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Abstract—Models of seven discrete expressions developed using
macro-level facial muscle variations would suffice identifying
macro-level expressions of affective states. These models won’t
discretise continuous and dynamic micro-level variations in facial
expressions. We present a Hierarchical Separation and Classi-
fication Network (HSCN) for discovering dynamic, continuous
and macro- and micro-level variations in facial expressions of
affective states. In the HSCN, we first invoke an unsupervised
cosine similarity-based separation method on continuous facial
expression data to extract twenty-one dynamic facial expression
classes from the seven common discrete affective states. The
between-clusters separation is then optimised for discovering the
macro-level changes resulting from facial muscle activations. A
following step in the HSCN separates the upper and lower facial
regions for realizing changes pertaining to upper and lower facial
muscle activations. Data from the two separated facial regions are
then clustered in a linear discriminant space using similarities in
muscular activation patterns. Next, the actual dynamic expression
data are mapped onto discriminant features for developing a rule-
based expert system that facilitates classifying twenty-one upper
and twenty-one lower micro-expressions. Invoking the random
forest algorithm would classify twenty-one macro-level facial
expressions with 76.11% accuracy. A support vector machine
(SVM), used separately on upper and lower facial regions in
tandem, could classify them with respective accuracies of 73.63%
and 87.68%. This work demonstrates a novel and effective
method of dynamic assessment of affective states. The HSCN
further demonstrates that facial muscle variations gathered from
either upper-, lower- or full-face would suffice classifying affective
states. We also provide new insight into discovery of micro-
level facial muscle variations and their utilization in dynamic
assessment of facial expressions of affective states.

Index Terms—Cosine similarity-based separation, Hierarchical
classification, Micro-expression detection, Affective state assess-
ment, Facial expression classification, Rule-based systems.

I. INTRODUCTION

FACIAL expressions convey internal thoughts, feelings,
emotions and provide interpretable external signals that

convey variations in affective states [1]. Variations in facial
expressions result from conscious and subconscious processing
of several internal and external stimuli, including any con-
textual biases and the interactions between past and present
experiences [2]. Patterns of facial muscle movements provide
reliable models for automated recognition of human affective
states [3]–[5]. Facial muscle movement models have been used
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for realizing complex and difficult to identify affective states
and have been tested using large datasets [5]–[8].

Humans realize the dynamic and continuous affective states
through assessment of facial expressions using intuitive knowl-
edge and collective experiences [3]. Given the complexities
of emotion elicitation and the neuro- and patho-psychological
factors behind them, emotions cannot be regarded as static
occurrences in time [5], [9]. Changes in facial expressions
are regarded as continuous and time-dependent functions.
Therefore, we posit that micro-level facial expressions should
also be classifiable within a continuous prevailing space. This
appears logical as micro-level facial expressions represent
transient macro-level expressions such as perceived expres-
sions of anger, joy or fear [10].

Affective computing literature cites a diverse range of
related works on facial expression recognition and affective
state assessment [11]–[13]. A large majority of the cited facial
expression classifiers use Ekman’s discrete models of affective
states [14]. Ekman’s seven distinct and discrete models of
affective are based on significant macro-level differences in
facial muscle movement patterns [15]–[17]. However, these
seven discrete models cannot represent micro-level facial ex-
pressions.

Micro-level variations in facial muscles can be seen as
representing delicate, involuntary and spontaneous changes in
facial expressions and they often show true emotive expe-
riences. Relevant works on recognition of micro-level facial
expressions and review of the employed approaches [18] are
suggestive of the fact that transient nature and low intensity
of micro-level expressions won’t let easily capture them in
real life situations [7], [18], [20], [21]. Because of difficulties
in capturing micro expressions, several interesting approaches
have been proposed for their realization. For example, an ac-
cretive layer was added to a hybrid network in [19] for refining
the features of facial expressions. Micro facial expressions
were recognized in [22] using the accordion spatiotemporal
data classified by the Random Forest algorithm. Similarly,
in [7], an algorithm ensemble that exploited the handcrafted
features and deep features was used for identifying faces and
classifying micro facial expressions. Because of difficulties
in capturing micro expressions, several interesting approaches
have been proposed for their realization. For example, an ac-
cretive layer was added to a hybrid network in [19] for refining
the features of facial expressions. Micro facial expressions
were recognized in [22] using the accordion spatiotemporal
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data classified by the Random Forest algorithm. Similarly,
in [7], an algorithm ensemble that exploited the handcrafted
features and deep features was used for identifying faces and
classifying micro facial expressions.

Assessment of human facial expressions is typically carried
out using easy to discriminate spatiotemporal facial features.
For example, in [22], the hybrid deep learning approach was
employed such that first a spatial convolutional neural network
(CNN) was used in order to process the facial image frames.
This was followed by use of a temporal CNN to analyse
the optical flow in images for simultaneous separating and
learning of significant spatial and temporal features. These
significant spatial and temporal features are then used in a
Deep Belief Network (DBN) model that would perform aver-
age pooling in order to obtain the fixed-length global feature
representation. In a final step, a Support Vector Machine
(SVM) would perform classification [22]. The complexity
and computational costs required for continuous dynamic
assessment of affective states in [22] was also observed in
several other works [23]–[25]. Despite the recent advances, the
idea of extracting micro expressions from the discrete models
of affective states has not been explored much.

For avoiding data acquisition problems and algorithmic
complexities involved in building dynamic and occluded facial
expression classifiers, this work proposes a novel method
of classifying micro, macro, continuous and dynamic-facial
expressions. We use a rule-based expert system to exploit
facial muscle movements for classifying micro- and macro-
level facial expressions. The hierarchical separation and clas-
sification network (HSCN) used in this work consists of
three subsystems viz., (i) a module for macro-level affective
state assessment using whole face data, (ii) a module for
upper-facial region micro-expression classification and (iii) a
module for lower-facial region micro-expression classification.
We used an unsupervised, cosine similarity-based separation
method for exploiting mutual information in continuous facial
expression data, facilitating the discovery of boundaries and
regions within a multidimensional hyperplane. The following
Linear Discriminant Analysis (LDA) would further separate
and cluster facial expressions by identifying discriminant
features and discovering multiple hyperplanes within the linear
discriminant space [2], [26]. Compared with other statistical
and neural classification techniques, LDA is considered com-
putationally efficient as it reduces the data dimensionality and
needs smaller amounts of training data [13], [26], [27].

After invoking the LDA, our HSCN framework engages
a domain-specific and innovative Rule-Based Expert System
(RBES) that would assist in classifying micro facial ex-
pressions evident on upper and lower regions of the face.
The RBES exploits data pertaining to the continuous mus-
cle movements and the logic manifested in Facial Action
Coding System (FACS) [28]. Though in a different context,
expert systems have previously been used for facial expression
analyses. For example, in [29] a self-adaptive expert system
used the facial feature contours localized in a static dual-
view facial image to label the interpreted facial expressions.
Authors in [30], deployed a Belief Rule-Based Expert System
that exploited the outputs of a convolutional neural network

(CNN) classifier for inferring the mental state of a person
using the observed facial expressions. In both cases, rule-
based expert systems were used to augment and improve
the classifier performance. Building upon previous works, we
provide another example showing how rule-based systems
can be deployed for continuous and dynamic assessment of
affective states.

A. Contributions

Moving forward, this work contributes the following to the
existing literature:

1) We present a novel framework and an ensemble of clas-
sifiers enabling hierarchical separation and classification
of macro- and micro-level expressions of affective states.
We exploit well-tested generic algorithms in the context
of a dynamic affective state assessment environment;

2) This work demonstrates use of a novel affective state
assessment schema and introduces methods of capturing
and monitoring continuous facial expressions;

3) We introduce a unified and systematic approach of
separating the upper and lower facial regions in a
dynamic environment and separately classifying them
in tandem for continuous and dynamic classification of
facial expressions;

4) We propose a novel methodology of developing and
applying a rule-base for classifying continuous macro-
level expressions;

5) We detail implementation of a RBMS that uses the
dynamic linear discriminant features for realizing con-
tinuous micro-expressions on upper- and lower-facial
regions and;

6) Results of applying a new and systematic methodology
for extracting micro-level facial expressions of affective
states.

In relation to the contribution stated first in the above para-
graphs, please note that ensemble approaches are becoming
popular in complex feature classification tasks and detection of
implicit patterns [31], [32]. Such ensemble approaches allow
for hierarchical processing of information signals and enable
step-wise refinement of separable features. This work extends
application of ensemble approaches by using an ensemble for
micro-expression classification.

This manuscript in Section I introduces our work. Sec-
tion II provides important information and sets ground for
this work. Section III discusses previous works and current
trends in this domain. Section IV details how unsupervised
clustering and labelling was performed. Discussions on cosine
similarity estimation, data separation, macro- and micro-level
linear discriminant analysis and construction of the RBMS
are also included in Section IV. The following Section V
presents results pertaining to the aforementioned analyses and
details the system validation. Section V also explains our
novel RBMS. Section VI concludes this work and suggest
future research directions. Section VII inform readers on this
project’s funding source and ethical compliance.
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II. BACKGROUND INFORMATION

“Core affect” is a psychological construct that signifies
the continuous nature of emotions and affective states [9].
The concept of “core affect” helps in interpreting complex-
ities of human affective states and emotions by providing
theoretical foundations for building a dynamic affective state
assessment solution. The fluidity and multidimensional nature
of expressions of affective states described in the core affect
model highlights the need for a dynamic classifier capable of
accounting for complex, multidimensional expressions.

Several models that represent ‘unique emotions’ have been
introduced in the literature. For example, [4], [33] attempted
to model disgust and anger. Such single-expression models
provide well-defined ways of comprehending and classifying
human expressions of affective states. One such model, the
Hourglass model [34] now has an enhanced version [35]
that exploits the continuous and dynamic nature of human
sentiment and their assessment. The Hourglass of Emotions,
an emotion categorization model, was optimized for polarity
detection. It was built using empirical data pertaining to
sentiment analysis. Nonetheless, it could be used in the context
of affective state classification. The hourglass model cate-
gorises similar and dissimilar emotions and presents a dynamic
model that appears more representative of human emotions
compared with the discrete emotion models. Other continuous
emotion models include the Plutchik spectrum and the three-
factor model [36], [37]. Such continuous emotion models can
delineate emotions and their macro-level expressions [10]. In
a somewhat similar manner, macro-level expressions have also
been assessed along multidimensional axes of valence, arousal
and intensity [38].

Facial expression analysis and affective state classification
are complex problems. Thus, many of the available solutions
underperform in real life situations. Changes in expressions
of affective states are causal, representing some response to a
particular temporal event or a combination of multiple external
and internal stimulating factors [5], [9]. Responding to certain
stimuli and experiencing particular affective states would cause
internal pathological and physiological changes in humans.
Hence, fluctuations in cues like heart rate, skin conductance
and hormone balances have been used for affective state
classification. Variations in affective states are also reflected
through external cues like speech rate and/or volume and,
haemodynamic changes on the face and facial expressions
[39]. Recent affective computing and psychophysiology litera-
ture highlights limitations of discrete facial expression models
and affective state assessment solutions.

The FACS and EMFACS were discussed in [28] and their
application details were presented in [16], [40]–[42]. These
works categorise facial muscles movements through coding
and action units and work as tools for the facial expression
assessment and recognition. The EMFACS action units allow
modelling feature fluctuations in time, as one’s expressions
change from one state to another. The rule-based expert system
deployed in this work for upper and lower facial micro-
expression classification is based on the muscle movements
defined in the EMFACS. It would be prudent to note at

this point that the “upper facial region” classifies muscle
movements emanating from eyes, eyelid, brow, and upper
cheek whereas, the “lower facial region” classifies muscle
movements emanating from nostril, mouth, lip, buccinator and
lower cheek [43], [44].

The HSCN we propose was trained on the extended Cohn-
Kanade (CK+) dataset [45] for the dynamic assessment of
affective states and micro-expression classification. The CK+
dataset contains continuous facial expression information as
actors transitioned from an inactive/neutral state to an activated
state as outlined in Table I, along with their corresponding
action units and muscle movements. Using the FACS, the
continuous nature of the CK+ dataset allows for a continuous
model of facial muscle movements in real-time. Visualising
changes in expressions as time-dependent functions and in-
terpreting them using the EMFACS can help in the initial
validation of the rule-based expert system being proposed.

Through dynamic modelling of expressions of affective
states and using multiple features, our proposed HSCN aims
to improve on prevailing facial expression classification sys-
tems [16], [46]. Considering variations in affective states as
functions of time, the HSCN exploits continuous emotion
models and attempts to further their static, discrete clas-
sification counterparts. As HSCN is based on continuous
expression delineation, it goes beyond modelling the transient
expressions and expression-intensity variations at the macro-
level. It also demonstrates the transience of expressions by
modelling continuous micro-level muscle movements in upper
and lower facial regions and allows for classification of various
micro-expressions. Furthermore, the HSCN builds upon the
prevailing dynamic facial expression recognition systems [47]
and proposes an alternate approach for continuous macro- and
micro-expression analysis.

Table I makes it obvious that the upper facial muscles
move in a different way compared to the lower facial muscles
during discrete expressions of affective states. This fact raises
a question - whether one facial region is more important than
the other. Research in [48] answers this question by examining
the human participants’ response to video recordings in order
to determine the relative importance of upper and lower
facial regions for classifying facial expression. The study [48]
reported that the importance of different facial regions is
dependent on the affective state being expressed and that a
full facial expression is always easiest to classify [48]. These
findings were also supported by research conducted in [42],
which looked at the impact of different facial regions while
attempting to classify facial expressions. These studies suggest
that for developing a comprehensive affective state assessment
system, detection and classification of both upper and lower fa-
cial region micro-expressions are important [44], [47]. In [48],
authors reported that humans more accurately classify affective
states using the lower facial region expressions compared with
the upper facial region. This pattern was also observed while
validating the performance of the HSCN’s micro-expression
classifiers.
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TABLE I
AFFECTIVE STATE MODELS AVAILABLE IN THE CK+ DATASET. THE

FACIAL MUSCLE ACTIONS FOR EACH MODEL WERE REALIZED THROUGH
FACS AND EMFACS INVESTIGATIONS.

Affective
State

Identified
Action
Units

Resulting Physical
Actions

Engaged
Musculature

Happy
State

12 Raised Lip corners Zygomaticus major

6, 7 Lower eye-lids raised Orbicularis Oculi
muscle

26, 27 Open mouth Orbicularis Oris
Expression
of
Surprise

1 Eyebrows raised Medial Frontalis

5 Upper eye-lids raised Levator palpebrae su-
perioris muscle

26, 27 Mouth opened Orbicularis Oris
Expressed
Anger

4 Eyebrow Frown Corrugator Supercilii

5 Upper eye-lids raised Levator palpebrae su-
perioris muscle

6, 7 Raised lower eye-lids Orbicularis Oculi
muscle

23 Lip Tightener Orbicularis Oris mus-
cle

Expression
of
Disgust

4 Eyebrow Frown Corrugator Supercilii
associated muscles

6, 7 Lower eye-lids raised Orbicularis Oculi
muscle

9, 10 Upper lip raised Levator labii superi-
oris muscle

Expression
of Fear

4 Eyebrow Frown Corrugator Supercilii
muscle

1 Eyebrows raised Medial Frontalis mus-
cle

5 Upper eye-lids raised Levator palpebrae su-
perioris muscle

26, 27 Mouth opened Orbicularis Oris
Expression
of
Sadness

4 Eyebrow Frown Corrugator Supercilii
muscle

1 Eyebrows raised Medial Frontalis mus-
cle

15 Lowered lip corners Depressor Anguli
Oris muscle

Expression
of Con-
tempt

L12 or
R12

Slightly raised lip cor-
ner (asymmetrical)

Zygomaticus major
muscle

L14 or
R14

Dimpler (asymmetri-
cal)

Buccinator muscle

III. RELATED WORKS

In order to overcome limitations of a single cue-based,
vision-supported affective state classifier, multiple-cue sup-
ported classifiers have been proposed. A recent survey [16]
presents a corpus of affective state assessment solutions,
focusing on the ones related to assessment of audio and visual
cues. Research in [46] reported deployment of a prototype
multimodal affective state assessment machine that used facial
expressions and speech signals to improve the classification
performances of a septenary classifier that could be compared
to those discussed in [16]. For real-time classification of
affective states, an active-camera system has been used to track
changes in the face and integrating them in a classifier that
exploits human face and lip features to describe muscle-based
expressions of affective states [47].

Pfister et al., [49] suggested using temporal interpolation
for feature mapping prior to implementing traditional machine
learning classifiers like support vector machines, multiple
kernel learning and random forests. Xu et al., [50] proposed a
“Facial Dynamics Map” which characterises micro-expression
related movements using granular pixel features along with
an algorithmic approach that was based on optical flow es-
timation. Xu et al., [50] employed a support vector machine
classifier to identify and categorise different types of facial
micro-expressions. Polikovsky et al., [40] used the EMFACS
(Emotion Facial Action Coding System) for micro-expression
detection such that their method divided full facial images into
smaller facial regions based on action unit locations. A his-
togram of oriented gradients (HOG) approach was combined
with the K-nearest neighbour classifier for detecting micro-
expression and action unit activations.

Instead of exploiting the visual cues, [41], [42] used facial
thermal features for facial expression classification. In [41],
facial thermal features were compared on the basis of muscle-
activated temperatures along both, upper- and lower-facial
regions. In [42], the authors reported differences in classifier
performances when different sub-regions of the face were used
for feature extraction. While thermal features are more innate
and use biometric data, their use case in real-time systems are
hampered by the cost and accessibility of thermal cameras.

In [51], an extension of the popular Bidirectional Trans-
former (BERT) model called Micron-BERT was deployed in
order to exploit attention maps for perceiving differences be-
tween two frames. Authors performed experiments using three,
four and seven facial expression classes [51] for inferring a
solution. Moving away from the largely used seven models of
facial expressions, this work uses HSCN for modelling twenty-
one micro-expressions of affective states realized around both,
the upper and lower-facial regions. In a way, we built upon the
work in [52], that employed an attention-based magnification
and adaption network to focus on the magnification levels of
different micro-expressions. The network in [52] leverages a
pre-trained ResNet-18 model followed by a frame attention
module which combines the five-class classification [52].

We collate the related works in Table II and summarise: (i)
feature space, (ii) deployed architecture, (iii) micro-expression
classification, (iv) macro-level facial expression classification,
(v) number of classes modelled, (vi) accuracy/performance
metric. Through these works, we observed that feature maps
and attention mechanisms were common in micro-expression
recognition literature (including thermal representations). In
these works, the authors also stressed on the fleeting nature
of micro-expressions and the difficulty in modelling real-time
changes in micro-expressions. We therefore propose the HSCN
framework as a vehicle to model activations in time and use
upper and lower-facial region micro-expressions to explain the
detected macro-level expressions.

IV. METHODS

Unsupervised learning approaches help in discovering ef-
fective states by separating and labelling patterns within a
collection of unlabelled data. Therefore, unsupervised learning
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TABLE II
A COMPARISON OF WORKS DISCUSSED IN SECTION III ON THE BASIS OF FEATURE SPACE CONSTRUCTION, DEPLOYED MODEL AND CLASSIFICATION

PERFORMANCE USING UPPER, LOWER AND FULL-FACE DATA.

Author Features Deployed Model Upper-Face Lower-Face Full-Face No. Classes Classifcation
Accuracy

Vice [46] Image space InceptionV3, Xception X X ✓ 7 75.88-92.78%
Oliver [47] 2D ‘blob’ features Hidden Markov Model

(HMM)
X ✓ X 5 95.95%

Pfister [49] Active Shape Model
(ASM) feature points

Multiple Kernel Learn-
ing (MKL), RF, SVM

X X ✓ 2 47.6-83.0%

Xu [50] Facial landmarks →
facial dynamics map

SVM X X ✓ 2-3 41.96-75.66%

Polikovsky [40] 3D Orientation Gradi-
ents Histogram + AUs

K-means classifier +
voting

✓ ✓ X 47 68.34-81.5&

Khan [41] Thermal features →
Principal components

PCA + LDA X X ✓ 3-6 71.05 and 73.0%

Khan [42] Thermal features →
Principal components

PCA + LDA ✓ ✓ ✓ 5 66.28 and 56.0%

Nguyen [51] Image → Attention
Map

Modified BERT ✓ ✓ ✓ 3-7 32.54-89.14%

Wei [52] Image → Attention
Map

Modified ResNet-18 X X ✓ 5 66.82-79.87%

This work Image space → linear
discriminants

LDA, SVM, RF ✓ ✓ ✓ 3 x 21 73.63-87.68%

t-SNE Spectral
EmbeddingLDA PCA

Fig. 1. A comparison of different projection /embedding techniques that were explored during HSCN’s early design stages. Included techniques were: (i)
linear discriminant analysis, (ii) t-distribution-based stochastic neighbour embedding, (iii) spectral embedding and, (iv) principal component analysis. Through
these projections, use of LDA was justified as the basis for the HSCN.

is widely used for pattern classification for assessing affec-
tive state. Previous works had treated continuous expression
intensity estimation as an unsupervised learning problem.
Generally, continuous expression sequences begin as a neutral
expression and evolve to a fully activated and unique facial
expression [12], [53]. The corpus of unsupervised learning
algorithms is extensive, ranging from dimensionality reduc-
tion, to manifold learning to linear and non-linear clustering
techniques [54]. These methods rely on statistical foundations.
They detect similarities within a set of unlabelled data and ex-
ploit either similarity or dissimilarity measures for the purpose
of identifying trends and building clusters in a classification
space [54].

Our ultimate aim was to deploy a model that would rep-
resent upper, lower and full facial expressions using linear
representations and describe changes in micro- and macro-
level expressions. To achieve this, we needed to separate
discrete, septenary class data into a continuous representation
that could describe more nuanced expressions of states using
muscle movements.

In early design stages we experimented with several pro-
jection techniques including: t-distribution-based stochastic

neighbour embedding (t-SNE), Principal Component Analysis
(PCA) and Spectral Embedding. We found that LDA resulted
in the most optimal intra- and inter-cluster variance in two
dimensions while using 100 × 100 pixel images. Results of
these experiments are shown in Fig. 1. The shown figures
revealed that LDA would produce well-defined clusters for
revealing cluster-to-cluster relationships and building a logical
rule-base for an expert system. This influenced our decision
to opt for LDA.

The HSCN combines two techniques as shown in Fig. 2
and Fig. 3. The initial unsupervised clustering and labelling ap-
proach is based on measurements of cosine similarity measures
in continuous data that were projected onto an m-dimensional
hyperplane. Similar approaches were used in [55], [56] for
multi-class facial expression classification.

The LDA transform has been previously used for maximis-
ing the separation between clusters [57]. Invoking LDA would
project the high-dimensional data onto a lower-dimensional
linear discriminant (feature-based) space and would cluster
data in a way that maximises the inter-cluster variance and
minimises the intra-cluster variance. This method maximises
the separation between cluster centroids while minimising the
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Processing
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based Separation
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Find 1st and 2nd
window dissimalirity

peaks

Split continuous data
into three classes based

on location of peaks

Fig. 2. Pre-processing of continuous expression data and their unsupervised cosine-similarity based separation. Note how continuous frame data from the
CK+ dataset are input and pre-processed prior to undergoing the cosine similarity-based separation and clustering in the HSCN.

separation between samples that belong to the same class [58].
Analysing the separated clusters enables modelling the

state-to-state transitions and classification of macro-level af-
fective states in a continuous domain. Clusters formed at the
macro-level via LDA provide foundations for defining the
micro-level clusters of lower and upper facial regions’ data. As
visualised in 1, these lower and upper facial regions’ data rela-
tionships could have been more complex if other embedding
techniques were deployed. Thus, the hierarchical clustering
approach provides the structure to build the HSCN’s rule-based
expert system. Dimensionality reduction and clustering using
LDA were regarded as a set of logically apt optimisation steps
for this work.

Solution to the optimisation problem was found in deter-
mining the linear discriminants, which corresponded to the
largest eigenvalues of W−1B, noting that the number of linear
discriminants required to solve an LDA problem depends on
the number of labelled classes in a given set [58]. Facial
expression data ‘xi’ were then projected onto the discriminant
function used for the classification tasks and for determining
to which class ‘k’ an expression ‘xi’ would belong to on the
basis of similarity measures. For example:

b′(xi − x̄1)− b′(xi − x̄k)− ...− b′(xi − ¯x21) < 0 (1)

where ‘x̄k’ defines the kth cluster centroid.
As shown in Fig. 2 and Fig. 3, projections onto the lower-

dimensional space were applied in two stages:

1) Projection of the cosine similarity-separated clusters
onto a two-dimensional linear discriminant space, max-
imising separation between cluster centroids to create
the macro-level facial expression classifier.

2) Projection of upper and lower facial region data onto
two-dimensional space divided by hyperplanes. Using
the rule-based expert system allowed for the systematic

detection and classification of upper/lower facial region
micro-expressions.

The processes and subsystems contained within the HSCN
framework are further discussed in the following sections.

A. Cosine Similarity-based Separation
Some definitions of the used terms and concepts are given

below for explaining the unsupervised separation and cluster-
ing methodology:

• xi = {x1, x2, ..., xm} defines a pattern or feature vector
i.e., a flattened facial expression image containing ‘m’
raw pixels/features.

• X = {x1,x2, ...,xN} defines a set of ‘N’ input patterns
all containing ‘m’ features. In this work, ‘X’ defines
a continuous series of facial expression images ranging
from neutral to activated, that have been projected onto
an m−dimensional hyperplane.

• C = {c1, c2, ..., ck} defines the ‘k’ class labels for the
patterns contained in the pattern set ‘X’. As mentioned
earlier, there are k = 21 classes for all micro- and macro-
level classifiers in the network.

Similarity measures have been used in both supervised and
unsupervised learning problems [53]. Discovering similarity
and dissimilarity measures across ‘N’ patterns in a continuous
sample set ‘X’ allows for categorising subsets of patterns
based on similar features and mutual information. The HSCN
is split into three major subsystems, the first is tasked with the
autonomous extraction of dynamic, macro-level affective state
clusters from a set ‘X’ of data. Separation and initial clustering
of patterns was based on mutual information extracted via
cosine similarity measures. Separation of continuous data
was done by comparing the cosine similarity between all
images/patterns within an m−dimensional hyperplane.

Cosine similarity leans on measuring the angle between
two image vectors {xi,xj} projected onto a hyperplane of
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Fig. 3. Visual summary of the proposed HSCN containing a rule-based expert system. The flowchart shows how facial image data are processed from input
to macro- and micro-level assessment stages, and how classification results are reported and displayed to the users. Combined with Fig. 2, one can see how
the ensemble of RFC, LDA and SVM models were deployed across various stages.

dimension ‘m’ [59]. As the mutual information between the
two vectors increases, the angle between them decreases, such
that cos θ = 1 when i = j. The cosine similarity between two
images was therefore calculated as such:

Scos θ =
xi · xj

|xi| |xj| (2)

In the CK+ dataset, a large inter-cluster variance was
observed using the cosine similarity approach. In this work
cosine similarity measures were used to detect a set of any two
serial expressions showing higher levels of dissimilarity. Re-
garding the CK+ dataset; high levels of dissimilarity indicate
a noticeable change in affective state expression intensity. For
each continuous set of facial expression samples, the dissim-
ilarity detection algorithm allowed for the separation of large
clusters of images into three, macro-level facial expression
clusters based on similar features, labelled as follows:

• Cluster 1: Neutral-dominated state
• Cluster 2: Partially activated state
• Cluster 3: Fully activated state

This initial unsupervised separation process was performed
through a “frame-to-frame gradient analysis” which iterates
through continuous data and calculates the dissimilarity mag-
nitude ‘∆Scos θ’ between facial expressions in the series. The
gradient magnitude was calculated as:

∆Scos θ = Scos θ(xi,xi)− Scos θ(xi,xi+1) (3)

with ‘Scos θ(x,y)’ defining the similarity measurement be-
tween the two serial expressions. This equation is applied
‘N− 1’ times to define all frame-to-frame transitions in X.

Dissimilarity magnitudes were used to detect locations of
peak dissimilarity, which defined the cluster boundaries within
the hyperplane. The deployed algorithm splits X into two
equal length subsets, with the global maxima (peak dissim-
ilarity) being defined in each half. By modelling the contin-
uous nature of affective states, this allowed for classification
of twenty-one, transient macro-level facial expressions. The
separation of CK+ image samples via the cosine similarity
method is shown in Fig. 2 and is further explained through
Algorithm 1.

Theoretically, this algorithm could be extended to increase
the resolution of the transient facial expression classes. In-
creasing the number of dissimilarity peaks would correspond
to an increase in the number of clusters extracted from a con-
tinuous sample such that: Nstates = Npeaks+1. Furthermore,
this method is not limited to the image domain and could be
deployed for the separation of affective speech and video data.

B. Macro-level Linear Discriminant Analysis

The initial clustering via the cosine similarity-based sepa-
ration method were input into the second tier of the HSCN,
where macro-level LDA clustering was performed. Please note
that linear discriminant analysis has been extensively used
to effectively separate and cluster labelled facial expressions
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Fig. 4. Macro-level LDA clustering results. Subplot 1 on the top left is the input from the initial, cosine similarity-based separation algorithm displaying all
data samples extracted from the CK+ dataset. Subplot 2 on the top right are the cluster centroids for each of the macro-level expressions with the centroid
closest to A: fully-activated anger, B: fully-activated happiness, C: fully-activated sadness and D: fully-activated surprise. We expand on these state transitions
in another figure.
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Fig. 5. LEFT: State-to-state transition along the sadness-happiness trend as visualised in Fig. 4. Examples of neutral and partial states are also shown.
RIGHT: State-to-state transition along the anger-surprise trend as visualised in Fig. 4. Examples of neutral and partial states are also shown.

by discovering hyperplanes within a linear discriminant space
[60]. The clustering was achieved by maximising inter-cluster
variance in order to optimise cluster centroid separation. Fig. 4
highlights results of the macro-level LDA clustering algorithm
when applied to a large volume of continuous facial expression
data. Analysing the cluster centroids in subplot 2 of Fig. 4,
we see emergence of linear trends from inactive ( NEUTRAL)
expressions to partial expressions ( PARTIAL) to fully acti-
vated expressions of all affective states. Furthermore, using
points {A,B,C,D}, we can begin to construct two continuous
axes that separate these states:

• Sadness (C) to happiness (B),
• Anger (A) to surprise (D).

We needed to understand “the theoretical underpinning of
these axes?”. The linear discriminant space visualised in Fig.
4 was a low-dimensional linear discriminant representation of
facial expressions, a mapping that corresponded with certain
feature changes and variations in facial expressions at a higher

level. We also noticed that the other three activated states
(contempt, disgust and fear) centroids resided on the two
defined axes, with contempt existing at the intercept of the
two axes. This was predictable as it was the most “neutral”
expression relative to the other affective states being modelled.

Henceforth defining rules on the basis of the logical foun-
dations of the EMFACS and Table I became very important.
Comparing changes in muscle activations from one state to
the other state would help in determining what these linear
relationships actually represented in real-life. This would also
provide foundations for building a rule-based expert system
capable of detecting and classifying micro-expressions. By
comparing sadness and happiness muscle activations in Table
I, we were able to model the state-to-state transition and
visualise how expressions changes were based on muscle
movements as shown in Fig. 5. Given the common facial
muscles involved in changing the expression from sadness to
happiness, we could define an axis rule:
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Algorithm 1: Cosine similarity-based separation
input: Continuous CK+ Dataset samples
Define X = {x1,x2, ...,xN}
for xi in X do

Extract Facial Image
Reshape xi to 150× 150 pixels
Convert xi to greyscale
Flatten xi, i.e. xi = {x1, x2, ..., x22500}

end
Let ‘xi’ = ith test facial expression vector
Let ‘xj’ = comparison vector
for i = 1; i ≤ N ; i = i+ 1 do

for j = 1; j ≤ N ; j = j + 1 do
Scos θ =

xi·xj

|xi||xj|
end

end
for i = 1; i ≤ N − 1; i = i+ 1 do

∆Scos θ = Scos θ(xi,xi)− Scos θ(xi,xi+1)
end
Detect max[∆Scos θ] in each half of X
Define 3× dynamic clusters per state
output: 21 Macro-level Facial Expression Clusters

Sadness-Happiness Axis Rule: Sadness and happiness
share common facial muscle groups surrounding the mouth,
cheek and eyelid regions. The formed axis would model the
following transformations: (i) parallel relaxation of brows and
raising of cheeks, (ii) raising of lip corners and mouth from
an initial down-turned expression.

Similarly, comparing anger and surprise muscle activations
in Table I, we could model the transition from anger to
surprise as visualised in Fig. 5. Note that in this case, both
states evidenced “raised upper eyelids” which was useful when
attempting to derive a clearer relationship. Given this second
example and the common muscle groups and facial regions
that were activated (eyebrow and mouth region), we could
define a second axis rule as:

Anger-Surprise Axis Rule: anger and surprise share com-
mon facial muscle movements surrounding the mouth and
eyebrow regions and share a consistent ‘raised upper eyelid’
activation. Therefore, the state-to-state transition could model
the following transformations: (i) Eyebrows raise from an
initial frowned/depressed position, (ii) Mouth opens from an
initial tightened expression.

Expanding on the two rules formed thus far, we could
postulate an initial hypothesis for explaining what axes X
and Y (linear discriminants 1 and 2) would represent. Let the
discriminant ‘n’ be LiDn, the |∆LiDn| values represent states
whose points A → D in subplot 2 of Fig. 4 are reported in
Table III. Together with Fig. 6, these results provide basis
for validating the rule-based micro-expression classifier as
previously done in [61]. Given the evidence provided, we
could define the following hypotheses and macro-expression
rules:

1) The discriminant LiD1 relates to the openness of the
mouth pertaining to the lower region of the face given

the following evidence:
• Sadness and Anger shared a low ∆LiD1. The two

common actions between the states were: “upper
eyebrow frown”, “lips tightened/lowered corners”.

• Presence of two common actions would be trou-
blesome if not for the presence of the surprise and
happiness states, which also shared a low ∆LiD1.
The common action between surprise and happiness
revolved around raised lip corners and ultimately,
the open mouth.

2) Discriminant LiD2 relates to the region around the eyes
i.e., the eyelids and eyebrows – the upper facial region,
evidenced by:

• The Anger-Sadness transition evidences both a low
∆LiD1 and ∆LiD2. If the initial hypothesis is
that LiD1 is related to the mouth, then the second
common action – “upper eyebrow frown” may be
related to LiD2, which supports the upper facial
region relationship.

• Analysing Fig. 6 and the transition from anger to
happiness, we saw that the eyes remained the same
shape, with the largest variance evident between full
to partial anger states, when the frown was relaxed
slightly. Removing the lower half of the face, we
could observe that there were similarities between
the brow/eye region of the two states.

• Large variance between happiness and surprise.
Given that the open mouth was deduced as being
referred to by LiD1, we could identify the differ-
ence between happiness and surprise frames in Fig.
6 through the upper region of the face, specifically
the brow and eye regions, thus providing further
evidence toward LiD2 relating to the upper facial
region.

By inferring the above rules for the macro-level LDA
clustering approach, we were able to define a relationship that
allowed mapping statistical features with real-world features
vis-à-vis providing a vehicle for transient macro-level facial
expression classification.

C. Micro-level Linear Discriminant Analysis

We had previously defined the following rules:
1) LiD1 relates to the shape of the mouth and the lower

facial region.
2) LiD2 relates to the region around the eyes, eyelids, and

brows – the upper facial region.
These claims were substantiated through the necessary experi-
ments. The micro-expression LDA clustering subsystem aimed
to prove the validity of the two claims, while providing a
deeper analysis of dynamic facial expressions and focusing
on the upper and lower facial regions.

An automated function was implemented to slice the CK+
images in half (horizontally), allowing to focus on both the
upper and lower facial regions independently. An additional
LDA clustering approach was then applied to the new image
vectors in an attempt to validate the above hypotheses, thus
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TABLE III
AFFECTIVE STATE CHANGE-CAUSED VARIATIONS IN MAGNITUDES OF nth

LINEAR DISCRIMINANTS. THE DATA HIGHLIGHTED IN BOLD SHOW HIGH
AND LOW |∆LiDn| VALUES.

PX → PY State → State |∆LiD1| |∆LiD2|
A → B Anger → Happy 0.8170 0.1683
A → C Anger → Sadness 0.0159 0.2163
A → D Anger → Surprise 0.6563 0.6789
B → C Happy → Sadness 0.8329 0.3846
B → D Happy → Surprise 0.1606 0.8471
C → D Sadness → Surprise 0.6722 0.4626

allowing for the classification of micro-expressions in upper
and lower facial regions. If the initial hypotheses were correct,
then there would be a very discernible trend between states at
the micro-level as this would indicate that the projected feature
‘LiDn’ is related to a particular group of muscles.

Let us describe the macro-level linear discriminant features
as ‘LiDn’ – i.e., LiD1 = the lower facial region and LiD2 =
upper facial region. Moving to the micro-level, let ‘m’ describe
the micro-level features contained within the higher, ‘nth’
level regions i.e., ‘LiDn.m’. For example, LiD1.1 and LiD1.2

describe micro-expressions in the lower facial region.
The set of multiple clusters shown in Fig. 7A shares a

similar LiD2.2 value (see Table IV), with the largest vari-
ance observed along the direction of the discriminant LiD2.1

axis. We could also see that the clusters move linearly from
expression of anger to the expression of surprise along the
discriminant LiD2.1 (Table IV). Expressions of fear and con-
tempt display larger variances along the discriminant LiD2.2

(Table IV) and have coordinates of cluster centroids in a close
proximity. We also noted that the expression of contempt is an
asymmetrical expression and so it was an outlier. Besides these
two affective states, a majority of facial expressions resided
along the LiD2.1 axis (Table IV).

The lower facial region (LiD1) is more sparsely clustered
compared to the upper facial region. In Fig. 7B, it is evident
that most states reside on one side of the spectrum, sharing
a similar LiD1.1 feature value (see Table IV), with happiness
and its sub-states displaying the largest variance in LiD1.1

(Table IV). The notable trend observed in the lower region of
the face could be attributed to the micro-level feature LiD1.2

(as obvious in Table IV); the y-axis shows disgust (top) and
surprise (bottom) as two extreme values.

V. RESULTS

A. Defining the Rule-Based Expert System

This work attempts to highlight how similarity and dis-
similarity measures could help in improving the classifier
performance and decision-making capabilities of a system.
We used Euclidean distance-based similarity to validate the
inferences of our rule-based system. As previously defined,
the macro-level linear discriminant features LiDn and the
micro-level features as LiDn.m, combined with Fig. 5 and
the given Table III validate our macro-level facial expression
method. We observed that states of Anger, Happiness, Sadness
and Surprise exist as extreme points in a 2D linear discrim-
inant space and by referring back to the EMFACS muscle
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Fig. 6. Visualised state-to-state transition for anger, happiness, sadness, and
surprise expressions. This figure assists in mapping LiDn features to real-
world features.

movements discussed previously, we could establish that the
discriminant LiD1 relates to the shape of the mouth (the lower
facial region) and LiD2 relates to the region around eyes,
eyelids and brows (the upper facial region).

Deriving relationships between muscle movements on the
entire face i.e., the two facial regions, allowed to further
explore the upper and lower facial regions and conduct similar
experiments. Performing the same analysis on Table IV, we
can establish relationships between features in the upper
and lower facial regions using the EMFACS-explained action
units. The neutral, partial and fully-activated micro-expression
cluster centroids reported in Table IV supplement our findings
visualised in Fig. 7.

The Anger-Surprise axis Rule was modelled using
two transformations: (i) Eyebrows raise from an initially
frowned/depressed position, (ii) Mouth opens from an initially
closed position. Combined with the hypothesis, “LiD2 relates
to the region around eyes, eyelids, and brows referring to
the upper facial region”. Thus, we could assume that the
micro-level feature LiD2.1 would refer to the translation of
the eyebrows from an initially frowned/down-turned position
to finally a raised position, using the musculatures involving
medial frontalis, levator palpebrae superioris and corrugator
supercilii muscles.

Fig. 7B exhibits an axis that has been derived previously.
Only in this instance, it has been mapped from one feature
space to another, the Sadness-Happiness axis, which varies
in regard to the LiD1.1 feature. The macro-level, Sadness-
Happiness Axis Rule modelled the following two transfor-
mations: (i) parallel relaxation of brows and raising of cheeks,
(ii) raising of lip corners and mouth from a depressed initial
condition. The second transformation relates to the lower facial
region feature. This transformation, pertaining to the lip corner
movements, may be the causal link between the micro-level
feature LiD1.1 and the real world. Analysing the variations in
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LiD1.2, we see disgust and surprise on opposite sides of the
spectrum. The immediate hypothesis is that LiD1.2 models the
openness of the mouth, and the manipulation of the central lip
muscles - orbicularis oris and levator labii superioris.

The evidence gathered via the micro-level expression (LDA-
derived) clusters establishes validity of our macro-level expres-
sion related inferences. Moving into the micro-expression (at
mth level), we could define each axis as:

• LiD1.1 - lower face: Muscles around lip corners - provide
a model for translation from a down-turned shape to a
lifted shape.

• LiD1.2 - lower face: Muscles related to opening of the
mouth - provide a model for the manipulation of the
central lip muscles from closed to open.

• LiD2.1 - upper face: Models a translation of the eye-
brows from an initial frowned position to a raised posi-
tion.

• LiD2.2 - upper face: Models expressions of fear and
contempt and explains asymmetrical movements outside
the spectrum - from anger to surprise.

Establishing this rule-base provided us with the foundations
on which the upper and lower facial region micro-expression
detection and classification systems were built.

Deploying the HSCN in a rule-based expert system would
allow for the continuous monitoring and assessment of macro-
level expressions of affective states and micro-expressions,
which allow for the modelling of specific muscle movements
in the upper and lower facial regions. In the previous sections
the macro- and micro-expressions were modelled using linear
discriminant features defined by nth and mth level subscript
notation i.e., LiDn.m. Fig. 3 visualises the rule-based expert
system and shows how facial image data is processed from
input to output stages. Through classification, the proposed
system is capable of assessing various levels of facial expres-
sions and muscle movements using the rules derived earlier.

The rule-based expert system facilitates hierarchical detec-
tion of macro-level facial expressions as well as detection
of upper- and lower-facial region micro-expressions as each
of the three classifiers models some unique states. Using the
micro-level rules defined in the previous section, the HSCN is
able to detect changes in: (i) lip corner muscles, (ii) openness
of the moth, (iii) translation of the eyebrows and, (iv) level of
asymmetry.

B. Hierarchical Classifier Performance

Both macro- and micro-level algorithms developed for this
work were validated using the Random Forest (RF), Support
Vector Machine (SVM) and K-Nearest Neighbour (KNN)
classification approaches. Classifiers were trained using the
clustered data that had been defined through the separation
and clustering subsystems of the HSCN. The CK+ facial
expression images used to train the classifiers were resized to
100x100 pixels and were then flattened, providing 5842 image
samples. The 80/20, train/test split was used for validating
performance of each classifier. The validation accuracies in

A

B

Fig. 7. (A) Two-dimensional Linear discriminant space representation of the
upper facial region, showing {LiD2.1, LiD2.2} micro-expression features.
(B) Two-dimensional Linear discriminant space representation of the lower
facial region, showing {LiD1.1, LiD1.2} micro-expression features.

this work show the percentages of correct guesses with respect
to the total number of guesses made, defined as:

Accval(%) =
N(correctguesses)

N(totalguesses)
× 100% (4)

Classification performance of all models are reported in
Table V. We used the Random Forest classifier for macro-
expression classification, predicting twenty-one transient af-
fective state expressions, across seven independent state axes
with 76.11% accuracy. For the upper and lower facial micro-
expression classifiers, we deployed SVMs, capable of predict-
ing twenty-one variations of upper and lower facial muscle
movements based on mth level ‘LiDn.m’ linear discriminant
features and the rules defined in Section IV. We achieved 73.63
and 87.68% classification accuracies respectively for upper-
and lower-facial region micro-expression classification with
the SVM classifier.

These observed results are comparable with the recent
discrete affective state assessment solutions. Looking at the
facial expression classifiers reported in [16] for example, we
see that the accuracies of systems in [16] range between
41% and 88% while classifying a lesser number of affective
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TABLE IV
COORDINATES OF UPPER- AND LOWER-FACE CLUSTER CENTROIDS IN OUR MICRO-EXPRESSION, LINEAR DISCRIMINANT SPACE. SUBSCRIPTS N, P AND

A RESPECTIVELY REFER TO NEUTRAL-DOMINATED, PARTIAL AND FULLY ACTIVATED STATE LABELS.

Lower facial region Upper facial region
Cluster LiD1.1 LiD1.2 LiD2.1 LiD2.2

AngerN 0.178 0.613 0.278 0.757
AngerP 0.163 0.683 0.159 0.760
AngerA 0.144 0.720 0.054 0.739
Cont.N 0.107 0.457 0.542 0.128
Cont.P 0.158 0.428 0.557 0.087
Cont.A 0.210 0.408 0.565 0.056
Disg.N 0.183 0.664 0.384 0.788
Disg.P 0.120 0.847 0.283 0.761
Disg.A 0.081 0.942 0.192 0.740
FearN 0.257 0.463 0.448 0.828
FearP 0.329 0.323 0.488 0.941
FearA 0.350 0.165 0.568 0.960
HappyN 0.421 0.592 0.412 0.758
HappyP 0.745 0.607 0.358 0.745
HappyA 0.911 0.630 0.342 0.739
SadN 0.143 0.569 0.381 0.737
SadP 0.069 0.592 0.381 0.781
SadA 0.075 0.647 0.371 0.805
Surp.N 0.216 0.570 0.519 0.774
Surp.P 0.210 0.268 0.746 0.783
Surp.A 0.184 0.069 0.942 0.787

TABLE V
THE OVERALL CLASSIFICATION PERFORMANCE OF HSCN WHEN TRAINED

AND VALIDATED USING THE CK+ DATASET. THE 80/20 (TRAIN/TEST)
SPLIT WAS INVOKED ON TWENTY-ONE EXPRESSION CLASSES PER FACIAL

REGION.

Region of the face Model used Validation Accuracy
(%)

Entire-face (macro) RF 76.11
Entire-face (macro) SVM 72.95
Entire-face (macro) KNN 54.11
Upper-face (micro) RF 70.89
Upper-face (micro) SVM 73.63
Upper-face (micro) KNN 72.67
Lower-face (micro) RF 86.37
Lower-face (micro) SVM 87.68
Lower-face (micro) KNN 87.26

states. When we compare our results with the works discussed
in section III, we find that their range was between 32.94-
95.95% accuracies. This shows that our classifiers reside in
the upper bounds of the performance metrics. The observed
HSCN classifiers prove that the resolution and dimensionality
of a recognition system can be improved without hindering
classifier performances. Furthermore, our results show that
continuous affective state assessment solutions could perform
as well as discrete models supported systems would.

Performances of the lower and upper facial micro-
expression classifiers were consistent with the human obser-
vations made in [42], [48], stating that the classification of
lower facial expressions is on average, more accurate than
that of upper facial expressions. Looking at Fig. 7A and
Fig. 7B, one would see why this might be the case. The
lower facial region micro-expression clusters show a larger
separation across LiD1.1 and LiD1.2 axes compared to the
upper facial region micro-expressions. This shows variations
along the LiD2.1 axis for most states. In reality, the reason
for this outcome could be the prominence and relative size

of the mouth and lips in the lower facial region. Relatively
speaking, the mouth is a larger facial feature compared to other
features. Also, muscle activations around the mouth region
would generally have a larger impact compared to muscular
changes around the eyes or brow region. This explains why
it may be easier to classify lower facial region expressions
compared to upper facial expressions.

The rules derived in this work along with the previously
discussed classifier results allow supporting the real-world
phenomena with statistical findings. Through these findings,
the importance of both upper- and lower-facial region muscle
movements for facial expression classification has been high-
lighted and reinforced.

VI. CONCLUSION

This work provides novel and new information on the
respective roles of the facial musculature specific to the upper
and lower facial regions in exhibiting and recognizing facial
expressions of affective states. We were also able to explain
how micro- and macro-level facial muscle movements could
be used to build a robust set of features. Hence, this work
should be regarded as a step forward from discrete affective
state classification systems, capable of classifying one of ‘n’
discrete affective states to the continuous affective state classi-
fication systems. The proposed HSCN is a new and powerful
classifier ensemble that exploits separation and clustering for
categorising affective state expressions in a dynamic manner.
The HSCN transforms seven independent facial expression
clusters into twenty-one transient facial expression clusters
and classifies twenty-one upper and twenty-one lower facial
region micro-expression classes. The twenty-one affective state
classification is performed using a rule-based expert system
and a convincing level of accuracy was achieved during
the training and testing stages. The reported HSCN shows
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competitive performance compared to recent state-of-the-art
systems reported earlier in Table II.

The ability to detect and classify micro-expressions would
help affective state assessment in demanding dynamic condi-
tions. However, the complex nature of continuous expression
signals would require developing comprehensive models of af-
fective state-caused variations in facial features. Our proposed
HSCN approach demonstrates how the micro- and macro-
level facial muscle movement modelling approach would be
useful in complex affective state assessment situations. The
presented HSCN approach was able to predict twenty-one
macro-level transient expressions vis-à-vis twenty-one upper
and lower facial region micro-expressions. As discussed previ-
ously, the reported validation performance of the HSCN makes
it comparable with several previously reported affective state
classification systems.

The rule-based, expert system-supported HSCN was built
upon the theoretical foundations of the EMFACS and other
continuous affective state expression models. Through a com-
bination of (i) unsupervised cosine similarity-based separation,
(ii) LDA-based clustering and, (iii) traditional supervised
learning classifiers, the HSCN’s predictive capabilities suggest
that it could be used as a quantitative assessment tool that is
supported by a theory-driven back-end.

Our future research will focus on integration of the HSCN
into a multimodal affective state assessment system. The goal
will be to develop a dynamic assessment tool capable of
detecting and classifying transient facial expressions in real-
time. We intend to expand and modify the HSCN architecture
for incorporating human speech as well. This will allow mod-
elling changes in affective speech expressions as continuous
and time-dependent functions to be used for affective state
assessment.
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