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ABSTRACT
Dating of xenotime outgrowths (XOs) has been used to obtain depositional age constraints 

on sedimentary sequences devoid of volcanic tuffs and biostratigraphically useful fossils 
(i.e., most of Earth history). Here, we present geochronological and geochemical data from 
XOs on detrital zircon from the Early Cretaceous Broome Sandstone, NW Australia. Ages 
of XOs predate the palynologically constrained deposition of the Broome Sandstone by at 
least 150 m.y., suggesting that these XOs were detrital and transported together with the 
zircon to which they are attached. This finding contrasts with the general assumption that 
XOs are principally authigenic phases. Integration of geochronology and geochemistry links 
Broome Sandstone XOs to intermediate geological events in the sediment source area. These 
results emphasize the importance of evaluating a potential detrital origin for XOs because 
sedimentary transport does not appear to universally destroy nor liberate them from their 
zircon substrate. Despite this, the study of XOs provides an important means to reconstruct 
complexities of source-to-sink sediment histories, including intermediate storage and over-
printing, e.g., during diagenetic, metamorphic, hydrothermal, and igneous activity. Such 
information is critical for more holistic geological reconstructions but is not retained within 
the most applied provenance tool (detrital zircon).

INTRODUCTION
U-Pb dating of authigenic xenotime out-

growths (XOs) on detrital zircon (DZ) grains 
(Rasmussen, 1996) has been widely applied 
to temporally constrain geological processes 
and biological evolution through deep time 
(McNaughton et al., 1999; Lan, 2022). This 
geochronometer has proven to be especially 
important to help construct stratigraphic frame-
works in the Precambrian (François et al., 2017; 
Zhang et al., 2022), an interval notoriously lack-
ing reliable absolute dating methods for diage-
netic processes and sedimentary packages more 
generally. As such, XO geochronology has been 
employed to determine the time of deposition 
of sediments, which is critical to resolve a vari-
ety of questions in earth science, particularly 

involving the evolutionary time line of eukary-
otes (Rasmussen et al., 2004; Lan et al., 2014).

It is generally accepted that XOs in unmeta-
morphosed and low-grade metamorphic sedi-
mentary rocks represent an authigenic phase 
(i.e., formed during syn- or postdepositional 
processes in the sediment in which they occur); 
this contrasts with detrital xenotime grains, 
which are typically of igneous origin (Kositcin 
et al., 2003). A common argument to support 
authigenic growth is the apparent fragility of 
small (<20 µm), characteristically pyramidal 
outgrowths (Hetherington et  al., 2008; Hay 
and Dempster, 2009) and observations of dis-
lodged XOs during sample handling (Rasmus-
sen, 2005). Thus, preservation of XOs during 
sediment recycling would have implications for 
their current application as authigenic age con-
straints on the lithostratigraphic unit in which 
they occur. Conversely, recognizing the reten-
tion of XOs through sedimentary transporta-
tion could offer information on intermediate 
grain histories, like that recently demonstrated 
by monazite (Moecher et al., 2019; Aleinikoff 

et al., 2023). Ultimately, tracking these inter-
mediate processes, typically not captured in the 
DZ record, is important for the reconstruction 
of ancient sediment pathways.

This study presents U-Pb geochronology 
and geochemistry of XOs, apparent xenotime 
inclusions (and associated DZ substrate and 
host, respectively), and detrital xenotime grains 
found in Early Cretaceous littoral and poorly 
consolidated sediments in NW Australia. We 
reconsider a combined detrital origin of the XOs 
and their DZ substrates, discuss the implications 
for relying on XO age data to constrain deposi-
tional processes, and illustrate the application 
of XOs to reconstruct polyphase grain histories.

MATERIALS AND METHODS
This study focused on samples from the 

Early Cretaceous Broome Sandstone (ca. 
140–127 Ma; Smith et al., 2013) of the Can-
ning Basin, NW Australia (Fig. 1). The Broome 
Sandstone consists of a range of sand and sand-
stone lithologies dominated by well-sorted and 
rounded, fine to very fine quartz-rich detritus 
deposited in a shallow-marine to paralic envi-
ronment (Boyd and Teakle, 2016; Salisbury 
et al., 2016). Three samples originated from the 
Thunderbird heavy mineral deposit (Table S1 of 
the Supplemental Material1), where siliciclastic 
sediments are poorly consolidated and friable, 
removing the need for potentially destructive 
sample crushing or similar processing tech-
niques. The other Broome Sandstone sample 
was collected from an outcropping indurated 
sandstone (Table S1) and subjected to high-volt-
age electrical fragmentation. Zircon grains were 
concentrated using a water-shaking table, heavy 
liquid separation, and magnetic separation. Min-
eral separates were embedded into epoxy resin, 
ground to expose grain interiors, and polished.

Automated mineral identification using a 
scanning electron microscope equipped with *maximilian .drollner@curtin .edu .au

1Supplemental Material. Supplemental Material S1 (detailed analytical methods) and Supplemental Material S2 (data in Tables S1–S7). Please visit https://doi .org 
/10 .1130 /GEOL .S.22790180 to access the supplemental material, and contact editing@geosociety.org with any questions.

Maximilian Dröllner  https://orcid.org/0000 
-0001 -8661-9565

Milo Barham  https://orcid.org/0000-0003 
-0392-7306

Christopher L. Kirkland  https://orcid.org/0000 
-0003-3367-8961

Published online 5 June 2023

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/51/8/768/5930609/g51178.1.pdf
by guest
on 15 January 2024

http://www.geosociety.org
https://pubs.geoscienceworld.org/geology
http://www.geosociety.org
mailto:maximilian.drollner@curtin.edu.au
https://doi.org/10.1130/GEOL.S.22790180
https://doi.org/10.1130/GEOL.S.22790180
https://orcid.org/0000-0001-8661-9565
https://orcid.org/0000-0001-8661-9565
https://orcid.org/0000-0003-0392-7306
https://orcid.org/0000-0003-0392-7306
https://orcid.org/0000-0003-3367-8961
https://orcid.org/0000-0003-3367-8961
https://doi.org/10.1130/GEOL.S.22790180


Geological Society of America | GEOLOGY | Volume 51 | Number 8 | www.gsapubs.org 769

energy-dispersive X-ray spectrometers mapped 
the occurrences of xenotime and zircon in 
mounted samples. Laser ablation–inductively 
coupled plasma–mass spectrometry (LA-ICP-
MS) and secondary ion mass spectrometry 
(SIMS) measurements of the U-Pb isotopic 
composition of xenotime and DZ were con-
ducted at Curtin University’s John de Laeter 
Centre, Perth, Western Australia. All ages are 
concordia ages, and uncertainties are at the 2σ 
level. Dating was followed by geochemical char-
acterization using an electron probe microana-
lyzer (EPMA) at the Centre for Microscopy, 
Characterisation and Analysis at The Univer-
sity of Western Australia, Perth. XOs required 
small analytical spots (∼7 µm for LA-ICP-MS 
with pit depths of ∼3 µm; ∼8 × 7 µm for SIMS 
with pit depths of ∼1 µm) and individual assess-

ment of the potential of xenotime-zircon ana-
lytical mixtures. This quality control included 
examination of the analytical pits (Fig. 2) and 
monitoring of Zr content. Mixed xenotime-
zircon analyses commonly showed increased 
levels of Zr compared to pure xenotime analy-
ses, which showed low Zr contents consistent 
with EPMA measurements (Table S7). Measure-
ments showing evidence for analytical mixtures 
were excluded from later interpretations. Details 
of the sample preparation, mineral identification, 
and geochronological and geochemical methods 
are provided in Supplemental Material S1 (see 
footnote 1).

RESULTS
Automated mineral identification revealed 

rare XOs on DZ substrate (<1% of >150,000 
scanned DZ grains; Figs.  2A and 2B; Fig. 
S1), apparent xenotime inclusions within DZ 
(Fig. 2C; Fig. S1), and detrital xenotime grains 
(up to 100 µm; Fig. S1). Broome Sandstone 
XOs showed subhedral to anhedral shapes, 
were up to 20 µm in size, and occurred on sub-
rounded DZ (Figs. 2A and 2B). The six youngest 
analyses of XOs without evidence of analyti-
cal mixtures with zircon defined a distinct age 
group (Figs. 3A and 3B). U-Pb ages of these 
uncontaminated xenotime analyses, interpreted 
as growth ages based on the high radiogenic 
Pb retentivity (Cherniak, 2010), ranged from 
446 ± 39 Ma to 297 ± 10 Ma and were younger 
than those from mixed xenotime-zircon analy-
ses (Fig. 3B; Fig. S1). The ages of XOs and 
their respective DZ substrates differed signifi-
cantly; e.g., xenotime X4 (coding is from Tables 
S2–S7 in Supplemental Material S2, where 
X = xenotime and Z = zircon) yielded an age 
of 410 ± 19 Ma (mean square of weighted devi-
ates [MSWD] = 1.3, n = 2), whereas the DZ 
substrate Z4 yielded an age of 968 ± 19 Ma. 
In contrast, ages of interpreted xenotime inclu-
sions (Fig. 2C), possibly exposed due to grain 
fracturing or abrasion during sedimentary trans-

port or sample preparation, were indistinguish-
able from their zircon host; e.g., X8 had an 
age of 1186 ± 32 Ma compared to the age of 
1191 ± 13 Ma for Z8. Both XO-bearing DZ and 
detrital xenotime grains revealed polymodal age 
spectra dominated by Proterozoic ages (Fig. S2).

Generally, chondrite-normalized rare earth 
element (REE) contents in xenotime from this 
study increased toward heavier REEs (except 
Eu) but flattened from Dy onward (Fig. 3C; 
Table S7). Outgrowths X4, X5, and X6 showed 
a pronounced negative Eu anomaly, whereas 
X1 and X2 did not have strong Eu anomalies 
(X7 Eu was below the detection limit). The 
apparent xenotime inclusion X8 yielded the 
most pronounced negative Eu anomaly among 
analyses of composite grains. All but two detri-
tal xenotime grains showed significant negative 
Eu anomalies, consistent with detrital xenotime 
having lower Eu values than XOs (Fig. 3D). 
Overall, the shape of REE patterns of detrital 
xenotime resembled that of most XOs (Fig. 3E).

DISCUSSION
Detrital Origin of Xenotime Outgrowths

The formation of XOs at ca. 446–297 Ma 
(Figs. 3A and 3B) clearly predated the ca. 
140–127 Ma depositional age of the Broome 
Sandstone defined by palynology (i.e., dino-
cysts, pollen, and spores; Smith et al., 2013) 
and plant macrofossils (McLoughlin, 1996). 
This observation conclusively demonstrates 
that all the identified XOs on DZ did not form 
within the Broome Sandstone as authigenic 
phases. The timing of XO formation is not 
compatible with known proximal geological 
events, instead implying more significant sedi-
mentary transport and redeposition after their 
growth, consistent with previous interpreta-
tions of Canning Basin sediment originating 
from central Australia (Haines et al., 2013; 
Morón et al., 2019; Dröllner et al., 2023). 
Thus, the XO age signature is best explained 
by a detrital origin, similar to their associ-

Figure 1. Overview of sample locations and 
crustal units discussed in this work. Area 
between red dashed lines was affected by 
Alice Springs Orogeny (after Klootwijk, 2013). 
AB—Amadeus Basin; AR—Arunta region; 
MP—Musgrave Province.

A B C

Figure 2. Backscattered electron images of zircon (Z) and xenotime (X) analyzed using (A) laser ablation–inductively coupled plasma–mass 
spectrometry (LA-ICP-MS) and (B) secondary ion mass spectrometry (SIMS). (C) Apparent xenotime inclusion (and detrital zircon [DZ] host). 
White and red circles indicate analytical spots for U-Pb and electron probe microanalyzer (EPMA) analysis, respectively.
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ated zircon substrate. XO survival during 
sedimentary transport is consistent with their 
subhedral to anhedral shapes but incompatible 
with their commonly assumed fragility (e.g., 
Rasmussen, 2005; Hay and Dempster, 2009). 
A possible geological control explaining the 
preservation of XOs is shielding of xenotime-
bearing grains within rock fragments or grain 
coatings during transportation. However, there 
were no rock fragments in the analyzed sam-
ples, nor were grain coatings detected, provid-
ing no evidence for shielding as a preservation 
mechanism. A perhaps more important facet 
governing preservation of XOs in the Broome 
Sandstone is the unconsolidated nature of the 
sample material, which precluded the need 
for destructive processing techniques (e.g., 
crushing). Moreover, the high concentration 
of zircon (∼1% of the bulk sample; Boyd 
and Teakle, 2016), in tandem with automated 
phase identification (>10,000 DZ grains per 
mount scanned for 14 mounts), facilitated 
a greater opportunity for identification of 

unusual preservation styles of detrital XOs 
(compared to conventional manual selection; 
Lan, 2022). Significantly, the XO grains stud-
ied herein survived enhanced physical attri-
tion in a littoral depositional system associ-
ated with the upgrading processes necessary 
to form economic concentrations of placer 
heavy mineral sands (Boyd and Teakle, 2016).

The age discrepancy identified in this work 
between xenotime formation and the age of 
deposition is consistent with previous indica-
tions of recycled XOs (Zhang et al., 2022) and 
demonstrates a possibly significant pitfall in the 
interpretation of presumed authigenic xenotime. 
Although other indicators (e.g., palynology) in 
relatively young rocks (this study) can assist 
with age interpretations, similar information is 
usually absent for older, particularly Precam-
brian, rocks often targeted for xenotime geo-
chronology (Matteini et al., 2012). Therefore, 
detailed evaluation of chemistry (Lan et al., 
2013), (micro-)textures (Vallini et al., 2005), 
and/or relationships to authigenic phases (Drost 

et al., 2013) is critical to establish a truly authi-
genic origin and/or reasonably preclude a detri-
tal origin for XOs.

Intermediate Processes and Transient 
Sediment Storage Revealed by Xenotime 
Outgrowths

The dominant sources for Broome Sand-
stone accessory minerals are in central Austra-
lia, namely, the Musgrave Province, the Arunta 
region, and the Amadeus Basin (Fig. 1; Fig. 
S2; Dröllner et al., 2023). Similarly, the young-
est group of XOs in the Broome Sandstone is 
interpreted to have been derived from central 
Australia, since their ages match the timing of 
the 450–300 Ma Alice Springs Orogeny (Buick 
et al., 2008). This interpretation is consistent 
with the similarity of the age spectrum of the 
xenotime-bearing DZ and that of the bulk DZ 
of the Broome Sandstone (Fig. S2; Dröllner 
et al., 2023) based on a Kolmogorov-Smirnov 
test (D = 0.2), implying that detrital XOs can 
reveal source-to-sink relationships.

A B

C D

E

F

Figure 3. (A) Secondary ion mass spectrometry (SIMS) and (B) laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) 
concordia diagrams of xenotime and zircon geochronology. Asterisks (*) indicate only SIMS data (A) corrected for common Pb. (C) Chondrite-
normalized (CN) rare earth element (REE) patterns of xenotime analyses. Transparent envelopes show characteristic REE patterns (mean; 1 
standard deviation [SD]) from xenotime references from different environments. (D) EuCN vs. GdCN scatterplot of xenotime outgrowths (XOs) 
and reference data and interpretation after Kositcin et al. (2003). (E) REE shape coefficients (O’Neill, 2016) λ1 (slope) and λ2 (quadratic cur-
vature), ignoring anomalous Eu, compared to reference data. (F) Comparison of xenotime (xtm) outgrowth ages and pooled kernel density 
estimate of mineral (zircon, monazite, titanite, garnet, phyllosilicates) and whole-rock ages of Alice Springs Orogeny (equal weights for each 
group; compilation of Piazolo et al., 2020).
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Since the geochemical fingerprint of xeno-
time (Fig. 3C) is a function of its growth envi-
ronment (Lan et al., 2013), detrital xenotime 
geochemistry can help to define intermediate 
processes in the sediment source area. The Alice 
Springs Orogen records multiple episodes of 
pegmatite emplacement and coeval tectonic 
deformation (Piazolo et al., 2020), as well as 
metasomatic (Raimondo et al., 2011) and hydro-
thermal activity (Schoneveld et al., 2015). Xeno-
time grown from hydrous fluids is distinct to 
xenotime formed in igneous settings and shows 
increasing Eu with increasing Gd concentrations 
(Fig. 3D; Kositcin et al., 2003). This geochem-
ical trend of hydrothermal or diagenetic fluid 
growth was not apparent in XOs of this study, 
which showed lower Eu concentrations char-
acteristic of melt derivation. A potential melt 
origin is also consistent with the REE shape 
coefficients (Fig. 3E), where XOs and detrital 
xenotime resembled both igneous xenotime and 
metasomatic xenotime. However, XOs from the 
Broome Sandstone had lower U and Th concen-
trations than metasomatism-derived xenotime 
(∼0.4 and 0.3 vs. 2.2 and 0.6 wt%, respectively; 
Aleinikoff et al., 2012), which have never previ-
ously been observed as outgrowths. Conversely, 
xenotime-zircon intergrowths occur in (meta-)
igneous rocks (Budzyń et al., 2018) and make 
an igneous origin for XOs the favored interpre-
tation, based on the limited compositional data 
set. Overall, the XO geochemical data herein 
contrast with data of xenotime derived from 
hydrous fluids or metamorphism (Figs. 3D and 
3E), and Broome Sandstone XO genesis is best 
explained by formation in association with Alice 
Springs Orogeny magmas.

These findings suggest that xenotime geo-
chronology can refine polyphase grain histories 
in sedimentary units (Fig. 4). Erosion of crystal-
line basement (Fig. 4A) may result in directly 
captured first-cycle detritus (e.g., detrital xeno-
time grains), while a significant part of the resil-
ient DZ may experience multiple episodes of 
intermediate storage, burial, and uplift (multi-
cycle detritus). Multicycle DZ may experience 

a range of conditions at different crustal levels, 
perhaps acting as a nucleus for XOs (Fig. 4B), 
e.g., during diagenetic, metamorphic, hydrother-
mal, and igneous processes. Notably, the igne-
ous-detrital origin of all the XOs in this study 
may suggest differential mechanical resistance 
of XOs according to their growth environment, 
implying selective survival of XOs formed dur-
ing igneous processes. Ultimately, XOs can pro-
vide direct evidence of complex intermediate 
processes influencing detritus. Recognizing such 
multicyclicity is important because sediment 
recycling can induce bias in the interpretation 
of DZ data (Moecher et al., 2019). Furthermore, 
XOs reveal detritus from sources with scarce 
igneous activity that are typically underrepre-
sented based on other proxies (e.g., DZ; Fig. 
S2), but which are critical for source-to-sink 
reconstructions. Overall, these results suggest 
that XOs represent a possible novel complemen-
tary tool to characterize intermediate storage 
episodes and sediment recycling.

CONCLUSIONS
High-throughput automated mineral identi-

fication detected XOs on DZ from the Broome 
Sandstone, suggesting that XOs can be resis-
tant to sedimentary processes. Therefore, the 
geochemistry and age constraints on XOs need 
to be carefully evaluated to determine the pos-
sibility of a detrital origin as a viable alternative 
to authigenic growth within the host sediment. 
Where a detrital origin for XOs can be con-
firmed, XOs may represent a useful means to 
understand complex grain histories and, hence, 
more holistic reconstructions of ancient sedi-
mentary systems.
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