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Abstract. Optimizing the kinetics and energy requirements of electrochemical reactions is 

central to the design of redox systems whose function ranges from energy conversion, to 

chemical catalysis and sensing. This optimization takes often the form of a trial-and-error 

search for the optimal electrode material. Recent research has revealed pronounced facet-

dependent electrical conductivity, redox reactivity and electro-adsorption for a range of 

semiconductors, including silicon, Cu2O, GaAs, InN, Ag2O, and -Ga2O3. This review critically 

analyzes studies which suggest that testing alternative crystal cuts of the same material can be 

an efficient as well as effective electrode-optimization process. We analyze these recent reports 

to define what is known unambiguously, and when there are contrasting views, we explore the 

assumptions that underlie them. 

 

Introduction 

Electrochemistry is a broad and rapidly evolving discipline, but at its core remains the branch 

of chemistry combining the study of electronic conduction in solids with that of ionic 

conduction in electrolytes [1,2]. Its ultimate aim is that of predicting and possibly engineering 

electrode kinetics and/or equilibrium positions of redox processes [3,4]. It follows that most 

progresses in electrochemistry have resulted from improvements in the understanding of the 

physical and chemical properties of electrified interfaces [5-7]. From sensing to energy 

conversion, optimizing the kinetics of an electrode reaction and engineering its 
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thermodynamics often begin a systematic change to the chemical nature of the electrode. For 

instance, volcano plots in hydrogen electrocatalysis are an excellent reminder that the nature 

of the electrode can dominate electrode kinetics [8]. However, the search for optimal electrode 

materials remains often a trial-and-error process.  

Recent research has brought back attention to the scope of confining this search to a narrow 

range of alternative materials: alternative crystal cuts of the same material. Simply by selecting 

alternative crystal facets of a given material it is possible to substantially alter surface energies 

[9], electron trapping efficiencies [10], surface charges [11], electrode propensity to corrode 

[12], and adsorption selectivity [13]. Hence, facet-resolved electrochemical research is rapidly 

gaining momentum, especially in the fields of nanocrystals sensing [14,15], semiconductor 

electrochemistry [16-18], and electro- and photo-catalysis [19-22]. 

In this short review, we critically analyze recent research that has explored differences in 

electrochemical reactivity between different facets of the same metal or semiconductor. We 

highlight the most promising features of this emerging topic, as well as present systems where 

the scope of this approach is undoubtedly poor, or still unclear.  

 

Facet-dependent electrical conductivity links to electrochemical reactivity  

Silicon continues to be the technologically most relevant material [23]. With only few 

exceptions [24-26], silicon electrochemical research has so far focused mainly on only two 

silicon orientations: 111 and 100. This changed in 2017, when Huang and co-workers 

discovered the high electrical conductivity of Si(211) [27]. Similarly, remarkable differences 

between different facets of the same material are also emerging for other semiconducting 

materials, such as Cu2O, GaAs, InN or Ag2O [28-31]. Focusing on silicon and with the aid of 

conductive atomic force microscopy (C-AFM), it has been demonstrated that the conductivity 

of a junction between oxide-free silicon and a metal contact decreases in the order 211 >> 

110 > 111 [25]. One of the most notable, and unexpected, electrochemical consequences of 

this facet-dependent (electrical) conductivity is to allow the silica–silicon redox couple become 

reversible on highly conductive Si(110) defects, which are ubiquitous on a nominal Si(111) 

wafer [16].  
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This finding is surprising in several ways. Firstly, the notion that single crystals are an 

idealization is not sufficiently widespread, and its practical implications not entirely 

appreciated. Even a perfectly etched Si(111) wafer, of sub-nanometer roughness [32], exposes 

an array of vertical steps separating adjacent 111 terraces (Figure 1a). These steps are often 

aligned with the 211 and 110 directions [16]. Both Si(211) and Si(110) are more conductive 

than both Si(111) (Figure 1b) and Si(100), the other common silicon electrode material 

[25,33,34]. On these steps, and for thin oxide films only, the electrochemical silica-to-silicon 

conversion occurs reversibly at room temperature (Figure 1c,d). Traces amount of OH− and 

O2
− migrate through the oxide layer covering highly conductive 110 and 211 terraces 

separating Si(111) planes, allowing the redox reaction to proceed reversibly [16]. In fact, 

deliberate anodic damaging of an initially oxide-free Si(111) electrode (Figure 1c) leads to the 

appearance of a surface-confined cathodic wave. This wave, labelled in Figure 1d as 1 in the 

return segment of the first cycle, is coupled to a new anodic signal (2) visible in the anodic 

 

Figure 1. Facet-dependent conductivity on silicon crystals and electrochemical signatures of 

reversible silica–silicon conversion on highly conductive planes. (a) AFM topography image of a 

Si(111) wafer. Data obtained ensuring a parallel alignment between the original wafer major flat, 

indicating the [110] direction, and the x-direction of the AFM raster scan. Steps between terraces, 

here roughly parallel to the sample major flat, are 110 facets. The scale bar is 400 nm. (b) Schematics 

of a Pt–organic monolayer–Si junction in a C-AFM measurement and the corresponding I–V curves 

(average of 400 curves) for Si(111), Si(211) and Si(111) samples. S-1 indicates the substrate is coated 

with a protective monolayer of 1,8-nonadiyne. (c) Cyclic voltammograms (CVs) of Si(111) electrodes 

(S-1), with the bias ramped from an initial −0.5 V to an anodic vertex of 1.0 V (0.1 V/s, aqueous 1.0 

M HClO4). (d) Magnified views of the first three sequential CV cycles (six segments) shown in (c). 

(a,c,d) Reprinted with minor changes from Ref. [16], copyright (2021), with permission from the 

American Chemical Society. (b) Reprinted with minor changes from Ref. [25], copyright (2021), with 

permission from the American Chemical Society. 
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segment of the second cycle [16]. 

In general, the electrochemical reduction of bulk silica, due to its high electrical resistance, is 

obviously of limited viability. It requires molten-salt reactors and temperatures in excess of 

850 °C [35]. While these recent findings for Si(211) and Si(110) cannot immediately translate 

to a room-temperature bulk electrosynthesis of silicon form silica, they are however of practical 

importance as they explain the origin of recurrent parasitic signals often observed with silicon 

electrodes (Figure 1d). Unlike for platinum, gold and carbon, where all common adventitious 

electrochemical signals have been satisfactorily assigned and explained, the origin of common 

parasitic signals has remained more elusive in silicon voltammetry [36-38]. In essence, highly 

conductive silicon defect defines for silicon the potential window free from redox parasitic 

signals, and as such, suitable for the study of surface reactions by electroanalytical methods. 

Furthermore, this example of nanoscopic facet-resolved electrochemistry can be scaled to 

relatively large electrodes (Figure 2). It is customary for silicon manufacturers to mark wafers 

with a lapped edge. For Si(111) wafers this edge generally marks the 110 direction (Figure 

 

Figure 2. Macroscopic facet-resolved electrochemistry. (a) Graphical depiction of the 110 and 

211 crystal directions in commercial Si(111) wafers. (b) Hanging meniscus configuration to wet 

exclusively the Si(110) facet, exposed by cleaving a Si(111) wafer along a direction parallel to the 

wafer’s lap. (c,d) CVs of anodically damaged monolayer-coated Si(111) and Si(100) electrodes (0.1 

V/s, aqueous 1.0 M HClO4). The surface coverage of the Si/SiOx signal observed on Si(110) is ~ 6.9 

times larger than on Si(111). The measured (capacitance) area ratio between Si(111) and Si(110) is 

1.9. Reprinted with minor changes from Ref. [16], copyright (2021), with permission from the 

American Chemical Society. 

 



5 
 

2a). In conjunction with readily available crystallographic stereographic projections, such lap 

helps in cleaving a commercial wafer to expose specific planes. For instance, cleaving the 

wafer in direction parallel to the lap will expose Si(110). Cyclic voltammetry in an hanging 

meniscus setup, such as to wet only the Si(110) facet (Figure 2b), leads to redox parasitic waves 

(the silica/silcon couple) significantly larger than what normally observed with Si(111) (Figure 

2c,d). 

Unlike for a redox reaction that requires migration of oxygenated species, like the one 

discussed above, or as for bias-dependent adsorptions as discussed in the next section, if the 

redox entity is held at some distance above the electrode, significant changes in substrate 

conductivity are not reflected by measurable changes in electrode kinetics. For example the 

charge-transfer rate constant for ferrocene molecules tethered on the top of a ~1nm-thick 

organic monolayer are indistinguishable between Si(111), Si(211) and Si(110), thought these 

surfaces have very different surface conductivities (Figure 1b) [25]. 

 

Facet-dependent effects on electro-adsorption reactions 

Chemists, material scientists and engineers appreciate that the shape and size of an inorganic 

particle can define its reactivity [22], its catalytic behaviour [39], its ability to store or conduct 

charge [40], or its interactions with light [41]. Nonetheless, shape-control of nanoparticles is 

often serendipitous, and most generally achieved by chemical means (Figure 3a). Recently it 

was demonstrated that it is possible to use surface electric fields to modulate anisotropic 

interactions between additives and surfaces, hence predictably exploiting electrostatics to 

engineer the shape of nanocrystals [28,42]. There is a relationship between bias-dependent 

isothermal adsorption of halide ions and changes to the surface energy of Cu2O particles, hence 

their crystal shape (Figure 3b). Most importantly, the sigmoidal nature of adsorption isotherms 

means that exceedingly small changes to surface potentials can lead to drastic shape differences 

(Figure 3c). This finding can explain the high cubicity reported for particle growing when 

hydrogen permeates fuel cell membranes towards the cathode, as hydrogen preferentially 

adsorb on the Pt(100) face [43]. Further, this knowledge was applied to develop a non-contact 

printing technology that uses only simple assembly rules (voltages and local illumination 



6 
 

density of a semiconductor electrode) for anti-counterfeiting applications [42]. 

It is a speculation, but not unreasonable, that as for the electrosynthesis of Cu2O particles 

described above, differences in the electroadsorption bias of charged species, perhaps due to 

differences in the crystal’s potential of zero charge (pzc) [44], could account for the remarkably 

different facet-specific rate in the electrografting of organic cations on metals and 

semiconductors [45]. As shown in Figure 4a–c, anisotropic etching of Si(100) wafers with 

hydroxide-containing solutions leads to a textured surface that exposes an array of Si(111) 

pyramids. In such a system, the presence or absence, as well as the number and density of 211 

facets on a Si(100) crystal can be systematically adjusted. The reduction of a diazonium salt 

monolayer-forming molecule (o-dianisidine bis(diazotized) zinc double salt, bis-diazo in 

short), followed by its irreversible chemisorption, is favored on Si(111), with a ~200 mV 

separation between two clear reductive waves visible in Figure 3d. As both facets are 

simultaneously present on the same electrode, ambiguities potentially arising from a drifting  

  

Figure 3. Tuning surface energy with bias-dependent anisotropic adsorption of charged species. 

(a) SEM data showing the change of crystal shape for a constant electrolysis potential but with 

changes to the bulk concentration of chloride ions. (b) Evolution of the crystal shape in response to 

an increased anodic bias under a fixed chloride ions concentration. (c) Plots of the “degree of 

cubicity” versus bias (or versus concentration, top x-axis) under constant illumination based on a 

Langmuir isotherm (solid line). Reprinted from Ref. [28], copyright 2018, with permission from the 

American Chemical Society. 



7 
 

reference electrode are prevented. The answer to the question of whether different rates are due 

to a favored adsorption of bis-diazo on Si(111) prior to the electrochemical step, perhaps due 

to differences in pzc between Si(100) and Si(111), or whether differences in surface 

conductivities are involved, will require further experiments. What is certain is that Si(111) 

pyramids are more conductive than the Si(100) plane from which the protrude [46], and that 

different facets of the same material can have significantly different pzc [44,47]. Furthermore, 

electrical conductivity peaks on the pyramid apex, perhaps because a relatively small amount 

of charge at the tip of an asperity leads to a large electric field outside the solid [48]. Whether 

electrochemical currents also peak at the convex pyramid apex, and/or in proximity of the 

(111)–(100) planes intersection, where a concave curvature should lead to a thinner space 

charge [49], as exploited in the formation of porous silicon [50], remain also to be 

experimentally determined. 

A similar scenario to the facet-dependent bis-diazo electroadsorption described above has also 

been recently reported for a form of gallium(III) trioxide, β-Ga2O3. This is a semiconductor 

with an extremely high breakdown field, nearly 8 MV/cm, which is also transparent, hence an  

 

Figure 4. Facet-dependent electro-grafting of organic films on textured silicon. (a) AFM 

topography image and (b) SEM image of a Si(100) electrode exposing an array of Si(111) pyramids. 

(c) AFM image of a single Si(111) pyramid protruding from a Si(100) surface. (d) Electrochemical 

reduction wave of bis-diazo (1 mM o-dianisidine bis(diazotized) zinc double salt, with 0.1 M 

Bu4NPF6 in a 1:49 v/v DMSO/ACN mixture) on the sample presented in (a) and (b). The scan rate 

was 50 mV /s. Reprinted with minor changes from Ref. [45], copyright (2019), with permission from 

the American Chemical Society. 



8 
 

actively investigated alternative to the more commonly used and amorphous indium tin oxide 

[51]. The monoclinic crystal structure of -Ga2O3 is highly anisotropic, to the point that for 

example its optical bandgap measured along the [010] direction is 4.57 eV, while it reaches 

4.71 eV along the [201]. In a recent and very elegant study [52], Allen and co-workers have 

demonstrated that organic monolayers are a viable means to predictably tune the band bending 

of β-Ga2O3, to the point of achieving a downward band bending for a material that is normally 

strongly depleted in electrons. In this work there is clear implicit evidence of different crystal 

facets of -Ga2O3 leading to very different electrografting rates. As shown in Figure 5, the 

electrochemical grafting (reduction followed by chemisorption) of 4-nitrobenzenediazonium 

(NBD) [as tetrafluoroborate salt] is faster on the (210) facet. It remains to be explored whether 

the slower rate observed on β-Ga2O3(010) may be due to the its higher electron affinity, and/or 

to the stronger upward band bending of the (010) compared to the (201) facet [53]. 

 

Facet-dependent electrocatalysis application 

Hydrogen is a clean and renewable energy source and its production by hydrogen evolution 

reaction (HER) during water electrolysis is perhaps one of the most actively researched 

electrochemical reactions. Both computations and experiments indicate that the HER can be 

strongly facet dependent [54,55]. Transition metal phosphides (TMP) are non-precious metal 

compounds alternative to platinum. The relationship between crystal facets and HER rates has 

been investigated on alternative crystallographic facets of the same material: single crystals of 

 
Figure 5. Facet-resolved electrochemistry on transparent electrodes. Cathodic electrografting of 

an aryl diazonium salt (NBD, 2 mM in acetonitrile with 0.1 M [Bu4N]BF4) through a cyclic 

voltammetry experiment (50 mV/s) on either β-Ga2O3(201) (red trace) or β-Ga2O3(010) (blue trace). 

Reprinted with minor changes from Ref. [52], copyright (2021), with permission from the American 

Chemical Society. 
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iron-phosphide (FeP) and monoclinic nickel-diphosphide (m-NiP2) [56]. Experimental results 

suggest that the anisotropy of the catalytic activity is a feature for HER on TMPs. For FeP, a 

metallic material, the most active crystal facet was the 010, followed by 101, 111, and 

011 is the least active facet. For m-NiP2, a semiconductor, the 100 facet showed the highest 

activity, 121 and 101 were a little lower in activity, and 111 was the least active. These 

data agrees well with DFT calculations, which indicate that the energy of H-binding is strongly 

facet-dependent. Further, the experiments–calculations correlation is particularly strong for H-

binding energies on P on specific surface terminations, pointing to the need of improving our 

ability to perform and map electrochemistry on single crystals [56]. An interesting consequence 

of these results is that they weaken the generally held assumption, for transition-metal 

phosphides, of surface restructuring during the reaction. If this was the case the structure of the 

bulk catalysts would not particularly matter, as restructuring would occur in situ. 

Notably, findings similar to those discussed above are also available for CO2 reduction [57], 

with electrochemical currents for the reduction of CO2 being one order of magnitude greater 

on Au(110) than on both Au(111) and Au(100).  

 

Summary and perspective  

Assisted by recent developments in areas such as redox imaging [58,59], spatially resolved 

electrochemistry [60], electrochemistry at the nanoscale [61,62], and electrochemistry in 

confined spaces [63], there is a growing awareness of the anisotropic catalytic activity of 

alternative facets of technological materials such as silicon, Cu2O, GaAs, InN, Ag2O, and -

Ga2O3. Facet-resolved electrochemistry is developing rapidly, and it has already had a 

fundamental and practical impact on semiconductor electrochemistry, redox lithography, 

electrocatalysis, particle and film growth. There are mature theoretical models that can explain 

the available experimental data, as well as guide the rational design of new materials and 

optimized electrode surfaces that will contribute to the global challenge of integrating 

renewable electricity into chemical manufacturing, that is, to progressively replace 

conventional molecular reactants with electricity towards a sustainable chemical industry. 
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