT 06511, USA
⁶Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473 Oslo, Norway
⁷enAble Institute, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia

*Correspondence: Sylvester Dodzi Nyadanu, sylvester.nyadanu@postgrad.curtin.edu.au

This is the accepted version published in *Environmental Pollution*, available at <u>https://doi.org/10.1016/j.envpol.2022.119465</u>

Supplementary Materials

Table S1: Search strategy for each database **I. PubMed**

Set #	Advanced search within the title and abstract with the function 'Title/Abstract'
	"air pollut*"[Title/Abstract] OR "particulate matter*"[Title/Abstract] OR "carbon monoxide"[Title/Abstract] OR "sulfur dioxide"[Title/Abstract] OR
	"sulphur dioxide"[Title/Abstract] OR "nitrogen dioxide"[Title/Abstract] OR "nitrogen oxides"[Title/Abstract] OR "nitric oxide"[Title/Abstract] OR
1	ozone[Title/Abstract] OR "gaseous pollut*"[Title/Abstract] OR "fine partic*"[Title/Abstract] OR "air qualit*"[Title/Abstract] OR "total suspended
	partic*"[Title/Abstract] OR "PM10"[Title/Abstract] OR "PM2.5"[Title/Abstract] OR "NO2"[Title/Abstract] OR "SO2"[Title/Abstract] OR
	"NOx"[Title/Abstract] OR "CO"[Title/Abstract] OR "O3"[Title/Abstract] OR "TSP"[Title/Abstract] OR "temperature*"[Title/Abstract] OR weather
	[Title/Abstract] OR heat*[Title/Abstract] OR cold*[Title/Abstract] OR climat*[Title/Abstract] OR "heat wave*"[Title/Abstract] OR
	heatwave*[Title/Abstract] OR "cold wave*"[Title/Abstract] OR coldwave*[Title/Abstract] OR "thermal stress"[Title/Abstract]; Filters: English
	"Pregnancy Outcome*"[Title/Abstract] OR "Birth Outcome*"[Title/Abstract] OR "Perinatal Outcome*"[Title/Abstract] OR "Obstetric
2	Outcome*"[Title/Abstract] OR "Fetal Outcome*"[Title/Abstract] OR "Foetal Outcome*"[Title/Abstract] OR "Spontaneous Abortion"[Title/Abstract] OR
	"Premature Birth"[Title/Abstract] OR "Preterm Birth"[Title/Abstract] OR "Preterm Delivery"[Title/Abstract] OR "Premature Labo*"[Title/Abstract] OR
	Stillbirth[Title/Abstract] OR "Still birth"[Title/Abstract] OR "Fetal Death"[Title/Abstract] OR "Foetal Death"[Title/Abstract] OR "Pregnancy
	Loss"[Title/Abstract] OR Miscarriage[Title/Abstract] OR "Perinatal Death"[Title/Abstract] OR "Birth Weight"[Title/Abstract] OR
	"Birthweight"[Title/Abstract] OR "Fetal Weight"[Title/Abstract] OR "Foetal Weight"[Title/Abstract] OR "Fetal Growth"[Title/Abstract] OR "Foetal
	Growth"[Title/Abstract] OR "Gestational Age"[Title/Abstract] OR "Small-for-gestational age"[Title/Abstract] OR "intra-uterine growth
	retardation*"[Title/Abstract] OR "intrauterine growth retardation*"[Title/Abstract] OR "intrauterine growth restriction*"[Title/Abstract] OR "intra-uterine
	growth restriction*"[Title/Abstract] OR "PTB"[Title/Abstract] OR "PTD"[Title/Abstract] OR "LBW"[Title/Abstract] OR "TLBW"[Title/Abstract] OR
	"SGA"[Title/Abstract] OR "FGR"[Title/Abstract] OR "IUGR"[Title/Abstract] ; Filters-English
3	#1 AND #2
4	Review [Title/Abstract] OR "meta-analysis"[Title/Abstract]
5	#3 AND #4
6	#5 Filters applied, <i>English</i> , <i>Humans</i>

II.	CINAHL
Search	Advanced search in the title and abstract with the function 'TI OR AB'
ID	
	TI ("air pollut*" OR "particulate matter*" OR "carbon monoxide" OR "sulfur dioxide" OR "sulphur dioxide" OR "nitrogen dioxide" OR "nitrogen
	oxides" OR "nitric oxide" OR ozone OR "gaseous pollut*" OR "fine partic*" OR "air qualit*" OR "total suspended partic*" OR "PM10" OR "PM2.5"
	OR "NO2" OR "SO2" OR "NOx" OR "CO" OR "O3" OR "TSP" OR "temperature*" OR weather OR heat* OR cold* OR climat* OR "heat wave*"
	OR heatwave* OR "cold wave*" OR coldwave* OR "thermal stress") OR AB ("air pollut*" OR "particulate matter*" OR "carbon monoxide" OR
	"sulfur dioxide" OR "sulphur dioxide" OR "nitrogen dioxide" OR "nitrogen oxides" OR "nitric oxide" OR ozone OR "gaseous pollut*" OR "fine
	partic*" OR "air qualit*" OR "total suspended partic*" OR "PM10" OR "PM2.5" OR "NO2" OR "SO2" OR "NOx" OR "CO" OR "O3" OR "TSP" OR
	"temperature*" OR weather OR heat* OR cold* OR climat* OR "heat wave*" OR heatwave* OR "cold wave*" OR coldwave* OR "thermal stress")
S 1	; Expanders - Apply equivalent subjects; Search modes - Boolean/Phrase
	TI ("Pregnancy Outcome*" OR "Birth Outcome*" OR "Perinatal Outcome*" OR "Obstetric Outcome*" OR "F#etal Outcome*" OR "Spontaneous
	Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm Delivery" OR "Premature Labo*" OR Stillbirth OR "Still birth" OR "F#etal Death"
	OR "Pregnancy Loss" OR Miscarriage OR "Perinatal Death" OR "Birth Weight" OR "Birthweight" OR "F#etal Weight" OR "F#etal Growth" OR
	"Gestational Age" OR "Small-for-gestational age" OR "intra-uterine growth retardation*" OR "intrauterine growth retardation*" OR "intrauterine
	growth restriction*" OR "intra-uterine growth restriction*" OR "PTB" OR "PTD" OR "LBW" OR "TLBW" OR "SGA" OR "FGR" OR "IUGR") OR
	AB ("Pregnancy Outcome*" OR "Birth Outcome*" OR "Perinatal Outcome*" OR "Obstetric Outcome*" OR "F#etal Outcome*" OR "Spontaneous
S2	Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm Delivery" OR "Premature Labo*" OR Stillbirth OR "Still birth" OR "F#etal Death"
	OR "Pregnancy Loss" OR Miscarriage OR "Perinatal Death" OR "Birth Weight" OR "Birthweight" OR "F#etal Weight" OR "F#etal Growth" OR
	"Gestational Age" OR "Small-for-gestational age" OR "intra-uterine growth retardation*" OR "intrauterine growth retardation*" OR "intrauterine
	growth restriction*" OR "intra-uterine growth restriction*" OR "PTB" OR "PTD" OR "LBW" OR "TLBW" OR "SGA" OR "FGR" OR "IUGR")
	; Expanders – Apply equivalent subjects, Search modes – Boolean/Phrase
S 3	S1 AND S2
	Expanders – Apply equivalent subjects, Search modes – Boolean/Phrase
S4	TI ("review" OR "meta-analysis") OR AB ("review" OR "meta-analysis")
	Expanders – Apply equivalent subjects; Search modes – Boolean/Phrase
S5	S3 AND S4; Limiters – English Language; Human
	Expanders – Apply equivalent subjects: Search modes – Boolean/Phrase

]	III. Scopus
#	Advanced search in the title and abstract with the function 'TITLE-ABS'
	TITLE-ABS ("air pollut*" OR "particulate matter*" OR "carbon monoxide" OR "sulfur dioxide" OR "sulphur dioxide" OR "nitrogen dioxide" OR "nitrogen
	oxides" OR "nitric oxide" OR ozone OR "gaseous pollut*" OR "fine partic*" OR "air qualit*" OR "total suspended
1	partic*" OR "PM10" OR "PM2.5" OR "NO2" OR "SO2" OR "NOx" OR "CO" OR "O3" OR "TSP" OR "temperature*" OR weather OR heat* OR c
	old* OR climat* OR "heat wave*" OR heatwave* OR "cold wave*" OR coldwave* OR "thermal stress")
	TITLE-ABS ("Pregnancy Outcome*" OR "Birth Outcome*" OR "Perinatal Outcome*" OR "Obstetric Outcome*" OR "F*etal Outcome*" OR "Spontaneous
	Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm Delivery" OR "Premature Labo*" OR Stillbirth OR "Still birth" OR "F*etal Death" OR
	"Pregnancy Loss" OR Miscarriage OR "Perinatal Death" OR "Birth Weight" OR "Birthweight" OR "F*etal Weight" OR "F*etal Growth" OR "Gestational Age" OR
2	"Small-for-gestational age" OR "intra-uterine growth retardation*" OR "intrauterine growth retardation*" OR "intrauterine growth restriction*" OR "intra-uterine
	growth restriction*" OR "PTB" OR "PTD" OR "LBW" OR "TLBW" OR "SGA" OR "FGR" OR "IUGR")
3	#1 AND # 2
4	TITLE-ABS ("review OR "meta-analysis")
5	#3 AND #4 AND (LIMIT-TO (LANGUAGE, "English")) AND (LIMIT-TO (SRCTYPE, "j") OR LIMIT-TO (SRCTYPE, "d") OR LIMIT-TO (
	SRCTYPE, "Undefined")) AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "Undefined"))

IV. V. MEDLINE (Ovid) and

EMBASE (Ovid)

#	Advanced search within the title and abstract with the function '.ti,ab'
	("air pollut*" or "particulate matter*" or "carbon monoxide" or "sulfur dioxide" or "sulphur dioxide" or "nitrogen dioxide" or "nitrogen oxides" or "nitric
1	oxide" or ozone or "gaseous pollut*" or "fine partic*" or "air qualit*" or "total suspended partic*" or "PM10" or "PM2.5" or "NO2" or "SO2" or "NOx" or
	"CO" or "O3" or "TSP" or "temperature*" or weather or heat* or cold* or "climat*" or "heat wave*" or heatwave* or "cold wave*" or coldwave* or "thermal
	stress").ti,ab
2	limit #1 to (english language and humans)
	("Pregnancy Outcome*" or "Birth Outcome*" or "Perinatal Outcome*" or "Obstetric Outcome*" or "F?etal Outcome*" or "Spontaneous Abortion" or
3	"Premature Birth" or "Preterm Birth" or "Preterm Delivery" or "Premature Labo*" or Stillbirth or "Still birth" or "F?etal Death" or "Pregnancy Loss" or
	Miscarriage or "Perinatal Death" or "Birth Weight" or "Birthweight" or "F?etal Weight" or "F?etal Growth" or "Gestational Age" or "Small-for-gestational
	age" or "intra-uterine growth retardation*" or "intrauterine growth retardation*" or "intrauterine growth restriction*" or "intra-uterine growth restriction*" or
	"PTB" or "PTD" or "LBW" or "TLBW" or "SGA" or "FGR" or "IUGR").ti,ab
4	limit #3 to (english language and humans)
5	#2 AND #4
6	("review" or "meta-analysis").ti,ab.
7	limit #6 to (english language and humans)
8	#5 AND #7

VI. Web of Science Core Collection

#	Advanced search within the title, abstract and keywords with the function 'TS'
1	(TS=("air pollut*" OR "particulate matter*" OR "carbon monoxide" OR "sulfur dioxide" OR "sulphur dioxide" OR "nitrogen dioxide" OR "nitrogen
	oxides" OR "nitric oxide" OR ozone OR "gaseous pollut*" OR "fine partic*" OR "air qualit*" OR "total suspended partic*" OR "PM10" OR "PM2.5" OR
	"NO2" OR "SO2" OR "NOx" OR "CO" OR "O3" OR "TSP" OR "temperature*" OR weather OR heat* OR cold* OR climat* OR "heat wave*" OR
	heatwave* OR "cold wave*" OR coldwave* OR "thermal stress")); Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH,
	ESCI, CCR-EXPANDED, IC Timespan=All years
	(TS=("Pregnancy Outcome*" OR "Birth Outcome*" OR "Perinatal Outcome*" OR "Obstetric Outcome*" OR "F\$etal Outcome*" OR "Spontaneous
2	Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm Delivery" OR "Premature Labo*" OR Stillbirth OR "Still birth" OR "F\$etal Death" OR
	"Pregnancy Loss" OR Miscarriage OR "Perinatal Death" OR "Birth Weight" OR "Birthweight" OR "F\$etal Weight" OR "F\$etal Growth" OR "Gestational
	Age" OR "Small-for-gestational age" OR "intra-uterine growth retardation*" OR "intrauterine growth retardation*" OR "intrauterine growth restriction*"
	OR "intra-uterine growth restriction*" OR "PTB" OR "PTD" OR "LBW" OR "TLBW" OR "SGA" OR "FGR" OR "IUGR")); Indexes=SCI-EXPANDED,
	SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years
3	(#1 AND #2); Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years
4	(TS=("systematic review" OR "meta-analysis"))
	Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years
5	#3 AND #4 AND LANGUAGE: (English)
	Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

VII. Cochrane Database of Systematic Reviews

	•
#	Advanced search within the title, abstract and keywords with the function 'Title Abstract Keyword'
	("air pollut*" OR "particulate matter*" OR "carbon monoxide" OR "sulfur dioxide" OR "sulphur dioxide" OR "nitrogen dioxide" OR "nitrogen oxides"
1	OR "nitric oxide" OR ozone OR "gaseous pollut*" OR "fine partic*" OR "air qualit*" OR "total suspended partic*" OR "PM10" OR "PM2.5" OR "NO2"
	OR "SO2" OR "NOx" OR "CO" OR "O3" OR "TSP" OR "temperature*" OR weather OR heat* OR cold* OR climat* OR "heat wave*" OR heatwave*
	OR "cold wave*" OR coldwave* OR "thermal stress") in Title Abstract Keyword - (Word variations have been searched)
	("Pregnancy Outcome*" OR "Birth Outcome*" OR "Perinatal Outcome*" OR "Obstetric Outcome*" OR "Fetal Outcome*" OR "Foetal Outcome*" OR
	"Spontaneous Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm Delivery" OR "Premature Labo*" OR Stillbirth OR "Still birth" OR
	"Fetal Death" OR "Pregnancy Loss" OR Miscarriage OR "Perinatal Death" OR "Birth Weight" OR "Birthweight" OR "Fetal Weight" OR "Foetal Weight"
2	OR "Fetal Growth" OR "Foetal Growth" OR "Gestational Age" OR "Small-for-gestational age" OR "intra-uterine growth retardation*" OR "intrauterine
	growth retardation*" OR "intrauterine growth restriction*" OR "intra-uterine growth restriction*" OR "PTB" OR "PTD" OR "LBW" OR "TLBW" OR
	"SGA" OR "FGR" OR "IUGR") in Title Abstract Keyword - (Word variations have been searched)
3	1 AND 2 in Title Abstract Keyword - in Cochrane Reviews (Word variations have been searched)

VIII. Joanna Briggs Institute EBP Database (Ovid)

#	Advanced search within the title and abstract with the function '.ti,ab.'
	("air pollut*" or "particulate matter*" or "carbon monoxide" or "sulfur dioxide" or "sulphur dioxide" or "nitrogen dioxide" or "nitrogen oxides" or "nitric
	oxide" or ozone or "gaseous pollut*" or "fine partic*" or "air qualit*" or "total suspended partic*" or "PM10" or "PM2.5" or "NO2" or "SO2" or "NOX"
	or "CO" or "O3" or "TSP" or "temperature*" or weather or heat* or cold* or "climat*" or "heat wave*" or heatwave* or "cold wave*" or coldwave* or
1	"thermal stress").ti,ab
	("Pregnancy Outcome*" or "Birth Outcome*" or "Perinatal Outcome*" or "Obstetric Outcome*" or "F?etal Outcome*" or "Spontaneous Abortion" or
2	"Premature Birth" or "Preterm Birth" or "Preterm Delivery" or "Premature Labo*" or Stillbirth or "Still birth" or "F?etal Death" or "Pregnancy Loss" or
	Miscarriage or "Perinatal Death" or "Birth Weight" or "Birthweight" or "F?etal Weight" or "F?etal Growth" or "Gestational Age" or "Small-for-
	gestational age" or "intra-uterine growth retardation*" or "intrauterine growth retardation*" or "intrauterine growth restriction*" or "intra-uterine growth
	restriction*" or "PTB" or "PTD" or "LBW" or "TLBW" or "SGA" or "FGR" or "IUGR").ti,ab.
3	#1 AND #2

IX. Epistemonikos Database (www.epistemonikos.org/)

#	Advanced search within the title and abstract with the function 'Title/Abstract'
	Title/Abstract ("air pollut*" OR "particulate matter*" OR "carbon monoxide" OR "sulfur dioxide" OR "sulphur dioxide" OR "nitrogen dioxide" OR "nitrogen dioxide" OR "nitrogen dioxide" OR "nitrogen dioxide" OR "gaseous pollut*" OR "fine partic*" OR "air qualit*" OR "total suspended partic*" OR "PM10" OR
	"PM2.5" OR "NO2" OR "SO2" OR "NOx" OR "CO" OR "O3" OR "TSP" OR "temperature*" OR weather OR heat* OR cold* OR climat* OR "heat
	wave*" OR heatwave* OR "cold wave*" OR coldwave* OR "thermal stress")
1	
2	Title/Abstract ("Pregnancy Outcome*" OR "Birth Outcome*" OR "Perinatal Outcome*" OR "Obstetric Outcome*" OR "Fetal Outcome*" OR "Foetal Outcome*" OR "Spontaneous Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm Delivery" OR "Premature Labo*" OR Stillbirth OR "Still birth" OR "Fetal Death" OR "Foetal Death" OR "Foetal Death" OR "Pregnancy Loss" OR Miscarriage OR "Perinatal Death" OR "Birth Weight" OR "Birthweight" OR "Fetal Weight" OR "Foetal Growth" OR "Foetal Growth" OR "Gestational Age" OR "Small-for-gestational age" OR "intra-uterine growth retardation*" OR "Intra-uterine growth restriction*" OR "Intra-uterine growth restriction*" OR "ItalW" OR "TLBW" OR "SGA" OR "FGR" OR "IUGR")
3	#1 AND #2; Publication type: systematic review

X. Grey literature sources and search strategy

Grey literature	Search straetgy				
i. Google Scholar (first 200 hits) 21/10/2020	"air quality" "air pollution" "particulate matter" "gaseous pollutants" "total suspended particle" "carbon monoxide" "sulfur dioxide" "sulphur dioxide" "nitrogen dioxide" "nitrogen oxides" "nitricoxide" ozone temperature weather heat cold "climate change" heatwave coldwave "thermal stress" PM10 PM2.5 NO2 SO2 NOx CO O3 TSP AND ("Pregnancy outcomes" "Birth Outcomes" "Perinatal Outcomes" "Obstetric Outcomes" "Fetal Outcomes" "Foetal Outcomes" "Spontaneous Abortion" "Freemature Birth" "Preterm Birth" "Preterm Delivery" "Premature Labor" "sontaneous labour" Stillbirth "Still birth" "Fetal Death" "Foetal Death" "Foetal Growth" "Foetal Growth" "Gestational Age" "Small-for-gestational age" "thra-uterine growth restriction" "thra-uterine growth restriction" "Entry IUGR AND review meta-analysis				
ii. Google.com (screened first 200 hits where available) 21-22/10/2020	 The following phrases were used: 1. systematic review and meta-analysis of air pollution and pregnancy and birth outcomes 2. systematic review and meta-analysis of air pollution and preterm birth 3. systematic review and meta-analysis of air pollution and low birth weight 4. systematic review and meta-analysis of air pollution and pregnancy loss still birth spontaneous abortion and 				
	 miscarriage systematic review and meta-analysis of air pollution and small for gestational age systematic review and meta-analysis of climate change, temperature, heat and cold waves and pregnancy and birth outcomes 				
	 systematic review and meta-analysis of climate change, temperature, heat and cold waves and low birth weight systematic review and meta-analysis of climate change, temperature, heat and cold waves and pregnancy loss, still birth, spontaneous abortion and miscarriage 				
iii. OpenGrey 24/10/2020	("air pollut*" OR "particulate matter*" OR "carbon monoxide" OR "sulfur dioxide" OR "sulphur dioxide" OR "nitrogen dioxide" OR "nitrogen oxides" OR "nitric oxide" OR ozone OR "gaseous pollut*" OR "fine partic*" OR "air qualit*" OR "total suspended partic*" OR "PM10" OR "PM2.5" OR "NO2" OR "SO2" OR "NOX" OR "CO" OR "O3" OR "TSP" OR "temperature*" OR weather* OR heat* OR cold* OR "climat*" OR "heat wave*" OR heatwave* OR "cold wave*" OR coldwave* OR "thermal stress") AND ("Pregnancy Outcome*" OR "Birth Outcome*" OR "Perinatal Outcome*" OR "Obstetric Outcome*" OR "F?etal Outcome*" OR "Spontaneous Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm Delivery" OR "Premature Labo*" OR Stillbirth OR "Still birth" OR "F?etal Death" OR "Pregnancy Loss" OR "Miscarriage" OR "Small-for-gestational age" OR "intra-uterine growth restriction*" OR "PTB" OR "PTD" OR "LBW" OR "TLBW" OR "SGA" OR "FGR" OR "IUGR") AND (review OR meta-analysis)				
iv. WorldWideScience.org	Title: ("air pollut*" OR "particulate matter*" OR "carbon monoxide" OR "sulfur dioxide" OR "sulphur dioxide" OR "nitrogen				
24/10/2020	dioxide" OR "nitrogen oxides" OR "nitric oxide" OR ozone OR "gaseous pollut*" OR "fine partic*" OR "air qualit*" OR "total				

	suspended partic*" OR "PM10" OR "PM2.5" OR "NO2" OR "SO2" OR "NOx" OR "CO" OR "O3" OR "TSP" OR			
	temperature* OR weather* OR heat* OR cold* OR climat* OR "heat wave*" OR heatwave* OR "cold wave*" OR coldwave*			
	OR "thermal stress") AND ("Pregnancy Outcome*" OR "Birth Outcome*" OR "Perinatal Outcome*" OR "Obstetric			
	Outcome*" OR "F*etal Outcome*" OR "Spontaneous Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm			
Delivery" OR "Premature Labo*" OR Stillbirth OR "Still birth" OR "F*etal Death" OR "Pregnancy Loss"				
	OR "Perinatal Death" OR "Birth Weight" OR "Birthweight" OR "F*etal Weight" OR "F*etal Growth" OR "Gestational Age"			
	OR "Small-for-gestational age" OR "intra-uterine growth retardation*" OR "intrauterine growth retardation*" OR "intrauterine			
	growth restriction*" OR "intra-uterine growth restriction*" OR "PTB" OR "PTD" OR "LBW" OR "TLBW" OR "SGA" OR			
	"FGR" OR "IUGR") AND (review OR meta-analysis); Filters; English language			
v. World Health Organisation	'Title, abstract, subject' search			
Global Health Medicus databases	(tw:(air pollut* OR particulate matter* OR "carbon monoxide" OR "sulfur dioxide" OR "sulphur dioxide" OR "nitrogen			
24/10/2020	dioxide" OR "nitrogen oxides" OR "nitric oxide" OR ozone OR gaseous pollut* OR fine partic* OR air qualit* OR total			
	suspended partic* OR "PM10" OR "PM2.5" OR "NO2" OR "SO2" OR "NOx" OR "CO" OR "O3" OR "TSP" OR			
	temperature* OR weather* OR heat* OR cold* OR climat* OR heat wave* OR heatwave* OR cold wave* OR coldwave* OR			
	"thermal stress")) AND (tw:(Pregnancy Outcome* OR "Birth Outcome* OR Perinatal Outcome* OR Obstetric Outcome* OR			
	F*etal Outcome* OR "Spontaneous Abortion" OR "Premature Birth" OR "Preterm Birth" OR "Preterm Delivery" OR			
	Premature Labo* OR Stillbirth OR "Still birth" OR F*etal Death OR "Pregnancy Loss" OR "Miscarriage" OR "Perinatal Death"			
	OR "Birth Weight" OR "Birthweight" OR F*etal Weight OR F*etal Growth OR "Gestational Age" OR "Small-for-gestational			
	age" OR "intra-uterine growth retardation* OR intrauterine growth retardation* OR intrauterine growth restriction* OR intra-			
	uterine growth restriction* OR "PTB" OR "PTD" OR "LBW" OR "TLBW" OR "SGA" OR "FGR" OR "IUGR")) AND			
	(tw:(review OR meta-analysis))			

S/N	Article excluded	Reason(s)
1	Zhu et al, 2017	Full text in Chinese language
2	Feng et al 2017	Full text in Chinese language
3	de Toledo et al 2011	Full text in Portuguese language
4	Guo et al 2019	Retracted (Doi: 10.1631/jzus.B18r0122)
5	Nieuwenhuijsen et al, 2013	Summary of meta-analysis
6	Vrijheid et al 2016	A broad summary of the literature on systematic reviews and/or meta-analyses published between 2010 to 2015
7	Backes et al 2013	General literature review (not systematic review). No method section, no in/exclusion criteria, no specification of search terms and database searched.
8	Deepak et al 2016	General literature review (not systematic review). No method section, no in/exclusion criteria, no specification of search terms and database searched.
9	Heinrich et al 2007	General literature review (not systematic review). No method section, no in/exclusion criteria, no specification of search terms and databases searched.
10	Huang et al 2019	Unrelated outcomes of interest
11	Kloog 2019	General literature review (not systematic review). No method section, no in/exclusion criteria, no specification of search terms and database searched.
12	Koranteng et al 2007	Included only one related primary study
13	Lai 2013	Insufficient related studies of interest and lack required details on included studies.
14	Li et al 2019	General literature review, not systematic review
15	Maisonet et al 2004	Very scanty method without any clearly specified search strategy with search terms used for the literature search apart from the indication "We identified articles through Medline searches, bibliographies of individual articles, and reviews of scientific journals from 1966 through December 2001."
16	Melody et al, 2019	Not exposure measurement of interest
17	Morakinyo et al 2016	Not outcomes of interest
18	Nandasena et al 2010	Not outcomes of interest
19	Proietti et al 2013	General literature review, not systematic review.
20	Stillerman et al 2008	General literature review, not a systematic review
21	Tan et al 2017	General literature review, not a systematic review
22	Triche et al 2007	General literature review, not a systematic review
23	Wang et al 2007	General literature review, not a systematic review
24	Windham et al 2008	General literature review, not a systematic review
25	Zheng et al 2016	General literature review, not a systematic review

Table S2. Lists of articles excluded after full-text screening stage with reasons per pre-specified eligibility criteria.

26	Klepac et al, 2018	Study-specific details of the included studies (e.g., study design, sample size, effect estimates,
		location etc.) were not provided.
27	Ma et al 2020	Exposure-outcome of interest was not primary focus of the review but included 4 studies without
		any details on the included studies.
28	Srám et al 2005	Lack some of the required key details on the included primary studies: participants/sample size
		and the effect estimate (but provided effect estimates for only significant increased risks while
		providing 'NE, no effect' without the effect estimates for other results).
29	Vieira et al 2015	Exposure-outcome of interest was not the primary outcome of but included few related studies
		without required details on the included primary studies.
30	Khader et al 2016	Included 3 primary studies but lack exposure-outcome effect estimates for each listed criteria air
		pollutant.
31	Porpora et al, 2019	Included less than 3 primary studies on the exposure-outcome and with no details on included
	-	studies.
32	Lee et al 2020	General literature review (not systematic review) and summarised existing meta-analyse
33	Yu et al 2016	Full text in Chinese language
34	Polichetti et al 2013	General literature review with no in/exclusion criteria. Also, provided only yes/no for exposure-
		outcome association without any other results, information or details on the included primary
		studies.
35*	Steinle et al 2020	Overview of meta-analysis on particulate matter, birth weight and health through the life course
36	Gómez-Roig et al 2021	General literature review, not a systematic review
37	Ekland et al 2021	No details on included studies as systematic review and meta-analysis was not the main objective
38	Eeden et al 2021	General literature review, not a systematic review
39	Pereira, 2022	No systematic literature search, was a re-analysis of some studies included in Ju et al (2021).
40	Whaibeh et al 2022	General literature review, not a systematic review

*35-40 were from the prospective literature search and the updates.

First author,	Exposure(s)	Outcome(s)	Summary of results	Researchers'	Researchers' stated
date [number of				recommendations	strengths and limitations
authors,					
countries]	DM DM	IDW SCA	No clear avidence of difference in the cir rellution	'There would be velue in	Steen ath
1. Edwards et al	$PM_{2.5}, PM_{10},$ NO ₂ SO ₂	LDW, SUA, PTB	no clear evidence of difference in the air politition-	expanding air pollution	This is the first literature
(120 wards ct al., 2022)	Ranges: NA	TID	not move during pregnancy'	research that capitalizes on	review of the health effects
12/10/2021 [4:3	Tunges. Tur		not move during pregnancy.	the advantages of relocation	of people who relocate
UK and 1 Nepall			'Three studies of relocation during pregnancy provided	studies, but attention is	from one environment to
			limited evidence to conclude an effect of relocation-related	needed to improve potential	another of differing air
			change in exposure on pregnancy outcome.'	bias and confounder control	pollution levels.
				in studies examining the	-
				effects of short-term	Limitations
				relocations to environments	'Ambient pollutant levels
				of different air pollution	were reported for the
				levels.'	patients' entire
					pregnancies but pollutant
					levels before and after
					explicitly reported in these
					studies '
					'The literature of
					relocation studies for
					studying the health effects
					of air pollution effects
					remains limited and very
					heterogenous in design and
					quality.'
2. Walter,	PM2.5,PM1	LBW, BW,	'While some evidence indicated adverse birth outcomes,	'There are apparent	Strength
2021(Walter et	0,NO2,SO2,	SGA, PTB	such as pre-term birth, and reduced intra-uterine growth,	differences in the magnitude	The screening of each
al., 2021)	03,00		overall the birth outcomes were heterogeneous and it was	and range of health impacts	database, study selection
00/00/2021			not possible to draw firm conclusions.	across different pollutant	and quality assessment of
[0, an Austrana]				beneficial in formulating	undertaken by two
				preventative strategies aimed	authors' 'All included
				at reducing the health burden	studies controlled for some
				of outdoor air pollution in	potential confounders'.
				Australia.' 'Further research	

Table S3. Additional information on systematic reviews without meta-analysis, ordered from recent to earliest.

3 Luo (Luo et	PMag PMas	PTR RW	Note: Specific exposure outcome with exposure periods	is required to characterise better the range of neo-natal impacts and identify specific exposure windows of heightened risk within the pregnancy.'	Limitations 'Over two thirds of the studies included in this review used fixed site monitors, and noted the limitations in capturing spatial variability of population exposure.' 'The included studies ranged in design and size, with one quarter being cohort design and of modest size by international comparison. The exclusion of proxy exposure measurements and subjective health measurements, such as questionnaires, resulted in the omission of several otherwise well conducted studies that were relevant to the remit of our review.'
3. Luo (Luo et al., 2021) 09/03/2021 [6; 5 China, 1 UK]	PM2.5, PM10, NO2, NO _x ,	LBW, SGA	 Note: Specific exposure-outcome with exposure periods not done for this review because the review article reported only key results of the included studies. Indicated below are key findings highlighted in the review. PTB-NO2 "A total of 16 studies explored the relationship between NO2 and PTB. Only five studies obtained statistically significant results, and the rest studies did not find a significant association between prenatal exposure to NO2 and PTB. Overall, the results are inconclusive." SGA-NO2 	"It is recommended that future studies should apply LUR models for individual exposure evaluation in China to better characterize the relationship between air pollution and adverse pregnancy outcomes." From abstract: "In addition, further research is required given that a lot of the associations looked at in the review were inconclusive"	Not reported

exposure and SGA. Only four studies found statistical	
exposure and SOA. Only four studies found statistical	
significance results. No significant according between	
significance results. No significant association between	
exposure and SGA was found in the rest studies. It is	
apparent that conclusions are inconsistent."	
LBW/BW-NO ₂	
"Twenty-four studies explored the relationship between	
NO_2 and	
birth weight." Four studies "found that NO ₂ exposure	
during	
pregnancy was associated with reduced birth weight (β	
range	
from -5.2 to - 43.6 g). Three studies found increased risk	
of term LBW. "However, two studies found exposure to	
NO ₂ was associated with increased birth weight. "No	
substantive effects of NO_2 exposure on birth weight were	
evident in the rest of the studies. Overall, there is	
considerable heterogeneity in the effects of NO_2 exposure	
on birth weight, and therefore, results are inconclusive. "	
PTB-PM2.5	
"Among seven studies investigating the link between	
PM2.5 and PTB, only one study showed a statistically	
significant result. Overall, PM2.5 exposure during	
pregnancy is not	
associated with PTB."	
SGA-PM2.5	
"Six studies investigated the relationship between PM2.5	
exposure during pregnancy and SGA, out of which three	
studies found that PM2.5 exposure was associated with an	
increased risk of SGA." In the other three studies, no	
significant association	
between PM2.5 and SGA was found. Results on	
association	
between exposure to PM2.5 during pregnancy and SGA	
were	

			not consistent."		
			 BW/LBW-PM2.5 "Seventeen studies explored the relationship between PM2.5 and birth weight. Eight of the 17 studies found that PM2.5 exposure during pregnancy was associated with reduced birth weight." "In addition, four studies concluded that PM2.5 exposure increased the risk of TLBW." "The rest of studies did not reach statistically significant conclusions. In general, the results show that PM2.5 exposure during pregnancy is associated with a decrease in birth weight" BW-NOx : "Six studies investigated the effect of NOx exposure on birth weight, however results were inconsistent." "The inconsistency of results shows that the relationship between NOx and birth weight is not well established. The effect of exposure to NOx on other pregnancy outcomes has been studied. Given the limited number of studies and mixed results, it is impossible to reach conclusions regarding the relationship between NOx 		
			exposure and adverse pregnancy outcomes."		
4. Bekkar (Bekkar et al., 2020) 18/06/2020 [4, all USA]	PM _{2.5} , O ₃	PTB, LBW, and SB	 PTB PM2.5: (24 studies; 18 cohorts, 2 each time series, case-control and cross-sectional; 9,286,285 births). 16 reports on the whole pregnancy: 12 found significant increased risks, 3 non-significant increased risk and 1 with no association. 7 reports on 1st trimester; 5 found significant increased risks, 1 non-significant increased risk and 1 with no association. 8 reports on 2nd trimester; 6 found significant increased risks, 1 non-significant increased risk and 1 with no association. 6 reports on 3rd trimester; 2 found significant increased risks, 2 non-significant increased risk, 1 non-significant increased risk, and 1 with no association. 	The medical community at large and women's health clinicians in particular should take note of the emerging data and become facile in both communicating these risks with patients and integrating them into plans for care. Moreover, physicians can adopt a more active role as patient advocates to educate elected officials entrusted with public policy and insist	Strengths: The considerable sample size and the wide geographic range that includes every region of the US domestic population; focus on the US population makes the findings particularly relevant to pregnant women and health care clinicians in the US; the merit of tabulating the overall preponderance of observations from varying

OheOheConstructionStudies : A cohorts, leach for case-control and cross sectional: 1.868.257 bit(hs)on effective action to stop studies is not feasible.2 reports on 2 nd trimester increased risk and 1 no association. 2 reports on 3 nd trimester 1 each found significant increased risk and no association. 1 report on 3 nd trimester increased risk in a cassociation. 1 report on 3 nd trimester increased risk in a cassociation. Varied weekly and week ranges of exposure periods reported with significant increased risks in carly and late gestational weeks. LBW PM2.5: (17 rudies; 15 cohorts and 1 each cross-sectional and case control; 11,729,145 births). 14 reports for entire preparatory infinient increased risk and 3 non-significant increased risk 3 for 3 nd trimester: 2 found significant increased risk a for 2 nd trimester: 2 found significant increased risk a for 2 nd trimester: 2 found non-significant increased risk a for 2 nd trimester: 2 found non-significant increased risk a for 2 nd trimester: 2 found non-significant increased risk a for 2 nd trimester: 2 found non-significant increased risk a for 2 nd trimester: 2 found non-significant increased risk a for 2 nd				
 sectional; 1,868,257 births) d reports on the whole pregnancy period; 3 were significant increased risks and 1 no association. 2 reports on 3^{ab} trimester: 1 each found significant increased risks and no association. 2 reports on 3^{ab} trimester: 1 each found significant increased risks and 1 no association. 1 report on 3^{ab} trimester: 1 each found significant increased risks and 1 association. Varied weekly and week ranges of exposure periods reports on 2^{ab} trimester with no association. Varied weekly and week ranges of exposure periods reports on 2^{ab} trimester i the disks in early and late gestational weeks. LBW PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional and case corrors; 11,729,145 births). 14 reports for entive pregnancy: 10 found significant increased risk and 2 non-significant increased risk and 2 non-significant increased risk and 2 non-significant increased risk. 5 for 2^{ab} trimester: 3 found significant increased risk and 2 non-significant increased risk. 3 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222.55 births) examined and found significant increased risk. 3 for 2^{ab} trimester: 3 found significant increased risk. 3 for 2^{ab} trimester: 3 found significant increased risk. 3 for 2^{ab} trimester: 3 found significant increased risk. 3 for 2^{ab} trimester: 3 found significant increased risk. 3 for 2^{ab} trimester: 3 found significant increased risk. 3 for 2^{ab} trimester: 3 found significant increased risk. 3 for 2^{ab} trimester: 3 found significant increased risk. 3 for 2^{ab} trimester: 3 found significant increased risk. 3 for 2^{ab} trimester: 3 found non-significant increased risk. 3 for 2^{ab} trimester: 3 found non-significant increased risk. 3 for 2^{ab} trimester: 3 found non-significant increased risk. 3 for 2		O3: (6 studies; 4 cohorts, 1each for case-control and cross-	on effective action to stop	studies examining the
4 reports on the whole pregnancy period; 3 were significant increased risks and 1 no association. 2 reports on 2 ^{sd} trimester; 1 each found significant increased risk and no association. 2 reports on 3 ^{sd} trimester; 1 each found significant increased risk and no association. 1 report on 3 ^{sd} trimester; 1 each found significant increased risk and no association. 2 reports on 3 ^{sd} trimester; 1 each found significant increased risk and no association. 4 reports on 3 ^{sd} trimester; 1 each found significant increased risk and no association. 4 reports of a significant increased risk, in early and late gestational weeks. EBW PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional and case control; 11,729,145 births). 14 reports for entire pregnancy: 10 found significant increased risks and 4 non-significant increased risk. 4 for 1 ^{sd} trimester: 1 found significant increased risk and 3 non-significant increased risk and 2 non-significant increased risk. 3 for 2 ^{sd} trimester: 3 found significant increased risk and 2 non-significant increased risk 3 for 2 ^{sd} trimester: 3 found significant increased risk and 2 non-significant increased risk 3 for 2 ^{sd} trimester: 3 found significant increased risk and 2 non-significant increased risk 3 for 2 ^{sd} trimester: 3 found significant increased risk 3 for 2 ^{sd} trimester: 3 found significant increased risk and 1 non-significant increased risk 3 for 2 ^{sd} trimester: 3 found significant increased risk 3 for 2 ^{sd} trimester: 3 found significant increased risk 3 for 2 ^{sd} trimester: 3 found non-significant increased risk and 1 found significant increased risk and 1 found significant increased risk and 1 found significant increased risk and 1 fou		sectional; 1,868,257 births)	the climate crisis.	same outcomes where
significant increased risks and 1 no association.studies is not feasible.2 reports on 2 ^{sd} trimester; 1 each found significantLimitations:increased risk and no association.this review covers only2 reports on 3 ^{sd} trimester; 1 each found significantthis review covers only1 report on 3 ^{sd} trimester with no association.exposure as well as diverseVaried weekly and week ranges of exposure periodsexposure as well as diversereported with significant increased risks in carly and lategestational weeks.LBWexposure as well as diverseLBWPM2.5; (17 studies; 15 cohorts and 1 each cross-sectionaleven within a single study;and case control; 11,729,145 births).H reports for cnitre pregnancy: 10 found significantinstell number of studies0 ron-significant increased risk5 for 2 rd it rimester: 1 chound significant increased risks and 2on significant increased risks and 20 ron-significant increased risk5 for 3 rd it rimester: 3 found significant increased risks and 2non-significant increased risks and 20 ron-significant increased risk5 for 3 rd it rimester: 3 found significant increased risks and 2non-significant increased risk and 20 ron-significant increased risk6 for 3 rd it rimester: 3 found significant increased risk1 rops-sectional significant increased risk0 ron-significant increased risk6 for 3 rd it rimester: 6 tohord non-significant increased risk1 rops-sectional significant increased risk0 ron-significant increased risk7 ron-significant increased risk3 rop 2 rd it rimester: 6 tohord non-significant increased risk </td <td></td> <td>4 reports on the whole pregnancy period; 3 were</td> <td></td> <td>pooled analysis across</td>		4 reports on the whole pregnancy period; 3 were		pooled analysis across
2 reports on 2 ^{ad} trimester; 1 each found significant increased risk and no association. 2 reports on 3 ^{ad} trimester; 1 each found significant increased risk and no association. 1 report on 3 ^{ad} trimester; 1 each found significant increased risk and no association. 2 reports on 3 ^{ad} trimester; 1 each found significant increased risk and no association. Varied weekly and week ranges of exposure periods reported with significant increased risks in early and late gestrational weeks. LBW PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional and case control; 11,729,145 births). 14 reports for entire pregnancy: 10 found significant increased risks. 4 for 1 ^{ad} trimester: 1 found significant increased risk. 4 for 1 ^{ad} trimester: 3 found significant increased risks and 2 non-significant increased risks and 2 non-significant increased risk and 4 non-significant increased risk and 2 non-significant increased risk and 2 non-significant increased risk and 4 non-significant increased risk and 4 non-significant increased risk and 4 non-significant increased risk and 4 non-significant increased risk and 2 non-significant increased risk and 4 non-significant increased risk and 4 non-significant increased risk and 4 non-significant increased risk and 4 non-significant increased		significant increased risks and 1 no association.		studies is not feasible.
 increased risk and no association. Varied weekly and week ranges of exposure periods reports on 3rd trimester with no association. Varied weekly and week ranges of exposure periods gestational weeks. LBW PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional and case control; 11.729.145 births). I dreports for entire pregnancy: 10 found significant increased risks and 3 non-significant increased risks and 4 non-significant increased risks and 2 non-significant increased risk and 2 non-significant increased risk Gore 3 studies (7 cohorts and 1 cross-sectional; 3,703,824 births) The erross-sectional study (222,259 births) examined and found significant increased risk A for 2^{sh} trimester: 2 found non-significant increased risk A for 2^{sh} trimester: 2 found non-significant increased risk A for 2^{sh} trimester: 2 found non-significant increased risk A for 2^{sh}		2 reports on 2 nd trimester; 1 each found significant		Limitations:
12 reports on 3 ^d trimester: 1 each found significant increased risk and no association.0 observational studies with heterogeneous sources of air pollution and heat exposure as well as diverse methods of measurement; reported with significant increased risks in early and late gestational weeks. LBW0 observational studies with exposure as well as diverse methods of measurement; reported with significant increased risks in early and late gestational weeks. LBW0 observational weeks exposure as well as diverse methods of measurement; reports of return study designs may complicate direct comparison of the data even within a single study; limited number of studies on stillbirth.14 reports for entire pregnancy: 10 found significant increased risks and 4 non-significant increased risks and 3 non-significant increased risks and 3 non-significant increased risks and 2 non-significant increased risks and 2 non-significant increased risks and 2 non-significant increased risk o S for 2 ^{dd} trimester: 3 found significant increased risks and 2 non-significant increased risk o S totales for whole pregnancy: 3 found significant increased risk o S totales for whole pregnancy: 3 found significant increased risk o S totales for whole pregnancy: 3 found significant increased risk o 1 LBW during birth month. S studies for whole pregnancy: 3 found significant increased risk o 1 C un-significant increased risk a 1 or 1 method found ingrificant increased risk o 1 C un-significant increased risk a 1 roun-significant increas		increased risk and no association.		this review covers only
 increased risk and no association. increased risk in on association. Varied weekly and week ranges of exposure periods verse as well as diverse methods of measurement; reported with significant increased risks in early and late gestational weeks. WW PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional even within a single study; and case control; 11,729,145 births). 14 reports for entire pregrancy: 10 found significant increased risks and 3 non-significant increased risks and 4 non-significant increased risks and 3 non-significant increased risks and 3 non-significant increased risks and 2 non-significant increased risk sand 2 non-significant increased risk sand 2 non-significant increased risk and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222.259 births) examined and found significant increased risk 2 for 1^{ad} trimester: both found non-significant increased risk 3 for 2^{ad} trimester: 2 found non-significant increased risk 3 for 2^{ad} trimester: 2 found non-significant increased risk 3 for 2^{ad} trimester: 2 found non-significant increased risk 3 for 2^{ad} trimester: 2 found non-significant increased risk 4 for 1^{ad} trimester: 2 found non-significant increased risk 4 for 2^{ad} trimester: 2 found non-significant increased risk 4 for 2^{ad} trimester: 2 found non-significant increased risk 4 for 2^{ad} trimester: 2 found non-significant increased risk 4 for 2^{ad} trimester: 2 found non-significant increased risk 4 for 2^{ad} trimester: 2 found non-significant increased risk 4		2 reports on 3 rd trimester; 1 each found significant		observational studies with
1 report on 3 rd trimester with no association.air pollution and heat exposure as well as diverse methods of measurement; different study designs may complicate direct comparison of the data even within a single study; limited number of studies on significant increased risk.air pollution and heat exposure as well as diverse methods of measurement; different study designs may complicate direct comparison of the data even within a single study; limited number of studies on significant increased risk.4 for 1 st trimester: 1 found significant increased risk. 4 for 1 st trimester: 3 found significant increased risks and 2 non-significant increased risk 5 for 2 rd trimester: 3 found significant increased risks and 2 non-significant increased risk of studies (7 cohorts and 1 cross-sectional; 3,703,824 births).The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies (7 cohorts and 2 non-significant increased risk 2 for 1 st trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk a d 1 found significant increased risk BW reduction PM2.5: 112 studies (11 cohorts, 1 time series; 7,339,714 birks).		increased risk and no association.		heterogeneous sources of
 Varied weekly and week ranges of exposure periods reported with significant increased risks in early and late gestational weeks. LBW PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional and case control; 11,729,145 births). 14 reports for entire pregnancy: 10 found significant increased risks and 4 non-significant increased risks and 3 non-significant increased risk 5 for 2nd trimester: 3 found significant increased risks and 2 non-significant increased risk 6 S for 3nd trimester: 3 found significant increased risks and 2 non-significant increased risk 6 S for 3nd trimester: 3 found significant increased risks and 2 non-significant increased risk 8 S for 3nd trimester: 3 found significant increased risks and 2 non-significant increased risk 9 S studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk a 2 non-significant increased risk 2 for 1^{sd} trimester: 2 found non-significant increased risk and 1 found significant increased risk 8 and 1 found significant increased risk 9 and 1 found significant increased risk 9 and 1 found significant increased risk 9 for 2nd trimester: 2 found non-significant increased risk 1 for 3nd trimester: and found non-significant increased risk 1 for 3nd trimester: and found non-significant increased risk 2 for 1^{sd} trimester: and found non-significant increased risk 2 for 1^{sd} trimester: and found non-significant increased risk 2 for 1^{sd} trimester: and found non-significant increased risk 8 W reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births). 		1 report on 3 rd trimester with no association.		air pollution and heat
Varied weekly and week ranges of exposure periods methods of measurement; reported with significant increased risks in early and late gestational weeks. LBW PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional and case control; 11,729,145 births). 14 reports for entire pregnancy: 10 found significant 14 reports for entire pregnancy: 10 found significant even within a single study; 14 reports for entire pregnancy: 10 found significant increased risk. a for 1* trimester: 1 found significant increased risk. 5 for 2 st trimester: 3 found significant increased risks and 2 non-significant increased risk and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) (222,259 births) S for 0 r st trimester: 3 found significant increased risk 2 for 1 st trimester: 2 found non-significant increased risk 3 for 2 st trimester: 2 found non-significant increased risk 3 for 2 st trimester: and found non-significant increased risk 3 for 3 st trimester: 2 found		1		exposure as well as diverse
reported with significant increased risks in early and late gestational weeks. LBW PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional and comparison of the data even within a single study; limited number of studies on stillbirth. 14 reports for entire pregnancy: 10 found significant increased risks and 3 non-significant increased risk and 3 non-significant increased risk and 2 non-significant increased risk and 2 non-significant increased risk and 2 non-significant increased risk and 1 cons-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk 2 for 1 st trimester: 3 found significant increased risk and 2 non-significant increased risk and 1 cons-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk 3 for 2 nd trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk 4 for 1 studies for whole pregnancy: 3 found significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk 4 for 1 studies for whole pregnancy: 1 four or significant increased risk 4 for 1 studies for whole pregnancy: 1 four or significant increased risk 4 for 1 studies for whole pregnancy: 1 four or 3 nd trimester: 2 found non-significant increased risk 4 for 1 studies rand found non-significant increased risk 4 for 1 studies rand found non-significant increased risk 4 for 1 studies rand found significant increased risk 4 for 1 studies rand found non-significant increased risk 4 for 1 studies rand found non-significant increased risk 4 for 1 studies rand found non-significant increased risk 4 for 1 studies rand found non-significant increased risk 4 for 1 studies rand found non-significant increased risk 4 for 1 studies rand found non-significant increased risk 4 for 1 studies rand found non-significa		Varied weekly and week ranges of exposure periods		methods of measurement;
gestational weeks. Bay Section 2015 and 1 each cross-sectional and case control; 11,729,145 births). 14 reports for entire pregnancy: 10 found significant increased risks and 4 non-significant increased risks and 3 non-significant increased risk is 5 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk is 5 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk is 5 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk is 6 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk is 6 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk is 6 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk is 6 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk is 5 for 3 nd trimester: 3 found significant increased risks and 2 non-significant increased risk is 5 for 3 nd trimester: 3 found significant increased risk and 1 non-significant increased risk is 3 for 2 nd trimester: 3 found significant increased risk 3 for 2 nd trimester: 3 found significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 non significant increased risk and 1 found significant increased risk is 3 for 2 nd trimester: 2 found non-significant increased risk is 3 for 2 nd trimester: 2 found non-significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births).		reported with significant increased risks in early and late		different study designs
LBW comparison of the data PN2.5: (17 studies; 15 cohorts and 1 each cross-sectional and case control; 11,729,145 births). comparison of the data 14 reports for entire pregnancy: 10 found significant increased risk. 4 for 1* trimester: 1 found significant increased risk. on stillbirth. 4 for 1* trimester: 1 found significant increased risks and 3 non-significant increased risk on stillbirth. on stillbirth. 5 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk on still birth. on still birth. 03: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk 2 for 1* trimester: 3 found significant increased risk a for 2 nd trimester: 3 found significant increased risk a for 2 nd trimester: 3 found significant increased risk and 2 non-significant increased risk or VLBW during birth month. 5 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk a for 1* trimester: 3 found significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk a for 2 nd trimester: 2 found non-significant increased risk a for 3 nd trimester: 3 found non-significant increased risk 3 for 2 nd trimester: 3 found non-significant increased risk BW reduction		gestational weeks.		may complicate direct
PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional and case control; 11,729,145 biths). even within a single study; limited number of studies on stillbirth. 14 reports for entire pregnancy: 10 found significant increased risk. 4 for 1 st trimester: 1 found significant increased risks and 3 non-significant increased risk on stillbirth. 5 for 2 rd trimester: 3 found significant increased risks and 2 non-significant increased risk 5 for 3 rd trimester: 3 found significant increased risks and 2 non-significant increased risk 03: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 bitrhs). The cross-sectional study (222,259 bitrhs) examined and found significant increased risk 5 studies for whole pregnancy: 3 found significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 3 found significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 bitrhs).		LBW		comparison of the data
and case control; 11,729,145 births). 14 reports for entire pregnancy: 10 found significant increased risks and 4 non-significant increased risk. 4 for 1 st trimester: 1 found significant increased risks and 3 non-significant increased risk 5 for 3 rd trimester: 3 found significant increased risks and 2 non-significant increased risk 03: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk a 1 found significant increased risk al for 3 rd trimester: 2 found non-significant increased risk 3 for 2 rd trimester: 2 found non-significant increased risk and 1 found significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births).		PM2.5: (17 studies; 15 cohorts and 1 each cross-sectional		even within a single study;
14 reports for entire pregnancy: 10 found significant increased risks and 4 non-significant increased risk. on stillbirth. 4 for 1 st trimester: 1 found significant increased risks and 3 non-significant increased risk on stillbirth. 5 for 2 ^{md} trimester: 3 found significant increased risks and 2 non-significant increased risk an consignificant increased risk and 2 non-significant increased risk an consignificant increased risk 6 or 3 ^{md} trimester: 3 found significant increased risks and 2 non-significant increased risk an consignificant increased risk an consignificant increased risk 0 3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). births). the cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risks and 2 non-significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk and 2 non-significant increased risk 3 for 1 st trimester: 2 found non-significant increased risk an 1 found significant increased risk and 1 found significant increased risk and 1 found significant increased risk an 1 found significant increased risk BW reduction BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births). births).		and case control; 11,729,145 births).		limited number of studies
increased risks and 4 non-significant increased risk. 4 for 1 st trimester: 1 found significant increased risks and 3 non-significant increased risk 5 for 3 nd trimester: 3 found significant increased risks and 2 non-significant increased risk O 3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risks 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births).		14 reports for entire pregnancy: 10 found significant		on stillbirth.
 4 for 1st trimester: 1 found significant increased risks and 3 non-significant increased risk 5 for 2nd trimester: 3 found significant increased risks and 2 non-significant increased risk 5 for 3rd trimester: 3 found significant increased risks and 2 non-significant increased risk O3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk 2 for 1st trimester: 2 found non-significant increased risk 3 for 2nd trimester: 2 found non-significant increased risk and 1 found significant increased risk 8 for 2nd trimester: 2 found non-significant increased risk and 1 found significant increased risk 8 for 2nd trimester: 2 found non-significant increased risk 9 for 2nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3rd trimester and found non-significant increased risk 8 BW reduction PW12.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births). 		increased risks and 4 non-significant increased risk.		
non-significant increased risk 5 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk 5 for 3 nd trimester: 3 found significant increased risks and 2 non-significant increased risk O3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk O3: 8 studies for whole pregnancy: 3 found significant increased risk 2 for 1 st trimester: both found non-significant increased risk 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk a for 2 nd trimester: 2 found non-significant increased risk BW reduction PML2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births).		4 for 1 st trimester: 1 found significant increased risks and 3		
5 for 2 nd trimester: 3 found significant increased risks and 2 non-significant increased risk 5 for 3 rd trimester: 3 found significant increased risks and 2 non-significant increased risk O3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risks and 2 non-significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risks and 2 non-significant increased 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births).		non-significant increased risk		
 2 non-significant increased risk 5 for 3rd trimester: 3 found significant increased risks and 2 non-significant increased risk O3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk 2 for 1st trimester: both found non-significant increased risk 2 for 1st trimester: both found non-significant increased risk and 1 found significant increased risk and 1 found significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births). 		5 for 2 nd trimester: 3 found significant increased risks and		
 5 for 3rd trimester: 3 found significant increased risks and 2 non-significant increased risk O3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk 2 for 1st trimester: both found non-significant increased risk 2 for 1st trimester: both found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3rd trimester and found non-significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births). 		2 non-significant increased risk		
non-significant increased risk O3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risks and 2 non-significant increased risk 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 nd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		5 for 3 rd trimester: 3 found significant increased risks and 2		
O3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824 births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk and 2 non-significant increased risk 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births).		non-significant increased risk		
births). The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risks and 2 non-significant increased risk 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		O3: 8 studies (7 cohorts and 1 cross-sectional; 3,703,824		
The cross-sectional study (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risks and 2 non-significant increased risk 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		births).		
 (222,259 births) examined and found significant increased risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risk 2 for 1st trimester: both found non-significant increased risk 3 for 2nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3rd trimester and found non-significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births). 		The cross-sectional study		
risk of VLBW during birth month. 5 studies for whole pregnancy: 3 found significant increased risks and 2 non-significant increased risk 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		(222,259 births) examined and found significant increased		
 5 studies for whole pregnancy: 3 found significant increased risks and 2 non-significant increased risk 2 for 1st trimester: both found non-significant increased risk 3 for 2nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3rd trimester and found non-significant increased risk BW reduction PM2.5: 12 studies (11 cohorts, 1 time series; 7,339,714 births). 		risk of VLBW during birth month.		
increased risks and 2 non-significant increased risk 2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		5 studies for whole pregnancy: 3 found significant		
2 for 1 st trimester: both found non-significant increased risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		increased risks and 2 non-significant increased risk		
risk 3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		2 for 1 st trimester: both found non-significant increased		
3 for 2 nd trimester: 2 found non-significant increased risk and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		risk		
and 1 found significant decreased risk (protective effect). 1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		3 for 2 nd trimester: 2 found non-significant increased risk		
1 for 3 rd trimester and found non-significant increased risk BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		and 1 found significant decreased risk (protective effect).		
BW reduction PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		1 for 3 rd trimester and found non-significant increased risk		
PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714 births).		BW reduction		
births).		PM2.5 : 12 studies (11 cohorts, 1 time series; 7,339,714		
		births).		
	11 studies for entire pregnancy: 8 found significant			
--	--	--		
	increased risks and 3 non-significant increased risk			
	3 for 1 st trimester: all found significant increased risks.			
	3 for 2 nd trimester: all found significant increased risks.			
	4 for 3 rd trimester: all found significant increased risks.			
	O3 ; 4 cohort studies (4,463,021 births).			
	3 studies for entire pregnancy: all found significant			
	increased risks.			
	SGA (and FGR)			
	PM2.5: 3 cohort studies (479, 889 births) of which one of			
	them (122,203 births from Utah) examined FGR separately			
	in addition to SGA.			
	1 study (122,203 births) reported for entire pregnancy and			
	found non-significant for SGA and significant increased			
	risks for FGR.			
	2 studies for 1 st trimester: both found non-significant			
	increased risks for SGA and 1 found significant increased			
	risk for FGR.			
	1 study for 2 nd trimester; found non-significant decreased			
	risk for SGA and increased risk for FGR.			
	1 study for 3 rd trimesters: significant for SGA but			
	insignificant (for FGR) increased risks.			
	O3 : 4 cohort studies (644,794 births) of which one of them			
	(122,203 births from Utah) examined FGR separately in			
	addition to SGA.			
	One study reported and found significant decreased risk			
	(protective effect) for SGA and FGR for entire pregnancy.			
	1 study reported for entire pregnancy and found significant			
	decreased risk (protective effect) for both SGA and FGR.			
	2 for 1 st trimester for SGA with non-significant increased			
	and decreased risks. The only study for FGR found			
	significant decreased risk.			
	1 study for 2 nd trimester; non-significant decreased risk for			
	SGA and significant decreased risk for FGR.			
	3 for 3 rd trimester; 2 significant increased and 1 significant			
	decreased risk for SGA. The only study for FGR found			
	significant decreased risk.			

Three months pre-conception pollutant exposures were		
reported for one study (122,203 births from Utah, USA)		
found with significant increased risks for SGA/FGR.		
Stillbirth		
PM2.5 : (5 studies; 4 cohorts and 1 nested case-control;		
5,014,874 births).		
4 reported for entire pregnancy; 1 found significant		
increased risk and 3 found non-significant increased risk.		
1 reported for 1 st , 2 nd , and 3 rd trimester with non-significant		
increased risk for 1 st and 2 nd , and significant increased risk		
for 3 rd .		
I study reported and found non-significant risk for 2 days		
before delivery.		
Q3 : 3 studies (2 cohorts and one nested case-control:		
4.410.761 births).		
2 reported for entire pregnancy: 1 each found significant		
and non-significant increased risks.		
1 reported and found significant increased risk for 3 rd		
trimester.		
1 also found significant increased risk for the week before		
delivery.		
'Specifically, significant PM2.5 and/or ozone association		
with PTB in 19/24 (79%) studies (all of these studies		
included PM2.5 and 7 also included ozone) from birth per		
study of mean (standard deviation) as 318 960 (393 272)		
with total births of 7.3 million: increased risk of median		
(range)% of 11 5 (2.0-19.0) for 11 studies on PM2 5		
Significant ozone-PTB association in 2/4 (50%) studies for		
an increased risk from 3% to 9 6% each measured the		
association by IOR from 7.1 to 11.53 parts per billion		
(nnh)		
PM2 5 and/or ozone association with LBW was significant		
in 25/29 (86%) studies (all studies except 1 included		
PM2.5: 11 analyzed ozone in which 10 combined with		
PM2.5) from birth per study of mean (standard deviation)		
as 661 205 (878 074) with total births of 18 5 million		
median (range) of $10.8 (2.0-36.0)$ for 8 studies on PM2 5		
and 5/8 (62%) studies detected association of IOR		
and 5/5 (52/5) studies detected association of IQR	1	1

			increases which ranged from 2.0 to 6.9 μ g/m3. Three studies found association between ozone and LBW. PM2.5 and/or ozone association with SB was significant in 4/5 (80%) studies from birth per study of 1 020 975 (1 176 174) with total births of 5.1 million, median (range)% of 14.5 (6.0-23.0) for PM2.5.		
5. Heo (Heo et al., 2019) 12/11/2019 [3; All USA]	PM ₁₀ , PM _{2.5} (PM _{2.5-10} , PM ₁ , PM _{0.1})	PTB, LBW, SGA, and SB	 Effects modification by race/ethnicity: PM-LBW: Among 14 studies that focused on LBW and maternal race/ethnicity, 9 studies reported statistically significant risks with higher risk for infants of African American/black mothers compared to others. Two other studies found that risks for PM exposure (separately by racial/ethnic subgroups) were non- significant but higher in African American/blacks. Suggestive evidence that PM exposure risks for LBW are higher in infants of African-American/black mothers than in other racial/ethnical groups. PM-PTB (18 studies): Among 17 studies based on PTB and race/ethnicity, 5 studies found statistically significant risks of PM exposure, with estimated risks generally higher for African American/blacks, whereas 1 study showed significant and higher risk for infants of white mothers. 5 other studies presented different magnitude of the risks but not statistically significant to clearly state the evidence of effect modification. The other 6 studies reported no significant evidence of effect modification of PTB by race/ethnicity. Suggestive evidence that PM exposure risks for PTB are higher in infants of African-American/black mothers than in other racial/ethnical groups. PM-SGA (8 studies): among the 8 studies based on SGA and race/ethnicity, 2 studies reported significant and higher risks in African American/blacks, whereas 2 studies showed insignificant risk differences in the relationship between PM and SGA for racial/ethnical subpopulations and 4 studies found no evidence of effect modification by race/ ethnicity. We 	We suggest that more studies are required to understand potential effect modification of the risk of SGA and stillbirth due to maternal exposure to PM during pregnancy. Future studies are also needed for other socio-economic factors that can potentially play a role as effect modifiers such as income, job categories, occupation status, and access to prenatal care. Lastly, additional efforts to understand the interplay of race/ ethnicity and SES on vulnerability of birth outcomes to air pollution are needed to provide information for identifying vulnerable communities and populations and planning preventive measures.	Limitations Limitations of our study include the small number of relevant studies and geographically limited estimates for effect modification of the relationship between air pollution exposure and birth outcomes. Due to the small number of studies, it was not feasible to conduct a quantitative risk summarization; instead we provide a narrative summary of the evidence of effect modification based on the identified studies and our study should be interpreted in this context. Strengths A strength of this study is that we critically highlight research gaps for the evidence of effect modification by various maternal risk factors covering race/ ethnicity and SES. The differences in the PM-adverse birth outcome relationships among subpopulations

	6 1:
concluded that there existed no current evidence of effect	found in our review imply
modification by race/ethnicity for SGA.	environmental injustice
PMI-Stillbirth (3 studies): No evidence was found for the	and provide important
effect modification by race/ethnicity for stillbirth, although	information relevant to
our conclusion is hindered by the small number of studies,	decision-making for
while 1 study reported higher risks in white mothers for	identifying and protecting
the relationship between PM and stillbirth with 2 other	vulnerable subpopulation.
studies reporting no significant effect modification.	
Effects modification by maternal educational	
attainment	
PM-LBW (6 studies): 2 studies reported significantly	
higher PM risks in infants of mothers with less education,	
1 study reported significantly higher PM risks in mothers	
with higher education, and 3 studies reported no difference	
in the PM risk by maternal education level. Overall, weak	
evidence of higher PM risk for infants of mothers with	
less/high education existed for LBW.	
PM-PTB (8 studies): 2 studies found that infants of	
mothers with less education had higher PM risk, whereas 6	
studies did not find such evidence. Overall, weak evidence	
of higher PM risk for infants of mothers with less/high	
education existed for PTB.	
PM-SGA (5 studies): One study reported statistically	
significant results for the effect modification of PM risk	
for SGA by maternal education, whereas the 4 studies	
conducted in California did not find significant effect	
modification. We concluded that there was no evidence of	
higher risk of SGA from PM exposure in mothers with less	
education.	
PM-SB (3 studies): One study showed a tendency of	
higher risk by lower education level but the results were	
not statistically significant. Significant effect modification	
by maternal education was not found in the other 2 studies.	
Thus, we concluded that there existed no effect	
modification by maternal education on the relationship	
between PM exposure and stillbirth.	
Effects modification by maternal income	

			PM-LBW (4 studies): No evidence was found for effect		
			modification as the studies reported no differences in PM		
			risks by income level.		
			PM-PTB (7 studies): No evidence was found for effect		
			modification as the studies reported no differences in PM		
			risks by income level.		
			PM-SGA (2 studies): We concluded that there is <i>no</i>		
			evidence of effect modification was concluded for SGA,		
			which may relate to the small number of studies.		
			Effects modification by maternal occupation or		
			un/employed during pregnancy		
			PM-PTB (2 studies): One study examined the relationship		
			between PTB and PM exposure as modified by mothers'		
			occupation, reporting higher risks in infants of farmers		
			than other workers. The other study did not find risk		
			differences between mothers who were employed and		
			those who were unemployed during pregnancy. We		
			concluded no evidence of effect modification by		
			occupation for the examined birth outcomes.		
			Effect modification by area-level integrated		
			socioeconomic status (SES) levels.		
			PM-LBW (2 studies): The 2 studies focusing on LBW		
			reported significantly higher risks in regions with lower		
			SES level. In conclusion, there existed <i>no evidence</i> for		
			effect modification by area-level integrated SES levels for		
			PM risk of LBW.		
			PM-PTB (3 studies): In the 3 studies for PTB, the		
			differences in the association between PM exposure and		
			PTB were not statistically significant or the risk		
			differences were not based on statistically comparable risk		
			measurements. In conclusion, there existed no evidence		
			for effect modification by area-level integrated SES levels		
			for PM risk of PTB.		
6. Yuan (Yuan et	PM _{2.5}	BW, LBW,	PM2.5 and BW	Relevant measures should be	Strengths
al., 2019)		SGA, PTB	(22 studies: 4 prospective and 18 retrospective cohort;	taken to reduce the exposure	Provide another subjective
20/03/2019			12,723,279 births).	level of susceptible	point of view to present
[4, all China]			23 results on entire pregnancy (one study reported twice	population and raise their	varied effects of maternal
			for different exposure levels); 14 found significant	awareness of health risks	exposure on multiple
			increased risk of reduction in BW, 4 found non-significant		adverse outcomes through

	increased risk in BW reduction, 2 found significant	associated with PM2.5	this comprehensive
	decreased risk in BW (protective effect), 3 found non-	exposure.	summary; the evaluations
	significant decreased risk (protective effect).	Efforts should be made to	included were fully
	7 studies reported for 1 st trimester; 5 found significant	implement more stringent air	adjusted instead of
	increased risk and 2 found non-significant increased risk in	quality principles and	extraction to get similar
	BW reduction.	improve ambient air quality.	covariates to ensure the
	7 studies reported for 2 nd trimester; 4 found significant		quality of meta-analysis
	increased risk and 2 found non-significant increased risk in		and reduce heterogeneity
	BW reduction, and 1 found no association.		among different studies.
	14 results from 12 studies reported for 3 rd trimester; 6		Besides, we also exhibit
	found significant increased risk, 6 found non-significant		estimations based on
	increased risk in BW reduction, and 2 found non-		different exposure
	significant decreased risk (protective effect).		assessment, including
	2 studies reported for last month and both found increased		traditional fixed
	risk which was significant in one and non-significant in the		monitoring data, remote
	other.		sensing, and satellite data
			were also obtained from
	PM2.5 and LBW/TLBW		the literature.
	(20 studies: 2 prospective and 18 retrospective cohorts;		
	24,577,804 births)		
	22 findings from 20 studies reported for entire pregnancy;		
	6 found significant increased risk, 8 found non-significant		
	increased risk, 1 found significant decreased risk		
	(protective effect), 4 found non- significant decreased risk		
	(protective effect), and 3 found no association.		
	9 studies reported for 1 st trimester; 2 found significant		
	increased risk, 4 found non-significant increased risk, 2		
	found non-significant decreased risk (protective effect),		
	and 1 found no association.		
	10 studies reported for 2 nd trimester; 3 found significant		
	increased risk, 4 found non-significant decreased risk, and		
	3 found no association.		
	10 studies reported for 3 rd trimester; 2 found significant		
	increased risk, 4 found non-significant increased risk, 2		
	found significant decreased risk (protective effect), and 1		
	found no association.		
	PM2.5 and PTB		

	(18 studies: 1 prospective cohort, 16 retrospective cohort,	
	1 nested case-control; 10,593,350 births)	
	18 studies reported for entire pregnancy; 9 found	
	significant increased risk, 2 found non-significant	
	increased risk, 1 found significant decreased risk	
	(protective), 5 found non-significant decreased risk, and 1	
	found no association.	
	11 studies reported for 1 st trimester; 3 found significant	
	increased risk, 1 found non-significant increased risk, 3	
	found non-significant decreased risk, and 4 found no	
	association.	
	11 studies reported for 2 nd trimester; 4 found significant	
	increased risk, 1 found non-significant increased risk, 4	
	found non-significant decreased risk, and 2 found no	
	association	
	11 studies reported for 3 rd trimester; 3 found significant	
	increased risk, 1 found non-significant increased risk, 6	
	found non-significant decreased risk, and 1 found no	
	association	
	2 studies reported on last month where one found non-	
	significant decreased risk and the other found no	
	association.	
	One study reported and found non-significant decreased	
	risk for the last three months.	
	PM2.5 and SGA	
	(9 studies: 1 prospective and 8 retrospective cohorts;	
	5,562,394 births)	
	9 studies reported for entire pregnancy; 5 found significant	
	increased risk, 2 found non-significant increased risk, 1	
	found significant decreased risk, and 1 found non-	
	significant decreased risk.	
	6 studies reported for 1 st trimester; 2 found significant	
	increased risk, 2 found non-significant increased risk, 1	
	found significant decreased risk, and 1 found non-	
	significant decreased risk.	
	6 studies reported for 2 nd trimester; 3 found significant	
	increased risk, 2 found non-significant increased risk, and	
	1 found significant decreased risk.	

		6 studies reported for 3 rd trimester; 3 found significant increased risk, 1 found non-significant increased risk, and 2 found significant decreased risk.		
7. Tsoli (Tsoli et al., 2019) 31/01/2019 [3, 2 Greece, 1 London, UK]	, TBW, TLBW	PM2.5 and TBW change 34 studies (31 cohort studies and 3 ecological;13,879,044 births with unreported for one study) 26 studies reported with 32 findings (site-specific results reported for some studies) for <i>entire pregnancy</i> : 15 found significant increased risk, 7 found non-significant increased risk, 5 found significant decreased risk (protective effect), 6 found non-significant decreased risk. 13 studies reported for 1 st trimester: 5 found significant increased risk, 2 found non-significant increased risk, 2 found significant decreased risk (protective effect), 4 found non-significant decreased risk. 14 studies reported for 2 nd trimester: 8 found significant increased risk, 2 found non-significant increased risk, 1 found significant decreased risk (protective effect), 2 found non-significant decreased risk, and 1 found no association. 17 studies reported for 3 rd trimester: 6 found significant increased risk, 6 found non-significant increased risk, 2 found significant decreased risk (protective effect), and 3 found non-significant decreased risk. One study reported for last month with 1 significant and 1 non-significant increased risks, and another for last trimester found significant increased risk. PM2.5 and TLBW change 32 studies (29 cohort, 1 nested case-control, and 2 ecologic; 25,081,472 births) 49 findings (site-specific results reported for some studies) for <i>entire pregnancy</i> : 16 found significant increased risk, 15 found non-significant increased risk, 2 found significant decreased risk. 15 studies reported (site-specific results reported for some studies) for <i>1st trimester</i> . 3 found significant increased risk, 15 studies reported (site-specific results reported for some studies) for <i>1st trimester</i> . 3 found significant increased risk.	"These findings underline the need for protective measures for exposure of pregnant women to particulate pollution. Future research needs to focus on understanding which chemical constituents and sources of PM are responsible for TLBWT and by which mechanisms, expanding our knowledge of the critical time windows of exposure, study characteristics that are responsible for differences in results, consider maternal occupational exposure, outdoor activities or indoor air exposure, and elucidating the biological pathways that underline the associations between maternal exposure, particulate air pollution and neonatal health. Future studies also need to take into consideration potential effect modification by characteristics of the built environment, such as proximity to traffic and green spaces. Establishing similar guidelines among studies, as the ones described in ICAPPO	Limitations 'Our search was restricted to English-only language publications and grey literature was not searched for eligible studies. Also, the review adopted a structured and independent screening process. The screening of the references of relevant reviews on the topic did not indicate additional papers for inclusion, thus we believe that all relevant publications were captured. In this review, results are presented using only single-pollutant models of PM.' Strengths 'To the best of our knowledge, this is the first systematic literature review summarizing all the available scientific literature on this topic up to October 2018, which can be used as valuable guide tool for future studies'

	4 found non-significant increased risk 2 found significant	(Woodruff et al. 2010)	
	decreased risk (protective effect) 5 found non-significant	could be achieved through	
	decreased risk and 1 found no association	interdisciplinary	
	16 studies reported (site-specific results reported for some	collaborations that will	
	studies) for 2 nd trimester: 1 found significant increased	expand our understanding	
	risk 9 found non-significant increased risk 1 found	and eliminate the differences	
	significant decreased risk (protective effect) 4 found non-	employed among studies "	
	significant decreased risk and 1 found no association	employed among studies.	
	16 studies reported (site specific results reported for some		
	studies) for 3 rd trimester: 2 found significant increased		
	risk 6 found non significant increased risk 1 found		
	significant decreased risk (protective affect) 6 found non		
	significant decreased risk (protective effect), o found non-		
	One study reported and found significant increased risk for		
	^{2rd} month, another found non significant decreased during		
	5 month, another found non-significant decreased during		
	non significant increased risk for almost all months		
	non-significant increased fisk for annost an montuls.		
	"The range of estimated change in PWT (in grams) was		
	-0.51		
	(-1.59, 0.56) (Kumar 2012) up to -2.1 ($5.1, -1.1$)		
	(1.56, 0.50) (Kulliai, 2012) up to $5.1(-5.1, 1.1)(Gebring et al. 2014) per 1 µg/m3 increase in PM2 5 -7$		
	(-17.0, 2.0) (Pederson et al. 2013) up to -16.0 (-20.0)		
	(-17.0, 2.0) (Federsen et al., 2015) up to -10.0 (-29.0, -2.0) (Padarson et al., 2015) nor 5 ug/m ² increase in		
	-5.0 (redelsen et al., 2015) per 5 µg/lli5 literease ll DM2.5 and -18.4 (SE 4.1) (Savitz at al. 2014) up to 11.00		
	(-2.0, 25.0) (Hannem et al. 2014) per 10 ug/m ² increase		
	in DM2.5. An even more extreme reduction of DWT in		
	III PM2.5. All even more extreme reduction of B w 1 III		
	(SE 7.1) (Hornor et al. 2014)		
	(SE 7.1) (Hannam et al., 2014).		
	NB: Review authors omitted results for some studies and		
	only indicated 'TBWT results also available in the primary		
	paper' 'TI BWT results also available in the primary		
	namer' or ' results are also graphically available		
	" results are also available for the different exposure		
	metrics' We considered only results included in the		
	review article		
	DM10 and TRW change		

	26 studies (24 cohort, 1 cross-sectional, and 1 ecologic;	
	5,894,513 births with unreported for one study)	
	18 results for entire pregnancy: 3 found significant	
	increased risk, 13 found non-significant increased risk, 1	
	found significant decreased risk (protective effect), and 1	
	with no association.	
	13 studies for 1 st trimester: 3 found significant increased	
	risk, 5 found non-significant increased risk, 1 found	
	significant decreased risk (protective effect). 3 found non-	
	significant decreased risk, and 1 with no association.	
	13 studies for 2^{nd} trimester: 3 found significant increased	
	risk 5 found non-significant increased risk 5 found non-	
	significant decreased risk	
	16 studies for 3^{rd} trimester: 3 found significant increased	
	risk 7 found non-significant increased risk 1 found non-	
	significant decreased risk.	
	First month, last month, last two months, and last trimester	
	were also reported in 5 studies but none found significant	
	in/decreased risk	
	"The range of estimated effects for LBWT (OR (95% CI))	
	was $1.01 (0.95 \pm 1.08)$ (Brauer et al. 2008) up to $1.07 (1.01)$	
	1 14) (Dibben and Clemens 2015) per 1 µg/m3 increase in	
	PM10 and 0.90 (0.60, 1.35) (Capobussi et al. 2016) up to	
	1.44 (0.62 - 3.36) (Parker et al. 2011) ner 10 µg/m3	
	increase in PM10. The range of estimated change in BWT	
	(in grams) was $-10.0(-14.2) - 5.7$) (Gehring et al. 2014)	
	(11 grams) (11 grams	
	increase in PM10 and $-30.3(-36.4) -24.2)$ (Parker et al.	
	2011) up to 47.0 (-10.5, 104.6) (Parker et al., 2011) per 10	
	$\mu g/m^3$ increase in PM10"	
	NB: Review authors omitted results for some studies and	
	only indicated 'TBWT results also available in the primary	
	naper' 'TLBWT results also available in the primary	
	naper' or ' graphically available in original paper'	
	" results are also available per trimester' We considered	
	only results included in the review article	
	PM10 and TLRW change	
	i mito and i DD of change	

 31 studies (27 cohort, 1 case-control, and 2 ecologic, 1 cross-sectional, 83.27.32 births) 29 findings (site-specific results reported for some studies) for <i>entire pregnancy</i>: 9 found significant increased risk, 13 found non-significant decreased risk, unof 1 nound no association. 11 studies for <i>l^a</i> trimester: 1 found significant increased risk. 15 found non-significant decreased risk, and 1 found no association. 11 studies for <i>l^a</i> trimester: 8 found non-significant increased risk. 16 und non-significant decreased risk, and 1 found no association. 11 studies for <i>l^a</i> trimester: 8 found non-significant increased risk. 16 und non-significant increased risk. 17 und non-significant increased risk. 13 studies for <i>l^a</i> trimester: 8 found non-significant increased risk. 13 studies for <i>l^a</i> trimester: 8 found non-significant increased risk. 13 studies for <i>l^a</i> trimester: 8 found non-significant increased risk. 13 studies for <i>l^a</i> trimester: 12 lound significant increased risk. 13 studies for <i>l^a</i> trimester: 8 found non-significant decreased risk. 14 found non-significant decreased risk. 15 studies and non-significant indecreased risk. 16 non a sociation. 1 finding each for preconception, last month and last 2 month with no significant indecreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', '' results are also available in the primary paper', '' graphically available in on-significant line (creased risk. 2 studies (4 cohort and 1 ecologic; 12,829,812 births) 2 studies (1 all regions' results) reported for entire prepancy. 4 foruit significant and non-significant linereased risk. 2 reported for 1^a trimester; 1 each found significant and non-significant linereased risk. 2 reported for 1^a trimester; 2 found significant and non-significant linereased risk. 3 reported for 1^a trimester; 2 found si		
 cross-sectional: 327,332 births) 29 indings (site-specific results reported for some studies) for <i>entire pregnancy</i>: 9 found significant increased risk, 13 found non-significant increased risk, 2 found significant decreased risk (protective effect), 4 found non-significant decreased risk (protective effect), 5 found non-significant studies for ¹⁴ trinester: 1 found significant increased risk, 5 found non-significant increased risk, 10 and non-significant increased risk, and 1 found no association. 11 studies for ²⁴⁴ trinester: 2 found significant increased risk, 6 found non-significant increased risk, 1 found non-significant increased risk, and 3 found non-significant increased risk, and 5 found non-significant increased risk, and 5 found non-significant increased risk, and 5 found non-significant increased risk, and 1 found no association. 1 finding each for precomption, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', "LBWT results also available in the primary paper', ", resulta are also available in the review and on significant increased risk. S studies (1 all regions' results) reported for entire prepared for 1⁴ trimester; 1 each found significant increased risk. 2 studies (4 cohort and 1 ecologic; 12,829,812 births) S studies (1 all regions' results) reported for entire prepared for 1⁴ trimester; 2 found significant and non-significant increased risk. 2 reported for 1⁴ trimester; 2 found significant increased risk. 2 reported for 1⁴ trimester; 2 found significant increased risk. 2	31 studies (27 cohort, 1 case-control, and 2 ecologic, 1	
 29 findings (site-specific results reported for some studies) for entire pregnancy: 9 found significant increased risk, 13 found non-significant increased risk, 2 found significant decreased risk, dn 1 found no association. 11 studies for <i>P¹ trimester</i>: 1 found significant increased risk, 5 found non-significant increased risk, 1 found significant decreased risk, and 1 found no association. 11 studies for <i>2nd trimester</i>: 8 found non-significant increased risk, and 3 found non-significant increased risk, 6 found non-significant increased risk. 13 studies for <i>3nd trimester</i>: 2 found a special role. NB: Review authors omitted results for some studies and on-significant increased risk, 6 found non-significant increased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', "'results also available in the primary paper', "'results also available in the primary paper', ''results increased risk. 2 studies (1 all regions' results) reported for onsignificant increased only regenancy: 4 found significant increased risk. 2 studies (1 all regions' results) reported for entrice pregnancy: 4 found significant incleased for the row article. 	cross-sectional; 8,327,332 births)	
for entire preparancy: 9 found significant increased risk, 13 found non-significant increased risk, 2 found non-significant decreased risk, and 1 found no association. 11 studies for 1 [#] trimester: 1 found significant increased risk, 5 found non-significant increased risk, 1 found significant decreased risk (protective effect), 3 found non-significant increased risk, and 1 found no association. 11 studies for 2 [#] trimester: 8 found fon-significant increased risk, and 5 found non-significant increased risk, 6 found non-significant increased risk. 13 studies for 3 [#] trimester: 2 found significant increased risk, 6 found non-significant increased risk. 14 studies for 5 [#] trimester: 2 found significant increased risk, 6 found non-significant indecreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper' or 'graphically available in original paper', "	29 findings (site-specific results reported for some studies)	
found non-significant increased risk, 2 found significant decreased risk, protective effect), 4 found non-significant decreased risk, and 1 found no association. 11 studies for 1 st rimester: 1 found significant increased risk, 5 found non-significant increased risk, 1 found significant decreased risk, qualt 1 found no association. 11 studies for 2 st rimester: 8 found non-significant increased risk, and 3 found non-significant increased risk, 6 found non-significant increased risk, and 1 found non significant decreased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper' or ' graphically available in original paper', "results are also available in the primary paper' or ' graphically available in original paper', "results are also available in the primary paper' or ' graphically available in originificant increased risks. 2 reported for 1 st rimester; 1 each found significant increased risks. 2 reported for 1 st rimester; 1 each found significant increased risks. 2 reported for 1 st rimester; 2 found significant and non-significant increased risks. 3 reported for 2 st rimester; 2 found significant increased risk. 3 reported for 2 st rimester; 2 found significant increased risk. 3 reported for 2 st rimester; 2 found significant and 1 non- significant increased risks.	for <i>entire pregnancy</i> : 9 found significant increased risk, 13	
decreased risk, and 1 found no association. 11 studies for U [*] trimester: 1 found significant increased risk, 5 found non-significant increased risk, 1 found significant decreased risk, and 1 found non-significant increased risk, and 3 found non-significant increased risk, and 3 found non-significant increased risk, and 3 found non-significant significant decreased risk, and 1 found no association. 11 studies for 2 nd trimester: 2 found significant increased risk, 6 found non-significant increased risk. 13 studies for 3 nd trimester: 2 found significant significant decreased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant increased risk. NB: Review authors omitted results for some studies and only with a significant increased risk. NB: Review authors omitted results for some studies and only incitated 'TBWT results also available in the primary paper' or ' graphically available in oscilant paper', "	found non-significant increased risk, 2 found significant	
decreased risk, and 1 found no association. 11 studies for 1 st trimester. 11 studies for 1 st trimester. 12 studies for 2 st trimester. 13 studies for 2 st trimester. 14 studies for 2 st trimester. 15 studies for 3 st trimester. 16 studies for 3 st trimester. 17 studies for 3 st trimester. 18 studies for 3 st trimester. 19 studies for 3 st trimester. 10 studies for 3 st trimester. 11 studies for 3 st trimester. 11 studies for 3 st trimester. 10 studies (a studies (a studies) studies) for some studies and non-significant in/decreased risk. 11 studies (a studies) studies) for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper', '', results are also available in the primary paper', '', results are also available in the primary paper', '', results are also available in the primary paper', '', results are also available in the primary paper', '', results are also available in the primary paper', '', results are also available in the primary paper', '', results are also available i	decreased risk (protective effect), 4 found non-significant	
11 studies for <i>I⁴ trimester</i> : 1 found significant increased risk, 5 found non-significant increased risk, 1 found significant decreased risk, qnotective effect), 3 found non-significant increased risk of <i>I⁴¹ trimester</i> : 2 found significant increased risk, and 3 found non-significant increased risk, and 3 found non-significant increased risk, and 3 found non-significant increased risk, 6 found non-significant increased risk, 6 found non-significant increased risk, 13 studies for <i>I⁴¹ trimester</i> : 2 found significant increased right, 6 found non-significant increased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper', 'TLBWT results also available in original paper', "results are also available per trimester". We considered only results included in the review article. PM2.5-10 and TBW: S studies (4 cohort and 1 ecologic; 12,829,812 births) S studies (4 cohort and 1 ecologic; 12,829,812 births) S studies (1 al regions' results) reported for entire pregnancy; 4 found significant and 1 no	decreased risk, and 1 found no association.	
 risk, 5 found non-significant increased risk, 1 found significant decreased risk, and 1 found non-significant decreased risk, and 1 found no association. 11 studies for 2nd trimester: 8 found non-significant increased risk. 13 studies for 3nd trimester: 2 found significant increased risk. 13 studies for preconception, last month and last 2 month with no significant increased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper', 'TLBWT results also available in the primary paper' or ' graphically available in original paper', '' results are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: S studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risk. 2 reported for 2nd trimester; 1 each found significant increased risk. 3 reported for 3nd trimester; 2 found significant increased risk. 	11 studies for 1 st trimester: 1 found significant increased	
 significant decreased risk (protective effect), 3 found non-significant decreased risk, and 1 found non-significant 11 studies for ^{2d} rimester: 8 found non-significant increased risk. 13 studies for ^{3d} rimester: 2 found significant increased risk. 13 studies for ^{3d} rimester: 2 found significant increased risk. 14 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', "LBWT results also available in the primary paper', "results are also available in original paper', "results are also available in the review article. PM2.5-10 and TBW: 5 studies (1 all regions' results) ported for entire pregnancy: 4 found significant increased risk. 2 reported for 1st trimester; 1 each found significant increased risk. 3 reported for 2st trimester; 2 found significant and 1 non-significant increased risk. 3 reported for 2st trimester; 2 found significant and 1 non-significant increased risk. 	risk, 5 found non-significant increased risk, 1 found	
 significant decreased risk, and 1 found no association. 11 studies for 2nd trimester: 8 found non-significant increased risk, and 3 found non-significant increased risk, 6 found non-significant increased risk. 13 studies for 3rd trimester: 2 found significant increased risk, 6 found non-significant increased risk. 4 found non- significant decreased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant indecreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', "LBWT results also available in the primary paper', "results also available in the primary paper', "results are also available in the review only results included in the review avricle. PM2.5-10 and TBW: S studies (1 cont al 1 ecologic; 12,829,812 births) S studies (1 cont al gignificant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risk. 3 reported for 1st trimester; 2 found significant and non-significant increased risks. 3 reported for 3rd trimester; 2 found significant and 1 non- significant increased risks. 	significant decreased risk (protective effect), 3 found non-	
1 I studies for 2 nd trimester: 8 found non-significant increased risk, and 3 found non-significant decreased risk. 13 studies for 3 nd trimester: 2 found significant increased risk, 6 found non-significant increased risk, 4 found non-significant decreased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in original paper', "results are also available per trimester". We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (1 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risk. 2 reported for 1 st trimester; 1 each found significant and non-significant increased risk. 3 reported for 2 st trimester; 2 found significant and 1 non-significant increased risk. 3 reported for 2 st trimester; 2 found significant and 1 non-significant increased risk. 3 reported for 2 st trimester; 2 found significant and 1 non-significant increased risk.	significant decreased risk, and 1 found no association.	
 increased risk, ad 3 found non-significant decreased risk. 13 studies for 3rd trimester: 2 found significant increased risk, 4 found non-significant decreased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper', 'TLBWT results also available in the primary paper', ' graphically available in the review article. PM2.5-10 and TBW: S studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 3 reported for 3rd trimester; 2 found significant and 1 non-significant increased risks. 	11 studies for 2^{nd} trimester: 8 found non-significant	
 13 studies for 3rd trimester: 2 found significant increased risk, 6 found non-significant increased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper' or ' graphically available in the review article. PM2.5-10 and TBW: 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 1^{sd} trimester; 2 found significant and 1 non-significant increased risk. 	increased risk, and 3 found non-significant decreased risk.	
 risk, 6 found non-significant increased risk, 4 found non-significant decreased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper', 'TLBWT results also available in original paper', '' results are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1^{sd} trimester; 1 each found significant and non-significant increased risks. 3 reported for 2^{sd} trimester and both found significant increased risk. 	13 studies for 3 ^{rd t} trimester: 2 found significant increased	
 significant decreased risk, and 1 found no association. 1 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper' or ' graphically available in original paper', "evilts are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risk. 3 reported for 2^{sd} trimester and both found significant increased risk. 	risk, 6 found non-significant increased risk, 4 found non-	
 1 finding each for preconception, last month and last 2 month with no significant in/decreased risk. NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper', 'TLBWT results also available in original paper', "results are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 3 reported for 2nd trimester and both found significant and 1 non-significant increased risk. 	significant decreased risk, and 1 found no association.	
 month with no significant in/decreased risk. NB: Review authors omited results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper' or ' graphically available in original paper', "results are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 3 reported for 3rd trimester; 2 found significant and 1 non-significant increased risks. 	1 finding each for preconception, last month and last 2	
NB: Review authors omitted results for some studies and only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in original paper', "results are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1 st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2 rd trimester; 2 found significant increased risk. 3 reported for 3 rd trimester; 2 found significant and 1 non- significant increased risks.	month with no significant in/decreased risk.	
 only indicated 'TBWT results also available in the primary paper', 'TLBWT results also available in the primary paper', 'TLBWT results also available in original paper', "results are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: S studies (4 cohort and 1 ecologic; 12,829,812 births) S studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2nd trimester and both found significant increased risk. 3 reported for 3nd trimester; 2 found significant and 1 non-significant increased risks. 	NB : Review authors omitted results for some studies and	
 paper', 'TLBWT results also available in the primary paper' or ' graphically available in original paper', "results are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2nd trimester; 2 found significant and 1 non- significant increased risks. 	only indicated 'TBWT results also available in the primary	
 paper' or ' graphically available in original paper', "results are also available per trimester'. We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2nd trimester and both found significant increased risk. 3 reported for 3rd trimester; 2 found significant and 1 non-significant increased risks. 	paper', 'TLBWT results also available in the primary	
 results are also available per trimester[]. We considered only results included in the review article. PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions[*] results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2nd trimester and both found significant increased risk. 3 reported for 3rd trimester; 2 found significant and 1 non-significant increased risks. 	paper' or ' graphically available in original paper',	
only results included in the review article. PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1 st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2 nd trimester and both found significant increased risk. 3 reported for 3 rd trimester; 2 found significant and 1 non-significant increased risks.	"results are also available per trimester'. We considered	
 PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2nd trimester and both found significant increased risk. 3 reported for 3rd trimester; 2 found significant and 1 non-significant increased risks. 	only results included in the review article.	
PM2.5-10 and TBW: 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1 st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2 nd trimester and both found significant increased risk. 3 reported for 3 rd trimester; 2 found significant and 1 non-significant increased risks.		
 5 studies (4 cohort and 1 ecologic; 12,829,812 births) 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2nd trimester and both found significant increased risk. 3 reported for 3rd trimester; 2 found significant and 1 non-significant increased risks. 	PM2.5-10 and TBW:	
 5 studies (1 all regions' results) reported for entire pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2nd trimester and both found significant increased risk. 3 reported for 3rd trimester; 2 found significant and 1 non-significant increased risks. 	5 studies (4 cohort and 1 ecologic; 12,829,812 births)	
pregnancy: 4 found significant and 1 non-significant increased risks. 2 reported for 1 st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2 nd trimester and both found significant increased risk. 3 reported for 3 rd trimester; 2 found significant and 1 non- significant increased risks.	5 studies (1 all regions' results) reported for entire	
increased risks. 2 reported for 1 st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2 nd trimester and both found significant increased risk. 3 reported for 3 rd trimester; 2 found significant and 1 non- significant increased risks.	pregnancy: 4 found significant and 1 non-significant	
 2 reported for 1st trimester; 1 each found significant and non-significant increased risks. 2 reported for 2nd trimester and both found significant increased risk. 3 reported for 3rd trimester; 2 found significant and 1 non-significant increased risks. 	increased risks.	
non-significant increased risks. 2 reported for 2 nd trimester and both found significant increased risk. 3 reported for 3 rd trimester; 2 found significant and 1 non- significant increased risks.	2 reported for 1^{st} trimester; 1 each found significant and	
2 reported for 2 nd trimester and both found significant increased risk. 3 reported for 3 rd trimester; 2 found significant and 1 non- significant increased risks.	non-significant increased risks.	
increased risk. 3 reported for 3 rd trimester; 2 found significant and 1 non- significant increased risks.	2 reported for 2^{nd} trimester and both found significant	
3 reported for 3 rd trimester; 2 found significant and 1 non- significant increased risks.	increased risk.	
significant increased risks.	3 reported for 3 rd trimester; 2 found significant and 1 non-	
	significant increased risks.	
1 reported and found non-significant increased risk for 1 st	1 reported and found non-significant increased risk for 1 st	
month.	month.	
PM2.5-10 and TLBW :	PM2.5-10 and TLBW:	

			3 studies (2 cohort, 1 ecologic; 4,405,320 births) All reported for entire pregnancy: 2 found non-significant		
			increased risk and 1 found no association.		
			"The range of estimated change for TBWT (in grams) was -12.7 (-18.0 , -7.5) (Parker and Woodruff, 2008) -9.4 (-12.8 , -6.0) (MorelloFrosch et al., 2010) per 10 µg/m3 increase (95% CI) in PM2.5-10. The range of effects for TLBWT (OR (95% CI) was 0.88 (0.79, 0.98) (Kingsley et al., 2017) up to 1.17 (0.95, 1.39) (Pedersen et al., 2013) for black carbon and 0.99 (0.96, 1.02) (Morello-Frosch et al., 2010) up to 1.04 (0.99, 1.09) (Parker and Woodruff, 2008) for PM2.5-10."		
			11 studies for PM2.5, 2 studies each for PM10 and PM0.1 investigated effects of specific chemical constituents. 'Different chemical components of PM such as elemental		
			carbon, nickel, zinc, potassium, iron and copper were associated with reductions in TBWT or increased risk of TLBWT.'		
			TSP and TBW/TLBW		
			2 cohort studies; 351,434 TBW: 1 reported and found significant increased risk for		
			3 rd trimester.		
			TLBW: 1 reported and found non-significant increased		
			each found significant in/decreased risks.		
			Others: PM0.1 (2 studies), PM1 (1 study) and PM7 (1		
8 Grinno	TSP PM10	SAB	study).	More evidence is needed	Limitations
6. Grippo (Grippo et al., 2018)	$PM_{2.5}, CO, SO_2, NO_2, O_2$	(miscarriage) and SB	PM10 ; Reported in 4 studies; 3 studies (1 prospective cohort for entire pregnancy, time-series study for cumulative log0 14 days and a case control for < 14	wore evidence is needed.	The various definitions make it difficult to
[8; 3 USA, 5	03		weeks of gestation) found non-significant increased risk.		the studies. Considering
China]			Third study, a time-series, found significant increased risk		that women could be
			within 180 days of gestation.		only a short period during

PM2.5 ; Reported in a prospective cohort that found	third trimester; at least
significant increased risk.	some stillbirths occurring
CO ; Reported in 3 studies; a case-control study found	during this period could be
significant increased risk for <14 weeks of gestation, no	attributed to an acute
association in a prospective cohort study for entire	exposure to these
pregnancy, and non-significant decreased risk in time-	pollutants. Findings from
series for cumulative	studies on the associations
lag0-14 days.	between third trimester
NO; Reported in a time-series study that found no	exposure to pollutants and
association for cumulative lag0-14 days.	stillbirths should be
NO2 ; Reported in 4 studies;	interpreted with caution
case-control study found significant increased risk for <14	because of the lack of
weeks of gestation, 2 studies (a prospective cohort for	specificity in quantifying
entire pregnancy, time-series study for cumulative lag0-14	the exposure period before
days) found non-significant increased risk.	the occurrence of stillbirth
The forth study, a time-series, found non-significant	outcome.
decreased risk within 180 days of gestation.	Many of the studies used
SO2; Reported in 3 studies; a case-control study found	air monitoring station data
significant increased risk for within 14 weeks of gestation,	to represent individual air
2 studies (a prospective cohort for entire pregnancy and a	pollution exposure,
time-series for cumulative lag0-14 days) found non-	without taking into
significant increased risk.	account indoor air
O3; Reported in 4 studies; 3 studies (a prospective cohort	pollution and mobility of
for entire pregnancy, case-control for <14 weeks of	human activity. This
gestation, and a time-series study for within 180 days of	limitation could result in
gestation) found significant increased risk. The forth study,	misclassification bias.
a case-control study for cumulative lag0-14 days	Many papers in this review
case-control study found no association.	reported results relating to
TSP ; Reported in a case-control study that found	various combinations of
significant increased risk within 14 weeks of gestation.	pollutants. Multiple
Stillbirth (SB)	pollutant models were
NB: Included 2 time-series studies that did not examined	used, and caution should
entire or trimester periods; one examined cumulative lag0-	be used when interpreting
14 days and found non-significant decreased risk for all	this data.
included pollutants (PM10, SO2, NO, O3) but no	
association for NO2, the other examined daily rate ratio	
per increase on concurrent day and found significant	
increased risk for PM10 but no significant association for	
other included pollutants	

(CO, NO2, SO2, O3)	
PM10 ; (6 studies; 2 each for	
prospective cohort and time series, and 1 each for	
retrospective cohort, and case-control).	
2 studies reported for entire pregnancy period (> 20 or >	23
or >28 gestational weeks); 1 each found non-significant	
increased and decreased risk. One study reported and	
found non-significant decreased risk in 1 st trimester. On	
study reported and found non-significant increased risk	n
2 nd trimester.	
Two studies reported and both found significant increase	d
risk in 3 rd trimester.	
One study found generally no association.	
PM2.5 ; (7 studies; 3 retrospective cohort and 1 each for	
prospective cohort, and cross-sectional and 2 case-	
control).	
5 studies reported for entire pregnancy period (>20 or >2	3
or >28 gestational weeks); 2 studies found significant	
increased risk and 3 found non-significant increased risk	.
One study reported and found non-significant decreased	
risk in the 1 st and 2 nd trimester.	
4 studies reported for 3 rd trimester and 2 each found	
significant and non-significant increased risk.	
One study found generally no association.	
CO (7 studies; 2 each for retrospective cohort and time-	
series, 1 each for prospective cohort, case-control, and	
cross-sectional).	
3 studies reported for entire pregnancy period (or > 20 o	
>23 or >28 gestational weeks); 1 study found significant	
and 2 found non-significant increased risks.	
3 studies reported for 3 rd trimester; 1 study found	
significant increased risk and 2 studies found non-	
significant increased risk.	
2 studies reported no association.	
NO2	
(8 studies; 2 each for retrospective cohort and time-serie	5,
1 each for prospective cohort, case-control, cross-	
sectional, and ecological).	

			4 studies reported for entire pregnancy period (>20 or >23		
			or >28 gestational weeks): 2 studies found significant and		
			1 found increased risk, and 1 each found non-significant		
			increased and decreased risk.		
			3 studies reported for 3 rd trimester: 1 study found		
			significant increased risk and 2 found non-significant		
			increased risk		
			1 study reported no association		
			1 study reported no association.		
			SO2 (8 studies; 2 each for retrospective cohort and time-		
			series, 1 each for prospective cohort, case-control, cross-		
			sectional, and ecological).		
			4 studies reported for entire pregnancy period (>20 or >23		
			or >28 gestational weeks): 3 studies found non-significant		
			increased risk, and 1 found non-significant decreased risk.		
			3 studies reported for 3 rd trimester: 2 found significant		
			increased risk and 1 found non-significant decreased risk.		
			1 study reported no association.		
			$O_3(6 \text{ studies: } 2 \text{ each for retrospective cohort and time-})$		
			series. 1 each for prospective cohort and case-control).		
			3 studies reported for entire pregnancy period (>20 or >23		
			or >28 gestational weeks): 1 each found significant		
			increased non-significant increased and non-significant		
			decreased risks 1 study reported for 1 st trimester and		
			found significant increased risk		
			1 study reported for 3 rd trimester and found significant		
			increased risk		
			1 study reported no association		
			TSP: 1 ecological reported and found non-significant		
			decreased risk.		
9. Westergaard	PM _{2.5} , SPM.	TLBW	Effect modification of TLBW by smoking	'The limited evidence	'This commentary is not a
(Westergaard et	SO ₂ .NO ₂ .		PM2.5 : a prospective cohort study of 74.178 births in 12	precludes for definitive	complete review of all
al., 2017)	O_3		European countries: significant increased risk in both	conclusions and further	potential effect
06/04/2017 [4: 2	0,5		smokers (with higher OR) and non-smokers	studies are recommended'	modifiers'
Denmark, 1			SPM : a nationwide population-based longitudinal survey		The limited evidence
Netherlands. 1			in Japan of 44.109 births:		precludes for definitive
Francel			non-significant decreased risk (protective effect) in		conclusions.
			smokers and significant increased risk in non-smokers.		

	SO2 : 1 study (44,109 births in the Japanese study);	
	significant increased risk in both smokers (with higher	
	OR) and non-smokers.	
	NO2: 1 study (44,109 births in the Japanese study); non-	
	significant decreased risk in smokers and significant	
	increased risk in non-smokers.	
	O3 : 1 study (44,109 births in the Japanese study); non-	
	significant decreased risk in smokers and non-significant	
	increased risk in non-smokers.	
	However, none of the interactions for smoking status	
	reached statistical significance, p>0.05.	
	(NB : review authors mistakenly exchanged the	
	smoker/non-smoker CIs for NO2 and O3 as in the primary	
	study, Yorifuji et al, 2015)	
	Effect modification of TLBW by maternal obesity.	
	PM2.5; 2 studies (retrospective and prospective cohorts;	
	1,035,123 births).	
	Higher OR in obese women compared to normal weight	
	women in both studies. Also, significant decreased risk	
	among underweights in the retrospective study but non-	
	significant increased risk in the prospective study.	
	NO2 and O3: 1 Californian retrospective cohort study	
	(960,945 births); showed a marginally increased risk of	
	TLBW for the obese mothers (BMI> 35 kg/m2) as	
	compared with those of normal weight (BMI 20-24.9	
	kg/m2), non-significant increased (O3) and decreased	
	(NO2) risks for underweight women with underweight	
	(BMI \leq 19 kg/m2) compared to normal weight women	
	(BMI 20–24.9 kg/m2)	
	Effect modification by socioeconomic status (SES:	
	education and income in 4 studies)	
	PM2.5: 3 studies (1prospective and 2 retrospective	
	cohorts)	
	In 2/3 studies (988,780 births), women with low education	
	had significantly higher OR compared with women with	
	high education. The third, a retrospective study (297,043	
	births) found non-significant difference between women	
	with less or more than high school.	

			O3: a retrospective study (297.043 births) found		
			significant increased risk in both women with less or more		
			than high school (but with greater risk for $>$ high school)		
			NO2: A retrospective study (2 402 545 births) from		
			Canada found non-significant decreased risk for women in		
			the third tertile of the lowest income		
			Effect modification of maternal asthma		
			One retrospective study (362 800 births) from Canada		
			reported for PM2 5 NO2 and O3: found no significant		
			difference between women with and without asthma		
			Decreased risk for PM2 5 and NO2 but significant		
			increased risk in non-asthmatic and non-significant		
			increased risk for asthmatic women '		
10 Jacobs	$NO_2 SO_2$	BW LBW	BW	Further studies are needed to	Strengths
(Jacobs et al	$CO PM_{10}$	PTB SB	NO2 (3 studies): One study (cross-sectional) examined	clarify associations for other	An advantage of this study
2017)	$PM_{25} O_2$	112,52	monthly association and found all non-significant	outcomes and pollutants	was that by including peer
01/02/2017	11112.3, 03		increased risk in almost all months	particularly CO PM2.5 and	reviewed articles written in
[9: 8 Australia 1			The other 2 studies (both cross-sectional and) reported	O_3 for which there were	Chinese we were able to
USA1			entire/trimester-specific (7 scenarios)	relatively few studies	include 14 additional
obrij			One study reported entire pregnancy and found significant	Total Voly Total Stadios.	studies on the topic that
			protective effect		would not have been
			2 reported for 1 st trimester and found significant and non-		included had the review
			significant increased risks		been limited to English
			2 reported for 2 nd trimester and both found significant		language articles
			increased risks		imiguage anticies:
			2 reported 3 rd trimester and significant increased risk and		
			significant protective effect		
			PM10 (3 studies): 1 retrospective cohort and 2 cross-		
			sectional reported 11 entire/trimester-specific scenarios		
			2 reported entire pregnancy and both found significant		
			increased risk		
			3 reported 1 st trimester and 2 found significant increased		
			risk and one found non-significant increased risk		
			3 reported on 3 rd trimester and one found non-significant		
			increased risk while 2 found significant protective effect.		
			PM2.5 : One study (cross-sectional) examined monthly and		
			found non-significant increased risk in all months.		
			SO2 (3 studies); 1 prospective cohort and 2 cross-		
			sectional.		

One study (cross-sectional) examined monthly and found	
mixed of non-significant increased risks in and protective	
effects and with significant increased risk in the 8 th month.	
The other cross-sectional study reported on the entire, 1 st	
and 2 nd trimesters and found significant increased risk for	
both entire and 1 st and non-significant increased risk for	
2 nd .	
2 reported on 3 rd trimester where the prospective cohort	
found significant increased risk and the cross-sectional	
found non-significant protective effect.	
CO: One study (cross-sectional) examined monthly and	
found non-significant increased risk in almost all months	
and with significant increased risk in the 8 th month.	
LBW	
NO2: 3 studies. A cross-sectional study reported and	
found no association for entire pregnancy. A retrospective	
cohort reported and found non-significant decreased risk	
for 1 st trimester. 2 studies reported for 3 rd trimester and one	
found significant decreased risk or protective effect (case-	
control study) and the non-significant decreased risk in the	
other (retrospective cohort). The retrospective cohort also	
reported non-significant decreased risk in 1 st , 2 nd , and 3 rd	
months.	
PM10; 5 studies.	
One study (cross-sectional) reported for entire pregnancy	
and found non-significant increased risk. A retrospective	
cohort reported and found non-significant decreased risk	
for 1 st trimester. 2 studies reported for 3 rd trimester one	
found significant decreased risk or protective effect (case-	
control study) and the non-significant decreased risk in the	
other (retrospective cohort). Another retrospective study	
reported various monthly for VLBW and found non-	
significant decreased risk in most cases and a significant	
decreased risk or protective association for 7-9 th months.	
SO2: 5 studies.	
One study (a cross-sectional) reported for entire pregnancy	
and found non-significant increased risk.	

	2 studies reporte	d for 2 nd trimester and found significant	
	(case-control stu	dy) and non-significant (retrospective	
	cohort) increase	d risks.	
	2 studies reporte	d for 3 rd trimester and one found	
	significant incre	ased risk (prospective cohort) but non-	
	significant decre	ased risks in the other (retrospective	
	cohort). Anothe	r retrospective study reported various	
	monthly for LB	W/VLBW and found mixed associations	
	but with no stati	stical significance.	
	РТВ	C	
	PM10: 8 studie	; 2 each for retrospective cohort and case-	
	control, 4 cross-	sectional.	
	4 studies reporte	d for entire pregnancy and one found	
	significant incre	ased risk and the other 3 found non-	
	significant incre	ased risk.	
	3 reported for 1	t trimester where one found non-	
	significant decre	ased risk and 2 found no association. 2	
	reported for 2 nd	rimester with non-significant increased	
	risk in one and o	ecreased risk in the other.	
	3 reported for 3	^d trimester where 2 found non-significant	
	increased risk and	d one found non-significant decreased	
	risk.	e	
	Several varied t	meframes were examined in some studies	
	and significant i	ncreased risk was found once for each of	
	the following; 3	months before conception, 8 weeks, 2 nd	
	months, 3 rd mor	ths, 4-6 th months, 7-9 th months, 2 nd month	
	before delivery.		
	One case-contro	l study (8969 births; 677 cases, 8292	
	controls), furthe	r classified the PTB as moderate PTB (32-	
	36 weeks) or ve	ry PTB (<32 weeks) and then further as	
	either medically	indicated or spontaneous. For the sub-	
	outcome medica	lly-indicated PTB, significant increased	
	odds were found	for the entire pregnancy and 1 st trimester.	
	For very PTB, s	gnificant associations were observed in	
	the last 4, 6, 8 w	eeks before delivery.	
	NO2: 7 studies:	1 retrospective, 2 case-control, 4 cross-	
	sectional.	L , , , , , , , , , , , , , , , , , , ,	
	3 reported on er	tire pregnancy and one found significant	
	increased risk an	d the 2 found no association. 2 reported	
	mcreased fisk a	iu lile 2 found no association. 2 reporteu	

	on 1st trimester and both found non-significant decreased	
	risk. 2 reported on 2 nd trimester and both found decreased	
	risk where one is significant. 3 reported for 3 rd trimester	
	and one found significant increased risk and 2 found non-	
	significant decreased risk.	
	Varied other timeframes were reported and one study	
	found significant increased risk in 8th week before	
	delivery.	
	SO2 : 7 studies; 2 each for retrospective cohort and case-	
	control, 3 cross-sectional.	
	3 studies reported for entire pregnancy and all found	
	significant increased risk. One reported for 1 st trimester	
	and found non-significant increased risk.	
	2 reported for 2^{nd} trimester and both found non-significant	
	increased risk.	
	Varied other timeframes were reported a significant	
	increased risk was reported once for each of the following:	
	3 rd month, 1 month before delivery, 8 th month before	
	delivery.	
	O3: One cross-sectional study reported for change in	
	number of events in the 4.6. 8 weeks before delivery and	
	found significant risk for 4 and 8 weeks before delivery.	
	Stillbirth	
	Reported by one case-control study of 102.575 births	
	(9325 cases, 93.250 controls).	
	CO : no association for the entire pregnancy and all	
	trimesters.	
	NO2 : no association for 1^{st} trimester and non-significant	
	decreased risk for the entire pregnancy, 2 nd , and 3 rd	
	trimesters.	
	O3 : no association for 1^{st} trimester and non-significant	
	decreased risk for the entire pregnancy, 2^{nd} , and 3^{rd}	
	trimesters.	
	PM10 : non-significant increased risk for 1 st trimester and	
	non-significant decreased risk for the entire pregnancy. 2^{nd} .	
	and 3^{rd} trimesters.	
	SO2 : Non-significant increased risk for the entire	
	pregnancy and 1^{st} trimester but no association for the 2^{nd}	
	and 3^{rd} trimesters.	

			Stillbirth was further reported by term and preterm births,		
			and also several other timeframes with mixed findings.		
			Significant decreased risk was found in 2 nd trimester for		
			O3 and PM10 among term births, significant increased		
			risk for SO2 in 1 st trimester, and 1 st , 2 nd , and 3 rd months		
			among PTB stillbirth.		
11. Shah (Shah et	PM ₁₀ , PM _{2.5} ,	LBW, PTB,	LBW	Implications for practice	Strengths
al., 2011)	NO_2 , SO_2 ,	SGA/IUGR,	PM2.5; 4 studies (3 cohort and 1 case-control; 3,971,602	The results of this systematic	'This is the first review to
(26/11/2010)	CO, O ₃ ,	BW	births, 1 cohort had crude OR).	review reinforce the need for	assess associations of birth
[2; both Canada]	TSP		2 cohort studies reported on entire pregnancy where one	action to be taken to reduce	outcomes using an
			found significant increased risk and the other found non-	exposure to environmental	exhaustive method that
			significant increased risk. 1 study several exposure levels	pollutants, especially during	targets individual
			for first month, last 2 weeks, and total gestation and found	pregnancy. Clinicians should	pollutants. Large number
			significant increased risks for 8 out of 9 scenarios. Another	therefore encourage their	of studies, assessment of
			cohort reported average exposure during pregnancy for 3	pregnant patients to pay	risk of biases in the
			different exposure levels and found non-significant	attention to local air quality	included studies, and
			decreased risk for all.	index information and adjust	qualitative and quantitative
				their activities where a risk	analyses of exposure-
			PM10: 12 studies (9 cohort, 3 ecological; 5,074,520	is identified. Regional,	outcome relationships are
			births; 2 studies had crude OR)	national and international	strengths of this review.
			5 studies reported for entire pregnancy; 3 found non-	efforts are needed to reduce	
			significant increased risk (including 1 crude OR), 1 found	air pollution, not only to	Limitations
			non-significant decreased risk and 1 found no association.	improve birth outcomes, but	We restricted our searches
			5 studies reported for 1 st trimester; 1 found significant	also other health outcomes.	to English language
			increased risk, 3 found non-significant increased risk	Individual action by	publications.
			(including 1 crude OR), and 1 found non-significant	pregnant women, such as	We did not include gray
			decreased risk.	limiting time spent outside	literature, abstracts, and
			5 studies reported for 2 nd trimester; 1 found significant	when the outdoor pollution	proceedings, as the quality
			increased risk, 3 found non-significant increased risk	level is higher, and reducing	of such studies,
			(including 1 crude OR), and 1 found non-significant	infiltration of outdoor	particularly for the
			decreased risk.	pollution to indoor areas is	observational association
			6 studies reported for 3 rd trimester; 2 found non-	needed.'	type of studies, could not
			significant increased risk, 3 found non-significant		be assessed adequately.
			decreased risk, and 1 found no association (crude OR).	'Implications for research	
			One study reported city-specific average exposure during	The body of research needs	
			pregnancy for 7 cities in Korea and found significant	to expand to augment our	
			increased risk for 2 cities and non-significant increased	understanding of the	
			risk for remaining cities.	biological mechanisms	
				underlying the impact of	

	Another study reported average exposure during	various air pollutants, as	
	pregnancy for three different exposure levels and found	well as the interactions	
	non-significant decreased risk for two and significant	between them. Key areas	
	decreased risk for the relatively highest exposure.	where research is needed to	
		improve our understanding	
	SO2 : 14 studies; 8 cohort, 2 case-control, 4 ecological	of the strength and	
	studies; 5,379,951 births and unreported for 1 ecological	magnitude of the association	
	study (3 cohort studies, 749,700 births included reported	between air pollution and	
	crude ORs).	birth outcomes include	
	5 studies reported for entire pregnancy where one each	(Slama et al., 2008): an	
	found significant and non-significant increased risk. 1	improved method of	
	found no association, and 2 found non-significant	detecting exposure at a large	
	decreased risk	population level.	
	5 reported for 1 st trimester where 1 found significant	development of an objective	
	increased risk 2 each found non-significant increased and	measure to assess duration	
	decreased risks.	and intensity of exposure of	
	5 reported for 2 nd trimester where 1 found significant	individuals inclusion of	
	increased risk 3 found non-significant increased risk and 1	entire populations or	
	found non-significant decreased risk	performance of carefully	
	4 reported for 3 rd trimester where 2 each found non-	designed nested studies	
	significant increased and decrease risks	complete assessment of	
	Other exposure periods included during last month or	outcomes throughout	
	trimester with different exposure levels with 2 finding	pregnancy identification of	
	significant increased risk and mixed finding in others	considerations necessary to	
	including non significant increased/decreased risks	avoid residual confounding	
	One case control study (345 hirths) reported on VI BW	and adjustment for	
	and found significant increased risk	residential mobility '	
	and found significant increased fisk.	residential mobility.	
	NO2 : 11 studies: 9 cohort and 2 ecological: 5 228 442		
	hirths (one included cohort study with 388 105 births was		
	α crude OP)		
	A studies reported for entire pregnancy where 2 found		
	significant increased risk 1 each found non-significant		
	increased and decreased risks		
	A reported for 1 st trimester where 1 found significant		
	increased risk and 2 each found non significant increased		
	and decreased risks		
	and decreased fisks.		

5 studies reported for 2 nd trimester where 1 found	
significant increased risk, and 2 each found non-significant	
increased and decreased risks.	
4 studies reported for 3 rd trimester where 2 each found	
non-significant increased and decreased risks.	
Other exposure periods include non-significant decreased	
risks for both 1 st and last months reported in a cohort study	
(229,085 births).	
NO : 3 studies; 2 ecologic and 1 cohort; 165,470 births	
with unreported births in one ecologic (the included cohort	
had crude OR).	
A study reported on entire, 1 st , 2 nd and 3 rd trimester and	
exposure above average at delivery; all found non-	
significant decreased risk in each instance.	
CO : 13 studies (9 cohorts, 2 case-control and 2 ecological	
studies; 5,367,034 births; one cohort study had crude OR).	
4 studies reported for entire pregnancy and 2 found non-	
significant increased risk and another 2 (including 1 crude	
OR) found non-significant decreased risk.	
4 studies reported for 1 st trimester and 1 (crude OR) found	
significant increased risk while 3 found non-significant	
increased risk.	
3 studies reported for 2 nd trimester and 1 (crude OR) found	
significant increased risk while 2 found non-significant	
increased risk.	
4 studies reported for 3 rd trimester and 1 found significant	
increased risk, 2 found non-significant increased risk and	
one (crude OR) found significant decreased risk.	
Other exposure periods included 1 st month, last 3 months,	
last month, during last trimester, total gestational exposure	
with several exposure categories; mixed findings,	
predominantly non-significant increased and decreased	
risk.	
O3 : 7 studies (5 cohort and 2 ecological; 4,445,775 births)	
2 studies reported for entire pregnancy and both found	
non-significant increased risk.	

	3 studies reported for 1 st trimester where 1 found non-	
	significant increased risk and 2 found non-significant	
	decreased risk.	
	2 studies reported for 2 nd trimester finding non-significant	
	increased risk in one and decreased risk in the other.	
	3 studies reported for 3 rd trimester where 1 found non-	
	significant increased risk and 2 found non-significant	
	decreased risk.	
	A cohort study reported for 1 st and last months and found	
	non-significant increased risk for both exposure periods.	
	TSP : 3 studies (2 cohort and 1 ecological: 351434 births	
	with unreported birth for the ecological study).	
	1 study reported and found significant increased risk for	
	entire pregnancy.	
	2 studies reported for 1 st trimester: 1 found significant	
	increased risk and the other found non-significant	
	increased risk.	
	1 study reported and found non-significant increased risk	
	for 2 nd trimester.	
	2 studies reported for 3 rd trimester: 1 found non-significant	
	increased risk and the other found non-significant	
	decreased risk.	
	BW (reduction)	
	PM2.5: 4 cohort studies; 3,929,272 births.	
	1 study reported and found significant increased risk for	
	entire pregnancy	
	1 study reported and found significant increased risk for 1 st	
	trimester.	
	1 study reported and found non-significant increased risk	
	for 2 nd trimester.	
	1 study reported and found significant increased risk for	
	3 rd trimester.	
	A prospective study reported and find significant increased	
	risk for 2 days in second trimester.	
	Another study reported for three exposure levels for	
	average exposure during pregnancy and found significant	
	increased risk for one and non-significant increased risk	
	for the other two exposure dosage	

	PM10 : 4cohort studies; 393,2001 births.	
	2 studies reported for entire pregnancy; 1 found significant	
	increased risk and the other found non-significant	
	increased risk.	
	1 study reported and found significant increased risk for 1 st	
	trimester.	
	1 study reported and found non-significant increased risk	
	for 2 nd trimester.	
	1 study reported and found non-significant increased risk	
	for 3 rd trimester.	
	Another study reported for three exposure levels for	
	average exposure during pregnancy and found significant	
	increased risk for one and non-significant increased risk	
	for the other two exposure dosage	
	NO2: 7 cohort studies: 3941118 births.	
	5 studies reported for entire pregnancy: 1 found significant	
	increased risk. 2 each found non-significant increased and	
	decreased risks.	
	3 studies reported for 1 st trimester: 2 found non-significant	
	increased risk. 1 found non-significant decreased risk.	
	3 studies reported for 2 nd trimester: 1 found non-significant	
	increased risk. 2 found non-significant decreased risk.	
	3 studies reported for 3 rd trimester: 1 found significant	
	increased risk 2 found non-significant decreased risk	
	SO2 : 4 cohort studies: 3 917 781 hirths	
	1 study reported and found non-significant increased risk	
	for entire pregnancy	
	2 studies reported for 1 st trimester: 1 found non-significant	
	increased risk and the other found non-significant	
	decreased risk	
	2 studies reported for 2^{nd} trimester: 1 found non-significant	
	increased risk and the other found non-significant	
	decreased risk	
	2 studies reported for 3 rd trimester: 1 found non-significant	
	increased risk and the other found non-significant	
	decreased risk	
	1 study reported and significant increased risk for the first	
	2 months	
	2 monuns.	
	CO . 5 conort studies, 5,900,772	

	2 studies reported for entire pregnancy; 1 found non-	
	significant increased risk and the other found non-	
	significant decreased risk.	
	1 reported and found non-significant increased risk for 1 st	
	trimester.	
	1 reported and found significant creased risk for 2 nd	
	trimester.	
	decreased risk.	
	1 reported and found significant increased risk for 3 rd	
	trimester.	
	O3 : 2 cohort studies; 3,548,268 births.	
	The first study (3,091 births) reported and found	
	significant increased risk for entire pregnancy.	
	The second study (3,545,177 births) reported for trimester-	
	specific and found significant increased risk for 1 st , 2 nd ,	
	and 3 rd trimesters.	
	РТВ	
	PM2.5: 1 case-control; 2,543 births.	
	Reported 1 st trimester for two different exposure level and	
	significant and non-significant increased risks.	
	SO2: 5 studies; 4 cohort and 1 ecological studies;	
	5,97,922 births (2 included studies, a cohort and ecologic;	
	165,470 births reported crude ORs)	
	1 study each reported for each trimester and found	
	significant increased risk for each trimester.	
	A study each also reported and found nonsignificant	
	decreased risk for 1 st month, significant increased risk for	
	last month and significant increased risk for at delivery.	
	PM10: 2 cohort studies 285,515 births.	
	1 study (187,997 births) reported for entire pregnancy and	
	found non-significant increased risk.	
	The second study (97,518 births) reported and found non-	
	significant increased risk for first month of pregnancy and	
	significant increased risk for 6 weeks prior to delivery.	
	NO2: 6 studies; 4 cohort and 1 each for case-control and	
	ecological; 370,985 births (the included ecologic study	
	with 126,752 births had crude OR).	

3 studies reported for entire pregnancy where 2 found non- significant increased risk and 1 found non-significant decreased risk.4 studies reported for 1st trimester where 2 found significant increased risk and 1 each found non-significant increased and decreased risks.4 studies reported for 2nd trimester where 1 found significant increased risk, 2 found non-significant increased risk, and 1 found non-significant increased risk, 3 found non-significant	
 significant increased risk and 1 found non-significant decreased risk. 4 studies reported for 1st trimester where 2 found significant increased risk and 1 each found non-significant increased and decreased risks. 4 studies reported for 2nd trimester where 1 found significant increased risk, 2 found non-significant increased risk, and 1 found non-significant decreased risk. 	
decreased risk. 4 studies reported for 1 st trimester where 2 found significant increased risk and 1 each found non-significant increased and decreased risks. 4 studies reported for 2 nd trimester where 1 found significant increased risk, 2 found non-significant increased risk, and 1 found non-significant decreased risk.	
4 studies reported for 1 st trimester where 2 found significant increased risk and 1 each found non-significant increased and decreased risks. 4 studies reported for 2 nd trimester where 1 found significant increased risk, 2 found non-significant increased risk, and 1 found non-significant decreased risk.	
significant increased risk and 1 each found non-significant increased and decreased risks. 4 studies reported for 2 nd trimester where 1 found significant increased risk, 2 found non-significant increased risk, and 1 found non-significant decreased risk.	
increased and decreased risks. 4 studies reported for 2 nd trimester where 1 found significant increased risk, 2 found non-significant increased risk, and 1 found non-significant decreased risk.	
4 studies reported for 2 nd trimester where 1 found significant increased risk, 2 found non-significant increased risk, and 1 found non-significant decreased risk.	
significant increased risk, 2 found non-significant increased risk, and 1 found non-significant decreased risk.	
increased risk, and 1 found non-significant decreased risk.	
4 studies reported for 3 rd trimester where 3 found non-	
significant increased risk and 1 found non-significant	
decreased risk.	
One cohort study (229,085 births) reported for 1^{st} and last	
months and found non-significant increased risk for both	
exposure periods.	
\mathbf{NO} : 2 studies; a cohort and an ecologic; 165,470 births	
(both reported crude OR).	
The cohort study reported on 1 st , finding significant	
increased risk, 2 nd for non-significant increased risk, and	
3 rd trimester for significant increased risk.	
The ecological study reported for exposure above average	
at delivery and found non-significant increased risk.	
CO : 3 studies (2 cohort and 1 case-control; 329,146 births)	
1 case-control (2.543 births) reported for and found non-	
significant decreased risk on entire pregnancy and non-	
significant increased risk for 1 st trimester.	
The 2 cohort studies reported for 6weeks before delivery.	
first month, and last month with both non-significant	
increased/decreased risk, and a significant increased risk in	
last month.	
O3 : 2 studies (1 each for case-control and cohort; 231,628	
births).	
The cohort study (229,085 births) reported for first and last	
months and found non-significant decreased risk for both	
periods.	
The case-control study (2,543 births) reported different	
exposure categorised during 1 st trimester finding both	
increased and decreased non-significant risks.	
TSP : 1 ecological study (unreported sample size)	

Significant increased risk for 1 st trimester.	
Non-significant increased risk for 2 nd trimester.	
Significant increased risk for 3 rd trimester.	
SGA	
PM2.5: 4 studies (all cohort: 183475 births).	
A cohort study (138,056 births) reported on and non-	
significant decreased risk for 1 st trimester significant	
increased risk for 2 nd and non-significant decreased risk	
for 3^{rd} trimester.	
Others reported for over duration of pregnancy or average	
exposure and for several exposure level categories and	
found significant risk for 2 scenarios and no/decreased risk	
for the rest.	
PM10: 6 cohort studies: 175.116 births.	
2 studies reported for entire pregnancy: 1 found significant	
increased risk and the other found non-significant	
increased risk (crude OR).	
1 study reported and found no association for 1 st trimester	
1 study reported and found significant increased risk for	
2 nd trimester	
1 study reported and found no association for 3 rd trimester	
2 studies reported on and both found significant increased	
risk for first month of pregnancy	
Another study reported for average exposure during	
programmer for three levels of exposure categories and	
found no accordiation for relatively lowest level and non	
found no association for feratively lowest level and non-	
significant decreased risk for the other two higher levels.	
SO2 : 1 cohort study with 229.085 births	
Reported for first month and found significant increased	
risk but no association for last month	
NO2 : 6 studies: all cohort studies: 404 008 (2 included	
studies: 3 876 births were unadjusted ORs one each for	
entire and 2 nd trimester)	
2 studies reported for entire pregnancy and found non-	
significant increased and decreased risk	
2 studies reported for 1 st trimester where one found no	
2 studies reported for 1° triffiester where one found no	
association and non-significant decreased risk in the other.	1

			-		
			3 studies reported for 2 nd trimester where one found no		
			association and non-significant increased and decreased		
			risk in the other two.		
			3 studies reported for 3 rd trimester where one found non-		
			significant increased risk and 2 found non-significant		
			decreased risk.		
			One study reported average exposure during pregnancy		
			and found no association and non-significant decreased		
			risk in two exposure levels.		
			One cohort study (229,085 births) reported for first month		
			and found significant increased risk but non-significant		
			decreased risk for last month.		
			CO : 4 studies (all cohort: 388.479 births: 1 had crude OR)		
			2 reported for entire pregnancy where 1 found non-		
			significant increased risk and the other (crude OR) found		
			no association.		
			A study (138.056 births cohort) reported on and found		
			non-significant decreased risk for both 1 st and 2 nd		
			trimesters and non-significant increased risk for 3 rd		
			trimester.		
			Another study reported for 1 st month with significant		
			increased risk and non-significant decreased risk for last		
			month		
			O3 : 3 studies (all cohort: 370 232 births: 1 had crude OR)		
			2 studies reported on 1 st trimester and both found no		
			association		
			2 studies reported for 2 nd trimester and both found non-		
			significant increased risk		
			2 studies reported for 3^{rd} trimester and both found no		
			association		
			The third study reported for 1 st and last months and found		
			non-significant decreased risk for both periods '		
12 Bonzini	PM ₁₀ CO	DTR I RW	PTR (8 studies)	'There is a need for large	Not stated for the review
(Bonzini et al	$NO_2 O_2$	SGA BW	PM10 (6 studies)	collaborative	Not stated for the review
2010) 09/2010	PM_{25}	5011, D 11	odds ratios for 14 pregnancy period-specific exposures	studies to validate the	But general statements on
[6 All Italy]	1 1 1 2.3		standardized to an increase of 10 µg/m3	results through comparison	studies
[⁰ , ¹ in imiy]			PM10 and $8/14$ cases showed a significant increase in PTR	of different exposure	stadios.
			risk with odds ratios ranging from 1 014 to 1 364	assessment methods These	'In the absence of an a
			115K with 0005 failos failging 11011 1.014 to 1.504.	studies need to take time	nriori clear hypothesis it's
		1		studies here to take tille	priori cicai riypomesis it s

			1
	(NB: only 2 cases actually found significant association,	activity-patterns, maternal	also difficult to establish
	both in 1 st trimester where CI didn't include 1).	characteristics and	critical time windows of
	Two of the eight (25%) studies reported statistically	behaviour, and spatial	exposure for each outcome
	significant increases in PTB in the first trimester of	confounders into account.	The variability across
	pregnancy (13% for 52,113 births cohort study and 36%	Studies of prospective	studies could reflect
	for 28,200 births time series study).	cohorts, with the use of	important differences in
	CO (5 studies)	biomarkers of exposure	study design.
	14 period-specific odds ratios (ORs) standardized for an	might be particularly	Exposure assessment
	increase of 1 mg/m3	forthcoming.	method is a crucial issue.'
	in exposure was estimated and results from most of the	6	
	cases were associated with an increased risk of	Meanwhile, because of the	
	approximately 1.0 with the exception of data from Leem	extreme susceptibility	
	et al (South Korea) which produced a two-fold increased	of the fetus and the impact	
	risk in the first trimester and 78% increased risk in the	of perinatal adverse events	
	third trimester Results from two studies (Wilhelm et al	on adult health it may be	
	and Ritz et al.) showed significant but smaller ($ORs=1.178$	prudent to continue to try	
	and 1 333 respectively) increases in PTB in the first	and reduce exposure of	
	trimester in Californian women	pregnant women to air	
	(Note: $0/14$ with $1/0$ significant: 3 in 1 st trimester from 3	pollution throughout the	
	cohort studies of 225 391births: 1 in 3 rd trimester from a	world '	
	52 113 births cohort study)	world.	
	NO2 (4 studies)		
	The affect of NO2		
	The 4 studies gave 0 period specific OPs and adjusted		
	OBs for an increased and some specific OKs and adjusted		
	ORS for an increased exposure to $10 \mu\text{g/m}$ s		
	snowed mild, yet statistically significant increases in risk		
	of PTB in the first (2 conort studies of 118,908 births) and $11212121212121212121212121212121212121$		
	third (1 cohort study of 52,113 births) trimesters.		
	O3 (3 studies)		
	The 3 studies gave estimations of 7 period-specific ORs		
	that ranged from 0.974 to 1.177 per an increase of 10		
	μ g/m3. Two Australian studies (Hansen et al and Jalaludin		
	et al) reported statistically significant increases for		
	exposure during the first trimester respectively as 1.177		
	and 1.072. No significant increases in PTB risk were found		
	associated with exposure in the second or third trimester of		
	pregnancy. Two time series studies found significant		
	association in 1 st trimester, from 152,040 Australian births		

	PM2.5 (4 studies)	
	10 period-specific ORs (5 of them >1.00) based on the 4	
	studies, standardized to an increase of $1 \text{ µg/m}3$	
	exposure and only $1/4$ (25%) study reported significant	
	risk of PTB in the first trimester. The case-control study	
	showed a significant increase of risk during the first month	
	of pregnancy and the last two weeks of pregnancy as well	
	as the entire pregnancy, but did not provide trimester-	
	specific risk estimates	
	(NB: 9 period-specific ORs: 1 significant association in 2^{nd}	
	week 1 st month and whole pregnancy by 1 matched case-	
	control study of 42 692 births: 1 st trimester by 1 cohort	
	study of 667 795 births)	
	study of 007,795 ontais)	
	Term LBW	
	PM10 (7 studies)	
	The 7 studies gave a total of 17 period-specific ORs.	
	11/17 (65%) showed non-significant increased risks	
	ranging from point estimates 1.037 to 1.480, and two found	
	borderline significant (one each for 1^{st} in 74.284 births and	
	3 rd trimesters in 136,134 births, both are cohort studies).	
	One study reported no association consistently across each	
	trimester.	
	CO (5 cohort studies)	
	11 period-specific ORs	
	No clear association in all studies except 1 cohort study of	
	136,134 births that found a significant 35% increase in risk	
	for the 3 rd trimester	
	NO2 (4 studies + 1 same study data)	
	10 period-specific ORs. 4 cases showed association but 2	
	were significant for the entire pregnancy period from 2	
	cohort studies of 428,753 births	
	O3 (3 studies)	
	9 period-specific ORs. 3 associated marginally but none	
	showed significantly increased ORs	
	PM2.5 (2 studies)	

Both studies studied entire pregnancy and 1(358,504 births	
cohort study) showed a small but statistically significant	
adverse exposure-related effect (OR=1.024;1.010 - 1.039)	
SGA	
PM10 (4 studies)	
9 period-specific ORs	
3 with increased ORs but none was significant	
CO (3 cohort studies)	
produced 9 period-specific ORs. One cohort study	
(386,202 births) showed statistically significant increased	
risks with exposure in each trimester (1.153 in the first	
trimester to 1.128 in the second trimester). Another 1	
scenario found non-significant.	
NO2 (3 cohort studies)	
9 period-specific ORs.	
5 associated with increased risk but 3 were significant (in	
each trimester from one cohort study of 386,202 births)	
O3 (3 cohort studies)	
8 period-specific ORs	
1 showed non-significant increased risk in 1 st trimester, 4	
showed a decreased risk (2 in 3 rd and 1 each in 1 st and 2 nd	
trimesters), the rest no association.	
PM2.5 (3 cohort studies)	
9 trimester-specific ORs	
6 showed significant increased risk; 1 in 1 st (cohort study	
of 386,202 births) 3 in 2 nd (542,505 births of cohort	
studies) and 2 in 3 rd trimesters (404,449 births)	
BW	
PM10 (6 studies)	
19 period-specific risk estimates.	
14/19 risk estimates showed an association between	
exposure and lower birth weights (<25 g) when exposures	
were aligned to an increase of $10 \mu g/m^3$. The 6/14 had	
different levels of exposure (17 to $60 \mu g/m3$), and all	
showed statistically significant decreases in birth weight	
(1 for whole preg in 358,504 births cohort, 1 st trimester in	
2 time series studies for 206,077 births, 2 nd trimester and	
last month for 1 cohort of 138,056 births, 3 rd trimester for	
2 birth cohort studies of 362,405 births. One cohort study	

			of 1,514 births found significant increase of birth weight in		
			1 st trimester. No consistency across studies was evident		
			with regard to the period of pregnancy in which the effects		
			were found.		
			CO (5 studies)		
			18 period-specific estimates; 10 showing a decrease in		
			birth weight). Significant adverse effects were observed in		
			the 1 st trimester in 3 cases (a time series of 179,460 births,		
			2 cohort studies of 362,405 births); both whole preg and		
			3 rd trimester in a cohort study of 358,504 births.		
			Significant in last month was found in a cohort study of		
			138.056 births.		
			NO2 (5 studies)		
			15 period-specific estimates, of which 10 suggested a		
			decrease in birth weight but significant in 3 cases (1 st and		
			3 rd trimesters in a 138.056 births cohort study, whole preg		
			in a 358,504 births cohort study).		
			$\mathbf{O3}$ (4 studies)		
			14 period specific estimates 4 showed statistically		
			significant in-verse relationship between exposure and		
			hirth weight		
			(2 in 2^{nd} trimester from 2 cohort studies of 141 957 births		
			1 each in 3^{rd} trimester and whole preg period from		
			3 901 births cohort study)		
			Others showed non-significant adverse association		
			PM2 5 (3 cohort studies)		
			11 period specific estimates most of the estimates showed		
			small but statistically significant decreases in BW for		
			increasing levels of exposure in each trimester and also in		
			the optime programmy (1 in whole program 18 247 ophort		
			hirths 2 in 1 st trimester from 276 751 sobert hirths 2 in		
			2 nd trimoster from 156 202 schort hirths 2 in 2 nd trimoster		
			from 276 751 sohort hirths) and a last month from		
			128.056 schort hirths		
12 Dagett:	TCD DM	DTD I DW	138,030 COHOIT DIFUIS.	Fourth on and hotton atout	ND. No statement on (1)
15. BOSetti (Decetti et el	$15P, PM_{10}, DM$	FIB, LBW,	FID TSD (2 studies) a time series and areas sector -1, 102,519	runner and better studies are	IND. INO Statement on the
(DOSEIII et al., 2010)	F 1 V1 2.5	VLDW,	15 (2 succes)-a time series and cross-sectional; 105,518	there is a real offect of DM	the review
2010)		SUA	UIIIIS.	on these adverse program	une review.
$\frac{1}{100}$				on mese adverse pregnancy	But ingningnited the
Italy, I Spain]				outcomes. The studies	limitations of the included

Significant for whole pregnancy period for the time series	should include: better	primary studies (and
study Associated for all trimesters but significant for 1 st	assessment of exposure	summarised this in the
trimester for the cross sectional study	using for example	conclusion and
timester for the cross-sectional study.	geographic information	recommendations)
PM10 (0 studios) 3 time series and 6 cross	system techniques, such as	recommendations)
FWID (9 studies)-5 time series and 0 cross-	system techniques, such as	
sectional, 480, 159 births and unreported for 2 studies.	discussion module which	
5 studies examined 1 st trimester and 2 found significant	dispersion models, which	
RR, I each non-significant increase and decrease RR and I	take mobility into account;	
no association.	better information on	
One found significant increased RR in first month and one	confounders and analyze	
found non-significant RR in whole preg.	potential residual	
Only one reported 2 nd trimester with no association. 3	confounding; and	
reported 3 rd trimester with non-significant increase RR.	measurement of biomarkers	
3 reported last 6 week with one significant risk.	of exposure or personal	
	exposure monitoring in	
PM2.5 (4 studies)-all cross-sectional; 210,459 births and	order to validate exposure	
unreported in one study	estimates. Other studies	
	focused on better outcomes,	
2 out of 4 found significant for risk for 1 st trimester.	such as ultrasound	
One found significant association for whole pregnancy.	measurements during birth,	
One each studied last 6 and 2 weeks and last 2 week was	may also help understand the	
significant.	effect of air pollution on	
No report on 3 rd trimester.	adverse pregnancy	
LBW	outcomes.	
17 studies (2 case-control, 1 ecological, 14 cross-sectional)		
TSP (5 studies)- 3 cross-sectional, 1 case-control (for		
VLBW) and 1 ecological; 459,952 births excluding		
unreported births for the ecological study.		
1 reported nonsignificant increased risk for LBW in whole		
preg the one case-control was significant for VLBW.		
2 reported for 1 st trimester and both showed significant		
increased risk.		
Only one reported for 2 nd trimester and was significant		
risk.		
3 reported for 3 rd trimester and 2 showed significant risk.		
PM10 (12 studies)- 11 cross-sectional on LBW and 1		
case-control on VLBW: 1.259.186 births with one		
unreported size.		
4 reported non-significant risk for whole preg		

			 6 reported 1st trimester where 4 showed non-significant risk, 1 no association and 1 decreased risk. 6 reported for 2nd trimester where 2 showed significant risk, 3 non-significant risk and 1 decreased risk. 7 reported 3rd trimester with none significant, 3 each nonsignificant increase and decrease risks, and one no association. PM2.5 (3 studies)- all cross-sectional; 429,769 births. 2 reported whole preg where one showed significant increase risk and the other found decreased risk. One reported prevalence ratio which was significant in 3rd trimester. SGA PM10 (3 studies)- all cross-sectional; 234,922 births. One reported on whole preg and found non-significant RR. The other one reported no association prevalence ratio for 1st and 3rd trimesters but significant for 2nd trimester. PM2.5 (3 studies)-all cross-sectional; 226,552 births. One reported on whole preg and found non-significant RR. The other one showed significant RR. 2 reported on whole preg and found non-significant RR. 2 reported on whole preg and found non-significant RR. 3 reported on whole preg and found non-significant RR. 5 (3 studies)-all cross-sectional; 226,552 births. One reported on whole preg and found non-significant RR. 2 reported on 1st trimester where one found significant increased risk and the other found a decreased risk. Both found significant risk for 2nd trimester. One found significant risk for 3rd trimester and the other decreased risk. 		
14. Ghosh (Ghosh et al., 2007) 09/05/2007 [4, UK]	TSP, PM ₁₀ , PM _{2.5} , CO, SO ₂ , NO ₂ , O ₃	BW, LBW, VLBW, PTB	risk. LBW (3 studies) A case-control study (36,305 births in USA) that examined gender differential with males as reference reported significant excess risk in females for LBW compared to males for exposures PM10, CO, O3. One cohort study in China (74671 births) reported higher but insignificant risk each for exposures SO2 and TSP in females. VLBW Another case-control (345 births in USA) also reported insignificant excess risk in females for combined TSPSO2 exposure. BW (1 study)	'Further investigation to ascertain interaction is required in high-powered datasets across different populations.'	'The interactive effects of air pollution, pregnancy outcomes and gender should be considered in light of known limitations such as exposure misclassification, bias and confounding. Studies that reported a gender based estimate were those that reported a positive association between air pollution and adverse

			A study from Poland, a prospective cohort of 362 births reported a significantly lower mean in females (212.80 g) for PM2.5 PTB NB: None examined exposure-outcome association with		pregnancy outcomes. None of the studies that reported negative associations explored gender effects. Thus publication bias may
			empirical measurement of the exposures.		be relevant here.'
			 The review authors (Ghost et al, 2007) estimated unadjusted (except 2 adjusted) gender-specific effects between air pollutant and birth outcomes based on additional information from primary authors (4 studies); one study for each association. LBW-SO2; excess significant adjusted OR in males but insignificant in females. LBW-TSP; excess significant adjusted OR in males but insignificant in females. LBW-PM10; excess but insignificant unadjusted OR in both but higher in males than females. LBW-NO2; excess significant unadjusted OR in males but insignificant in females. LBW-NO2; excess but insignificant unadjusted OR in both but higher in females. LBW-CO; excess but insignificant unadjusted OR in both but lower in males than females. LBW-O3; reduced insignificant unadjusted OR in both but higher in males than females. UBW-TSPSO2; excess but insignificant unadjusted OR in both but higher in males than females. BW-PM2.5; no evidence of significant unadjusted OR in both but higher in males than females. BW-PM10; excess but insignificant unadjusted OR in both but higher in males than females. PTB-PM10; excess but insignificant unadjusted OR in both but higher in males than females. BW-PM2.5; no evidence of significant unadjusted OR in both but higher in males than females. BW-PM10; excess but insignificant unadjusted OR in both but higher in males than females. BW-PM2.5; no evidence of significant unadjusted OR in both but higher in males than females. BW-PM10; excess significant unadjusted OR in both but higher in males than females. PTB-CO; excess significant unadjusted OR in both but insignificant in females. PTB-O3; reduced significant unadjusted OR in both but lower in males than females. 		
			PTB-NO2 ; excess significant unadjusted OR in both but		
			higher in males than females.		
15. Glinianaia	TSP,	LBW,	LBW/BW	'Future research is needed to	Limitations
(Glinianaia et al.,	TSPSO ₂ ,	VLBW,	TSP (3 cohort studies); 6 trimester-specific cases;	clarify whether there is a	'Publication bias, and the
2004)	PM ₁₀ , PM _{2.5}		increased non-significant risk for 2 studies in 1 st , 1 in 2 nd	small adverse effect of	exclusion of papers not
09/01/2004 [5,	IUGR, PTB,	and 2 in 3 rd trimesters of LBW. One found significant	particulate air pollution on	published in English, could	
----------------	------------	---	---------------------------------	-------------------------------	
UK]	and SB	increased risk in 3 rd trimester for LBW.	fetal health. Further ecologic	have decreased the number	
		3 studies also reported significant reduction in mean BW	studies are unlikely to add to	of results available for	
		(2 in 1^{st} and 1 in 3^{rd} trimesters).	the evidence. A time-series	review. Most papers	
		One ecological study with unadjusted OR also found	approach could be justified	reported the results relating	
		increased non-significant OR of LBW.	if the study examines the	to various combinations of	
		PM10 (1 cohort); found decreased non-significant OR of	potential effect of short-term	pollutant, exposure period,	
		LBW in each of the trimesters.	changes in air pollutant	and outcome. The findings	
		VLBW	levels on acute events (eg,	should be interpreted with	
		Reported by one case-control study that found increased	preterm birth, stillbirth), but	caution in these	
		significant risk for TSPSO2.	it would not be useful when	circumstances because of	
			examining birthweight as an	the increased likelihood of	
		IUGR	outcome variable. More	a positive finding	
		TSP; 1 cohort study found non-significant decreased OR	refined methodologic	occurring by chance. All	
		in the 1 st trimester and no association in other trimesters.	designs are needed such as	relevant comparisons	
		PM10 : 2 cohort studies each found significant increased	large population-based	should be reported,	
		adjusted OR in 1 st month	cohort or case-control	whatever the findings.	
		PM2.5 ; 1 cohort study found significant increased OR in	studies using individual fetal	Misclassification of	
		1 st month.	outcome and covariate data	exposure, which biases	
		PTB	and high-quality exposure	effect estimates toward the	
		TSP ; 1 cohort study reported and found increased OR	data. Studies are more likely	null.	
		which was significant in 1 st trimester but non-significant in	to find evidence for a small	Studies exploring the	
		2 nd and 3 rd trimesters.	effect if they involve settings	health effects of PM are	
		Another cohort study found increased risk for 7-day lag	with wide variation of air	complex	
		and significant reduction in mean gestational age.	pollution levels.'	to summarize because the	
		PM10 ; I cohort reported and found increased risk which		definitions and	
		was non-significant in the 1 st month but significant in 6		measurement techniques	
		weeks before birth.		have varied over time.	
		Stillbirth		Differences in PM level,	
		TSP : Reported by an ecologic study with annual mean and		size, and composition	
		found decreased non-significant adjusted rate.		could have affected the	
		PM10 : reported by one time-series study and found non-		strength of association	
		significant increased adjusted rate ratio of daily		between PM and fetal	
		intrauterine deaths.		growth in the different	
				geographic settings. Most	
				semi-individual studies in	
				this review chose to	
				control for key	
				contounding factors (ie,	

		gestational age, maternal
		age, infant sex) at an
		individual level. However,
		adjustments were made
		less often for other
		important individual risk
		factors such as smoking,
		socioeconomic status, and
		environmental exposures,
		including other air
		pollutants (eg, SO2,NO2)'

Note: NO₂, Nitrogen dioxide; NO_x, Nitrogen oxides; CO, Carbon monoxide; O3, Ozone; SO₂, Sulphur dioxide; PM_{2.5}, particulate matter at aerodynamic diameter $\leq 2.5 \mu m$; PM₁₀, particulate matter at aerodynamic diameter $\leq 10 \mu m$; TSP, total suspended particles; SPM, suspended particulate matter; PTB, preterm birth; BW, birth weight; LBW, low birth weight; TLBW, term low birth weight; VLBW, very low birth weight; SGA, small-for-gestational age; IUGR, intrauterine growth retardation; FGR, foetal growth restriction; SB, stillbirth; SAB, spontaneous abortion; TBWT, term birth weight; OR, odd ratio; CI, confidence interval; SES. Socioeconomic status; BMI, body mass index.

First author, date	Exposure(s)	Outcome(s)	Main meta-analysis results	Subgroups/Sensitivity	Researchers'	Researchers' stated
Inumber of authors			and publication bias		recommendations	strengths and limitations
countries]						mintations
1. Gong (Gong et	PM _{2.5}	TBW	Change in TBW per 10	Change in TBW per 10µg/m ³	'More studies	Strengths
al., 2022)		(continuous	μg/m ³	By trimester,	based on LUR	'This is the first
04/10/2021 [5; 4		outcome)	Entire pregnancy	1 st trimester	models in this area	systematic review and
China, 1 USA]			26 cohort studies; 23,926,140	13 cohort studies; 6,707,042 births	are needed to	meta-analysis of
			births	RE model pooled beta= -5.81 (-8.39 , $-$	verify our	effects of PM2.5 on
			RE model pooled beta= -16.54	3.23)	observation'	TBW.'
			(-20.07, -13.02)	I ² = 91.3%	'With regard to	
			$I^2 = 95.6\%$	2 nd trimester	exposure	Limitations
				13 cohort studies; 6,707,042 births	prediction, further	'The subgroup
			'No evidence of significant	RE model pooled beta= -6.17 (-8.46 , $-$	improvements in	analyses included
			publication bias for any of the	3.87)	the temporal	relatively few studies
			meta-analyses based on the	$I^2 = 85.4\%$	resolution of LUR	and needs more future
			Begg's test. However, a		predictions could	studies to verify the
			potential publication bias was	3 rd trimester	allow an	findings. Second, the
			observed in the overall meta-	20 cohort studies; 10,361,367 births	assessment as to	susceptible exposure
			analyses during the entire	RE model pooled beta= -5.02 (-8.22, -	whether very	time window has not
			pregnancy and the third	1.82)	short-term (e.g.,	yet been clarified.'
			trimester based on the Egger's	$I^2 = 93.7\%$	even hourly) peak	'Third, the I2 statistic,
			test. There was no evidence of		maternal	like other metrics,
			significant publication bias for	Entire pregnancy by exposure	exposures are	suffers from statistical
			the LUR-models subgroup	assessment methods.	more critical than	power problems
			based on the Begg's and	Aerosol Optical depth-based method	steady long-term	(Ioannidis, 2008).'
			Egger's test $(p > 0.05)$ '.	6 cohort studies; 2,163,255 births	exposures in	'Fourth, studies on
				RE model pooled beta= -41.58 (-65.50, -	affecting birth	non-linear
				17.67)	outcomes.	concentration-response
				$I^2 = 95.6\%$	Improvements in	relationship were
				From monitoring stations	the GIS database	excluded because the
				10 cohort studies; 12,792,286 births	would likely	results could not be
				RE model pooled beta= -11.53 (-17.11, -	improve	inferred to relevant
				5.947)	performance of	linear dose-response
				$I^2 = 97.3\%$	LUR models in	effect estimate and
					generating fine-	could not be pooled
				Interpolation or dispersion models	scale spatial	into the meta-analysis'.

Table S4. Results and additional information on systematic reviews with meta-analysis, ordered from recent to earliest.

		5 cohort studies; 5,888,150 births	predictions.'
		RE model pooled beta= -10.78 (-17.55, -	'Enhancements to
		4.01)	LUR models using
		$I^2 = 86.6\%$	spatio-temporal
		LUR models	models that
		5 cohort studies; 3,082,449 births	incorporate
		RE model pooled beta= -16.77 (-22.51, -	geostatistical
		11.03)	smoothing (Keller
		$I^2 = 18.3\%$	et al., 2015), or
			that integrate other
		1 st trimester by exposure assessment	exposure
		methods	predictions from
		Aerosol Optical depth-based method	satellite data or
		5 cohort studies; 818581 births	chemical transport
		RE model pooled beta = $-9.39(-19.21)$	models with LUR
		0.44)	models (Lv et al.,
		$I^2 = 78.7\%$	2016; Friberg et
		From monitoring stations	al., 2016), may
		6 cohort studies; 3,194,424 births	further reduce
		RE model pooled beta= -7.20 (-11.00, -	exposure
		3.41)	measurement error
		$I^2 = 95.4\%$	and bias, as could
		Interpolation or Hierarchical Bayesian	use of biomarkers
		models	of exposure in
		4 cohort studies; 2,875,930 births	pregnant women.'
		RE model pooled beta= 2.00 (- 6.39 , -	Application of
		10.39)	models for
		$I^2 = 92.8\%$	generating
		LUR models	exposure
		3 cohort studies; 3,012,531 births	predictions for
		RE model pooled beta= -7.82 (-10.68, -	other pollutants
		4.97)	may provide
		$I^2 = 0.0\%$	important insights
		2 nd trimester by exposure assessment	into the
		methods.	components of the
		Aerosol Optical depth-based method	air pollutant
		5 cohort studies; 818581 births	mixture that are
		RE model pooled beta= -13.38 (-30.38,	
		3.63)	

		$I^2 = 89.5\%$	more toxic in
		From monitoring stations	producing adverse
		6 cohort studies; 3,194,424 births	birth outcomes.
		RE model pooled beta= -3.54 (-5.11 , $-$	'More accurate
		1.96)	exposure
		$I^2 = 68.8\%$	assessment
		Interpolation or Hierarchical Bayesian	methods that
		models	incorporate indoor
		4 cohort studies; 2,875,930 births	and outdoor
		RE model pooled beta= -3.32 (-5.96, -	pollutant
		0.69)	exposures
		$I^2 = 6.6\%$	according to the
		LUR models	time-activity
		3 cohort studies; 3,012,531 births	pattern of pregnant
		RE model pooled beta = -13.48 (-16.36, -	women need to be
		10.61)	developed.'
		$I^2 = 85.4\%$	'Relatively
		3 rd trimester by exposure assessment	standardized
		methods	covariates are
		Aerosol Optical depth-based method	needed to be
		6 cohort studies; 875,214 births	adjusted to
		RE model pooled beta= -8.78 (-13.17, -	increase the
		4.40)	comparability
		$I^2 = 33.6\%$	among studies.'
		From monitoring stations	More studies
		6 cohort studies; 3,590,147 births	based on the
		RE model pooled beta= -2.44 (-6.66, -	distributed lag
		1.79)	model (DLM) or a
		$I^2 = 96.3\%$	distributed lag
		Interpolation or Hierarchical Bayesian	non-linear model
		models	(DLNM) need to
		4 cohort studies; 2,875,930 births	be conducted to
		RE model pooled beta= 2.57 (- 2.08 ,	provide more
		7.21)	precise susceptible
		$I^2 = 48.8\%$	exposure
		LUR models	windows.'
		4 cohort studies; 3,020,076 births	
		RE model pooled beta= -14.94 (-17.87, -	
		12.01)	

		$I^2 = 0.0\%$		
		Entire pregnancy by PM _{2.5}		
		concentration levels.		
		Mean $PM_{2.5}$ exposure $< 10 \ \mu g/m^3$		
		6 cohort studies; 3,868,577 births		
		RE model pooled beta= -15.58 (-25.38, -		
		5.79)		
		$I^2 = 60.8\%$		
		Mean $PM_{2.5}$ exposure > 10 µg/m ³		
		20 cohort studies; 20,057,563 births		
		RE model pooled beta= -16.58 (-20.35, -		
		12.81)		
		$I^2 = 96.3\%$		
		Entire pregnancy by region		
		Asia		
		6 cohort studies: 3.033.587 births. RE		
		model pooled beta = $-6.37(-11.20, -1.53)$		
		$I^2 = 77.9\%$		
		Europe		
		3 cohort studies: 598 061 hirths RE		
		model pooled beta= $-28.39(-57.83, 1.04)$		
		$I^2 = 78.3\%$		
		1 10.070		
		North America		
		17 cohort studies: 20 294 492 births RE		
		model pooled beta= $-1912(-2362$ -		
		14 62		
		$I^{2} = 95.8\%$		
		Change in TBW ner IOR $\mu g/m^3$		
		Entire pregnancy		
		21 cohort studies: 19 634 754 hirths RF		
		model pooled beta = $-8.16(-10.79, -5.54)$		
		$I^2_{-0.13} = 0.10(-10.77, -5.54)$		
		Leave-one-out sensitivity analyses		
		For the overall meta-analysis and		
		subgroup meta analyses based on		
		avposure assessment methods during the		
		exposure assessment memous during the		
	1	churc pregnancy mere was no	1	

				meaningful impact on the pooled effect		
				estimates or significance except for the		
				interpolation/dispersion models		
				subgroup.'		
2. Zhu (Zhu et al.,	$PM_{2.5}, PM_{10}$	SAB	SAB:	Leave-one-out sensitivity analysis	'Reducing	Strengths
2022)			$PM_{2.5} per 10 \ \mu g/m^3$	No substantial change	pollution	'The first systematic
03/08/2021 [11;			5 studies: (2 cohort, 2 case-		emissions should	review and meta-
all China]			control, 1 case crossover);		be listed as a vital	analysis of
			69,507 SABs		public health	epidemiological
					strategy to prevent	evidence regarding the
			RE model pooled RR= 1.20		pregnancy	effects of ambient
			(1.01, 1.40)		complications and	PM2.5 on TBW'.
			$I^2 = 98.6\%$		improve human	
					reproductive	Limitations
			$PM_{10} per 10 \mu g/m^3$		health worldwide.'	Results were based on
			5 studies: (2 cohort, 1 case-		"Extra studies are	the study-specific
			control, 1 case-crossover, 1		warranted to	effect estimates only.
			cross-sectional); 12,741 SABs		investigate their	Results included only
					specific dose-	'single-pollutant model
			RE model pooled RR= 1.09		response effects	and failed to evaluate
			(1.02, 1.15)		and detailed	the latent interactions
			$I^2 = 78.6\%$.		molecular	among different
			Egger's regression and Begg's		mechanisms or	pollutants.'
			test:		pathways, and	'The small number of
			No publication bias for PM ₂ 5-		explore the	the included studies
			SAB but PM ₁₀ -SAB showed		constituent-	precluded our ability to
			possible publication bias.		specific (e.g., the	conduct subgroup
			r · · · · · · · · · · · · · · · · · · ·		organic	analyses and explore
					compounds, toxic	extensively other
					metals) effects of	potential sources of
					particulate matter	heterogeneity, and this
					exposure on	present meta-analysis
					reproductive	could not make further
					events.	estimates of the exact
					Furthermore, the	dose- response
					association	relationship between
					underlying	PM2.5 or PM10
					ambient	exposure levels and
					particulate matter	risks of SAB for
	1	1			parateurate matter	

					and SAB risks	insufficient
					with the	information.'
					synergistic effects	
					of other factors	
					(e.g., physical,	
					genetic,	
					immunological,	
					meteorological	
					factors) still needs	
					to be fully	
					discussed and	
					elucidated.'	
3. Ju (Ju et al.,	PM _{2.5} , PM ₁₀ ,	РТВ	PTB:	РТВ	'The results are	Strengths
2021)	SO ₂ , NO ₂ ,	(including	Entire pregnancy	РМ _{2.5} per 10 µg/m ³	not stable, there	'This meta-analysis
09/07/2021 [7; all	CO, O ₃ .	subtypes:	$PM_{2.5} per 10 \ \mu g/m^3$	1 st trimester	are few relevant	covered a great
China]	Ranges: NA	moderate,	31 cohort studies: 1,007,827	26 cohort studies: 920,837 PTBs	literatures, and	number of high-quality
		very, and	PTBs	RE model pooled RR= 0.982 (0.957,	further	cohort studies
		extremely	RE model pooled RR= 1.070	1.007)	investigation is	reporting associations
		PTB).	(1.046, 1.095)	$I^2 = 96.5\%$	needed, for CO	between four different
			$I^2 = 88.9\%$	2^{nd} trimester	and SO ₂ .	types of PTB and
				23 cohort studies: 880,542 PTBs	The components	seven contaminants,
			$PM_{10} per 10 \ \mu g/m^3$	RE model pooled RR= 1.034 (1.001,	of PM2.5 and	and further sensitivity
			15 cohort studies:	1.069)	PM10 should be	and subgroup analyses
			210,850PTBs	I ² =97.0 %	evaluated in future	were performed to
			RE model pooled RR= 1.034	3 rd trimester	studies to improve	explore sources of
			(1.009, 1.059)	23 cohort studies: 923,545 PTBs	the comparability	heterogeneity and
			I ² = 91.6 %	RE model pooled RR= 1.018 (0.999,	between studies.	possible exposure-
				1.037)	'In addition,	response
			$NO_2 per 10 \mu g/m^3$	I ² =93.2%	although the	relationships'.
			20 cohort studies: 343,203	Last month	heterogeneity was	
			PTBs	5 cohort studies:	reduced to some	Limitations
			RE model pooled RR= 1.010	RE model pooled RR= 0.997 (0.976,	extent by	'High degree of
			(0.990, 1.030)	1.018)	analytical method,	heterogeneity was
			$I^2 = 88.3\%$	I ² =0.0 %	it was still high in	found between
					most cases in this	included studies and
			<i>SO</i> ₂ <i>per</i> 10 μg/m ³	PM ₁₀ per 10 μg/m ³	study. Therefore,	among different
			8 cohort studies: 158,735	1 st trimester	it is necessary to	subgroups.' "It is
			PTBs	16 cohort studies: 263,928 PTBs	further study the	impossible to further
					sensitive Windows	explore the causes of

	DE	DE	6 1'60 ····	1.00
	RE model pooled RR= $1.0/2$	RE model pooled RR= $0.9/0$ (0.93/,	of different air	the country-differences
	(0.978, 1.175)	1.003)	pollutants and	without sufficient data
	$1^2 = 92.7\%$	$1^2 = 9^7.4\%$	their relationship	from original studies.
	$O_3 per 10 \mu g/m^3$	2 ^{na} trimester	with PTBs.	There was publication
	11 cohort studies: 243,295	14 cohort studies: 257,476 PTBs	'More longitudinal	bias in exposure to O3
	PTBs	RE model pooled RR=0.993 (0.960,	studies and	during a specific
	RE model pooled RR= 1.032	1.028)	experimental	gestation period of
	(1.018, 1.047)	$I^2 = 97.8\%$	studies to further	PTB, PM2.5 during a
	$I^2 = 86.3\%$	3 rd trimester	investigate the	specific gestation
		13 cohort studies: 223,574 PTBs	causes and	period of PTB and
	Egger's and Begg's tests and	RE model pooled RR=1.007 (0.992,	underlying	very PTB, and PM10
	the funnel plot did not show	1.022)	mechanisms'.	during a specific
	obvious publication bias.	$I^2 = 58.7\%$		gestation period of
	However, 'there was	Last month		PTB, very PTB and
	publication bias in exposure to	3 cohort studies		extremely PTB.'
	O3 during a specific gestation	RE model pooled RR=0.987 (0.935,		'This paper only
	period of PTB, PM2.5 during	1.042)		studies the relationship
	a specific gestation period of	$I^2 = 61.1\%$		between a single
	PTB and very PTB, and PM10	NO ₂ per 10 μ g/m ³		pollutant and PTBs,
	during a specific gestation	1 st trimester		but does not discuss
	period of PTB, very PTB and	21 cohort studies: 398,229 PTBs		the interaction between
	extremely PTB.' 'The trim	RE model pooled RR=0.972 (0.950,		multiple pollutants.'
	and fill method, publication	0.994)		
	bias had little effect' but	$I^2 = 86.9\%$		
	'results of PM10 exposure to	2 nd trimester		
	very PTB and O3 exposure to	18 cohort studies: 390,413 PTBs		
	PTB during pregnancy	RE model pooled $RR=1.002$ (0.970.		
	showed that publication bias	1.034)		
	had a significant effect.'	$I^2 = 94.9\%$		
		3 rd trimester		
		15 cohort studies: 331 248 PTBs		
		RE model pooled $RR=1.066$ (1.031		
		1 102)		
		$I^2 = 91.5\%$		
		Last month		
		6 cohort studies		
		RF model pooled RR- 1 033 (0 981		
		1 087)		
		$I^2 - 75.8\%$		
		I = 75.070		

	SO ₂ per 10 μg/m ³	
	1 st trimester	
	7 cohort studies: 166,190 PTBs	
	RE model pooled RR=0.980 (0.930,	
	1.034)	
	$I^2 = 91.5\%$	
	2 nd trimester	
	6 cohort studies: 160,122 PTBs	
	RE model pooled RR=0.995 (0.954,	
	1.037)	
	$I^2 = 84.8\%$	
	3 rd trimester	
	7 cohort studies: 166,190 PTBs	
	RE model pooled RR=0.988 (0.939,	
	1.040)	
	$I^2 = 90.5\%$	
	Last month	
	2 cohort studies	
	RE model pooled RR= $1.057 (0.997)$.	
	1.121)	
	$I^2 = 0.0\%$	
	O_3 per 10 µg/m ³	
	1 st trimester	
	11 cohort studies: 304.353 PTBs	
	RE model pooled RR= 1.035 (1.020,	
	1.051)	
	$I^2 = 91.0\%$	
	2 nd trimester	
	8 cohort studies: 293,593 PTBs	
	RE model pooled RR= $1.020(1.001)$.	
	1.040)	
	$I^2 = 94.9\%$	
	3 rd trimester	
	8 cohort studies: 201.663 PTBs	
	RE model pooled RR= 1.043 (1.014.	
	1.072)	
	$I^2 = 95.5\%$	
	Last month	
	3 cohort studies	
	$2^{nd} trimester$ 8 cohort studies: 293,593 PTBs RE model pooled RR=1.020 (1.001, 1.040) I ² = 94.9% 3 rd trimester 8 cohort studies: 201,663 PTBs RE model pooled RR=1.043 (1.014, 1.072) I ² = 95.5% Last month 3 cohort studies	

		RE model pooled RR= 0.994 (0.959,	
		1.030)	
		$I^2 = 75.4\%$	
		CO per 100 μ g/m ³	
		1 st trimester	
		3 cohort studies: 70.680 PTBs	
		RE model pooled RR=0.991 (0.966.	
		1.017)	
		$I^2 = 94.7\%$	
		2 nd trimester	
		3 cohort studies: 68.920 PTBs	
		RE model pooled RR= 1.031 (0.965	
		1 101)	
		$I^{2}=96.2\%$	
		3 rd trimester	
		4 cohort studies: 71 049 PTBs	
		RE model pooled $RR=1.002$ (0.988	
		1 017)	
		I^{2}_{-} 78 1%	
		Last month	
		2 cohort studies	
		RE model pooled $RR = 1.002 (0.992)$	
		1 012)	
		I ² -79.3%	
		NO_{x} per 20 µg/m ³	
		1st trimester	
		5 cohort studies: 61 828 PTBs	
		BE model pooled BR=1.001 (0.959)	
		1 044)	
		$I^{2}_{-} = 80.4\%$	
		2^{nd} trimester	
		A cohort studies: 59 728 PTBs	
		RE model pooled $RR=0.991$ (0.948	
		1 036)	
		I ² - 85.6%	
		3 rd trimostor	
		2 cohort studies: 26 016 PTRs	
		RE model pooled $RR = 1.031 (0.006)$	
		1 068)	
		1.000/	

	$I^2 = 6.2\%$	
	Last month	
	1 cohort study	
	RR = 0.960 (0.930, 1.000)	
	By region for entire pregnancy	
	$PM_{2.5} per 10 \ \mu g/m^3$	
	Asian (8 cohort studies),	
	RR = 1.061 (1.039, 1.084); North	
	America (16 cohort studies), RR= 1.071	
	(1.012, 1.134); Oceania (2 cohort	
	studies), RR= 1.400 (1.199, 1.634);	
	European (4 cohort studies), RR= 1.071	
	(0.859, 1.335); South American (1 cohort	
	study), RR= 0.978 (0.941, 1.017)	
	$PM_{10} per 10 \mu g/m^3$	
	Asian (6 cohort studies), RR= 1.049	
	(1.014, 1.085); North America (4 cohort	
	studies), RR= 1.088 (1.005, 1.177);	
	European (5 cohort studies), RR= 0.988	
	(0.939, 1.040)	
	$NO_2 per 10 \ \mu g/m^3$	
	Asian (7 cohort studies), RR= 1.103	
	(1.009, 1.206); North America (3 cohort	
	studies), RR= 1.010 (0.968, 1.054);	
	Oceania (2 cohort studies), RR= 1.085	
	(0.734, 1.605); European (8 cohort	
	studies), RR= 1.003 (0.980, 1.028)	
	$SO_2 per 10 \mu g/m^3$	
	Asian (5 cohort studies), RR=1.009	
	(0.896, 1.136); North American (2	
	cohort) 0.982 (0.893, 1.080);	
	Oceania (1 cohort) 2.737 (2.076, 3.609).	
	$O_3 per 10 \mu g/m^3$	
	Asian (4 cohort studies), $RR=1.071$	
	(1.039, 1.103);	
	North American (4 cohort studies), RR=	
	1.018 (1.004, 1.032); Oceania (1 cohort	
	study), $RR = 1.494 (1.190, 1.876);$	

		European (2 cohort studies), RR= 1.010		
		(1.006, 1.014)		
		$CO per 100 \mu g/m^3$		
		Asian (2 cohort studies), RR= 1.087		
		(0.976, 1.211); American (2 cohort		
		studies). $RR = 1.004 (0.979, 1.028)$:		
		European (1 cohort study), $RR = 0.898$		
		(0.765, 1.054)		
		NO_x per 20 µg/m ³		
		European (2 cohort studies). $RR = 0.985$		
		(0.919, 1.056)		
		Note : There were trimester-specific		
		results with very small number of studies		
		per region.		
		By unit of increase for entire		
		pregnancy		
		PM_{25}		
		per IOR $\mu g/m^3$		
		(19 cohort studies) RR= 1 074 (1 013		
		1 139)		
		$per 10 \mu g/m^3$		
		(8 cohort studies) RR = 1.054 (1.026)		
		1 082):		
		$per 5 \mu g/m^3$		
		(3 cohort studies) RR- 1.007 (0.889		
		1 140)·		
		per 1 $\mu g/m^3$		
		(2 cohort studies)		
		1551(1038, 2317)		
		PM_{10} .		
		per IOR $\mu g/m^3$		
		(7 cohort studies) RR- 1 024 (0 984		
		1 064):		
		$per 10 \mu g/m^3$		
		(4 cohort studies) RR=1.033 (0.985)		
		1 (184).		
		per 5 $\mu g/m^3$		
		(2 cohort studies) RR- 1 205 (0 864		
		1 679)·		
1		1.017,	1	

		per 1 μ g/m ³	
		(3 cohort studies), RR= 0.999 (0.942,	
		1.059);	
		per SD $\mu g/m^3$	
		(1 cohort study), RR = 2.913 (0.801,	
		10.594)	
		NO ₂ :	
		Per IOR (11 cohort studies), RR= 1.010	
		(0.990, 1.029);	
		Per 10 μ g/m ³ (6 cohort studies). RR=	
		1.058 (0.982, 1.140):	
		Per 3 μ g/m ³ (1 cohort study) 0.935	
		(0.888, 0.984).	
		Per 1 μ g/m ³ (3 cohort studies) RR=	
		1 000 (0 982, 1 019)	
		Per 5 ppb (1 cohort study), $RR=0.936$	
		(0 744 1 177)	
		SO_2	
		Per IOR (4 cohort studies) $RR = 1.140$	
		(0.987, 1.318):	
		Per 10 μ g/m3 (2 cohort studies) RR=	
		1 121 (0.848 + 1.482): Per 3 µg/m3 (1	
		cohort study) $RR = 0.903 (0.858, 0.950)$.	
		Per 1 μ g/m ³ (1 cohort study) RR= 6 727	
		$(1 \ 103 \ 41 \ 019)$	
		O_2	
		Per IOR (8 cohort studies) RR= 1.013	
		$(1\ 005\ 1\ 022)$	
		Per 10 μ g/m3 (2 cohort studies) RR=	
		1.077 (1.013 + 1.146). Per 1 µg/m3 (2	
		cohort studies) $RR = 1.010 (1.006)$	
		1 014). Per 10 ppb (1 cohort study)	
		RR = 1.080 (1.062, 1.114)	
		<i>CO</i> .	
		Per IOR (3 cohort studies) $RR = 1.001$	
		(0.976 ± 0.026) .	
		Per 100 μ g/m3 (2 cohort studies) RR=	
		1.087 (0.976 + 1.211)	
		NO	
		1 CX	1

		\mathbf{D} IOD (1 1 (1) \mathbf{DD} 0.0(0	
		Per IQR (1 cohort study), $RR=0.960$	
		(0.921, 1.001);	
		Per 20 μ g/m ³ (1 cohort study), RR=	
		1.034 (0.945, 1.131)	
		Note: There were trimester-specific	
		results with small number of studies per	
		unit of increase.	
		By effect estimate for entire pregnancy	
		<i>PM</i> _{2.5} <i>per</i> 10 μg/m ³	
		OR (21 cohort studies), 1.061 (1.005,	
		1.121);	
		HR (7 cohort studies) 1.073 (1.043,	
		1.103); RR (3 cohort studies) 1.086	
		(1.022, 1.153).	
		$PM_{10} per 10 \mu g/m^3$	
		OR (10 cohort studies), 1.055 (1.012,	
		1.100); HR (4 cohort studies), 1.001	
		(0.968, 1.036); RR (1 cohort study),	
		1.085 (1.051, 1.120).	
		$NO_2 per 10 \mu g/m^3$	
		OR (13 cohort studies), 1.024 (0.991,	
		1.059); HR (5 cohort studies), 0.998	
		(0.973, 1.023);	
		RR (2 cohort studies), 1.222 (0.674,	
		2.214).	
		$SO_2 per 10 \mu g/m^3$	
		OR (5 cohort studies), 0.995 (0.909,	
		1.089):	
		HR (3 cohort studies), 1.357 (0.805,	
		2.287):	
		$O_3 per 10 \mu g/m^3$	
		OR (6 cohort studies), 1.031 (1.013,	
		1.050):	
		HR (5 cohort studies) 1 037 (1 010	
		1.065).	
		$CO per 100 \mu g/m^3$	
		OR (5 cohort studies) $1.034 (1.000)$	
		1 069)	
		$NO_x per 20 \mu g/m^3$	
		1.0, pc. 20 µg/m	

	O	R (n = 2), 0.985 (0.919, 1.056).	
	N	ote: There were trimester-specific	
	re	sults with small number of studies per	
	ef	fect estimate	
	M	Ioderate PTB	
	Pl	$M_{2.5} per 10 \mu g/m^3$	
	Eı	ntire pregnancy (8 cohort studies).	
	RI	R=1.076 (1.039, 1.115)	
	I ² =	= 61.3%	
	15	t trimester (3 cohort studies)	
	R	R= 0.999 (0.986, 1.012)	
	I ² =	= 0.0%	
	2 ⁿ	^{ad} trimester (3 cohort studies)	
	R	R=1.047 (1.034, 1.061)	
	I ² =	= 36.2%	
	3 rd	^d trimester (3 cohort studies)	
	R	R=1.008 (0.967, 1.051)	
	I^2	= 80.9%	
	Pl	<i>M</i> ₁₀ per 10 μg/m ³	
	Eı	ntire pregnancy (10 cohort studies)	
	RI	R=1.081 (1.051, 1.111)	
	I ² =	= 70.8%	
	1 ^{si}	trimester (3 cohort studies)	
	R	R= 1.012 (0.930, 1.100)	
	I ² =	= 93.0%	
	2 ⁿ	nd trimester (3 cohort studies)	
	R	R=1.045 (1.009, 1.082)	
	I ² =	= 62.1%	
	3 rd	^d trimester (3 cohort studies)	
	RI	R=1.018 (0.955, 1.085)	
	I^2	= 89.2%	
	Ne	$O_2 per 10 \ \mu g/m^3$	
	Eı	ntire pregnancy (9 cohort studies)	
	RI	R=1.066 (1.034, 1.099)	
	I ² =	= 81.8%	
	1 st	t trimester (1 cohort study)	
	R	R = 0.896 (0.841, 0.955)	
	2 ⁿ	^{ad} trimester (1 cohort study)	

		RR=1.153 (1.063, 1.251)	
		3 rd trimester (1 cohort study)	
		RR=1.010 (0.973, 1.048)	
		$SO_2 per 10 \mu\text{g/m}^3$	
		Entire pregnancy (2 cohort studies)	
		RR=0.859 (0.805, 0.915)	
		$I^2 = 45.2\%$	
		1 st trimester (1 cohort study)	
		RR=1.081 (0.820, 1.423)	
		2 nd trimester (1 cohort study)	
		RR=0.935 (0.785, 1.116)	
		3 rd trimester (1 cohort study)	
		RR=0.958 (0.841, 1.091)	
		$O_3 per 10 \text{ µg/m}^3$	
		Entire pregnancy (6 cohort studies)	
		RR=1.081 (1.060, 1.103)	
		$I^2 = 60.3\%$	
		1 st trimester (1 cohort study)	
		RR = 1.009 (0.989 + 1.029)	
		2^{nd} trimester (1 cohort study)	
		RR = 1.011 (0.981 + 1.042)	
		3^{rd} trimester (1 cohort study)	
		$BR = 1.015 (0.998 \pm 1.032)$	
		$\Omega_{a} par 100 \mu g/m^{3}$	
		Entire programary (3 cohort studios)	
		$PP=0.002 (0.066 \pm 1.010)$	
		$I^2_{-97,004}$	
		I = 07.070 Vorw DTD	
		$\frac{Very FIB}{PM_{r}} = par \frac{10 \mu g}{m^3}$	
		Entire program (0 achort studies)	
		Entitle pregnancy (9 conort studies). $PP_{-1} = 1.60 (1.120, 1.221)$	
		RR=1.109 (1.120, 1.221)	
		I = 79.0%	
		Γ^{α} trimester (6 conort studies)	
		RR=1.090(1.042, 1.141)	
		$1^2 = 92.7\%$	
		2 nd trimester (6 cohort studies)	
		KK=1.151 (1.084, 1.223)	
		I ² = 96.3%	
		3 ^{ru} trimester (6 cohort studies)	

		RR= 1.046 (0.981, 1.115)	
		$I^2 = 96.5\%$	
		$PM_{10} per 10 \ \mu g/m^3$	
		Entire pregnancy (9 cohort studies).	
		RR = 1.133 (1.061, 1.210)	
		$I^2 = 82.3\%$	
		1 st trimester (4 cohort studies)	
		RR=1.061 (1.006, 1.119)	
		$I^2 = 72.8\%$	
		2^{nd} trimester (4 cohort studies)	
		RR=1.022 (1.013 + 1.032)	
		$I^2 = 24.2\%$	
		3^{rd} trimester (4 cohort studies)	
		$RR-1.053 (0.988 \pm 1.121)$	
		$I^2 = 87.3\%$	
		$NO_2 per 10 \mu g/m^3$	
		Entire pregnancy (8 cohort studies)	
		PR = 1.194 (1.111 - 1.283)	
		$I^2 - 77.0\%$	
		1 st trimester	
		(1 cohort study)	
		$RR = 0.939 (0.780 \pm 1.131)$	
		2^{nd} trimester (1 cohort study)	
		RR-1.370 (1.165, 1.612)	
		3^{rd} trimester (1 cohort study)	
		PR-1 100 (1 070 1 140)	
		$SO_2 nor 10 \mu g/m^3$	
		Entire programmy (1 cohort study)	
		$PR = 0.774 (0.374 \cdot 1.602)$	
		1^{st} trimester (1 cohort study)	
		$PP_{-0.028}(0.477, 1.805)$	
		2^{nd} trimester (1 schort study)	
		PD = 0.860 (0.652 + 1.160)	
		RR = 0.809 (0.052, 1.100)	
		PR = 0.060 (0.776 + 1.187)	
		$\Omega_{a} par 10 \mu g/m^3$	
		Entire programmy (6 schort studies)	
		$PD_{-1} 110 (1.076 \pm 1.164)$	
		$I_{2-66,20}^{-1.119(1.070, 1.104)}$	
		1 - 00.3 %	

		1 st trimester (2 cohort studies).	
		RR=0.989 (0.892, 1.096)	
		$I^2 = 83.8\%$	
		2 nd trimester (2 cohort studies).	
		RR=1.025 (0.974, 1.078)	
		I ² =61.2%	
		3 rd trimester (2 cohort studies)	
		RR=0.993 (0.970, 1.017)	
		I ² =0.0%	
		$CO per 100 \mu g/m^3$	
		Entire pregnancy (1 cohort study).	
		RR = 0.991 (0.965, 1.017)	
		Extremely PTB	
		$PM_{25} per 10 ug/m^3$	
		Entire pregnancy (3 cohort studies).	
		RR = 1.129 (1.019, 1.250)	
		$I^2 = 78.0\%$	
		1 st trimester (1 cohort study)	
		RR = 1.140 (1.110, 1.180)	
		2 nd trimester (1 cohort study)	
		RR = 1.090 (1.060, 1.130)	
		3 rd trimester (1 cohort study)	
		RR= 1.000 (0.960, 1.040)	
		$PM_{10} per 10 ug/m^3$	
		Entire pregnancy (5 cohort studies).	
		RR = 1.253 (1.133, 1.385)	
		I ² = 88.8%	
		1 st trimester (1 cohort study)	
		RR= 1.090 (1.070, 1.120)	
		2 nd trimester (1 cohort study)	
		RR= 1.030 (1.010, 1.050)	
		3 rd trimester (1 cohort study)	
		RR= 0.990 (0.960, 1.020)	
		$NO_2 per 10 \mu g/m^3$	
		Entire pregnancy (4 cohort studies).	
		RR= 1.228 (1.037, 1.454)	
		$I^2 = 88.0\%$	
		$O_3 per 10 \mu g/m^3$	
		Entire pregnancy (2 cohort studies).	

				RR=1.259 (1.084, 1.463) I^2 = 75.9% <i>CO per 100</i> µg/m ³ Entire pregnancy (2 cohort studies). RR= 0.930 (0.847, 1.022) I^2 = 86.9% Note: As reported in overall PTB, there were subgroup results for the PTB subtypes but with very limited studies, predominantly 1 or 2 studies per		
				subgroup (by study region, increment		
				unit and study effect estimation model).		
				Leave-one-out sensitivity analysis		
				No substantial change.		
4. Xie (Xie et al.,	PM _{2.5}	Stillbirth	Stillbirth per 10 µg/m ³	1 st trimester	'Studies should	Strengths
2021)			PM2.5	6 cohort studies; $3,892,183$ births.	use exposure	Included recently
15/00/2021			Entire pregnancy	1.01(0.90, 1.15) 12-87.00 (high) with	(land use model)	included more studies
			control: 3 222 578 births	P = 0.001	dispersion model	and nonulation which
USAJ			RF pooled OR:	2 nd trimester	etc.) or satellite	enhanced the
			1 15(1 07 1 25)	5 cohort studies: 3 762 441 births	remote sensing	reliability of the
			$I^2 = 74.7\%$ (high) with p=	1.06 (0.98.1.14)	technology to	results.'
			0.001	$I^2 = 80.1\%$ (high) with P<0.001	estimate	Second, a new risk of
				3 rd trimester	individual	bias assessment
			No publication bias reported	4 cohort studies; 3,180,667 births	exposure level,	instrument was applied
			by Egger's test	1.09 (1.01,1.18)	adopt identical	to assess the risk of
				$I^2 = 78.9\%$ (high) with p=0.003	outcome	bias of the included
					definition, and	studies. Compared
					adjusted more	with other tools, it was
					comprehensive	more suitable for the
					contounding	observational air
					factors. Further	pollution
					patnophysiological	epidemiological
					high quality	outcomes Third
					nonulation studies	cumulative meta-
					were still	analysis was
					warranted'.	conducted to reveal the
						effects of medical

					'It was beneficial	condition on the
					to carry out	association between
					corresponding	maternal exposure to
					measures to	PM2.5 and stillbirth.'
					reduce the	Limitations
					stillbirth rate, so as	' First, most of the
					to mitigate the	included studies
					social and	appointed the
					economic burdens	concentration of
					caused by	PM2.5 of nearby
					stillbirth.'	monitoring stations to
						pregnant women,
						which might lead to
						potential exposure
						bias.' We just pooled
						the estimates of the
						single-pollutant model,
						failing to pool the
						multiple-pollutant
						model for few studies
						reported the results of
						it. There were high
						neterogeneity among
5 Damassa	0	DTD	Neter The main an aloris man	1st 4	(Essethern	the included studies .
5. Kappazzo	O_3	PIB	Note: The main analysis was		Further	Strengths
(Rappazzo et al., 2021)			O PTP	Leave-one-out sensitivity analyses	exploration in	an evolution of study
2021)			O3-FID	substantial influence on the pooled	and DTP could	an evaluation of study
12/03/2021 [4: all US A]			increases	substantial influence on the pooled	addross	quality to our methods.
[4, all USA]			licitases.	Continent-specific	uncertainties	number of studies
			(17 studies: 14 cohort and 3	Australia:	particularly with	compared to previous
			(17 studies: 14 conort and 5 case-control: 4 525 441 births)	1 15 (1 09 1 22) with	more complete	meta-analyses'
			RE pooled OR : 1.06 (1.03)	$I^{2}_{-} = 0.24\%$ (low)	consideration of	'Able to focus on
			1 10)	A_{sia} : 1 03 (1 01 1 04) with	other PTR risk	specific time windows
			$I^{2}=97\%$ (high)	$I^2 = 8458\%$ (high)	factors such as	within pregnancy and
			p < 0.0001 with a prediction	Europe: 1.14 (1.08, 1.20) with $I^2=$	socioeconomic	perform several
			interval of 0.95–1.19.	60.39% (moderate)	status, and	sensitivity analyses
				North America: 1.01 (1.00, 1.02) with	race/racism.'	(e.g., trim and fill.
			2 nd trimester	$I^2 = 3.74\%$ (moderate).		leave one out, sub-

(15 studies: 12 cohort and 3	Meta-regression Indicated that a some	group analyses) to
case-control; 4,713,201 births)	of the variability in 1st trimester was	examine robustness of
RE pooled OR; 1.05 (1.02,	explained by continent of study,	the pooled effect
1.08) with a prediction		estimates.'
interval of 0.95–1.16.	2 nd trimester	
$I^2 = 97\%$ (high) with	Leave-one-out sensitivity analyses,	Limitations
p <0.001.	indicated no single study had a	" The ability of the
	substantial influence on the pooled	study quality analysis
Overall confidence of	estimate.	to identify specific
evidence	Meta-regression	influential components
Moderate	No factors explained the observed	of the study quality
Publication bias	heterogeneity in associations during the	scores is likely limited
1 st trimester	2nd trimester.	due to the large
funnel plot and Egger's test		number of covariates
(p < 0.001) indicated the		adjusted for and other
presence of potential		variability in the study
publication bias but a rank		designs and statistical
correlation test did not (p =		analyses." Study
0.2). Trim-and-fill analyses		quality analysis did not
estimated three missing		directly consider
studies and resulted in a		statistical power.
pooled odds ratio 1.04 (1.00,		' The inability to
1.08)		account for potential
2 nd trimester		co-pollutant
Funnel plot appeared		confounding is a
balanced, the Egger's test		limitation in the meta-
(p<0.01) indicated evidence		analysis.'
for potential publication bias		' Information about the
but trim-and-fill analysis		concentration-response
estimated no missing studies		relationship for ozone
and rank correlation testing		exposure and preterm
was non-statistically		birth is unavailable and
significant (p=0.55).		an additional
		limitation.'
		'Short-term ozone
		exposures may act on
		birth outcomes through
		different mechanistic
		pathways than long-

						term exposures, and
						thus were not included
						in this review.'
						No clear biological
						mechanism.
						'Pooling estimates
						based on different
						averaging times likely
						contributes additional
						heterogeneity
						compared to analyses
						based on a consistent
						averaging time, and
						we did not adjust for
						effect measure in the
						meta-analysis'.
6. Zhang (Zhang	PM2.5,	Stillbirth	Stillbirth with:	Stillbirth per 10 µg/m3 increase in	'Prospective	Strengths
et al., 2021)	PM10, SO2,		PM2.5 per 10 μg/m3	PM2.5 by trimester	cohort studies,	"Our study used a
22/02/2021	NO2, CO,		increase	1 st trimester	collecting	large sample size and
[7; All China]	O3		Entire pregnancy	7 studies (5 retrospective and 2	maternal lifestyles	estimated a wide range
			7 studies (4 retrospective and	prospective cohorts; 5,078,391 births)	and other	of air pollutants,
			2 prospective cohorts and 1	Pooled OR =	exposures (e.g.,	including airborne PM
			case-control; 4,647,479 births)	0.962 (0.833 to 1.090)	green space)	and gaseous pollutants.
			Pooled OR $= 1.103$	I ² = 88.7%high	which may	Second, we evaluated
			(1.074 to 1.131)	with p=0.000	confound the air	the quality and risk of
			$I^2 = 62.1\%$ moderate	2 nd trimester	pollution-stillbirth	bias of the included
			with p=0.015	6 studies (4 retrospective and	relationship, with	studies according to
			PM10 per 10 μg/m3 increase	2prospective cohorts; 4,855,016 births)	better study design	the widely accepted
			for Entire pregnancy	Pooled OR =	and personal	NOS and OHAT
			4 studies (1 retrospective and	1.028 (0.939 to 1.116)	exposure	tools;all included
			2 prospective cohorts and 1	$I^2 = 82.4\%$ high	strategies, are	studies were of high
			case-control; 1,888,661 births)	with p=0.000	warranted in the	quality; with scores
			Pooled $OR = 1.005$	-	future, especially	ranging from 7 to 8 for
			(0.961 to 1.049)	3 rd trimester	in developing	the NOS scale and
			$I^2 = 16.8\%$ low	5 studies (3 retrospective and 2	countries with	from 3 to 5 for
			with p=0.307	prospective cohorts; 4,273,242 births)	severe air	Mustafic's adapted
				Pooled OR =	pollution.	scale (Mustafic et al.,
			SO2 per 10 µg/m3 increase	1.094 (1.008 to 1.180)	Furthermore,	2012)(Table S3),
			for entire pregnancy	$I^2 = 74.8\%$ moderate	biological	which makes our

of studies (3 retrospective and 2 prospective cohorts and (0.985 to 1.055)with p=-0.003mechanistic atuable for public neoded to clarify neded the potential pathways underlying the air association association the with p=-0.5690mechanistic valuable for public studies (2 retrospective and 3 prospective cohorts, and 1 case-control: pathways associationmechanistic valuable for public studies (2 retrospective and 3 prospective cohorts, and 1 case-control: pathways associationmechanistic valuable for public bonder OR = 0.936findings reliable and valuable for public and policy makers. Third, we performed a underly builton-stillbini associationmechanistic valuable for public bonder OR = 0.936findings reliable and valuable for public bonder OR = 0.936VO2 per 10 gg/m3 increase for entire pregnancy 5 studies (2 retrospective and 2 prospective cohorts and 1 case-control; 5 4 studies (1 retrospective and 3 prospective cohorts, and 1 case-control; polecl OR = 0.985mechanistic proventive measures for entire pregnancy fo studies (3 retrospective and 3 "rimestermechanistic proventive measures for entire pregnancy fo studies (3 retrospective and 2 prospective cohorts, and 1 case-control; 16 (0.9991 to 1.002)mechanistic proventive measures for entire pregnancy fo studies (3 retrospective and 2 prospective cohorts, and 1 case-control; 16 (0.9991 to 1.002)mechanistic proventive measures for entire pregnancy fo studies (3 retrospective and 2 prospective cohorts, 1 case- ontrol, 1.006mechanistic proventive measures for entire pregnancy fo studies (3 retrospective and 2 prospective cohorts, 1 case- 0.0991 to 1.002)mechanistic prove				
2 prospective cohorts and 1 case-control; (0.985 to 1.055)Stillbirth per 10 gg/m3 increase in PM10 by trinesterstudies remain remeta-analysis of the optic cohorts and 1 orge-sective cohorts and 2 prospective cohorts and 1 case-control; 5,657,393 births Pooled OR = 1,008 for entire pregnancy for studies (2 retrospective and 2 prospective cohorts, 1 case- scase-control; 1,666,800 births)studies remain motion 2 meta-analysis of the erticide presentory for studies (2 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-control; 1,666,800 births)studies remain motion 2 motion 3 motion 4 motion 4 motion 4 motion 4 	6 studies (3 retrospective and	with p=0.003	mechanistic	findings reliable and
class-control; 5:657,493 births Poidel OR = 1.020Stillbirth per 10 ga/n3 increase in Poidel OR = 1.020 $1^{\prime\prime}$ trimester prospective cohorts, and 1 case-control; association association countries.needh professionals and polys makers. pollution stillbirth association countries.NO2 per 10 ga/n3 increase for entire pregnancy 0.0996 to 1.057) $2^{\prime\prime}$ trimester 10.0996 to 1.042)needen trike effect estimates of torig-trem exposure by trimesters and found trimesterneeden trike offici estimates of torig-trem exposure by trimesters and found trimester0.0996 to 1.057) $2^{\prime\prime}$ trimester (0.9996 to 1.057) $2^{\prime\prime}$ trimester trimestercase-control; trimester0.0996 to 1.057) $2^{\prime\prime}$ trimester trimestercase-control; trimesterconsumption to tor deressing trike tor deressing trike <br< td=""><td>2 prospective cohorts and 1</td><td></td><td>studies remain</td><td>valuable for public</td></br<>	2 prospective cohorts and 1		studies remain	valuable for public
Pooled OR = 1.020 (0.985 to 10.55)PMI0 by trimesterthe potential pathwaysand policy makers. pathways $I^2 = 7.3\%$ -low with p=0.369 I^2 trimesterpathwaysIntrad, we performed a pospective cohorts, and 1 case-control; 2.471.949 births)Intrad, we performed a pospective cohorts, and 1 case-control; 2.471.949 births)Intrad, we performed a pospective cohorts, and 1 case-control; aggressive policy aggressive policy case-control; 534311 BirthyResearch and critical exposure with p=0.000Research and critical exposure windows for PM2.5, CO, and 02 exposure, consumption to for decreasing the risk of studies (3 retrospective and 2 prospective cohorts, and 1 case-control; 55.67.349 births) 2^{ad} rimesterCo, and 03 exposure, reventive measures for decreasing the risk of studies (3 retrospective and 2 prospective cohorts, and 1 case-control; 5.657.349 births) 1^{ad} rimesterCo, and 03 exposure, reventive measures for decreasing the risk of studies (3 prospective cohorts, and 1 case-control; 5.657.349 birthy) 1^{ad} rimesterInterventions, sinded at reducing the emission of the world I^{ad} rimesterfor entire pregnancy (0.9991 to 1.002) 3^{ad} rimesterInterventions, sinded at reducing the emission of the world I^{ad} rimesterfor entire pregnancy (0.9991 to 1.002) 3^{ad} rimesterInterventions, sinded at reducing the emission of the world I^{ad} rimesterfor entire pregnancy (0.9901 to 1.100) I^{ad} rimesterInterventions, sinded at reducing the emission of the world I^{ad} rimesterfor entire pregnancy (0.9901 to 1.102)	case-control; 5,657,493 births)	Stillbirth per 10 µg/m3 increase in	needed to clarify	health professionals
$ \left \begin{array}{c c c c c c c c } l^{pr} timester \\ l^{pr} 3 horease \\ hold solutions (2 retrospective and 3 \\ prospective cohorts, and 1 case-control; \\ 2,471,940 bitms) \\ 2,494,98-high \\ aggressive policy indrows for PM2.5, \\ Co, and O3 exposure, \\ as developing \\ (0.9996 to 1.057) \\ 2^{pr} frimester \\ 2,248,574 bitms \\ 0,9996 to 1.057) \\ 2^{pr} frimester \\ 2,248,574 bitms \\ 0,9996 to 1.057) \\ 2^{pr} frimester \\ 2,248,574 bitms \\ 0,9996 to 1.057) \\ 2^{pr} frimester \\ 2,248,574 bitms \\ 0,9996 to 1.057) \\ 2^{pr} frimester \\ 2,248,574 bitms \\ 0,9996 to 1.057) \\ 2^{pr} frimester \\ 2,248,574 bitms \\ 0,9996 to 1.057) \\ 2^{pr} frimester \\ 2,248,574 bitms \\ 0,9996 to 1.057) \\ 2^{pr} frimester \\ 2,248,574 bitms \\ 0,990 to 1.0022 \\ 0,990 to 1.0021 \\ 0,9910 to 1.0021 \\ 0,9910 to 1.0021 \\ 0,9910 to 1.0021 \\ 0,9910 to 1.0022 \\ 1 trimester \\ 0,916 to 1.053) \\ Pooled OR = 1.040 \\ 0,9910 to 1.0022 \\ 4 studies (3 prospective cohorts, and 1 \\ 2 prospective cohorts and 2 \\ 2 prospective cohorts and 2$	Pooled $OR = 1.020$	PM10 by trimester	the potential	and policy makers.
$ \left \begin{array}{c c c c c c c c } \hline c = 7.3\% - low \\ with p=0.369 \\ \hline NO2 per 10 µg/m3 increase \\ for entire pregnancy \\ S studies (2 retrospective and 3 represented in the polarity of the air analysis of the effect estimates of a sociation association in the effect estimates of a sociation association in the effect estimates of a sociation association in the effect estimates of a sociation association associatinterestinates association association ass$	(0.985 to 1.055)	1 st trimester	pathways	Third, we performed a
with p=0.369prospective cohoris, and 1 case-control; 2.471,949 births)pollution-stillbirth asociation countries.effect estimates of asociation countries.NO2 per 10 µg/m3 increase 10 0996 to 1.057)2.471,949 births)Research and aggressive policy interventions, such aggressive policy interventions, and 1 case-control; 5.434118 births)CO, and O3 exposure with p=0.000Research and aggressive policy interventions, such aggressive policy interventions, and 1 case-control; prospective cohorts, and 1 case-control; prospective cohorts, and 1 case-control; for dcreasing the risk consumption to prospective cohorts, and 1 case-control; prospective cohorts, and 1 case-control; prospective cohorts, and 1 case-control; for dcreasing the risk consumption to of studies (3 retrospective cohorts, and 1 case-control; 5.657.393 births)2.478,574 births)CO, and O3 exposure, with p=0.002Pooled OR = 1.0067 0.9991 to 1.0022)3 rd rimester (0.9991 to 1.102)Pooled OR = 1.008 (0.9991 to 1.102)Powentive measures for entire pregnancy provide cohorts, and 1 case-control; 1.666,800 births)Powentive measures for future generations, should leaders' agend not only for the bealth of contemporary birthsFirst, the number of studies (3 retrospective cohorts, and 1 case-control; 5.657,493 births)First, the number of studies (3 retrospective cohorts, and 1 case-control; 5.657,493 births)First, the number of studies (3 retrospective and 2 prospective cohorts, and 2 	$I^2 = 7.3\%$ low	6 studies (2 retrospective and 3	underlying the air	meta-analysis of the
NO2 per 10 µg/m3 increase for entire pregnancy 5 studies (2 retrospective cohorts and 1 2 prospective cohorts and 1 $rase-control; 15434118 bitths)Pooled OR = 1.026(0.996 to 1.057)2ad (7) 49.0%-highragerssive policyinterventions, suchragerssive policya diversetprovide effectivepreventive measuresfor entire pregnancy6 studies (3 retrospective cohorts, and 1 case-control;1540600isociationcontreis.a developinga diversetpreventive measuresfor entire pregnancy0.991 to 1.0022long-term exposure byvint p=0.002CO per 10 µg/m3 increasefor entire pregnancy0.991 to 1.00222^{ad} trimesterPooled OR = 0.98510.991 to 1.0022lower airemissions, shouldbe on the top listof the world0.991 to 1.0022for divertifyemissions, shouldbe on the top listof per 10 µg/m3 increase1^{ad} rimesterlower airemissions, shouldbe on the top listof per 10 µg/m3 increase0.991 to 1.0022for divertifythe subsciece cohorts, and 11^{ad} rimesterlower airemissions, shouldbe on the top listof the top listof per 2.5, CO, and0.3^{c}.Pooled OR = 1.0000.991 to 1.00224 studies (3 pretopsective cohorts, and 11^{ad} rimesternot on the top listof the world1^{ad} rimesterPooled OR = 1.0080.991 to 1.1002exe-control; 1.1666, Rob biths)prospective cohorts, 1 case-control, and 1 case-consover;5.259.297 biths)for low preventive measuresof diverset preventiverimesterPublication biasr^{ad} retrospective and 2prospective cohorts, 1 case-control, and 1 case-consover;5.257.493 biths)limetretifyretrospective cohorts, and 1case-cont$	with p=0.369	prospective cohorts, and 1 case-control;	pollution-stillbirth	effect estimates of
for entire pregnancy 5 studies (2 retrospective cohorts and 1 2 prospective cohorts and 1 2 ass-control; 5434118 birts)Pooled OR = 0.936 (0.830 to 1.042)countries. aggressive policy interventions, such as developing 2 moderatefinitional critical exposure windws for PM2.5, 0.000Timesterretrosure and 0.3 exposure, with p=0.0002 prospective cohorts and 1 (0.9996 to 1.057)2 nd trimesterclean energy aiming at reducing for entire pregnancyclean energy aiming at reducing for entire pregnancysing 1 clean energy aiming at reducing for entire pregnancysing 1 clean energy aiming at reducing for entire pregnancystudies (3 retrospective and 3 prospective cohorts, and 1 case-control; for 9.955provide effective provide effective entrosens and at emissions, should effective prospective cohorts, and 1 case-control; f. 25, 25, 297 births.conterpregnancy effective effective provide effective provide effective<	NO2 per 10 µg/m3 increase	2,471,949 births)	association	long-term exposure by
5 studies (2 retrospective and 2 prospective cohorts and 1 case-control; 5434118 births) Pooled OR = 1.026 (0.9996 to 1.057)(7=94.000-high 1°=94.000-high 1°=94.000Research and aggressive policy interventions, such as developing claen energy aiming at reducing for entire pregnancy 6 studies (3 retrospective and 2 prospective cohorts and 1 case-control; 5,557,393 births)Research and aggressive policy interventions and coase-control; 2,248,574 births)Research and aggressive policy aimerease for entire pregnancy 6 studies (3 retrospective and 2 prospective cohorts and 1 (0.9991 to 1.0022)Research and aggressive policy aiming at reducing for derires pregnancy of the voltacritical exposure wind p=0.00200 dot R = 1.0007 (0.9991 to 1.0022)2.48,574 births) 1°= 77.0%-high with p=0.002Research and aggressive policy aiming at reducing pooled OR = 1.0007Consumption to 10.022) 4 studies (3 prospective cohorts, and 1 (2.328-control); 1.666.800 births) Pooled OR = 1.0007Contenporary but also for future generations, which also for future also for future agenerational intergenerational intergenerational intergenerational (0.974 to 1.043)Contenporary but 17= 82.8%-high prospective cohorts, and 1 case-control; 1.66.800 births)Research and aggressive policy control, and 1 case-control; 5.657,493 births)Contenporary but also for future generations, which is not enough to represent the global population, which is is not enough to repres	for entire pregnancy	Pooled $OR = 0.936$	countries.	trimesters and found
2 prospective cohorts and 1 case-control; 5434118 births) Pooled OR = 1.026 (0.9996 to 1.057)I ² = 90.000aggressive policy interventions, such as developing clean energy aiming at reducing for 52.2%-low y with p=0.022with outpet outpet 2 ^{2d} trimesterwith outpet outpet interventions and 1 case-control; 2.248.574 births)with outpet outpet interventive measures for entire pregnancy (0.9991 to 1.002)with p=0.0985 10 to 1.053)with outpet outpet interventive measures for decreasing the risk of stillbirth, such as 1 ² = 77.0%-highwith outpet outpet interventive measures for decreasing the risk of stillbirth, such as to reduce the pregnancy (0.9991 to 1.002)with p=0.002.with outpet outpet interventive measures for decreasing the risk of stillbirth, such as to reduce the pregnancy (0.9991 to 1.002)with p=0.002.with outpet outpe	5 studies (2 retrospective and	(0.830 to 1.042)	Research and	critical exposure
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 prospective cohorts and 1	$I^2 = 94.0\%$ high	aggressive policy	windows for PM2.5,
Pooled $OR = 1.026$ $(0.9996 to 1.057)$ 2^{ad} trimesteras developing clean energy animing at reducing fossil fuel consumption to lower air pollutantswhich may help provide effective provide effective provide effective for detreapency 0.916 to 1.053)which may help provide effective provide effective provide effective for detreapency 0.9248,574 births) $ODeled OR = 0.928$ for entire pregnancy 6 studies (3 retrospective cohorts and 1 case-control; 5,657,393 births) Pooled $OR = 1.0007$ $(0.9991 to 1.002)$ $Dould OR = 1.0007$ $1^2 = 82.8^{M}$ -moderate with p=0.060 $Dould OR = 1.040$ (0.970 to 1.110) $Dould OR = 1.040$ rospective cohorts, and 1 case-control; 1, 666,800 births) $Dould OR = 1.040$ rospective cohorts, and 1 case-control; $5,259,297$ births) $Dould OR = 1.0008$ (0.974 to 1.043) $Dould OR = 1.008$ rospective cohorts, and 1 case-control; $5,657,493$ births) $Dould OR = 0.994$ rospective cohorts, and 1 case-control; $5,657,493$ births) $Dould OR = 0.094$ rospective cohorts, and 1 case-control; $5,657,493$ births) $Dould OR = 0.094$ rospective cohorts, and 1 case-control; $5,657,493$ births) $Pablication bias forassess for publication bias forPablication bias forvarious air pollution, whichis not enough torepresent the globalpopoid to 1.052)Pablication bias forseveral studies havesubjective obias forwith p=0.002Pablication bias forvarious air pollutants.Several studies havePablication bias forvarious air pollutants.Several studies have$	case-control; 5434118 births)	with p=0.000	interventions, such	CO, and O3 exposure,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pooled $OR = 1.026$	L	as developing	which may help
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(0.9996 to 1.057)	2 nd trimester	clean energy	provide effective
with p=0.022 CO per 10 µg/m3 increase for entire pregnancyprospective cohorts, and 1 case-control; 2,248,574 biths)for solution to consumption tofor decreasing the risk of stillbirth, such as target policy6 studies (3 retrospective and 2 prospective cohorts and 1 case-control; 5,657,393 biths)Pooled OR = 0.985lower airtarget policyPooled OR = 1.0007 (0.9991 to 1.0022)3rd trimesterdo the top list of the worldof the world of the worldof PM2.5, CO, and of the worldPooled OR = 1.0007 (0.9991 to 1.0022)4 studies (3 prospective cohorts, and 1 case-control; 1,666,800 biths)not only for the health of contemporary but also for future with p=0.060Eimited Second, most integenerations, which with p=0.000LimitationsFor entire pregnancy 6 studies (2 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; 5,259,297 biths)for accreasing the risk of studies (3 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; 5,259,297 biths)for decreasing the risk of studies (3 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; 5,259,297 biths)for decreasing the risk of studies (3 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; 5,259,297 biths)for decreasing the risk of studies (3 retrospective and 2 prospective cohorts, and 1 case-control; fir ensaterfor decreasing the risk of studies included studies also for future also for future intergenerational inequity.'Publication bias "Egger's tests were used to assees for publication bias for "Egger's tests were used to assee	$I^2 = 65.2\%$ low	5 studies (1 retrospective and 3	aiming at reducing	preventive measures
CO per 10 µg/m3 increase for entire pregnancy 6 studies (3 retrospective and 1 case-control; 5,657,393 births) Pooled OR = 1.00072,248,574 births) Pooled OR = 0.985 pollot 0.1053) $I^2 = 77.0\%$ high with p=0.002consumption to lower air pollutants emission, should be on the top list of the world leaders' agenda not only for the health of contemporary but also for future generations, which can help improve intergenerational is not enough to represent the global population. Third, a possible consta (0.974 to 1.043) $I^2 = 63.8\%$ moderate with p=0.0172,248,574 births) Pooled OR = 0.994 (0.974 to 1.043) $I^2 = 77.1\%$ moderate with p=0.017consumption to lower air pollication bias forof stillbirth, such as target policy of the world leaders' agenda not only for the also for future generations, which is not enough to represent the global population. Third, a possible constaof stillbirth, such as target policy of stillbirth per 20.02.Pooled OR = 1.040 (0.974 to 1.043) $I^2 = 63.8\%$ moderate with p=0.0172,248,574 births) Pooled OR = 1.040 (0.933 to 1.055)consumption to lower air of the world leaders' agenda not only for the also for future generations, which is not enough to represent the global population. Third, a possible consta so sobserved among various air pollutants.	with p=0.022	prospective cohorts, and 1 case-control;	fossil fuel	for decreasing the risk
for entire pregnancy 6 studies (3 retrospective and 2 prospective cohorts and 1 case-control; 5,657,393 bitris) Pooled OR = 1.0007 (0.9991 to 1.0022)Pooled OR = 0.985 (0.916 to 1.053) 1 ² = 77.0%high with p=0.002.lower air pollutants emissions, should be on the top list of the worldtarget policy interventions aimed at reducing the emission of PM2.5, CO, and O3.* $I^{-2} = 52.8\%$ -moderate with p=0.060 3^{rd} trimesterof the world leaders' agenda not only for the health of contemporary but also for future generations, which can help improve intergenerational inequity.*Limitations First, the number of studies included is timited. Second, most of the included studies were performed in developed countries or areas with p=0.0017Publication bias "Egger's tests were used to assess for publication bias for12 = 73.1%moderate with p=0.002lower air polled OR = 0.984 (0.933 to 1.055)lower air polled on the op list of the included studies were performed in developed countries or areas with p=0.002Limitations studies included is united. Second, most intergenerational in equity.*	CO per 10 µg/m3 increase	2,248,574 births)	consumption to	of stillbirth, such as
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	for entire pregnancy	Pooled $OR = 0.985$	lower air	target policy
2 prospective cohorts and 1 case-control; 5,657,393 births) Pooled OR = 1.0000 $l^2=77.0\%$ high with p=0.002. 3^{rd} trimesteremissions, should be on the top list of the worldreducing the emission of PM2.5, CO, and O3.* $1^2=52.8\%$ moderate with p=0.0604 studies (3 prospective cohorts, and 1 case-control; 1,666,800 births)be on the top list of the worldO3.* $1^2=52.8\%$ moderate with p=0.060	6 studies (3 retrospective and	(0.916 to 1.053)	pollutants	interventions aimed at
case-control; 5,657,393 births) Pooled $OR = 1.0007$ (0.9991 to 1.0022)with $p=0.002$.be on the top list of the world leaders' agenda not only for the studies included isof PM2.5, CO, and O3.' $I^2 = 52.8\%$ -moderate with $p=0.060$ 3^{rd} trimesternot only for the Pooled $OR = 1.040$ Limitations $O3$ per 10 µg/m3 increase for entire pregnancy 6 studies (2 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; $5,259,297$ births) $I^2 = 89.2\%$ -high with $p=0.000$ also for future generations, which can help improve intergenerational inequity.'Iimited. Second, most of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global prospective cohorts, 1023 $I^2 = 63.8\%$ -moderate with $p=0.017$ $I^2 = 73.1\%$ -moderate with $p=0.002$ $I^2 = 73.1\%$ -moderate with $p=0.002$ $I^2 = 73.1\%$ -moderate with $p=0.002$ $Vith p=0.002$ $I^2 = 73.1\%$ -moderate with $p=0.002$ $I^2 = 73.1\%$ -moderate with $p=0.002$ $Several$ studies have Several studies have	2 prospective cohorts and 1	$I^2 = 77.0\%$ high	emissions, should	reducing the emission
Pooled $OR = 1.0007$ (0.9991 to 1.0022) $I^2 = 52.8\%$ -moderate with $p=0.060$ $3^{rd} trimester$ 4 studies (3 prospective cohorts, and 1 case-control; $1,666,800$ births) Pooled $OR = 1.040$ of the world leaders' agenda not only for the health of contemporary but also for future generations, which $I^2 = 82.8\%$ -moderate with $p=0.000$ $O3.'$ Limitations 'First, the number of studies included is limited. Second, most of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possetive candor $I^2 = 73.1\%$ -moderate "Eager's tests were used to assess for publication bias "Eager's tests were used to assess for publication bias for $3^{rd} trimester4 studies (3 prospective cohorts, and 1case-control;I^2 = 73.1\%-moderateO3.'Limitations'First, the number ofstudies included islimited. Second, mostof the included studieswere performed indeveloped countries orareas with low levelsof air pollution, whichis not enough torepresent the globalpopulation. Third, apossible correlationwas observed amongvarious air pollutants.Several studies have$	case-control; 5,657,393 births)	with p=0.002.	be on the top list	of PM2.5, CO, and
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pooled $OR = 1.0007$	3 rd trimester	of the world	03.'
$l^2 = 52.8\%$ -moderate with p=0.060case-control; 1,666,800 births) Pooled OR = 1.040not only for the health of contemporary but also for future generations, which case-constorl, 1,100Limitationsfor entire pregnancy 6 studies (2 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; 5,259,297 births)l'= 89.2%high with p=0.000not only for the health of contemporary but also for future generations, which intergenerational inequity.'LimitationsView of the outgoing of the (0.970 to 1.110)l'= 89.2%high with p=0.000not only for the health of contemporary but also for future generations, which can help improve intergenerational inequity.'LimitationsView of the (0.974 to 1.043)l'= rospective cohorts, and 1 case-control; 1 ² = 63.8%moderate with p=0.017for enough to represent the global pooled OR = 0.994 (0.933 to 1.055)not only for the health of contemporary but also for future generations, which is not enough to represent the global population. Third, a possible correlation was observed among various air pollutants. Several studies have	(0.9991 to 1.0022)	4 studies (3 prospective cohorts, and 1	leaders' agenda	
with p=0.060Pooled $OR = 1.040$ health of contemporary but also for future generations, which control, and 1 case-consover; $5,259,297$ births)First, the number of studies included is limited. Second, most of the included studies with p=0.0002 prospective cohorts, 1 case- control, and 1 case-consover; $5,259,297$ births)Pooled $OR = 1.040$ health of contemporary but also for future generations, which intergenerational inequity.''First, the number of studies included is limited. Second, most of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation with p=0.002Publication bias "Egger's tests were used to assess for publication bias forPooled $OR = 1.002$ Pooled $OR = 0.994$ (0.933 to 1.055)Publication bias "Egger's tests were used to assess for publication bias forI ² = 73.1%moderate with p=0.002possible correlation warious air pollutants. Several studies have	$I^2 = 52.8\%$ moderate	case-control; 1.666,800 births)	not only for the	Limitations
O3 per 10 μ g/m3 increase for entire pregnancy 6 studies (2 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; 5,259,297 births)(0.970 to 1.110) I^2 = 63.8%moderate with p=0.017contemporary but also for future generations, which intergenerational inequity.'studies included is limited. Second, most of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation with p=0.002contemporary but also for future generations, which intergenerational inequity.'studies included is limited. Second, most of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation was observed among various air pollutants. Several studies have	with p=0.060	Pooled $OR = 1.040$	health of	'First, the number of
for entire pregnancy 6 studies (2 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; $5,259,297$ births) $I^2= 89.2\%$ high with p=0.000also for future generations, which can help improve intergenerational inequity.'limited. Second, most of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation with p=0.002Publication bias "Egger's tests were used to assess for publication bias forI ² = 73.1%moderate with p=0.002I/2 = 73.1%moderate with p=0.002Job 2000	O3 per 10 µg/m3 increase	(0.970 to 1.110)	contemporary but	studies included is
6 studies (2 retrospective and 2 prospective cohorts, 1 case- control, and 1 case-crossover; $5,259,297$ births)with p=0.000generations, which can help improve intergenerational inequity.'of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation with p=0.002of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation with p=0.002Publication bias "Egger's tests were used to assess for publication bias forI²= 73.1%moderate with p=0.002generations, which can help improve intergenerational inequity.'of the included studies were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation was observed among various air pollutants. Several studies have	for entire pregnancy	$I^2 = 89.2\%$ high	also for future	limited. Second, most
2 prospective cohorts, 1 case- control, and 1 case-crossover; $5,259,297$ births)Stillbirth per 10 µg/m3 increase in SO2 by trimesterCan help improve intergenerational inequity.'were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation 2^{13} trimester6 studies (3 retrospective and 2 prospective cohorts, and 1 case-control; $1^2 = 63.8\%$ moderate with p=0.0176 studies (3 retrospective and 2 prospective cohorts, and 1 case-control; $5,657,493$ births)were performed in developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation was observed among various air pollutants. Several studies have	6 studies (2 retrospective and	with p=0.000	generations, which	of the included studies
Image: control, and 1 case-crossover; $5,259,297$ births)SO2 by trimesterintergenerational inequity.'developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlationPooled OR = 1.008 $(0.974 to 1.043)$ 6 studies (3 retrospective and 2 prospective cohorts, and 1 case-control; $5,657,493$ births)intergenerational inequity.'developed countries or areas with low levels of air pollution, which is not enough to represent the global population. Third, a possible correlation with p=0.002Publication bias "Egger's tests were used to assess for publication bias forImage: Control (1000)intergenerational inequity.'developed countries or areas with low levels of air pollution, which is not enough to represent the global possible correlation was observed among various air pollutants. Several studies have	2 prospective cohorts, 1 case-	Stillbirth per 10 µg/m3 increase in	can help improve	were performed in
$5,259,297$ births) I^{st} trimesterinequity.'areas with low levelsPooled OR = 1.0086 studies (3 retrospective and 2of air pollution, which $(0.974 to 1.043)$ prospective cohorts, and 1 case-control;is not enough to I^2 = 63.8%moderate $5,657,493$ births)represent the globalwith p=0.017Pooled OR = 0.994population. Third, a Publication bias I^2 = 73.1%moderatewith p=0.002"Egger's tests were used towith p=0.002Several studies have	control, and 1 case-crossover;	SO2 by trimester	intergenerational	developed countries or
Pooled $OR = 1.008$ $(0.974 to 1.043)$ $I^2 = 63.8\%$ moderate with p=0.0176 studies (3 retrospective and 2 prospective cohorts, and 1 case-control; $5,657,493$ births)of air pollution, which is not enough to represent the global population. Third, a possible correlationPublication bias "Egger's tests were used to assess for publication bias for12 = 73.1\%moderate with p=0.002of air pollution, which is not enough to represent the global possible correlation was observed among various air pollutants.	5,259,297 births)	1 st trimester	inequity.'	areas with low levels
	Pooled $OR = 1.008$	6 studies (3 retrospective and 2	1 5	of air pollution, which
$I^2 = 63.8\%$ moderate with p=0.017 $5,657,493$ births) Pooled OR = 0.994 (0.933 to 1.055)represent the global population. Third, a possible correlation was observed among various air pollutants. Publication bias "Egger's tests were used to assess for publication bias for $I^2 = 73.1\%$ moderate with p=0.002represent the global population. Third, a possible correlation was observed among various air pollutants.	(0.974 to 1.043)	prospective cohorts, and 1 case-control;		is not enough to
with p=0.017Pooled $OR = 0.994$ (0.933 to 1.055)population. Third, a possible correlationPublication bias $I^2 = 73.1\%$ -moderate with p=0.002was observed among various air pollutants. Several studies have	$I^2 = 63.8\%$ moderate	5.657.493 births)		represent the global
Publication bias $(0.933 \text{ to } 1.055)$ possible correlationPublication bias $I^2 = 73.1\%$ moderatewas observed among"Egger's tests were used to assess for publication bias forwith p=0.002various air pollutants.Several studies have	with p=0.017	Pooled $OR = 0.994$		population. Third, a
Publication bias $I^2 = 73.1\%$ moderatewas observed among"Egger's tests were used to assess for publication bias for $i^2 = 73.1\%$ moderatewas observed among various air pollutants.Several studies have	1	(0.933 to 1.055)		possible correlation
"Egger's tests were used to assess for publication bias for several studies have	Publication bias	$I^2 = 73.1\%$ moderate		was observed among
assess for publication bias for Several studies have	"Egger's tests were used to	with $p=0.002$		various air pollutants.
	assess for publication bias for	*		Several studies have

each pollutant during the	2 nd trimester	analyzed the
short- and long-term exposure,	5 studies (2 retrospective and 2	correlation between
and no substantial bias was	prospective cohorts, and 1 case-control;	different air pollutants
detected."	5,434,118 births)	and used the
	Pooled OR $= 0.984$	multipollutant model,
	(0.918 to 1.050)	while others did not.
	$I^2 = 73.2\%$ moderate	Therefore, some of the
	with p=0.005	reported associations
	3 rd trimester	may be spurious. Due
	5 studies (2 retrospective and 2	to the limited number
	prospective cohorts, and 1 case-control;	of included studies, we
	5,434,118 births)	did not consider the
	Pooled $OR = 1.095$	correlation between
	(0.993 to 1.197)	different air pollutants
	$I^2 = 88.9\%$ moderate	when conducting the
	with p=0.000	meta-analysis. Fourth,
	-	we did not conduct a
	Stillbirth per 10 µg/m3 increase in	subgroup analysis to
	NO2 by trimester	explore the source of
	1 st trimester	heterogeneity due to
	6 studies (3 retrospective and 2	the small number of
	prospective cohorts, and 1 case-control;	studies included. High
	6,015,892 births)	heterogeneity was
	Pooled $OR = 1.004$	observed concerning
	(0.980 to 1.029)	the air pollution-
	$I^2 = 56.7\%$ moderate	stillbirth association in
	with p=0.041	some period; hence,
	2 nd trimester	we used random effect
	6 studies (3 retrospective and 2	models to combine the
	prospective cohorts, and 1 case-control;	effects. However, as
	6,015,892 births)	typical limitations of
	Pooled OR = 0.997 (0.972 to 1.022)	random model,
	$I^2 = 59.2\%$ moderate	statistical errors may
	with p=0.032	be underrated and
	3 rd trimester	overconfident
	5 studies (2 retrospective and 2	conclusions can be
	prospective cohorts, and 1 case-control;	yielded.'
	5,434,118 births)	
	Pooled $OR = 1.022$	

		(0.995 to 1.050)	
		$I^2 = 62.7\%$ moderate	
		with p=0.030	
		Stillbirth per 10 µg/m3 increase in CO	
		by trimester	
		1 st trimester	
		6 studies (3 retrospective and 2	
		prospective cohorts and 1 case-control;	
		5,657,393 births)	
		Pooled $OR = 1.0000 (0.9985 to 1.0014)$	
		$I^2 = 52.1\%$ moderate with p=0.064	
		2 nd trimester	
		5 studies (2 retrospective and 2	
		prospective cohorts and 1 case-control;	
		5,434,118 births)	
		Pooled $OR = 1.0004$	
		(0.9992 to 1.0015)	
		$I^2 = 38.2\%$ moderate with p=0.166	
		3 rd trimester	
		5 studies (2 retrospective and 2	
		prospective cohorts and 1 case-control;	
		5,434,118 births)	
		Pooled $OR = 1.0009 (1.0001 \text{ to } 1.0017)$	
		$I^2 = 70.3\%$ moderate with p=0.009	
		Stillbirth per 10 µg/m3 increase in O3	
		by trimester	
		1 st trimester	
		6 studies (3 retrospective and 2	
		prospective cohorts and 1 case-control;	
		5,482,705 births)	
		Pooled $OR = 1.028 (1.001 \text{ to } 1.055)$	
		$I^2 = 73.5\%$ moderate with p=0.002	
		2 nd trimester	
		5 studies (2 retrospective and 2	
		prospective cohorts and 1 case-control;	
		5,259,330 births)	
		Pooled OR = 1.012 (0.986 to 1.038)	
		$I^2 = 74.1\%$ moderate with p=0.004	

		and	
		^{3ra} trimester	
		4 studies (1 retrospective and 2	
		prospective cohorts and 1 case-control;	
		4,677,556 births)	
		Pooled $OR = 0.978$ (0.927 to 1.029)	
		$I^2 = 93.3\%$ moderate with p=0.000	
		Short-term exposure of PM2.5 and	
		stillbirth	
		0 day (event day)	
		2 studies (1 retrospective and 1 time	
		2 studies (1 fettospective and 1 time	
		$P_{\rm rel} = 1 000 (0.007 \text{ tr} 1.002)$	
		Pooled $OR = 1.000 (0.997 to 1.005)$	
		$1^2 = 0.0\%$ No with p=0.513	
		I day	
		2 studies (1 retrospective and 1 time	
		series; 261,175 births)	
		Pooled OR = $0.997 (0.994 \text{ to } 1.001)$	
		$I^2 = 0.0\%$ No with p=0.953	
		2 days	
		3 studies (one each retrospective, time	
		series, and case-crossover; 261,175	
		births and unreported for the case-	
		crossover study)	
		Pooled $OR = 1.001 (0.999 to 1.004)$	
		$I^2 = 0.0\%$ No with p=0.723	
		$\frac{1}{2} = 0.070$ 100 while $p=0.725$	
		2 studies (1 retrospective and 1 time	
		2 studies (1 ieuospecuve and 1 tille sorios: 261 175 births)	
		$P_{rel} = 1.001 (0.000 \text{ tr} 1.004)$	
		Pooled $OR = 1.001 (0.999 to 1.004)$	
		$1^2 = 45.7\%$ low with p=0.175	
		4 days	
		2 studies (1 retrospective and 1 time	
		series; 261,175 births)	
		Pooled $OR = 0.999 (0.996 \text{ to } 1.003)$	
		$I^2 = 0.0\%$ No with p=0.450	
		5 days	
		2 studies (1 retrospective and 1 time	
		series; 261,175 births)	

		Pooled $OR = 0.999 (0.996 \text{ to } 1.002)$	
		$I^2 = 0.0\%$ No with p=0.8343	
		6 days	
		2 studies (1 retrospective and 1 time	
		series; 261,175 births)	
		Pooled $OR = 1.023 (0.947 \text{ to } 1.098)$	
		$I^2 = 64.9\%$ No with p=0.091	
		Short-term exposure of PM10 and	
		stillbirth	
		0 day (event day)	
		2 studies (1 retrospective and 1 time	
		series; 261,175 births)	
		Pooled $OR = 1.000 (0.998 \text{ to } 1.001)$	
		$I^2 = 0.0\%$ No with p=0.681	
		1 day	
		2 studies (1 retrospective and 1 time	
		series: 261.175 births)	
		Pooled $OR = 0.999 (0.998 \text{ to } 1.001)$	
		$I^2 = 12.4\%$ Low with p=0.285	
		2 days	
		2 studies (1 retrospective and 1 time	
		series: 261.175 births)	
		Pooled $OR = 0.999 (0.998 \text{ to } 1.001)$	
		$I^2 = 45.2\%$ Low with p=0.177	
		3 days	
		2 studies (1 retrospective and 1 time	
		series: 261.175 births)	
		Pooled $OR = 1.018 (0.966 \text{ to } 1.070)$	
		$I^2 = 64.1\%$ Low with p=0.095	
		4 days	
		2 studies (1 retrospective and 1 time	
		series: 261.175 births)	
		Pooled $OR = 1.000 (0.998 \text{ to } 1.002)$	
		$I^2 = 0.0\%$ Low with p=0.644	
		5 days	
		2 studies (1 retrospective and 1 time	
		series: 261,175 births)	
		Pooled $OR = 0.999 (0.997 \text{ to } 1.001)$	

$\begin{vmatrix} \vec{r} = 0.0\% - Low with p = -0.404 & 6 days \\ 2 studies (1 retrospective and 1 time series; 26.1/75 births) \\ Pooled OR = 0.990 (to 907 to 1.001) \\ \vec{r} = 0.0\% - Low with p = 0.365 \\ \hline Short-term exposure of SO2 and still birth \\ 0 day (event day) \\ 2 studies (1 retrospective and 1 time series; 26.1/75 births) \\ Pooled OR = 0.998 (0.990 to 1.006) \\ \vec{r} = 0.0\% - No with p = 0.388 \\ 1 day \\ 2 studies (1 retrospective and 1 time series; 26.1/75 births) \\ Pooled OR = 1.008 (0.992 to 1.008) \\ \vec{r} = 0.0\% - No with p = 1.000 \\ 2 days \\ 2 studies (1 retrospective and 1 time series; 26.1/75 births) \\ Pooled OR = 1.002 (0.976 to 1.076) \\ \vec{r} = 0.0\% - No with p = 1.000 \\ 2 days \\ 2 studies (1 retrospective and 1 time series; 26.1/75 births) \\ Pooled OR = 1.002 (0.976 to 1.076) \\ \vec{r} = 0.0\% - Low with p = 0.081 \\ 3 days \\ 3 days \\ 3 studies (1 erterospective and 1 time series; 26.1/75 births) \\ Pooled OR = 1.002 (0.994 to 1.010) \\ \vec{r} = 0.0\% - No with p = 0.611 \\ 4 days \\ 3 studies (1 eartospective cohort, time series; 26.1/75 births) \\ Pooled OR = 1.002 (0.994 to 1.010) \\ \vec{r} = 0.0\% - No with p = 0.610 \\ 4 days \\ 3 studies (1 eartospective cohort, time series; 26.1/75 births) with unreported for the case consover study \\ 9 coleculor (0.876 - Low with p = 0.610 \\ 4 days \\ 3 studies (1 each retrospective cohort, time series; 26.1/75 births) with unreported for the case consover study \\ 9 coleculor (0.87 - Low with p = 0.610 \\ 4 days \\ 5 birth = 0.010 \\ 1 = 0.03 \\ 0.995 \\ 1 = 0.011 \\ 1 = 0.010 $		-	
$ \begin{array}{c} 6 \ days \\ 2 \ studies (1 retrospective and 1 time series; 261.175 births) \\ Pooled OR = 0.999 (0.997 to 1.001) \\ T^{=} 0.0%-Low with p=0.365 \\ \hline \\ \begin{array}{c} \textbf{Short-term exposure of SO2 and stillbirth \\ 0 \ day (vexnt day) \\ 2 \ studies (1 retrospective and 1 time series; 261.175 births) \\ Pooled OR = 0.998 (0.990 to 1.006) \\ T^{=} 0.00%-No \ with p=0.838 \\ 1 \ day \\ 2 \ studies (1 retrospective and 1 time series; 261.175 births) \\ Pooled OR = 1.026 (0.976 to 1.076) \\ T^{=} 0.00%-No \ with p=0.081 \\ 3 \ days \\ 2 \ studies (1 retrospective and 1 time series; 261.175 births) \\ Pooled OR = 1.002 (0.994 to 1.010) \\ T^{=} 0.0%-No \ with p=0.081 \\ 3 \ days \\ 3 \ studies (1 retrospective and 1 time series; 261.175 births) \\ Pooled OR = 1.002 (0.994 to 1.010) \\ T^{=} 0.0%-No \ with p=0.610 \\ 4 \ days \\ 3 \ studies (1 retrospective cohort, time series; and case-crossover 261.175 births) \\ Pooled OR = 1.003 (0.995 to 1.011) \\ T^{=} 4.76\%-Low \ with p=0.148 \\ Short-term exposure of NO2 and stillbirth \\ 2 \ days \\ \textbf{Short-term exposure of NO2 and stillbirth \\ 2 \ days \\ \textbf{Short-term exposure of NO2 and stillbirth \\ 2 \ days \\ \textbf{Short-term exposure of NO2 and stillbirth \\ 2 \ days \\ \textbf{Short-term exposure of NO2 and stillbirth \\ \textbf{Short-term exposure o$		$I^2 = 0.0\%$ Low with p=0.404	
2 studies (1 retrospective and 1 time series; 25(1,175 births) Pooled $OR = 0.990 (0.997 to 1.001)$ $\Gamma^2 = 0.0\% - Low with p=0.365Short-term exposure of SO2 andstillbirthO day (event day)2 studies (1 retrospective and 1 timeseries; 261,175 births)Pooled OR = 0.998 (0.990 to 1.006)\Gamma^2 = 0.0\% - No with p=0.838I day2 studies (1 retrospective and 1 timeseries; 261,175 births)Pooled OR = 1.092 (0.994 to 1.008)\Gamma^2 = 0.0\% - No with p=0.0012 days2 studies (1 retrospective and 1 timeseries; 261,175 births)Pooled OR = 1.002 (0.994 to 1.076)\Gamma^2 = 0.01\% - Low with p=0.0813 days3 studies (1 retrospective and 1 timeseries; 261,175 births)Pooled OR = 1.002 (0.994 to 1.010)\Gamma^2 = 0.01\% - Low with p=0.6114 days3 studies (1 retrospective cohort,time series and case-crossover; 261,175births) with unreported for the case-crossover studyPooled OR = 1.003 (0.995 to 1.011)\Gamma^2 = 47.6\% - Low with p=0.148Sbort-term exposure of NO2 andstillbirth2 days$		6 days	
series: 261.175 births) Pooled OR = 0.999 (0.997 to 1.001) $I^{2} = 0.0\% - Low with p=0.365$ Short-term exposure of SO2 and sillibirth 0 day (vexnt day) 2 studies (1 retrospective and 1 time series: 261.175 births) Pooled OR = 0.988 (0.990 to 1.006) $I^{2} = 0.0\% - No with p=0.838$ 1 day 2 studies (1 retrospective and 1 time series: 261.175 births) Pooled OR = 1.000 (0.992 to 1.008) $I^{2} = 0.0\% - No with p=0.1000$ 2 days 2 studies (1 retrospective and 1 time series: 261.175 births) Pooled OR = 1.002 (0.976 to 1.076) $I^{2} = 60.1\% - Low with p=0.081$ 3 days 2 studies (1 retrospective and 1 time series: 261.175 births) Pooled OR = 1.002 (0.976 to 1.076) $I^{2} = 0.0\% - No with p=0.081$ 3 days 3 studies (1 retrospective cohort, time series; 261.175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^{2} = 0.0\% - No with p=0.610$ 4 days 3 studies (1 enterospective cohort, time series; and case-crossover 2.61.175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^{2} = 47.6\% - Low with p=0.148$ Short-term exposure of NO2 and stillbirth 2 days		2 studies (1 retrospective and 1 time	
Pooled OR = 0.999 (0.997 to 1.001) $\Gamma^2 = 0.0\% - Low with p=0.365$ Short-term exposure of SO2 and stillbirth 0 day (event day) 2 studies (1 retrospective and 1 time series; 261.175 births) Pooled OR = 0.998 (0.990 to 1.006) $\Gamma^2 = 0.0\% - No with p=0.838$ $1 day$ 2 studies (1 retrospective and 1 time series; 261.175 births) Pooled OR = 1.002 (0.992 to 1.008) $\Gamma^2 = 0.0\% - No with p=0.001$ $2 days$ 2 studies (1 retrospective and 1 time series; 261.175 births) Pooled OR = 1.020 (0.974 to 1.076) $\Gamma^2 = 60.1\% - Low with p=0.081$ $3 days$ 2 studies (1 retrospective and 1 time series; 261.175 births) Pooled OR = 1.002 (0.974 to 1.010) $\Gamma^2 = 0.0\% - No with p=0.081$ $3 days$ 2 studies (1 retrospective cohort, time series; 261.175 births) Pooled OR = 1.002 (0.994 to 1.010) $\Gamma^2 = 0.0\% - No with p=0.610$ $4 days$ 3 studies (1 ach retrospective cohort, time series and case-crossover; 261.175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $\Gamma^2 = 47.6\% - Low with p=0.148$ Short-term exposure of NO2 and stillbirth 2 days		series; 261,175 births)	
Image: Image is a state of the second state of th		Pooled $OR = 0.999 (0.997 \text{ to } 1.001)$	
Short-term exposure of SO2 and stillbirth ∂day (vent day) 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 0.998 (0.990 to 1.006) 1 ² = 0.0%No with p=0.838 1 day 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.000 (0.992 to 1.008) 1 ² = 0.0%No with p=1.000 2 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) 1 ² = 0.0%Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) 1 ² = 0.0%-No with p=0.610 4 days 3 studies (1 extrespective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) 1 ² = 47.6%Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		$I^2 = 0.0\%$ Low with p=0.365	
Short-term exposure of SO2 and stillbirth $0 day (event day)$ 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 0.998 (0.990 to 1.006) $I^{\pm} 0.098$ (0.990 to 1.006) $I^{\pm} 0.098$ (0.990 to 1.006) $I^{\pm} 0.098$ (0.990 to 1.008) $I^{\pm} 0.098$ (0.990 to 1.0076) $I^{\pm} 0.0189$ (1.000 days (1.01076) $I^{\pm} 0.0189$ (1.000 days (1.01076)) $I^{\pm} 0.098$ (1.000 days (1.01010) $I^{\pm} 0.098$ (1.000 days (1.01010)) $I^{\pm} 0.098$ (1.000 days (1.010110)) $I^{\pm} 0.098$ (1.000 days (1.		r	
stillbirth $0 day$ (verat day) 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 0.998 (0.990 to 1.006) $I^{=} 0.0\%-N0$ with p=0.838 $1 day$ 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.000 (0.992 to 1.008) $I^{2} = 0.0\%-N0$ with p=1.000 $2 days$ 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $I^{2} = 60.1\%-L00$ with p=0.081 $3 days$ 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $I^{2} = 0.0\%-N0$ with p=0.081 $3 days$ 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.999 to 1.010) $I^{2} = 0.0\%-N0$ with p=0.610 $4 days$ 3 studies (1 extrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^{2} = 4.76-L00$ with p=0.011) $I^{2} = 4.76-L00$ with p=0.011) $I^{2} = 4.76-L00$ with p=0.011) $I^{2} = 4.76-L00$ with p=0.011) $I^{2} = 4.76-L00$ with p=0.014 $I^{2} = 4.76-L00$ with p=0.0111) $I^{2} = 4.76-L00$ with p=0.014 $I^{2} = 4.76-L00$ with p=0.014 $I^{2} = 4.76-L00$ with p=0.014 $I^{2} = 4.76-L00$ with p=0.014 $I^{2} = 4.76-L00$ with p=0.0111) $I^{2} = 4.76-L00$ with p=0.014 $I^{2} = 4.76-L00$ with p=0.014 I^{2}		Short-term exposure of SO2 and	
$\begin{array}{c} 0 \ day \ (\text{event day}) \\ 2 \ \text{studies} \ (1 \ (\text{rtrospective and 1 time} \\ \text{series}; 261, 175 \ \text{births}) \\ \text{Pooled } OR = 0.998 \ (0.990 \ \text{to} 1.006) \\ I^{=} = 0.09 & -N0 \ \text{with } p=0.838 \\ I \ day \\ 2 \ \text{studies} \ (1 \ (\text{rtrospective and 1 time} \\ \text{series}; 261, 175 \ \text{births}) \\ \text{Pooled } OR = 1.000 \ (0.992 \ \text{to} 1.008) \\ I^{=} = 0.09 & -N0 \ \text{with } p=1.000 \\ 2 \ days \\ 2 \ \text{studies} \ (1 \ \text{retrospective and 1 time} \\ \text{series}; 261, 175 \ \text{births}) \\ \text{Pooled } OR = 1.026 \ (0.976 \ \text{to} 1.076) \\ I^{=} = 60.1\% - \text{Low} \ \text{with } p=0.081 \\ 3 \ days \\ 2 \ \text{studies} \ (1 \ \text{retrospective and 1 time} \\ \text{series}; 261, 175 \ \text{births}) \\ \text{Pooled } OR = 1.026 \ (0.976 \ \text{to} 1.076) \\ I^{=} = 0.0\% - \text{No} \ \text{with } p=0.081 \\ 3 \ days \\ 2 \ \text{studies} \ (1 \ \text{retrospective and 1 time} \\ \text{series}; 261, 175 \ \text{births}) \\ \text{Pooled } OR = 1.020 \ (0.994 \ \text{to} 1.010) \\ I^{=} 0.0\% - \text{No} \ \text{with } p=0.610 \\ 4 \ days \\ 3 \ \text{studies} \ (1 \ \text{extrospective cohort,} \\ \text{time series} \ \text{and } acc-crossover; 261, 175 \\ \text{births}) \ \text{Wooled } OR = 1.003 \ (0.995 \ \text{to} 1.011) \\ I^{=} = 47.6\% - \text{No} \ \text{with } p=0.148 \\ \textbf{Short-term exposure of NO2 and} \\ \textbf{stillbirth} \\ 2 \ days \end{array}$		stillbirth	
2 studies (1 retrospective and 1 time series: 261,175 births) Pooled OR = 0.998 (0.990 to 1.006) $l^2 = 0.0\%$ No with p=0.838 <i>l day</i> 2 studies (1 retrospective and 1 time series: 261,175 births) Pooled OR = 1.000 (0.992 to 1.008) $l^2 = 0.0\%$ No with p=1.000 2 days 2 studies (1 retrospective and 1 time series: 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $l^2 = 60.1\%$ Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series: 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $l^2 = 0.0\%$ No with p=0.010 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $l^2 = 47.6\%$ Low with p=0.1011) $l^2 = 47.6\%$ Low with p=0.1011)		0 day (event day)	
$\begin{aligned} series; 261,175 births) \\ Pooled QR = 0.998 (0.990 to 1.006) \\ I^2 = 0.0% - No with p=0.838 \\ I day \\ 2 studies (1 retrospective and 1 time series; 261,175 births) \\ Pooled QR = 1.000 (0.992 to 1.008) \\ I^2 = 0.0\% - No with p=1.000 \\ 2 days \\ 2 studies (1 retrospective and 1 time series; 261,175 births) \\ Pooled QR = 1.026 (0.976 to 1.076) \\ I^2 = 60.1\% - Low with p=0.081 \\ 3 days \\ 2 studies (1 retrospective and 1 time series; 261,175 births) \\ Pooled QR = 1.002 (0.994 to 1.010) \\ I^2 = 0.0\% - No with p=0.610 \\ 4 days \\ 3 studies (1 each retrospective cohort, time series and case-crossover; study \\ Pooled QR = 1.003 (0.995 to 1.011) \\ I^2 = 47.6\% - Low with p=0.48 \\ 8 Short-term exposure of NO2 and stillbirth \\ 2 days \end{aligned}$		2 studies (1 retrospective and 1 time	
Pooled OR = 0.998 (0.990 to 1.006) $l^2 = 0.0\% - No with p=0.838$ l day 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.000 (0.992 to 1.008) $l^2 = 0.0\% - No with p=1.000$ 2 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $l^2 = 60.1\% - Low$ with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $l^2 = 0.0\% - No$ with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $l^2 = 47.6\% - Low$ with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		series: 261 175 births)	
$\frac{1}{12} = 0.0\% - No \text{ with } p=0.838$ $\frac{1}{1} day$ $2 \text{ studies (1 retrospective and 1 time series; 261,175 births)}$ $Pooled OR = 1.000 (0.992 to 1.008)$ $\frac{1}{2} = 0.0\% - No \text{ with } p=1.000$ $2 days$ $2 \text{ studies (1 retrospective and 1 time series; 261,175 births)}$ $Pooled OR = 1.026 (0.976 to 1.076)$ $\frac{1}{2} = 0.0\% - No \text{ with } p=0.081$ $3 days$ $2 \text{ studies (1 retrospective and 1 time series; 261,175 births)}$ $Pooled OR = 1.002 (0.994 to 1.010)$ $\frac{1}{2} = 0.0\% - No \text{ with } p=0.610$ $4 days$ $3 \text{ studies (1 each retrospective cohort, time series; and case-crossover; 261,175 births) with unreported for the case-crossover study$ $Pooled OR = 1.003 (0.995 to 1.011)$ $\frac{1}{2} = 47.6\% - Low \text{ with } p=0.48$ $Short-term exposure of NO2 and stillbirth$		$P_{\text{pol}}(A, D, D,$	
$\frac{1}{2} = 0.0\%$ -No with p=0.836 1 day 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.000 (0.992 to 1.008) $1^2 = 0.0\%$ No with p=1.000 2 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $1^2 = 60.1\%$ Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $1^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $1^2 = 47.6\%$ -Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		Folled $OR = 0.998 (0.990 to 1.000)$ $I_{2}^{2} = 0.000$ No with $n = 0.828$	
2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.000 (0.992 to 1.008) $1^2 = 0.0\%$ No with p=1.000 2 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $1^2 = 60.1\%$ Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $1^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $1^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		1 = 0.0%100 with p=0.858	
2 studies (1 retrospective and 1 time series: 261.175 births) Pooled OR = 1.000 (0.992 to 1.008) $I^2 = 0.0\%$ -No with p=1.000 2 days 2 studies (1 retrospective and 1 time series: 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $I^2 = 60.1\%$ -Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^2 = 0.0\%$ -No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ -Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		1 day 2 studies (1 metro en estima en d 1 time	
Series', 261,175 births) Pooled OR = 1.000 (0.992 to 1.008) $I^2 = 0.0\%$ No with p=1.000 2 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $I^2 = 60.1\%$ Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		2 studies (1 retrospective and 1 time	
Pooled OR = 1.000 (0.992 to 1.008) $I^2 = 0.0\%$ No with p=1.000 2 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $I^2 = 60.1\%$ Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		series; 261,175 births)	
$I^{-2} = 0.0\% - No with p=1.000$ $2 days$ $2 studies (1 retrospective and 1 timeseries; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) I^{2} = 60.1\% - Low with p=0.081 3 days 2 studies (1 retrospective and 1 timeseries; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) I^{2} = 0.0\% - No with p=0.610 4 days 3 studies (1 each retrospective cohort,time series and case-crossover; 261,175births) with unreported for the case-crossover study Pooled OR = 1.003 (0.995 to 1.011) I^{2} = 47.6\% - Low with p=0.148 Short-term exposure of NO2 andstillbirth 2 days$		Pooled $OR = 1.000 (0.992 \text{ to } 1.008)$	
2 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $l^2 = 60.1\%$ Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $l^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $l^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		$I^2 = 0.0\%$ No with p=1.000	
2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $I^2 = 60.1\%$ -Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ -Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		2 days	
series; 261,175 births) Pooled OR = 1.026 (0.976 to 1.076) $I^2 = 60.1\%$ Low with p=0.081 3 days 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		2 studies (1 retrospective and 1 time	
Pooled OR = 1.026 (0.976 to 1.076) $I^2 = 60.1\%$ Low with p=0.081 <i>3 days</i> 2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^2 = 0.0\%$ No with p=0.610 <i>4 days</i> 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		series; 261,175 births)	
$I^2=60.1\%$ Low with p=0.081 $3 days$ 2 studies (1 retrospective and 1 timeseries; 261,175 births)Pooled OR = 1.002 (0.994 to 1.010) $I^2=0.0\%$ No with p=0.610 $4 days$ 3 studies (1 each retrospective cohort,time series and case-crossover; 261,175births) with unreported for the case-crossover studyPooled OR = 1.003 (0.995 to 1.011) $I^2=47.6\%$ Low with p=0.148Short-term exposure of NO2 andstillbirth $2 days$		Pooled $OR = 1.026 (0.976 \text{ to } 1.076)$	
$\begin{array}{c} 3 \ days \\ 2 \ studies (1 \ retrospective \ and \ 1 \ time \\ series; 261,175 \ births) \\ Pooled OR = 1.002 \ (0.994 \ to \ 1.010) \\ I^2 = 0.0\% - No \ with p=0.610 \\ 4 \ days \\ 3 \ studies (1 \ each \ retrospective \ cohort, \\ time \ series \ and \ case-crossover; 261,175 \\ births) \ with \ unreported \ for \ the \ case- \\ crossover \ study \\ Pooled OR = 1.003 \ (0.995 \ to \ 1.011) \\ I^2 = 47.6\% - Low \ with \ p=0.148 \\ \mathbf{Short-term \ exposure \ of \ NO2 \ and \\ stillbirth \\ 2 \ days \end{array}$		$I^2 = 60.1\%$ Low with p=0.081	
2 studies (1 retrospective and 1 time series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		3 days	
series; 261,175 births) Pooled OR = 1.002 (0.994 to 1.010) $I^2 = 0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		2 studies (1 retrospective and 1 time	
Pooled OR = 1.002 (0.994 to 1.010) $I^2=0.0\%$ No with p=0.610 4 days 3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2=47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		series; 261,175 births)	
$I^{2}=0.0\%No \text{ with } p=0.610$ 4 days $3 \text{ studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case-crossover study Pooled OR = 1.003 (0.995 to 1.011) I^{2}=47.6\%Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days$		Pooled $OR = 1.002 (0.994 \text{ to } 1.010)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$I^2 = 0.0\%$ No with p=0.610	
3 studies (1 each retrospective cohort, time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) I^2 = 47.6%Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		4 days	
time series and case-crossover; 261,175 births) with unreported for the case- crossover study Pooled OR = 1.003 (0.995 to 1.011) $I^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		3 studies (1 each retrospective cohort,	
births) with unreported for the case- crossover study Pooled OR = $1.003 (0.995 \text{ to } 1.011)$ $I^2 = 47.6\%$ Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		time series and case-crossover; 261,175	
crossover study Pooled OR = $1.003 (0.995 \text{ to } 1.011)$ $I^2 = 47.6\%$ Low with p= 0.148 Short-term exposure of NO2 and stillbirth 2 days		births) with unreported for the case-	
Pooled OR = $1.003 (0.995 \text{ to } 1.011)$ I ² = 47.6%Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		crossover study	
I ² = 47.6%Low with p=0.148 Short-term exposure of NO2 and stillbirth 2 days		Pooled $OR = 1.003 (0.995 \text{ to } 1.011)$	
Short-term exposure of NO2 and stillbirth 2 days		$I^2 = 47.6\%$ Low with p=0.148	
stillbirth 2 days		Short-term exposure of NO2 and	
2 days		stillbirth	
		2 days	

2 studies (1 case-crossover with unreported birth and 1 time series with 37,800 births) Pooled OR = 1.004 (0.994 to 1.014) I ² = 0.0%-No with p=0.424 4 days 2 studies (1 case-crossover with unreported birth and 1 time series with 37,800 births) Pooled OR = 1.003 (0.996 to 1.009) P ² = 0.0%-No with p=0.445 Short-term exposure of CO and stillbirth 0 day (event day) 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) P ² = 0.0%-No with p=0.524 I day 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) P ² = 0.0%-No with p=0.524 I day 3 studies (1 certorspective cohort and 1 time series with 261,175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) P ² = 3.4%-moderate with p=0.053 2 days 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9991 (0.9963 to 1.0033) P ² = 0.2%-moderate with p=0.033 3 days 3 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9994 (0.9963 to 1.0033) P ² = 0.2%-moderate with p=0.039 3 days 3 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9994 (0.9964 to 1.0033) P ² = 0.2%-moderate with p=0.039 3 days 3 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9994 (0.9964 to 1.0033) P ² = 0.2%-moderate with p=0.039 3 days 3 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9994 (0.9964 to 1.0033) P ² = 0.2%-moderate with p=0.035 4 days 4 studies (1 each retrospective cohort and time series: 261,175 births) 4 days 4 studies (1 each retrospective cohort and time series: 261,175 births) 4 days 4 studies (1 each retrospective cohort and 5 days 4 studies (1 each retrospective cohort and 5 days 4 studies (1 each retrospective cohort and 5 days 5 days 5 days 5 days 5 days 5 days 5				
unreported birth and 1 time series with 37,800 births) Pooled OR = 1.040 (0.994 to 1.014) I ² = 0.0%-No with $p=0.424$ 4 days 2 studies (1 case-crossover with unreported birth and 1 time series with 37,800 births) Pooled OR = 1.003 (0.996 to 1.009) I ² = 0.0%-No with $p=0.445$ Short-term exposure of CO and stillbirth 0 day (event day) 2 studies (1 retrospective cohort and 1 time series with 201.175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) I ² = 0.0%-No with $p=0.524$ <i>I day</i> 2 studies (1 retrospective cohort and 1 time series with 201.175 births) Pooled OR = 0.9981 (0.9065 to 1.0177) I ² = 73.4%-moderate with $p=0.033$ 2 days 3 studies (1 each retrospective cohort, time series and c.26a; crossover: 261.175 births with unreported for the case- crossover study) Pooled OR = 0.9981 (0.9963 to 1.0033) I ² = 69.2%-moderate with $p=0.033$ 3 days 2 studies (1 each retrospective cohort and time series: 261.175 births) Pooled OR = 0.9981 (0.9963 to 1.0033) I ² = 69.2%-moderate with $p=0.033$ 3 days 3 studies (1 each retrospective cohort and time series: 261.275 births) Pooled OR = 0.9981 (0.9963 to 1.0033) I ² = 69.2%-moderate with $p=0.033$ 3 days 3 studies (1 each retrospective cohort and time series: 261.175 births) Pooled OR = 0.9998 (0.9963 to 1.0033) I ² = 2.1%-Low with $p=0.235$ 4 days 4 studies (1 each retrospective cohort and time series: 261.175 births) Pooled OR = 0.9998 (0.9963 to 1.0033) I ³ = 2.1%-Low with $p=0.235$ 4 days 4 studies (1 each retrospective cohort and time series: 261.175 births) Pooled OR = 0.9998 (0.9963 to 1.0033) I ⁴ = 2.1%-Low with $p=0.235$ 4 days 4 days 4 studies (1 each retrospective cohort and time series: 261.175 births) 4 studies (1 each retrospective cohort and time series: 261.175 births) 4 studies (1 each retrospective cohort and time series: 261.175 births) 4 studies (1 each retrospective cohort and time series: 261.175 births) 4 studies (1 each retrospective cohort and time series: 261.175 birt			2 studies (1 case-crossover with	
37,800 births) Pooled OR = 1.004 (0.994 to 1.014) Pooled OR = 1.004 (0.994 to 1.014) Pooled OR = 1.004 (0.994 to 1.014) Pooled OR = 1.005 (0.996 to 1.009) Pooled OR = 1.030 (0.996 to 1.009) Pooled OR = 1.030 (0.996 to 1.009) Pooled OR = 1.030 (0.996 to 1.0017) Pooled OR = 0.0991 (0.9965 to 1.0177) Pooled OR = 0.0991 (0.9965 to 1.0177) Pooled OR = 0.0991 (0.9965 to 1.0177) Pooled OR = 0.0991 (0.9963 to 1.0033) Pooled OR = 0.9976 (0.9963 to 1.0003) Pooled OR = 0.9976 (0.9963 to 1.0003) Pooled OR = 0.99			unreported birth and 1 time series with	
Pooled OR = 1.040 (0.994 to 1.014) $I^{2} = 0.09^{k}$ —No with p=0.424 4 days 2 studies (1 case-crossover with unreported birth and 1 time series with 37.800 births) Pooled OR = 1.003 (0.996 to 1.009) $I^{2} = 0.09^{k}$ —No with p=0.445 Sbort-term exposure of CO and stillbirth 0 day (vent day) 2 studies (1 retrospective cohort and 1 time series with 20175 births) Pooled OR = 0.9991 (0.9965 to 1.017) $I^{2} = 0.09^{k}$ —No with p=0.524 1 day 2 studies (1 retrospective cohort and 1 time series with 20175 births) Pooled OR = 0.9891 (0.9065 to 1.0177) $I^{2} = 73.4\%$ —moderate with p=0.053 2 days 3 studies (1 cach retrospective cohort, time series and 20175 births) Pooled OR = 0.9981 (0.9963 to 1.0103) $I^{2} = 92.3\%$ —moderate with p=0.033 3 days 2 studies (1 cach retrospective cohort and time series: 261.175 births) Pooled OR = 0.9998 (0.9963 to 1.0033) $I^{2} = 92.3\%$ —moderate with p=0.039 3 days 2 studies (1 cach retrospective cohort and time series: 261.175 births) Pooled OR = 0.9998 (0.9963 to 1.0033) $I^{2} = 92.3\%$ —moderate with p=0.039 3 days 2 studies (1 cach retrospective cohort and time series: 261.175 births) Pooled OR = 0.9998 (0.9963 to 1.0033) $I^{2} = 2.1\%$ —thow with p=0.235 4 days 2 studies (1 cach retrospective cohort and time series: 261.175 births) Pooled OR = 0.09998 (0.9964 to 0.0003) $I^{2} = 2.1\%$ —thow with p=0.235 4 days			37,800 births)	
$l^2 = 0.0\%$ No with p=0.424 $4 days$ 2 studies (1 case-crossover with unreported birth and 1 time series with 37.800 births)Pooled OR = 1.003 (0.996 to 1.009)Pooled OR = 1.003 (0.996 to 1.009)Pi = 0.0%No with p=0.445Short-term exposure of CO and stillbirth 0 day (event day) 2 studies (1 retrospective cohort and 1 time series with 261,175 births)Pooled OR = 0.9991 (0.9965 to 1.0017) $l^2 = 0.0\%$ No with p=0.524 l day 2 studies (1 retrospective cohort and 1 time series with 261,175 births)Pooled OR = 0.9991 (0.9965 to 1.0177) $l^2 = 73.4\%$ moderate with p=0.053 2 days 3 studies (1 ach retrospective cohort, a studies (1 ach retrospective cohort and time series with p=0.033 2 days 2 studies (1 ach retrospective cohort and time series: 261.175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) $l^2 = 92.1\%$ -Low with p=0.235 4 days 2 studies (1 ach retrospective cohort and time series: 261.175 births)			Pooled $OR = 1.004$ (0.994 to 1.014)	
$\begin{cases} 4 \ days \\ 2 \ studies (1 \ case-crossover with unreported birth and 1 \ time series with 37,800 \ births) \\ Pooled OR = 1.003 (0.996 to 1.009) \\ Pooled OR = 1.003 (0.996 to 1.009) \\ Pooled OR = 0.099 (1.0096 to 1.0017) \\ Pooled OR = 0.9991 (0.9965 to 1.0177) \\ Pooled OR = 0.9991 (0.9963 to 1.0033) \\ 7 = 69.2\% - moderate with p=0.023 \\ 2 \ days \\ 3 \ studies (1 \ each retrospective cohort and 1 \\ time series and case-crossover: 511,175 \ births with unreported for the case-crossover study) \\ Pooled OR = 0.9998 (0.9963 to 1.0033) \\ Pooled OR = 0.9998 (0.9963 to 1.0033) \\ Pooled OR = 0.9998 (0.9964 to 1.0033) \\ Pooled OR = 0.99976 (0.9948 to 1.0003) \\ Pooled OR = 0.9976 (0.99$			$I^2 = 0.0\%$ No with p=0.424	
2 studies (1 case-crossover with unreported birth and 1 time series with 37,800 births) Pooled OR = 1.003 (0.996 to 1.009) $1^2 = 0.00\%$ -No with p=0.445 Short-term exposure of CO and stillbirth 0 day (event day) 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) $1^2 = 0.00\%$ -No with p=0.524 1 day 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9991 (0.9065 to 1.0177) $1^2 = 73,4\%$ -moderate with p=0.053 2 days 3 studies (1 retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover studies corsosyet = 261,175 births with unreported for the case- crossover studies (1 retrospective cohort, and time series: 261,175 births) Pooled OR = 0.9998 (0.9963 to 1.0033) $1^2 = 69,2\%$ -moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9997 (6.0948 to 1.0003) $1^2 = 29,1%$ -Low with p=0.235 4 days 2 studies (1 cach retrospective cohort and time series: 261,175 births)			4 days	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2 studies (1 case-crossover with	
37,800 births) Pooled OR = 1.003 (0.996 to 1.009) $l^2 = 0.0\%$ No with p=0.445 Short-term exposure of CO and stillbirth 0 day (event day) 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) $l^2 = 0.0\%$ No with p=0.524 1 day 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9891 (0.9065 to 1.0177) $l^2 = 73.4\%$ moderate with p=0.053 2 days 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) $l^2 = 69.2\%$ moderate with p=0.033 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9998 (0.9963 to 1.0033) $l^2 = 69.2\%$ moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) $l^2 = 29.1\%$ Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			unreported birth and 1 time series with	
Pooled OR $= 1.003 (0.996 to 1.009)$ $l^2 = 0.096No with p = 0.445Short-term exposure of CO andstillbirth0 \ day (event day)2 \ studies (1 retrospective cohort and 1time series with 261.175 births)Pooled OR = 0.9991 (0.9965 to 1.0017)l^2 = 0.096No \ with p = 0.524I day2 \ studies (1 retrospective cohort and 1time series with 261.175 births)Pooled OR = 0.9891 (0.9065 to 1.0177)l^2 = 73.4\% -moderate with p = 0.0532 \ days3 \ studies (1 each retrospective cohort,time series and case-crossover: 261.175births with unreported for the case-crossover study)Pooled OR = 0.9998 (0.9963 to 1.0033)l^2 = 69.29\%-moderate with p = 0.0393 \ days2 \ studies (1 each retrospective cohort andtime series: 361.175 births)Pooled OR = 0.9978 (0.9948 to 1.0033)l^2 = 69.29\%-moderate with p = 0.0393 \ days2 \ studies (1 each retrospective cohort andtime series: 361.175 births)Pooled OR = 0.9976 (0.9948 to 1.0003)l^2 = 0.9976 (0.9948 to 1.0003)l^2 = 0.9976 (0.9948 to 1.0003)l^2 = 0.910 -LOW \ with p = 0.2354 \ days$			37.800 births)	
$l^2 = 0.0\%$ No with $p=0.445$ Short-term exposure of CO andstillbirth $0 day (event day)$ 2 studies (1 retrospective cohort and 1time series with 261,175 births)Pooled CR = 0.9991 (0.9965 to 1.0017) $l^2 = 0.0\%$ No with $p=0.524$ $1 day$ 2 studies (1 retrospective cohort and 1time series with 261,175 births)Pooled CR = 0.9891 (0.9605 to 1.0177) $l^2 = 73.4\%$ moderate with $p=0.053$ $2 days$ 3 studies (1 each retrospective cohort,time series and case-crossover: 261,175births with unreported for the case-crossover study)Pooled CR = 0.9998 (0.9963 to 1.003) $l^2 = 69.2\%$ moderate with $p=0.033$ $3 days$ 2 studies (1 each retrospective cohort andtime series: 261,175 births)Pooled CR = 0.9998 (0.9963 to 1.003) $l^2 = 69.2\%$ moderate with $p=0.033$ $3 days$ 2 studies (1 each retrospective cohort andtime series: 261,175 births)Pooled CR = 0.9976 (0.9948 to 1.0003) $l^2 = 69.1\%$ mow with $p=0.235$ $4 days$ 2 studies (1 each retrospective cohort andtime series: 261,175 births)Pooled CR = 0.9976 (0.9948 to 1.0003) $l^2 = 69.1\%$ Low with $p=0.235$ $4 days$ 2 studies (1 each retrospective cohort andtime series: 261,175 births)Pooled CR = 0.175 births)Pooled IS = 0.175 births)Pooled IS = 0.175 births)Pooled IS = 0.175 births)Pooled IS = 0.175 births)<			Pooled $OR = 1.003 (0.996 to 1.009)$	
Short-term exposure of CO and stillbirth $0 day (event day)$ 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) $I^2 = 0.0\% - No with p=0.524$ $I day$ 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9891 (0.9605 to 1.0177) $I^2 = 73.4\%$ -moderate with p=0.053 $2 days$ 3 studies (1 each retrospective cohort, time series wids) $1^2 = 0.9998 (0.9963 to 1.0033)$ $I^2 = 69.2\%$ -moderate with p=0.039 $3 days$ 2 studies (1 each retrospective cohort, time series wids) $Pooled OR = 0.9998 (0.9963 to 1.0033)$ $I^2 = 69.2\%$ -moderate with p=0.039 $3 days$ 2 studies (1 each retrospective cohort and time series: 261,175 births) $Pooled OR = 0.9997 (0.9948 to 1.0003)$ $I^2 = 29.1\%$ -Low with p=0.235 $4 days$ 2 studies (1 each retrospective cohort and time series: 261,175 births)			$I^2 = 0.0\%$ No with p=0.445	
stillbirth $0 \ day \ (event \ day)$ $2 \ studies (1 \ retrospective \ cohort and 1 time series with 261,175 \ births) Pooled OR = 0.9991 (0.9965 to 1.0017) I2= 0.0%No with p=0.524 I \ day2 \ studies (1 \ retrospective \ cohort and 1 time series with 261,175 \ births) Pooled OR = 0.9891 (0.9605 to 1.0177) I2= 73,4%-moderate with p=0.053 2 \ days3 \ studies (1 \ each retrospective \ cohort, time series and \ case-crossover: 261,175 births with unreported for the \ case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) I2= 69.2%moderate with p=0.039 3 \ days2 \ studies (1 \ each retrospective \ cohort and time series: 261,175 \ births) Pooled OR = 0.99976 (0.9948 to 1.0003) I2= 29.1%Low with p=0.235 4 \ days2 \ studies (1 \ each retrospective \ cohort and time series: 261,175 \ births) Pooled OR = 0.93976 (0.9948 to 1.0003) I2= 29.1%Low with p=0.235 4 \ days2 \ studies (1 \ each retrospective \ cohort and time series: 261,175 \ births) Pooled OR = 0.93976 (0.9948 to 1.0003) I2= 29.1%Low with p=0.235 4 \ days$			Short-term exposure of CO and	
$\begin{array}{c} 0 \ day \ (event \ day) \\ 2 \ studies (1 \ retrospective \ cohort \ and 1 \\ time \ series \ with \ 261.175 \ births) \\ Pooled \ OR = 0.9991 \ (0.9965 \ to \ 1.0017) \\ I^2 = 0.0\% - No \ with \ p=0.524 \\ \hline I \ day \\ 2 \ studies (1 \ retrospective \ cohort \ and 1 \\ time \ series \ with \ 261.175 \ births) \\ Pooled \ OR = 0.9891 \ (0.9605 \ to \ 1.0177) \\ I^2 = 73.4\% - moderate \ with \ p=0.053 \\ 2 \ days \\ 3 \ studies (1 \ each \ retrospective \ cohort, \\ time \ series \ and \ case-crossover: \ 261.175 \\ births \ with unreported \ for \ the \ case-crossover: \ 261.175 \\ births \ with unreported \ for \ the \ case-crossover: \ 261.175 \\ births \ with unreported \ for \ the \ case-crossover: \ 261.175 \\ births \ with unreported \ for \ the \ case-crossover: \ 261.175 \\ births \ with \ unreported \ for \ the \ case-crossover: \ 261.175 \\ births \ with \ unreported \ for \ the \ case-crossover: \ 261.175 \\ births \ with \ unreported \ for \ the \ case-crossover: \ 261.175 \\ births \ with \ unreported \ for \ the \ case-crossover: \ 261.175 \\ births \ with \ unreported \ the \ 1.0033 \\ 3 \ days \\ 2 \ studies (1 \ each \ retrospective \ cohort \ and \ time \ series: \ 261.175 \ births) \\ Pooled \ OR \ = 0.99976 \ (0.9948 \ to \ 1.0003) \\ I^2 = 29.1\% - Low \ with \ p=0.235 \\ 4 \ days \\ 2 \ studies (1 \ each \ retrospective \ cohort \ and \ time \ series: \ 261.175 \ births) \\ Pooled \ OR \ = 0.9976 \ (0.9948 \ to \ 1.0003) \\ I^2 = 29.1\% - Low \ with \ p=0.235 \\ 4 \ days \\ 2 \ studies (1 \ each \ retrospective \ cohort \ and \ time \ series: \ 261.175 \ births) \\ Pooled \ OR \ = 0.9976 \ (0.9948 \ to \ 1.0003) \\ I^2 = 29.1\% - Low \ with \ p=0.235 \\ 4 \ days \\ 2 \ studies (1 \ each \ retrospective \ cohort \ and \ time \ series: \ 261.175 \ births) \\ Pooled \ OR \ = 0.9976 \ (0.9948 \ to \ 1.0003) \\ I^2 = 29.1\% - Low \ with \ p=0.235 \\ I^2 = 29.1\% + Low \ with \ p=0.235 \\ I^2 = 20.1\% + Low \ with \ p=0.235 \\ I^2 = 20.1\% + Low \ sorted $			stillbirth	
2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) I ² = 0.0%No with p=0.524 <i>I day</i> 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9891 (0.9605 to 1.0177) I ² = 73.4%moderate with p=0.053 <i>2 days</i> 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) I ² = 69.2%moderate with p=0.039 <i>3 days</i> 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.99976 (0.9948 to 1.0003) I ² = 29.1%Low with p=0.235 <i>4 days</i> 2 studies (1 each retrospective cohort and time series: 261,175 births)			0 day (event day)	
time series with 261,175 births) Pooled OR = 0.9991 (0.9965 to 1.0017) I^2 = 0.0%No with p=0.524 <i>I day</i> 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9891 (0.9605 to 1.0177) I^2 = 73.4%moderate with p=0.053 <i>2 days</i> 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) I^2 = 69.2%moderate with p=0.039 <i>3 days</i> 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) I^2 = 29.1%Low with p=0.235 <i>4 days</i> 2 studies (1 each retrospective cohort and time series: 261,175 births)			2 studies (1 retrospective cohort and 1	
Pooled OR = 0.9991 (0.9965 to 1.0017) l^2 = 0.0%No with p=0.524 <i>I day</i> 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9891 (0.9605 to 1.0177) l^2 = 73.4%moderate with p=0.053 <i>2 days</i> 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) l^2 = 69.2%moderate with p=0.039 <i>3 days</i> 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) l^2 = 29.1%Low with p=0.235 <i>4 days</i> 2 studies (1 each retrospective cohort and time series: 261,175 births)			time series with 261,175 births)	
$I^{2}=0.0\%-No \text{ with } p=0.524$ $I day$ $2 \text{ studies (1 retrospective cohort and 1 time series with 261,175 births)}$ $Pooled OR = 0.9891 (0.9605 \text{ to } 1.0177)$ $I^{2}=73.4\%-\text{-moderate with } p=0.053$ $2 days$ $3 \text{ studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case-crossover study)$ $Pooled OR = 0.9998 (0.9963 \text{ to } 1.0033)$ $I^{2}=69.2\%-\text{-moderate with } p=0.039$ $3 days$ $2 \text{ studies (1 each retrospective cohort and time series: 261,175 births)}$ $Pooled OR = 0.99976 (0.9948 \text{ to } 1.0003)$ $I^{2}=29.1\%-Low \text{ with } p=0.235$ $4 days$ $2 \text{ studies (1 each retrospective cohort and time series: 261,175 births)}$			Pooled $OR = 0.9991 (0.9965 to 1.0017)$	
$I = 0.005 \text{ fm} \text{ fm} \text{ fm} \text{ potent}$ $I = day$ $2 \text{ studies (1 retrospective cohort and 1 time series with 261,175 births)}$ Pooled OR = 0.9891 (0.9605 to 1.0177) $I^2 = 73.4\% \text{moderate with p=0.053}$ $2 = days$ $3 \text{ studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case-crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) I^2 = 69.2\% \text{moderate with p=0.039} 3 = days 2 \text{ studies (1 each retrospective cohort and time series: 261,175 births)} Pooled OR = 0.9976 (0.9948 to 1.0003) I^2 = 29.1\% \text{Low with p=0.235} 4 = days 2 \text{ studies (1 each retrospective cohort and time series: 261,175 births)}$			$I^2 = 0.0\%$ No with p=0.524	
l l day 2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9891 (0.9605 to 1.0177) 1^2 = 73.4%moderate with p=0.053 2 l $days$ 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) 1^2 = 69.2%moderate with p=0.039 3 $days$ 2 3 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) 1^2 = 29.1%Low with p=0.235 4 $days$			1 0.0% 100 min p 0.021	
2 studies (1 retrospective cohort and 1 time series with 261,175 births) Pooled OR = 0.9891 (0.9605 to 1.0177) 1^2 = 73.4%moderate with p=0.053 2 days 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) 1^2 = 69.2%moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) 1^2 = 29.1%Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			1 day	
time series with $261,175$ births) Pooled OR = 0.9891 (0.9605 to 1.0177) $I^2 = 73.4\%$ moderate with p=0.053 2 days 3 studies (1 each retrospective cohort, time series and case-crossover: $261,175$ births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) $I^2 = 69.2\%$ moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: $261,175$ births) Pooled OR = 0.9976 (0.9948 to 1.0003) $I^2 = 29.1\%$ Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: $261,175$ births)			2 studies (1 retrospective cohort and 1	
Pooled OR = 0.9891 (0.9605 to 1.0177) I^2 = 73.4%moderate with p=0.053 2 days 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) I^2 = 69.2%moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) I^2 = 29.1%Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			time series with 261.175 births)	
$I^{2} = 73.4\% - \text{moderate with p=0.053}$ $2 days$ $3 \text{studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case-crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) I^{2} = 69.2\% - \text{moderate with p=0.039}$ $3 days$ $2 \text{studies (1 each retrospective cohort and time series: 261,175 births)}$ Pooled OR = 0.9976 (0.9948 to 1.0003) I^{2} = 29.1\% - \text{Low with p=0.235} $4 days$ $2 \text{studies (1 each retrospective cohort and time series: 261,175 births)}$			Pooled $OR = 0.9891 (0.9605 \text{ to } 1.0177)$	
2 days 3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) $I^2 = 69.2\%$ moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) $I^2 = 29.1\%$ Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.1003 $I^2 = 29.1\%$ Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			$I^2 = 73.4\%$ moderate with p=0.053	
3 studies (1 each retrospective cohort, time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) $I^2 = 69.2\%$ moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) $I^2 = 29.1\%$ Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			2 days	
time series and case-crossover: 261,175 births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) I^2 = 69.2%moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) I^2 = 29.1%Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			3 studies (1 each retrospective cohort.	
births with unreported for the case- crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) $I^2 = 69.2\%$ moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) $I^2 = 29.1\%$ Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			time series and case-crossover: 261,175	
crossover study) Pooled OR = 0.9998 (0.9963 to 1.0033) $I^2 = 69.2\%$ moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) $I^2 = 29.1\%$ Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			births with unreported for the case-	
Pooled OR = 0.9998 (0.9963 to 1.0033) I^2 = 69.2%moderate with p=0.039 3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) I^2 = 29.1%Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			crossover study)	
$I^{2}=69.2\%-\text{moderate with p=0.039}$ 3 days $2 \text{ studies (1 each retrospective cohort and time series: 261,175 births)}$ Pooled OR = 0.9976 (0.9948 to 1.0003) $I^{2}=29.1\%-\text{Low with p=0.235}$ 4 days $2 \text{ studies (1 each retrospective cohort and time series: 261,175 births)}$			Pooled OR = 0.9998 (0.9963 to 1.0033)	
3 days 2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) I ² = 29.1%Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			$I^2 = 69.2\%$ moderate with p=0.039	
2 studies (1 each retrospective cohort and time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) I^2 = 29.1%Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			3 davs	
time series: 261,175 births) Pooled OR = 0.9976 (0.9948 to 1.0003) I^2 = 29.1%Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261,175 births)			2 studies (1 each retrospective cohort and	
Pooled OR = 0.9976 (0.9948 to 1.0003) $I^2 = 29.1\%$ Low with p= 0.235 4 days 2 studies (1 each retrospective cohort and time series: 261.175 births)			time series: 261.175 births)	
I ² = 29.1%Low with p=0.235 4 days 2 studies (1 each retrospective cohort and time series: 261.175 births)			Pooled $OR = 0.9976 (0.9948 to 1.0003)$	
4 days 2 studies (1 each retrospective cohort and time series: 261.175 births)			$I^2 = 29.1\%$ Low with p=0.235	
2 studies (1 each retrospective cohort and time series: 261.175 births)			4 days	
time series: 261.175 births)			2 studies (1 each retrospective cohort and	
			time series: 261,175 births)	

		Pooled $OR = 1.0003 (0.9999 \text{ to } 1.0008)$	
		$I^2 = 0.0\%$ No with p=0.574	
		5 days	
		2 studies (1 each retrospective cohort and	
		time series: 261,175 births)	
		Pooled OR = 0.9993 (0.9966 to 1.0019)	
		$I^2 = 0.0\%$ No with p=0.639	
		6 days	
		2 studies (1 each retrospective cohort and	
		time series: 261,175 births)	
		Pooled $OR = 1.0002 (0.9978 to 1.0026)$	
		$I^2 = 0.0\%$ No with p=0.461	
		r	
		Short-term exposure of O3 and	
		stillbirth	
		0 day (event day)	
		2 studies (1 retrospective and 1 time	
		series: 261.175 births)	
		Pooled $OR = 0.999 (0.997 \text{ to } 1.002)$	
		$I^2 = 45.8\%$ moderate with p=0.174	
		r r r	
		1 day	
		3 studies (1 each retrospective cohort,	
		time series, and case-crossover; 619.541	
		births)	
		Pooled $OR = 0.999 (0.996 \text{ to } 1.002)$	
		$I^2 = 0.0\%$ No with p=0.466	
		r	
		2 days	
		3 studies (1 each retrospective cohort.	
		time series, and case-crossover: 619.541	
		births)	
		Pooled $OR = 1.011 (0.982 \text{ to } 1.039)$	
		$I^2=53.5$ %moderate with p=0.116	
		r r	
		3 days	
		3 studies (1 each retrospective cohort.	
		time series, and case-crossover: 619.541	
		births)	
		· · · · · · · · · · · · · · · · · · ·	

		Pooled OR = 1.013 (0.987 to 1.040)		
		$I^2=50.1$ %moderate with p=0.136		
		4 days		
		4 studies (1 each retrospective cohort and		
		time series, and 2 case-crossover;		
		619,541 births and unreported for one		
		study)		
		Pooled $OR = 1.002 (1.001 \text{ to } 1.004)$		
		I ² =32.7 %moderate with p=0.216		
		5 days		
		3 studies (1 each retrospective cohort,		
		time series, and case-crossover; 619,541		
		births)		
		Pooled OR = $1.020 (0.976 \text{ to } 1.064)$		
		I ² =77.5 %moderate with p=0.012		
		6 days		
		3 studies (1 each retrospective cohort,		
		time series, and case-crossover; 619,541		
		births)		
		Pooled OR = $1.010 (0.971 \text{ to } 1.049)$		
		I ² =74.2 %moderate with p=0.021		
		Leave-out sensitivity analyses		
		Pooled estimates of long-term NO2		
		exposure and stillbirth were influenced		
		by the findings of Hwang et al.'s study."		
		Other sensitivity analyses did not		
		substantially change the pooled estimates		
		of long-term PM2.5, PM10, SO2, CO,		
		and O3 exposure on the incidence of		
		stillbirth.'		
		For short-term exposure, "Sensitivity		
		analyses showed that the pooled		
		estimates of lag day 2 for CO exposure		
		and stillbirth were influenced by the		
		findings of Mendola et al.'s study" with		
		no changes in pooled estimates for		
		PM2.5,SO2, and O3 exposures.		

7. Uwak (Uwak et	PM2.5,	BW	IA. Only 'low' or 'probably	IB. Only 'low' or 'probably low' RoB	'Public health	Limitations
al., 2021)	PM10, and		low' RoB studies for PM2.5	studies for PM2.5 and PM10.	interventions to	'Reliance on expert
25/01/2021 [13,	PM2.5-10		and PM10. But PM2.5-10	But PM2.5-10 has only 'high' or	address infant	evaluation in the
All USA]			has only 'high' or probably	probably high' RoB studies.	birth weight	process used for the
-			high' RoB studies.		suppression from	risk of bias, quality
			BW change per 10 µg/m3	BW change per 10 µg/m3 increase in	PM may have a	and strength ratings.
			increase in PM2.5	PM2.5	substantial impact	However, this
			Entire pregnancy	By trimester	on infant health.	limitation was
			15 studies (13 retrospective	1 st trimester	especially those at	overcome by creating a
			and 2 prospective	11 retrospective cohort studies:	high risk for	diverse team of experts
			cohorts:15.424.198 births)	3.547.223 births)	exposure. Future	from relevant fields to
			RE pooled beta =	RE pooled beta =	research and	participate in this
			-27.55 (-48.45 to -6.65)	-6.50 (-15.07 to 2.07)	implementation	process
			FE pooled beta	FE pooled beta	strategies are	The rating of the
			=-15.58(-16.07 to -15.09)	=-4.97(-6.38 to -3.56)	recommended to	quality of evidence
			$I^2 = 94\%$ high	$I^2 = 87\%$ high	help optimize	across studies was
			with $p < 0.01$	with $p < 0.01$	interventions and	dependent on the
			I IIII	r	policies to	available data. For
			BW change per 10 µg/m3	2^{nd} trimester	mitigate infant	instance, PM10 and
			increase in PM10	11 retrospective cohort studies:	health effects.'	PM2.5 are typically
			Entire pregnancy	3.547.223 births)		reported separately.
			8 studies (5 retrospective and	RE pooled beta =		but also likely occur in
			3 prospective cohorts;	-5.69 (-10.58 to -0.79)		combination. Thus,
			2.679.928 births)	FE pooled beta		models that consider
			RE pooled beta =	=-5.22 (-6.70 to -3.73)		multi-pollutant
			-8.65 (-16.83 to -0.48)	$I^2 = 68\%$ moderate		exposures may better
			FE pooled beta	with p<0.01		represent gestational
			=-7.34 (-9.46 to -5.23)	L		PM exposure.
			$I^2 = 84\%$ high	3 rd trimester		Most studies fail to
			with $p < 0.01$	12 studies (11 retrospective and 1		consider secondary/co-
			-	prospective cohort; 3,556,290 births)		exposures like
			BW change per 10 µg/m3	RE pooled beta =		ultrafine particulate
			increase in PM2.5-10 (coarse	-10.67 (-20.91 to -0.43)		matter, gas phase
			PM)	FE pooled beta		pollutants, or heat,
			Entire pregnancy	=-5.09 (-6.61 to -3.57)		which can also affect
			5 studies (4 retrospective and	I ² = 84%high		birth weight.
			1 prospective cohorts;	with p<0.01		Analyses did not
			12,829,812 births)	-		include enough studies
			RE pooled beta =			L C

	-8.81 (-10.32 to -7.31)	BW change per 10 μg/m3 increase in	to evaluate weekly
	FE pooled beta	PM10	exposure.
	=-8.61 (-9.41 to -7.81)	By trimester	There is also the
	$I^2 = 0\%$ No	1 st trimester	potential for additional
	with p=0.54	6 studies (3 each retrospective and	unmeasured
		prospective cohorts; 757,843 births)	confounding.'
	IIA. All studies despite RoB	RE pooled beta =	Strengths
	rating	3.22 (-3.13 to 9.58)	'By publishing a pre-
		FE pooled beta	specified protocol and
	BW change per 10 µg/m3	=3.54 (-0.55 to 7.63)	employing two
	increase in PM2.5	$I^2 = 14\%$ low	independent reviewers
	Entire pregnancy	with $p=0.32$	for each study, our
	28 studies (25 retrospective		analysis includes a
	and 3 prospective cohorts;	2 nd trimester	degree of transparency
	44,516,228 births)	6 studies (3 each retrospective and	and robustness that is
	RE pooled beta =	prospective cohorts; 757,843 births)	absent when using less
	-23.47 (-44.25 to -2.69)	RE pooled beta =	structured approaches.
	FE pooled beta	-3.37 (-8.22 to 1.48)	A major strength of
	=-13.49 (-13.94 to -13.04)	FE pooled beta	our study is the
	$I^2 = 98\%$ high	=-3.37 (-7.96 to 1.23)	transparency and
	with $p < 0.01$	$I^2 = 0\% - No$	thoroughness
	1	with $p=0.66$	of the Navigation
	BW change per 10 µg/m3	1	Guide systematic
	increase in PM10	3 rd trimester	review process, which
	Entire pregnancy	7 studies (3 retrospective and 4	incorporates the
	21 studies (15 retrospective	prospective cohorts; 766,910 births)	GRADE system for
	and 6 prospective cohorts:	RE pooled beta =	assessing the quality of
	10.200.344 births)	-6.57(-10.66 to -2.48)	synthesized human
	RE pooled beta =	FE pooled beta	evidence in
	-5.20 (-10.95 to 0.55)	=-5.74 (-9.68 to -1.80)	environmental health
	FE pooled beta	$I^2 = 0\% - No$	research in the absence
	=-3.62(-4.32 to -2.92)	with $p=0.68$	of randomized clinical
	$I^2 = 95\%$ high	r f f f f f f f f f f f f f f f f f f f	trials.'
	with $p < 0.01$	BW change per 10 µg/m3 increase in	
	E	PM2.5-10	
	Publication bias	By trimester	
	PM2.5, PM10:	1 st trimester	
	Begg's and Egger's tests:	3 retrospective cohorts: 12.349.007	
		births)	
	1	· · · · · · · · · · · · · · · · · · ·	

No evidence of publication	RE pooled beta =	
bias (all p-values >0.05) was	-2.70 (-3.90 to -1.49)	
found as assessed using funnel	FE pooled beta	
plots and tests for asymmetry.	=-2.70 (-3.48 to -1.91)	
	I ² = 0%No	
PM2.5-10: Insufficient studies	with $p=0.62$	
for publication test.	L	
•	2 nd trimester	
	3 retrospective cohorts; 12,349,007	
Quality of body of evidence	births)	
according to Navigation	RE pooled beta =	
guide methods	-2.90 (-10.04 to 4.23)	
PM2.5-BW reduction (results	FE pooled beta	
from 'low' or 'probably low'	=-2.80(-3.64 to -1.96)	
RoB studies)	$I^2 = 70\%$ moderate	
1 st trim: very low	with p=0.03	
Entire pregnancy, 2 nd and 3 rd	L	
trimesters: low	3 rd trimester	
PM10-BW	4 retrospective cohorts; 12,755,634	
(results from 'low' or	births)	
'probably low' RoB studies):	RE pooled beta =	
1 st and 2 nd trimesters: low	-4.93 (-10.82 to 0.96)	
3 rd trimester and entire	FE pooled beta	
pregnancy: moderate	=-3.72 (-4.50 to -2.94)	
PM2.5-10/BW	$I^2 = 76\%$ high	
1 st , 2 nd , and 3 rd trimesters: very	with $p < 0.01$	
low	L	
Entire pregnancy: low	IIB. All studies despite RoB rating	
	BW change per 10 µg/m3 increase in	
Strength of evidence of	PM2.5	
adverse effect	By trimester	
PM2.5-BW reduction:	1 st trimester	
"inadequate evidence" for all	18 retrospective cohorts; 28,587,814	
exposure windows.	births)	
PM10-BW reduction	RE pooled beta =	
1 st and 2 nd trimesters:	-5.43 (-10.28 to -0.59)	
"inadequate evidence"	FE pooled beta	
3 rd trim and entire pregnancy:	=-3.75 (-4.53 to -2.97)	
"limited evidence"	I ² = 87%high	

	1	DMO = 10/DW = 1	'(1,, (0, 0, 1	
		PM2.3-10/BW reduction:	with p<0.01	
		"inadequate evidence" for all		
		exposure windows.	2 nd trimester	
			18 retrospective cohorts; 28,869,530	
			births)	
			RE pooled beta =	
			-5.65(-9.27 to -2.03)	
			FF pooled beta	
			-3.67(4.49 to 2.84)	
			$I_{2}^{2} = 840$ high	
			I = 0470-ingi	
			with p<0.01	
			ard	
			3 rd trimester	
			20 studies (19 retrospective and 1	
			prospective cohorts; 29,003,508 births)	
			RE pooled beta =	
			-7.52 (-13.54 to -1.51)	
			FE pooled beta	
			=-1.37 (-2.20 to -0.54)	
			$I^2 = 92\%$ high	
			with $p < 0.01$	
			rear in the second s	
			BW change per 10 µg/m3 increase in	
			PM10	
			Ry trimostor	
			1st trimostor	
			1 in unester	
			21 (15 retrospective, 5 prospective	
			conorts, 1 cross-sectional; 5,822,040	
			births)	
			RE pooled beta =	
			-3.02 (-6.18 to 0.14)	
			FE pooled beta	
			=-2.98 (-3.68 to -2.29)	
			I ² = 88%high	
			with p<0.01	
			-	
			2 nd trimester	
--	------			
21 (15 retrospective, 5 prospective				
cohorts, 1 cross-sectional: 5.822.040				
hirths)				
RE pooled beta =				
-3.48(-6.23 to -0.73)				
-5.46 (-0.25 to -0.75)				
$\frac{1}{1} \int \frac{1}{2} \int \frac{1}$				
= -1.00(-2.3410-0.98)				
12= 88%high				
with p<0.01				
3rd trimester				
24 (16 retrospective, 6 prospective				
cohorts, 2 cross-sectional; 6,259,325				
births)				
RE pooled beta =				
-2.08 (-5.01 to -0.85)				
FE pooled beta				
= -1.27 (-1.95 to -0.59)				
$I^2 - 90\%$ high				
r = 50.0 mgn with $p < 0.01$				
with p<0.01				
BW change per 10 µg/m3 increase in				
DW change per 10 µg/ms increase in DW2 5 for ontire programmy (all				
atudios recordloss of DoD) by athrisis				
studies regardless of Kob) by ennicuy				
White				
/ studies (6 retrospective and 1				
prospective cohorts;8,893,539 births)				
RE pooled beta =				
-32.00 (-60.03 to -3.98)				
FE pooled beta				
=-7.74 (-8.71 to -6.78)				
I ² = 95%high				
with p<0.01				
Black				
5 retrospective studies; 8,867,779 births.				
RE pooled beta =				
-27.10 (-81.57 to 27.37)				
FE pooled beta				

		= -11.18 (-12.48 to -9.88)	
		$I^2 = 93\%$ high	
		with $\mathbf{p} < 0.01$	
		with p<0.01	
		Hispanic	
		5 retrospective cohort studies; 8,525,968	
		births.	
		RE pooled beta =	
		0.62(22.16 to 21.80)	
		-0.03(-23.10(0)21.09)	
		FE pooled beta	
		= -6.88 (-7.67 to -6.09)	
		$I^2 = 85\%$ high	
		with $p < 0.01$	
		<u>r</u>	
		BW change per 10 µg/m3 increase in	
		DW change per 10 µg/m3 increase in DM10 for orting program or (all stradies	
		PWITO for entire pregnancy (an studies	
		regardless of RoB) by <i>ethnicity</i>	
		White	
		4 studies	
		(3 retrospective and 1 prospective	
		cohorts: 5,461,652 births)	
		RE pooled beta -	
		RE pooled beta = 0.000 (11.71 + 0.000)	
		-9.89 (-11./1 to -8.00)	
		FE pooled beta	
		= -9.89 (-11.11 to -8.66)	
		I ² = 0%No	
		with $p=0.47$	
		<u>r</u>	
		Plack	
		2 meteore of the set of disc	
		5 retrospective conort studies	
		; 5,452,585 births)	
		RE pooled beta =	
		3.47 (-64.74 to 71.67)	
		FE pooled beta	
		= -11.60 (-13.95 to -9.25)	
		$I^2 - 97\%$ high	
		r = 27.0 mgn	
		wiui p<0.01	
		Hispanic	

		2 retrospective cohort studies; 5,094,081	
		births)	
		RE pooled beta –	
		0.13(73.70 to 73.45)	
		-0.15 (-75.70 to 75.45)	
		FE pooled beta	
		= -4.96 (-6.12 to -3.80)	
		I ² = 96%high	
		with p<0.01	
		BW change per 10 µg/m3 increase in	
		PM2.5 for entire pregnancy (all	
		studies regardless of RoB)	
		By spatial scale of exposure assessment	
		By spatial scale of exposite assessment $S_{\rm exp}(z)$	
		Small ((<skiii moment)<="" proximity="" td="" to=""><td></td></skiii>	
		9 studies (6 retrospective and 3	
		prospective cohorts; 5,122,282 births)	
		RE pooled beta =	
		-20.3 (-34.87 to -5.18)	
		FE pooled beta	
		= -12.64 (-15.53 to -9.74)	
		$I^2 = 83\%$ high	
		with $p < 0.01$	
		with p <0.01	
		Madium (conque treat zin code nostel	
		<i>Medium</i> (census tract, zip code, postar	
		code, nearest monitor, <10 km and	
		>/=5km)	
		9 retrospective cohort studies;	
		15,898,061 births)	
		RE pooled beta =	
		-45.07 (-113.16 to 23.02)	
		FE pooled beta	
		= -15.30 (-15.79 to -14.82)	
		$I^2 = 98\%$ high	
		with $p = 0.01$	
		wim h/0.01	
		I_{area} (at the situ or county level or $1/2$	
		Large ((at the city of county level of $>/=$	
		10 km)	
		12 studies retrospective cohort studies;	
		27,441,062 births)	

		RE pooled beta =	
		-9 69 (-24 98 to -5 60)	
		FE pooled beta	
		= 6.35(7.30 to 5.40)	
		$I^2 = 0.55 (-7.50 \text{ to } -5.40)$	
		1 = 9/% - nign	
		with p<0.01	
		NB : Trimester specific results for spatial	
		scales were also reported to explore	
		heterogeneity and most had high	
		heterogeneity.	
		BW change per 10 µg/m3 increase in	
		PM10 for entire pregnancy (all studies	
		regardless of RoB)	
		Py spatial scale of exposure assessment	
		By spatial scale of exposure assessment	
		$\frac{10}{10} + \frac{11}{10} = \frac{1}{10}$	
		10 studies (4 retrospective and 6	
		prospective cohorts; 4,193,340 births)	
		RE pooled beta =	
		-10.23 (-17.96 to -2.51)	
		FE pooled beta	
		= -4.56 (-5.50 to -3.61)	
		$I^2 = 96\%$ high	
		with $p < 0.01$	
		Medium	
		6 retrospective cohorts: 3 172 207 hirths)	
		BE pooled hate -	
		$\frac{17}{2} \frac{99}{12} \frac{17}{2} \frac{99}{12} \frac{17}{2} \frac{92}{2} \frac{17}{2} \frac{17}{2} \frac{92}{2} \frac{17}{2} \frac{17}{2} \frac{92}{2} \frac{17}{2} \frac{17}{2} \frac{17}{2} \frac{92}{2} \frac{17}{2} \frac{17}{2}$	
		-0.45 (-17.88 to 17.05)	
		FE pooled beta	
		= -3.29 (-5.10 to -1.48)	
		I ² = 96%high	
		with p<0.01	
		Large	
		8 studies (7 retrospective and 1	
		prospective cohort studies: 6.781 000	
		hirths)	
		DE pooled beta -	
		$A = 25 (10.52 \pm 2.04)$	
		-4.25 (-10.55 to 2.04)	

		FE pooled beta = -6.11 (-6.69 to -5.54) $I^2 = 94\%$ high with p<0.01 NB : Trimester specific results for spatial scales were also reported to explore between and most had bigh	
		heterogeneity and most had high heterogeneity. BW change per 10 μg/m3 increase in PM2.5 for entire pregnancy (all studies regardless of RoB)	
		By geographical settings America 20 retrospective cohort studies: 41,547,647 births) RE pooled beta = 27.26 (56.09 + 2.26)	
		FE pooled beta = -14.05 (-14.52 to -13.59) I ² = 98%high with p<0.01	
		Asia 5 retrospective cohort studies: 2,884,855 births) RE pooled beta = -6.47 (-15.34 to 2.39) FE pooled beta	
		= -5.09 (-6.87 to -3.30) I^2 = 69%moderate with p=0.01 <i>Europe</i> 2 meansative schemt studies: 82.726	
		births) RE pooled beta = -17.35 (-26.54 to -8.17) FE pooled beta	

		= -17.35 (-29.74 to -4.97)		
		$I^2 - 0\% - N_0$		
		with $p=0.89$		
		NB : Trimester specific results for		
		geographical sattings were also reported		
		geographical settings were also reported		
		to explore heterogeneity and all had high		
		heterogeneity.		
		BW change per 10 µg/m3 increase in		
		Byv change per 10 µg/m5 increase m		
		PM10 for entire pregnancy (all studies		
		regardless of RoB)		
		Ry geographical settings		
		Amonio a		
		America		
		8 retrospective cohort studies: 6,718,959		
		births)		
		RE pooled beta =		
		2.19(14.99 to 10.52)		
		-2.18 (-14.88 10 10.32)		
		FE pooled beta		
		= -4.69 (-5.83 to -3.54)		
		$I^2 - 96\%$ high		
		r = 9070 mgn		
		with p<0.01		
		Europe		
		8 studies (3 retrospective and 5		
		o studies (5 redospective and 5		
		prospective conort. 708,108 birtils)		
		RE pooled beta =		
		-14.55 (-23.52 to -5.58)		
		FE pooled beta		
		-14.02(17.12 to 12.72)		
		= -14.95 (-1/.15 to -12.75)		
		$1^{2} = 89\%$ high		
		with $p < 0.01$		
		·		
		Asia		
		Asia		
		5 studies (4 retrospective and 1		
		prospective cohort: 2,773,217 births)		
		RE pooled beta =		
		2.07 (6.00 to 2.76)		
		-2.07 (-0.90 to 2.70)		
		FE pooled beta		

				= -0.67 (-1.63 to 0.30)		
				I ² = 88%high		
				with p<0.01		
				1		
				NB : Trimester specific results for		
				geographical settings were also reported		
				to explore heterogeneity and some had		
				high heterogeneity		
				ingh heterogeneity.		
				Leave-one-out sensitivity analyses		
				PM2 5 : No significant difference but for		
				the second trimester, beterogeneity is		
				avalation of the single study (Hyder at al		
				2014) with a large affect size Omitting		
				2014) with a large effect size Offitting		
				this study reduced 12 from 68% to 40%		
				and reduced the meta-estimate from –		
				5.69 g (-10.58, -0.79) to - 3.81 g		
				$(-7.88, 0.25)^{2}$.		
				PM10:		
				No significant difference instance but for		
				the entire pregnancy, heterogeneity was		
				explained largely by a single study (Geer		
				et al. 2012) that reported a positive		
				association, whereas all the other studies		
				consistently showed an inverse		
				association. Omitting this study reduced		
				the I^2 from 84% to 0%, and changed the		
				meta-estimate from -8.65 g (-16.83 to		
				-0.48) to - 11.22 g (-13.17 to -9.26).		
				PM2.5-10: Heterogeneity was explained		
				in 2 nd and 3 rd trimester by omitting single		
				study but no difference for 1 st trimester		
				and entire pregnancy.		
8. Simonici	PM2.5.	BW/LBW.	PTB with	BW reduction per 10 µg/m3 increase	'Our meta-	Limitations
(Simoncic et al.,	PM10, NO2	PTB. SGA	PM2.5 : 2 cohort studies	in NO2	analysis results	'The features of the
2020)	- ,	,	(74,061 births).	1 st trimester	provide pooled-	studies described
03/11/2020			2 studies for whole pregnancy:	4 cohort studies; 3,435 births.	risk for 5	above—such as studv
[4. All France]			no association in one and non-	FE pooled beta =	combinations of	population, study
L ,J				-13.63 (-28.03 to 0.77)	air pollutant and	design, sample size.

	significant increased risk in	I ² = 35.8% low	birth weight and	the classification and
	the other.	with p=0.197	PTB, which may	definition of infant
	1 study (71493 births)	2 nd trimester	provide a coherent	death, exposure
	reported for both 1 st and 2 nd	4 cohort studies; 3,435 births.	exposure-response	assessment, difference
	trimesters and found non-	FE pooled beta =	function for	between interquartile
	significant decreased risk for	-8.35 (-23.04 to 6.34)	environmental	(IQR) used to assess
	both trimesters.	$I^2 = 25.8\%$ - low with p=0.257	health risk	the increase of
	PM10: 2 cohort studies	3 rd trimester	assessments in	exposure and
	(74,061 births)	5 cohort studies; 12,502 births.	European	confounding factors—
	2 for whole pregnancy; both	FE pooled beta =	countries.'	could all,
	found non-significant	-1.73 (-12.83 to 9.36)		independently or in
	decreased risk.	$I^2 = 31.5\%$ - low with p=0.212		combination, affect the
	1 study (71, 493 births)	*		quality of each study
	reported on both 1 st and 2 nd	Leave-one-out sensitivity		itself and, also, their
	trimesters and found non-	The effect estimates of each $10 \mu g/m3$		comparison in our
	significant decreased risk for	increase in NO2 exposure during the		systematic review.
	both trimesters.	entire pregnancy on birth weight showed		Some factors may
	NO2 : 4 cohort studies (80,458	no significant change by removing one		overestimate while
	births) examined whole	single study, suggesting that the		other one may
	pregnancy or trimester	combined results were relatively stable		underestimate the risk
	specific exposure periods.	and reliable. This is except for the		of birth outcome.
	4 reported for whole	sensitivity analysis of the association		Additionally the
	pregnancy; 1 found significant	between birth weight and NO2 exposure		search could suffer
	increased risk, 1 found non-	during the third trimester of pregnancy,		from study selection
	significant increased risk, and	where the omission of the study of		biases. Non-English
	2 found non-significant	Clemente et al. (2016) induced a reverse		publications of
	decreased risk.	of the association that was hitherto		relevant articles may
	3 reported for 1 st trimester; 1	negative; however, the result was still not		have been ignored.
	each found significant	statistically significant (beta = $2.5, 95\%$		Furthermore, we
	increased risk, non-significant	CI = (-9.18, 14.30)). Small variations		cannot exclude the
	increased risk, and non-	were visible, and while point combined		possibility that our
	significant decreased risk.	estimates were rather similar, the		systematic review
	3 reported for 2^{nd} trimester; 2	precision level of the confidence interval		could be impacted by
	found non-significant	decreased.		publication bias.
	increased risk, and 1 found			Indeed, unpublished
	non-significant decreased risk.			results (including grey
	2 reported for 3 rd trimester;			literature and results
	both found non-significant			not statistically
	increased risk.			significant, which are

	LBW		not available) may
	NO2 : 3 cohort studies (84,604		influence our meta-
	births) examined whole		analysis findings
	pregnancy or trimester-		towards the statistical
	specific.		significance of the risk
	3 reported for whole		estimates.'
	pregnancy; all found		
	significant increased risk.		
	2 for 1^{st} trimester: 1 each		
	found non-significant		
	increased and decreased risks.		
	2 for 2 nd trimester: 1 each		
	found non-significant		
	increased and decreased risks.		
	2 for 3 rd trimester: both found		
	non-significant increased		
	risks.		
	PM2.5: 2 cohort studies		
	(80616 births).		
	The 2 for whole pregnancy; 1		
	found significant increased		
	and the other non-significant		
	increased risks.		
	1 study (6,438 births) reported		
	for all trimesters and found		
	non-significant increased risk		
	for 1^{st} and 2^{nd} but two-fold		
	significant increased risk for		
	3 rd trimester (2.00; CI: 1.10 to		
	3.62)		
	PM10 : 2 cohort studies		
	(80616 births)		
	2 for whole pregnancy; both		
	found non-significant		
	increased risks.		
	1 study (6438 births) for all		
	trimesters and found no		

	association, non-significant		
	increased and significant		
	increased risks for 1 st , 2 nd , 3 rd		
	trimesters respectively		
	SCA		
	NO2: 2 ashert studies (1.201		
	$\mathbf{NO2}$: 2 conort studies (1,291		
	births) examined both whole		
	pregnancy and trimester-		
	specific periods		
	2 for whole pregnancy; 1 each		
	found non-significant		
	increased and decreased risks.		
	2 for 1 st trimester: 1 each		
	found non-significant		
	increased and decreased risks.		
	2 for 2 nd trimester: 1 each		
	found significant increased		
	and non-significant deepered		
	and non-significant decreased		
	risks.		
	2 for 3 rd trimester: 1 each		
	found non-significant		
	increased and decreased risks.		
	Other several different		
	indicators for daily exposures		
	as lag days, weeks and months		
	were also evaluated in some		
	studies with diverse findings.		
	"Among studies focusing on		
	the 1st trimester of exposure		
	the risk of adverse birth		
	outcomes ranges from 0.78 to		
	1 67 with confidence interval		
	range from 0.53 to 2.18 For		
	the 2nd trimester of exposure		
	$r_{\text{asults}}(OP)$ range from 0.82		
	te 1 (7 with a sec 1 hours		
	to 1.6/ with a confidence		

	interval range from 0.58 to		
	2.98. For the 3rd trimester of		
	exposure results (OR) range		
	from 0.88 to 2.00 with a		
	confidence interval range from		
	0.62 to 3.62. These		
	inconsistent results illustrate		
	the lack of uniformity in the		
	methods employed, difference		
	between cross section,		
	variability of variable's		
	definition, and the lack of		
	studies, particularly in		
	Europe".		
	'Overall, the results reveal that		
	the risk of adverse outcomes		
	including: PTB, LBW, SGA		
	was not found to be		
	significantly associated with		
	any of the pollutants. As for		
	the other windows of exposure		
	(each pregnancy trimester).		
	results are very heterogeneous		
	and there appears to be no		
	clear trend regardless of the		
	model used. For NO2		
	exposure results (OR) range		
	from 0.81 to 1.28 with a		
	confidence interval range from		
	0.91 to 1.74 For PM10		
	exposure results (OR) range		
	from 0.97 to 1.46 with a		
	confidence interval range from		
	0.74 to 2.24 And for PM2.5		
	0.74 to 2.24. And for 1 M2.5		
	from 0.02 to 1.08 with a		
	applied and interval range from		
	0.72 ± 4.10		
	0.72 10 4.19.		

9. Thayamballi	PM2.5,	BW,	Race/Ethnicity and PM2.5	BW per 10µg/m3 of PM2.5 for	'For future	Limitations
(Thayamballi et	PM10 (and	LBW/TLB	LBW :2 studies (2,011,275	race/ethnicity during entire pregnancy	studies,	"There are some
al., 2020)	PM0.1)	W, PTB,	births) in California and found	period	researchers are	inconsistencies across
08/09/2020		SGA,	the most adverse effects	Whites; 5 retrospective cohort studies	encouraged to	studies in terms of the
[4; all USA]		Stillbirth	among Blacks while the least	(6,484,085 births).	conduct and	definition of variables
			were among Asians.	Pooled effect = $-15.7(-21.4 \text{ to } -10.1)$	present this type	and selection of
			BW: 7 studies with varied	$I^2 = 68\%$ -moderate with	of effect	exposure windows'.
			findings; 3 studies (4,954,011	p= 0.01	modification	'The small number of
			births) identified Blacks as the	Hispanics: 5 retrospective cohort studies	analysis. More	studies limits our
			most vulnerable.	(6,484,085 births).	investigation is	ability to make
			Another study (40,662 births)	Pooled effect = -9.3 (-15.8 to -2.7)	particularly	conclusive statements.'
			examined exposure during 3rd	$I^2 = 92\%$ -high with	expected for PTB,	'Meta-analysis for
			trimester and found Hispanics	P< 0.01	stillbirth, and birth	race/ethnicity
			to be most vulnerable,	Blacks: 4 retrospective cohort studies	defect outcomes,	modification on
			followed by Blacks and then	(6,467,392 births).	in order to draw	PM2.5-PTB, and
			Whites. Another study	Pooled effect = -21.9 (-32.0 to -11.7)	more definitive	PM10-PTB, and
			(1,548,904) for entire	$I^2 = 73\%$ -moderate with	conclusions about	educational
			pregnancy exposure found	P= 0.01	vulnerable	modification on
			Whites to be most vulnerable,	Asians: 3 retrospective cohort studies	subpopulations.	PM2.5-BW, PM2.5-
			no association for Blacks and	(4,918,488 births).	Furthermore, other	PTB, and PM10-PTB
			protective effects for Asians.	Pooled effect = -5.8 (-20.7 to 9.0)	maternal factors,	were not conducted
			Furthermore, 2 studies in	$I^2 = 95\%$ -high with	such as household	because numerical
			California (339,674 births)	P< 0.01	income or medical	results of effect
			found no strong influence of		health coverage,	modifications were not
			racial/ethnical effect	NB: "Meta-analysis was conducted if	should also be	reported in some of the
			modifications.	three or more studies were available,	considered as	papers and could not
			PTB : 3 studies with varied	which was only the case for	effect modifiers.	be obtained from the
			results; higher risks in Blacks	race/ethnicity modification on the	Sociodemographic	authors.'
			and Asians (231,637 births),	PM2.5-BW relationship in all race	status and SES are	'Some of the studies
			Blacks and Hispanics	subgroups."	a complicated	included in this review
			(271,204), and no significant		measurement and	were conducted in the
			difference between Blacks and		difficult to capture	same area, California.
			non-Blacks (3,389,450 births).		by a single	Therefore, our findings
			SGA : Only one study in New		variable; therefore,	may be skewed toward
			Jersey (350,107 births) and		investigating it	California, which
			found increased risk among		from multiple	would limit its
			the Blacks but not significance		angles is critical to	generalization to other
			among the Hispanics and		understanding all	parts of the U.S.'
			Whites.		implications.	Strengths

	1		
Stillbirth: Only one study in		Characterizing	'This is a
California (3,026,269 births)		vulnerable	comprehensive review
and found no support for		subpopulations	of the literature that
effect modification.		and quantifying	encompasses three
Race/Ethnicity and PM10		their	types of PMs and
BW: 4 studies; no significant		vulnerabilities are	various types of birth
difference between the Blacks		essential for	outcomes. To date,
and Whites in one study		addressing	only two systematic
(358,504 Connecticut and		environmental	reviews have been
Massachusetts births), Blacks		justice since it can	performed on this topic
most vulnerable, followed by		ultimately help	[22, 23], but none
Whites, Hispanics, and Asians		regulatory	conducted a meta-
(3,545,177 Californian births),		agencies allocate	analysis.'
Hispanics most vulnerable and		resources and	'Limiting our study
Blacks less vulnerable during		design policy	area to the U.S.
the 3 rd trimester exposure		interventions for	enables us to better
(406,627 Atlanta births), and		communities that	investigate the effect
Whites most vulnerable while		need it the most.'	modification by
protective effects in Blacks			maternal factors,
and Hispanics (1,548,904			which are unique to
Texas births).			each country.'
PTB: 2 studies; non-Blacks			'By attempting to
were more vulnerable in full-			perform a meta-
gestational exposure			analysis on the
(3,389,450 Georgian births),			variables described
no influence of race/ethnicity			above, this study
in last month exposure			revealed a major issue
(164,905 births in Detroit,			regarding the
Michigan)			inconsistency of
SGA: One study for last			variable definitions
month pregnancy exposure			and enlightens the
(164,905 births in Detroit,			need for a more
Michigan) and found higher			consistent variable
non-significant risk among			definition.
Blacks than Whites.			
Maternal Education and			
PM2.5			

LBW: 3 studies in California; 2 studies (2 011 275 births)	
2 studies (2.011 275 births)	
2 Studios (2,011,275 Studio)	
found higher adverse risk	
among mothers with less than	
high school for full-gestational	
exposure. The 3 rd study	
(72,632 births) had non-	
convergent model for high	
school but reported no	
modification for other	
educational levels.	
BW : 2 studies (1,373,311	
Californian births) and found	
more risk of reduced BW	
among mothers with less than	
high school/college education.	
PTB : 2 studies with mixed	
findings; higher risk among	
mothers with higher education	
(college/advanced degree	
graduates) compared to those	
with less than high school	
(231,637 Californian births)	
and opposite (i.e., higher risk	
in less than high school	
educated mothers) in a	
Georgia study (3,389,450	
births) but weak evidence of	
effect modification in both	
studies.	
Stillbirth: Only one study	
(3,026,269 Californian births)	
and found increased risk	
among mothers with higher	
education.	
Maternal Education and	
PM10	
PTB : 2 studies and found no	
influence of effect	

			modification; similar effects for with or more or less than			
			high school (3389450			
			Georgian births), protective			
			effect for mothers with less			
			than 12 years education but			
			not different from others			
			(164,905 Michigan births).			
			SGA: Only one study			
			(164,905 births) in Detroit,			
			Michigan and found non-			
			significant increased risk			
			among mothers with less than			
			12 years of education.			
			Publication biog			
			Not reported			
10 Ii (Ii et al	PM2 5	IBW	I BW per 10ug/m3 of PM2 5	I RW ner 10ug/m3 of PM2 5	NB: No specific	I imitations
2020)	PM10		Entire pregnancy	Ry trimester	section on this	High degree of
04/08/2020	NO2 SO2		(29 cohort studies: 536 218	1 st trimester (19 studies)	But from the	heterogeneity between
[7 all China]	$CO_{and}O_{3}$		LBW births and unreported	$RR = 1.031(0.972 \text{ to } 1.093) \text{ J}^2 = 95.1\%$ -	conclusion	the included studies
[,, un chinu]	00, 1110 00		for one study)	high $p < 0.001$	'The exposure of	were found in the
			Pooled $RR = 1.081$ (95% CI:	$\gamma_{2}^{2} = 364.48$	SO2 or O3 was	study, as well as in
			1.043 to 1.120) I ² =86.0% -	2^{nd} trimester (20 studies)	not significantly	various subgroups.
			high, p=0.000.	RR = $1.031(0.982 \text{ to } 1.08)$ I ² = 91.5% -	associated with	Most of the exposure
			$\gamma 2 = 199.55$	high, p<0.001,	increased LBW	data were from the
				$\chi^2 = 223.43$	risk in none of the	environmental
			LBW per 10µg/m3 of PM10	$\frac{3^{rd}}{3^{rd}}$ trimester (20 studies)	trimesters, despite	protection agencies,
			Entire pregnancy	$RR = 1.053$ (1.010 to 1.097) $I^2 = 92.0\%$ -	the significant	which reflected the
			(23 cohort studies [but	high, p<0.001,	effects of the	average concentration
			actually 17 studies because	$\chi 2 = 237.35$	exposure during	of air pollutants over a
			Seo et al 2010 for 7 cities in	By the study region for entire	the entire	period of time, without
			Korea was repeated 7 times	pregnancy	pregnancy, which	considering the
			for city-specific results]:	American countries (18 studies)	need to be further	adverse effects of
			286,188 LBW births and	RR= 1.070 (1.019 to 1.124) Asian	investigated.'	extreme environmental
			unreported for one study).	countries (7 studies) RR=1.044 (0.991 to		pollution. Almost all
			Pooled RR =1.05 (95% CI:	1.101) European countries (4 studies)		mothers and infants
			1.03 to 1.08), I ² =% 70.3-	RR=1.376 (1.187 to 1.594)		information was from
			moderate, p=0.000,			public records, such as

$\chi^2 = 74.08$	By unit of increase of PM2.5 for entire	birth certificates,
	pregnancy	which limited the
NB : RE for entire pregnancy	<i>Per 10 μg/m3 increase</i> (8 studies)	ability to control other
and 1 st trimester while FE for	RR=1.071 (1.025 to 1.119)	important confounding
2^{nd} and 3^{rd} trimester.	<i>Per IQR</i> (15 studies)	factors. Only the
	RR=1.037 (0.994 to 1.081)	relationship between
LBW per 10ppb of NO2	Per 5 $\mu g/m3$ (3 studies)	single pollutant and
Overall risk for entire	RR = 1.194 (0.919 to 1.551);	LBW was investigated
pregnancy	Per 1 $\mu g/m3$ (3 studies)	in this meta-analysis,
(23 cohort studies; 509,997	RR = 1.211 (0.925 to 1.586).	while the interactions
LBW births).	By effect estimate model for entire	between multiple
Pooled $RR = 1.030 (1.008 to$	pregnancy	pollutants were not
1.053), I ² =% 89.5-high, p	OR (25 studies) RR=1.078 (1.039 to	explored, due to the
<0.001.	1.119)	inherent limitations of
$\gamma 2 = 209.32$	HR (2 studies) RR=1.483 (1.149, 1.916)	meta-analysis.
κ	RR (2 studies) RR=1.050(0.904 to 1.220)	Strengths
Note: RE was used for the	By the reporting of detailed birth	This meta-analysis
entire pregnancy and 2^{nd} and	weights (Yes/No) for entire pregnancy	covered a large
3 rd trimesters while FE for 1 st	Yes (16 studies) RR=1.066(1.029 to	number of high-quality
trimester.	1.105)	cohort studies and
	N_{0} (13 studies) RR=1.103(1.029 to	performed various
LBW per 100ppb of CO	1.182).	stratified analyses.
for entire pregnancy	Others trimesters Trimester-specific	which demonstrated
(8 cohort studies: 112.239	stratified analyses about the association	the relationship
LBW births)	of PM2 5- LBW in studies reporting the	between LBW and
Pooled RR = $1.007 (1.001 \text{ to})$	detailed birth weights, per 10 µg/m3	common air pollutants
1.014), $I^2 = 53.1\%$ -moderate.	increase, and effect estimate model of	Political and Politicality
n = 0.037	OR and HR showed significant effects in	
$\gamma^2 = 14.92$	the third trimester.	
×	Leave-one-out sensitivity analyses	
Note : RE was used for the	No significantly change after studies	
entire pregnancy and 2^{nd} and	were sequentially excluded one by one	
3 rd trimesters while FE for 1 st	LBW ner 10ug/m3 of PM10	
trimester	By trimester	
	1 st trimester (13 studies)	
LBW ner 10nnh of SO2	$RR = 1.022(0.998 \text{ to } 1.047) \text{I}^2 = 71.5\% \text{-}$	
for entire pregnancy	moderate $p < 0.001$	
$(13 \text{ cohort studies}) \cdot 171 360$	$\gamma^2 = 42.06$	
LBW hirths	2^{nd} trimester (13 studies)	

Po	boled RR =1.12 (1.02 to	$RR = 1.011 (1.005 \text{ to } 1.017), I^2 = 28.2\%$ -	
1.1	24)	low, p=0.161,	
I ² =	=82.9%-high, p=0.000	$\chi 2 = 16.72$	
χ2	2 = 70.34	3^{rd} trimester (13 studies)	
		$RR = 1.003 (0.995 \text{ to } 1.011), I^2 = 20.6\%$ -	
N	ote: Random effect was used	low, p=0.236,	
fo	or the entire pregnancy and	$\chi 2 = 15.10$	
1 st	t trimester but fixed effect	By the study region for entire	
fo	or 2 nd and 3 rd trimester.	pregnancy	
L	BW per 10ppb of O3	American countries (6 studies)	
fa	or entire pregnancy (overall	RR= 1.018 (0.971 to 1.067)	
ris	sk)	Asian countries (14 studies)	
(1	4 cohort studies; 311,189	RR = 1.050 (1.023 to 1.077)	
Ĺ	BW births)	European countries (3 studies) RR=	
	<i>,</i>	1.105 (1.074 to 1.137)	
Po	poled $RR = 1.045$ (1.005 to	By unit of increase of PM10 for entire	
1.0	086), $I^2 = 90.3\%$ -high, p	pregnancy	
<(0.001,	Per 10 µg/m3 increase (5 studies)	
γ2	2 = 134.57	RR = 1.072 (0.998 to 1.151)	
Ň	: Random effect was used	Per IOR (17 studies)	
fo	or the entire pregnancy and	RR = 1.047 (1.022 to 1.072)	
all	l trimesters.	Per 1 $\mu g/m3$ (1 study)	
Pu	ublication bias	RR = 1.172 (0.855 to 1.606)	
P	M2.5	By effect estimate model for entire	
Th	he funnel plot showed no	pregnancy	
ev	vident publication bias,	OR (21 studies) RR= 1.043 (1.021 to	
w	hich was confirmed by the	1.066)	
Eg	gger' test ($P > 0.05$).	<i>HR</i> (2 studies) RR= 1.063 (0.983 to	
P	M10	1.148)	
Si	gnificant publication bias	By the reporting of detailed birth	
wa	as suggested in the entire	weights (Yes/No) for entire pregnancy	
pr	regnancy (P=0.031) but not	<i>Yes</i> (7 studies) $RR = 1.016$ (0.985 to	
the	three trimesters $(P > 0.05)$	1.048)	
N	02	No (16 studies) $RR = 1.078$ (1.044 to	
Si	gnificant publication bias	1.113)	
we	ere suggested in the entire	Other trimesters for the subgroups	
pr	regnancy (P=0.004) but not	Trimester-specific stratified analysis in	
the	e three trimesters ($P > 0.05$).	studies not reporting the detailed birth	
C	0	weights, per IQR increase, and in Asian	

	The funnel plot indicated no	countries showed significant effects in	
	publication bias, which was	the second trimester. However, all such	
	confirmed by the Egger's test	stratifications showed no significant	
	(P=0.05)	effects in the first trimester or third	
	SO2	trimester.	
	The funnel plot suggested no	Leave-one-out sensitivity analyses	
	publication bias, which was	No significantly change after studies	
	confirmed by the Egger's test	were omitted one after the other.	
	(P > 0.05)	LBW per 10ppb of NO2	
	03	By trimester	
	The funnel plot suggested no	1 st trimester (12 studies)	
	evident publication bias,	$RR = 1.022(1.009 \text{ to } 1.035), I^2 = 10.6\%$ -	
	which was confirmed by the	low, $p = 0.243$	
	Egger's test ($P > 0.05$)	$\gamma 2 = 12.30$	
		2^{nd} trimester (13 studies)	
		$RR = 1.013$ (0.988 to 1.038), $I^2 = 74.9\%$ -	
		moderate, p<0.001, $\gamma 2 = 47.79$	
		3^{rd} trimester (13 studies)	
		$RR = 1.012 (0.969 \text{ to } 1.058) \text{ J}^2 = 78.1\%$ -	
		high, $p < 0.001$, $\gamma 2 = 54.84$	
		By the study region for entire	
		nregnancy	
		American countries (10 studies)	
		RR = 1.009 (0.985 to 1.034)	
		$A_{\text{sign countries}}(7 \text{ studies})$	
		RR = 1.040 (0.997 to 1.084)	
		Furnham countries (6 studies) RR-	
		1 115 (1 026 to 1 212)	
		B _v unit of increase of NO2 for entire	
		Dy unit of increase of 1102 for entite	
		Par 10 ug/m ² increase (6 studies)	
		PP = 1.115 (1.026 to 1.212)	
		RR = 1.113 (1.020 to 1.212)	
		PP = 1.000 (0.080 to 1.020)	
		RR = 1.009 (0.969 10 1.050)	
		PP = 1.040 (1.020 to 1.050)	
		KK = 1.040 (1.050 to 1.050)	
		Per Ippo (I study)	
		KK = 1.051 (0.961 to 1.149)	1
		Per 10ppb (2 studies)	1

	RR= 1.024 (0.977 to 1.075)	
	By effect estimate model for entire	
	pregnancy	
	<i>OR</i> (21 studies) RR= 1.020 (0.999 to	
	1.042)	
	<i>HR</i> (2 studies) RR= 1.331 (0.919 to	
	1.929	
	By the reporting of detailed birth	
	weights (Yes/No) for entire pregnancy	
	<i>Yes</i> (8 studies) RR= 1.023 (0.986 to	
	1.060)	
	<i>No</i> (15 studies) RR= 1.035 (1.007 to	
	1.064)	
	Other trimesters for the subgroups	
	Trimester-specific stratified analysis in	
	studies not reporting the detailed birth	
	weights, per IQR increase, effect	
	estimate model of OR, and at Asian	
	countries showed significant effects in	
	the first trimester. However, all such	
	stratifications showed no significant	
	effects in the second trimester or third	
	trimester.	
	Leave-one-out sensitivity analyses	
	No significantly change after studies	
	were omitted one by one, showing	
	consistent with overall findings.	
	LDW non 100mmh of CO	
	LD vv per 100ppb of CO	
	Dy trumester	
	$I = I \text{ (Interster (5 studies))}$ $PP = 1.008 (1.004 \text{ to } 1.012) I^2 = 11.694$	
	KK = 1.008 (1.004 to 1.012), 1=11.0% - 10W p = 0.220	
	10w, p = 0.559	
	$\chi^2 - 4.55$ 2^{nd} trimostor (5 studies)	
	$PR = 1.005 (0.990 \text{ to } 1.020) \text{ I}^2 = 54.2\%$	
	moderate $n = 0.068 \ v^2 = 8.73$	
	3^{rd} trimester (5 studies)	

	RR =1.000 (0.984 to 1.016), $I^2 = 67.4\%$ -	
	moderate, $p = 0.016$, $\chi 2 = 12.26$	
	By the study region for entire	
	pregnancy	
	American countries (3 studies)	
	RR 1.006 (1.000 to 1.011)	
	Asian countries (2 studies)	
	RR= 1.045 (0.963 to 1.133)	
	European countries (3 studies)	
	RR= 1.006 (0.986 to 1.133)	
	By unit of increase of CO for entire	
	pregnancy	
	Per 100 µg/m3 increase (1 study)	
	RR= 1.023 (0.951 to 1.100)	
	<i>Per IQR</i> (5 studies)	
	RR= 1.005 (0.991 to 1.019)	
	<i>Per 1 pphm</i> (1 study)	
	RR=	
	Per 1ppm (1 study)	
	RR= 1.006 (1.003 to 1.009)	
	Per 1mg/m3 (1 study)	
	RR= 1.017 (1.003 to 1.032)	
	By effect estimate model for entire	
	pregnancy	
	OR (8 studies) RR= 1.007 (1.001 to	
	1.014)	
	By the reporting of detailed birth	
	weights (Yes/No) for entire pregnancy	
	<i>Yes</i> (4 studies) $RR = 1.003$ (0.995 to	
	1.011)	
	<i>No</i> (4 studies) $RR = 1.018$ (1.001 to	
	1.036)	
	Other trimesters for the subgroups	
	Trimester-specific stratified analysis in	
	studies not reporting the detailed birth	
	weights, per IQR increase, per 1 mg/m3	
	increase, Asian countries and at	
	European countries showed significant	
	effects in the first trimester but no	

	significant effects in the 2 nd or 3 rd	
	trimesters	
	Leave-one-out sensitivity analyses	
	Results were not significantly altered	
	after the studies were emitted one by	
	after the studies were onlitted one by	
	one.	
	LBW per 10ppb of SO2	
	By trimester	
	<i>1st trimester</i> (10 studies)	
	$RR = 1.054 (0.996 \text{ to } 1.116), I^2 = 64.9\%$ -	
	moderate, $p=0.002$	
	$\chi 2 = 25.61$	
	2^{nd} trimester (10 studies)	
	$RR = 1.022$ (0.994 to 1.052), $I^2 = 19.6\%$ -	
	low, $p = 0.263$, $\gamma 2 = 11.19$	
	3^{rd} trimester (10 studies)	
	RR = 0.981 (0.952 to 1.010), $I^2 = 44.5\%$ -	
	low $n=0.063 \ x^2 = 12.26$	
	10w, p 0.003, <u>1</u> 2.20	
	By the study region for entire	
	by the study region for chine	
	American countries (4 studies)	
	PD = 1.652 (0.092 to 2.792)	
	RR = 1.055 (0.982 to 2.785)	
	Asian countries (7 studies)	
	RR = 1.049 (0.968 to 1.138)	
	European countries (2 studies)	
	RR= 1.108 (0.691 to 1.775)	
	By unit of increase of SO2 for entire	
	pregnancy	
	<i>Per 100 µg/m3 increase</i> (1 study)	
	RR= 1.028 (1.016 to 1.041)	
	<i>Per IQR</i> (7 studies)	
	RR= 1.338 (1.048 to 1.709	
	Per 1 ppb (2 studies)	
	RR= 1.102 (0.938 to 1.293)	
	Per 10oppb (1 study)	
	RR = 0.730 (0.438 to 1.216)	
	Per 1µg/m3 (2 studies)	

RR = 1.108 (0.691 to 1.775))
By effect estimate model for entire
pregnancy
OR (12 studies) RR = 1.082 (1.007 to)
1.164)
HR(1 study)
RR = 13.951 (6.078 to 32.024)
By the reporting of detailed birth
weights (Ves/No) for entire pregnancy
V_{es} (4 studies) RR= 1.028 (1.016 to
1 041)
N_0 (9 studies) RR= 1.251 (1.012 to
1545)
Other trimesters for the subgroups
Trimester-specific stratified analysis in
studies per IOR increase and at Asian
countries showed significant effects in
the 2 nd trimester. All other such
stratifications showed no significant
effects in the 1 st or 2 nd trimesters
Leave-one-out sensitivity analysis
No significant change, indicating that the
results were in consistent with before
excluding each study.
LBW per 10pph of Q3
By trimester
1 st trimester (9 studies)
$RR = 0.996 (0.947 \text{ to } 1.046), I^2 = 78.5\%$ -
high, p<0.001
$\gamma 2 = 37.24$
2^{nd} trimester (8 studies)
$RR = 1.015$ (0.948 to 1.087), $I^2 = 87.4\%$ -
high, $p < 0.001$, $\gamma 2 = 55.36$
3^{rd} trimester (9 studies)
RR =1.093 (0.992 to 1.204), $I^2 = 95.8\%$ -
high, p= 0.063 , $\gamma 2 < 0.001$
By the study region for entire
pregnancy

		American countries (10 studies)	
		RR= 1.057 (1.013, 1.103)	
		Asian countries (3 studies)	
		RR = 1.051 (0.930 to 1.189)	
		European countries (1 study)	
		RR = 0.923 (0.859 to 0.992)	
		Ry unit of increase of O3 for entire	
		nreanancy	
		Par 10 ug/m3 increase (1 study)	
		PP = 0.023 (0.850 to 0.002)	
		RR = 0.923 (0.839 to 0.992)	
		Per IQR (9 studies)	
		RR = 1.000 (1.000 to 1.151)	
		$Per \ 10ppb \ (1 \ study)$	
		RR = 1.060 (0.942, 1.193)	
		Per Sppb (1 study)	
		1.173 (1.100 to 1.250)	
		<i>Per 1 ppb</i> (1 study)	
		RR= 1.038 (0.973 to 1.108)	
		Per pphm (1 study)	
		RR= 0.980 (0.965 to 0.995)	
		By effect estimate model for entire	
		pregnancy	
		OR (13 studies) RR= 1.024 (0.991 to	
		1.059)	
		<i>HR</i> (1 study)	
		RR= 2.200 (1.751 to 2.765)	
		By the reporting of detailed birth	
		weights (Yes/No) for entire pregnancy	
		<i>Yes</i> (5 studies) $RR = 1.055$ (0.987 to	
		1.127	
		No (9 studies) $RR = 1.050 (0.988 \text{ to } 1.117)$	
		Other trimesters for the subgroups	
		Trimester-specific	
		stratified analysis in studies per 10 pph	
		increase and effect estimate model of HR	
		in the 1 st trimester, effect estimate model	
		of HR in the 2 nd trimester, reporting the	
		detailed hirth weights and at Asian	
	1	uctaned Until weights and at Aslall	

	1	r		•		
				countries in the 3 rd trimester showed		
				significant effects.		
				Leave-one-out sensitivity analyses		
				These indicated that the results were in		
				consistent with before excluding each		
				study.		
				<i>NB</i> : Unable to determine the sample		
				sizes since forest plots were not provided		
				to identify the specify studies.		
11. Ji (Ji et al.,	PM2.5 and	TLBW	Entire pregnancy	LBW risk By trimester	Further studies are	Strength
2017)	PM10		LBW-PM2.5 per 10 µg/m ³ :	PM2.5 per 10 μg/m ³	warranted to	The in-depth
30/05/2017				(3 cohort studies; 436,799 births for	examine the	evaluation of the
[6; All China]			Entire pregnancy	each trimester)	origins of	evidence from birth
			6 cohort studies; 594,626	1 st trimester	heterogeneity as	cohorts is one of the
			births	OR= 1.01 (0.98,1.03)	more meaningful	main strengths of this
			OR= 1.04 (0.99,1.09);	$I^2 = 0.0\%$ (low)	studies are	review.
			$I^2 = 67.4\%$ (moderate) with	p = 0.825	conducted in the	
			p = 0.009	2^{nd} trimester:	future.	Limitations
				1.15 (0.96, 1.38)		'Although less
			LBW-PM10 per 10 µg/m ³ :	$I^2 = 65.8\%$ (moderate)		heterogeneity in some
			Entire pregnancy	p = 0.054		subgroups, high or
			(9 cohort studies; 326,518	3 rd trimester:		moderate
			births)	OR=1.17(0.94, 1.46)		heterogeneities
			$OR = 1.01 \ (0.96, 1.08);$	$I^2 = 79.4\%$ (high)		appeared in many of
			$I^2 = 67.5\%$ (moderate) with	p = 0.008		the subgroup analyses.
			p = 0.002	PM10		These findings
			Publication bias	1 st trimester (7 cohort studies; 315,469		illustrated that the
			According to Egger's tests,	births):		heterogeneity may also
			except for the P-value (P	OR= 1.06 (0.99,1.12);		be affected by other
			= 0.025) of PM2.5 exposure in	$I^2 = 20.3\%$ (low)		factors. The
			the 3rd trimester, no	p = 0.275		socioeconomic status
			significant publication bias for	2 nd trimester (6 cohort studies; 313,955		were not investigated
			the two pollutants can be seen.	births):		due to the limitation in
				OR= 1.05 (0.99, 1.44)		quantity of relevant
				$I^2 = 23.2\%$ (low)		studies.'
				p = 0.260		
				3 rd trimester (7 cohort studies; 315,469		
				births):		
				OR= 1.06 (0.97, 1.15).		

$I^2 = 50.1\%$ (low)
p = 0.061
Other subgroups included study sample
Since subgroups included study sample
size, published year, study area, and
exposure assessment method.
PM2.5 exposure with study sample
size:
Below 10,000 (OR = 1.20, 95% CI:
1.101-1.299, I ²
=0.0%, $P = 0.554$).
Above 10 000 ($\Omega R = 1.02.95\%$ CI: 1.00-
1000 10-55 50
1.0+2, 12-30.370
Published year:
Before to 2010 (OR = 1.03, 95% CI:
0.991-1.071, 12=
0.0%, P = 0.730), <i>After</i> 2010 (OR =
1.034, 95% CI: 1.007-1.061, I2=
61.8%, P = 0.001)
PM10 with study sample.
$B_{alow} = 10,000 \text{ (OP} = 1.08,05\% \text{ CL} = 1.00$
$\frac{1}{15} \frac{15}{12} \frac{15}$
1.15, 12 = 45.8%, P = 0.027), Above
10,000 (OR = 1.02, 95% C1: 0.98-1.06,
12 = 54.3%, P = 0.008), Published year
<i>before to 2010</i> (OR = 1.028, 95% CI:
$0.99 \pm 0.67 \text{ I2} = 13.5\% \text{ P} = 0.302 \text{ After}$
$0.99^{-1.007}, 12 = 15.570, 1 = 0.502), After$
2010 (OR = 1.047, 95% CI: 0.988-1.11,
2010 (OR = 1.047, 95% CI: 0.988-1.11, 12 = 68.1%, P < 0.001). Study location
$\begin{array}{l} 0.991.007, 12 = 13.5 \text{ //}, 1 = 0.302 \text{ //}, \text{ //}, \text{ //} $
$\begin{array}{l} 0.991.007, 12 = 13.5 \text{ //}, 1 = 0.302 \text{, After} \\ 2010 \text{ (OR} = 1.047, 95\% \text{ CI: } 0.988-1.11, \\ 12 = 68.1\%, P < 0.001 \text{), } \text{ Study location} \\ \text{at Europe and America (OR = 1.05, 95\% \\ \text{CI: } 1.01-1.09, 12 = 54.2\% \text{ P} = 0.003 \text{), at} \end{array}$
$\begin{array}{l} 0.9941.007, 12 = 13.5\%, 1 = 0.302, After \\ 2010 (OR = 1.047, 95\% CI: 0.988-1.11, \\ I2 = 68.1\%, P< 0.001), \ \textbf{Study location} \\ \textbf{at } Europe \ and \ America \ (OR = 1.05, 95\% \\ CI: 1.01-1.09, I2 = 54.2\%, P = 0.003), \text{at} \\ Aris \ (OR = 0.08, 95\% CI: 0.90, 1.07, I2) \end{array}$
$\begin{array}{l} 2010 \text{ (OR} = 1.047, 95\% \text{ CI: } 0.988\text{-}1.11, \\ 12 = 68.1\%, P < 0.001\text{), } \text{Study location} \\ \text{at } Europe \ and \ America \ (\text{OR} = 1.05, 95\% \\ \text{CI: } 1.01\text{-}1.09, 12 = 54.2\%, P = 0.003\text{), at} \\ \text{Asia} \ (\text{OR} = 0.98, 95\% \text{ CI: } 0.90\text{-}1.07, 12 \\ 486\% \text{ (P)} = 0.041\text{ (P)} \\ \end{array}$
2010 (OR = 1.047, 95% CI: 0.988-1.11, I2 = 68.1%, P < 0.001), Study locationat Europe and America (OR = 1.05, 95%CI: 1.01-1.09, I2 = 54.2%, P = 0.003), atAsia (OR = 0.98, 95% CI: 0.90-1.07, I2= 48.6%, P = 0.041), exposure
$2010 \text{ (OR} = 1.047, 95\% \text{ CI: } 0.988-1.11, \\ I2 = 68.1\%, P< 0.001), \text{ Study location} \\ \text{at Europe and America (OR = 1.05, 95\% \\ \text{CI: } 1.01-1.09, I2 = 54.2\%, P = 0.003), at \\ \text{Asia (OR = 0.98, 95\% CI: } 0.90-1.07, I2 \\ = 48.6\%, P = 0.041), exposure \\ measurement methods with monitor$
$\begin{array}{l} 0.9941.007, 12 = 13.5.0, 1 = 0.302, After \\ 2010 (OR = 1.047, 95\% CI: 0.988-1.11, \\ I2 = 68.1\%, P< 0.001), Study location \\ at Europe and America (OR = 1.05, 95\% \\ CI: 1.01-1.09, I2 = 54.2\%, P = 0.003), at \\ Asia (OR = 0.98, 95\% CI: 0.90-1.07, I2 \\ = 48.6\%, P = 0.041), exposure \\ measurement methods with monitor \\ (OR = 1.03, 95\% CI: 0.99-1.08, I2 = \\ \end{array}$
$\begin{array}{l} 0.9941.007, 12 = 13.5.0, 1 = 0.302, After\\ 2010 (OR = 1.047, 95\% CI: 0.988-1.11, \\ I2 = 68.1\%, P< 0.001), Study location\\ at Europe and America (OR = 1.05, 95\% \\ CI: 1.01-1.09, I2 = 54.2\%, P = 0.003), at\\ Asia (OR = 0.98, 95\% CI: 0.90-1.07, I2 \\ = 48.6\%, P = 0.041), exposure\\ measurement methods with monitor\\ (OR = 1.03, 95\% CI: 0.99-1.08, I2 = 32.7\%, P = 0.079), \end{array}$
$\begin{array}{l} 0.99-1.007, 12 = 13.5 \text{ //}, 1 = 0.302 \text{, After} \\ 2010 (OR = 1.047, 95\% CI: 0.988-1.11, \\ I2 = 68.1\%, P< 0.001), Study location \\ \textbf{at Europe and America} (OR = 1.05, 95\% \\ CI: 1.01-1.09, I2 = 54.2\%, P = 0.003), at \\ Asia (OR = 0.98, 95\% CI: 0.90-1.07, I2 \\ = 48.6\%, P = 0.041), exposure \\ measurement methods with monitor \\ (OR = 1.03, 95\% CI: 0.99-1.08, I2 = \\ 32.7\%, P = 0.079), \\ with model (OR = 1.05, 95\% CI: 0.99- \\ \end{array}$
$\begin{array}{l} 0.9941.007, 12 = 13.5.0, 1 = 0.302, After \\ 2010 (OR = 1.047, 95\% CI: 0.988-1.11, \\ I2 = 68.1\%, P< 0.001), Study location \\ at Europe and America (OR = 1.05, 95\% \\ CI: 1.01-1.09, I2 = 54.2\%, P = 0.003), at \\ Asia (OR = 0.98, 95\% CI: 0.90-1.07, I2 \\ = 48.6\%, P = 0.041), exposure \\ measurement methods with monitor \\ (OR = 1.03, 95\% CI: 0.99-1.08, I2 = \\ 32.7\%, P = 0.079), \\ with model (OR = 1.05, 95\% CI: 0.99- \\ 1.11, I2 = 70.3\%, P = 0.001). \end{array}$

				Also collected articles which used <i>hirth</i>		
				data directly from the national birth		
				registry or hospital-birth records to		
				explore the connection between PM		
				exposure during pregnancy and I BW.		
				The pooled the estimate of PM10 for the		
				entire pregnancy ($OR = 1.07.95\% \cdot 1.02$		
				1 11) was larger than other trimesters		
				although no statistical significance of the		
				three estimates can be obtained. Found		
				that heterogeneity was lowest for the 3rd		
				trimester and the highest for the 1st		
				trimester		
12. Lin (Lin et al	PM2.5	PTB	PTB per 10µg/m3 of PM2.5	PTB per 10µg/m3 of PM2.5 for <i>entire</i>	More prospected	Strength
2017)	1112.0	110	for entire pregnancy	pregnancy by exposure level based on	studies with clear	The studies included in
15/06/2017 [7: all			(7 studies: 5 retrospective and	WHO IT-3	exposure levels	this meta-analysis all
Chinal			2 prospective cohorts):	high-level (>15 µg/m3) exposure	are still warranted	employed cohort study
- ···]			882.479 births.	(3 studies: 1 retrospective and 2	in future.	design or nested case-
			RE model	prospective cohorts): 303.326 births.		control study design.
			OR = 1.15 (95% CI = 0.99 to)	FE model		which might
			1.33) with p=0.07.	OR = 1.06 (1.04 to 1.08) with p < 0.001.		prominently decrease
			$I^2 = 85\%$ -high with p<0.00001.	$I^2 = 0\%$ -No with p=0.41, $\gamma 2 = 1.76$		heterogeneity between
			$\gamma 2 = 40.53$	1 · · · · · ·		studies
			λ	low-level (<15 µg/m3) exposure		Limitations
			PTB per 10µg/m3 of PM2.5	(4 studies; 3 retrospective and 1		The results showed
			for 1 st trimester	prospective cohorts); 579,153 births.		that although study
			(9 studies; 6 retrospective and	RE model		designs, exposure
			2 prospective cohorts and 1	OR= 1.31 (1.06 to 1.63) with p=0.01,		levels, and main
			nested case-control);	$I^2 = 47\%$ -moderate with p=0.13, $\chi 2 = 5.68$		confounders partially
			1,041,382 births.			explained the
			RE model	PTB per 10µg/m3 of PM2.5 for 1st		heterogeneity,
			OR= 1.15 (1.05 to 1.24) with	trimester by exposure level based on		moderate
			p=0.001,	WHO IT-3		heterogeneities were
			$I^2 = 33\%$ -moderate with	high-level ($\geq 15 \ \mu g/m3$) exposure		still found in three of
			p=0.15, χ2 =11.92	(4 studies; 2 retrospective and 1		our analyses. Limited
				prospective cohorts, 1 nested case-		number of studies
			Publication bias	control); 300,436 births.		restricted us from
			The shape of the funnel plots	RE model		conducting sensitivity
			seemed unsymmetrical in	OR= 1.11 (0.94 to 1.32) with p=0.21,		analysis and subgroup

			high-level exposure group in	$I^2 = 38\%$ -moderate with n=0.18 $\gamma^2 = 4.83$		meta-analyses between
			the entire program	1 5676-moderate with p 0.16, χ^2 4.65		studios based on
			indicating the evistence of	low lower (< 15 workm 2) own or gives		different accorrentia
			multicating the existence of	(5 studies 4 retresensative and 1)		arread and DM2.5
			publication bias. Beyond that,	(5 studies, 4 retrospective and 1		areas and PM2.5
			we did not find any	prospective conorts); 740,946 births.		constituents.
			statistically significant	RE model		The restriction of
			publication bias in other	OR = 1.17 (1.04 to 1.30) with p=0.007,		languages (only
			groups	$1^2 = 44\%$ -moderate with p=0.13, $\chi 2 = 7.09$		studies published in
				sensitivity analysis		English or Chinese
				'Since no significant heterogeneities		were selected), and the
				were observed in these four meta-		exclusion of studies,
				analyses and no group of study number is		results of which could
				more than 5, sensitivity analysis is		not be transformed into
				inappropriate for this meta-analysis'.		OR and 95% CI, could
						be partly attributable to
						the publication bias.
13. Li (Li et al.,	PM2.5	TLBW, PTB	TLBW per 10µg/m3 of	By trimester	'Future studies	Strengths
2017)			PM2.5 for entire pregnancy	TLBW:	should employ	'Our meta-analysis
28/04/2017			(4 studies: 3 retrospective	1 st trimester exposure (IQR)- 3	individual direct	included all exposure
[17; all China]			cohort and 1 cross-sectional);	retrospective cohort studies; 1,163,751	exposure	models, including
			8,226,866 births	births	measurements to	monitoring of network
			RE model;	OR = 1.00 (0.91 to 1.11) with p = 0.92	obtain more	data, remote sensing
			OR= 1.05 (0.98 to 1.12) with	$I^2 = 90\%$ - high with p < 0.0001	precise and	data, or both, and we
			p=0.14	2^{nd} trimester exposure (IQR)- 4	accurate data.'	were inclined to
			$I^2 = 85\%$ -high with p= 0.0001	retrospective cohort studies; 1,587,470		choose exposure-
			0	births.	'More	estimate model, which
			TLBW per IQR increases in	OR = 1.00 (0.96 to 1.03) with p = 0.83	comprehensive	used satellite data as
			PM2.5 for entire pregnancy	$I^2 = 81\%$ - high with p= 0.001,	and detailed birth	exposure source.'
			(7 studies: all retrospective	3 rd trimester exposure (IOR)-3	records would	1
			cohort); 4,148,642 births	retrospective cohort studies; 1,163,751	help scientists	Limitations
			FE model;	births.	control for such	'The selection of study
			OR = 1.03 (1.02 to 1.03) with	OR = 1.03 (0.98 to 1.09) with p = 0.28	confounding	population, adjusted
			p <0.00001	$I^2 = 55\%$ - moderate with $p = 0.11$.	variables.'	factors, air pollution
			$I^2 = 22\%$ -low with p= 0.26	PTB:		data, and exposure
			Ē	1 st trimester exposure (IOR)-5 studies (4		estimation model
			PTB per 10µg/m3 of PM2.5	retrospective and 1 prospective cohorts:		varied among studies.
			for entire pregnancy	1.371.800 births.		and this is likely a
			· · · · · · · · · · · · · · · · · · ·	OR = 1.03 (1.00 to 1.06) with $p = 0.07$		source of
				$I^2 = 70$ moderate with p=0.009		heterogeneity.

(6 studies; 3 retrospective	2^{nd} trimester exposure (IQR)-4	Furthermore, all of the
cohort, 2 case-control, 1 cross-	retrospective studies; 1,367,947 births.	studies' exposure
sectional); 4,098,419 births	OR= 1.01 (0.93 to 1.10) with p= 0.83	estimation models
OR= 1.02 (0.93 to 1.12) with	$I^2 = 98$ - high with p<0.00001	used outdoor air
p=0.68		pollution levels to
$\tilde{I}^2 = 97$ %-high with p<0.00001	3^{rd} trimester exposure (IQR)-4	calculate personal
	retrospective studies; 1,367,947 births.	exposure. However,
PTB per IQR of PM2.5 for	OR = 1.02 (0.99 to 1.04) with p = 0.16	indoor air pollution
entire pregnancy	$I^2 = 59\%$ - moderate with p=0.06	varies and is vital to
(8 studies; 7 retrospective	L L	our discussion.
cohort and 1 prospective		Study region, the study
cohort); 1,692,797 births		design, and exposure
OR= 1.03 (1.01 to 1.05) with		assessment method
p = 0.0002		could be sources of
$I^2 = 63\%$ -high, p= 0.008		heterogeneity, we did
Publication bias		not analyze them in
"We evaluated the possibility		this review owing to
of a publication bias in the 23		the restricted number
studies, and the funnel plot		of studies. Another
illustrated a symmetrical		variable is the fact that
distribution of the points,		all of the included
suggesting a lack of		studies used different
publication bias; furthermore,		adjusting variables.
no publication bias was found		Some vital variables,
by either Begg's test and		like smoking, were not
Egger's test"		included in the
P for Begg's test= 0.734		adjusted model. Due to
		our exclusion criteria,
		the number of included
		studies was limited.
		Furthermore, we only
		considered single
		pollutant models,
		because there was high
		heterogeneity between
		included studies in a
		subgroup analyses.
		Finally, a better
		understanding of the

						concentration-response
						association between air
						pollution and adverse
						birth outcome would
						be extremely valuable.
						We found there to be
						no publication bias
						based on an Egger's
						test, or a Begg's test.
						Nevertheless, owing to
						the limited sample
						size, we note that our
						study results should be
						interpreted with
						caution.'
14. Zhang (Zhang	PM2.5,	SGA/IUGR,	Stillbirth per 10µg/m3 of	Stillbirth per 10µg/m3 of PM10 by	More researches	Limitations
K, 2016)	PM10	SGA,	PM2.5 for entire pregnancy	trimester	on such subjects	'First, we found
30/11/2016		Stillbirth,	and trimesters	1 st trimester	are still needed.	different degrees of
[8; All China]		SAB	4 studies	2 studies (1 retrospective cohort and 1		heterogeneity across
			NB : We excluded these meta-	case-control; 104,089 births)		PM, which could be
			analytical results because	RE pooled $OR = 1.00 (0.94 \text{ to } 1.06)$		partly explained by
			results from a study (Pearce et	$I^2 = 54.1\%$ - moderate		differences in
			al 2009) on black smoke	p= 0.140		population
			levels, considered to be	2 nd trimester		demography, sample
			approximately equivalent to	2 studies (1 retrospective cohort and 1		size, exposure
			PM ₄ were included to estimate	case-control; 104,089 births)		assessment,
			the pooled OR.	RE pooled OR = $1.00 (0.90 \text{ to } 1.12)$		compounds of
				I ² = 81.1% - high		particulate matters, etc.
			Stillbirth per 10 μg/m3 of	p= 0.021		Secondly, we only
			PM10 for entire pregnancy	3 rd trimester		described the impact of
			1 case-control study; 102,575	2 studies (1 retrospective cohort and 1		single pollutants
			births	case-control; 104,089 births)		without taking
			$OR = 0.98 \ (0.95 \text{ to } 1.02)$	RE pooled OR = $1.02 (0.92 \text{ to } 1.13)$		combined effects of
			$I^2 =$ with	I ² = 90.9% - high		multipollutants into
			p=	p= 0.001		account. Third, in this
						study, the term of
			SGA per 10µg/m3 of PM2.5	SGA per 10µg/m3 of PM2.5 by		intrauterine growth
			for entire pregnancy	trimester		retardation (IUGR)
				1 st trimester		was treated as the

			6 retrospective cohort studies (1,515,887 births) RE pooled OR = 1.15 (1.10 to 1.20) I ² = 0.0%- No p= 0.877 SGA per 10μg/m3 of PM10 NB: 'However, none article revealed the relationship between PM10 and SGA, and that was why we did not perform meta-analysis between them' SAB per 10μg/m3 of PM2.5 NB: 'No article revealing the risk of PM2.5 on SAB was found' Publication bias 'With all the value of P>0.05 in Egger's test, no publication bias was found in all analysis'	6 retrospective cohort studies; 1,740,763 births RE pooled OR = 1.07 (1.05 to 1.10) I^2 = 5.0% - low p= 0.385 2^{nd} trimester 5 retrospective cohort studies; 1,706,058 births RE pooled OR = 1.06 (1.02 to 1.10) I^2 = 58.1% - moderate p= 0.049 3^{rd} trimester 5 retrospective cohort studies; 1,706,058 births RE pooled OR = 1.06 (1.04 to 1.08) I^2 = 13.4% - low p= 0.329 SAB per 10µg/m3 of PM10 for 1 st trimester 3 studies (1 retrospective cohort, 1 case- control, and 1 cross-sectional; 515,932 births). RE pooled OR = 1.34 (1.04 to 1.72) I^2 = 62.4% - moderate p= 0.070 Sensitivity analysis 'After removing each article sequentially, statistically steady results were obtained, suggesting our results of meta-analysis were robust '		same as SGA, for most articles defined them in the same way. Finally, a limited number of literatures were included in our final analysis.'
15. Siddika (Siddika et al., 2016) 24/05/2016 [4; 3 Finland, 1 Ghana]	PM 10, PM2.5, NO2, SO2, CO, O3.	Stillbirth	NB: 4/11 studies were meta- analysed and the remaining synthesised narratively. Stillbirth for entire- pregnancy period of exposure; PM2.5 per 4 μg/m3 (2 studies, both retrospective cohort, ranked high quality;	By trimesters SO2 1^{st} trimester RE=1.040 (0.962 to 1.125) FE=0.997 (0.975 to 1.020) $\chi^2 = 10.34$ p-value = 0.006 $1^2 = 80.7\%$ (high) 2^{nd} trimester	'Pregnant women should be aware of the potential adverse effects of ambient air pollution, although the prevention against exposure to air	Strengths 'We included all the studies identified in an extensive systematic search, so missing of important epidemiological studies is less likely to have happened.'

	3,745,243 births): RE = 1.021	RE = 1.003 (0.977 to 1.030)	pollutants	
	(0.996 to 1.046),	FE = 1.003 (0.977 to 1.030)	generally requires	Limitations
	FE = 1.021 (0.996 to 1.046)	$\chi^2 = 1.79$	more action by the	'Even though our
	$\chi^2 = 0.18$	p-value =0.408	government than	review contains eight
	p-value = 0.669	$I^2 = 0.0\%$ (No)	by the individual.	more studies and much
	$I^2 = 00.0\%$ (No)	3 rd trimester	The healthcare	more information than
	PM10 per 10 µg/m3	RE = 1.042 (0.951 to 1.142)	sector can create	the previous reviews,
	(2 studies, each prospective	FE = 0.996 (0.967 to 1.026)	awareness and	we found a very
	cohort and case-control, both	$\gamma^2 = 11.26$	engage other	limited number of
	ranked high-quality studies;	p-value = 0.004	sectors	estimates for each of
	104,089 births):	$I^2 = 82.2\%$ (high)	contributing to	the pollutants, and
	RE = 1.014 (0.948 to 1.085).	NO2	ambient air	only five studies made
	FE = 1.012 (0.986 to 1.039)	1 st trimester	pollution (such as	attempts to adjust for
	$\gamma^2 = 6.67$	RE= 1.035 (0.983 to 1.089)	the housing sector.	other air pollutants
	p-value = 0.010	FE = 1.025 (0.996 to 1.054)	transportation	when presenting effect
	$I^2 = 85.0\%$ (high)	$\gamma^2 = 4.43$	sector, industries	estimates of each air
	SO2 per 3 ppb increase (3	p-value =0.109	and the energy	pollutant. Therefore,
	studies; 2 retrospective cohort,	$I^2 = 54.8\%$ (high)	sector), to develop	we could not include
	1 case-control, all 3 studies	2 nd trimester	and implement	all of the studies in the
	ranked very high quality	RE =1.007 (0.948 to 1.071)	policies such as	meta-analyses, and the
	=3,847,818 births), RE =1.022	FE = 1.005 (0.977 to 1.034)	control of	reliability on the
	(0.984 to 1.062),	$\chi^2 = 5.83$	vehicular	summary effect
	FE=1.019 (0.989 to 1.049)	p-value = 0.054	emissions, fuel	estimate's is further
	$\chi^2 = 2.49$	$I^2 = 65.7\%$ (high)	quality	compromised.'
	p-value = 0.288	3 rd trimester	improvement and	1
	$I^{2}=19.6\%$ (low)	RE = 1.015 (0.980 to 1.051)	control of	
	NO2 per 10ppb	FE = 1.015 (0.980 to 1.051)	industrial waste	
	(same 3 studies as in SO2)	$\chi^2 = 1.88$	emission, to	
	RE= 1.066 (0.965 to 1.178),	p-value =0.391	reduce the risk of	
	FE = 1.049 (1.012 to 1.088)	$I^2 = 0.0\%$ (No)	air pollutants.	
	$\chi^2 = 9.78$	СО		
	p-value = 0.008	1 st trimester	Future studies	
	$I^2 = 79.6\%$ (high)	RE=1.011 (0.967 to 1.057)	should integrate	
	CO per 0.4ppm	FE=1.002 (0.983 to 1.022)	the use of personal	
	(same 3 studies as in SO2)	$\chi^2 = 2.92$	monitoring	
	RE = 1.025 (0.985 to 1.066),	p-value =0.232	methods and also	
	FE = 1.022 (0.995 to 1.050)	$I^2 = 31.6\%$ (moderate)	consider the	
	$\chi^2 = 2.52$	2 nd trimester	activity of	
	p-value = 0.284	RE =1.015 (0.948 to 1.087)	mothers, change in	

$I^2 = 20.5\%$ (low)	FE =1.002 (0.979 to 1.025)	residence, air
	$\gamma^2 = 5.60$	exchange,
	p-value = 0.061	mother's
O3 per10 ppb	$\hat{I}^2 = 64.3\%$ (high)	occupation and
(2 studies; one each for case-	3 rd trimester	outdoor activities
control and retrospective	RE = 1.052 (0.973 to 1.138)	of the mothers.
cohort, both ranked high	FE = 1.014 (0.992 to 1.038)	The pregnant
quality; 3,128,844 births); RE	$\chi^2 = 10.19$	women should
= 1.002 (0.971 to 1.034)	p-value = 0.006	also be monitored
FE = 1.005 (0.982 to 1.029)	$\hat{I}^2 = 80.4\%$ (high)	if possible from
$\chi^2 = 1.24$	PM10	the first month of
p-value = 0.265	1 st trimester	pregnancy in order
$\hat{I}^2 = 19.6\%$ (low)	RE=0.998 (0.936 to 1.064)	to ascertain the
Publication bias	FE=1.015 (0.991 to 1.039)	exact period of the
It was assessed by funnel	$\chi^2 = 2.18$	effect.'
plots, Begg's and Egger's tests	p-value =0.140	
results;	$\bar{I}^2 = 54.1\%$ (high)	
'There was no indication of	2 nd trimester	
publication bias present,	RE =1.005 (0.905 to 1.116)	
although these results should	FE =0.968 (0.944 to 0.993)	
be interpreted with caution	$\chi^2 = 5.31$	
because they were based on	p-value =0.021	
two or three study-specific	$I^2 = 81.2\%$ (high)	
effect estimates only'	3 rd trimester	
	RE = 1.021 (0.919 to 1.134	
Narrative synthesis	FE =0.995 (0.968 to 1.022)	
SO2 ; one each of case-	$\chi^2 = 10.96$	
crossover, time-series, and	p-value = 0.001	
ecological studies found	$I^2 = 90.9\%$ (high)	
significant association with	PM2.5	
SB. A cross-sectional study	1 st trimester	
and another ecological study	RE=1.042 (0.920 to 1.180)	
found no significant	FE= 1.002 (0.982 to 1.022)	
association.	$\chi^2 = 2.35$	
NO2; significant association	p-value =0.126	
in case-crossover, time-series	$I^2 = 57.4\%$ (high)	
with various lag days,	2^{nd} trimester	
ecological.	RE =1.040 (0.940 to 1.152)	
	FE =1.011 (0.996 to 1.026)	

		1		-		
			NO; Two studies that	$\chi^2 = 1.92$		
			investigated this found no	p-value =0.166		
			association.	I ² =47.9% (moderate)		
			NOx; one study investigated	3 rd trimester		
			this and found no association.	$RE = 1.00 \ (0.981 \text{ to } 1.020)$		
			CO; The findings of CO	FE =1.00 (0.981 to 1.020)		
			exposure with stillbirth were	$\chi^2 = 0.23$		
			less consistent	p-value =0.631		
			PM2.5;	I ² =0.0% (No)		
			One time series found no	03		
			significant association, one	1 st trimester		
			retrospective study found	RE=1.001 (0.983 to 1.020)		
			significant association only in	FE=1.001 (0.983 to 1.020)		
			the 3 rd trimester.	$\chi^2 = 0.13$		
			O3; The time series study	p-value =0.714		
			found no association	I ² =0.0% (No)		
				2 nd trimester		
				RE =0.991 (0.944 to 1.040)		
				FE =1.004 (0.985 to 1.022)		
				$\chi^2 = 3.18$		
				p-value =0.074		
				$I^2 = 68.6\%$ (high)		
				3 rd trimester		
				RE = 1.012 (0.966 to 1.060)		
				FE =1.025 (1.006 to 1.043)		
				$\chi^2 = 2.72$		
				p-value =0.099		
				$I^2 = 63.2\%$ (high)		
16. Sun (Sun et	PM2.5 and	LBW, BW	BW per 10µg/m3 of PM2.5	Note: Forest plots were not presented to	'More studies in	Limitations
al., 2016)	chemical		for entire pregnancy	enable us determine the study designs	counties other than	'High or
29/12/2015 [8, all	constituents		17 studies (1 prospective and	and sample sizes for the subgroup	the USA are	moderate
China]			16 retrospective cohorts;	analyses.	needed, especially	heterogeneities in most
			7,857,127 births)		in middle- or low-	of the subgroup meta-
			Pooled β = -15.9 (95% CI = -	BW per 10µg/m3 of PM2.5 by:	income counties	analyses, although less
			26.8 to -5.0)	Trimesters	with heavier air	heterogeneity was
			$I^2 = 98.5\%$ high with	1 st trimester	pollution.	found in some
			p <0.001	11 studies	Further meta-	subgroups. These
				Pooled β = -8.3 (-17.0 to 0.4)	analyses are	findings indicate that
				$I^2 = 89.8\%$ -high with	necessary to	the heterogeneity

LBW per 10µg/m3 of PM2.5	p <0.001	explore the	among the included
for entire pregnancy	2^{nd} trimester	sources of	studies may also have
19 studies (2 prospective and	10 studies	heterogeneity as	been affected by other
17 retrospective cohorts;	Pooled β = -12.6	more original	factors, such as
10,405,729 births)	(-21.7 to -3.1)	studies are	socioeconomic status,
Pooled OR= 1.090 (95% CI =	$I^2 = 92.2\%$ -high with	conducted in the	that we did not
1.032 to 1.150)	p <0.001	future. It is crucial	consider in this study
$I^2 = 92.6\%$ -high with	3 rd trimester	to reduce the	due to the limited
p <0.001	13 studies	ambient PM2.5	number of relevant
Publication bias	Pooled β = -10.0 (-16.6 to -3.5)	pollution and	studies.'
'The results of Egger's tests	$I^2 = 85.8\%$ -high with	reduce maternal	
showed that there was no	p <0.001	PM2.5 exposure	
significant publication bias in	For entire pregnancy by study design	during pregnancy	
most of the meta-analyses	Prospective cohort	to improve birth	
except for the BW-PM2.5	2 studies	outcomes.'	
exposure analysis during the	Pooled β = -11.6		
2 nd trimester and the LBW-	(-28.7 to 5.3)		
PM2.5 analyses during the	$I^2 = 0.0\%$ -No with		
entire pregnancy as well as in	P=0.454		
the 3 rd trimester.'	Retrospective cohort		
	15 studies		
	Pooled β = -16.7(-28.7 to -4.8)		
	$I^2 = 98.8\%$ -high with		
	p <0.001		
	For entire pregnancy by exposure		
	assessment method		
	Individual level		
	4 studies		
	Pooled β = -15.7		
	(-42.1 to 10.6)		
	$I^2 = 87.4\%$ -high with		
	p <0.001		
	Semi-individual level		
	8 studies		
	Pooled β = -15.2 (-20.7 to -9.7)		
	$I^2 = 76.3\%$ -high with		
	p =0.001		
	Regional level		
	6 studies		

	Pooled β = -17.3	
	(-43.4 to 8.8)	
	$I^2 = 97.7\%$ -high with	
	n < 0.001	
	For entire pregnancy by country	
	I of churc programey by country	
	12 studios	
	$\frac{15}{10} = \frac{10}{10} = 10$	
	Pooled $\beta = -18.8 (-31.4 \text{ to } -6.3)$	
	$1^2 = 99.0\%$ -high with	
	p <0.001	
	Others	
	4 studies	
	Pooled β = -1.8	
	(-12.2 to 8.7)	
	$I^2 = 26.2\%$ -low with	
	n=0.401	
	p=0.101	
	I BW nor 10ug/m3 of DM2 5 by:	
	LBw per long/ins of 1 wi2.5 by.	
	I rimesiers	
	1 st trimester	
	7 studies	
	Pooled $OR = 1.026 (0.93 \text{ to } 1.130)$	
	$I^2 = 86.9\%$ -high with	
	p <0.001	
	2 nd trimester	
	7 studies	
	Pooled OR= $1.035 (0.952 \text{ to } 1.125)$	
	$I^2 = 79.8\%$ -high with	
	p < 0.001	
	3 rd trimester	
	8 studies	
	$D_{\text{pol}} = 1.222 (0.060 \text{ to } 1.585)$	
	$I^2 = 0.970$ high with	
	1 – 70. / 70-IIIgII WIUI	
	p < 0.001	
	For entire pregnancy by study design	
	Prospective	
	3 studies	
	Pooled OR= 1.359 (1.102 to 1.676)	
	$I^2 = 0.1\%$ -low with	

	p =0.269		
	Retrospective		
	16 studies		
	Pooled OR= 1.078 (1.022 to 1.137)		
	$I^2 = 93.1\%$ -high with		
	P<0.001		
	For entire pregnancy by exposure		
	assessment method		
	Individual level		
	2 studies		
	Pooled $OR = 1.431 (1.149 \text{ to } 1.783)$		
	$I^2 = 0.0\%$ -No with		
	n = 0.570		
	Semi-individual level		
	10 studies		
	Pooled $OR = 1.008 (0.999 to 1.016)$		
	$I^2 - 40.5\%$ low with		
	n = -0.003		
	p = 0.095 Regional level		
	8 studios		
	$P_{0} = 1145 (1.061 \text{ to } 1.235)$		
	$I^2 = 72.6\%$ moderate with $n < 0.001$		
	I = 75.0%-moderate with $p<0.001$		
	For entire pregnancy by country		
	USA 14 studies		
	$14 \text{ studies} \\ \mathbf{D}_{\text{relation}} = 1 (I $		
	$\frac{1}{12} = 0.420(11.143)$		
	$1^{2} = 94.3\%$ -nign with		
	P<0.001		
	Others		
	5 studies		
	Pooled $OR = 1.141 (1.044 \text{ to } 1.247)$		
	$1^2 = 36.1\%$ -low with		
	P=0.140		
	Other subgroups		
	Leave-out sensitivity analyses		
	Exclusion of		
	single studies that had the largest and		
	smallest effect size with regard to the		
		significance of the estimated associations	
--	---	--	--
		had no effect except one study where	
		exclusion of the study with the smallest	
		effect size resulted in significant pooled	
		effect of BW during first trimester.	
		Also, to test the influence of 3 studies	
		that considered preterm low birth weight	
		(PLBW), exclusion of these studies	
		found did not change the pooled estimate	
		significantly	
		gj	
		Meta-regression	
		The results of meta-regression analysis	
		of showed similar modification effect	
		patterns of the study characteristics, but	
		none of the tests was statistically	
		significant for BW-PM2.5 association	
		but results of the meta-regression	
		analyses of PM2.5 exposure on LBW	
		was significantly impacted by the	
		exposure assessment methods used (OR=	
		0.13, 95% CI: 0.06, 0.20)	
		0110, 20, 0 011 0100, 0120)	
		PM2.5 chemical constituents (7 studies	
		in all: specifically 2 to 4 studies for each	
		and majority were 2 studies).	
		Birth weight was negatively associated	
		significantly with zinc nickel titanium	
		vanadium, organic carbon (OC), nitrate	
		(NO_3) : -all from 2 studies, and elemental	
		carbon (EC) from 3 studies. For	
		example a 10 $ng/m3$	
		increase in Zn exposure was associated	
		with a 7.5 σ (95% CI: 5.0, 10.0) decrease	
		in birth weight (from 2 studies)	
		Similarly the LBW risk was positively	
		associated with potassium (3 studies)	
		zinc (3 studies) nickel (4 studies)	
		titanium (4 studies), elemental carbon (4	
	1		

				studies), silicon (3 studies), sulfur (2		
				studies) and ammonium ion (2 studies)		
				levels. For instance, a 10 ng/m3 increase		
				in Ti exposure was related to a 15.9%		
				(95% CI: 0.7, 33.3) increase in the risk of		
				LBW.		
17. Sun (Sun et	PM2.5	PTB	PTB per 10µg/m3 of PM2.5	PTB per 10µg/m3 of PM2.5 for	"These results are	Limitations
al., 2015)			for entire pregnancy	trimester	important for	'High heterogeneity
18/11/2015			13 studies (4 prospective, 9	1 st trimester	policy makers and	between included
[7; 5 China, 2			retrospective cohort;	10 studies (5 prospective and 5	public health	studies.
Australia]			3,089,186 births	retrospective cohorts; 1,668,004 births	practitioners	Heterogeneity across
			Pooled OR= 1.13 (95% CI =	Pooled OR= 1.08 (0.92 to 1.26)	worldwide.	the included studies
			1.03 to 1.24)	$I^2 = 91.3\%$ -high, with p<0.001	More studies are	may also have been
			$I^2 = 91.4\%$ -high with	2 nd trimester	needed in the	affected by other
			p <0.001	5 studies (2 prospective and 3	future to explore	factors that we did not
			-	retrospective cohorts; 1,340,807 births	which gestational	consider in this study,
			Publication bias	Pooled $OR = 1.09 (0.82 \text{ to } 1.44)$	windows are more	such as socioeconomic
			Did not find any statistically	$I^2 = 98.7\%$ -high, with p<0.001	susceptible to air	status and chemical
			significant publication bias in	3 rd trimester	pollution.	constituents of PM2.5,
			any of the meta-analyses	9 studies (1 prospective and 8	More studies in	due to the limited
				retrospective cohorts; 2,208,883 births	countries other	quantity of related
				Pooled $OR = 1.08 (0.99 \text{ to } 1.17)$	than the USA are	studies.'
				$I^2 = 92.1\%$ -high, with p<0.001	needed, especially	
					in middle or low	
				PTB per 10µg/m3 of PM2.5 for 1 st	income countries	Strengths
				month of gestation	with higher levels	No specific statement.
					of air pollution.	
				3 retrospective cohort studies: 342.423	More studies are	
				births	needed in the	
				Pooled $OR = 1.10 (0.92 \text{ to } 1.30)$	future, especially	
				$I^2 = 91.0\%$ -high, with p<0.001	studies assessing	
					PM2.5 exposure at	
				PTB per 10µg/m3 of PM2.5 for <i>one</i>	the individual	
				month before birth	level. Studies on	
				6 retrospective cohort studies: 3 556 199	the association	
				births.	between PM2.5	
				Pooled $OR = 1.01 (0.86 \text{ to } 1.19)$	components and	
				$I^2 = 96.8\%$ -high, with p<0.001	sources and	
1					matama hinth and	
			any of the meta-analyses	9 studies (1 prospective and 8 retrospective cohorts; 2,208,883 births Pooled OR= 1.08 (0.99 to 1.17) $I^2 = 92.1\%$ -high, with p<0.001 PTB per 10µg/m3 of PM2.5 for I^{st} <i>month of gestation</i> 3 retrospective cohort studies; 342,423 births Pooled OR= 1.10 (0.92 to 1.30) $I^2 = 91.0\%$ -high, with p<0.001 PTB per 10µg/m3 of PM2.5 for <i>one</i> <i>month before birth</i> 6 retrospective cohort studies; 3,556,199 births. Pooled OR= 1.01 (0.86 to 1.19) $I^2 = 96.8\%$ -high, with p<0.001	More studies in countries other than the USA are needed, especially in middle or low income countries with higher levels of air pollution. More studies are needed in the future, especially studies assessing PM2.5 exposure at the individual level. Studies on the association between PM2.5 components and sources and	due to the limited quantity of related studies.' Strengths No specific statement.

		PTB per 10µg/m3 of PM2.5 by	still limited, and	
		exposure assessment methods	more studies are	
		Assessed exposure at individual level	needed in the	
		3 studies (1 prospective and 2	future.	
		retrospective cohort studies: 350 652	Improving the data	
		hirths	quality of public	
		Pooled $OR = 1.11 (0.89 \text{ to } 1.37)$	records is one way	
		$I^2 = 61.3\%$ -moderate with	to improve related	
		n = 0.085	studies Future	
		NB : Considered individual-level	longitudinal	
		exposure as assessed using complicated	studies that collect	
		dispersion models based on traffic	more detailed	
		meteorology roadway geometry vehicle	information at the	
		emission air quality monitoring and	individual level	
		land use databases to estimate each	would be	
		subject's daily PM2 5 exposure level	beneficial	
		with high accuracy	Further studies are	
		with high decuracy.	needed to explore	
		Assessed exposure at semi-individual	the sources of	
		level	heterogeneity in	
		9 studies (3 prospective and 6	the future "	
		retrospective cohort studies: 2 353 605	the future.	
		hirths		
		Pooled $OR = 1.14 (0.97 \text{ to } 1.35)$		
		$I^2 - 93.0\%$ -high with $p < 0.001$		
		NB : Semi-individual exposure was		
		estimated using the daily PM2 5		
		concentration from the monitoring		
		station nearest to the individual's		
		residence		
		Assessed exposure at regional level		
		4 retrospective cohort studies: 1 722 203		
		hirths		
		Pooled $OR = 1.07 (0.94 \text{ to } 1.23)$		
		$I^2 = 92.8\%$ -high, with p<0.001		
		NB: Regional-level exposure was		
		calculated using the average PM2.5		
		concentration in a region or a grid with		
		low resolution. This method did not		

		consider the variation in PM2 5	
		consider the variation in TW2.5	
		concentration within a region, and	
		assumed that all subjects in this region	
		had the same PM2.5 exposure	
		concentration.	
		PTB per 10µg/m3 of PM2.5 by study	
		design	
		Retrospective cohort	
		9 studies: 2,921,829 births.	
		Pooled OR= $1.10 (1.01 \text{ to } 1.21)$	
		$I^2 = 93.3\%$ -high, with < 0.001	
		-	
		Prospective cohort	
		4 studies: 167.357 births.	
		Pooled $OR = 1.42 (0.99 \text{ to } 2.03)$	
		$I^2 = 39.5\%$ -low with p=0.201	
		PTB ner 10µg/m3 of PM2.5 by study	
		setting/country	
		USA	
		8 studies (1 prospective and 7	
		retrospective schort studies: 2 525 004	
		hirthe	
		Diffuils. $D_{1,2} = \frac{1}{2} $	
		Pooled $OR = 1.16 (1.04 \text{ to } 1.29)$	
		$1^2 = 90.6\%$ -nign, with p < 0.001	
		Other countries	
		5 studies (3 prospective and 2	
		retrospective cohort studies; 564,182	
		births.	
		Pooled OR= $0.98 (0.95 \text{ to } 1.01)$	
		$I^2 = 0.1\%$ -low, with p=0.095.	
		Other subgroup analyses	
		Several meta regression analyses	
		employed to further evaluate the impacts	
		of study characteristics on the	
		associations between PM2.5 exposure	
		and preterm birth risks found similar	
		results.	

				Leave-one-out sensitivity analyses		
				In the meta-analysis that included studies		
				assessing PM2.5 exposure at the semi-		
				individual level, the estimate became		
				significant after excluding a single study		
				with the smallest effect size. All others		
				after excluding a single study with the		
				largest effect size, the smallest effect		
				size, the largest standard error, or the		
				smallest standard error did not vield any		
				significant change.		
18. Lamichhane	PM2.5.	PTB, change	Change in BW (g) per	By trimester	'Future large	Strengths
(Lamichhane et	PM10	in BW.	10µg/m3 of PM2.5	Change in BW (g) per 10µg/m3 of	cohort studies	'One advantage of this
al., 2015)	-		Entire pregnancy	PM2.5	with sufficient	review is that we
03/11/2015			combined studies.	1 st trimester	data and detailed	appraised all
[4; All Incheon,			(8 cohort studies; 5,493,944	(6 cohort studies; 4,565,337 births).	information on	individual studies
Korea]			births).	pooled ES =	timing of smoking	included in the
-			Pooled ES = -13.88 g (95%)	-8.03(-14.54 to	during pregnancy	outcome specific
			CI, -15.70 to -12.06 g)	-1.53) with I ² =85.1% -high, p=0.000	and other potential	analysis according to a
			$I^2=47.5\%$ moderate, p=0.064	2^{nd} trimester	confounding	structured and
			Studies that adjusted for	(5 cohort studies; 4,561,484 births).	factors as well as	validated checklist,
			smoking	pooled ES =	reliable exposure	helping us to present
			Entire pregnancy	-7.90	data are required	quality assessment of
			(7 cohort studies; 2,090,972	(-13.70 to	for a better	methodological rigor
			births).	-2.09) with I ² =88.0% -high, p=0.000	understanding of	of studies in a more
			pooled $ES = -22.17$	3 rd trimester	the association	organized and
			(-37.93 to -6.41) with	(7 cohort studies; 5,540,383 births).	between PM and	standardized way.
			$I^2 = 92.3\%$ - high,	pooled ES =	the risk of adverse	The included studies
			p=0.000	-6.04	birth outcomes.'	allowed us to explore
			(NB : Authors noted that	(-7.69 to	'Considering the	possible exposure-
			meta-analysis for smoking-	-4.39) with I ² =14.6% - low	ubiquitous nature	response relationship
			unadjusted was not conducted	p=0.318	of particulate air	according to a critical
			due to insufficient number of	Studies that adjusted for smoking	pollution [72].	exposure period, which
			studies)	1 st trimester	exposure,	offers another
				(5 cohort studies; 1,261,503 births).	variation in effects	advantage of this meta-
			Change in BW (g) per	pooled ES =	by exposure	analysis.'
			10µg/m3 of РМ10	-6.20	period, especially	
			(NB: Separated by adjusted	(-19.51 to	time periods	Limitations
			and unadjusted for smoking)	7.12) with $I^2 = 87.8\%$ - high	shorter than	

	p=0.000	trimester and	"Although we realized
Studies that adjusted for	2 nd trimester	sources of	that the countries
smoking:	(4 cohort studies; 1,257,650 births).	heterogeneity	where studies were
Entire pregnancy	pooled ES =	between studies	conducted and the
(5 cohort studies; 477,123	-10.57	and centers should	study design might
births).	(-18.95 to	be further	also be sources of
Pooled ES = $-10.31g(95\%)$	-2.20) with $I^2 = 82.0\%$ - high	explored.	heterogeneity, they
CI, - 13.57 to -7.05 g) I ² =0.0%	p=0.001	-	were not analyzed in
low, p=0.947	3 rd trimester	Our findings have	the review due to the
	(6 cohort studies; 2,236,549 births).	substantial public	limited number of
Studies that did not adjust	pooled ES =	health	studies conducted in
for smoking:	-7.60	implications as	different countries.
Entire pregnancy	$(-9.84 \text{ to } -5.36) \text{ with } I^2 = 0.0\% \text{ - low}$	reduced BW,	Though we recognized
(3 cohort studies; 3,788,093	p=0.819	although relatively	that several sensitivity
births).		small, is a risk	analyses were
Pooled ES = $-8.17g$ (95% CI,	Change in BW (g) per 10µg/m3 of	factor for	conducted in relation
- 10.99 to -5.36g) I^2 =35.2%	PM10	numerous adverse	to race or other factors,
low, p=0.214	(NB: Separated by adjusted and	health effects early	stratified analyses
	unadjusted for smoking; by low/high	in life.'	were not performed
PTB per 10µg/m3 of PM2.5	quality studies).		based on these
NB : Ha et al (49) in the			categories due to the
review article examined	Studies that adjusted for smoking:		limited number of
PM10-PTB and was described	1 st trimester		studies, particularly
as such by the authors in	(4 cohort studies; 507,286 births).		when divided by
Table 1 but Ha et al (2004;	Pooled ES =		exposure period. We
referenced wrongly in Table 1	-1.43 (-4.77 to1.92)		also aware that the use
and Figure S2 as '2014' but	I ² =0.0% -low, p=0.964		of effect estimates
correctly referenced in	2 nd trimester		based on associations
reference list) was mistakenly	(4 cohort studies; 507,286 births).		with ambient levels of
included in estimating all the	Pooled ES =		pollutants as a
pooled ORs for PM2.5-PTB	-6.50 (-13.85 to 0.85)		surrogate for personal
association. We therefore	I ² =68.2% -moderate, p=0.024		exposure levels may
excluded the pooled ORs for	3 rd trimester		have resulted some
the PM2.5-PTB association.	(5 cohort studies; 913,913 births).		exposure
The corresponding author was	Pooled ES =		misclassification.
contacted twice but we did not	-5.11 (-8.32 to -1.89)		Other limitation
receive any reply.	I ² =0.0% -low, p=0.704		includes the fact that
			none of the included
Adjusted for smoking;	Studies that did not adjust for smoking:		studies provided the

	1		r
	PTB per 10µg/m3 of PM10	1 st trimester (6 cohort studies; 3,836,556	precise information on
	Entire pregnancy	births).	the timing of smoking
	(2 studies: 1 each cohort and	Pooled ES =	during pregnancy."
	case-control; 9,294 births).	-3.31 (-6.45 to	
	Pooled OR = 1.24 (95% CI,	-0.18), I ² =81.1%-high, p=0.000	
	1.03 to1.45) I ² =0.0% -No,	2 nd trimester (6 cohort studies; 3,836,556	
	p=0.960	births).	
	*	Pooled ES =	
	Publication bias	-1.24 (-1.99 to	
	"Did not detect a statistically	-0.50), I ² =0.00% -low, p=0.603	
	significant publication bias	3 rd trimester	
	based on the Egger's test	(7 cohort studies; 40,149,12 births).	
	(p=0.181 for PM10; p=0.241	Pooled ES =	
	for PM2.5) or by using	1.36 (-4.90 to	
	contour-enhanced funnel plot.	7.63), I ² =94.1%-high, p=0.000	
	The funnel plot revealed that	For relatively better-quality studies	
	studies were missing in areas	(NB: either un/adjusted smoking)	
	of higher statistical	Entire pregnancy	
	significance, suggesting that	(5 cohort studies; 630,250 births).	
	asymmetry may be more	Pooled ES =	
	likely to be due to factors	-10.59 (-13.24 to -7.94), I ² =0.0% -low,	
	other than publication bias,	p=0.939.	
	such as variable study	1 st trimester	
	quality."	(5 cohort studies: 686.746 births).	
	1	Pooled $ES =$	
		-2.16(-5.40 to 1.09), I ² =0.0% No.	
		p=0.500	
		2^{nd} trimester	
		(5 cohort studies: 686.746 births).	
		Pooled $ES =$	
		$-5.95(-12.19 \text{ to } 0.29), I^2 = 57.8\%$	
		moderate, $p=0.050$	
		3 rd trimester	
		(6 cohort studies: 865102 births).	
		Pooled ES =	
		-5.23 (-10.35 to -0.12), $I^2=49.5\%$ -	
		moderate, $p=0.078$	
		, p 0.070	
		For relatively low-quality studies	
		······································	

Entire pregnancy
(A cohort studies: A 904 584 hirths)
(+ conort studies, +,)0+, 30+ bittis).
Pooled ES =
2.86 (12.35 to
-2.00 (-12.55 to
6.64), I ² =89.9% -high, p=0.000
I st trimester
(5 cohort studies: 3 657 096 hirths)
(5 constraines, 5,657,696 bittis).
Pooled ES =
-2.82 (-5.96 to
0.32), $1^2=83.2\%$ -high, p=0.000
2 nd trimester
(5 conort studies; 3,657,096 births).
Pooled ES =
-1.24 (-1.98 to
-0.49), $I^2=0.0\%$ -low, p=0.485
2rd tuimesten
5 Irimester
(6 cohort studies; 4.063.723 births).
Decled ES -
rooled ES –
0.90 (-5.50 to
7.29) $I^2 - 94.6\%$ high p=0.000
7.2), 1 – 94.0% - ingit, p=0.000
PTR ner 10ug/m3 of PM10 (either
un/adjusted for smoking)
1 st trimester
(0, -1) = (1, -1) = (1, 200, 200, 1) = (1, -1)
(o conort studies; 1,508,205 Dirtins).
Pooled OR= 0.98
$(0.04 \text{ to } 1.02)$ $I^2 = 72.6\%$ high $p = 0.001$
(0.94 to 1.05), 1 - 12.0% -High p=0.001
2 ^{na} trimester
(4 cohort studies: 1024360 hirths)
Pooled OR= 0.97
$(0.95 \text{ to } 0.99)$ $I^2=0.0\%$ -No p=0.601
5 trimester
(7 cohort studies: 1.273.558 births).
Pooled OP = 1.03
100icu OX- 1.05
$(1.01 \text{ to } 1.05), I^2 = 27.1\%$ -low p=0.221
PTB per 10µg/m3 of PM10 (Studies
that adjusted for smoking)
mai aujusica joi smokilig)

1			
		I^{st} trimester (4 cohort studies; 264,672 births). Pooled OR = 0.99 (0.92 to 1.07), $I^2=41.6\%$ -moderate, p=0.162 2^{nd} trimester (1 cohort study; 8,969 births). OR = 1.10 (0.65 to 1.56), I ² =NA p=NA 3^{rd} trimester (3 cohort studies; 229,967 births). Pooled OR =0.97 (0.86 to 1.08), I ² =57.9% -moderate, p=0.093 PTB per 10µg/m3 of PM10 (Studies that did not adjusted for smoking) Entire pregnancy (1 cohort study; 28,200 births). OR = 1.19 (95% CI, 0.80 to 1.58) I ² =NA, p=NA I st trimester (4 cohort studies; 1,043,591 births). Pooled OR =0.98 (0.91 to 1.05), I ² =74.4% -moderate, p=0.008 2 nd trimester (3 cohort studies; 1,015,391 births) Pooled OR =0.97(0.95 to 0.99), I ² =0.0% -moderate, p=0.466 3 rd trimester (4 cohort studies; 1,043,591 births) Pooled OR =1.04(1.02 to 1.06), I ² =0.0% -moderate, p=0.449	
		PTB per 10µg/m3 of PM10 by study quality For relatively better-quality studies Entire pregnancy (1 case-control; 325births) OR =1.24 (1.02 to 1.46), I ² =NA, p=NA Overall risk	

		(6studies; 5 cohort and 1 case-control;	
		1,269,905 births)	
		Pooled $OR = 1.00 (0.97 \text{ to } 1.02),$	
		I ² =77.6% -high p=0.000	
		1 st trimester	
		(5 cohort studies; 1,269,580 births)	
		Pooled OR $=0.98 (0.94 \text{ to } 1.02),$	
		$I^2 = 73.0\%$ -moderate, p=0.005	
		2 nd trimester	
		(2 cohort studies; 1,013,877 births)	
		Pooled OR = $0.97 (0.94 \text{ to } 0.99), I^2 = 0.0\%$	
		-No, p=0.394	
		3 rd trimester	
		(4 cohort studies; 1,234,875 births).	
		Pooled OR = $1.03(1.00 \text{ to } 1.06)$.	
		$I^2 = 57.2\%$ -moderate, p=0.072	
		For relatively low-quality studies	
		Entire pregnancy	
		(2 cohort studies; 37,169 births).	
		Pooled OR = $1.20 (0.85 \text{ to } 1.54)$.	
		$I^2 = 57.2\%$ -moderate, p=0.072	
		Overall risk	
		(4 cohort studies: 420,783 births).	
		Pooled OR = $1.00 (0.98 \text{ to } 1.02)$.	
		$I^2=41.6\%$ -low, p=0.057	
		1 st trimester	
		(4 cohort studies: 420,783 births).	
		Pooled OR = $1.01 (0.91 \text{ to } 1.11)$.	
		$I^2 = 71.1\%$ -moderate. p=0.015	
		2^{nd} trimester	
		(3 cohort studies: 392,583 births).	
		Pooled OR = $1.00 (0.98 \text{ to } 1.01)$. I ² = 0.0%	
		-low, p=0.891	
		3 rd trimester	
		(4 cohort studies: 420.783 births).	
		Pooled OR = 1.02 (1.00 to 1.04). $I^2=0.0\%$	
		-low, p=0.566	
		····, F	

				3 rd trimester or entire pregnancy by		
				smoking status		
				Smoking adjusted		
				(4 studies: 3 cohort and 1 case-control:		
				230.292 births).		
				Pooled $OR = 1.01 (0.90 \text{ to } 1.13)$		
				$I^2=64.4\%$ -moderate n=0.038		
				Smoking unadjusted		
				(5 cohort studies: 1 557 554 hirths)		
				Pooled OR $-1.03(1.01 \text{ to } 1.05)$		
				$1^2-33.3\%$ -low p=0.200		
				1 – 55.5 % -10w, p=0.200		
				Overall risk		
				(9 studies; 8 cohort and 1 case-		
				control;1,655,983 births); 1.03 (1.01 to		
				1.05), I ² =44.6% -low, p=0.071		
				Sensitivity Analyses		
				"With some noted exception, overall, we		
				observed that meta-analysis estimates		
				were stable, excluding a particular study		
				did not change the summary point		
				estimates much.		
19. Zhu (Zhu et	PM2.5	BW, LBW,	BW reduction per 10µg/m3	BW reduction per 10µg/m3 of PM2.5	Extract from the	Limitations
al., 2015)		PTB, SGA,	of PM2.5	for by trimester	discussion or	'We found a high or
28/08/2014 [6, all		and stillbirth	for entire pregnancy	1 st trimester	conclusion:	moderate degree of
China]			12 cohort studies; 7,388,985	7 cohort studies; 5,153,167 births.	Socioeconomic	heterogeneity across
			births)	RE pooled $ES = -6.63 (-13.65 \text{ to } -0.39)$	status should be	some gestational
			RE pooled $ES = -14.58$ (-	$I^2 = 82.1\%$ - high	consistently	exposure periods.
			19.31 to -9.86)	p= 0.000	adjusted in the	We had not conceived
			I ² = 86.8% - high	2 nd trimester	future and other	the studies with other
			p= 0.000	5 cohort studies; 4,742,687 births.	factors. Further	exposure periods
			LBW per 10µg/m3 of PM2.5	RE pooled $ES = -8.00(-14.52 \text{ to } -1.48)$	explore the	(weeks and months,
			for entire pregnancy	$I^2 = 84.6\%$ - high	difference in	etc.) for the limited
			6 cohort studies; 5,691,348	p= 0.000	effects by different	quantity of related
			births)	3 rd trimester	exposure periods	studies.
			FE pooled $OR = 1.05$ (1.02 to	7 cohort studies; 5,153,167 births.	with consistency	Our study was also
			1.07)	RE pooled ES =	of study design	confined to effect
			$I^2 = 39.7\%$ - low	-14.91 (-21.73 to -8.09)	methods, exposure	estimates on
			p= 0.141	I ² = 86.3% - high	assessment, and	constituent of PM2.5'

		p=0.000	adjustment for
PTB per	• 10µg/m3 of PM2.5	•	factors. Further
for entir	e pregnancy	PTB per 10µg/m3 of PM2.5 by	research studies
8 cohort	studies; 1,764,632	trimester	are needed to
births)		1 st trimester	evaluate
RE poole	ed $OR = 1.10 (1.03 \text{ to})$	6 cohort studies; 743,647 births.	pathophysiological
1.18)	x	RE pooled OR = $0.96 (0.77 \text{ to } 1.21)$	mechanisms by
$I^2 = 52.09$	% - moderate	$I^2 = 87.2\%$ - high	considering
p = 0.042		p= 0.000	alternative
		2^{nd} trimester	exposure metrics.
SGA per	r 10µg/m3 of PM2.5	3 cohort studies; 598,606 births.	Review of pooled
for entir	e pregnancy	RE pooled OR = $0.90 (0.79 \text{ to } 1.03)$	effects of chemical
6 cohort	studies; 1,515,887	$I^2 = 0.0\%$ - No	constituents might
births.		p = 0.700	be doable in near
RE poole	ed OR = $1.15 (1.10 \text{ to})$	3 rd trimester	future. A lot of
1.20)		6 cohort studies; 1,240,212 births.	studies on
$I^2 = 0.0\%$	- No	RE pooled OR = $0.97 (0.89 \text{ to } 1.05)$	different
p= 0.877	,	$I^2 = 31.4\%$ - low	trimesters are also
		p= 0.200	needed to explore
Stillbirt	h per 10µg/m3 of	SGA per 10µg/m3 of PM2.5 for by	the sensitive
PM2.5 f	or entire pregnancy	trimester	exposure window
1 cohort	study by Faiz et al.,	1 st trimester	of the risk of
2012 (34	3,077 births in New	6 cohort studies; 1,740,763 births.	SGA. Pregnant
Jersey, U	JSA)	RE pooled OR = $1.07 (1.05 \text{ to } 1.10)$	women need to
OR= 1.1	8 (0.69 to 2.04)	$I^2 = 5.0\%$ - low	take effective
Publicat	tion bias	p= 0.385	measures to
No evide	ence of publication	2 nd trimester	reduce PM2.5
bias base	ed on Begg's funnel	5 cohort studies; 1,706,058 births.	exposure.
plot and	Egger's test, p>0.05	RE pooled $OR = 1.06 (1.02 \text{ to } 1.10)$	
		$I^2 = 58.1\%$ - moderate	
		p= 0.049	
		3 rd trimester	
		5 cohort studies; 1,706,058 births.	
		RE pooled $OR = 1.06 (1.04 \text{ to } 1.08)$	
		$I^2 = 13.4\%$ - low	
		p=0.329	
		Stillbirth per 10µg/m3 of PM2.5 by	
		trimester	
		1 st trimester	

				1 cohort study by Faiz et al., 2012		
				(343,077 births in New Jersey, USA		
				OR= 1.42 (0.90 to 2.20)		
				2 nd trimester		
				1 cohort study by Faiz et al., 2012		
				(343,077 births in New Jersey, USA		
				OR= 1.39 (0.90 to 2.12)		
				3 rd trimester		
				1 cohort study by Faiz et al., 2012		
				(343,077 births in New Jersey, USA		
				OR= 1.21 (0.55 to 2.66)		
				Sensitivity analysis		
				'After removing each study sequentially,		
				statistically similar results were obtained,		
				indicating the stability of our meta-		
				analysis.'		
				Meta-regression Of the characteristics		
				of the studies we evaluated, only meta-		
				regression for study design method and		
				exposure assessment showed significant		
				heterogeneity between studies in the		
				reported PM2.5-PTB associations.		
				However, the sources of heterogeneity in		
				the change of birth weight could partly		
				be explained by adjusted or unadjusted		
				of socioeconomic status because meta-		
				regression for this showed significant		
				heterogeneity		
20. Stieb (Stieb et	PM 10,	BW/LBW/V	BW:	Trimester-specific	Variation in	NB : No specific
al., 2012)	PM2.5,	LBW, PTB,		BW:	effects by	section but extracts
21/06/2012	NO2, SO2,	SGA/IUGR	BW per 10µg/m3 of PM2.5	BW per 10µg/m3 of PM2.5 for	exposure period	from the discussion.
[4, all Canada]	CO, O3.		for entire pregnancy	1 st trimester	and sources of	
			(7 cohort studies; 4,271,411	(4 cohort studies; 3,637,501 births)	heterogeneity	Strengths
			births)	Pooled ES= -0.30 (-9.85 to 9.25)	between	Included 'increased
			Pooled ES= -23.44 (95% CI =	$1^2 = 37.3\%$ -low with p=0.188	studies/centers	number of studies (62
			-45.50 to -1.38)	and	should be further	compared to 9–41 in
			$1^2 = 94.7\%$ -high with p=0.000		explored,	previous reviews).
				(4 cohort studies; 3,634,129 births)	potentially in	Evaluated effects by
			BW per 20µg/m3 of PM10	Pooled $ES = -14.66 (-34.01 \text{ to } 4.70)$	coordinated multi-	gestational period,

-			
for entire pregnancy	$I^2 = 74.5\%$ -moderate with p=0.008	center analyses.	estimated continuous
(7 cohort studies; 3,932,746		Future research	effects from
births)	3 rd trimester	priorities also	categorical exposures,
Pooled ES= -16.77 (95% CI =	(4 cohort studies; 3,637,501 births)	include	quantified
-20.23 to -13.31)	Pooled ES= -16.05 (-37.43 to 1.34)	consideration of	heterogeneity and
$I^2 = 15.9\%$ -low with p=0.308.	$I^2 = 85.6\%$ -low with p=0.000	alternative	conducted meta-
BW per 1ppm of CO		exposure metrics	regression to examine
for entire pregnancy	<i>BW per 20µg/m3 of PM10 for</i>	and evaluation of	the influence of certain
(4 cohort studies; 3,702,544	1 st trimester	critical exposure	study characteristics
births)	(10 cohort studies; 4,505,769 births.)	windows and	on effect sizes, as well
Pooled ES= -11.40 (95% CI =	Pooled ES= -3.92 (-8.97 to 1.13)	pathophysiological	as conducting
-29.70 to 6.90)	$I^2 = 67.2\%$ -moderate with p=0.001	mechanisms.	numerous sensitivity
$I^2 = 95.4\%$ -high with p=0.000	2^{nd} trimester		analyses, for instance
	(10 cohort studies; 4,505,769 births.)		in relation to
BW per 20ppb of NO2	Pooled $ES = -3.40$ (-7.22 to 0.43)		alternative methods of
for entire pregnancy	$I^2 = 41.2\%$ -moderate with p=0.083		exposure
(10 studies: 9 cohort and 1	3 rd trimester		classification.'
ecologic; 3,780,571 births)	(10 cohort studies; 4,505,769 births.)		
Pooled ES= -28.13 (95% CI =	Pooled $ES = -4.20$		Limitations
-44.81 to -11.45)	(-14.27 to 5.86)		Evidence of
$I^2 = 84.7\%$ -high with p=0.000	$I^2 = 93.3\%$ -high with p=0.000		publication bias based
			on funnel plot
BW per 20ppb of O3	BW per 1ppm of CO		asymmetry for PM10
for entire pregnancy	for 1 st trimester		and ozone and low
(4 cohort studies: 3,370,657	(8 cohort studies; 4,576,045 births)		birth weight despite
births)	Pooled ES= -1.47 (-7.84 to 4.90)		obtaining additional
Pooled ES= -10.01 (95% CI =	$I^2 = 94.5\%$ -high with p=0.000		unpublished results
-32.39 to 12.37)	2 nd trimester		from study authors
$I^2 = 80.9\%$ - high with p=0.001	(7 cohort studies; 4,299,282 births)		when possible.
	Pooled ES= 1.71 (0.76 to 2.67)		A high degree of
BW per 5ppb of SO2	$I^2 = 0.0\%$ -No with p=0.445		heterogeneity for some
for entire pregnancy	3 rd trimester		exposure periods.
(3 studies: 2 cohort and 1	(7 cohort studies; 4,299,282 births)		
ecologic; 3,718,863 births)	Pooled $ES = -0.90$ (-7.85 to 6.04)		
Pooled ES= 7.30 (95% CI = -	$I^2 = 91.1\%$ -high with p=0.000		
7.69 to 22.29)	BW per 20ppb of NO2 for		
I ² =79.5%-high with p=0.008	1 st trimester		
_	(11 cohort studies; 4,259,729 births)		
LBW:	Pooled ES= -4.18 (-19.18 to 10.82)		

	LBW per 10µg/m3 of PM2.5	$I^2 = 90.0\%$ -high with p=0.000	
	for entire pregnancy	2 nd trimester	
	(6 studies: 5 cohort and 1	(9 cohort studies; 3,979,113 births)	
	case-control; 4,160,105	Pooled ES= 0.85 (-1.27 to 2.97)	
	births).	$I^2 = 0.0\%$ -No with p=0.741	
	Pooled OR= 1.05 (95% CI =	3 rd trimester	
	0.99 to1.12)	(10 cohort studies; 3,982,966 births)	
	$I^2 = 85.5\%$ -high with p=0.000	Pooled ES= -7.89 (-29.04 to 13.25)	
		$I^2 = 93.5\%$ -high with p=0.000	
	LBW per 20µg/m3 of PM10		
	for entire pregnancy	BW per 20ppb of O3 for	
	(14 cohort studies, one study	1 st trimester	
	with 7 city-specific estimates	(8 cohort studies: 4,325,899 births)	
	counted 7 times; 4,419,929	Pooled ES= 2.29 (-5.09 to 9.67)	
	births)	$I^2 = 80.6\%$ -high with p=0.000	
	Pooled OR= 1.10 (95% CI =	2 nd trimester	
	1.05 to1.15)	(8 cohort studies: 4,325,899 births)	
	$I^2 = 68.4\%$ -moderate with	Pooled ES= -10.95 (-18.75 to -3.14)	
	p=0.000	$I^2 = 77.2\%$ -high with p=0.000	
		3 rd trimester	
	LBW per 1ppm of CO for	(8 cohort studies: 4,325,899 births)	
	entire pregnancy	Pooled ES= -2.79 (-7.22 to 1.64)	
	(6 cohort studies; 4,543,308	$I^2 = 80.0\%$ -high with p=0.000.	
	births)		
	Pooled OR= 1.07 (95% CI =	BW per 5ppb of SO2 for	
	1.02 to1.12)	1 st trimester	
	$I^2 = 38.2\%$ -low with p=0.152	(6 cohort studies; 4,098,747 births)	
		Pooled ES= -7.57 (-21.09 to 5.95)	
	LBW per 20ppb of NO2 for	$I^2 = 95.0\%$ -high with p=0.000	
	entire pregnancy	2 nd trimester	
	(10 studies; 7 cohort, 1 case-	(4 cohort studies; 3,808,425 births)	
	control, 1 ecological study	Pooled ES= 4.64 (-4.59 to 13.87)	
	with two results; 4,211,351	$I^2 = 65.6\%$ -moderate with p=0.033	
	births)	3 rd trimester	
	Pooled OR= 1.05 (95% CI =	(5 cohort studies; 3,883,096 births)	
	1.00 to1.09)	Pooled ES= 7.61 (-2.38 to 17.59)	
	$I^2 = 78.4\%$ -high with p=0.000	$I^2 = 93.1\%$ -high with p=0.000	
		LBW:	

	LBW per 20ppb of O3 for	LBW per 10µg/m3 of PM2.5 for	
	entire pregnancy	Trimester-specifics were not available.	
	(3 cohort studies; 3,377,984	-	
	births)	LBW per 20µg/m3 of PM10	
	Pooled OR= 1.01 (95% CI =	for 1 st trimester	
	0.82 to1.25)	(7 cohort studies; 1,153,736 births)	
	$I^2 = 24.9\%$ -low with p=0.264	Pooled OR= 1.03 (0.95 to1.11)	
	LBW per 5ppb of SO2 for	$I^2 = 41.6\%$ -low with p=0.114	
	entire pregnancy	2^{nd} trimester	
	(7 studies; 4 cohort, 2	(7 cohort studies; 1,153,736 births)	
	ecological with two results	Pooled OR= 1.02 (0.96 to 1.09)	
	from one of the ecological;	$I^2 = 22.6\%$ -low with p=0.256	
	4,400,175 births)	3 rd trimester	
	Pooled OR= 1.03 (95% CI =	(7 cohort studies; 1,153,736 births)	
	1.02 to1.05)	Pooled OR= 1.01 (0.97 to 1.06)	
	$I^2 = 0.0\%$ -No with p=0.434	$I^2 = 12.8\%$ -low with p=0.332	
	_	LBW per 1ppm of CO for	
	PTB:	1 st trimester	
	PTB per 10µg/m3 of PM2.5	(5 cohort studies; 1,129,363 births)	
	for entire pregnancy	Pooled OR= 1.05 (1.01 to 1.09)	
	(4 studies; 3 cohort and 1	$I^2 = 0.0\%$ -No with p=0.644	
	case-control; 197,980 births)	2 nd trimester	
	Pooled OR= 1.16 (95% CI =	(4 cohort studies; 900,278 births)	
	1.07 to1.26)	Pooled OR= 1.07 (1.03 to1.12)	
	$I^2 = 17.0\%$ -low with p=0.306	$I^2 = 0.0\%$ -No with p=0.666	
		3 rd trimester	
	PTB per 20µg/m3 of PM10	(5 cohort studies; 1,129,363 births)	
	for entire pregnancy	Pooled $OR = 1.01$ (0.90 to 1.14)	
	(3 studies; 2 cohort and 1	$I^2 = 86.3\%$ high with p=0.000	
	case-control; 98,774 births)	LBW per 20ppb of NO2 for	
	Pooled OR= 1.35 (95% CI =	1 st trimester	
	0.97 to1.90)	(5 cohort studies; 1,043,794 births)	
	$I^2 = 16.9\%$ -low with p=0.300	Pooled OR= 1.03 (0.99 to1.06)	
		$I^2 = 0.0\%$ -No with p=0.905	
	PTB per 1ppm of CO for	2 nd trimester	
	entire pregnancy	(4 cohort studies; 814,709 births)	
	(2 studies; 1 cohort and I case-	Pooled OR= 1.04 (1.01 to 1.08)	
	control; 112,941 births)	$I^2 = 0.0\%$ -No with p=0.863	
		3 rd trimester	

	Pooled OR= 1.05 (95% CI =	(5 cohort studies; 1,043,794 births)	
	0.95 to1.17)	Pooled OR= $0.98 (0.87 \text{ to} 1.10)$	
	I ² =0.0%-No with p=0.589	$I^2 = 69.7\%$ -moderate with p=0.010	
		LBW per 20ppb of O3 for	
	PTB per 20ppb of NO2 for	1 st trimester	
	entire pregnancy	(5 cohort studies; 1,002,748 births)	
	(5 studies; 4 cohort and 1	Pooled $OR = 0.99 (0.91 \text{ to} 1.08)$	
	ecological; 162,815 births)	$I^2 = 0.0\%$ - No with	
	Pooled OR= 1.16 (95% CI =	p=0.817	
	0.83 to1.63)	2^{nd} trimester	
	$I^2 = 53.3\%$ -moderate with	(3 cohort studies; 496,900 births)	
	p=0.073	Pooled $OR = 0.95 (0.79 \text{ to} 1.15)$	
	r	$I^2 = 33.5\%$ -low with	
	PTB per 20ppb of O3 for	p=0.222	
	entire pregnancy	3 rd trimester	
	(2 cohort studies: 98.449	(5 cohort studies: 1.002.748 births)	
	births)	Pooled $OR = 1.03$ (0.84 to 1.26)	
	Pooled $OR = 1.92$ (95% $CI =$	$I^2 = 75.6\%$ -high with	
	0 38 to 9 76)	p=0.003	
	$I^2 = 885\%$ -high with p=0.003	LBW per 5pph of SO2 for	
		1 st trimester	
	PTB per 5ppb of SO2	(5 cohort studies: 889 204 births)	
	NB: No pooled estimates due	Pooled $OR = 1.02 (0.99 \text{ to} 1.04)$	
	to 2 or fewer estimates as	$I^2 = 58.3\%$ -moderate with $p=0.048$	
	stated by authors	2^{nd} trimester	
	stated by autions.	(4 cohort studies: 660 119 hirths)	
	Publication bias	Pooled $OR = 1.01 (0.98 \text{ to} 1.04)$	
	'There was evidence of funnel	$I^2 = 40.6\%$ low with p=0.168	
	plot asymmetry indicative of	3^{rd} trimester	
	publication bias in the case of	(6 cohort studies: 963 875 hirths)	
	PM10 and ozone and L BW	Pooled OP = 0.99 (0.97 to 1.02)	
	for which there was a greater	$I^2 = 50.3\%$ moderate with $p = 0.031$	
	than expected number of	1 - 39.3%-moderate with p=0.031	
	nan expected number of	DTD.	
	sizes among small_improcise	T TD. DTR nor 10ug/m3 of DM2 5 for	
	studios with larger standard	1 ID per Toug/ind of T W12.3 for	
	arrors. The Bagg's test n value	1 initiasies 2 cohort and 1 asso control	
	una 0.04 for DM10 and the r	(4 studies, 5 conort and 1 case-control	
	was 0.04 for Pivilo and the p-	$D_{00}(100 \text{ DHH})$	
	value on Egger's blas	Provided $OK = 0.85 (0.00 \text{ to} 1.20)$	

coefficient was 0.03 for	$I^2 = 94.4\%$ -high with p=0.000	
ozone.'	2^{nd} trimester	
	(1 cohort study: 418.715 births)	
	OR = 0.66 (0.57 to 0.77)	
	$I^2 = NA$, $p = NA$	
	3 rd trimester	
	(4 studies: 3 cohort and 1 case-control	
	589 100 births)	
	Pooled $OR = 1.05 (0.98 \text{ to} 1.13)$	
	$I^2 = 33.2\%$ -low with p=0.213	
	PTB ner 20µg/m3 of PM10	
	for 1 st trimester	
	(6 cohort studies: 1.043.954 births)	
	Pooled $OR = 0.97 (0.87 \text{ to} 1.07)$	
	$I^2 = 85.3\%$ -high with p=0.000	
	2^{nd} trimester	
	(3 cohort studies: 794,396 births)	
	Pooled $OR = 0.95 (0.91 \text{ to } 0.99)$	
	$I^2 = 0.0\%$ -No with p=0.461	
	3 rd trimester	
	(6 cohort studies: 1.043.954 births)	
	Pooled $OR = 1.06 (1.03 \text{ to } 1.11)$	
	$I^2 = 20.1\%$ -low with p=0.282	
	PTB per 1ppm of CO for	
	1 st trimester	
	(5 studies: 4 cohort and 1 case-control:	
	911.850 births)	
	Pooled $OR = 0.96 (0.88 \text{ to} 1.05)$	
	$I^2 = 92.4\%$ -high with p=0.000	
	2^{nd} trimester	
	(1 cohort study: 418 715 births)	
	OR = 1.03 (0.99 to 1.07)	
	$I^2 = NA$, $p = NA$	
	3 rd trimester	
	(5 studies: 4 cohort and 1 case-control:	
	911.850 births)	
	Pooled $OR = 1.04 (1.02 \text{ to} 1.06)$	
	$I^2 = 0.0\%$ -No with p=0.569	

		PTB per 20ppb of NO2 for	
		I st trimester	
		(6 cohort studies; 807,681 births)	
		Pooled $OR = 0.87 (0.64 \text{ to} 1.17)$	
		$I^2 = 89.1\%$ -high with p=0.000	
		2 nd trimester	
		(2 cohort studies; 422,703 births)	
		Pooled OR= 1.03 (0.77 to 1.39)	
		$I^2 = 21.6\%$ -low with p=0.259	
		3 rd trimester	
		(6 cohort studies; 807,681 births)	
		Pooled $OR = 1.06 (0.96 \text{ to} 1.18)$	
		$I^2 = 19.5\%$ -low with p=0.286	
		PTB per 20ppb of O3 for	
		1 st trimester	
		(4 cohort studies: 799.840 births)	
		Pooled $OR = 1.22 (0.91 \text{ to } 1.64)$	
		$I^2 = 89.8\%$ -high with p=0.000	
		2 nd trimester	
		(1 cohort study: 418 715 births)	
		OR = 0.94 (0.88 to 1.00)	
		$I^2 = NA$ $n = NA$	
		3 rd trimostor	
		(A cohort studies: 700 840 hirths)	
		Pooled $OP = 0.97 (0.86 \text{ to } 1.10)$	
		$I^2 = 44.2\%$ low with p=0.146	
		1 = 44.2%-10w with $p = 0.140$	
		Dealed estimates were constally	
		rooled estimates were generally	
		Insensitive to the inclusion of additional	
		results based on term IUGR and SGA at	
		term to studies of LBW. Pooled	
		estimates were not sensitive to	
		differences between actual and estimated	
		odds ratios (using ratios and relative	
		risks from one study (Wilhelm and Ritz,	
		2005)	
		Assessed the validity of deriving effect	
		estimates expressed in relation to	

				continuous pollutant concentrations from		
				those based on discrete exposure		
				categories and the results were not		
				sensitive to inclusion of these additional		
				values. Substituted effect estimates based		
				on refined exposure classification in the		
				place of base estimates; results were not		
				sensitive to these substitutions.		
				Conducted meta-regression of estimates		
				of change in birth weight against		
				explanatory variables for control for		
				smoking, alcohol consumption,		
				education, socioeconomic status, as well		
				as mean pollutant concentration and		
				whether studies were restricted to		
				singleton or term pregnancies. Analyses		
				were confined to birth weight effects		
				based on entire pregnancy exposure for		
				PM10, PM2.5 and NO2 due to sufficient		
				number of effect (n=7, 8 and 10,		
				respectively). Only term pregnancy was		
				consistently associated with reduction of		
				effect size for the three pollutants.		
				Control for socioeconomic status was		
				associated with reduced effect size in		
				studies of PM10 only.		
21. Sapkota	PM2.5,	LBW/TLB	LBW per 10µg/m3 of PM2.5	By trimester	'Studies may need	Strength
(Sapkota et al.,	PM10	W, PTB	for entire pregnancy	LBW per 10µg/m3 of PM2.5	to assess outcome	'First to present results
2010) 23/11/2010			(4 studies; 831,042 births.)	NA due to insufficient study	misclassification	from a systematic
[5, all USA]			OR = 1.09 (95% CI = 0.90 to)		of gestational age	review of the literature
			1.32)	LBW per 10µg/m3 of PM10	and exposure at	and meta-analysis of
			$I^2 = 57.4\%$ -moderate with	1 st trimester	different	studies published to
			p=0.071	(5 studies)	developmental	date providing
				OR=1.00 (0.97 to 1.03)	stages by	quantitative estimates
			LBW per 10µg/m3 of PM10	3 rd trimester	matching or	of association between
			for entire pregnancy	(7 studies)	stratifying on	exposure to PM (PM10
			(11 studies; 1,935,404 births).	OR=1.00 (0.99 to 1.01)	gestational age	and PM2.5) and two
			OR = 1.02 (95% CI = 0.99 to		and assessing	major adverse birth
			1.05)	PTB per 10µg/m3 of PM2.5	exposures during	

$I^2 = 54.5\%$ -moderate with	1 st trimester	specific	outcomes: LBW and
n = 0.015	(4 studies)	gestational	PTB '
p=0.015	OR = 1.04 (0.73 to 1.34)	windows (such as	Limitations
PTB per 10µg/m3 of PM2.5	3^{rd} trimester	<25, 25–30, 30–	'While our meta-
for entire pregnancy	(3 studies)	35. and 35–37	analysis further
(6 studies: 517.760 births)	OR=1.07 (1.00 to 1.15)	weeks).	increased the statistical
OR = 1.15 (1.14 to 1.16)		Future studies	power to estimate even
$I^2 = 0.1\%$ -low with p=0.416	PTB per 10µg/m3 of PM10	need to also pay	small increases in risk.
	1 st trimester	more attention to	this increased
PTB per 10µg/m3 of PM10	(4 studies)	the likely	precision does,
for entire pregnancy	OR=1.02 (0.97 to 1.06)	multifactorial	however, not exclude
(8 studies; 1,047,489 births)	3 rd trimester	nature of these	the possibility of
OR= 1.02 (0.99 to 1.04)	(5 studies)	adverse birth	greater residual
$I^2 = 73.0\%$ -high with p=0.001	OR=1.02 (1.01 to 1.03)	events.	confounding bias not
		Future	reflected in our
NB : Stated in method as RE	NB : I^2 not provided here.	epidemiological	standard measures of
and FE but no indication	Forest plot unavailable to determine	studies of air	uncertainty (CI) since
which was used for each in the	sample size.	pollution and birth	birth record studies are
forest plot or the tables.	Leave-one-out sensitivity analyses	outcomes should	typically limited to
	Removing a particular study did not	consider mixture	routinely recorded
Publication bias	change the summary point estimates	of chemical	information and limits
'There was no significant	much with some noted exceptions. For	substances and	our ability to control
publication bias for both	PM10 exposure and LBW, removing the	geographical	for confounding by
outcomes according to both	study by Maisonet et al. (2001) results in	locations.	maternal or fetal risk
tests (p>0.05 for both Begg's	a statistically significant increase in risk.	It would be	factors.'
and Egger's test for bias).'	Likewise, for PM10 and PTB, when Ritz	desirable to	
	et al. (2000) was removed, the observed	consider	
	association was no longer formally	additional studies	
	statistically significant.	conducted in the	
		low-resource	
		countries in which	
		levels of	
		particulate	
		pollution are much	
		higher than those	
		in the currently	
		available studies	
		when quantifying	
		the burden of	

		disease related to
		particles and
		adverse birth
		outcome
		worldwide.
		However, such
		studies would
		require resources
		in routine air
		monitoring and
		health and risk
		factor surveillance
		that likely may not
		be available in
		low-resource
		countries for some
		time to come. Yet,
		this should not
		preclude
		inferences
		concerning health
		effects and
		implementing
		policies that may
		help to alleviate
		these important
		public health
		problems

Note: NO₂, Nitrogen dioxide; CO, Carbon monoxide; O₃, Ozone; SO₂, Sulphur dioxide; PM_{2.5}, particulate matter at aerodynamic diameter $\leq 2.5 \mu$ m; PM₁₀, particulate matter at aerodynamic diameter $\leq 10 \mu$ m; PTB, preterm birth; BW, birth weight; LBW, low birth weight; TLBW, term low birth weight; VLBW, very low birth weight; SGA, small-for-gestational age; IUGR, intrauterine growth retardation; SB, stillbirth; SAB, spontaneous abortion; Db, database; USA, United States of America; UK, United Kingdom; NOS, Newcastle-Ottawa Scale; OHAT, Office of Health Assessment and Translation; AHRQ, Agency for Healthcare Research and Quality; OR, odd ratio; CI, confidence interval; I², heterogeneity; FE, fixed effect; RE, random effect; RoB, risk of bias; IQR, interquartile range.

Review	Number of times	Number of	Number of	CCA	Overlap degree
category	studies appeared in	indexed primary	reviews (c)	(%)	
	reviews (N)	studies (r)			
SR	412	211	15	6.8	Moderate
SRMA	575	228	21	7.6	Moderate

Table S5. Overlaps in the systematic reviews using Corrected Covered Area (CCA)

Note: SR, systematic reviews without meta-analyses; SRMAs, systematic reviews with meta-analyses

$$CCA = \frac{N-r}{rc-r},$$

where *N* is the sum of the number of included primary studies (the total number of times studies appeared in the reviews) in the umbrella review, *r* is the total number of indexed primary studies *c* is the number of reviews. CCA score $\leq 5\%$ implies slight overlap of primary studies, 6-10% moderate, 11-15% high and >15% very high degrees of overlaps (Pieper et al., 2014)

Table S6. Association between birth weight and particulate matters by race/ethnicity during the entire pregnancy period

Pollutant (incremental units)	Exposure period	Meta-analysis	Change in birthweight (g) (95% CI)	I ² (%)	Primary studies (n)	Total births (N)	Consistency, confidence
PM _{2.5}	Whites	Uwak (2021)	-32 (-60, -4)	95	7	8,893,539	++, Pe
(10 µg/m ³)		Thayamballi (2020)	-16 (-21, -10)	68	5	6,484,085	
	Hispanics	Uwak (2021)	-1 (-23, 22)	85	5	8,525,968	+, Pe
		Thayamballi (2020)	-9 (-16, -3)	92	5	6,484,085	
	Blacks	Uwak (2021)	-27 (-82, 27)	93	5	8,867,779	+, Pe
		Thayamballi (2020)	-22 (-32, -12)	73	4	6,467,392	
	Asians	Thayamballi (2020)	-6 (-21, 9)	95	3	4,918,488	0, Pe
PM ₁₀	Whites	Uwak (2021)	-10 (-12, -8)	0	4	5,461,652	+, Pe
$(10 \mu g/m^3)$	Blacks	Uwak (2021)	3 (-65, 72)	97	3	5,452,585	0, Pe
	Hispanics	Uwak (2021)	0 (-74, 73)	96	2	5,094,081	0, Pe

Note: CI, Confidence interval; I², Heterogeneity; Beta represents change in birth weight in grams; '++' represents significant positive association ; '0' represents contradictory/unclear direction; Pe, probable evidence.

Pollutant (incremental	Exposure period	Meta-analysis	OR (95% CI)	I ² (%)	Primary studies (n)	Total births (N)	Consistency, confidence
<u>units)</u>	D		1.15 (1.10. 1.00)	0		1 515 005	
PM _{2.5}	Entire	Zhang (2016) and	1.15 (1.10, 1.20)	0	6	1,515,887	+, Pe
(10 µg/m ³	Pregnancy	Zhu (2015)*					
	Trimester 1	Zhang (2016) and	1.07 (1.05, 1.10)	5	6	1,740,763	0, Pe
		Zhu (2015)				, ,	,
	Trimester 2	Zhang (2016) and	1.06 (1.02, 1.10)	58	5	1,706,058	+, Pe
		Zhu (2015)					,
	Trimester 3	Zhang (2016) and	1.06 (1.04, 1.08)	13	5	1,706,058	+, Pe
		Zhu (2015)					

Table S7. Association between small-for-gestational age (SGA) and ambient air pollution

* Complete duplicated meta-analyses and hence considered as one. Note: OR, odd ratio; CI, confidence intervals; I², Heterogeneity; '+' represents less consistent positive association; '0' represents contradictory/unclear direction; Pe, probable evidence.

Figure S1. PRISMA flow chart showing the systematic literature search and processes involved in selecting the eligible studies for the umbrella review. Note: PRISMA, Preferred Reporting Items for Systematic reviews and Meta-Analyses; SRs, systematic reviews; MAs, meta-analyses.

Figure S2. The number of systematic reviews on birth outcomes and air pollution without meta-analysis (APSR) and with meta-analysis (APMA) in five-year intervals.

Figure S3. Country of affiliation and the number of reviews authors. A total of 222 authors were counted on the 36 included reviews. Note: Where there were multiple countries of affiliation for a review author on a given review paper, only the first affiliated country was considered, and review authors were counted per review without consideration to an author appearing in more than one review studies. UK, United Kingdom; US, United States.

First author, Year	1. Is the review questio n clearly and explicit ly stated?	2. Were the inclusio n criteria appropri ate for the review question ?	3. Was the search strategy appropria te?	4. Were the sources and resource s used to search for studies adequat e? ^a	5. Were the criteria for appraising studies appropriat e? ^b	6. Was critical appraisal conducted by two or more reviewers independent ly?	7. Were there methods to minimize errors in data extractio n? ^c	8. Were the methods used to combine studies appropria te?	9. Was the likelihoo d of publicati on bias assessed ?	10. Were recommendat ions for policy and/or practice supported by the reported data?	11. Were the specific directives for new research appropria te?	Score (max=1 0)	Overa ll RoB
Edwards, 2021	Y	Y	Y	Y	Y	Y	Y	Y	NA	Y	Y	10	L
Walter, 2021	Y	Y	Y	Y	Y	Y	N	Y	NA	Y	Y	9	L
Luo, 2021	Y	Y	Y	Y	Y	N	N	Y	NA	Y	Y	8	Μ
Bekkar, 2020	Y	Y	Y	Y	Ν	N	N	Y	NA	Y	Y	7	М
Heo, 2019	Y	Y	Y	Ν	U	Ν	Y	Y	NA	Y	Y	7	М
Yuan, 2019	Y	Y	Y	N	Ν	N	Ν	Y	NA	Y	Y	6	М
Tsoli, 2019	Y	Y	Y	Y	Ν	Ν	N	Y	NA	Y	Y	7	М
Grippo, 2018	Y	Y	Y	N	N	N	N	Y	NA	Y	Y	6	М
Westergaa rd, 2017	Y	Y	Y	Y	N	N	N	Y	NA	Y	Y	7	М
Jacobs, 2017	Y	Y	Y	Y	U	N	N	Y	NA	Y	Y	7	М
Shah, 2011	Y	Y	Y	Y	Y	Y	Y	Y	NA	Y	Y	10	L
Bonzini,2 010	Y	Y	Y	N	N	N	N	Y	NA	Ŷ	Y	6	М
Bosetti, 2010	Y	Y	Y	N	N	N	N	Y	NA	Y	Y	6	М

Ghosh, 2007	Y	Y	Y	Y	U	N	N	Y	NA	Y	Y	7	М
Glinianaia , 2004	Y	Y	Y	Y	N	N	Y	Y	NA	Y	Y	8	М
Y	15	15	15	10	4	3	4	15		15	15	Averag e score = 7.4	Avera ge overal l RoB
U	0	0	0	0	3	0	0	0		0	0		Μ
N	0	0	0	5	8	12	11	0		0	0		

Figure S4. Summary of the risk of bias (RoB) assessment with Joanna Briggs Institute (JBI) critical appraisal checklist of the systematic reviews without meta-analysis for ambient air pollution and birth outcomes. (https://jbi-global-

wiki.refined.site/space/MANUAL/3283910853/Appendix+10.1+JBI+Critical+Appraisal+Checklist+for+Systematic+reviews+and+Research+Syntheses) a'Yes' if at least two electronic databases were searched

^b'Yes' if standardised tools were used and results reported for each study, 'Unclear' if stated as done but results were not reported for each study.

"Yes' if data extraction was performed by at least two reviewers independently

Yes (Y)	
Unclear(U)	
No (N)	
Not applicable (NA)	
High (H)	
Moderate (M)	
Low (L)	

First author, Year	1. Is the review questio n clearly and explicit ly stated?	2. Were the inclusio n criteria appropri ate for the review question ?	3. Was the search strategy appropria te?	4. Were the sources and resource s used to search for studies adequat e? ^a	5. Were the criteria for appraising studies appropriat e? ^b	6. Was critical appraisal conducted by two or more reviewers independent ly?	7. Were there methods to minimize errors in data extractio n? ^c	8. Were the methods used to combine studies appropria te?	9. Was the likelihoo d of publicati on bias assessed ?	10. Were recommendat ions for policy and/or practice supported by the reported data?	11. Were the specific directives for new research appropria te?	Score (max=1 1)	Overa 11 RoB
Gong, 2021	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Zhu, 2021	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	10	L
Ju, 2021	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Xie, 2021	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Rappazzo, 2021	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Zhang, 2021	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Uwak,202 1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Simonici, 2020	Y	Y	Y	N	Y	N	Y	Y	Ν	Y	Y	8	М
Thayamba 1li, 2020	Y	Y	Y	Y	U	Y	N	Y	N	Y	Y	8	М
Li, 2020	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	11	L
Ji, 2017	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Liu, 2017	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Li, 2017	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Zhang, 2016	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	9	L
Siddika, 2016	Y	Y	Y	Y	U	N	Y	Y	Y	Y	Y	9	L
Sun, 2016	Y	Y	Y	Y	Ν	Ν	Y	Y	Y	Y	Y	9	L

Sun, 2015	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Lamichha	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11	L
Zhu, 2015	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	9	L
Stieb, 2012	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	9	L
Sapkota, 2010	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	9	L
Y	21	21	21	20	14	13	20	21	19	21`	21	Averag	Avera
U	0	0	0	0	2	0	0	0	0	0	0	e score	ge
Ν	0	0	0	1	5	8	1	0	2	0	0	= 10.1	1 RoB

Figure S5. Summary of the risk of bias (RoB) assessment with Joanna Briggs Institute (JBI) critical appraisal checklist of the systematic reviews with meta-analysis for ambient air pollution and birth outcomes. (https://jbi-global-

wiki.refined.site/space/MANUAL/3283910853/Appendix+10.1+JBI+Critical+Appraisal+Checklist+for+Systematic+reviews+and+Research+Syntheses)

^a'Yes' if at least two electronic databases were searched

^b'Yes' if standardised tools were used and results reported for each study, 'Unclear' if stated as done but results were not reported for each study.

"Yes' if data extraction was performed by at least two reviewers independently

Yes (Y)	
Unclear(U)	
No (N)	
Not applicable (NA)	
High (H)	
Moderate (M)	
Low (L)	

Figure S6. Association between change in birth weight (BW) in grams per $10\mu g/m^3 PM_{10}$ increase at different pregnancy periods. Solid points represent point estimates of the individual meta-analysis studies, and the whiskers represent 95% confidence intervals (CIs). The green dotted vertical line represents the reference for no change in birth weight of 0. Note: PM₁₀, particulate matter at aerodynamic diameter $\leq 10\mu m$.

Figure S7. Forest plot of the association between change in birth weight (BW) in grams and Nitrogen dioxide (NO₂) per 10 parts per billion (ppb) increment in NO₂ at different pregnancy periods. Solid points represent point estimates of the meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for no change in birth weight of 0.

Figure S8. Forest plot of the association between $PM_{2.5}$ increase per $10\mu g/m^3$ and change in birth weight in grams (BW) across entire pregnancy period by race/ethnicity. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for no change in birth weight of 0. Note: $PM_{2.5}$, particulate matter at aerodynamic diameter $\leq 2.5\mu m$.

Figure S9. Forest plot of the association between low birth weight (LBW) per $10\mu g/m^3$ PM_{2.5} increase at different pregnancy periods) at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dashed line represents the reference for null association of 1. Note: PM_{2.5}, particulate matter with aerodynamic diameter $\leq 2.5\mu m$.

Figure S10. Forest plot of the association between low birth weight (LBW) per $10\mu g/m^3 PM_{10}$ increase at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1. Note: PM₁₀, particulate matter at aerodynamic diameter $\leq 10\mu m$.

Figure S11. Forest plot of the association between low birth weight (LBW) and carbon monoxide (CO) per 100 parts per billion (ppb) increment in CO at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S12. Forest plot of the association between low birth weight (LBW) and Nitrogen dioxide (NO₂) per 20 parts per billion (ppb) increment in NO₂ at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S13. Forest plot of the association between low birth weight (LBW) and Ozone (O_3) per 10 parts per billion (ppb) increment in O_3 at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S14. Forest plot of the association between low birth weight (LBW) and Sulphur dioxide (SO₂) per 10 parts per billion (ppb) increment in SO₂ at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S15. Forest plot of the association between preterm birth (PTB) per $10\mu g/m^3 PM_{10}$ increase at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents null association of 1. Note: PM_{10} , particulate matter at aerodynamic diameter $\leq 10\mu m$.

Figure S16. Forest plot of the association between preterm birth (PTB) and Nitrogen dioxide (NO₂) per 10 parts per billion (ppb) increment in NO₂ at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S17. Forest plot of the association between preterm birth (PTB) and carbon monoxide (CO) per 100 parts per billion (ppb) increment in CO at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S18. Forest plot of the association between preterm birth (PTB) and Ozone (O₃) per 10 parts per billion (ppb) increment in O₃ at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S19. Forest plot of the association between stillbirth (SB) and fine particulate matter (PM_{2.5}) per $10\mu g/m^3$ increment) during different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1. Note: PM_{2.5}, particulate matter at aerodynamic diameter $\leq 2.5\mu m$.

Figure S20. Forest plot of the association between stillbirth (SB) and fine particulate matter (PM_{10}) per $10\mu g/m^3$ increment) during different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1. Note: PM_{10} , particulate matter at aerodynamic diameter $\leq 10\mu m$.

Figure S21. Forest plot of the association stillbirth (SB) and Nitrogen dioxide (NO₂) per 10 parts per billion (ppb) increment in NO₂ at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S22. Forest plot of the association between stillbirth (SB) and Sulphur dioxide (SO₂) per 10 parts per billion (ppb) increment in SO₂ at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S23. Forest plot of the association between stillbirth (SB) and carbon monoxide (CO) per 100 parts per billion (ppb) increment in CO at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Figure S24. Forest plot of the association between stillbirth (SB) and ozone (O_3) per 10 parts per billion (ppb) increment in O_3 at different pregnancy periods. Solid points represent point estimates of the individual meta-analyses results, and the whiskers represent 95% confidence intervals (CIs). The vertical green dotted line represents the reference for null association of 1.

Section and Topic	Item #	Checklist item	Location where item is reported			
TITLE						
Title	1	Identify the report as a systematic review.	Page 1			
ABSTRACT	I					
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Page 2			
INTRODUCTION						
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 3			
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 3-4			
METHODS						
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 4			
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 4			
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Supplemental Table S1			
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 4-5			
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 4-5			
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 4-5			
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Page 4-5			
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5			
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 6			
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 5-6			
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 5-6			

Section and Topic	Item #	Checklist item	Location where item is reported
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 5-6
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 5-6
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	NA
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	NA
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	NA
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Page 5-6
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 6
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Supplemental Table S2
Study characteristics	17	Cite each included study and present its characteristics.	Table 1-2
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Supplemental Figure S4-S5
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Page 9-13, Table 3-6, Table S6-S7, Figure 2-3, Figure S6-24
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Page 6-8
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Page 9-13
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	NA
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	NA
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	NA

Section and Topic	Item #	Checklist item	Location where item is reported	
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Page 9-13	
DISCUSSION				
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 13-19	
	23b	Discuss any limitations of the evidence included in the review.	Page 19-20	
	23c	Discuss any limitations of the review processes used.	Page 19-20	
	23d	Discuss implications of the results for practice, policy, and future research.	Page 20-21	
OTHER INFORMATION				
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Page 4	
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Page 4	
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	Page 6	
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 22	
Competing interests	26	Declare any competing interests of review authors.	Page 22	
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Supplemental material	

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

References

- Bekkar, B., Pacheco, S., Basu, R., DeNicola, N. 2020. Association of Air Pollution and Heat Exposure With Preterm Birth, Low Birth Weight, and Stillbirth in the US: A Systematic Review. JAMA Network Open. 3(6), e208243-e208243. https://doi.org/10.1001/jamanetworkopen.2020.8243
- Bonzini, M., Carugno, M., Grillo, P., Mensi, C., Bertazzi, P. A., Pesatori, A. C. 2010. Impact of ambient air pollution on birth outcomes: systematic review of the current evidences. Med. Lav. 101(5), 341-363.
- Bosetti, C., Nieuwenhuijsen, M. J., Gallus, S., Cipriani, S., La Vecchia, C., Parazzini, F. 2010. Ambient particulate matter and preterm birth or birth weight: a review of the literature. Arch. Toxico. 84(6), 447-460. <u>https://doi.org/10.1007/s00204-010-0514-z.</u>
- Edwards, L., Wilkinson, P., Rutter, G., Milojevic, A. 2022. Health effects in people relocating between environments of differing ambient air pollution concentrations: A literature review. Environ. Pollut. 292, 118314. <u>https://doi.org/10.1016/j.envpol.2021.118314</u>.
- Ghosh, R., Rankin, J., Pless-Mulloli, T., Glinianaia, S. 2007. Does the effect of air pollution on pregnancy outcomes differ by gender? A systematic review. Environ. Res. 105(3), 400-408. <u>https://doi.org/10.1016/j.envres.2007.03.009.</u>
- Glinianaia, S. V., Rankin, J., Bell, R., Pless-Mulloli, T., Howel, D. 2004. Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiol. 15(1), 36-45. <u>https://doi.org/10.1097/01.ede.0000101023.41844.ac</u>
- Gong, C., Wang, J., Bai, Z., Rich, D. Q., Zhang, Y. 2022. Maternal exposure to ambient PM2.5 and term birth weight: A systematic review and meta-analysis of effect estimates. Sci. Total Environ. 807, 150744. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150744.
- Grippo, A., Zhang, J., Chu, L., Guo, Y., Qiao, L., Zhang, J., et al. 2018. Air pollution exposure during pregnancy and spontaneous abortion and stillbirth. Rev. Environ. Health. 33(3), 247-264. <u>https://doi.org/10.1515/reveh-2017-0033.</u>
- Heo, S., Fong, K. C., Bell, M. L. 2019. Risk of particulate matter on birth outcomes in relation to maternal socio-economic factors: a systematic review. Environ. Res. Lett. 14(12). https://doi.org/10.1088/1748-9326/ab4cd0.
- Jacobs, M., Zhang, G., Chen, S., Mullins, B., Bell, M., Jin, L., et al. 2017. The association between ambient air pollution and selected adverse pregnancy outcomes in China: A systematic review. Sci. Total Environ. 579, 1179-1192. <u>https://doi.org/10.1016/j.scitotenv.2016.11.100.</u>
- Ji, Y., Song, F., Xu, B., Zhu, Y., Lu, C., Xia, Y. 2017. Association between exposure to particulate matter during pregnancy and birthweight: a systematic review and a meta-analysis of birth cohort studies. J. Biomed Res. https://doi.org/10.7555/JBR.31.20170038.
- Ju, L., Li, C., Yang, M., Sun, S., Zhang, Q., Cao, J., et al. 2021. Maternal air pollution exposure increases the risk of preterm birth: Evidence from the metaanalysis of cohort studies. Environ. Res. 202, 111654. <u>https://doi.org/10.1016/j.envres.2021.111654</u>.
- Lamichhane, D. K., Leem, J. H., Lee, J. Y., Kim, H. C. 2015. A meta-analysis of exposure to particulate matter and adverse birth outcomes. Environ. Health Toxicol. 30, e2015011. https://doi.org/10.5620/eht.e2015011.
- Li, C., Yang, M., Zhu, Z., Sun, S., Zhang, Q., Cao, J., et al. 2020. Maternal exposure to air pollution and the risk of low birth weight: A meta-analysis of cohort studies. Environ. Res. 190, 109970. https://doi.org/10.1016/j.envres.2020.109970.
- Li, X., Huang, S., Jiao, A., Yang, X., Yun, J., Wang, Y., et al. 2017. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environ. Pollut. 227, 596-605. <u>https://doi.org/10.1016/j.envpol.2017.03.055.</u>
- Liu, C., Sun, J., Liu, Y., Liang, H., Wang, M., Wang, C., et al. 2017. Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies. Environ. Sci. Pollut. Res. Int. 24(22), 17976-17984. <u>https://doi.org/10.1007/s11356-017-9363-0.</u>

- Luo, D., Kuang, T., Chen, Y.-X., Huang, Y.-H., Zhang, H., Xia, Y.-Y. 2021. Air pollution and pregnancy outcomes based on exposure evaluation using a land use regression model: A systematic review. Taiwan J. Obstet. Gynecol. 60(2), 193-215. https://doi.org/https://doi.org/10.1016/j.tjog.2021.01.004.
- Pieper, D., Antoine, S. L., Mathes, T., Neugebauer, E. A., Eikermann, M. 2014. Systematic review finds overlapping reviews were not mentioned in every other overview. J. Clin. Epidemiol. 67(4), 368-375. <u>https://doi.org/10.1016/j.jclinepi.2013.11.007.</u>
- Rappazzo, K. M., Nichols, J. L., Rice, R. B., Luben, T. J. 2021. Ozone exposure during early pregnancy and preterm birth: A systematic review and metaanalysis. Environ. Res. 198, 111317. https://doi.org/10.1016/j.envres.2021.111317.
- Sapkota, A., Chelikowsky, A. P., Nachman, K. E., Cohen, A. J., Ritz, B. 2010. Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Qual. Atmos. Health. 5(4), 369-381. <u>https://doi.org/10.1007/s11869-010-0106-3.</u>
- Shah, P. S., Balkhair, T., Knowledge Synthesis Group on Determinants of Preterm, L. B. W. b. 2011. Air pollution and birth outcomes: a systematic review. Environ. Int. 37(2), 498-516. <u>https://doi.org/10.1016/j.envint.2010.10.009</u>.
- Siddika, N., Balogun, H. A., Amegah, A. K., Jaakkola, J. J. 2016. Prenatal ambient air pollution exposure and the risk of stillbirth: systematic review and meta-analysis of the empirical evidence. Occup. Environ. Med. 73(9), 573-581. <u>https://doi.org/10.1136/oemed-2015-103086.</u>
- Simoncic, V., Enaux, C., Deguen, S., Kihal-Talantikite, W. 2020. Adverse Birth Outcomes Related to NO2 and PM Exposure: European Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 17(21). <u>https://doi.org/10.3390/ijerph17218116.</u>
- Stieb, D. M., Chen, L., Eshoul, M., Judek, S. 2012. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ. Res. 117, 100-111. https://doi.org/10.1016/j.envres.2012.05.007.
- Sun, X., Luo, X., Zhao, C., Chung Ng, R. W., Lim, C. E., Zhang, B., et al. 2015. The association between fine particulate matter exposure during pregnancy and preterm birth: a meta-analysis. BMC Pregnancy Childbirth, 15, 300. <u>https://doi.org/10.1186/s12884-015-0738-2.</u>
- Sun, X., Luo, X., Zhao, C., Zhang, B., Tao, J., Yang, Z., et al. 2016. The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: A meta-analysis. Environ. Pollut. 211, 38-47. <u>https://doi.org/10.1016/j.envpol.2015.12.022.</u>
- Thayamballi, N., Habiba, S., Laribi, O., Ebisu, K. 2020. Impact of Maternal Demographic and Socioeconomic Factors on the Association Between Particulate Matter and Adverse Birth Outcomes: a Systematic Review and Meta-analysis. J. Racial Ethn. Health Disparities. <u>https://doi.org/10.1007/s40615-020-00835-2.</u>
- Tsoli, S., Ploubidis, G. B., Kalantzi, O.-I. 2019. Particulate air pollution and birth weight: A systematic literature review. Atmos. Pollut. Res. 10(4), 1084-1122. <u>https://doi.org/10.1016/j.apr.2019.01.016.</u>
- Uwak, I., Olson, N., Fuentes, A., Moriarty, M., Pulczinski, J., Lam, J., et al. 2021. Application of the navigation guide systematic review methodology to evaluate prenatal exposure to particulate matter air pollution and infant birth weight. Environ. Int. 148, 106378. <u>https://doi.org/10.1016/j.envint.2021.106378</u>.
- Walter, C. M., Schneider-Futschik, E. K., Hall, N. L., Sly, P. D., Head, B. W., Knibbs, L. D. 2021. The health impacts of ambient air pollution in Australia: A systematic literature review. Intern. Med. J. <u>https://doi.org/10.1111/imj.15415.</u>
- Westergaard, N., Gehring, U., Slama, R., Pedersen, M. 2017. Ambient air pollution and low birth weight are some women more vulnerable than others? Environ. Int. 104, 146-154. <u>https://doi.org/10.1016/j.envint.2017.03.026</u>

- Xie, G., Sun, L., Yang, W., Wang, R., Shang, L., Yang, L., et al. 2021. Maternal exposure to PM2.5 was linked to elevated risk of stillbirth. Chemosphere. 283, 131169. <u>https://doi.org/10.1016/j.chemosphere.2021.131169.</u>
- Yuan, L., Zhang, Y., Gao, Y., Tian, Y. 2019. Maternal fine particulate matter (PM2.5) exposure and adverse birth outcomes: an updated systematic review based on cohort studies. Environ. Sci. Pollut. Res. Int. 26(14), 13963-13983. <u>https://doi.org/10.1007/s11356-019-04644-x.</u>
- Zhang, H., Zhang, X., Wang, Q., Xu, Y., Feng, Y., Yu, Z., et al. 2021. Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies. Environ. Pollut. 278, 116752. https://doi.org/10.1016/j.envpol.2021.116752.
- Zhang K, L. Y., Zhao H, Guo J, Gehendra M, Qiu H, Wu S, He D. 2016. Association between atmospheric particulate matter and adverse pregnancy outcomes in the population. Int. J. Clin. Exp. Med. 9(11), 20594-20604.
- Zhu, W., Zheng, H., Liu, J., Cai, J., Wang, G., Li, Y., et al. 2022. The correlation between chronic exposure to particulate matter and spontaneous abortion: A meta-analysis. Chemosphere. 286, 131802. <u>https://doi.org/10.1016/j.chemosphere.2021.131802.</u>
- Zhu, X., Liu, Y., Chen, Y., Yao, C., Che, Z., Cao, J. 2015. Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis. Environ. Sci. Pollut. Res. Int. 22(5), 3383-3396. https://doi.org/10.1007/s11356-014-3458-7.