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Abstract: Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the
reliability issues associated with traditional prognostic markers, the purpose of this study is to
investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication
of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a
retrospective study with methods based on best practice procedures for radiomics research. Sixty-
four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for
radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore
CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate)
on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection
for overfitting avoidance; and model development with three-fold cross-validation. The radiomics
model and signature performances were evaluated based on the area under the receiver operating
characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study’s results show
that our pCT-based radiomics model was able to predict the six-year progression-free survival of the
high-risk localized PCa patients who received the WPRT with highly consistent performances (mean
AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies
including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity
and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and
0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available
than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could
be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes
in high-risk localized PCa.

Keywords: artificial intelligence; biomarker; machine learning; malignancy; medical imaging;
prognosis; progression-free survival; radiation therapy; recurrence; tumor
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1. Introduction

According to Global Cancer Statistics, prostate cancer (PCa) was the third most com-
mon cancer accounting for 7.3% of all cancer deaths in 2020 [1]. In 2023, the most common
male cancer in USA was PCa causing an estimated 34,700 deaths, which is the second
highest cancer death rate of 11% [2]. As per the European Society for Medical Oncology
(ESMO) [3] and American Cancer Society (ACS) [4] guidelines, patients with localized
prostate cancer can be classified into three main risk groups based on T category, Gleason
score (GS) and prostate-specific antigen (PSA) representing low, intermediate and high
risks, respectively: T1-T2a and GS ≤ 6 and PSA ≤ 10; T2b and/or GS 7 and/or PSA 10–20;
and T3a or GS 8–10 or PSA > 20. More than one third of PCa patients belong to the high-risk
group [5].

Low- and intermediate-risk patients may only need active surveillance. However,
either long-term androgen deprivation therapy (ADT) plus radical radiotherapy (RT) or
radical prostatectomy (RP) and pelvic lymphadenectomy are required for treating high-risk
patients [3]. Whole pelvic RT (WPRT) and prostate-only RT (PORT) are the two typical
radical RT options used for treating high-risk prostate cancer patients [6–8]. Usually, the
Roach formula is used to estimate involvement of pelvic nodes based on GS and PSA, with
15% or greater nodal risk as an indicator for adopting WPRT despite its increased acute
and late gastrointestinal toxicity compared to PORT [6,7,9]. Nonetheless, a recent literature
review on the identification and prediction of prostate cancer indicated that PSA and GS
may not be reliable prognostic markers. This is because PSA can increase without PCa,
and intermediate- and high-risk patients may have low PSA levels. Also, the variation of
GS determined from pre- and post-RP specimens is common [10]. It is noted that more
than 40% of high-risk patients die from PCa, which is 10 times greater than for low-risk
patients [5]. Hence, better approaches to PCa risk stratification, treatment selection and
outcome assessment have been explored over the years, and radiomics is considered one of
the potential candidates [10,11].

Radiomics refers to quantitative feature extraction from medical images as imaging
biomarkers for clinical decision support with the aim of improving the accuracy of diag-
nosis, prognosis and outcome prediction, which are essential in personalized medicine
(also known as precision medicine) and include diagnosis and treatment [10,12]. Although
the concept of radiomics has only emerged over the last decade, numerous studies have
explored its potential in precision medicine including for the prognostication of prostate
cancer [10–38]. So far, the benefits of radiomics have not been translated into clinical
practice because of its limited reproducibility as a result of a lack of process standardiza-
tion [10,12]. Typically, five major steps are involved in the radiomics workflow including
medical image acquisition and segmentation, feature extraction and selection, and model
development [10–14]. However, the approaches involved in each step varied across stud-
ies in terms of different scanning protocols for image acquisition and the use of manual,
semi-automatic or fully automatic segmentation. These have subsequent impacts on the
reproducibility of results because features determined as clinically relevant to one set-
ting become irrelevant to another setting when images are acquired and segmentation
is performed in varying ways [10–12,17–38]. Commonly, magnetic resonance imaging
(MRI) [17–22], positron emission tomography (PET) [23–35] and computed tomography
(CT) [36–38] are used for PCa diagnosis and management [10]. However, CT is the standard-
of-care modality for PCa RT planning, while the other modalities may not be available
in some clinical settings [39]. Also, the use of MRI for radiomics appears problematic
due to its non-standardized voxel intensity values, which are greatly influenced by the
variation in scanning protocols [10,17–22]. Although planning CT (pCT)-based radiomics
allows seamless integration into existing RT workflow, there is a paucity of studies on
this for high-risk PCa. These include that published in 2019 on PCa risk stratification and
our latest study published in 2023 on pCT-based radiomics for the long-term prognos-
tication of high-risk localized PCa patients who received PORT [10–13,39]. To the best
of our knowledge, no study has explored the potential of pCT-based radiomics with its
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counterpart, WPRT. Given the high death rate of high-risk PCa (>40%) and the reliability
issues associated with traditional prognostic markers [5,10], the purpose of this study is to
investigate pCT-based radiomics for the long-term prognostication of high-risk localized
PCa patients who received WPRT. We hypothesized that pCT-based radiomics could be
used as a routine non-invasive approach for the prognostic prediction of WPRT treatment
outcomes in high-risk localized PCa.

2. Materials and Methods

This is a retrospective study with methods based on Lambin et al.’s [12] best practice
procedures for radiomics research derived from their radiomics quality score instrument.
The best practice procedures employed in our radiomics workflow included multiple
segmentations, feature reduction to avoid overfitting, cutoff analyses, use of discrimination
statistics such as receiver operating characteristic curve (ROC) and area under the ROC
curve (AUC), and a three-fold cross-validation resampling method [12,13]. This study
was conducted in accordance with the Declaration of Helsinki, and approved by the
Institutional Review Board of The Hong Kong Polytechnic University (approval number:
HSEARS20200902001 and date of approval: 20 September 2020), and Clinical & Research
Ethics Committee of New Territories East Cluster of Hospital Authority of Government of
Hong Kong Special Administrative Region (approval number: NTEC-2020-0633 and date
of approval: 9 December 2020).

2.1. Patient Selection

Eighty-four high-risk localized PCa patients, who received treatments between May 2009
and October 2014, and met the following inclusion criteria were identified through the
electronic health record system of Princess Margaret Hospital, Hong Kong Special Adminis-
trative Region. The inclusion criteria were as follows: those with risk of pelvic lymph node
involvement estimated by the Roach formula ≥15%; and whose WPRT were received [7,9].
The identified patients were excluded for the following reasons: second malignancies other
than PCa; previous PCa treatment; unavailability of pre-treatment biopsy results; or death
unrelated to PCa. Eventually, sixty-four patients were selected and randomly assigned to
training (n = 45) and testing (n = 19) cohorts for the radiomics model development. Their
clinical and WPRT treatment data such as age, pre-treatment TNM stage, GS, PSA, WPRT
technique, dose fractionation, ADT drug regimen, follow-up duration and clinical outcome
and Digital Imaging and Communications in Medicine (DICOM) datasets (pCT images
and structure sets) were collected accordingly [36–38]. Figure 1 summarizes the patient
selection procedures.
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2.2. ADT and WPRT Treatment

All selected patients were given neoadjuvant ADT (2 weeks of flutamide and 2 in-
jections of 3-month luteinising hormone-releasing hormone agonist (LHRHa)) prior to
WPRT. The WPRT’s clinical target volume (CTV) for the prostate (CTVprostate) was given
70–76 Gy in 2 Gy per fraction over 7–8 weeks with static field intensity-modulated radio-
therapy or volumetric modulated arc therapy (VMAT). CTV for whole pelvic lymph nodes
(CTVLN) was given 44 or 50 Gy with three-dimensional (3D) conformal radiotherapy or
VMAT. All treatment plans were computed to meet acceptance criteria and organs at risk
(OARs) constraints. Details on CTV, planning target volume (PTV), acceptance criteria and
OARs constraints are given in Tables S1 and S2. After completion of WPRT, patients were
prescribed adjuvant LHRHa for up to 3 years, and there were follow-ups at intervals of
3–6 months for disease monitoring. The PSA levels were determined and evaluated at each
visit. Imaging tests were performed when an increase of PSA was found [6,7,9,40].

2.3. Clinical Endpoint

This study’s clinical endpoint was the six-year progression-free survival (PFS) of
patients after WPRT. This referred to patients not having any distant metastasis, local
recurrence, regional recurrence and/or chemical recurrence for six years after completing
the WPRT course. Patient deaths unrelated to PCa were censored [9].

2.4. Radiomics Workflow
2.4.1. Medical Image Acquisition

Non-contrast pCT scans were performed on all selected patients using the Koninklijke
Philips N.V. Brilliance Big Bore CT simulator (Amsterdam, The Netherlands) as per in-house
protocol. Patients were required to empty their bladders and then drink 400 cc of water an
hour before the scans to achieve comparable bladder status. The images were taken with
the patients in the treatment position (both hands on the chest in the supine position and
the use of customized foam for immobilization) and the following scan parameters—tube
voltage: 120 kV; tube current: 350–450 mAs; slice thickness: 1.5 or 3 mm; field of view:
60 cm; matrix size: 512 × 512; pixel spacing: 1.18; and a standard convolution kernel for
image reconstruction [41].

2.4.2. Medical Image Segmentation

All the collected DICOM structure sets including OARs (bladder, bowel, femoral
head, penile bulb and rectum), CTV and PTV (prostate and lymph nodes) were manually
contoured by a radiation oncologist experienced in prostate cancer radiotherapy using
the ‘Draw Planar Contour’ function of the ‘Contouring’ interface on the Eclipse version
13 treatment planning system (Varian Medical Systems, Palo Alto, CA, USA). These were
subsequently reviewed and approved by another radiation oncologist with associate con-
sultant grade or above on the same system for original clinical use. To adhere to Lambin
et al.’s [12] best practice procedure for segmentation, an additional consultant radiation
oncologist was involved in reviewing and approving these DICOM structure sets, including
the CTVprostate as volume of interest (VOI), on the Eclipse version 13 treatment planning
system based on the European Society for Therapeutic Radiology and Oncology (ESTRO)
consensus guideline for this study [39,42]. The definitions of level of apex, lateral, anterior
and posterior borders and the base of the prostate as well as seminal vesicles stated in
the ESTRO consensus guideline were used to check the accuracy and consistency of the
CTVprostate manual segmentation to minimize intra- and inter-observer variabilities. For
example, the level of prostate apex was defined as about 1 cm above the upper border of
the penile bulb. Complete details on these definitions are available in the ESTRO consensus
guideline [42]. The average number of consecutive pCT slices segmented for the CTVprostate
was 21 (standard deviation [SD]: 3 and range: 15–28). Figure 2 shows pCT image examples
with the manually delineated CTVprostate contours included in the study.
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2.4.3. Feature Extraction

The pCT image pre-processing and feature extraction procedures used in this study
were based on those of the Image Biomarker Standardization Initiative (IBSI) [43], and
were performed using the open-source Python-based radiomics feature extraction package,
PyRadiomics version 2.2.0 [10,44]. Uniform volumetric spacing was achieved through
isotropic resampling by resizing the images to 1 × 1 × 1 mm3 based on linear interpolation.
Subsequently, a constant intensity resolution was attained by discretizing the images
to a fixed bin width of 10 Hounsfield units (HU) to extract texture features. Also, the
Laplacian of Gaussian (LoG) filter with 0.5, 2, 3, 4, 4.5 and 5 mm sigma values was used
to reconstruct the images for feature extraction from various scales of edge detection and
image smoothing. Shape features (n = 14), first-order features (n = 126) and texture features
(n = 511) of the CTVprostate were extracted after the pre-processing of images as per Figure
S1 and Table S3. The shape, first-order and texture features described the 3D size and shape
and voxel intensity distribution of the CTVprostate and voxel intensity relationship within
the CTVprostate sub-regions, respectively. For every pCT dataset, 651 radiomic features were
extracted in total [43].

2.4.4. Feature Selection

Statistical approaches were used to consecutively select a smaller set of features for
our model from the training data. The training cohort features were scaled and centered to
avoid under- or over-presentation of individual ones. Additionally, the mean and SD of
the scaled and centered training data were used to normalize the testing cohort features. A
Mann–Whitney U test was conducted to determine the clinical association of every radiomic
feature for its selection. Features having no statistically significant differences across the
outcome groups (p > 0.05) were removed. Also, redundant features were identified based
on the pair-wise correlation of the features using Spearman’s rank correlation coefficient.
When the absolute correlation coefficient of two features was greater than or equal to 0.4,
the feature with the greater mean absolute correlation was removed. The model was then
developed based on all remaining features [12,39,45–48]. A correlation coefficient of 0.4 was
selected as the threshold because previous radiomics studies used it to indicate moderate
correlation with promising outcomes for feature reduction [49,50].

2.4.5. Model Development

The model development was based on logistic regression with a least absolute shrink-
age and selection operator (LASSO) penalty as well as three-fold cross-validation. The
LASSO penalty was used for prediction error reduction and model simplification. It en-
abled the most predictive feature selection through the penalization of the sum of feature
coefficient absolute values. Features that had minor contributions to the model were forced
to undergo coefficient reduction to become zero and subsequently being removed. The
three-fold cross-validation involved randomly dividing the training data into three groups.
Two out of three groups were employed to train with the other reserved for validation.
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This process was repeated three times to involve each group once in the validation. In
addition to the model testing and bias minimization, the three-fold cross-validation was
also responsible for identifying the optimal regularization parameter for LASSO (lambda).
Finally, 1000 models were developed as a result of repeating the process of model training
a 1000 times [12,39,45–48].

2.4.6. Statistical Analysis

The statistical analysis was performed using R version 3.6.3 (The R Foundation,
Indianapolis, IN, USA). The R packages used include the following: base package for
randomization and normalization; stats package for chi-squared test, Fisher’s exact test,
Mann–Whitney U test and Spearman’s rank correlation coefficients; caret package for
pair-wise correlations; glmnet package for logistic regression with the three-fold cross-
validation and LASSO penalty; and ROCR and cvAUC packages for ROC analysis and AUC
calculation. A p-value of less than 0.05 represented statistical significance [12,39,45–48].

Models with the lowest number of selected features were used for radiomics signature
development. Every feature coefficient (β) and intercept within the radiomics signature
was determined by taking the average of those values of the included models. Equation (1)
illustrates the radiomics signature and was used to calculate the radiomics score (Rad-score)
for every patient [51,52].

Rad − score =
n

∑
i=1

βi × f eaturei + intercept (1)

The cutoff of the Rad-score was determined based on the evaluation of model accuracy,
sensitivity and specificity. The cutoff was used to classify whether a patient was more likely to
have six-year PFS based on their Rad-score. The performance of the derived radiomics signature
was evaluated in terms of accuracy, sensitivity and specificity. Additionally, the average AUC
values of the training and testing cohorts were calculated [12,39,45–48]. Figure 3 summarizes
the feature selection, model development and statistical analysis processes.J. Pers. Med. 2023, 13, x FOR PEER REVIEW  7  of  17 
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3. Results

Table 1 shows the clinicopathological characteristics of the included patients. There
was no statistically significant difference found between the characteristics of the training
and testing cohorts. Regarding the clinical endpoint, 81.5 months was the median PFS
of all patients, and 80.0% and 78.9% of patients in the training and testing cohorts had
six-year PFS, respectively. There were 13 included patients (20.3%) with metastasis and/or
recurrence in six years after completing the WPRT course, constituting 20.0% of the training
and 21.1% of the testing cohorts.

Table 1. Patients’ clinicopathological characteristics.

Characteristic All Included Patients
(n = 64)

Training Cohort
(n = 45)

Testing Cohort
(n = 19) p-Value

Median age at start of radiotherapy (years) 70 71 70 0.691 1

Histology
Adenocarcinoma 49 (76.6%) 31 (68.9%) 17 (89.5%)

0.160 2Acinar adenocarcinoma 14 (21.9%) 13 (28.9%) 2 (10.5%)
Unknown 1 (1.6%) 1 (2.2%) 0 (0%)

Stage
T1 8 (12.5%) 6 (13.3%) 2 (10.5%)

0.189 2T2 20 (31.3%) 11 (24.4%) 9 (47.4%)
T3 33 (51.6%) 25 (55.6%) 8 (42.1%)

Unknown 3 (4.7%) 3 (6.7%) 0 (0%)

Pre-treatment PSA level (ng/mL)
<10 5 (7.8%) 2 (4.4%) 3 (15.8%)

0.052 210–20 18 (28.1%) 16 (35.6%) 2 (10.5%)
>20 41 (64.1%) 27 (60.0%) 14 (73.7%)

Pre-treatment GS
≤6 16 (25.0%) 10 (22.2%) 6 (31.6%)

0.476 27 17 (26.6%) 11 (24.4%) 6 (31.6%)
≥8 31 (48.4%) 24 (53.3%) 7 (36.8%)

Median pre-treatment Roach score 32.8 33.6 27.9 0.130 1

Median CTVprostate volume (mm3) 39951.5 41695.0 38943.0 0.797 1

CTVLN dose (Gy)
44 11 (17.2%) 7 (15.6%) 4 (21.1%)

0.719 3
50 53 (82.8%) 38 (84.4%) 15 (78.9%)

CTVprostate dose (Gy)
<76 12 (18.8%) 8 (17.8%) 4 (21.1%)

0.739 3≥76 52 (81.3%) 37 (82.2%) 15 (78.9%)

Treatment modality for PTVLN
3DCRT 10 (15.6%) 6 (13.3%) 4 (21.1%)

0.466 3
VMAT 54 (84.4%) 39 (86.7%) 15 (78.9%)

Treatment modality for PTVprostate
IMRT 9 (14.1%) 5 (11.1%) 4 (21.1%)

0.432 3
VMAT 55 (85.9%) 40 (88.9%) 15 (78.9%)

Patients received neoadjuvant ADT 62 (96.9%) 44 (97.8%) 18 (94.7%) 0.509 3

Patients received adjuvant ADT 52 (81.3%) 36 (80.0%) 16 (84.2%) 1.000 3

Median follow-up time (months) 88.0 91.0 88.0 0.872 1

Median progression-free survival (months) 81.5 81.0 85.0 0.659 1

Patients with six-year disease progression 13 (20.3%) 9 (20.0%) 4 (21.1%) 1.000 3

Events
Biochemical recurrence 12 10 2

-Local failure 3 2 1
Regional failure 1 0 1
Distant failure 5 5 0

1 Mann–Whitney U test; 2 Chi-squared test; 3 Fisher’s exact test. 3DCRT, three-dimensional conformal radio-
therapy; ADT, androgen deprivation therapy; CTVLN, clinical target volume for whole pelvic lymph nodes;
CTVprostate, clinical target volume for prostate; GS, Gleason score; IMRT, intensity-modulated radiotherapy;
PSA, prostate-specific antigen; PTVLN, planning target volume for whole pelvic lymph nodes; PTVprostate, plan-
ning target volume for prostate; VMAT, volumetric modulated arc therapy.

Among the 1000 developed models, 799 models with the fewest (two) selected features
were used for radiomics signature development. Both selected features were textural:
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run entropy of grey level run length matrix after LoG filtering with a sigma value of 2
mm (RE-GLRLMσ2mm); and small area emphasis of grey level size zone matrix after LoG
filtering with a sigma value of 4.5 mm (SAE-GLSZMσ4.5mm). Both RE-GLRLMσ2mm and
SAE-GLSZMσ4.5mm had statistically significant differences in the feature values between
patients with and without six-year PFS (p-values: 0.0208 and 0.0191), respectively. The
developed radiomics signature is illustrated in Equation (2).

Rad-score = 0.291 (RE-GLRLMσ2mm) + 0.358 (SAE-GLSZMσ4.5mm) − 1.47 (2)

The average AUC values of the developed model for the training and testing cohorts
were 0.756 (95% confidence interval (CI): 0.756–0.757) and 0.707 (95% CI: 0.706–0.707),
respectively (Figure 4). With the cutoff determined as a third-quartile value (i.e., −1.11),
patients were stratified into high- (Rad-score ≥ −1.11) and low- (Rad-score < −1.11) risk
groups, which refer to unlikely and more likely to have six-year PFS, respectively (Figure 5).
The respective accuracy, sensitivity and specificity of the radiomics signature were 0.778,
0.833 and 0.556 in the training cohort and 0.842, 0.867 and 0.750 in the testing cohort.
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4. Discussion

In our study, the key radiomic features among the large arrays of data extracted from
the CTVprostate of the pre-treatment pCT images were selected to develop a two-feature
radiomics signature to predict the six-year PFS in high-risk localized PCa patients with
WPRT as the primary treatment. Highly consistent predictive performances were achieved
by our model with average AUC values of 0.76 and 0.71 in the training and testing cohorts,
respectively. The consistent performances could be attributed to the fact that the pCT for
the external beam RT is highly standardized and calibrated for dose calculation, hence
improving results reproducibility [10–12,17–38]. This potentially addresses one of the major
issues associated with radiomics, which is the inability to translate benefits into clinical
practice [10,12].

According to the review on the radiomics used for the identification and prediction
of PCa published in 2021, most studies have focused on PET radiomics because PET is
a functional imaging modality that provides detailed information on cell metabolism
and proliferation, morphology, perfusion, receptor density and tumor viability, which are
important for this identification and prediction task [10,23–35]. Although MRI might not be
available in some settings, it is suggested that MRI should be a standard-of-care modality
for PCa diagnosis [53,54]. Hence, there are more studies on MRI radiomics than CT for
PCa identification and prediction [10,17–22,36–38]. However, a review on MRI radiomics
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for PCa risk stratification published in 2023 showed that only three studies used MRI to
predict biochemical failure after receiving RT, with two reporting the AUC values of their
models [55–58]. In Dinis Fernandes et al.’s study, their model achieved an AUC value of
0.63 [57]. Although Zhong et al.’s model was able to attain a mean AUC value of 0.99
during training, it reduced to 0.73 in testing [58]. This highlights one main limitation
of the use of MRI in radiomics: its non-standardized voxel intensity values are greatly
affected by scanning protocol variations, resulting in less reproducible results [10,17–22]. In
contrast, our study’s model attained average training and testing AUC values of 0.76 and
0.71, demonstrating higher reproducibility despite the training AUC value of 0.71 being
a little lower than that of Zhong et al.’s model at 0.73 [58]. Similarly reproducible model
performance results were also shown in our previous study on CT radiomics for long-term
prognostication of high-risk localized PCa patients who received PORT (mean training and
testing AUC: 0.798 and 0.795, respectively) [39]. Additionally, CT is more readily available
than MRI and PET and the standard-of-care modality for PCa RT planning, which allows
for seamless integration into the existing RT workflow. These could be considered as other
merits of CT radiomics for long-term prognostication of high-risk localized PCa patients
who received RT [11,39,53].

Our developed radiomics signature with the determined cutoff of −1.11 again achieved
consistent accuracy, sensitivity and specificity between training (0.778, 0.833 and 0.556) and
testing (0.842, 0.867 and 0.750) cohorts to stratify patients into high- (Rad-score ≥ −1.11)
and low- (Rad-score < −1.11) risk groups. Our radiomics signature consists of two texture
features: GLRLM Run Entropy (RE-GLRLMσ2mm) and SAE-GLSZM Small Area Emphasis
(GLSZMσ4.5mm). RE-GLRLMσ2mm quantifies the heterogeneous texture pattern within the
CTVprostate by representing the variations in the allocations of run lengths and grey levels.
SAE-GLSZMσ4.5mm measures the quantities of smaller-sized zones and fine textures within
the CTVprostate by representing the distribution of consecutive voxels that share identical
intensity values. As these two features have positive weightings in our radiomic signature
with higher values of RE-GLRLMσ2mm and SAE-GLSZMσ4.5mm, the Rad-score becomes
greater and indicates the CTVprostate of patients showing more heterogeneous 3D patterns.
Also, a higher Rad-score represents a higher possibility of disease progression within six
years after completing WPRT, which is in line with a previous study’s findings that a more
heterogenous PCa tumor has greater resistance to therapies [59]. Similar investigations
have been conducted on other malignancies showing a variety of texture features correlat-
ing with angiogenesis and hypoxia, which could be used to indicate the aggressiveness of
breast cancer [60,61] and distant metastasis for nasopharyngeal carcinomas [62]. Hence,
these show that radiomics is a viable approach to extract the distinctive characteristics of a
malignant mass and quantify the respective heterogeneity to determine the prognosis and
therapeutic response to oncological diseases [63].

Clinical failure or biochemical failure after primary RT is common in PCa patients.
About 30–50% of patients are affected by biochemical failure within 10 years after RT [64].
Clinical failure occurs in approximately 25% of patients with biochemical failure within
eight years with symptoms because of disease recurrency [65–67]. Palliative approaches,
such as observation and ADT, are eventually employed to manage many of these pa-
tients [68–70]. However, curative intent salvage treatments—e.g., salvage prostatectomy,
brachytherapy, stereotactic body radiotherapy, etc.—can be applied to selected patients
with biochemical failure or isolated local recurrences without coexisting metastatic le-
sions [71–73]. Our radiomics model would be useful for the pretreatment identification of
patients with a higher likelihood of disease progression after treatment, resulting in better
clinical decision making and patient management, e.g., the use of state-of-the-art imaging
examination to follow-up with these patients, increasing opportunities to offer salvage
treatments to them when still applicable. In this way, personalized or precision medicine
could be realized [10,12,74].

Our study has several limitations. It is a retrospective study with a relatively small
sample size of 64 patients from one single center. According to Lambin et al.’s [12] radiomics
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quality score instrument, a prospective study with data collected from multiple sites would
be a better design as this allows for model external validation [12,75,76]. However, our
arrangement should be considered acceptable because some recent CT radiomics studies
on identification and prediction of PCa also retrospectively collected patient datasets
from one single site with comparable sample sizes of 69–80 patients [36–38]. Despite
multiple manual segmentations of the CTVprostate as per the ESTRO consensus guideline to
address the potential intra- and inter-observer variability issues and the selection of ≥ 0.4
Spearman’s rank correlation coefficient for feature reduction based on previous radiomics
studies, our model’s generalizability needs to be confirmed by assessing the intra- and
inter-observer variability and the effect of other correlation coefficient threshold settings
in future studies [12,42,49,50]. Nonetheless, this is the first study on pCT radiomics for
the long-term prognostication of high-risk localized PCa patients who received WPRT,
which could further justify our study design. Given the promising results of this study,
future studies with a larger number of datasets collected prospectively from multiple
centers with assessments on the intra- and inter-observer variability and the effect of
various correlation coefficient settings is warranted for our model’s external validation
and to confirm its generalizability. It is noted that deep learning (DL) has become popular
in medical imaging [75–80]. Hence, another direction for further study is to develop a
DL-based radiomics model for the long-term prognostication of high-risk localized PCa
patients after WPRT [10].

5. Conclusions

This study’s results show that our pCT-based radiomics model was able to predict six-
year PFS in high-risk localized PCa patients who received WPRT as the primary treatment
with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)) and
was comparable to other similar studies including those on MRI-based radiomics. The
accuracy, sensitivity and specificity of our radiomics signature that consists of two texture
features, namely GLRLM Run Entropy (RE-GLRLMσ2mm) and SAE-GLSZM Small Area
Emphasis (GLSZMσ4.5mm), were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750
(testing), respectively. Since CT is more readily available than MRI and PET and is the
standard-of-care modality for PCa RT planning, pCT-based radiomics can be used as a
routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes
in high-risk localized PCa. Nonetheless, further study on the external validation of our
model is warranted to ensure that its benefits can be realized in clinical settings to achieve
personalized or precision medicine.
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