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Abstract

Perturbation techniques are useful in the design of low complexity adaptive antenna
arrays for estimating the gradient required in stochastic descent algorithms.
Implementing projected perturbation sequences in an adaptive array allows the
simultaneous reception of signals and the adaptation of the array weights while

preserving the constraints imposed on the array weights.

This thesis quantifies the performance of narrowband adaptive array processors that
employ projected perturbation techniques. For different perturbation receiver
structures the performance is determined under idealised conditions and importantly

also when practical implementation issues are taken into account.

The arrays performance is characterised by analysing the transient performance of the
weight covariance matrix and by determining the misadjustment. By drawing
similarities between two established analysis technigues a new misadjustment

analysis technique is introduced.

Practical implementation can impact on the arrays performance such that the benefit
of the projected perturbation approach is lost. By characterising the array’s sensitivity
to perturbation noise additional projections which counteract some implementation
effects are identified. The level of loss of performance due to weight quantisation and

the limited dynamic range of the array weights is determined.
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conjugate of the complex scalar a
hermitian or conjugate transpose of matrix A
transpose of matrix A

the real part of complex variable a
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Chapter 1
Introduction

1.1 Background and Motivation

An adaptive atray consists of a set of spatially distributed sensors, the outputs of
which can be combined and processed in an adaptive manner so as to optimise the
performance of the system subject to some criterion [9], [13], [33], [53], [59], [60],
[61]. By having spatially distributed sensors the adaptive array is able to exploit the
spatial characteristics of the incident signals as well as temporal characteristics to

enhance system performance.

Adaptive antenna arrays were proposed, as early as the 1960s, for use in military
applications. Adaptive arrays can be used to estimate the signal scenario by
determining the number of signal sources that are present, the signals strengths and
their direction of arrivals. And an adaptive array can be used to improve the desired
received signal quality through spatial filtering of interference signals and by
maximising the signal to interference and noise ratio on the antenna output. The use
of adaptive arrays finds wide applications in fields such as acoustics, seismology and
communications [64], [65], [66], [67], [75]. Recently there has been a surge of
interest in applying adaptive arrays in cellular telecommunications systems [77], [78],
[79], (80], [81], [82]. In cellular applications the use of adaptive arrays has the
potential to increase the capacity of a system by improving the interference and noise
suppression capabilities and reducing co-channel interference and multipath

propagation effects.

The application of perturbation sequences to adaptive beamforming enables the
design of low complexity adaptive antenna arrays. In a perturbation based adaptive
antenna array individual array element signals are inaccessible and perturbation
techniques are required to estimate the gradient used in the weight update algorithm.
In a conventional array where all the array element signals are accessible the required
gradient vector can usually be determined by correlating the array output with the
array element signals. Compared to a conventional array an adaptive array using

perturbation techniques obviates the need to have a coherent measurement of the



signals on all the array elements that have adaptively controlled weights, this leads to
a considerable reduction in the array hardware and the complexity and cost of the
system. Perturbation based arrays also provide advantages in dealing with phase and

offset errors and dynamic range issues [9] [68].

Perturbation based adaptive arrays have been studied by Widrow et. al. [1] who
described a gradient based algorithm which obtained a gradient estimate by
measurement of changes in smoothed output power resulting from individual weight
perturbations. Cantoni [2] modified the technique by correlating the instantaneous
output power of a single receiver system (or the instantaneous power difference
sequence of a dual receiver systems), with an orthogonal perturbation sequence. Davis
et. al. [3] introduced the coherent perturbation method in which closely spaced
samples of the output power were taken to estimate the baseband voltage of the array
elements, this method required the adjacent time samples to be correlated. A number
of authors have contributed to the analysis and theory of perturbation techniques in

adaptive arrays [3], [4], [5], [6], [46], [53].

The use of constraint preserving perturbation sequences, referred to here as projected
perturbation sequences was introduced in [4]. Implementing projected perturbation
sequences in an adaptive array allowed the simultaneous reception of signals and the
adaptation of the array weights while maintaining the imposed constraints on the
array weights. The use of projected perturbation sequences was demonstrated on an
experimental narrowband adaptive array developed at the University of Newcastle
[36]. [37]. [38]. A project was initiated within the Electrical and Electronic
Engincering department at the University of Western Australia and then at the
Australian Telecommunication Research Institute at Curtin University to extend the

efforts conducted in Newcastle.

Within the context of low complexity adaptive arrays our work is focused on
quantifying the performance of narrowband adaptive arrays that employ the projected
perturbation techniques. We determine the performance of adaptive arrays under
idealised conditions and importantly also when practical implementation issues are
taken into account. Specifically, we develop expressions for the performance of an
adaptive array with different array perturbation receiver structures, determine the

impact that practical implementation effects have on the performance, and examine



which projections are required on the perturbation sequence to achieve a desired noise
response and to maintain the original constraint preserving response when directional

mismatch and practical implementation effects occur.

A modified version of the LMS algorithm is used to update the array weights in the
perturbation based arrays we investigate. The LMS algorithm has been considered
quite extensively for the constrained and unconstrained case in adaptive beamforming
(1], [2], [5L, [6), [71, 8], 9], [10], [62], [63], [69], [70], [73]. The analysis that exists
covers the transient behaviour of the weights, the convergence, the transient behaviour

of the weight covariance matrix and the misadjustment.

For conventional adaptive arrays when orthogonal perturbation sequences are used to
estimate the required gradient for the constrained I.MS algorithm the study of the
convergence and transient behaviour of the weights [5] and the transient behaviour of
the weight covariance matrix and the misadjustment [6] has been carried out. Webster
Evans and Cantoni proposed the use of projected perturbation sequences in adaptive
beamforming [4]. Importantly these sequences allowed simultaneous adaptation and
reception by use of weight perturbations that do not obstruct the look direction
constraint. These sequences can also be shorter in length and offer computational
savings. In Webster’s et. al. [4] performance analysis of an adaptive array using these
sequences, the analysis was limited to considering computational aspects and deriving
expressions for the gradient estimate and the excess mean output power due to
perturbations, all for a single perturbation receiver structure. We extend their
performance characterisation by determining the gradient covariance, the transient
analysis of the weight covariance matrix and the misadjustment for three adaptive
perturbation receiver structures which use projected orthogonal perturbation

sequences.

Finite precision implementation of an adaptive algorithm can have significant impact
on the performance of the array. The study and characterisation of finite precision
effects when implementing the LMS algorithm has been studied [13], [14], [20), [21],
[22], [33], [45], [72], [76]. However, little work has appeared on the effects of finite
precision on adaptive arrays using perturbation techniques. It is expected that the
weight quantisation effects of a perturbation based adaptive array will be similar to

that experienced on a conventional adaptive array, however when the quantisation



effects due to implementing the perturbation sequence and in particular the projected
perturbation sequence can not be minimised by design [5], the performance between
the two arrays will differ considerably. For a perturbation based array Hudson [14]
has considered characterising the interference rejection capability of the processor
and Webster [36] has examined the use of dynamic scaling on the weights to minimise
the quantisation error. We extend the idealised performance characterisation and
develop new expressions for the gradient covariance and the misadjustment in the

presence of weight quantisation for different perturbation receiver structures.

The application of derivative constraints to adaptive antenna arrays has been used to
achieve controlled main beam responses and to improve the reception of desired
signals when directional mismatch occurs [9], [13], [18], [28], [29], [35], [42], [71],
[73]. Directional mismatch occurs when the desired signal’s direction of arrival is
offset from the expected direction of arrival. A flat main beam response can be
achieved by setting the derivative of the beamformer response or the magnitude
response 1n a specified direction to be zero [51]. The body of work that exists on the
application of derivative constraints to adaptive arrays is mainly concerned with
defining these constraints, how to implement the constraints simply and effectively
and what are the limitations of these implementations. No work has appeared on the
application of derivative constraints to projected perturbation sequences used in
adaptive arrays. When directional mismatch occurs the inherent properties of using
projected perturbation sequences, such as satisfying the system constraints and
reducing the perturbation noise can be degraded. In this instance, applying a spatial
derivative constraint in the generation of the projected perturbation sequence can
preserve the original system response and reduce the perturbation noise that is
introduced into the system. We examine the benefit of applying spatial derivative
constraints in the generation of the projected perturbation sequences by developing
new expressions for an array’s sensitivity to perturbation noise, and identify
conditions on the array under which spatial derivative constraints applied to

perturbation sequences are effective in suppressing perturbation noise.



1.2 Contribution of the Thesis

The major contributions of this thesis are:

. The characterisation of the performance of the projected perturbation approach
by analysing the transient performance of the weight covariance matrix and
determining the misadjustment for three narrowband array receiver structures

under idealised conditions. We also derive expressions for the gradient

covariance.
. The introduction of a new misadjustment analysis technique.
. By considering practical implementation issues, we extend the system

performance characterisation to include weight quantisation effects. In
particular, we develop new expressions for the gradient covariance and the
misadjustment in the presence of weight quantisation for three narrowband
array receiver structures. We determine the level of loss of performance due to
weight quantisation and the limited dynamic range of the array weights for an

adaptive array that uses the projected perturbation approach.

. The development of new expressions for an array’s sensitivity to perturbation
noise to determine the benefit of projecting the perturbation sequence onto the
spatial derivative constraint planes. We identify conditions on the array under
which spatial derivative constraints applied to perturbation sequences are

effective in suppressing perturbation noise.

1.3 Organisation of the Thesis

The thesis is organised as follows:

In Chapter 2 we place in perspective the area of research on the use of projected
perturbation sequences. We introduce the notation and model assumptions used
throughout the thesis, briefly review narrowband time domain beamforming
techniques using the perturbation approach, define the measures that we use to
characterise an arrays performance and present results on the performance of an

adaptive array using orthogonal and projected orthogonal perturbation sequences.



In Chapter 3 we present new results that characterise the performance of the projected
perturbation approach by determining the misadjustment for three perturbation
receiver structures. We determine the misadjustment using two established
approaches the Direct and Bounds approach developed in [5] and [6] and we present a
new misadjustment analysis technique. We also determine the optimum perturbation
step size and analyse the transient performance of the weight covariance matrix. The
misadjustment is determined under idealised conditions and we present the results of
simulation studies to verify the accuracy of the misadjustment expressions. For the
sake of conciseness, only the basic approach and an outline of major intermediate
results are presented in the chapter. A detailed derivation of the intermediate results

can be found in Appendix B, C and D.

Appendix A contains the lemmas and theorems that are required in the derivation of

the results contained in the thesis.

Chapter 4 extends the performance characterisation of the projected perturbation
approach to include digital implementation effects. Specifically, for three perturbation
receiver structures we develop new expressions for the gradient covariance and the
misadjustment which allow for weight quantisation and we determine the level of loss
of performance due to weight quantisation and the limited dynamic range of the array
weights. Simulation results are presented to determine the accuracy of the derived
expressions. Again for the sake of conciseness, only the major intermediate results are
presented in the chapter. A detailed derivation of the intermediate results can be found

in Appendix E.

In Chapter 5 we examine the use of spatial derivative constraints in projected
perturbation sequences. The application of spatial derivative constraints is useful in
countering the effects of directional mismatch. By projecting the perturbation
sequence onto spatial derivative constraint planes unwanted perturbation noise
(generated by directional mismatch condition) in the output signal can be reduced.
When directional mismatch is not a concern, projection of the perturbation sequence
onto the spatial derivative constraint planes can be used to reduce the perturbation
noise contributed by signals within an angular region of the look direction. We
determine the benefit of using the spatial derivative constraints in the projection

operation by developing new expressions for an array’s sensitivity to perturbation



noise. We identify conditions on the array under which spatial derivative constraints

applied to perturbation sequences are effective in suppressing perturbation noise.



Chapter 2

Overview of Narrowband Array Processing Using
Perturbation Sequences

2.1 Introduction

In this chapter we give a brief introduction to narrowband time domain beamforming
techniques using the perturbation approach. The aim is to place in perspective the area

of research on the use of projected perturbation sequences.

We outline the optimum array processing problem and present the signal model, the
narrowband array, the perturbation receiver structures and the basic assumptions and
definitions used throughout the work. Measures that are used to characterise an
array’s performance are introduced and we present some existing results, established
in [2],[4],[36] and [37], of an array’s performance with orthogonal and projected
orthogonal perturbation sequences. However these existing results give only a limited
analysis of the performance and in later chapters we will extend these results to obtain
a more comprehensive characterisation of an array’s performance using the projected

perturbation approach.

The chapter is organised as follows. In Section 2.2 the propagation and received
signal model are introduced. In Section 2.3 we present the narrowband beamformer
and the signal representation. We identify the Narrowband Condition used for
defining narrowband signals in the context of narrowband array processing in Section
2.4. In Section 2.5 we present the inphase and quadrature signal representation. We
introduce the vector notation used throughout the thesis in Section 2.6. In Section 2.7
we define the adaptive beamforming problem that is considered throughout the thesis.
In Section 2.8 we review a class of narrowband beamformers using the perturbation
approach. Here three perturbation receiver structures are presented and the properties
of an orthogonal perturbation sequence are defined. In Section 2.9 we introduce
measures used to characterise an array’s performance and finally in Section 2.10 we
review a projected perturbation sequence and summarise the work that has been done

to characterise an array’s performance using the projected perturbation approach.



2.2 Propagation and Received Signal Model

In this thesis, we assume that the array consists of L sensor elements. The elements are
located in the far field of a number of point sources, s;(t) i=1,2..K,such that the

wavefront impinging on the array, due to any source, can be considered to be a plane
wave. As shown in Figure 1, the normal to a plane wave gives the direction of arrival

of the source.

The position of the array sensor elements is described in terms of a Cartesian co-
ordinate system as shown in Figure 1. The origin of the co-ordinate system can be
chosen arbitrarily, for convenience we take the origin of the co-ordinate system as the

time reference point relative to which all propagation times are calculated.

The output signal waveform, x;(¢), of the 1" element of the array due to a far field point
source s(¢) , before beamforming, is assumed to be related to the scalar signal s(z) by

[11]

l direction to the source

4 source
propagation
direction

/
/
I
e 7/
~/ | source wavefront
array element [ |
{xpyp21) #(0.l0)
.‘rl\ 7 oo Y
~ o
- — Ny
b ~

Figure 1.Definition of the Co-ordinate System
t

x,(1) = jo,(t—r)s(r)drm,(z) (2.1)

—C

where o0,(¢) represents the effects of propagation from the signal source to the /'

element of the array and the response of the I element and n,(t) is the total noise at

lth

the output of the /' element due to both internal electronic noise and external

background noise.



We assume the following throughout the thesis:

Assumption 2.1: o,(t) corresponds to a pure time delay for the ideal case of non-
dispersive propagation and array elements which are distortionless and omni-
directional.

Using Assumption 2.1, for a single point source, s(¢), incident on the array, the

lth

expression for the output waveform of the ' element before beamforming is given by

x,(1) = (1 +7,0,0)) +n(t) 1=1,2,..L (22)

where (0, ¢) is the direction of arrival of the plane wave, 7,(9, ¢) is the propagation

delay of the plane wave relative to the origin of the co-ordinate system defined by

50
7,(0,0) = w - %[(xfcosq)+ylsin¢)sin9+zlcosﬂ] 23)

I element of the array, $(8, ¢) is a unit

and where r, is the position vector of the
vector in direction (0, ¢) as shown in Figure 1, v is the speed of propagation of the

plane wave and (x;, y,, z;) is the position of the I element.

2.3 Signal Representation

The general structure of the narrowband beamformer considered in this thesis is
shown in Figure 2. Functionally, the narrowband beamformer can be separated into
four modules, an input filtering module, the inphase and quadrature signal generation

module, the weighting module and the adaptive processor module.

The input filtering module is used to pass the frequency band of interest. It is possible
that this function is unity or trivial. The weighting module is where the signals are
combined to produce an output, and the adaptive processor module is used to perform

the weight update algorithm.

In the inphase and quadrature signal generation module, the inphase and quadrature
components of the array element signals are generated. This stage can be performed at
the element stage and providing certain conditions hold at an intermediate frequency
stage or at baseband, [11], [57]. At the element stage, the inphase and quadrature
signal generation occurs with no frequency shifting. This can be accomplished with

the use of quadrature filters. At an intermediate frequency stage or at baseband, the

10



inphase and quadrature signal generation requires some frequency shifting. There are
numerous ways that the inphase and quadrature signals can be generated such as with
quadrature filters, quadrature frequency shifting and by the use of Fast Fourier

Transforms [11],[33],[541,[56].

Two possible quadrature signal generators are shown in Figure 3 and Figure 4. In
Figure 3 the inphase and quadrature signals at baseband are generated using
quadrature frequency shifting. In Figure 4 the inphase and quadrature signals at an
intermediate frequency stage are generated by frequency shifting and using a
quadrature filter. In Figure 4, f ;. is the intermediate frequency and in the thesis we

sometimes refer to this frequency as the mean frequency of the signal at that stage.

We assume throughout the thesis that the filtering stages at the input or those required

in the inphase and quadrature signal generation can be realised.

r———--- T i it 1
|

{ Inphase and

Input 1 ) \ |
'Fi{)tcring i 1Quadrature Signal , ! !
! 1 1Generation p ! :
| 1 1
I P :
| 1 1 1.0
Input { i
; Fiﬁer — Signal |
xy(8) : : : Generator ! |
| 1 ! |_|_|_ !
| 1 I Xg1 '
| I 1 I
e | ) 1 !
| ] 1 l
* . i 1 . |
° ! Eoo
i | 1
1 . | I L ]
1 -
1 . L .
1 L
1 | t
1 .
| L
! L
| L —
' Input |! | A
> ]gilﬂgr t t Signal
xL(;) | | | Generator
| ] )
! I 1 Ix———r—'
! [ oL
! ) L o e e
| , W‘rl*Wl*...w*w* ,
1Adaptive Processor Q L 0 |
: 1

! Update Algorithm -y—L——

Figure 2. Narrowband Antenna Array Structure
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element stage éi%nal intermediate frequency stage
Generator
X[ xy1)
oo BPF S
I receiver signal | inphase signal
2cos(2R(f,— f,p)) QF o) .
= quadrature signal

Figure 4, Inphase and Quadrature Signal Generator at an Intermediate Frequency

When using the inphase and quadrature components of the array element signals, it is
convenient to represent the signals in the form of a complex envelope. The complex

envelope of s(f) at frequency f, is given by [15]

m(t) = my(1) + jmy(t) = (s(1) + js(1))e > (24)

where m,(¢) and m(t) represent the real and imaginary parts of the complex
function m(r) and s(¢) is the Hilbert transform of s(¢). By re-arranging (2.4) the

signal s(¢) can be expressed in terms of its complex envelope, i.e.
s(t) = my()cos(2nf 1)~ mp(t)sin(2nf 1). (2.5)
Note from (2.4) that m,(r) and mQ(t) depend on the choice of f .

By substituting (2.5) into (2.2), for a single point source, s(¢), incident on the array,

12



the output of the 1™ receiver element before beamforming is given by

x(t) = m(t+T)cos(2nf (1 + 7)) - my(t +T)sin(2nf (¢ + 7)) + n(t) (2.6)

2.4 Narrowband Condition

In the case of purely temporal processing, a signal is considered narrowband if the
bandwidth of the signal is small compared to the mean frequency of the signal.
However, narrowband array processing also involves spatial sampling of the signal.
Therefore, in an array processing context, for a signal to be considered as narrowband,
it must satisfy an additional condition that allows the separation of the signal’s time
and space dependent quantities [9], [11], [16], [33]. When this condition, Narrowband

Condition, is satisfied, the resulting analysis for narrowband arrays is more tractable.

Narrowband Condition: The complex envelope of the signal is constant across the

array at any given instant of time, i.e. m(z +8,) =m(t). @7

Note that the above condition is a sufficient condition. It is commonly referred to as the
array aperture bandwidth condition. In [2], [33] and [34] the array’s performance is

determined when (2.7) is not satisfied.

In (2.7), 8, is the order of time difference between the signal arriving at two elements
situated closest and furthest from the point source, defined by 6, = §,/v where 8,
is the maximum aperture size of the array. It is established in [9],[11],[16],[33] that a
sufficient condition for (2.7) to be true is that the bandwidth, & Iz of the complex
function m(t) satisfies

v
Sf « 5—‘1 . (2'8)
Assuming Narrowband Condition holds, (2.6) can be re-written as

x(8) = my(t)cos(2nf (t+ 7)) — mQ(I) sin(2nf (£ + 1)) +n,(1). (2.9)

13



2.5 Inphase and Quadrature Signal Representation

As mentioned in Section 2.3, the inphase and quadrature signal generation can be
performed at the element stage and providing certain conditions hold at an
intermediate frequency stage or at baseband. In [11] it is shown that these conditions

arc:

Inphase and Quadrature Condition 1: When quadrature signal generation is
performed at a frequency shifted stage, the mean frequency of the signal at that stage,

f1F» should be greater than the highest frequency component of m,;(t) and mp(t).

Inphase and Quadrature Condition 2: 1f the quadrature signals are generated at

baseband using quadrature filters then, m olt) = my(t)
Note that the above conditions are sufficient conditions [11].

Using the Inphase and Quadrature Conditions, the inphase and quadrature signals of
the I array element at the beamforming stage when more than one signal is incident

on the array, are given by

K
xp(t) = 3 Imp(t)cos(2R(f it + £,1,0) — moi1) sinRR(f 1t + £,T,0)] + nyy(2)
=t (2.10)
K
xoi(1) = 3, Imo£)cos 2R £t + £,T,0) + my(D)sin (2R(f 1t + £ 1,0 +1(0)
i=1
@2.11)

where n,(t) and np (1) are the inphase and quadrature noise components, iy, (#)
and m,(t) are the inphase and quadrature components of the complex modulating
function for the i source and T,; 1s the propagation time from the i source. Note
that in (2.10) and (2.11) when beamforming is performed at the element stage

fir = f,,and when beamforming is performed at baseband f, = 0.

Without loss of generality and for simplicity of notation, we assume throughout the
rest of the thesis that the inphase and quadrature signal generation is performed at

baseband as shown in Figure 3.
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2.6 Vector Notation for Narrowband Beamforming

In this section we introduce the vector notation adopted throughout the thesis.

We let the inphase and quadrature components of the array element signals be

represented by an L x 1 dimensional complex vector X(t), its i component being
defined by
X[(1) = xpy(2) + jxg,(1) (2.12)

where x,(¢) and x,,(¢) are defined by (2.10) and (2.11) respectively.

Throughout the thesis, for convenience, we also adopt the use of the following steering
vector notation, [9], to represent the array signals. The components of the steering
vectors are the phase shifts of the sinusoidal signals produced in each of the array
elements relative to a reference when a monochromatic plane wave is incident on the
array from a specified direction. The L x 1 dimensional complex steering vector in

direction (8,) is given by

2 8, 2nf,T,(0, nf,T,(0,
ST(B, 0) = [e nfoTi( ¢)’ . TfoTo( ¢), ¢ T foT, ¢)]

(2.13)

Using the above steering vector notation, (2.10), (2.11) and assuming there is no noise

present in this instance, the array signal at the beamforming stage is given by

K
X(1) = ¥ my(1)S(9, ;) (2.14)
i=1
Let the array weights be represented by an L x 1 dimensional complex weight vector

W, with its /” component being defined by
W, = wy+ jwgy (2.15)

where wy, and w,,, are defined in Figure 2. The output of the array processor is given
by the product of the signal and weight vectors, i.c
Y(#) = XH(OW (2.16)

The output power of the narrowband processor is defined by

P(W(n)) = E[Y2(¢)] = WH(n)RW(n) (2.17)

where R is the L x L dimensional complex array correlation matrix defined by

R = E[X(OX" ()] (2.18)

We shall make the following assumption throughout the thesis that will impact on R.
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Assumption 2.2a: The narrowband signals, s,(¢) i = 1, 2...K , are mutually

uncorrelated and statistically independent from the noise at any receiver.

Assumption 2.2b: The total noise at the output of the i array element can be

modelled as uncorrelated white element noise

Using Assumption 2.2a, the array correlation matrix can be decomposed as
K

R = YR, +R, (2.19)
i=1
where R, is the correlation matrix due to the " source and R is the correlation matrix

due to noise on the array elements.

Further under Assumption 2.2b the noise contribution to the array correlation matrix is

givenby R, = ol;; (2.20)

where o is the white noise power on each array element.

2.7 Adaptive Beamforming

The adaptive beamforming problem considered in the thesis is that of computing in real
time a weight vector that converges in some sense to the optimum weight vector, to be

explored later, and is defined by the following optimisation problem [2], [4], [6], [9].

. H
min W RW 2.21)
subject to wic = F (2.22)

In the thesis we assume that all the constraints placed on the system are linearly
independent and consistent. When there are N constraints placed on the system, Cis a
CN] and F is an 1 X N row

vector.

The constraints will consist of non-zero fixed responses in specified directions known
as look directions and constraints that are used to control the array’s response over

specified regions of direction and or frequency [28], [29].

Let P be an L x L projection operator matrix defined by

P=1,-ccc’cy'c” (2.23)
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It can be shown that W the solution of the optimization problem defined by (2.21) and

(2.22) satisfies the equation

PRW = 0 (2.24)
and if R has full rank,

- _ _ 1. H

W = Rc(CoR' ) 'F (2.25)

The total output power for the optimum weight setting is obtained by substituting
(2.25) into (2.17), 1.e

H -1 -1 H
P, = F(C'R'C)F (2.26)

In practice R is unknown and must be estimated from the data. This leads to the
development of adaptive algorithms. A real time algorithm [1],[8],[53] for obtaining

the optimum weight vector W is given by
W(n+1) = P[W(n) - uG(W(n)]+Cc’c)y'F" (2.27)

where W(n + 1) denotes the new weight vector computed at the n*"+1 iteration, lLisa
positive scalar defining the gradient step size and G(W (n)) is an unbiased estimate of

the true gradient of P(W) with respect to W(n).
As shown in [7] and [8] the gradient of P(W) with respect to W(n) is given by
VwP(W)|w - Win) = 2RW(n) (2.28)

The conventional Least Mean Square (LLMS) adaptive algorithm, [9], [17] for
adjusting the weights uses the following gradient estimate

G(W(n)) = 2X(n+ l)XH(n +DW(n) = 2X(n+ 1)Y(n+1) (2.29)
which clearly requires access to the signals X(n+1).

Note that for a given W(n) the estimate given by (2.29) is unbiased, i.e

E[G(W(n))|W(n)] = 2RW(n) (2.30)

Under appropriate conditions on W, lim E[W(n)] = W 121, I5], [8].

n—y e
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2.8 Adaptive Narrowband Beamforming Using
Perturbation Techniques

In the design of low complexity adaptive arrays, perturbation techniques can be used
for estimating the gradient required in stochastic descent algorithms [2], [3], [4], [5],
[6]., [46], [53]. For narrowband arrays, the conventional Least Mean Square algorithm
requires the coherent measurement of the signals of X(¢) that have adaptively
controlled weights [9],[17]. Perturbation techniques obviate the need to measure all
these signals and this can lead to considerable reduction in the complexity and cost of
the system. To apply perturbation techniques the weights of the array need to be
individually adjustable. An evaluation of the degradation in performance by not
adapting all the weights can be found in [2], [3], [4], [5], [6], [46], [33].

The basic idea in perturbation techniques is to apply a perturbation sequence to the
adjustable weights, and then to estimate the required gradient on the basis of the
measurement of the corresponding instantaneous output power sequence or
instantaneous power difference sequence obtained with one or two beamformers. The
perturbation based processor only requires access to the processor’s output signal and

the weights to estimate the gradient required in the weight update algorithm.

When using perturbation techniques to estimate the gradient, the adaptive
beamforming algorithm consists of two phases. In the first phase an unbiased estimate
of the true gradient 2ZRW is obtained using one of the schemes which are described in
Section 2.8.2. The perturbation phase occupies m time instants to yield the gradient
estimate, m being the number of perturbation vectors used in the gradient estimation.
In the second phase the weights are updated using the gradient projection algorithm

(2.27). The algorithm is performed according to the following.

Adaptive Beamforming Algorithm using Perturbations:

Phase 1.(perturbation) Estimate the gradient G(W(n)) at W(n) by using one of
the three schemes described in Section 2.8.2
Phase 2.(weight update) W(n+ 1) = P[W(n)—uG(W(n))] + C(C*C)'F"

where G(W(n)) is the estimated gradient.

In the following we review a class of perturbation techniques that can be used to
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estimate the gradient required in the weight update algorithm. Firstly a number of
definitions regarding an orthogonal perturbation sequence are presented. Three
perturbation receiver structures are then presented. The three methods that are of
interest are the single receiver system, the dual receiver dual perturbation system and
the dual receiver reference receiver system. These three methods offer different trade-

offs between complexity and performance.

2.8.1 Orthogonal Perturbation Sequences

The perturbation sequences used in the perturbation receiver structures are required to
have certain properties for the gradient estimate to be unbiased. In this section we
briefly review these properties and present an orthogonal perturbation sequence, the
Time Multiplex sequence, that is used in later analysis. Methods to generate orthogonal

perturbation sequences can be found in [2].

Definition 1: Orthogonality

Let &(.) = {8(1),8(2), ccoennee ,8(m)} be a sequence of L x 1 complex column
vectors. The sequence 8(.) is said to be a normalised complex orthogonal vector
sequence if

. 1w . H, .4 _

i) %ElRe[a(z)]Re[s ()] =1,; (2.31)
. 1 w . H, .\ 1 _

ii) ;1;1;1:[6(;)]1"1[5 (O] =1, (2.32)
1 < . H ..y _

i) ;I_ZIRe[S(;)]Im[B (H]1 =0 , (2.33)
. 1 - . H,... _

V) Y Im[8(i)]Re[87(i)] = O (2.34)

i=1
The above equations state that the 2L scalar sequences comprising of the L scalar
sequences forming the components of the real part of 8(i) and L scalar sequences
forming the components of the imaginary part of (i) are mutually orthogonal over a

perturbation sequence length m. Each scalar sequence has been normalized to have a

unit average power.
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Definition 2: Zero Mean

A sequence 8(.) = {6(1),8(2), ......... , 0(m)} is said to have zero mean if
1 m
- Z §(i) =0 (2.35)
m
i=1
Definition 3: Odd Symmetry
A sequence 8(.) = {8(1),8(2), ........., 8(m)} is said to have odd symmetry if for

every i, 1 <i<m there exists a j, 1 < j <m such that 8(i) = -8(j)

From this definition it follows that an odd symmetry sequence has zero mean and there
are only m/2 distinct vectors in an odd symmetry sequence, the other m/2 vectors are
the negatives of these. An odd length sequence can also have odd symmetry if it

trivially includes an odd number of zero vectors.

For a Time Multiplex sequence [2], it is possible to evaluate certain expressions in
closed form and consequently these sequences are often considered in detail. Two
Time Multiplex sequences are examined in the thesis: a minimum length sequence
and an odd symmetry sequence as defined below. The minimum and odd symmetry

time multiplex sequence are of length 2L and 4L respectively.

Minimum Length Time Multiplex Sequence

£8(1), v, ,8(2L)} = § = J2LI[1,,, j1;;] _ (2.36)
Odd Symmetry Time Multiplex Sequence

{8(1), oo B(ALY} = S = J2LIY,,, j1;;, -1, —j1,,] (2.37)

In the above two equations the sequence of complex column vectors in § correspond

to the perturbation vectors.

2.8.2 Gradient Estimation using Orthogonal Perturbation
Sequences

In this section we summarise the perturbation techniques, developed in [2], that are
considered in the thesis. We review some basic results derived in [2] that state the
conditions under which an unbiased estimate of the gradient can be obtained, these
results are required in later analysis. We also compare the trade-offs between

complexity and performance of each perturbation receiver structure.
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(a) Dual Receiver Dual Perturbation System

Figure 5 illustrates two dual receiver structures in which perturbation sequences can be
used to estimate the gradient. With the switch, SW, in position A, the structure

corresponds to the dual receiver dual perturbation system. In this system, an estimate
of the gradient is obtained by applying a perturbation sequence 8(.) in antiphase to two

sets of weights and correlating the difference in power with 8(.).

At the /" instant within the perturbation cycle, 1 <i < m, Receiver 1 has its weights

perturbed according to

W (W(n), i) = W(n)+v3(i) ==1.2..m (2.38)
and Receiver 2 has its weights perturbed according to
W, (W(n),i) = W(n)—v8(i) i=1,2..m (2.39)

where ¥ is the perturbation step size that reflects the amplitude of the perturbation
applied to the weight vector W(#n). To understand the effect of the amplitude of the
perturbations in the three systems it is necessary to introduce ¥ since the perturbation
sequence effectively has a normalised amplitude determined by the orthogonality

definitions.

An estimate of the gradient is given by

I« . sy
G (W(n)) = 2Wﬁg)l[fl(wp, i) = f2(W,, )18(D) (2.40)
where f(W i) and f,(W,, i) denote the instantaneous output powers from

Receivers 1 and 2 respectively which are given by
f1(W,, i) = Wf(W(n), DXUI+DHXH(+ W (W(n), i) (2.41)
[o (W, i) = WH(W(n), DX(I+ DXH(+ W (W(n), i) (2.42)

and / is the time instant at which the perturbation cyclie is initiated.

We note that in (2.38) to (2.42) n corresponds to the n™ jteration of the weight update
algorithm, { corresponds to the time at which the perturbation cycle is started for the
gradient estimation at the (n+1)" weight update and i corresponds to the i instant of

time within the perturbation cycle.
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Figure 5. Dual Receiver Perturbation Based Structures

For a given W(n) the gradient estimate given by (2.40) satisfies the following result

Result 2.8.a. Unbiased Gradient Estimate for a Dual Receiver Dual Perturbation System
If the perturbation sequence &(.) is orthogonal then for any Y > 0 the conditional
mean of the gradient estimate defined by (2.40) satisfies
E[G(W(n))W(n)] = 2RW(n)

|

(b) Dual Receiver Reference Receiver System

In Figure 5 with the switch, SW, in position B, the structure corresponds to the dual
receiver reference receiver system. In this system, an estimate of the gradient is
obtained by applying a perturbation sequence 6(.) to one set of weights, Receiver 1,

while the second set of weights remains at a nominal value W.

At the i instant within the perturbation cycle, 1 <7< m, Receiver 1 has its weights

perturbed according to
W, (W(n),i) = W(n)+vy8(3i) i=1,2....m (2.43)
An estimate of the gradient is given by
1w . s
Go(W(m) = - 3 LW, )= f5(Wn), D)13() a8

i=1
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where f(W o 1) and f,(W(n), i) denote the instantaneous output powers from
Receivers 1 and 2 respectively. f 1(WP, i) is given by (2.41) and f,(W(n), i) is
given by

[o(W(n), i) = W)X+ DXH(+)W(n) (2.45)
For a given W(n) the gradient estimate given by (2.44) satisfies the following result

Result 2.8.b. Gradient Estimate for a Dual Receiver Reference Receiver System
If the perturbation sequence 8(.) is orthogonal then for a given W and for any y > 0
the conditional mean of the gradient estimate defined by (2.44) satisfies
E[GZ(W(n))!W(n)] = 2RW(n)+b,(W(n)) (2.46)
where the gradient bias is given by

m
b (W(n)) = %21 87 ()RS(1)8(i) (2.47)
Additionally, if the sequence &(.) has odd symmetry then
E[Gy(W(n))|W(n)] = 2ZRW(n)

i

(c) Single Receiver System

Figure 6 shows a single receiver system. In this system, an estimate of the required
gradient 1s obtained by perturbing the array weights about their nominal value W and
correlating the instantaneous output power sequence with the perturbation sequence.

At the i instant within the perturbation cycle, 1 <i < m, the weight vector is given by
W, (W(n),i) = W(n)+v8(i) i=1.2....m (2.48)
An estimate of the gradient is given by

Gy(W(n)) = Yim > (W, )1800) (2.49)
i=1

where f (W p» 1) is the instantaneous output power given by

fI(WP, i) = W;"(W(n), i)X(l+i)XH(l+i)Wp(W(n), i) (2.50)

For a given W(n) the gradient estimate given by (2.49) satisfies the following result.
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Result 2.8.c. Gradient Estimate for a Single Receiver System

If the sequence 6(.) satisfies the conditions of orthogonality and has zero mean, then
for any ¥ >0 and given W, the conditional mean of the gradient estimate defined by
{2.49) satisfies

E[G3(W)|W(n)] = 2RW(n) + b,(W(n)) (2.51)
where
b,(W(n)) = %2 SH(i)RS(i)S(i) (2.52)

i=1
Additionally, if the sequence 8(.) has odd symmetry, then
E[G3(W(n))|W(n)] = 2RW(n)
Qaa
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Figure 6. Single Receiver Perturbation Based Structure
(d) Comparison of Receiver Structures

We note from Results 2.8a, 2.8b and 2.8¢ that for the dual receiver dual perturbation
system it is only necessary for the perturbation sequence to satisfy the conditions for
orthogonality for the gradient estimate to be unbiased, while for the dual receiver
reference receiver and single receiver structures we additionally require the
perturbation sequence to have odd symmetry. Thus to obtain an unbiased gradient
estimate, the dual receiver dual perturbation system can operate either with a 2L length
Time Multiplex sequence or the 4L length Time Multiplex sequence. For the dual
receiver reference receiver and single receiver structures it is necessary to operate with

a 4L length Time Multiplex sequence.

The length of a perturbation sequence determines the real time rate of convergence of
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the weights. That is, if fewer perturbations can be used to obtain the same estimate of
the gradient at each weight update then the real time required for the adaptive
beamforming algorrithm convergence will be reduced. When the dual receiver dual
perturbation system operates with the minimum length perturbation sequence it can
have an increased real time rate of convergence as compared to the other structures.
This faster convergence time is obtained at the expense of increased hardware

complexity.

All the perturbation structures result in a noise component in the output signal due to
the perturbation of the weights about their nominal values. This additional noise
component is referred to as perturbation noise. The dual receiver reference receiver
system has an advantage over the dual receiver dual perturbation system in that only
one of its receivers is being perturbed which allows a signal free of perturbation noise
to be available always. The same hardware requirements as the dual receiver dual

perturbation system are still required.

The single receiver system has the simplest hardware requirements of the perturbation
structures, requiring only one set of weights and one power measurement stage. While
its hardware requirements are less than the dual receiver systems, it is observed that it
does suffer from longer real time convergence as compared to the dual receiver dual

perturbation system and there is no signal free of perturbation noise during adaptation.

2.9 Perturbation Technique Performance Characterisation

In the thesis we provide new results that characterise the array’s performance using the
different adaptive perturbation systems. In particular we examine the misadjustment
and the excess output power, £ , due to perturbation noise. Here we present the
definitions for the misadjustment and & . We also detail the importance of the
misadjustment measure and present properties of the perturbation noise for an

orthogonal perturbation sequence.
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2.9.1 Misadjustment

The misadjustment is a dimensionless measure of how closely the adaptive algorithm

approaches the optimum power. The misadjustment is defined by [25]

E[P(W(n))]1-P,,,

M = lim (2.53)
A—reo Popt
where P, is the optimum power given by (2.26) and P(W(n)) is given by (2.17).

The first term in the numerator of (2.53) is the steady state mean output power

produced by the adaptive weight adjustment algorithm. The second term is the mean
output power that would result if the weights were fixed at the optimum value which
is the solution of the constrained beamforming problem. Thus the misadjustment is a

normalized measure of the penalty in output power due to weight adaptation.

For a simple signal scenario the misadjustment can also be related more directly to the
signal to noise ratio performance of an adaptive array. Consider a scenario of signals
incident on the array that consists of a signal of power p,, that arrives from the look

direction and interferences. Then, the array signal vector can be expressed as

X(1) = Jo,5()S(8, 0g) + 1(2) (2.54)
where s(7) is a unity variance, zero mean random variable, $(6,, ¢,) is the steering
vector in the look direction (0, ¢) and I(#) is an L x 1 complex vector representing

the interferences. Note we assume there is no white noise present.

It is well known [33] that when the number of elements is greater than the number of
directional interferences, a very high attenuation of the interferences can be achieved.
Hence, the optimum array power will be nearly equal to the look direction signal

power p,, that is,
P(W)=WHRW=p_ (2.55)

Furthermore, for a single look direction constraint, since the adaptive algorithm

ensures that

WH(n)S(8, 0g) = 1 (2.56)
it follows that
lim E[WH#(m)X(n+ )XH(n+ 1)W(n)] = p,+p, (2.57)

where p,, is the power of the unwanted signal components at the array output.
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Substitution of (2.55) and (2.57) in (2.53) yields M = % (2.58)
(2]
1

Thus the output signal to noise ratio, is given approximately by SNR = i (2.59)

2.9.2 Excess Output Power due to Perturbation Noise

We refer to perturbation noise as the noise that results from the application of
perturbation sequences to the array weights. The perturbation noise has been briefly

discussed in Section 2.8,

An indication of the effect of the perturbation noise can be obtained by determining
the mean excess output power, £, due to perturbations of the weights about a nominal

value W(n). It is defined as, [2],
£ = iE[Pp(W(n), i) - P(W(n))] (2.60)

where PP(W(n), i) is the output power of the receiver at the i"™ instant of time within

the perturbation cycle and is given by (2.41), (2.42), (2.43) or (2.48).

It is shown in [2] that on substitution for any orthogonal perturbation sequence & is
given by
For the Single Receiver System

£ = Zszr(R)+’1n.212Re[8H(i)RW(n)] (2.61)

For a Dual Receiver System

£, = 2¢°Tr(R) +’1n Y 2Re[8" ()HRW(n)] (2.62)
i=1

£ = 2y2Tr(R)—% Y 2Re[8" ()RW(n)) (2.63)
i=1

In (2.61), § represents the perturbation noise that results when the weights are
perturbed according to (2.48). For the dual receiver systems, §, represents the
perturbation noise that results on a receiver that has its weights perturbed positively as
given by (2.41) and (2.43). And &_ represents the perturbation noise that results when

negative weight perturbation are applied to the receiver as given by (2.42).
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In the thesis we define the Look Direction Perturbation Noise as the mean excess
output power due to perturbation that results when only a look direction signal, of

unity power, is incident on the array.
Using (2.61) the following results have been established in [2], [4]

Result 2.9.a. Mean Excess Output Power due to Perturbation Noise for a Zero Mean
Perturbation Sequence

For any perturbation sequence d(.) satisfying the conditions of orthogonality and

having zero mean the mean excess power due to perturbations about a nominal weight

Wis given by

£ = 2v°Tr(R) (2.64)
Qa0

Result 2.9.b. Look Direction Perturbation Noise for a Zero Mean Perturbation Sequence

For any zero mean orthogonal perturbation sequence, the mean excess power from the

constrained look direction due to perturbations about the nominal weight W is given

by,

L =2yL (2.65)
R

2.10 Projected Perturbation Sequences

In [4], a class of perturbation sequences referred to as the projected perturbation
sequences were introduced. These sequences permit simultaneous adaptation of
weights and signal reception by the use of weight perturbations that do not violate the
look direction constraint. They can also be shorter in length than the previously
described sequences and offer computational savings, and can be used with all the
receiver structures identified earlier. In this section we describe the generation of
projected perturbation sequences and include a brief example. Also, to place in
perspective the work that has been done by others on the performance analysis of
narrowband arrays using these sequences, we review the properties of the projected

perturbation sequences and the results established in [4], [36], [37].
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2.10.1 Generation of a Reduced set of Perturbation Vectors

The motivation behind the use of projected perturbation sequences can be observed by
examining a simple two dimensional problem defined by

. T . T
min W RW subjecttio W C = 1

w
where Cis defined by €' = [| ] and R = L (2.66)

The weight vector W is a 2x1 real vector defined by W7 = [wl wz]

and the constraint surface and the constraint subspace are defined by the lines given

by = {W: W C=1}andA = {W: W C=0}.

In Figure 7, a weight update is illustrated when a projected and non projected
perturbation sequence are used. Figure 7 (a) illustrates the use of the non projected
sequence. The initial weight vector, W(k), lies on the constraint surface. The
perturbation vectors, defined by S in the figure, are illustrated as weight displacements
centred at W(k). When the perturbations are applied it can be observed that the weights
are removed from the constraint surface. However by restricting the perturbation
vectors to be in the constraint subspace it is clear that this would not occur. These
constrained perturbation vectors can be obtained by projecting the perturbation

sequence onto the constraint subspace.

Figure 7 (b) illustrates the use of a projected perturbation sequence, defined by T in
the figure. The perturbation sequence T does not move the weights off the constraint

surface. Hence the desired look direction response is satisfied at all times.

The projected perturbation vectors are derived by projecting the perturbation sequence

§ onto the constraint plane. Let this new sequence be T”, then
" = [P&(1), P3(2), ..., PB(m)] = PS (2.67)

where P is defined by (2.23). Note that after projection the projected perturbation
sequence does not span the entire weight space but is constrained to the solution space

of the problem.

Since the projection matrix does not have full rank (in general it has rank L-N) the
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sequence T” contains a number of redundant vectors. Hence by using a reduction
method a reduced set of vectors T can be obtained which is a basis of 7”.

T = basis(T") (2.68)

Note that the redundant vectors in 7° will correspond to vectors in § which are
orthogonal to the constraint surface and do not belong to the solution space. In general,
as the number of orthogonal constraints on the system increases the dimension of the

solution space is reduced, leading to a reduced set of perturbation vectors.

I
vy

Wk+1)
W(k)

(a) non projected perturbations (b) projected perturbations

non projected perturbation sequence, § = {[(1)} [‘1}, H, { 0} }
o] 1 |-

1 1
o ‘ _12 72
projection operator matmnx, P-=
11
22
L [y [
projected perturbation vectors, " = Ps = {| 2|, 2|, | 2, |2
1 [ 1 1 1
2] 2] 2] |2
.
reduced perturbation vectors, T = R 2
11 11
2| | 2]

Figure 7. Weight Update
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2.10.2 Approaches to Gradient Estimation Using Projected and Non

Projected Perturbation Sequences

In this section we identify the different approaches possible for extracting the required
gradient when using projected and non-projected perturbation sequences. The
gradient estimation approaches differ in the type of perturbation sequences used to
perturb the array weights and the type of perturbation sequences used to correlate the
instantaneous output power of the single receiver system (or the instantaneous power

difference sequence of the dual receiver systems).

We refer to the different gradient estimation approaches as follows:
Non Projected Perturbation Approach- the array weights are perturbed with a
non projected perturbation sequence 6(.), and the instantaneous output power
of the single receiver system (or the instantaneous power difference sequence of
the dual receiver systems), is correlated with the same non-projected
perturbation sequence 8(.).
Projected Perturbation Approach- the array weights are perturbed with a
projected perturbation sequence P8(.), and the instantaneous output power of
the single receiver system (or the instantaneous power difference sequence of
the dual receiver systems), is correlated with the same projected perturbation
sequence P8(.).
Hybrid Perturbation Approach- the array weights are perturbed with a
projected perturbation sequence P&(.), and the instantancous output power of
the single receiver system (or the instantaneous power difference sequence of
the dual receiver systems), is correlated with the non-projected perturbation

sequence &(.).

The hybrid perturbation approach can provide computational advantages by reducing
the complexity and nature of the multiplications that take place in correlation. In the
case of correlation with the Time Multiplex perturbation sequence the number of
multiplications is reduced as there is only one non-zero element in each perturbation
vector. In comparison, for the projected perturbation approach in the case of
correlation with the projected Time Multiplex Sequence all the components of the

perturbation vectors may be significant.
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In later Chapters we note in the relevant places what the effect is of using the hybrid

perturbation approach as compared to the projected perturbation approach.

A second hybrid perturbation approach exists whereby the array weights are
perturbed with a non-projected perturbation sequence 8(.), and the instantancous
output power of the single receiver system (or the instantaneous power difference
sequence of the dual receiver systems), is correlated with the projected perturbation
sequence PS(.). This second hybrid approach is of little value as it does not result in
computational advantages or perturbation noise reduction. We do not explore it in

detail in later chapters and have only identified it in this section for completeness.

2.10.3 Properties of Projected Perturbation Sequences

In this section we briefly review the major results, established in [4], [36] and [37], on
the use of projected perturbation sequences in narrowband arrays. We review these
results to demonstrate that they are limited in characterising an array’s performance.
Some of these results are also required in later sections of the thesis. Most of the

following results are extensions of the results presented in Sections 2.8 and 2.9.

Result 2.10.a. Gradient Estimate using the Projected Perturbation Approach

The conditional mean of the gradient estimate, obtained with any of the perturbation

receiver structures identified earlier, using an appropriate projected perturbation

sequence T” is unbiased for any y>0, and satisfies

E[G(W)|W(n)] = 2PRW(n) (2.69)
[

Result 2.10.b. Gradient Estimate using the Hybrid Perturbation Approach

The conditional mean of the gradient estimate, obtained with any of the perturbation

receiver structures identified earlier, using an appropriate projected perturbation

sequence P3(.) to perturb the array weights and the corresponding non-projected

perturbation sequence 8(.) in correlation, is unbiased for any y>0, and satisfies

E[G(W)|W(n)] = 2PRW(n) (2.70)
N

The proof of Results 2.10.b follows simply from the proof of Results 2.10.a which is

contained in [4].
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Result 2.10.c. Perturbation Noise Mean Excess Output Power for a Zero Mean Projected
Perturbation Sequence
For a projected zero mean perturbation sequence 77, the mean excess output power
due to perturbations about a nominal weight W is given by
& = 2¢°Tr(PRP) < 2y*Tr(R) 2.71)
Y

Result 2.10.d. Look Direction Perturbation Noise Mean Excess Output Power for a Zero
Mean Projected Perturbation Sequence
For a zero mean projected perturbation sequence 77, the mean excess power from the
constrained look direction due to perturbation about a nominal weight W is zero.
=0 ' (2.72)
aaa

From Results 2.10.c and 2.10.d it may seem desirable, in any perturbation receiver
structure, to use the projected perturbation approach in preference to the non
projected approach since less perturbation noise will result. However, from these
results no qualitative indication as to how well the beamformer performs with either
approach can be made. The conditions under which the projected sequences provide
the most benefit in terms of a performance gain are not yet clearly understood. In

Chapter 3 we develop qualitative measures to characterise an array’s performance.

Resulit 2.10.e. Necessary Weight Update Projections

If a projected perturbation sequence is used, the projection operation on the weight

adjustment term [ W (n) — uG{W(n))] is not required at each weight update.
Qa0

To obtain Result 2.10.¢ it is assumed that the weight generated at the previous weight
update is on the constraint surface. This result suggests that compared to the non-
projected perturbation approach a significant computational effort can be obtained by
eliminating the number of weight projections that take place. When reducing the
number of weight projections that take place caution must be exercised since errors
may still be propagated. These errors are due to finite precision arithmetic in the
processor and quantisation of the perturbed weights. Consequently it would still be
necessary to introduce a suitable number of weight projections to eliminate these

CITOTS.
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When implementing the projected sequences additional implementation issues will
result. For example, in the case of quantisation, for the projected time multiplex
sequence there may be more than one non zero element in each perturbation vector as
compared to the time multiplex sequence. These additional components can make the
quantisation process more difficult when the additional components are small but not
insignificant. In Chapter 4 we examine these quantisation issues and the level of loss

of performance due to quantisation effects.

2.10.4 Excess Noise Output Power in Adaptive Narrowband

Beamforming Using Projected Perturbation Sequences

In this section, we examine the components that contribute to the excess noise output
power of an adaptive array that uses the projected perturbation approach or the hybrid

perturbation approach.

For a single receiver we denote £, as the maximum total excess output power due

to noise. It is given by

Erotar = Me+E (2.73)

where M, represents the excess output power due to the misadjustment in the weight
update algorithm and & is excess output power due to the perturbation of the weights.
€ is given by (2.60). We are only considering an infinite precision system here, the

noise effects due to digital implementation such as weight quantisation are considered

in Chapter 4.

Now considering a system that has one desired signal and a number of interference
signals incident on the array. Using (2.19) and (2.71) in (2.73), §,,,,; can be

expressed as
2 2
Erorar = Mg +2Y Tr(PRy) + 2y Tr(PR)) (2.74)

where R, is the correlation matrix due to the desired signal and R, is the correlation

matrix due to all the interference sources and the noise on the array elements.

Examining (2.74) one can observe that:
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* Depending on the offset of a signal’s direction of arrival from the look direction the
interference signals’ contribution of perturbation excess noise can be as significant
as the desired signal’s contribution.

* We can modify &, through the perturbation step size ¥ and the projection

operator P.
The selection of an optimurm ¥y is examined in Chapter 3.

When the direction of arrival of the desired signal corresponds to the look direction,
using Result 2.10.d, it can be observed that the excess noise output power contributed
by the desired signal will be minimised. That is, the projection operation nulls the
desired signal’s contribution and effectively removes the desired signal’s contribution

from the total array correlation matrix. &, ,; is now given by
2
gToml = Mé +2y Tr(PRI)

However, when there is directional mismatch such that the direction of arrival of the
desired signal and the look direction are offset, the perturbation noise contributed by
the desired signal is not necessarily minimised. An array’s sensitivity to perturbation
noise contributed by the desired signal can be improved through the use of spatial
derivative constraints [9],[13], [18], [28], [29], [35], [42]. Note that by modifying P
to change the perturbation noise contributed by the desired signal will also impact on
the perturbation noise contributed by the interference signals. The application of
spatial derivative constraints and an arrays sensitivity to perturbation noise is

examined in Chapter 5.
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Chapter 3

Performance Analysis using Projected Perturbation
Sequences

3.1 Introduction

In [2], {5] and [6] Cantoni and Godara have evaluated the performance of an adaptive
antenna array which uses orthogonal perturbation sequences. For an array using the
constrained LMS algorithm they derived expressions for the gradient estimate, the
gradient covariance, and the misadjustment. They considered three different

perturbation receiver schemes.

Webster, Evans and Cantoni proposed the use of projected perturbation sequences
with adaptive antenna arrays in [4]. The projected perturbation sequences allow
simultaneous adaptation and reception by using weight perturbations that always
satisfy the look direction constraint. In [4], the performance analysis of an array using
these projected sequences was limited to considering computational aspects of the
projected perturbation scheme and deriving expressions for the gradient estimate and
the excess mean output power due to perturbations. In their analysis only the single
receiver perturbation scheme was considered. Their major results are reviewed in the

previous Chapter.

A major contribution of this thesis is that we extend the characterisation of the
projected perturbation approach by analysing the transient performance and
determining the misadjustment for the three receiver structures described earlier. We
derive expressions for the gradient covariance. The misadjustment analysis is based
on the Direct and Bounds approach developed in [5] and [6]. In [6] the Direct
approach is referred to as the Exact approach. The results presented here have been

published by the author in [47] and [48].

Also, a new, more straightforward, misadjustment analysis technique is introduced.
The new technique is based on the Bounds approach and solves the weight covariance

matrix.
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This Chapter is organised as follows. In Section 3.2 we derive the gradient covariance
for the different projected perturbation schemes. The gradient covariance is required

to determine the weight covariance matrix and the excess mean square output power.

In Section 3.3 we investigate the perturbation step size selection for the single receiver
system. The selection of a suitable perturbation step size allows the simplification of

expressions in later analysis.

We present the Direct analysis in Section 3.4. The transient behaviour of the weight
covariance matrix is analysed first, under the condition that the weight covariance
matrix and the PRP matrix can be diagonalised by the same unitary transformation.
The Direct misadjustment analysis is then performed. The misadjustment is expressed
in terms of the weight covariance matrix and the analysis is performed for all receiver

structures.

In Section 3.5 we consider an alternative bounding technique, which we refer to as the
Bounds approach, for obtaining the misadjustment. This misadjustment analysis
examines the excess mean square output power and it requires the norm of the weight
error vector to converge. Bounds on the excess mean square output power and hence
the misadjustment are established and the asymptotic misadjustment bounds are

evaluated.

A new bounding technique for establishing the misadjustment is presented in Section

3.6. The new bounds technique establishes bounds on the weight covariance matrix.

In Section 3.7 we compare the misadjustment expressions obtained with the different
misadjustment techniques and finally present results of simulation studies in Section

3.8.

In thts Chapter, for the sake of conciseness, only the basic approach and an outline of
major intermediate results are presented. A detailed derivation of the intermediate

results can be found in the appropriate Appendices as referenced in the following text.
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3.2 Gradient Covariance Results

The covariance of the gradient estimate plays a key role in the analysis of the
misadjustment and transient behaviour of the array weights. It can be used to
determine the excess mean square power and the weight covariance matrix. In this
section expressions for the covariance of the gradient estimate for the single and dual
receiver systems using the projected perturbation approach and the hybrid

perturbation approach are developed.

In the first instance results are stated for the general classes of sequences, then results
are derived for the projected Time Multiplex sequence. The covariance expressions
for the projected perturbation approach, the non projected perturbation approach and

the hybrid perturbation approach will then be compared.

3.2.1 Gradient Estimation Generic Results for the Projected

Perturbation Approach

To determine the conditional covariance of the gradient estimate, we make the

following assumptions:

Assumption 3.1: X(.) is an independent and identically distributed, zero mean,

complex gaussian process

Assumption 3.2: For each perturbation receiver structure, the appropriate projected
orthogonal perturbation sequences is used such that an unbiased estimate of the

gradient is obtained

Assumption 3.1 is a commonly used assumption, [9], [5], [6], that is required to make

the analysis tractable.

In Appendix B, using the approach described in {2], [5] the following Generic
Expressions for the gradient covariance were developed. We refer to the expressions
as being generic since they are applicable to any projected orthogonal perturbation

sequence.
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Result 3.2.a. Gradient Covariance of Dual Receiver Dual Perturbation System

Va(Wm) = — 3 [(WHRS,(1)? + (34 ()RW)?
i=1

+ 2(WHRW)(BH ()RS (1))18,()84(i)  (3.1)
ooa

Result 3.2,b. Gradient Covariance of Dual Receiver Reference Receiver System

V,(W(n)) = YD +E (3.2)
where
D = n% > (SHG)IRS (i))28, (i) 3 (i) (3.3)
i=1
and
_ 2WH(n)RW(n)

E

Y, (BH(DHRS ()8 ,(1)8H (i)

i=1

+ n% > (WHmRS ()2 + (BH(HRW ()21 ,(0)8H(i))  3.4)
i=1

m2

ao0
Result 3.2.c. Gradient Covariance of Single Receiver System
1
V3(W(n)) = YZA"‘,FB +C 3.5
where

A= n%ZZ [82(i)RS ()28 ,(1)8H (i)
i=1
H 2
- WO 3 5, 08%()

i=1

C = ;15 > IWHR)RS (i) + S (HRW (n)125 ,(1)8 (i)

i=1

H m
L2V (25“’(”) Y, 8H(RS (18,084 ()  (36)
i=1

Qa0

In the above equations & P(i ) represents the i vector in the projected perturbation

sequence, it is given by

8,(i) = P8(i) i=1,2,..m (3.7)
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3.2.2 Gradient Estimation using the Projected Perturbation

Approach with the Projected Time Multiplex Sequence

For the special case of the projected Time Multiplex perturbation sequence, in
Appendix B, (3.1), (3.2) and (3.5) have been derived and are shown below. For
simplicity the analysis assumes that the projected sequence defined by (2.67) is used.
For the dual receiver dual perturbation system the 2L length sequence corresponds to
the minimum length Time Multiplex sequence and the 4L length sequence
corresponds to an odd symmetry Time Multiplex sequence. Expressions for the 4L
length sequence have been derived to enable comparisons with the other receiver

structures.

Result 3.2.d. Gradient Covariance of Dual Receiver Dual Perturbation System with
Projected Time Multiplex Sequence
Va1 (W(n)) = 2WH(n)RW(n)PDiag(PRP)P for a 4L length sequence. (3.8)

Vs (W(n)) = AWH(R)RW(n)PDiag(PRP)P for a 2L length sequence. (3.9)
aana

Resulit 3.2.e. Gradient Covariance of Dual Receiver Reference Receiver System with
Projected Time Multiplex Sequence
Vo (W(n)) = 2y2LP(Diag(PRP))2P + 2WH(m)RW(n)P(Diag(PRP))P
for a 41. length sequence (3.10)
a0

Result 3.2.f. Gradient Covariance of Single Receiver System with Projected Time Multiplex
Sequence

Vgs3(W(n)) = P(y22L(Diag(PRP))2+ (WH(n)RW(n))?

yYi2L

+ 2Diag(PRW(n)WH(n)RP) + 2WH (n)RW (n)Diag(PRP))P
for a 4L length sequence (3.11)

adn

The equivalent gradient covariance expressions for the non projected perturbation

approach for the three receiver structures can be found in Appendix F.
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Examining (3.8), (3.9), (3.10) and (3.11) the following observations can be made:

» For all perturbation receiver structures the covariance of the gradient estimates are
positive definite. Comparing these expressions with the equivalent expressions in
Appendix F for non projected perturbation approach one can observe that in
general the variance of the gradient estimate for the projected cases is smaller due
to the terms involving PRP removing the contribution of the desired signal. This
difference in the variance of the gradient estimates depends on the look direction

signal power.

* The covariance is directly proportional to the output power, W (n)RW (n). This
dependence decreases in time since the adaptive algorithm is attempting to
minimise this quantity. Thus as the gradient estimate improves as the weight vector
approaches its optimum value, the covariance becomes independent of the desired

signal.

* The covariance expression for the dual receiver dual perturbation system is
independent of the perturbation step size. For the dual receiver reference receiver
system the covariance is a monotonically increasing function of the perturbation
step size and the single receiver system is a convex function of 'yz Similar relations

also apply to the non-projected perturbation approach [21,[5].

* The terms in the covariance expression for the dual receiver dual perturbation
system with perturbation sequence length 4L are common to the dual receiver
reference receiver and the single receiver covariance expressions. Also the terms in
the covariance expression for the dual receiver reference receiver system are

common to the single recetver covariance expression.

* From (3.8) and (3.9) the covariance of the dual receiver dual perturbation system
with perturbation sequence length 2L is double that of the dual receiver dual
perturbation system with perturbation sequence length 4L. The latter system has a

smaller covariance since it has a longer time to make a better gradient estimate.

3.2.3 Gradient Estimation Using the Hybrid Perturbation Approach

When estimating the gradient covariance for the hybrid perturbation approach

Assumption 3.1 and Assumption 3.2 are still required. It is shown in Appendix B that
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the Generic expression for the gradient covariance for the dual receiver dual

perturbation system is given by

Result 3.2.g. Gradient Covariance of Dual Receiver Dual Perturbation System using the
Hybrid Perturbation Approach

V(W) = — 3 [(WHRS, (1) + (34 ()RW)?
i=1
+ 2(WHRW)(H ()R8 (i) 18(i)8 (i) (3.12)

oaa

Comparing (3.1) with (3.12) the following observation can be made:

* The two expressions are similar except for the last matrix term defined by the
product of the perturbation vectors. By substituting :Sp(i ) = P&(i) inthe
perturbation vector product in (3.1), we observe that the covariance expression
defined by (3.1) is equivalent to pre- and post- multiplying the gradient covariance
expression defined by (3.12) by the projection matrix P. A similar relationship
exists for the gradient covariance expressions for the other receiver structures. This

is discussed in Appendix B.

Generic expressions for the covariance of the gradient estimate of the single receiver
and the dual receiver reference receiver system using the hybrid perturbation

approach can be found in Appendix B.

3.3 Optimal Perturbation Step Size for the Projected

Perturbation Approach

In this section we determine the optimal perturbation step size ¥, which minimises

the gradient covariance for the single receiver system.

For the single receiver case, allowing the perturbation step size to be a scaled multiple

of ¥ simplifies the gradient covariance expression. This is useful in later analysis.

While we use a similar approach found in [5], [39] to determine ¥, an additional
assumption is required in the estimation of ¥, and a new method is needed to

implement the terms in ¥ .
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Note that in this section and in the rest of the Chapter we consider the single linear

constraint adaptive beamforming problem.

3.3.1 Estimation of Optimum y

As shown in [3], [39] it can be observed that for the single receiver system the
covariance is a convex function of YZ and an optimal value of y2 exists for which the
covariance is a minimum. This is also true with the projected perturbation approach
and the hybrid perturbation approach. For the dual receiver systems no optimum
perturbation step size exists to minimise the covariance of the gradient estimate as
discussed previously. For the single receiver system, as with the dual receiver
systems, the choice of perturbation step size is also constrained by the maximum
perturbation noise which is acceptable in the system and by the wordlength used in

the implementation.

The following assumption has been found necessary to estimate the optimum

perturbation step size.
Assumption 3.3: Diag(PRP) = éTr(PRP)ILL (3.13)

Assumption 3.3 can be justified as follows. Using the definition of the projection

matrix and considering only a single linear constraint system

H
. CC CC

_ rR,cc™y ccr,cc?
Diag| Ry —2Re 7 + 3

L
where R, is the interference and noise correlation matrix.

Diag(PRP)

(3.14)

i

In (3.14), the first and third term’s diagonal components are all equal by virtue of their
definition. The second term’s diagonal components are not necessarily equal, they are
approximately equal when the direction of arrival of the desired and interference
signal are close. However, for L large the second term’s components will be small. If
L 1s not large, the assumption is still reasonable provided that the direction of arrival
of the desired and interference signals are spaced such that they have steering vectors

which are approximately orthogonal.

43



It is shown in In Appendix B that when the projected Time Multiplex sequence is used

the following results can be derived.

Result 3.3.a Optimal Perturbation Step Size

If Assumption 3.3 is satisfied the optimal perturbation step size for the single receiver

system is given by

. _ [WH(mRW ()2
WW) = [ 7roprey | (3.15)
(I
Result 3.3.b Single Receiver System optimum gradient covariance
Let Vg3(W(n)) represent the value of Vg3(W(n)) at v = ¥(W(n)) then
Ve3(W(n)) = 2P[Diag(PRW(n)WH(n)RP)
+AWH(n)RW(n)Diag(PRP) P (3.16)

Qaa

Note that Result 3.3.a and b is also true for the Hybrid perturbation approach.

To enhance the signal to noise ratio for a single receiver system the perturbation noise

can be reduced by scaling the time varying perturbation step size in (3.15) according

to
_ JWHEmRW(m)?
Y(W(n)) = c[ 3Tr(PRP) ] (3.17)
where ¢ satisfies O «c< 1.
'The gradient covariance is then given by
Ves(W(n)) = 2P[Diag(PRW(n)WH(n)RP)
+aWH(n)RW(n)Diag(PRP) P (3.18)
1 2
where g = [c+ EJ (3.19)

3.3.2 Implementation of Optimum Yy

From the previous expression for ¥ (W (n)) it is clear that to evaluate ¥(W(n)) a
knowledge of the covariance matrix R is required. Two approaches have been

proposed to select a ¥. The first is to use a constant y which is close to the optimal
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value and the second is to select a time varying v.

A possible constant value that can be used is

v - C|: WHRW j|ln"2

ST+ (PRE} (3.20)

This requires a knowledge of W”RW and Tr(PRP) both of which are related to the

input signal scenario of the processor.

A time varying ¥ that can be selected is

Wh!(n)lﬂ?V(n):I1"2 (3.21)

Y(W(n)) = C[ 2Tr(PRP)
This eliminates the need to know W but still requires a knowledge of R and
Tr(PRP).

The quantity WH(n)RW(n) can be approximated by either
1) Using the instantaneous output power.

2) Using the average power over a perturbation cycle.

Estimating the diagonal elements of PRP is slightly more difficult. It is proposed that
when Assumption 3.3 holds then the diagonal elements of PRP will be similar to the

diagonal elements of Ry. Since the diagonal elements of Ry are alf equal we obtain

Tr(PRP) = Lr

where r is the diagonal element of Ry and can be found by suitably averaging the

quantity x*;(n)x;(n) .

3.4 Direct Analysis

In this section, we characterise the performance of the projected perturbation schemes
by analysing the transient behaviour of the weight covariance matrix and determining
the misadjustment. Although we use the same analysis approach as that developed in
[6], the analysis is significantly different since the terms that occur in the weight
covariance expression, which are different for different perturbation sequences or

gradient estimation schemes, require special treatment.
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In [6] the Direct misadjustment analysis is not applied to the single receiver system.
Here we also demonstrate, with some modification, the application of the Direct
misadjustment analysis to the single receiver system for the projected perturbation
approach. The modified Direct misadjustment analysis can also be applied to the

single receiver system with the non-projected perturbation approach.

The transient analysis could only be performed for the dual receiver systems. This is
so since to derive a complete and closed form description of the transient behaviour it
is necessary to simultaneously diagonalize the weight covariance matrix and PRP by
the same unitary transformation [6]. This approach is intractable for the singie

receiver system.

Assumption 3.3 is required for the transient analysis of the dual receiver systems since
it enables the simultancous diagonalization of the weight covariance matrix and PRP
by the same unitary transformation. Assumption 3.3 is also required to perform the

misadjustment analysis for all receiver structures. In a subsequent section for the dual
receiver systems a different analysis approach, the Bounds approach, which does not

require Assumption 3.3 in order to obtain bounds on the misadjustment, is presented.
Details of the application of the Direct analysis can be found in Appendix B.

The expressions for the transient analysis and misadjustment are evaluated for the

projected time multiplex sequence.

3.4.1 Transient Behaviour

The transient behaviour and convergence properties of the weight covariance matrix
for the dual receiver structures are derived in this section. The convergence properties

of the weight covariance matrix are required to determine the misadjustment.

The weight covariance matrix is defined as

Kyw(n) = E[(W(n)- W(n))(W(n) - W(n))¥] (3.22)
where
W(n) = E[W(n)] (3.23)

As defined in [6],[10] Ky (n) satisfies a recursive equation as stated in the
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following result.

Result 3.4.a. Weight Covariance

If V(W(n)) denotes the covariance of the gradient used in (2.27) for a given W(n)

and Ky, w(n) denotes the covariance of W(n) then

Kyw(n+1) = PKyyy(n)P - 2UP[RK jyyp (1) + Kpyy (n)R]P
+ 4u2PRK 3y (n)RP + UZPE[V (W (1)) 1P (3.24)
Q200

where the expectation is taken over W. Derivation of (3.24) is presented in [6].

From (3.24) it can be observed that the gradient covariance is pre- and post-
multiplied by the projection matrix P. Due to this, for each perturbation receiver
structure, the weight covariance matrix is identical for the cases when the gradient
estimate is derived using the projected perturbation approach and the hybrid

perturbation approach.

3.4.1.1 Diagonalization of the Weight Covariance Matrix

In this section, the condition under which it is possible to diagonalize the weight
covariance matrix is examined and where the condition is met the solution is

presented.

The transient behaviour of the weight covariance matrix will be studied under the
condition that Ky (7) and PRP can be diagonalized by the same unitary
transformation. The condition under which the diagonalization of the weight
covariance matrix and PRP by the same unitary transformation can take place may be

stated as, [6]

Result 3.4.b. Diagonalisation of the Weight Covariance Matrix
The necessary and sufficient condition for the diagonalization of Kyy(n+1),n20
and PRP by the same unitary transformation is that the unitary transformation also
diagonalizes PE[V(W(n))]P forall n.

.

The gradient covariance expressions presented in Section 3.2 are now examined in the

light of the above condition.
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Taking expectation over W(n), pre- and post- multiplying by P on both sides of
equations (3.8), (3.10), (3.18) and using Assumption 3.3.

PE[V g, (W(n))IP = @(Tr(PRP))Tr(RRWW(n))P (3.25)
p _ o2y 5, 2

E[V,(W(n))IP = P[T(Tr(PRP)) +ETr(RRWW(n))Tr(PRP)]P (3.26)
PE[VG3(W(n)IP = 2PDiag(PRRyyy, (1)RP)P + STr(RRyyy ()P (3:27)
where Ry (n) = E[W(n)WH(n)] ' (3.28)

P can be diagonalized by the same unitary transformation as PRP since PRP is
Hermitian and P commutes with PRP. In the single receiver case, even though the first
matrix in (3.27) is Hermitian, it does not commute with PRP. Hence from Theorem
A.3, the weight covariance matrix in this instance cannot be diagonalized by the same
unitary transformation. The transient analysis for the single receiver system is thus not

possible with this approach.

Let Q be the unitary transformation. Then
Q"PRPQ = A
QPQ =T (3.29)

where A and I" are diagonal matrices with the diagonal elements being the
eigenvalues of PRP and P respectively. Pre- and post- multiplying (3.25), (3.26) by
Qf and Q, and applying (3.29) gives

QAPE[V;(W(n))IPQ = (%)Tr(PRP)Tr(RRWW(n))F (3.30)

QHPE[V ;,(W(n))IPQ = [2%2(Tr(PRP))2+ %Tr(RRWW(n))Tr(PRP)}F(?).Bl)

These equations imply that (3.8) and (3.10) satisfy the conditions specified in Result
3.4.b. Thus for the dual receiver systems the weight covariance matrix can be

represented by

S(n) = QFKy,, (n)Q (332)

where the variance of the gradient estimate is given by (3.8) or (3.10).
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Similar to the weight covariance matrix a recursive equation for the diagonalized
weight covariance matrix can be established. Pre- and post- multiplying (3.24) by Q¥

and Q, and using (3.32) gives

I(n+1) = Z(n) - 2RAZ(n) — 2uZ(n)A + du2AZ(n)A

+ W2QHPE[V 5(W(n))IPQ
= (I, —4pA +4pu2A2YZ(n) + HW2QHPE[V  (W(n))IPQ (3.33)
where the following substitution has been used
Kywi(n) = Ryw(n)-Wn)Wiin) (3.34)

It is shown in Appendix B that for the dual receiver systems a solution for the weight
covariance equation can be established. This is done by determining the vector
difference equation for the diagonal elements of the diagonalized weight covariance

matrix (3.32) and solving it. The solutions are shown next.

Result 3.4.c. Weight Covariance of Dual Receiver Dual Perturbation System

L
Kyw(n) = Y n,(m)Q,0f (3.35)

I=1

where the solution of n(n) is given by

L
n,(n) = (ILL—Hl)”nl(O)+p.2%Tr(PRP) Z k,(n—i)(I,,—H,)~1§, (3.36)

i=1
and H, = d4pA-4p2A2— %Tr(PRP) H2(8,A7)
k,(n) = WH(n)RW(n)
Q;1=1,2,.. L are the eigenvectors of PRP
8 denotes the L x 1 dimensional vector of eigenvalues of P
nj(n) denotes the L x 1 dimensional vector of eigenvalues of Kyyw(n)
A denotes the L x 1 dimensional vector of cigenvalues of PRP

N

In all cases considered here lim W(n) = W under suitable conditions. Thus
H— oo

lim &k, (n) = WHRW .

n— o0
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Result 3.4.d. Weight Covariance of Dual Receiver Reference Receiver System

L
Kyw(n) = 2 n,(m)Q,Qf (3.37)
I=1
where n,(n) denotes the L x 1 dimensional vector of eigenvalues of Kyw(n) and @;

[=1,2,...L are the eigenvectors of PRP.

The solution of n,(n) is given by

ny(n) = (I —H )"'ny(0)
L

+ M-?% Tr(PRP) Y (k,(n—i)+y*Tr(PRP)) (I, — H,)=18,  (3.38)
i=1
ooQ

3.4.1.2 Convergence of the Weight Covariance

In this section, we complete the characterisation by considering the convergence of
the weight covariance. The convergence of the weight covariance is required in the

following section to derive an expression for the misadjustment.

It is shown in Appendix B that equations r(n + 1) and n,(n + 1) can be reduced to

a set of (L — 1) difference equations since one of the components in each of the

vectors is zero. This is due to the rank deficiency of P. For the single look direction

constraint as P has a zero eigenvalue, PRP and K,y (n) cach have a zero

eigenvalue.

In Appendix B proofs are presented that show the li_l)n n' (n) and nlgn n'5(n) exist,
n— oo oo

under the conditions specified there. Assuming that these conditions hold it follows

that:

For the Dual Receiver Dual Perturbation System with a 4L Length perturbation

sequence ~ _
_ 1
;\~1(1 - M?*q)
%Tr(PRP)WHRW
lim n'\(n) = T (3.39)
n—> 0 u 1
1- ﬁTr(PRP)-Zl % 1
Apo i (T-BAy )
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and for the Dual Receiver Reference Receiver System with a 4L Length perturbation

Sequence 1
[WHRW+72Tr(PRP)]m-ID .
lim n'y(n) = ) (3.40)
h—)oo
uTr(PRP) 1
1= 2 1 - pA; 1

AL (L=pAp_y)]
The steady state expressions for the weight covariance matrices can now be

established by substituting (3.39) and (3.40) into (3.35) and (3.37) respectively

Result 3.4.e. Steady State Weight Covariance of the Dual Receiver Dual Perturbation

System with a 4L length perturbation sequence

L-1

Tr(PRP)WHRW 2 m

1

Q.07

L 1
_H
1 Tr(PRP)El
i=1
a0

lim Kyw,(n) =
n—yee

(3.41)

Result 3.4.f. Steady State Weight Covariance of the Dual Receiver Reference Receiver
System with a 4L length perturbation sequence

VHR W 4 2 uTr(PRP) 1
[WYRW +y2Tr(PRP)] 2 7 (I_M)Q .of
lim Kypyy(n) =
e (- uTr(PRP) 1
2 1-ud, (3.42)

200

3.4.2 Misadjustment

In this section, we briefly review the Direct misadjustment analysis and summarise
the results. Unlike the previous transient analysis, the Direct misadjustment analysis
can be applied to all the receiver structures under study and is presented for the LMS
algorithm with a single linear constraint.

As shown in [6] the misadjustment can be expressed as

TrIK R
M = lim [AW“’(?) ] (3.43)
ne  WHRW
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Note that for each receiver structure the resulting misadjustment is identical when the
projected perturbation approach or the hybrid perturbation approach is used. This
occurs because for each receiver structure the weight covariance matrix is identical

for the two cases.

3.4.2.1 Misadjustment for the Dual Receiver Structures

By using the properties of the weight covariance matrix as stated in Appendix B it can

be shown that the misadjustment can be represented in vector notation as
lim ATd(n)

= SRw @44

where A represents the (L — 1) X 1 dimensional vector of eigenvalues of PRP and the

(L -1)x1 dimensional vector d(n) is defined by

d(n) = Diag[Q"K,w(n)Q] (3.45)
In (3.45) Q is the unitary transformation.
Note that ATd(n) is the excess power in the output power duc to fluctuations in the

weight vector.

In Appendix B, for the dual receiver systems a vector difference equation for ATd(n)
is established and expressed in a similar form to Theorem A.1. By applying Theorem
A.1 the convergence analysis of ATd(n) could then be made and the steady state
expression for A7d(n) and hence the misadjustment derived. Theorem A.1 is proved
in [6] and located in Appendix A.

The main results of the misadjustment analysis for the dual receiver structures are

summarised below:
Result 3.4.g. Misadjustment of the Dual Receiver Dual Perturbation System - Direct Approach

When a 4L length projected time multiplex sequence is used such that the gradient

covariance is given by (3.8), when

1 uTr(PRP) 1
0<1.L<)L +Tr(PRP) and 2 l—ul (3.46)

max 2L
lim ATd(n) Converges and the corresponding misadjustment is given by

n— oo
},LTr(PRP) 1
2 1 —p,
M = (3.47)
uTr(PRP) 1
- 2 1-pA,;

Q0
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Note that a similar transient and misadjustment analysis can be carried out for the
dual receiver dual perturbation system using the minimum length perturbation
sequence. In most tnstances due to the covariance expression for the two perturbation
sequences being related by a scalar, results can be easily derived. Below, only the final

misadjustment expression is shown.

When a a 2L length projected time multiplex sequence is used such that the gradient
covariance is given by (3.9), when the conditions for convergence are satisfied, the
misadjustment is given by

uTr(PRP) 1
Z 1—pa, (3.48)

M= i=1
_pIr(PRP) '@ 1
: 21 L-pd,

Result 3.4.h. Misadjustment of the Dual Receiver Reference Receiver System - Direct Approach
When a a 4L length odd symmetry projected time multiplex sequence is used such

that the gradient covariance is given by (3. 10) when

and ”T"(PRP) 2 1_1ux (3.49)

O<m< . Ir(PRP)

7\"PTI!(‘.IJ-' 2L

L

lim E 2'd (n) exists and the correspondmg misadjustment is given by
1y oo
i=1
) -
[1 LY Tr(PRP):|},tTr(PRP) 2 1
wiRW L -,
M = (3.50)
uTr(PRP) 1
- 2 1—-pA,

aag
3.4.2.2 Misadjustment for the Single Receiver Structure

The Direct misadjustment analysis approach is also possible for the single receiver
system and is contained in Appendix B. The analysis for the single receiver system
had to be handled differently from the dual receiver systems’ analysis. Essentially a
re-ordering of steps is required whereby it is possible to identify and eliminate
obvious transient components in the weight covariance matrix. Eliminating these
transient components does not affect the final misadjustment as they have no

contributien to the final result. It was possible to identify the transient components by
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examining terms in the weight covariance matrix which have no contribution in the
limit as 7 —» o= It is possible to do this as it is initially established that the mean of
the weights approach their optimum value, lim W(»n) = W. This modified
procedure can also be applied to the dual reze_i)v:rs’ analysis.

The main result of the misadjustment analysis for the single receiver structures is

summarised below.

Result 3.4.i. Misadjustment of the Single Receiver System - Direct Approach
When a a 4L length odd symmetry projected time multiplex sequence is used such

that the gradient covariance is given by (3.18), when

1 (3.51)

L-1

1 waTr(PRP) 1
O<”<l aT PRy M T 2 T
Max 4L

lim ATd(n) converges and the corresponding misadjustment is given by
n—>oo

i=1

L-1
naTr(PRP) 1
2 i

4L . wA;
M = =l (3.52)
_ uaTr(PRP) 1
! 4L 2 1 - i,

i=1
200

3.4.3 Summary

In Section 3.4 we have provided new results for the gradient covariance of all three
receiver systems, the transient behaviour of the weight covariance matrix for the dual
receiver systems, and new results for the Direct misadjustment analysis for all three

receiver systems using the projected perturbation approach.

Comparing the covariance of the gradient estimate and misadjustment expressions
with the expressions for the non-projected case, which are summarised in Appendix
F, one observes that in general the weight covariance and the misadjustment for the
projected cases are smaller due to the terms involving PRP removing the effect of the
desired signal contribution. The difference in the performance depending on the look
direction signal power. These observations are confirmed in the simulation studies

section,
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The expressions for misadjustment depend heavily on Assumption 3.3 being true. Due
to this another misadjustment analysis using the Bounds approach described in {5] is

used to reinforce the results derived here,

3.5 Bounds Analysis

The derivation of the misadjustment expressions presenfcd in the previous analysis
rely on Assumption 3.3. For the dual receiver systems, an alternative approach for
obtaining the misadjustment that does not require this assumption has been
investigated. A bounding techniques described in [5],[7] has been used to derive the
misadjustment bounds. For the single receiver system Assumption 3.3 is still required

to make the bound analysis tractable.

The convergence characteristics derived with the two techniques differ, but for
suitably small step sizes the misadjustment derived using the two approaches are
shown to be identical. It is also shown that the misadjustment bounds obtained using
the projected perturbation sequence are tighter than those obtained using non-

projected perturbation sequences.

The main difference between the two misadjustment analyses is that the Direct
technique considers the output power due to the fluctuation of the weight vector while
the Bounds technique examines the excess mean square output power. This difference,
WH(n)RW(n) - WHRW, converges o zero as n — oo, Hence both quantities will

converge to the same steady state excess mean square power.

3.5.1 Misadjustment

The excess mean square output power at the n™ iteration can be defined as

emsp(n) = E[(W(n)- WY X(n+ DHXH(n+ 1)(W(n) - W)] (3.53)
Let V(n) be the weight error vector defined by

Vin) = Wn)-W (3.54)
Substituting (3.54) into (3.53), taking expectation over X and using Assumption 3.1,

yields the following expression for the steady state excess mean square output power

ssemsp = lim E[VH(n)RV(n)] = lim Tr[E[V(n)VH(n)]R] (3.55)

H — o0
It can be shown that when E[||V(n)||?] converges, bounds on ssemsp can be
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established and hence bounds for the misadjustment [5]. It can also be shown that
ssemsp 1s equal to the numerator of the misadjustment expression in (2.53). The

bounds for ssemsp may be written as

WHRWbE, < lim E[VH#(n)RV(n)] < WHRWb, (3.56)
#—> oo
and the corresponding misadjustment is bound by

b,<M<h, (3.57)

The constants &; and &, will be derived later.

Tests for the conditions of convergence of E[||V(n)||2] are detailed in Appendix C.
It is interesting to note that the recursive equation for the norm of the weight error
vector is in a similar form to the recursive equation for the weight covariance matrix,
as expected. Also note that the covariance of the gradient estimate is pre- and post-
multiplied by the projection matrix. Hence during the gradient estimation there is no
advantage to correlating the instantaneous output power sequence of the single
receiver system (or the instantaneous power difference sequence of the dual receiver
systems) with the projected perturbation sequence, in an effort to reduce the weight

error vector. It is sufficient to only apply the projected perturbation to the weights.
The recursive equation for the norm of the weight error vector V(n) is given by

B(n+1) = B(n)-2uP[RB(n) + B(n)R]P

+ WPE[V5(W(n))]P+ 4p2PRB(n)RP  (3.58)
where V(W(n)}) denotes the covariance of the gradient estimate used in (2.27) and
B(n) = E[V(n)VH(n)]. B(n) has the property whereby
PB(n)P = PB(n) = B(n)P = B(n) (3.59)

or equivalently PV (n) = V(n) (3.60)

In the convergence analysis the expressions for the gradient covariance of the three
recetver structures are expressed in terms of the weight error vector, and the norm of
the weight error vector is expressed in a similar form to Theorem A.2. Conditions for
the convergence of the norm of the weight error vector could then be derived.
Whereupon it is possible to evaluate the bounds for the steady state excess mean

square power. The bounds for the steady state excess mean square power were derived
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by taking the trace of the norm of the weight error vector and solving it for
Tr[RB(n)].

In the following results A, _ denotes the maximum eigenvalue of R.

Result 3.5.a. Misadjustment of the Dual Receiver Dual Perturbation System - Bounds Approach
When a 4L length projected time multiplex sequence is used such that the gradient

covariance is given by (3.8), if

1

2l < oo
E[V(D)]|?]1 < and0<u<Tr(PDiag(PRP))+A‘ (3.61)
2 max

then the steady state excess mean square power is bounded and the corresponding

misadjustment is bounded by b, <M < b, where

_ WIr(PDiag(PRP))
! = I uTr(PDiag(PRP)) (3:62)
and b, = wIr(PDiag(PRP)) (3.63)

~ 2-u[Tr(PDiag(PRP)) + 24, 1
Qoo

Result 3.5.b. Misadjustment of the Dual Receiver Reference Receiver System - Bounds Approach
When a 4L length odd symmetry projected time multiplex sequence is used such that

the gradient covariance is given by (3.10), if

1
2 oo
E[|V(0)||2] <ee and 0 < pu < T/ EDiagPRE) (3.64)

2 max

then the steady state excess mean square power is bounded and the corresponding

misadjustment is bound by b, <M < b,

_ wy2LTr[P(Diag(PRP)2] + uWW'RWTr[PDiag(PRP)]

(3.65)
(2 - uTr[PDiag(PRPY)WHRW

where b,

wy2LTr[P(Diag(PRP))2] + uyW'RWTr[PDiag(PRP)]
(2 - u[Tr[PDiag(PRP)] + A, NWIRW
Qa0

and b, = (3.66)

Result 3.5.c. Misadjustment of the Single Receiver System - Bounds Approach
When a 4L length odd symmetry projected time multiplex sequence is used such that
the gradient covariance is given by (3.18), if

4

E <o
[”V(O)“ ] < and 0 < n< 6;\'max + aTr[PDlag(PRP)]

(3.67)

then the steady state excess mean square power is bounded and the corresponding
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misadjustment is bound by b, <M < b, where

(L
Wa

b= w(6A, _+ar, (L-1))

1] Tr(PRP)

(3.68)

p,a( T )Tr(PRP)
4-w(6A,,, +4Ar,, (L-1))
aaQ

and b, = (3.69)

3.5.2 Comparison of Misadjustment Analyses

From the previous equations, for a suitably small gradient step size it can be observed
that for each of the three receiver structures the upper and lower misadjustment

bounds are asymptotic. The asymptotic misadjustments are given by:

Result 3.5.d. Asymptotic Misadjustment of the Dual Receiver Dual Perturbation System

M = uTr(PDiag(PRP)})
2

when u[Tr(PDiag(PRP))+2% 1«2 (3.70)

max]

Qg

Result 3.5.e. Asymptotic Misadjustment of the Dual Receiver Reference Receiver System
Wy2LTr[P(Diag(PRP))?]

— > + uwIr{PDiag(PRP)]

WHRW
M=

2
when u[Tr[PDiag(PRP)}]+ A, 1«2 (3.71)
.
Result 3.5.f. Asymptotic Misadjustment of the Single Receiver System
ua(L 7 1) Tr(PRP)

M = when W(6A,, . +aA,  (L-1))«4 (3.72)

4
aag

From these expressions the following can be concluded:
* Using Lemma A.l in (3.70), (3.71) and (3.72) the asymptotic misadjustment
derived using the Bounds technique can be seen to provide an upper bound to those

derived using the Direct technique.

* If the substitution (3.13) is allowed in (3.70), (3.71) and (3.72) it can also be
observed that for a suitably sized gradient step size the two misadjustment

expressions derived using the Bounds and Direct approaches are equal.
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+ If we compare the previous expressions for the misadjustment bounds to those for
the non projected case, which are summarised in Appendix F, we can also observe
that the bounds in the projected case are smaller than the non projected case. This
can be more easily observed by using (3.13) in the expressions. We can also
observe that the asymptotic values of the misadjustment bounds are smaller in the
projected case. For the single receiver system there is significant reduction in the
misadjustment as there is no term that is directly proportional to the optimum
power, for the dual receiver cases the difference is not as significant and does
depend on the desired signal power. The convergence characteristics for the norm

of the weight error vector in the projected and non projected cases are different.

3.6 New Bounds Analysis

A new method to estimate the misadjustment is presented in this section. The new
method is based on the techniques developed in [5], but in this instance the bounds on
the weight covariance matrix are established to determine the misadjustment.
Motivation for this new approach resulted from the fact that the recursive equations
for the weight covariance matrix and the norm of the weight error vector are similar,
indicating that the Direct analysis could be applied to the norm of the weight error
vector or the Bounds analysis could be applied to the weight covariance matrix.
Although the asymptotic misadjustment derived using this approach is shown to be
identical to the misadjustment derived with the other techniques, the application of

this new approach is more straightforward.
3.6.1 Misadjustment Estimation

The new Bounds approach determines the misadjustment by estimating bounds for
lim Tr[Kyw(n)R]. Itis a simplified approach compared to the Bounds approach as

:lv::nly consider the system to be in a converged state and do not derive the

conditions for convergence. The conditions for convergence of the weight covariance

matrix having already been determined in Section 3.4,

In Appendix D, a generic expression for the weight covariance matrix is defined and it
is solved to obtain the bounds on lim Tr[Ky,w(7)R]. The analysis assumes that the
n—y oo

conditions for convergence of the weight covariance matrix are satisfied.
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The bounds for lim 7r[Kyy(n)R] are given by:
R — oo

im [pbTr(PDiag(PRP)P) + uTr(D)]

. e
nlganr[KWW(n)R] ~4-guTr(PDiag(PRP)) —4pA, . (PR) (3.73)
and

lim (ubTr(PDiag(PRP)P) + uTr(D)]
lim Tr[Kyy(n)R] > 222
iH—>oce

4 - guTr(PDiag(PRP)) (3.74)

where the parameters g, b and D are defined in Appendix D.

It can be noted from the analysis in Appendix D that when the gradient step size W is
suitably chosen such that the upper and lower bounds approach each other the

misadjustment is given by
lim [wWbTr(PDiag(PRP)P) + n7r(D)]

M =12= _ _ (3.75)
AWHRW
The following components in the weight covariance matrix expression have little or

no contribution to the final misadjustment:

42 Tr(PRK gy ()RP) and W2aTr(Kyw(n)R)Tr(PDiag(PRP)P)
These components can thus be described as transient components of the weight
covariance matrix as they may only have significant contribution to the misadjustment

prior to convergence.

These misadjustment expressions are now evaluated for the three receiver structures

where it is assumed that lim W(n) = W.
R—>eo

Result 3.6.a. Misadjustment of the Dual Receiver Dual Perturbation System - New Bounds Approach
Substituting the expressions for the parameters as defined in Appendix D the

misadjustment is bounded by b; < M <5, , where
b = uTr(PDiag(PRP))
P2 _uTr(PDiag(PRP)) - 2uh

(PR (3.76)

max

uTr(PDiag(PRP))
2 —uTr(PDiag(PRP))

and b; = 3.77)

For a suitably small gradient step size, the misadjustment is given by

_ uTr(PDiag(PRP))

M 2

when pTr(PDiag(PRP)) + 2ui

(PR) «2 (3.78)

max

aaa
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Result 3.6.b. Misadjustment of the Dual Receiver Reference Receiver System - New Bounds Approach

Substituting the expressions for the parameters as defined in Appendix D the

misadjustment is bounded by b, <M < b, , where

2 . 2
WTr(PDiag(PRP)) + 1Y LTF(PA(gm,g(PRP)) )
b, = WHRW
' 2 - WTr(PDiag(PRP)) - 2)ik,,,(PR)
2 . 7
WTr(PDiag(PRP)) + %Y LT"(PA(gtag(PRP)) )
b, = WHRW
, =

2 — uwIr(PDiag(PRP))

For a suitably small gradient step size the misadjustment is given by
Wy2LTr(P(Diag(PRP))?)

Tr(PDiag(PRP)) + — >
WTr(PDiag(PRP)) fres

M=

2

when uTr(PDiag(PRP)) + 2uh_ (PR) «2

max

aaa

Result 3.6.c. Misadjustment of the Single Receiver System - New Bounds Approach
Substituting the expressions for the parameters as defined in Appendix D the

misadjustment is bounded by b, <M < b, , where

b waTr(PDiag(PRP))

" T 4-uaTr(PDiag(PRP)) - 4uh,, . (PR)
b - waTr(PDiag(PRP))

{

4 -paTr(PDiag(PRP))

For a sufficiently small gradient step size the misadjustment is given by

M= nalTr(PDiag(PRP))

3 when puaTr(PDiag(PRP)) + 4pA

a0

max

3.7 Comparison of Misadjustment Expressions

(PR) «4

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

Comparing the New Bounds expressions derived in the previous section with those

obtained with the Direct and Bounds analysis the following can be observed.

* For the dual receiver systems the lower misadjustment bounds of the New Bounds

and the Bounds approach are identical. While the upper misadjustment bounds of

the New Bounds approach are in general higher due to the eigenvalues of PR being
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smaller than the eigenvalues of R.

* For the dual receiver structures Assumption 3.3 is not required in the New Bounds
Approach. For the single receiver case Assumption 3.3 is not applied in the New
Bounds approach but it is still used to determine the optimum perturbation step
size. Hence the bounds derived with the New Bounds approach are more accurate

in the sense that they rely less on Assumption 3.3 being satisfied.

» For each receiver structure the asymptotic misadjustment expressions obtained in

the New Bounds and the Bounds approach are identical.

* For each receiver structure, by using the following approximations in the Direct,
Bounds and New Bounds misadjustment expressions the misadjustment

expressions can be shown to be equal.

Diag(PRP) = %Tr(PRP)ILL
L

- L7 (PRP)

— Tr(P(Diag(PRP))?) = ":}-L‘-z—l(:rr(PRP))2 (3.85)

= Tr(PDiag(PRP)) =

3.8 Simulation Studies

In this section, results of computer studies performed to confirm the accuracy of the
expressions derived in the previous sections are presented. In the studies, simulations
of the narrowband signals were performed using the techniques discussed in
[11],[23]. The misadjustment was calculated for various scenarios as described in the

Figures.

For the dual receiver system simulations a linear array with four equally spaced
omnidirectional array elements with a quarter wavelength spacing at a nominal
operating frequency was used. For the single receiver system simulations a linear
array with four or six equally spaced omnidirectional array elements with a quarter

wavelength spacing at a nominal operating frequency was used.

In the Figures the signal scenarios are described. Three signals are incident on each of
the arrays, two signals are interference signals and the third is the desired signal. The

desired signal’s direction of arrival corresponds to the look direction. We assume the

62



signals are coplanar such that they arrive in the xy plane where 6 = 90 and the
elements of the array lie along the x axis. The direction of arrival of the signals are

described in terms of the parameter ¢ as defined in Figure 1 and expressed in degrees.

White noise power of 10™* relative to a unit reference power was added to each array
element. The misadjustment was calculated at convergence by averaging the excess
mean square output power in 20 blocks of 100 iterations. The powers of each signal
are defined relative to the same unit reference power used to set the white noise level.

The power of each signal is also described in the figures.

In Figure 8 to Figure 10 for the projected perturbation approach we show the
misadjustment for the three receiver structures for different gradient step sizes. In
Figure 8 and Figure 9 the curves labelled “Bounds” corresponds to the computed
asymptotic misadjustment as derived in the Bounds and New Bounds analysis and are
given by (3.70) or (3.71) as appropriate. The curve labelled “Direct” corresponds to
the computed misadjustment as derived in the Direct analysis assuming W is small and
MA; « 1 and are given by (3.47) or (3.50) as appropriate. In Figure 10 the curves
labelled “Upper and Lower Bound” corresponds to the computed misadjustment as
derived in the Bounds analysis and are given by (3.68) and (3.69) as appropriate. The
curve labelled “Actual” represents the resuits of the simulation. These simulations
have been performed with a time invariant optimum perturbation step size given by
(3.20). In each of these figures the trends suggested in the previous sections are
confirmed. That is, at a suitably small gradient step size the Direct and Bounds
misadjustment estimation approach eachother, the asymptotic bounds provides a
lower bound to the Direct misadjustment expression and the theoretical expressions

provide a good estimate of the real misadjustment,

Note that when examining the misadjustment at very small gradient step sizes, where
we would expect close agreement, there is still some difference between the
theoretical results (Direct and Bounds) and the actual misadjustment. This was found
to occur due to the method used in simulating the narrowband signals. It was found
that the variance in the white noise generator didn’t produce an exact covariance of 1
and in fact the expected variance in the white noise generator was of the order of the
parameter being measured. The simulation was shown to produce correct results by
determining where the actual misadjustment becomes unbounded using the Direct

misadjustment expressions.
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Figure 11 shows the misadjustment versus the perturbation step size for the single
receiver system. This figure confirms that an optimum perturbation step size exists for
the single receiver system and that there is close agreement with the expression
derived for the optimum perturbation step size. Note that the simulated values for the
misadjustment do not fall within the derived bounds because a time invariant

perturbation step size is used in the simulations.
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Figure 12, Figure 13 and Figure 14 show the misadjustment versus gradient step size
for the projected and non projected perturbation approaches for all receiver structures.
One can observe from these figures that as the desired signal power increases there is

a noticeable difference in the systems performance.
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3.9 Summary

In this chapter we have analysed the performance of three adaptive array structures
using projected perturbation sequences by deriving the covariance of the gradient
estimate and the misadjustment expression using various approaches. It has been
shown that the projected perturbation sequences generate smaller variance in the
gradient estimate and hence smaller misadjustment compared to non projected
perturbation sequences. The difference in performance depends on the look direction
signal power. It has been shown that for a single receiver system an optimum

perturbation step size exists. All results have been confirmed by computer simulation.
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Chapter 4

Quantisation Effects in the Implementation of
Projected Perturbation Sequences

4.1 Introduction

In the implementation of digital systems practical issues such as processor
wordlength, signal and coefficient quantisation and computational times can cause the
system performance to deviate from the ideal. For the conventional Least Mean
Square adaptive algorithm processor wordlength and signal and coefficient
quantisation effects have been well documented and widely studied [13], [14], [20],
[21], [22], [33], [45]. However these effects have not been studied for the least Mean
Square adaptive algorithm when the gradient estimate is obtained using perturbation

based techniques.

For a perturbation based adaptive array there are three main sources of quantisation
errors: input quantisation where the signals are quantised, coefficient quantisation
where the array weights and the weight update algorithm constants are quantised, and
quantisation in arithmetic operations. The errors introduced by quantisation can be
minimised by design. For example, during adaptation, depending on the perturbation
sequence, the effect of weight quantisation on the look direction response can be
eliminated by designing the perturbation step size such that a weight perturbation is
equal to an integral number of weight quantisation levels [5]. However, this is only
possible when the perturbation sequences are similar to the Time Multiplex sequences
and in general it is not possible for projected perturbation sequences. In this Chapter
we study the effects of weight quantisation on the performance of an adaptive array

processor that uses the projected perturbation approach.

A contribution of this thesis is that we determine the level of loss of performance due
to weight quantisation and the limited dynamic range of the array weights for an

adaptive array that uses the projected perturbation approach. In particular we develop
new expressions for the gradient covariance and the misadjustment in the presence of

weight quantisation for all the receiver structures under study and we determine
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conditions under which the properties of the projected perturbation sequence are

preserved. The results presented here have been published by the author in [49].

This Chapter is organised as follows. In Section 4.2 we briefly review common digital
implementation effects and their impact on the projected perturbation approach. In
Section 4.3 the model for the quantisation process is introduced. In Section 4.4 we
derive two performance measures, the interference rejection capability of the
processor and the misadjustment. For the misadjustment analysis it is necessary to
first establish the gradient covariance in the presence of weight quantisation. The
misadjustment is then derived using the Bounds analysis approach. Finally in Section

4.5 simulation results and concluding remarks are presented.

For the sake of conciseness, an outline of the major results are presented here. A

detailed derivation of the intermediate results are given in Appendix E.

4.2 Digital Implementation Effects

In this section, we briefly review some of the effects due to digital implementation with

specific reference to a perturbation based adaptive array.

Basically the effects of digital implementation can be studied in terms of:

* computational time

+ finite precision effects

Non zero computational time gives rise to computational delay. By computational
delay we mean the period of time between the instant a new measurement sample is
taken at the processor input, and the instant the updated weight is available at the

output.

We broadly class finite precision effects as quantisation effects, computational round

off error effects and saturation effects. The finite precision effects are interrelated and

result from system limitations introduced by:

* the finite dynamic range of data representation where by data we mean the signals,
weights and co-efficients such as the gradient and perturbation step sizes etc.

* the finite number of representable values (or quantisation levels) available.

* errors resulting from arithmetic computation.
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Quantisation effects occur when data is approximated to one of the representable
values. We refer to the truncation or the rounding-oft of data to a finite precision as
quantisation. In Figure 15 we show where quantisation can take place in the adaptive
array processor. The figure only depicts the quantisation of the inphase signal from
the ** array element. Quantisation can take place at the analog to digital converters,
and within the processor where there may be co-efficient quantisation and
quantisation in arithmetic calculations. Quantisation of co-efficients such as the
gradient step size W, occur due to the finite wordlength of the processor. Quantisation
of the array signal and weights can also occur due to the finite-wordlength of the
processor and the analog to digital converters. The quantisation process generally
results in an error component in the represented value, and for a continuous signal this
error results in an additional noise component [13], [14], [26], (30], [58]. In a
successful implementation, the impact of quantisation on performance has to be

small.

L' B4
10 |0 digitar | K Bits

inphase signal | converter

y

| m bits

Figure 15 Quantisation of the #* Array Element Inphase Signal

Due to the errors introduced by the quantisation of the weights, the properties of a
perturbation sequence can be altered. The alteration can resuit in a biased estimate of
the gradient being obtained, and in the case of a projected perturbation sequence not
preserving the look direction constraint during adaptation. As mentioned in the
introduction these effects can be minimised by designing the quantisation step size to
be equal to a weight perturbation [5]. This strategy is possible with perturbation

sequences whose vector components are integer multiples of each other but it is rarely
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possible for the projected perturbation sequence. Also a property of the projected
perturbation approach is the reduction in perturbation noise. When the weights are

quantised this benefit can be reduced.

We refer to computational round off errors as the errors resulting from arithmetic
computation. Computational round off errors occur when intermediate calculations,
such as muitiplication, require greater precision than the processor makes available.
The computational round off errors affect the numerical accuracy of the internal
calculations and in turn the quality of the resultant beam. Computational round off

errors are generally well understood [21], [22].

Saturation effects occur when data falls outside the available data range or
intermediate calculations within the processor cause registers to overflow or
underflow. The data range is generally limited by the wordlength of the processor. The
finite range constraint implies that data cannot take arbitrarily large or small
magnitudes. A successful implementation will require both proper data scaling, and

data overflow and underflow management.

Computational round off errors can cause the weight update algorithm given by
(2.27), to experience premature digital stopping. Equation (2.27) is repeated below for
a single look direction constraint system. Digital stopping can occur when there is
insufficient precision in the arithmetic calculation such that the error term
RG(W(n)),is negligible compared to the nominal weight W(n) and also when the
update algorithm produces successive values whose difference is small relative to the
size of a quantisation level. Using a larger gradient step size W, can delay the effects
of digital stopping, however using a larger p will result in a larger misadjustment. As
compared to the analog case, when adaptation terminates due to digital stopping it can
result in a larger residual mean square error [20]. Premature digital stopping can be
overcome in part by the dynamic scaling of weights [36] or with the use of virtual

weights [9].

Weight Update Algorithm
W(n+1) = P[W(n) - uG(W(n)] + o)™ (4.1)

With the use of virtual weights two sets of weights are used in the system. One set of
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weights known as the hardware weights represents the actual quantised array weights.
The second set of weights maintained in software are known as the virtual weights
and represents a higher precision of the hardware weights. The virtual weights are
restricted by the finite wordlength of the processor [21], [22]. The hardware weights
are obtained from the virtual weights by quantisation methods. In our quantisation

model for the implementation we consider the use of virtual weights.

Using virtual weights, the weight update algorithm defined by (4.1) can be
implemented as follows where W q(n) is the new hardware weight computed at the nh
iteration and where W(n) is the new virtual weight computed at the n™" iteration
Hardware Weight Update Algorithm

1. Estimate the gradient by applying perturbations about the nominal hardware

weight Wq(n,)

2. Update the virtual weight vector,

Win+1) = PIW()-pG(W,(n)] + —o

CHC
3. Obtain the next hardware weight, Wq(n +1) = @g(W(n+1l)) 4.2)

In (4.2) Q denotes the quantisation operation where

QW (i)) = W) +n() (4.3)

and n (i) represents the L x 1 dimensional vector of weight quantisation errors at the

it? instant of time.

The virtual weights act as a vector integrator accumulating the relatively small weight
updates. The hardware weights will change when the virtual weights have been
displaced sufficiently to cause a jump in the quantised weights. Stability aspects of
using two sets of weights has been studied in [9]. The results indicate that this method

makes a good attempt at finding a feasible solution closest to the optimum.

In the rest of this Chapter we concentrate only on the effects of weight quantisation on
the performance of the array since for the conventional LMS algorithm it has been
shown that the weights are the most sensitive of the parameters to quantisation [45].
Also we do not consider the computational time as the high speed of modern

processors renders the computational time effect less significant.
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4.3 Quantisation Error Model

In this section, we introduce the quantisation model and detail the assumptions made

to model the quantisation effects.

We only consider the effects of real weight quantisation and we assume that the

digital signal representation is of a high precision such that it can be considered ideal
and that other arithmetic processes required in the weight update algorithm maintain
the characteristic of an infinite precision system. The effective system being analysed

is analogous to an analogue system with digitally controlled weights.

In our model of the implementation, we assume that virtual weights are used and that
the complex weighting is realised by splitting the outputs from each array element
into two phase quadrature channels and passing each through variable stepped
attenuators. Methods to produce the quadrature signals are outlined in Chapter 2. The
amplitude gain of each attenuator is set by a binary word so that each array weight can
then be regarded as a complex variable whose real and imaginary parts have finite
precision. In Figure 15 the complex weighting of the inphase signal from the I array

clement is shown.

Modelling the effects of weight quantisation in any process poses some difficulties
since quantisation errors may be time invariant at system equilibrium and are
generally not treatable as random. These quantisation errors may be related to
correlations present within the system. To simplify the task we make the following

general assumptions:

Assumption 4.1: Round-off quantisers are used and the resulting components of the
weight quantisation error vector 1; [ = 1, ...L, are zero mean, uncorrelated and
uniformly distributed over the quantiser bin width. Furthermore, the quantiser inphase

and quadrature bin widths are all uniform and equal to AW .

Using the above assumption the quantisation errors satisfy

Em@imA()] = o31;; and E[nEMA()] = 0,i# (4.4)

It can be shown that [26],

77



2 (AWreal)2+(AW[mag)2 - (AW)Z

4.5
On 12 12 6 “-3)

where AW AW = AW is the magnitude of the quantisation increment.

real — imag

Assumption 4.2: The quantisation is fine enough to prevent signal correlated patterns
in the quantisation errors such that the distortion produced by quantisation affects the

performance of the system as if it were an additive independent source of noise

Conditions that allow the quantisation errors to be modelled as an additive uniform
white noise are examined in [58]. The additional errors that are introduced in the
model when these conditions are not met and signal correlated patterns in the
quantisation errors are also examined. For the example signal scenarios in [14],
[30],[50] if the wordlength is greater than six bits the vector of quantisation errors
could be accurately regarded as being uncorrelated with the signals and its elements

as being mutually uncorrelated.

During adaptation there are two methods that can be used to obtain the hardware

weights they are:

Method 1. Virtual Weights and Weight Perturbations are quantised separately

W (n) = Q(W(n)£0(v8,(i))
Method 2. Virtual Weights and Weight Perturbations are quantised together.

W, (n) = Q(W(n) £73,(i))

It is shown in Appendix E that by using Method 2 with the quantisation modelling
assumptions made above, an unbiased estimate of the gradient can be obtained for each
of the receiver structures under study. Note that the appropriate perturbation sequence
must still be used. To obtain an unbiased gradient estimate using Method 1 the

following assumption is also required

Assumption 4.3: The quantised error vector of a perturbation sequence has zero mean

over a perturbation cycle.

Note that in Appendix E the analysis for either method requires the appropriate
perturbation sequence to be used in order to obtain an unbiased gradient estimate. For

simplicity in future analysis we will assume that during adaptation, quantisation takes

78



place using Method 2.

4.4 Performance Measures

In this section, we examine criteria that can be used to gauge the performance of
perturbation based adaptive arrays implemented with quantised weights. We consider
the interference rejection capability of the array and develop new misadjustment

expressions for the three receiver structures under study.

The interference rejection capability of the processor gives an insight of the effect of
quantisation on the optimum weights. The new misadjustment expressions were
developed as they also indicate the effect that the weight quantisation has on the

gradient estimation process.

4.4.1 Effect of Quantisation on Interference Rejection

The level of loss of performance due to quantisation can be determined from the array’s
interference rejection capability. This can be established by examining the array’s gain
in the direction of a plane wave interference which lies in the sidelobes of a

conventional array pattern.

When the virtual weight vector can be exactly set to null an interference and assuming
there is no other noise present in the system it can be shown that the variance of the

output signal power is given by [14]

2 w 2
E[S#MnHS] = Lo? = L% = %L(Zf“f) (4.6)

In (4.6) the expectation is taken over all possible quantisation errors, S is the steering
vector of the interference and AW has been defined by finding the range of the virtual

weight vector. For Z equal levels of quantisation AW is given by

2wmﬂ¥
AW = (4.7)

Equation (4.6) corresponds to the depth of the null. The number of bits required to
achieve a desired null depth in the interference direction can be determined using (4.6).

One method to determine the range of the virtual weight vector is by solving for the
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optimum weight vector using the expected signal scenario. Alternative methods as

described in [9] could also be applied.

It can be observed from (4.6) that the effect of quantisation is to limit the degree of
rejection of interference sources, hence by choosing the desired rejection capability of
the processor a predictable interference scenario can be expected. It also indicates that
as the number of quantisation levels increase the interference rejection capability
improves. This performance measure though gives no indication on the weight
quantisation effects during gradient estimation and does not distinguish between the

different gradient estimation schemes under study.

4.4.2 Covariance of the Gradient Estimate

In this section, we present the expressions for the gradient covariance in the presence
of weight quantisation. These expressions are required in the next section to determine
the misadjustment. The expressions indicate the effect of weight quantisation on the

gradient estimation process.

The covariance expressions are derived in Appendix E where the derivation is based
on the approach used in [2], [5]. In the analysis, in addition to the assumptions of the
quantisation model discussed earlier, we require the same assumptions used in
Chapter 3, i.e Assumption 3.1 and 3.2. The assumptions of the quantisation model are

required so that an unbiased gradient estimate can be obtained.

In Appendix E, the Generic Expressions for the gradient covariance have been
derived for the projected perturbation and hybrid perturbation approaches. We refer to
the expressions as being generic since they are applicable with any projected
orthogonal perturbation sequence. Below we have evaluated these expressions for the
projected perturbation approach that uses the projected time multiplex sequence. Note
that the expressions do not take into consideration the reduced length perturbation

sequences and, for simplicity of notation we write W(n) as W.
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Result 4.4.a Gradient Covariance of Dual Receiver Dual Perturbation System with
Projected Time Multiplex Sequence
VGl(Wq(”)) = VGl,,”-g(W) + GflP(Diag(PRZP) + Tr(R)Diag(PRP))P

2

2 2
N i[wﬂkzw + Tr(RYWIRW + %T—'(Tr(Rz) + (Tr(R))z)]P
Y 2L

for a 4L length sequence (4.8)

Ve (Wy(m) = Vg, (W) +20,P(Diag(PR’P) + Tr(R)Diag(PRP))P

2 2
G (o)
+ T"[WHRZW + Tr(R)W'RW + g(Tr(R"’) + (Tr(R))z)JP
YL

Jor a 2L length sequence (4.9)

aaa

Result 4.4.b. Gradient Covariance of Dual Receiver Reference Receiver System with
Projected Time Multiplex Sequence
V(W (n)) = Vg, (W) +20,P(Diag(PR’P) + Tr(R)Diag(PRP))P
20'31 Ho2 i Gi 2 2
+ Y—zz[W RW+Tr(RYW RW + ?(Tr(R Y+ (Tr(R)) )JP
for a 4L length sequence, Approach 1 (4.10)

Var(Wy(m) = Vg, (W)+ o, P(4Diag(PR’P) + 2Tr(R)Diag(PRP))P
2

+ %(WHRZW +Tr(R)W RW + o7 (Tr(R%) + (Tr(R))?))P
viL

for a 4L length sequence, Approach 2 (4.11)
[

For the dual receiver reference receiver system two approaches can be taken to
determine the gradient covariance. It can be assumed that the reference receiver
quantisation errors have the same model as the perturbed receiver quantisation errors,
Approach 1, or the reference receiver quantisation errors are constant in the gradient
estimation period and that this error is small and can be ignored, Approach 2. In latter

derivations we assume the modelling of Approach 1 is used.
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Result 4.4.c. Gradient Covariance of Single Receiver System with Projected Time Multiplex

Sequence
Vaa(W () = Vgz (W) +20,P(2Diag(PR’P) + Tr(R)Diag(PRP))P
2
o 2
+ T“[W“ R*W + THRYW RW + oﬁ(rr(Rz) + %(Tr(R)) DP (4.12)
YL

Jor a 4L length sequence

I

In (4.8), (4.9), (4.10), (4.11) and (4.12) VGlm_g(W(n)) » Vo (W(n)) and
Vi ; (W(n)) are the covariance expressions with no weight quantisation effects,

they are defined by (3.8), (3.9), (3.10) and (3.11) respectively.

Examining (4.8), (4.9), (4.10), (4.11) and (4.12} and comparing them to the equivalent

expressions developed in Chapter 3 the following observations can be made:

» All the additional terms are proportional to the variance of the quantisation errors.
The effect of quantisation can be limited by making the variance of quantisation

errors small.

* The majority of the additional covariance terms are proportional to the number of
array elements. It can be expected that as the number of array elements is increased
the misadjustment will increase. To make this observation we note that for a
simple, single signal scenario using (2.14) in (2.18) the approximation R® = LR

is valid.

* Some of the additional covariance terms are inversely proportional to v, indicating
that the quantisation process favours a larger perturbation step size. However the

perturbation noise performance of a system favours a smaller perturbation size.

* Asin Chapter 3 for the dual receiver dual perturbation system the gradient
covariance for the 4L length perturbation sequence is haif that of the gradient

covariance for the 2L length sequence.

We will latter examine the accuracy of these observations in the simulation studies

section.
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4.4.3 Misadjustment

In this section we derive the misadjustment using the Bounds approach.

Using the definition for misadjustment (2.53), when the weights are quantised, the
misadjustment is given by

Vo= fim ELOWOD) + X+ DX (n+ (W () +1)] - WHRW

o s (4.13)
e WHRW

In (4.13), n represents the quantisation errors in the virtual weights W(n).

We have assumed previously that X(.) is an independent and identically distributed
process (Assumption 3.1). Hence W(n) is independent of X(k + 1) for k 2 n, and the
expectation over X and W can be taken separately. We have also assumed that 1} is
independent of X(.) and W (Assumption 4.1). Hence the expectation over n, X(.)
and W can also be taken separately.

Expanding (4.13), taking expectation with respect to 1 and using (4.4), Lemma A.9
and the zero mean property of m, gives
- W n) Xn + DX + DW(n) + Tr(0L Xen + DX + 1)] - WHRW
= lim
n— oo WHRW

Now taking expectation with respect to X(.) gives

n N 2
i ELWE ()RW(n)] - WHRW L OnTr(R)

M = AR n
n— oo WHRW WHRW

(4.14)

Comparing (4.14) to (2.53) we can observe that the additional term in (4.14)
represents the effect of weight quantisation. This additional term only represents the
effect of the nominal virtual weight quantisation. It does not represent the
quantisation effects that take place in the gradient estimation. Due to this, the
misadjustment in the presence of quantisation cannot be simply derived by adding the
additional term in (4.14) to the expressions derived in Chapter 3. To derive the
misadjustment the first term on the right hand side of (4.14) must be calculated. This

term depends on the covariance of the gradient estimate.

To calculate the first term on the right hand side of (4.14) we use the Bounds

approach. The analysis is contained in Appendix E. As the derivation is similar to the
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analysis in Chapter 3 we do not perform the convergence analysis of the norm of the
weight error vector. We assume that for a suitably dimensioned system, the additional
terms in the gradient covariance due to quantisation can be made sufficiently small
such that they have no effect on the convergence. We thus assume that the conditions
for convergence established in Chapter 3 are true here. In Appendix E we express the
gradient covariance in terms of the weight error vector and using the recursive
equation of the norm of the weight error vector determine the converged bounds on
VH(n)RV (n). The first term on the right hand side of (4.14) can be determined from

the converged bounds.

Following are the asymptotic misadjustments of the three receiver systems. Note that
in the results A, , - denotes the maximum eigenvalue of R and we have not listed

quantisation terms with a order higher than 03] .

Result 4.4.d. Misadjustment of the Dual Receiver Dual Perturbation System
M, = ¥&= D7 prp)

22)L
c _
y—n - Dt 7r(R)T+(PRP) + Tr(PR*P)}
4W RW
2
fi fi o Tr(R
Il 11 — (L - D{iR_EV + Tr(R)} + :]H—(A) for a 4L length sequence (4.15)
8y L RW W RW
aag

Result 4.4.e. Misadjustment of the Dual Receiver Reference Receiver System

M, = ME-D) 1){Tr(PRP)+Y2(Tr(PRP))2]»

2L Ww'RW

2
G _
s (& 7 1){Tr(R)Tr(PRP) + Tr(PR*P)}

2W RW
“‘ n R Li4 Tr(R)

—5 (L- 1) —+Tr(R) "H— for a 4L length sequence  (4.16)
B RW WIRW

aaa

Result 4.4.f. Misadjustment of the Single Receiver System

M, = %ﬂ(Tr(PRP))

2
MGn (L-

+
»wirw L

D Tr(R)T+(PRP) + T+(PR?P)}
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2 ~ H 2on 2
o o, Tr(R
+ ”—2”(1, - 1){%#’ +Tr(R) } + “H—() for a 4L length sequence  (4.17)
4L RW W RW
Qoo

In (4.15), (4.16) and (4.17) the gradient covariance used in the derivation is given by
(4.9), (4.10) and (4.12) respectively.

Examining (4.15), (4.16) and (4.17) and comparing them to the equivalent

expressions developed in Chapter 3 the following observations can be made:

* All the additional misadjustment terms are proportional to the variance of the
quantisation errors. The effect of quantisation can be limited by making the

variance of quantisation errors small.

» The additional misadjustment terms are proportional to the number of array
elements. Therefore it can be expected that as the number of array elements is

increased the misadjustment will increase.

* Some of the additional terms are inversely proportional to vy, indicating that the

quantisation process favours a larger perturbation step size.

* In the misadjustment expressions without quantisation a property of the projected
perturbation sequence was to remove some of the dependence the misadjustment
has on the desired signal power. In the above misadjustment expressions this

dependence is re-introduced, to a degree.

The accuracy of these observations are examined in the simulation studies section.

4.5 Simulation Studies

In this section we present simulation study results. Simulations were performed using
the same methods as described in Chapter 3. All arrays were considered to be linear
with equally spaced omnidirectional array elements with a quarter wavelength spacing

at a nominal operating frequency.

In the Figures the signal scenarios are described. We assume the signals are coplanar

such that they arrive in the xy plane where 6 = 90 and the elements of the array lie
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along the x axis. The direction of arrival of the signals are described in terms of the

parameter ¢ as defined in Figure 1 and expressed in degrees.

White noise power of 107* relative to a unit reference power was added to each array
element and the powers of each signal are defined relative to the same unit reference
power used to set the white noise level. The power of each signal is also described in

the figures.

In all simulations unless otherwise stated the magnitude of a perturbation step was
adjusted such that it was larger than the quantisation step size. It was not possible to
specify a minimum size quantisation level as for each different scenario the projection
matrix can change and this will influence the size of the vector components in the

perturbation sequence.

In the simulations we examine the mean weight quantisation error, weight range
effects, the array’s interference rejection capability and the misadjustment. The

following results were obtained from the simulations.

4.5.1 Weight Quantisation Error

The sensitivity of Assumption 4.3, was first tested to determine whether the weight
guantisation errors that occurred during a perturbation cycle had zero mean. As to be
expected this was not always the case. The average quantisation error over a
perturbation cycle depended on the length of the perturbation sequence and the number

of quantisation levels used.

4.5.2 Quantisation Method 1 vs Method 2

The difference in performance of the two weight quantisation methods, Method 1 and

Method 2 as discussed in Section 4.3 was examined

Using Method 1 it was observed that for a single linear constraint system, when there
was coarse quantisation such that the quantisation increment is of the order of the

minor components of the perturbation vector, the projected Time Multiplex sequence
reverted back to a scaled Time Multiplex sequence. The amount of scaling depended on

the coarseness of the quantisation process.

The cause of this reversion can be observed by examining the components of a typical

projected perturbation vector which are given by the following
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Py Py Pra||v, PV, I B
Py Py Pyl 0| = {PyV,| Where P;; = I P.= - (4.18)
Py Py P33/ 0 PyV,y
Here, P;; is a component of the projection matrix and V; is a component of a typical
Time Multiplex perturbation vector.
From (4.18) it can be observed that the projected perturbation vectors will contain one
component which is dominant. It was observed that when the quantisation becomes
coarser, the less significant components in the projected perturbation vector are
rounded down to zero, and the projected Time Multiplex sequence begins to look like
a scaled version of the original Time Multiplex sequence. This effect does not

necessarily occur when there is more than one constraint placed on the system.

Under this coarse quantisation, one would expect to see a rise in the misadjustment due
to the re-introduction of the perturbation noise in the look direction since the system is
effectively operating with a non projected sequence. This is not always the case since
the major components which are left in the quantised vector may be scaled up or down.
This scaling corresponds to the scaling of the original perturbation step size in a non-
projected system. The observed misadjustment may then be decreased due to a reduced

perturbation step size .

‘When the system does not operate under coarse quantisation similar convergence times

and misadjustments were obtained.

4.5.3 Weight Range Effects

In all the simulations, the dynamic range of the weights was determined by

calculating the optimum weights and allowing for an expected misadjustment.

The convergence of the weight update algorithm appeared to be guaranteed when the
initial weights were set close to the optimal weights. When this occurred, it was found
that under differing scenarios the output power and the optimum output power as
defined by (2.26) were in good agreement. The gain in the look direction during the

convergence of the algorithm also remained constant.

It was also observed that at times when the initial weights were not set close to the

optimum weights the algorithm did not converge to the optimum weights. This was
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due to weight saturation. This effect could cause the final misadjustment to become

smaller than the ideal predicted as not all the system constraints were satisfied.

This indicated that it was not appropriate to calculate the dynamic range of the weights
by simply extrapolating from the optimum weights and allowing for a predicted
misadjustment. Instead an additional buffer was required to stop the weights
overflowing. This was necessary when the convergence of the algorithm occurs in a

underdamped sense in which the weight values overshoot their final values.

For a fixed number of quantisation levels and a varying quantisation error variance, (i.¢.
the dynamic range of the weights is not fixed, the dynamic range of the weights is

proportional to the optimum weights), by increasing the number of array elements L,
the misadjustment at a larger L tended to be smaller than expected. This occurs since
when L increases the dynamic range of the weights and the quantisation step size

decreased which may favour minimizing power. Also as the number of array elements
increase the number of degrees of freedom the array possess increases which aided in

interference nulling.

4.5.4 Interference Rejection Capability

As discussed in Section 4.4.1, we expect that with weight quantisation the gain in the
mterference signal directions may increase and the gain in the desired signal directions
decrease for smaller number of quantisation levels. In Figure 16, we show the optimum
power response to a signal of unity power for a 4 and 6 element linear array as the
number of weight quantisation levels vary. In the figure “degrees” represents the
direction of arrival (¢ as defined in Figure 1) of the unity signal. The same dynamic
range of the weights is used for each array and the signal scenario is described in the
figure. From the figure we can observe that the 4 element array's interference rejection
capability is more sensitive to the number of quantisation levels. And in general for
increasing number of quantisation levels the interference rejection capability improves

when the hardware weights realisation is more accurate.
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4.5.5 Misadjustment

In this section we present the simulated misadjustment results for the three array

structures.

For the results presented here the quantisation variance is fixed by fixing the dynamic
range of the weights and number of quantisation levels. During the simulations it was
necessary to check that the narrowband assumption defined by (2.8) was still being
satisfied since every time an element is added to the array, the size of the array

increased.

Figure 17 shows the misadjustment for the three receiver structures for different
numbers of quantisation levels as the number of array elements vary. The
misadjustment for the non quantised case and the theoretical misadjustment as given
by (4.15), (4.16) and (4.17) are also shown. These simulations have been performed
with a gradient step size of 0.05 and with a time invariant optimum perturbation step

size given by (3.20).

Figure 17 (i} and (ii) shows the results for the dual receiver dual perturbation system.
In these simulations a 2L length projected time multiplex sequence is used. Figure 17
(i11) and (iv) shows the results for the dual receiver reference receiver system and

Figure 17 (iv) shows the results for the single receiver system.

For a fixed signal and quantisation variance scenario, it is difficult to directly compare
misadjustment simulation results as the number of array elements increase. This is
due to the fact that for a fixed quantisation variance, as the number of array elements
increase the number of degrees of freedom the array possesses increases which
changes its interference nulling capability. Also the fixed quantisation variance may
favour a particular array size. So it is possible that the optimum weight representation
at say L, will be more accurate than the optimum weight representation at L. For
example, as L increases the size of the optimum weights decrease and for a fixed
number of quantisation levels it may be more difficult to accurately represent these

optimum weights compare to the optimum weights at a smaller L.

From Figure 17 it is possible to observe that there is a definite increase in the
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misadjustment as the number of array elements increase and that whenever
quantisation is applied an increase in misadjustment results. The theoretical
misadjustment as given by (4.15), (4.16) and (4.17) form an upper bound to the
actual/simulated misadjustment. The expected increase in misadjustment as predicted
from the expressions does not occur due in part to the reasons mentioned previously

and due to the quantisation model assumptions.
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Figure 18 shows the misadjustment for the three receiver structures for different
numbers of quantisation levels as the perturbation step size varies. The misadjustment

for the non quantised case is also shown.

In the dual receiver dual perturbation case, the misadjustment is approximately

constant for a range of perturbation step sizes, the misadjustment increasing when the
perturbation step size exceeds some maximum Y,,,,,. The rise in misadjustment when
the perturbation step size exceeds Y,,,, is due to the weights being forced outside the

dynamic range of the weights.

In the dual receiver reference receiver case the misadjustment is a monotonically
increasing function of ¥ and in the single receiver case the misadjustment is a convex

function.

In each of the receiver structures the misadjustment increased as predicted and agreed
with the literature. The misadjustment also increased from the ideal case, but again not
to the degree to that predicted by the derived expressions. As shown in Figure 18 (i) the
theoretical misadjustment forms an upper bound to the actual misadjustment. Similar

results were obtained for the other receiver structures.
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4.6 Summary

From this section one was able to observe that when the perturbation vectors can be
accurately represented under quantisation, the implementation of the projected
perturbation algorithm is generally well behaved and performs predictably as in the
non projected case. The expressions developed in this section provide some insight into
how an array’s performance reacts to different number of quantisation levels, the
number of array elements and the size of the perturbation step size. Though the

modelling of the quantisation errors needs refinement.

‘Two criteria have been used to examine the performance of an adaptive array with
digital implementation effects, they are the interference rejection capability of the
processor and the misadjustment. With these criteria it is difficult to conclude what are
the minimum wordlength requirements to implement a projected perturbation
sequence. The difficulty arises as it is a scenario dependent problem and also because
the wordlength requirements determined to give a desired performance may not be

sufficient to accurately represent the perturbation sequence.
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Chapter 5

Application of Spatial Derivative Constraints to
Narrowband Adaptive Array Processing

5.1 Introduction

The projected perturbation approach in adaptive beamforming is used to eliminate the
effect of perturbation noise during adaptation. However when there is a directional
mismatch between desired signal’s direction of arrival and the look direction,
projection of the perturbation sequence onto the look direction constraint plane does
not necessarily eliminate the perturbation noise in the output signal as reviewed
earlier in Section 2.10.4. Under mismatched conditions the reception of the desired
signal may also be degraded and the array may treat it as an unwanted interference

signal.

The application of spatial derivative constraints or directional constraints to an array
processor weights can be used to improve the reception of the desired signal when it is
offset from the look direction [9], [13], [18], [28], [29], [35], [42]. Therefore, it can be
expected that projection of the perturbation sequence onto these additional constraint
planes can also be used to remove the perturbation noise in the output signal when
directional mismatch occurs. Alternatively, when directional mismatch is not a
concern, projection of the perturbation vectors onto the additional constraint planes
can be used to reduce the perturbation noise contributed by signals within an angular

region of the look direction.

A contribution of this thesis is that we examine the benefit of projecting the
perturbation sequence onto the spatial derivative constraint planes. Little work has
appeared about the application of spatial derivative constraints to narrowband
perturbation based processors. We develop new expressions for an array’s sensitivity
to perturbation noise, and identify conditions on the array under which spatial
derivative constraints applied to perturbation sequences are effective in suppressing
perturbation noise. Applying the spatial derivative constraints to the perturbation

sequence can unnecessarily increase the complexity of implementing the sequence.
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We also briefly examine these implementation issues.

This Chapter is organised as follows. In Section 5.2 we review the derivation of the
first and second order spatial derivative constraints and evaluate them for a linear
array. In Section 5.3, we examine the adaptive beamforming problem with spatial
derivative constraints. In Section 5.4 by examining the array’s sensitivity to
perturbation noise, the norm of the spatial derivative constraint and the array’s
directional sensitivity, we determine conditions under which spatial derivatives could
be applied effectively to the perturbation vectors. Results of simulation studies are

presented in Section 5.5.

5.2 Spatial Derivative Constraints

In this section, the derivation of the spatial derivative constraints of a narrowband
processor are reviewed. Initially we present the generic power response derivative
constraints and the frequency response spatial derivative constraints and evaluate
them for a linear array. The optimisation problem with spatial derivative constraints is

then presented.

5.2.1 Derivation of Spatial Derivative Constraints

In general, the 7' order spatial derivative constraints are derived by examining the
conditions under which the #** order spatial derivative of the array’s power response
or frequency response in an angular direction is zero. Here the spatial derivatives are
taken with respect to the angular co-ordinates defined in Chapter 2 but other
techniques vary in this respect, such as in [13], where the spatial derivatives are taken
with respect to the sine of the angular co-ordinates. The zeroth order constraint

corresponds to the look direction constraint defined by (2.56).

The power response of the array processor to a signal arriving from direction, (6, ¢},

is defined by

p(6,0) = H(B, 0)H" (8, ¢) (5.1)
where
H(8,0) = W' (n)S(0,0) (5.2)

is the frequency response to a signal arriving from direction (6, ¢).
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Following are the first and second order power response derivative constraints. These
constraints are necessary and sufficient constraints and their derivation can be found

in [51].
First Order Power Response Derivative Constraints
Re{WHS5,(8,0)} = 0, Re{WHS (0,¢)} = 0, Re{WHS,(6,4)} = 0 (5.3)

Second Order Power Response Derivative Constraints

Re{WHSyo(8,0)} = —|[Im{WHSy(6, 0)}|?

Re{WHS,,(8,0)} = —|Im{WHS(6, $)}|?

Re{WHS (8,0)} = —|Im{ WHS (0, 0)}|
Re{WHSg,(0,0)} = —Im{W/S5y(6,0) Hm{WHS,(6, $)}

Re{WHS;:(0,0)} = ~Im{WHS(8, 0) m{WHS (6, 0)}

Re{WHSﬂ;(@, 0)} = _Im{WHSf(B! 0)Hm{WHS,(6, )} 5.4)
whete S,(6, ¢) = aiS(e, ) (5.5)
“ (002 00, £.)
aZ
S.5(0,0) = =—=55(0,9) (5.6)
B
. doiop 8y 00 £2)

Following are the first and second order frequency response spatial derivative
constraints. These constraints are sufficient constraints and their derivation can be
found in {35]. Note that for simplicity of notation throughout the rest of the chapter
weuse § = S$(0,, ¢y) .

First Order Frequency Response Spatial Derivative Constraints

W (n)2 S=0 (5.7)
a8 |(o,.0,)
WH(n)%f §=0 (5.8)
¢ |8, 0,
Second Order Frequency Response Spatial Derivative Constraints
2
A, ? A,
WH(n) — S = 0 and WH(n)— S=0 (5.9)
99 |, 4, 90°
o %o (8, 0,)
A 2 A
WH(n) a—‘ § = 0 and WH(n)—" $=0 (5.10)
? e 9" Lo, 0,)

i0l



oA,

A,
n —_
(8,,9,)00

WH(n)__ $=0
00 (0, 9,) IA
and WH(n)__Z
d009|s,. ¢,)

S=0 (5.11)

where A_ is anL x L diagonal matrix defined by
A, = Diaglty(8, ), 75(8, ), ..., T,(0, 9)] (5.12)

Note that in the derivation of the higher order constraints it is always assumed that

lower order constraints are satisfied.

Examining the expressions for the power response derivative constraints and the
frequency response spatial derivative constraints the following observations can be

made.
» The power response derivative constraints are phase independent and non-linear.

» The frequency response spatial derivative constraints are linear but phase
dependent. That is, the derivative constraints depend on the location of the phase
centre [18], [28], [51], [52]. As a unique solution exists for the optimum weight
vector when the constraints are linearly independent, the optimum weight vector is

different for different phase centres.

* The frequency response spatial derivatives constraints can be obtained by
removing the Re and I complex operators in the power response spatial derivative

constraints and setting each component to zero.

* A potential drawback of the sufficient frequency response spatial derivative
constraints is that they are more restrictive when compared to the necessary and

sufficient power response spatial derivative constraints [18], [51].

Because of their simpler form we only consider the frequency response spatial
derivative constraints. For convenience in the rest of the thesis we refer to the frequency

response spatial derivative constraints as spatial derivative constraints.
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5.2.2 Evaluation of Spatial Derivative Constraints for Linear Arrays

Here we evaluate the first and second order spatial derivative constraints for a linear

array having L equally spaced elements. Furthermore, signals are considered to arrive

in the xy plane where © = 90°, see Figure 1. The elements of the array are assumed

to lie along the x axis and are symmetrical about the origin. Hence for each element of

the array y, = z; = 0.

The look direction steering vector is now given by

jan JFox]cosf;tb.,) jam fax2':08(¢o) jom fngCOS(¢D)
ST — [8 v v 1 :l

, € s €

and the first and second order constraints reduce to:

Result 5.2.c. First Order Spatial Derivative Constraints, Linear Array
H .
W (n)AySsin(¢,) = 0
where Ay is an L x L diagonal matrix defined by
Ay = Diag[xy, X4, ...... » x|

QaQ

Result 5.2.d. Second Order Spatial Derivative Constraints, Linear Array
W (n)A2Ssin2(0,) = 0

W (n)A2Scos(9,) = 0
where A)% is an L X L diagonal matrix defined by
A)z{ = Diag[xi?, x%, ...... ,» X7 ]

Laad

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

5.3 The Adaptive Array Processor with Spatial Derivative

Constraints

In this section we re-examine the array optimisation problem and the adaptive

beamforming problem with spatial derivative constraints.

When the spatial derivative constraints are applied to the array, the optimisation

problem is a multiple linear constraint problem. For the linear array we summarise the
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First and Second order multiple linear constraint optimisation problems. The Zeroth
order constraint optimisation problem corresponds to the single look direction

optimisation problem.

First Order Optimisation Problem.

The first order optimisation problem is defined by
min P(W)
w

subject to W7 ()8 = 1 (5.19)
Wi (n)ALS = 0
where P(W) is the output power defined by (2.17).

Second Order Optimisation Problem.

The second order optimisation problem is defined by
min P(W)
W

subjectto W7 (n)S = 1 (5.20)
W (n)ALS = 0
w¥(m)ALS = 0

It is interesting to note that when we assume that the co-ordinate system origin is
chosen at the phase centre of the array, the zeroth order and first order constraints are
mutually orthogonal. Also the first order and the second order constraints are
mutually orthogonal. However the zeroth and second order constraints are not

necessarily orthogonal

The problems specified by (5.19) and (5.20) can be expressed equivalently as the

linear constrained optimization problem.

n%rn P(W)
subjectto W' (n)C = F (5.21)
where Cis L x2 or L x3 constraint matrix defined by
c=[c,c...¢) (5.22)
andFisa Lx2 or Lx3 vector
F=[10..0 (5.23)
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The columns of C, i.e. Cy, C,, C, correspondto S, A,S and AZS respectively.

It is interesting to note that for the optimum weight vector satisfying only the zeroth

order constraint the following are true.

Re(WHALS) = 0
and

Im(WH ALS) =0
As discussed in Chapter 2, since R is unknown and must be estimated from the data to
obtain the optimum weight vector W given by (2.25), a real time algorithm for
determining y must be used. When C has full rank a real time algorithm for

obtaining the optimum weight vector W is given by
W(n+1) = P[W(n) - pG(W(m)] +CCc?cy' F? (5.24)

In (5.24) the projection matrix P is not the same as the projection matrix for a single
linear constraint problem, (2.27), since there is now more than one constraint placed
on the system. When the linear constraints placed on the system are mutually
orthogonal, [9], i.e. C'is full rank, the projection matrix in (5.24) can be represented as
c.ci
2

Note that the projection matrix for projecting the perturbation vectors, defined here as

(5.25)

P = Py,P,P,... where P, = [ILL_

P,, is not necessarily the same as that in (5.24) for the weight update algorithm. The
selection of P, is studied in the next section. It is possible to have a P of a higher order
than P,. That is, the number of constraint planes the array weights are projected onto
is greater than the number of constraint planes the perturbation vectors are projected
onto. This will occur when it 1s not necessary to project the perturbation vectors onto
all constraint planes to counter the mismatch conditions and to effect the desired
perturbation noise response. Alternatively, it is also possible for P, to be of a higher

order than P aithough it is envisaged there is no application for this.

105



5.4 Spatial Derivative Constraints- Performance and

Implementation Issues

In general the cost and complexity involved in generating and implementing projected
sequences must be weighed against the array’s improved performance. In this section,
to determine the benefit of projecting the perturbation sequence onto additional spatial
derivative constraint planes we examine an array’s perturbation noise performance

and some implementation issues.

Firstly we develop new expressions for the array’s sensitivity to perturbation noise.
The expressions give the array’s perturbation noise sensitivity in relation to the
signal’s offset from the look direction, the number of array elements and the desired
signal power. The expressions are developed for a linear array for the zeroth order and
zeroth plus first order projections. A similar analysis can be applied to other array
configurations but the expressions developed for more complicated arrays are
complex and don’t give an insight to an array’s sensitivity to perturbation noise. For
the linear array we do not develop expression for the zeroth plus first plus second
order projections as it is shown later in the simulation results that the beam width for
perturbation noise suppression gained by the use of the zeroth order constraint or the

zeroth plus first order constraint was sufficient for narrowband applications.

Next we examine the effect the additional spatial derivative projections have on the
perturbation vector size in implementation. Finally we consider the array’s sensitivity
to directional errors. For a linear array we identify some simple scenarios which are

insensitive to small look direction errors.

5.4.1 Perturbation Noise with Zeroth Order Constraint

The main reason for projecting the perturbation sequences onto the spatial derivative
constraint planes is to suppress perturbation noise. The improvement in the array’s
performance can be determined by comparing how much perturbation noise would be
present in the system without and with the use of projected perturbations. The
perturbation noise in the desired signal direction for a zeroth order constraint system

and a first order constraint system will now be determined.
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For a zero mean projected perturbation sequence the excess power due to

perturbations about a nominal weight W is given by [4],

§ = 2y*Tr(PR) (5.26)
and the component of this noise due to the desired signal is given by
&, = 2v?Tr(PRy,) (5.27)
where R is the comrelation matrix due to the desired signal’s component.

Substituting for R ;
Eas = 2Y2p4SLPS (5.28)

where S, is the steering vector in the desired signal direction and p,, is the desired
signal’s power. For the linear array,

j2nfgxlcos(q:’ +A) jznfoxzcos(q: +A) jannchos{q:;, +A)
ST =le , €  ererrereenna e (5.29)

where A is the angular deviation the desired signal arrives from the look direction, it

is given by
A=, -0, (5.30)
where ¢, is the direction of arrival of the desired signal.

When the perturbation sequence is only projected onto the zeroth order constraint
plane, it can be shown that by substituting the projection matrix for the zeroth order
constraint, Py, into (5.28), that the excess power due to perturbations contributed by
the desired signal is given by
SSH
Szas = 2Y2Pds35ﬂ(1LL_ T]Sds (5.31)
On substitution for §,, and §

27

v

2
E24e = 2vzpds[f~— %{Zws( ! "x"(cos<¢o+A)—cos(¢o)))} } (5.32)

To determine the characteristics for small look direction errors, consider now the

derivatives of the perturbation noise power £, with respect to A

b 2n i

L

2 f

[Emi (9, + A) sin(

i

X
i cos(9, + A) - cos(d)o))):l (5.33)

L))
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2

2
2 . 2 ;
_gést _ _4\’2}%[[2[,: ni"x‘sin(% + A)ﬁn(%(cos(% +A) -~ COS(%))H

+ [;cos(

[2 [ZTtioxi cos(¢, + A) sin(

2

nﬂoxi(cos(tbo +A)- cos(q)o)))] X

27

ﬁoxi(cos((])o + A)— cos(d)o))j] -

2[(@)21&(% +A) cos(znf i cos(p, +A) cos(q)o))j]ﬂ (5.34)

7 LY

From (5.33) and (5.34) the following can be observed:

Observation 5.4.1.a

When A = 0, &, is at a minimum since

d 4ym £ sin 2
945 = 0 and 9 Szas = (Mj PsSx2>0
dA lazo dA A=0 v -
Qaad
Observation 5.4.1.b
When ¢, = nm,n=0,1,2,.., since
2
ﬁz‘“ = 0 and E‘st =0

then A = 0 is a point of inflection.
Hence it is expected that the array’s perturbation noise performance degrades

relatively slowly with A in the vicinity of these look directions.,

g
Observation 5.4.1.c )
When ¢, = ng, n=173,5,.., EE"Z‘“ is at a maximum indicating that the array’s

perturbation noise performance will degrade most rapidly with A in the vicinity of

these look directions.

A0

Observation 5.4.1.d
When |A| is sufficiently small, such that cos(¢, + A) = cos(¢,) for any look
direction, the second order derivative of &, is proportional to Exf . Hence the rate

of change of aa—AE_,Z 45 Will be proportional to the size of the array ‘and the number of
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elements in the array. This indicates that for a given inter-element spacing the
perturbation noise will increase as the number of elements increases. Also, for a given
number of elements the perturbation noise will increase as the inter-element spacing

increases.

Qa0

5.4.2 Perturbation Noise with the Zeroth plus First Order Constraints

The difference in excess power due to perturbations about a nominal weight W when
the perturbation sequence is projected onto the zeroth order constraint plane and the
zeroth plus first order constraint plane is defined by

Ep = 2y2Tr((Py- PP R) (5.35)

where P, and P are the projection matrices for the zeroth order and first order

constraints respectively.

Substitating for P, and P; it can be shown that

A SSHA
&p = 2y°Tr| 2 ———2R (5.36)
7
i
The desired signal’s contribution to, & ,, the difference in excess power is defined by
SHEASSHALS
Epas = NPa o (5:37)
XX
i
On substitution for S, and §
C(2nf x;
(Soxsin( = (cos (0, + 8) - cos(9,))) )
Epds = 2V Pas| — > 5.38
X (5.38)

Consider now the derivatives of the difference in perturbation noise power &, with

respect to A to determine the characteristics for small look direction errors.

dA  ¥x? v
i

P

2nf x;

2nf x?
v

sin(¢, + A)cos( (cos(¢, +A) - cos(q)o))ﬂ (5.39)

L
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2
a_ngs _
JA

2 2

—4y2p,. 2nf x? 2nf
32 [—[E—U-—sm((bo+A)cos( o

"x"(cos((po +A) - cos(¢0))):|

f

2nf

oxi
—(cos(9,+4) - cos(q)o))):] x

+ [?xi sin(
2

[[221‘:{;3&' cos(¢, + A)cos(z—r—t—giﬁ(cos(% +A)- cos(q)o)))] +

i

[Ez-ln—lééﬁsinz(% + A)sin(znf oxi(cos(q)o +A) - cos(q)o)))ﬂﬂ (5.40)

I‘ U
From (5.39) and (5.40} the following can be observed:

Observation 5.4.2.a

When A = 0, ,,, is at a minimum since

2
aaDds d éDds 4Y7Tf0 Sin((ba) 2
_— = _— =|— 2 >0
L N O ioa A=0 ( v ) Pdsz;.x;
aaa
Observation 5.4.2.b
When ¢, = nm,n=0,1,2,..., since
2
a&-»Dds _ d &-'Dds _
- =0 and —= =0
JdA A=0 oA AcD

then A = O is a point of inflection.

Hence it is expected that the array’s perturbation noise reduction is minimal in the

vicinity of these look directions.

Qa0

Observation 5.4.2.c )

T d : , o
When ¢, = ni Aa=135.., ﬁ& Dds 15 at a maximum. Indicating that the rate at
which the array’s reduction in perturbation noise occurs, as A varies in the vicinity of

these look directions, is at a maximum.

Qo
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Observation 5.4.2.d

When A is sufficiently small, such that, cos(¢, + A) = cos(¢,) for any look direction
the second order derivative of &, ;. is proportional to Y, x? . Hence the rate of change
of —2Dd
A
the array. This indicates that for a given inter-element spacing the reduction in

i
* will be proportional to the size of the array and the number of elements in

perturbation noise will increase as the number of elements increases. Also, for a given
number of elements the reduction in perturbation noise will increase as the inter-

element spacing increases.

aan

When A is small the desired signal’s contribution to &, is approximately given by
(3 x;sin (27fx;sindsinA) )
X

For small |A|, which from simulations may be up to 5¢, the value of &, given by

(5.41)

é:=Dr;is = 2Y2pds

(5.41) will be relatively small and the projection of the perturbation sequence onto the

first order constraint plane may be unnecessary.

When the perturbation sequence is projected onto the zeroth plus first order constraint
planes, the excess power due to perturbations contributed by the desired signal 1s
given by

Sras = Szas—Epus (5.42)

It can be observed from (5.32) and (5.38) that the excess power due to signal’s from
the look direction is zero as the weights have been projected onto the zeroth order
constraint plane while the excess power due to the desired signal is related to the
desired signal’s power p,_, the angular deviation from the look direction A, and the
size of the array. Similar observations to those made for &, and &, can also be

made here:

Observation 5.4.2.¢

When A = 0, &, is at a minimum.

00
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Observation 5.4.2.f

Since 2@ = 0, when 9
AN SFds =0, T
oA Ao A |, _,

independent of the look direction. Hence it is expected that the array’s perturbation

= 0, A = 0 is at a point of inflection

noise performance will degrade relatively slowly with A in the vicinity of the look

direction.

g

Observation 5.4.2.g

When A is sufficiently small, such that cos(¢, + A) = cos(¢,) the second order
derivative of &, and &, are proportional to 3 x? . Hence the rate of change of
a%}'; rds 18 expected to be proportional to the size of the array and the number of
elements in the array. This indicates that for a given inter-element spacing the
perturbation noise will increase as the number of elements increases. Also for a given
number of elements the perturbation noise will increase as the inter-element spacing

increases.

Qa0

5.4.3 Perturbation Vector Size

In this section, issues related to the implementation of projected perturbation

sequences are examined.

As the effect of the projection operation is to reduce the norm of a vector, successive
projections of the perturbation vector onto the spatial derivative constraint planes will
decrease the size of the vector’s components. This has implications in realizing the
perturbation sequence, since in the presence of quantisation it will become
increasingly more difficult to represent the small components of the perturbation
vector since it will be necessary for the hardware weights to have a larger dynamic
range. Also, to avoid round off errors, a large perturbation step size Y may have to be

employed which in tum may affect the misadjustment level [47].

Another effect of a projection operation is that it may increase the number of
significant perturbation vector components. For example, in the case of the Time
Multiplex sequence the number of non zero components in each vector changes from

one to as many as L. Thus at the application of each weight perturbation, all weights
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in the array may need adjustment.

Considering a first order constraint system, the decrease in the size of the perturbation

vector after projection onto the first order derivative constraint plane is given by

: AgSSTAy
(Py—PyP)O(0) = —-———2—8(:) (5.43)
>
For a Time Multiplex sequence, the change in the size of the K component of the i
perturbation vector, normalised with respect to the component’s maximum possible

original size is given by onf
j [
AgSSHAy xxe

e S,
Az O
J

{x—x;)cos(9,)

VL) = >3 (5.44)
k J

Considering only the maximum change in the perturbation vector component which

occurswhen, i = k = lorLL

. L-1)?
V(‘Si(l))max = L/g ) L even (5.45)
8 (j-1/2)?
J
—_ 132
V(Si(i))max = %)2— L odd (5.46)
8 ¥ 2
J

Some typical values for the maximum change in the perturbation vector components

are shown in Table 1.

Table 1: Change in Perturbation Vector Component Size

no. elements | 3 4 5 6 7 8 9 10 20

V(8.(1)) 0504504 (036032 |[029 |[026 [024 [0.14
i max

From Table 1 it can be observed that when L is small the change in the size of the
perturbation vector components is quite high, the change decreases as L increases.
From these numbers it is expected that a large hardware dynamic range is required to
effectively implement the first order projected vectors for all the array sizes [49]. The
limitation in accurately representing a perturbation vector component occurs when a
component’s size or the change in the component’s size is too small to be represented

by a quantisation step.
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5.4.4 Array Directional Sensitivity

An array’s sensitivity to directional errors will determine whether it is necessary to
project the array’s weights onto spatial derivative planes. When an array is insensitive
to directional errors it is not necessary to project the perturbation sequence onto
spatial derivative constraint planes. Here we identify some simple scenarios for the

linear array which are insensitive to directional errors.

A gauge of an array’s sensitivity to directional errors can be gained by examining the
directional constraints and the range of the array’s weights. Considering the linear

array presented earlier, for a zeroth order constraint system the following is true

PALS = A4S (5.47)

where P is the projection matrix for the zeroth order constraint system.
The vector AyS lies in the zeroth order constraint subspace defined by

r={w: wis=0} (5.48)

Now, when the array operates with weights that are close to the optimum weight
vector W and the optimum weight vector is orthogonal to the constraint subspace
defined by I, the first order constraint defined by (5.14) is nearly always satisfied.
Accordingly in these scenarios the beam is either sufficiently wide in the look
direction or that the first order derivative constraint is limited in broadening the beam.
In either case, it is not necessary to project the weight vector or the perturbation
vector onto the first order derivative constraint plane. In the latter case the second
order derivative constraint would be more useful in broadening the beam and
suppressing the perturbation noise. The same result is expected when the optimum

weight vector is approximately orthogonal to the zeroth order constraint subspace.

Most of the scenarios where the first order constraints are automatically satisfied by
the weights in use are trivial but they do depend on the number of signals present and

the number of elements in the array. Some examples are shown below:

For a quarter wavelength linear array the first order constraint is always satisfied

when:
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Example 1. For any sized array and the look direction ¢, = a1 n=0,1,2,...

Example 2. For a 2-element array and
i) only the look direction signal is present
ii) the look direction signal and interference signal arrive from the
broadside direction

iii) interference signals arrive from the broadside direction.

Example 3. For a 3-element array with only the look direction signal present and the

look direction ¢, = an/2 n=0,1,2,....

Note that in general when an array has a limited number of degrees of freedom, such
as when the incident number of interference signals on the array is close to or equal to
the number of array elements, it is also possible for the array to be less sensitive to

directional errors since it is less capable of nulling signals close to the look direction.

5.5 Simulation Studies

Simulations were performed for a linear planar array with quarter wavelength inter-
element spacing. The perturbation noise response of the array was first examined.
Without loss of generality, the perturbation noise or the derivative of the perturbation

noise has been normalised with respectto p, and y.
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Figure 19 Perturbation Noise Response

Figure 19 shows the perturbation noise response for the following scenario:

a. 10-, 6- and 4-element array
b. perturbation sequence projected onto the zeroth plus first order constraint

plane
c. look direction fixed at ¢, = 55°.
From Figure 19 it can be observed that as the number of elements in the array

increases so too does the perturbation noise and the array’s perturbation noise
performance degrades. In all cases, as A varies away from the look direction, the
perturbation noise response degrades. It can also be observed, that in the vicinity of
the look direction, the smaller 4-element array has better perturbation noise
suppression and is able to null perturbation noise within 20 degrees of the look

direction. In all cases the beam width for perturbation noise suppression is significant

for a narrowband application.
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Figure 20 shows the perturbation noise response for the following scenario:

a. 10-clement array

b. perturbation sequence projected onto the zeroth order constraint plane and

the zeroth plus first order constraint plane

¢. look direction varies
From Figure 20 it can be observed that for either projection the array’s perturbation
noise response degrades slowly when the look direction is close to the end fire
direction, the degradation increasing as the look direction approaches broadside as
predicted. It can also be seen from the zeroth order projection that when the look
direction is close to the end fire direction the beam width for perturbation noise
suppression is sufficiently large for narrowband applications. For all look directions,
the beam width for perturbation noise suppression is significantly broadened when the
perturbation vectors are projected onto the zeroth plus first order constraint planes. In
all cases for a narrowband application it would be unnecessary to project the

perturbation vectors onto a higher order constraint plane than the first.
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Figure 21 shows the derivative of the perturbation noise response for the following
scenario:
a. 10-, 6- and 4-element array
b. perturbation sequence projected onto the zeroth order constraint plane and
the zeroth plus first order constraint plane
¢. look direction varies
Similar observations to those made for the previous figures can be made here:
1) with the zeroth plus first order projection the array’s perturbation noise
performance degrades slowly with A in the vicinity of the look direction. This
is clearly seen from the fact that A = 0 is a point of inflection, independent of
the look direction.
2) the larger arrays perturbation noise performance degrades more quickly with
A as A varies from the look direction.
3) as the look direction approaches the broadside direction the sensitivity of the

array’s perturbation noise performance to look direction errors increases.
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In Figure 22 for the scenario described in the figure, we show the optimum power
response of a 6 element array to a signal of unity power when zeroth, first and second
order constraints are used. In the figure “degrees” represents the direction of arrival (¢
as defined in Figure 1) of the unity signal. In the figure, one observes that particularly
away from the look direction, the power level increases as more spatial derivative
constraints are added. Hence a deficiency of using the spatial derivative constraints is

a possible increase in interference power and loss in array gain.
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5.6 Summary

It has been shown that to determine whether spatial derivative constraints should be
applied to perturbation vectors, the array’s perturbation noise response should be
examined. The performance gained with the use of the projected perturbation
sequences must generally be weighed against the additional complexity and cost
involved in implementing the sequences and this can only be done on a case by case

basis.

For the linear array under study, expressions for the perturbation noise response have
been developed. The expressions show that the perturbation noise in the desired signal
direction is a function of the desired signal’s offset from the look direction, the look
direction, the size of the array and the number of elements in the array. It has been
shown that for a small array, it was sufficient to project the perturbation sequence onto
the zeroth order constraint plane to suppress perturbation noise and only in the larger
arrays, depending on the look direction, it was necessary to project the perturbation

sequence onto the zeroth plus first order constraint planes.

Projection of the perturbation sequence onto spatial derivative constraint planes
higher than the first was not necessary as the beam width for perturbation noise
suppression gained by the use of the zeroth order constraint or the zeroth plus first
order constraint was sufficient for narrowband applications. Unlike the beam
broadening in signal reception, the effectiveness of the spatial derivative constraints in

suppressing perturbation noise is independent of the signal scenario.
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Chapter 6
Summary and Extensions

6.1 Summary

The work presented in this thesis has focused on quantifying the performance of
narrowband adaptive arrays that employ the projected perturbation technique. The
performance of the narrowband arrays have been analysed both under idealised
conditions and when practical implementation effects occur. The resulting analysis
provides mechanisms by which the projected perturbation technique can be assessed

against others.
In summary the contributions of this thesis are as follows:

. Identified the different approaches possible for extracting the required gradient

when using the projected perturbation approach.

. Under idealised conditions we have characterised the performance of the
projected perturbation approach by:
- deriving expressions for the gradient covariance
- determining the optimum perturbation step size
- analysing the transient performance of the weight covariance matrix

- determining the misadjustment.
. Introduced a new misadjustment analysis technique.

. Extended the system performance characterisation to include digital
implementation effects by:
-developing new expressions for the gradient covariance and the misadjustment
in the presence of weight quantisation
~determining the level of loss of performance due to weight quantisation and the

limited dynamic range of the array weights.

. Developed new expressions to quantify an array’s sensitivity to perturbation

noise. These expressions can be used to determine the benefit of using spatial
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derivative constraints in the projection operation to counteract directional

mismatch and to improve an array’s perturbation noise response.

. Presented simulation studies to verify the accuracy of the new expressions.

6.2 Extensions

There are a number of extensions to the work contained in this thesis, amongst these

are:

. Perform validation of the new performance measures on a practical system with
an emphasis on developing more accurate models for both signal scenarios and
implementation factors.

. Some of the performance measures are complicated, derivation of higher order
approximations to these measures would be useful.

. A number of important assumptions have been used in our modelling, for

example Assumption 3.3. To improve the accuracy of the performance measures

these models can be refined.
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Appendix A

This Appendix contains Lemmas and Theorems that are required in the derivation of

the results contained in this thesis.

Lemma A.1

Apin(A)Tr[BI<Tr(AB] <A,
VY (AeH)yandV (Be HY)

(A)Tr[B]

where A_. (A) and A

min max

a square matrix A

Proof of this Lemma can be found in [39].

Lemma A.2
a) Tr(AB) = Tr(BA) forevery matrix A and B
b) Tr(AXYH) = YHAX for any matrix A and vectors X and Y
A (A)Tr(AB)<Tr(ABA)<A,__{A)Tr(BA)
vV ((AB)e HY

min max

Proof of this Lemma can be found in [39].

Lemma A.3

(a.1)

(A) represents the minimum and maximum eigenvalues of

(a.2)
(a.3)

(a.4)

If {X(n)} is a complex gaussian process representing the narrowband signals as defined

in Chapter 2, [11], for any matrix A
E[X(n)XH(n)AX(n)X"(n)] = RAR+ Tr(RA)R
Derivation of (a.5)

(a.5)

Let A be represented by the product of two vectors such that A = CD¥  thenthe (i} ik

component of the expectant matrix can be represented as

E[X(m)XH(n)AX(m)XH(n)); ; = EI:Einxflc{dkaxf] Lk=12,.L

Ik

Taking the expectant operator inside the summation and re-arranging

= EECdeE[xix{kaxf]
ik

using the fourth order moment of complex gaussian variates [9], [11], {41].

= 3 e df {Elxxf1ELxxi] + ELx,x, JELxfIxH ] + E[x;x#1E[xfix, 1 }
ik

Al



= chzdf{RuRkj*Rinﬁ}
T &

>y adf R R+ R Ry}
1 k
Now, using (a.3) the expectant value of the first term in (a.5) can be written as

E[X(m)XH(n)AX(n)XH(n)] = RCDHR + RD¥RC = RAR + Tr(RA)R

Lemma A.4

Let V(W) denote the covariance of T for a given W that is

V(W) = E[TTH|W]-E[T|WIE[T?|W] (a.6)
where: T is a random vector given by

1 .
T = o= Y d(W)S(i) (a.7)

i=1

8(i) is a vector in the complex vector sequence $ given by

S = {8(1),8(2), ...8(m)} (a.8)
and d;(W) is a random process which has the property that

E[di(W)d}H(W)[W] = E[di(W)|W]E[de(W)|W] fori#j (a.9)
then

V(W) = Y—';WZ 2 {E[dl-dﬂW] —E[di|W]E[dﬂW]}S(i)ﬁH(i) (2.10)

i=1
Proof of this Lemma is given in [2].
This Lemma is used to determine the gradient covariance when a perturbation

approach 1s used to estimate the gradient.

Lemma A.5

Let (X) be an odd scalar function defined over the space of L dimensional complex
vectors. That is 7{X) = -r{-X) for any L x 1 complex column vector X. If the vector

sequence S as defined by (a.8) has odd symmetry, then

m

Y r(8()8(1)8H () = 0 (a.11)
i=1

The proof of this Lemma can be found in [6].

A2



Lemma A.6

If the sequence S as given by (a.8) is the odd symmetry Time Multiplex sequence of

length 4L, then for any complex L x 1 column vector H

2) % i 8()8H (i) = 21, (a.12)
i=1
b) ﬁ i SH()RS(i)5(i)8H (i) = Diag(R) (@.13)
i=1
5 % i HUS(i)8% (i) H(i)84 (i) = Diag(HHH) (a.14)
o
d)——— 2 [HHS(i) + 87 (HH28()8H (i) = 2Diag(HHH) (a.15)
i=1
o) n%Z i [8H(i)RO(H)128(i)8H (i) = 2L(DiagR)? (a.16)

i=1
If the sequence S is a minimum length Time Multiplex sequence of length 2L then for

any complex L X 1 column vector I

n- f; 8(i)8H (i) = 21,, @17)
i=1
2) n% i §H(iYR8(:)5(i)3H (i) = 2Diag(R) (@.18)
i=1
h) # i HYS(i)8H (1) HB(i)8" (i) = 2Diag(HHH) (@.19)
i=1
i n% i [H5(i) + 8/ (i) H128(i)8M (i) = 4Diag(HHM) (2.20)
i=1
i iz 2 [8H())R6(i)126(1)8H (i) = 4L(DiagR)? @21)

Proofs of (a.12) to (a.16) can be found in [6], [39].

Derivation of Lemma A.6 f) to j).

For the purpose of the summation in Lemma A.6 (f) to (j) the Time Multiplex
sequence, S = {8(1),8(2)..., 6(2L)}, can be broken into two sequences @, such
that @, = {n, (1), n,(2), ..., n (L)} =12 (a.22)
Where n,(i) = 8(2i—1) and n,(i) = 6(2L + 2i— 1) then ny(i) = jn,(i)
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Derivation of (a.17)

Using (a.22) in the first term of (a.17) and expanding

2L L L L
’ln 3 8()8" (i) = % 3 ny(nli(i) + ’% S ny(iymbi(i) = % Y ny(nf(i) @23)

i=1 i=1 i=1 i=1

by using the orthogonality properties of the Time Multiplex sequence as defined by
(2.31) - (2.34) it can be shown that (a.23) is equal to 21,

Derivation of (a.18)

Using (a.22) in the first term of (a.18) and expanding
2L

L
# Y 8H()RS(i)8(i)8H(i) = n% >, nf (DR (Dn (Dnfl(i)

i=1 i=1
L

+ miz S n () Ruy(n,(i)nd (i)

i=1

L
= n% 3 nli(i)Re, ()n, ()n (i) (2.24)
i=1

by using the orthogonality properties of the Time Multiplex sequence as defined by
(2.31) - (2.34) it can be shown that (a.24) is equal to 2Diag(R)

Derivation of (a.19)

Using (a.22) in the first term of (a.19) and expanding

2L L
-3 X HISOSIOHS0ING) = 5 3 Hlimy (i Hm, (Dl ()

i=1 i1

; L
t— N HEny(iyn§(i)Hn, ()bl (i)
i=1
5 L
=3 N Hin (nf{l(i)Hn (i)nfl (i) (a.25)

i=1

by using the orthogonality properties of the Time Multiplex sequence as defined by
(2.31) - (2.34) it can be shown that (a.25) is equal to 2Diag(HHH)
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Derivation of (a.20)

Using (a.22) in the first term of (a.20) and expanding
2L
n%z Y [HHS(i) + 81(i)H)?8(i)8H (i)
i=1
L L
- Y [Hn (i) + n{l(i)YH*n, (Hn{l()
i=1
L L
+— Z [H n,(i) + nﬁ’(i)leng(i)ﬂg(i)
i
Lk
= — 3, [(HAny (i) + nf (VHD?~(HP ', (3) = nfl () H)? Iy (1)1 (0)

i=1
L

= 5 X H"n @ (OHn (D)
i=1

- ;-35(2L)2Dia g(HHM) using (a.19)

4Diag(HHH) (a.26)

Derivation of (a.21)

Using (a.22) in the first term of (a.21) and expanding

2L L
’_# 2 [87(DHRS(1)128(i)SH (i) = n%z 2 [ (i)Rn(i))%n(D)nll()
i=1 i=1
[ L
+ =5 3, I (DRay()) Py ()nf ()
i=1
, L
= =3 nfl (ORn ()P, (Dnfl ()
i=1
= 4L(Diag(R))? (a.27)
Lemma A.7

Let H(Y) be a bounded linear function which maps an L dimensional vector ¥ into a

=]

L x L hermitian matrix. If the sequence {¥(n}} satisfies 2 [|¥(n)|| € e then

= n=1
3 |H (Y ()] < oo Proof [39].

n=1
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Lemma A.8

If a sequence S satisfies the conditions of orthogonality as defined by (2.31) - (2.34) for

any L x 1 column vector H

$ 3 8(i){8" (i + H'8(i)} = 2H
i=1

Lemma A.9

Let X be a random complex L x 1 vector with £[X] = p and the covariance of X

defined by V(X) = {.Let A be an L x L matrix, then
EIX"AX1 = Tr(AD +p"Ap

Proof

E[X"AX] = E[Tr(X"AX)] = E[Tr(AXX™)]
= TrE[AXX"])
= Tr(A(E[XX")))
= Tr(A(C+pp™))
= Tr(AL) + 1w Ap

Theorem A.1

Let the set of difference equations
L

D(n+1) = o;Dy(n) + Bi[ﬁ,(n) +y Dl(n)} +C(n) i=1,2,..L
I=1
be such that
lim E(n) = &
lim C,(n) = 0

ID,(0)] < oo

and all the eigenvalues of the system, (2.28), are real and positive.

If |0y + Bas] <1

max

and
L L L

[Ta+s-o)- Y pJj1+8-0)>0V (§20)

i=1 i=1 [1#i

Ab

(a.28)

(a.29)
(a.30)
@.31)
(a.32)

(a.33)

(a.34)



L

then n]i_‘)nm 2 Din) exists and is given by
i=1

L
5 B
L & Z 1-ot.
lim 3 Dy(n) = —-*-=L1—B’ (.35)
i=1 1— Z - _lai

-
where O,y @nd By are maximum of o and P, i=1,2,...L respectively. Proof [40].

This theorem is used in the Direct misadjustment analysis.

Theorem A.2

Let {B(n), n=0,1,2...} be a sequence of matrices such that

B(0) € H',Tr[B(0)] <eo (a.36)
B(n+1) = G(B(n))+Z(n)+0Q (a.37)
where G{A) is a linear function of A. If

i)G(A) e H'V A e HY (a.38)
it) Tr(G(A)<SPTr(A) V A€ H,0<B<1 (a.39)
i) Zin)e HV n (2.40)
iv) Y, 1Z(m)ll <o (241)
v)Qn El H | (a42)
Then 3 g < oo determined only by @ and G{.} such that

nlimlgler(B(n)) =gq (a.43)

Proof [39]. This Theorem is used in the Bounds misadjustment analysis.

Theorem A.3

If two hermitian matrices do not commute then they cannot be simultaneously
transformed into the diagonal form by means of a unitary transformation.

Proof [39].
Theorem A.4

Let A, B, C, D be complex gaussian random L X 1 vectors, representing narrowband

signals as defined in Chapter 2, which pairwise have the properties defined in [11].

AT



Then
E[A"BC"D] = Tr(RzRp,) + Tr(Rp ) Tr(Rpe)

where Ry, = E[XY"]
This can be proved by using the result in [9] which states that for any U,V,X,Y complex
gaussian random L X 1 vectors with the properties as defined in [9] then

eiovixy™) = eovhHexy? + e uyHEVTX)

AB



Appendix B

This Appendix contains the derivation of the gradient covariance results and
intermediate results for the Direct misadjustment analysis contained in Chapter 3.
Throughout this and other appendices to simplify the notation expressions such as
W(n), X(1+i) and E[G(W)|W] may be abbreviated to W, X and E[G(W)]

respectively. Where this occurs it is assumed that the reduced notation is obvious.

The conditional covariance of the gradient estimate is defined as

Vo(W) = E[G(W)GH(W)|W]—E{G(W)|W]E[GH(W)|W] (b.1)
Derivation of Result 3.2.a.
By setting 4,(W) = (fl(wp’ ) ;fz(Wm’ ) in (a.7) one obtains T = G (W(n)).

By assumption {X(i)} is a sequence of independent random vectors and this implies

that (a.9) is satisfied. Applying LLemma A .4 gives

VW) = s TAELS 1= (1= 2 W] -

i=1

EL(f1 - fD|WRIEL(f, —fz)H|W(n)] 18,()8 (1) (b.2)
We now evaluate the individual terms on the right hand side of (b.2}

Note that (f;—f5) = (f1—S2)¥ = Wff(W, i)X(l+i)XH(l+i)Wp(W, iy (b.3)
~WHW, DX+ DX+ W, (W, 1)
substituting the expressions for the weights defined by (2.38) and (2.39) in (b.3) gives
(f1—f2) = WHXXHW + WHXXHYS +76§XXHW +~{28§XXHSP
—(WHXXHW — WHXXH}'SP—yﬁfXXHW+~{25§XXHSP)
= 2(WHXXHyS , +ySFXXHW) (b.4)
using (b.4), the first term in (b.2) is given by

(fl—fz)(f1—f2)H = (fl—fz)z
= 4[(WHXXH'\{5p)2+(YS?XXHW)2+ZYZ(WHXXHSPSEXXHW)] (b.5)

Taking the conditional expectation, with respect to X, of the individual terms on the
right hand side of (b.5), given W, and using Lemma A.3 and Lemma A.2 (b), one

obtains
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4E[WHXXH75PWHXXH76P|W(n)] = 4WH(R\!8PWHR+ WHRyﬁpR)yﬁp
= 8‘{53(1/’1”7FR§P)2 (b.6)
4E[78§XXHWY6£IXXHW|W(n)] = SYZ(E‘BJ;IRW)2 (b.7)
872E[WHXXH5p8fXXHW|W(n)] = 8y2[WH(R8p6fR+ SERSPR)W]
= SYZ(WHRSPS;IRW + B;IRSPWHRW) (b.8)
The second term of (b.2) can be evaluated as

EL(fy - f)|WHIEL(S - fz)H[W(n)]
4[(WHRYS , + y6fRW)(WHRy8P + ySfRW)}

1

4112[(WHRBP)2 + Z(WHRSP)(SERW) + (-SfRW)z] (b.9)
substituting (b.6) to (b.9) into (b.2) gives
Vg, (W(n)) = # T [(WHRS (i))? + (3H(i)RW)?

i=]

+2(WHRW)(87 ()RS (1)) 18 ,()8H(i)  (b.10)

This establishes the result.

Derivation of Result 3.2.b.
By setting d,(W) = (f (W, 1) — f,(W, 1)) in (a.7) one obtains T = G,(W(n)).
By assumption {X(i)} is a sequence of independent random vectors and this implies

that (2.9) is satisfied. Applying Lemma A .4 gives

Ve (W(n)) = Y%mz 3 EI(f,~ F)(fy~ F)H| W) -

i=1
EL(f1-f)|WEIEL(Sf, - fz)H| W(m)11}8 ()8 (i)
(b.11)

we now evaluate the individual terms on the right hand side of (b.11). Considering the

first term

EL(f1 - £)(f1 - F)H|W(m)]
= E[(WIXXTW,~ W(n)XX"W(n))]

= E[(WfXXHWP)Z +(WH(n)XXHW (n))2 - 2WEXXHW WH(n)XXHW(n)]
(b.12)
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using Lemmas A.3 and A.2 (b) the expectant values of the right hand side of (b.12)

with respect to X can be evaluated separately as follows
H = H
E[W;’XXHWPW}'}'XX WP|W(n)] = W?[RWPW;IR +WIRW RIW

= Z(WI{;’RWI,})2 (b.13)

E[(WH(n)XXHW(n))?|W(n)] = 2(WH(m)RW(n))? (b.14)

—2E[W;1XXHWPWH(n)XXHW(n) | W(n)]

2WHRW , WH(m)R + WH(n)RW R]W(n)

1l

—2[(WHIRW )(WH(n)RW(n)) + (WH(n)RW }(WHRW (n))] (b.15)
The second term on the right hand side of (b.11) can be evaluated as
E[(f1~f)|WENEL(fy - f)H|W(m)]

= (WHRW - WH(m)RW (n))(WHRW ,—- WH(n)RW (n))

= (WJRW ,)* - 2WHIRW WH(n)RW(n) + (WH(n)RW(n))? (b.16)

summing (b.13) to (b.15) and subtracting (b.16) gives
(WHRW )2 + (WH(n)RW(n))? - 2(WIRW )(WH(n)RW (n))

+ 2(WHRW )Y(WH(m)RW (n)) - 2(WH(m)RW Y(WHRW(n)) (b.17)

substituting the expressions for the weights W, (2.43), and re-arranging
(WH(J»:)RWSP)2 + (Sﬁj;i'yRW(n))2 + (foW{zRESP)2 + EYZ(WH(n)RW(n))(SfRSP)

+2[(WH(n)Ry8,)(y28HRS ) + (YSHRW(m)(y281R3,)]  (b.18)

substituting (b.18) into (b.11) gives

2 m
Var(Wm) = 553 (3H()RS,(1))5,(0)8, ()

u m
+ BRI S SRS ,(0)8,(D8()
i=1

+n1 [(WH(m)RS (i))? + (85 ()RW (n))2]8 ,(i)8H (i)

3

[(WH(n)RS ,())(8,/()R3 (1))

l
m
1

i

(SEHRW(m)BHRS,()]8,(HH(D)  ©.19)

Assuming the sequence has odd symmetry, using Lemma A.5, the last term in (b.19)
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sums to zero.
The gradient covariance is thus defined as

Ve (W(n)) = Y2D +E

where D = # S (BH(1)RS (1)) ()8 (i)
i=1
and

2WH(mRW (1) 2 (Sg(i)Rﬁp(i))Sp(i)Sg(i)

i=1

E =
2

+ n% E [(""”{(H)Rﬁp(i))2 + (Sg(i)RW(n))z]Sp(i)ﬁf(i)
i=1
This establishes the result.

Derivation of Result 3.2.c.
By setting d;(W) = f(W i) in (a.7) one obtains T = G,(W(n)).
By assumption {X(i)} is a sequence of independent random vectors which implies
that (a.9) is satisfied. Applying Lemma A .4 gives
Vo3 (W(n) = Yz—fmzz {ELf, £H|W(m)]
i=1

~ELff|WIELS | W(m)]}8,()8](0) (b.20)
considering the first term of (b.20)
ELf1fH|W ()] = E[((W(n) +Y8,(NHX I+ )X (1 +D)(W(n) +18,(i))’]

(b.21)

taking expectation with respect to X and applying LLemma A.3 this becomes

ELf fH|W(n)] = 20(W () + 18 (D) R(W(n) +78 (i) 12 (b22)

The second term of (b.20) can be evaluated as
E[f{|WmIELf[W(m)] = [(W(n) +78,(i))"R(W(n) + Y8, ()12 (b.23)
substituting (b.22) and (b 23) into (b.20) gives

Vga(W(n)) = —-lm— 2 [(W(n) +78 () TR(W(n) +Y8,(1)) 128 ()8 (i)

- y%mz 3, (WHmRW (1))?8,,(i)8H (i)
i=1
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+ ,ﬁ Y, (WH(n)RS (i) + 8 ()HRW (n))?8(1)8]/ (i)

i=1

2 m

+ 15 3 (BHG)RS,(1))28,()3]/ (1)

i=1
+ \%2 Z (WH(n)RW(n))(WH(n)RSP(i) + Sf(i)RW(n))ﬁp(z’)ﬁf(i)

i=1

+ % 2 WH(n)RW(n)Sg(i)RSP(i)SP(i)ﬁg(i)

i=1

+ % Z (WH(n)RSP(i) + Sg(i)RW(n))Sg(i)RSP(i)Sp(i)ﬁg(i)
P=1 (b.24)

Assuming the sequence has odd symmetry, using Lemma A.5, the 4™ and the 6"

terms of (b.24) sum to zero. The gradient covariance can thus be defined as

1

where

A= n% S [H(i)RS ,(i)128 (1)8H(i)

i=1

H 2 2
g=W (ﬂanzw(")) E 8,(1)31 (i)
i=1
C = #2 [WH(n)RS (i) + 87 ())RW (n)125 ()81 (i)

i=1

u m
.\ IW (;25“’(!1) Z sg(i)Rﬁp(i)Sp(f)Sg(i)
i=1

This establishes the result.

Derivation of Result 3.2.8.

From the definition of the covariance in Lemma A.4 it can be observed that the power
term, d;,(W), in (a.7) and the expectant terms in (a.10) are independent of the
complex vector sequence S. This indicates, that in the gradient estimation process,
when correlation of the output power sequence is performed with another vector

sequence, the gradient covariance results established for the projected perturbation

B.5



approach can be easily modified for the hybrid perturbation analysis. This is done by
replacing the last vector product in the generic gradient covariance expressions,

Sp(i)ﬁg(i) , with the new correlation sequence & _, (i)8H (i).

For example, for the dual receiver dual perturbation system with the hybrid
perturbation approach, the gradient covariance is obtained by replacing the last vector

product 8 ()85 (i) in (3.1) with 8(i)8%(i). (3.12) is thus obtained.

In this case, and for all receiver structures under study, it can be observed that the
gradient covariance expression for the projected perturbation approach is equivalent
to pre and post multiplying the gradient covariance expression, for the hybrid

perturbation approach, by the projection matrix.

Similarly for the dual receiver with reference receiver and single receiver system

when an odd symmetry sequence is used the following are obtained:

Gradient Covariance of Dual Receiver Reference Receiver System using the Hybrid

Perturbation Approach
Vg (W(n)) = y?’D+E (b.25)
where
| « . ISy N SH
D = — Y, (BHEHRS (1))?8()3H (i) (b.26)
i=1
and

H n
g =2V (’;zZRW(”) 3 (SH()RS ,(i))5(1)84 (i)

i=1

+ ,,% 3 [(WHmRS ,(i))? + (SH(HRW(n)118(:)8H (i) (b.27)
i=1

Gradient Covariance of Single Receiver System using the Hybrid Perturbation Approach
Ve (W(n) = YA+ B+ C (b.28)
Y

where

A = #2 [8H(i)RS ,(i)]28(i)84 (i)
i=1

_ (WH()RW(n))? i 8(1)5H(i)

i=1

me
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C = miz Y IWH(n)RS (i) + SHHRW (n)128(:) 89 (i)
i=1

.\ zwﬂ(n)i{W(n) Y, 8H(i)RS ()8(i)8H (i) (b29)

m .
i=1

Derivation of Result 3.2.d.
Examining the first two terms of (b.10) and substituting the expression for the
projected sequence, (2.67), gives

Y, [(WHRS (i))* + (8H(i))RW)?]

i=1

= Py [WHRPS(i) + 8 ())PRWI23(i)8H (i)P
i=1

2P Y WHRPS(i)3" (i))PRWS(i)3H(HP  (b.30)
i=1

using (a.14) and (a.15) shows (b.30) is equal to zero.

Considering the last term of (b.10) and making the substituting for the projected
perturbation sequence, (2.67) gives
Ve (Wn)) = 22 2 2(WHRW)(SH(HPRPS(i))8 ()84 ()P

H

i=1

using (a.13)

Ve (W(n) = 2WH(n)RW(n)PDiag(PRP)P
This establishes (3.8). By similar application of the Lemmas for the 2L length Time

Multiplex sequence, (3.9) can be proved.

Derivation of Result 3.2.e.
The expressions for matrices D and E are evaluated separately for a 4L length Time
Multiplex sequence. Substituting for the projected perturbation sequence, (2.67), into
(3.3) matrix D is given by

m
D = r% Z (S (HPRPI(i)25()8H ()P (b.31)

i=1
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using (a.16) gives

D = 2LP(Diag(PRP))’P (b.32)

Examining the expression for matrix E, (3.4} it can be observed that as in the

derivation of Resulr 3.2.d. the last term sums to zero. Thus matrix E is equivalent to

E = ZWH(’:]:ZRW(”)PEE (SH(i)PRPS(1))8(1)3H ()P (633)
applying (2.13) -

E = 2WH(n)RW(n)P(Diag(PRP))P (b:34)
using (b.34) and (b:32) the gradient covariance is equivalent to

Ve, (W(n)) = 2y2LP(Diag(PRP))2P + 2WH (n)RW (n)P(Diag(PRP))P (b35)

This establishes the result.

Derivation of Result 3.2.f.
The expressions for matrices A, B and C (3.6) are evaluated separately for a 4L length
Time Multiplex sequence.

Substituting for the projected perturbation sequence, (2.67), in A and applying (a.16)

A = 1P Y [87()PRPS(i)125(i)54(i)P = 2LP(Diag(PRP))?P (b.36)
m
i=1

substituting for the projected perturbation sequence, (2.67), in B and applying (a.12)

W (n)RW(n))?

(WH(mRW(m))*,,
me

P 8(i)8H(i) = 5T

i=1

B=(

(b.37)

Similarly for matrix C

C = —1-511 Y [WH(n)RP3(i) + 8% (i)PRW (n)]28(i)87 ()P
m

i=1

. 2WH(n)2RW(n)p 3 8H(i)PRPS(i)3(i)8H ()P

i
i=1
applying (a.15) and (a.13)

C = 2PDiag(PRW(n)WH(n)RP)P + 2WH(n)RW(n)PDiag(PRP)P  (b.38)

substituting (b.36), (b.37) and (b.38) into (3.5) gives (3.11).
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Derivation of (3.15), (3.16) and (3.18)

Applying Assumption 3.3 in (3.11) gives
_ p(Y22Tr(PRP))* (WH(n)RW(n))?
Vea(Winy) = p(L2IHERDE e

WH(n)RW (n)Tr(PRP)
L

+2Diag(PRW(n)WH(n)RP) + 2 )P (b.39)

Taking the derivative of (b.39) with respect to ¥ and setting it equal to zero and re-
arranging

10 . 4(Tr(PRP))2
gt (WHRW (n)2

which implies

N _ TWH@RWm? .
Y(W(n)) —I: 57r(PRP) } this is (3.15).

Substituting (3.17) into (3.11) and using Assumption 3.3 gives
£ q H
Ves(W(n)) = l)[Czi'"r(PRP)W (n)RW(n) + WH(n)RW (n)Tr(PRP)
L 2L
WH(n)RW (n)Tr(PRP)
L

+2Diag(PRW(n)WH(n)RP) + 2

)P (b.40)

re-arranging

VGa(W(n)) = 2P[(Diag(PRW(n)WH(n)RP))
+aWH(n)RW(n)Diag(PRP)1P (b.41)

2
(b.41)is (3.18),and a = (c + %) . (3.16) can be obtained by substituting ¢ = 1 in
(b.41).
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DIRECT MISADJUSTMENT ANALYSIS INTERMEDIATE RESULTS
Derivation of Result 3.4.c.
Substituting (3.30) into (3.33) and using
E[WHRW] = Tr[RRyy(n)]
= Tr[R(Kyy + WWH)]
Tr(AX(n)) + WHRW

the following matrix difference equation is obtained

(n+1) = Z(n) - 2pAZ(n) - 2uE(n)A + 4p2AZ(m)A

+ %u2Tr(PRP)Tr(RRWW(n))F

= (I, - 4pA + 4u2A2E(n) + Wk, ()T (b.42)
where
ky(n) = %Tr(PRP)Tr(AZ(n))+%Tr(PRP)WH(n)RW(n) (b.43)

letting 8, denote the L X 1 dimensional vector of eigenvalues of P

n;(n) denote the L x 1 dimensional vector of eigenvalues of Kyw(n)

A denote the L x 1 dimensional vector of eigenvalues of PRP
then Tr(AZ(n)) = Aln,(n) (b.44)
thus (b.42) reduces to

nn+l) = (ILL —4PA + AUZAZ + uz%Tr(PRP)Sl?xT)nl(n)

+u2%Tr(PRP)k0(n)51 (b.45)

where

k,(n) = WH(n)RW(n) (b.46)
Tn all cases considered in the thesis, under suitable conditions, lim W(n) = W.Thus

n—yoo

lim k (n) = WHRW (b.47)
H—p o
defining
H, = 4pA -~ 4uZA? - %Tr(PRP)uzé')l?&T (b.48)

(b.45) has a solution defined by
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L
n(n) =, -H;)m (0)+ MZ%TY‘(PRP) 2 k,(n— i)(ILL—Hl)i_ 151 (b.49)
i=1

where n1(0) denotes the eigenvalues of Kyyy,(0). The weight covariance matrix is thus

defined by

L
Kyw(n) = Y n,(m)Q,0f (b.50)

=1

where @, I=1,2,...L are the eigenvectors of PRP. This completes the derivation. A

similar analysis can also be performed for the 2L length sequence.

Derivation of Result 3.4.d.
Substituting (3.31) into (3.33) the following matrix difference equation is obtained

S(n+1) = (I, - 4uA +4p2A2)E(n) + pky(m)T (b.51)

where

ky(n) = %yz(Tr(PRP))z+%Tr(PRP)Tr(AE(n))
+%Tr(PRP)V_VH(n)RW(n) (6.52)

letting n5(n) represent the L x 1 dimensional vector of eigenvalues for Kyww(n), the

following vector difference equation can be derived
ny(n+1) = (ILL —4uA +4pcA + uz%Tr(PRP)Sl}\,T]nz(n)
+ uz%Tr(PRP)ko(n)ﬁl + uzyz%(Tr(PRP))ZEil (b.53)

(b.53) has a solution defined by
L
+ ;J.?%Tr(PRP) 2 (k,(n—1)+ v2Tr(PRP))(I,, — H )"~ 18, (b.54)
i=1
It follows that the weight covariance matrix is given by

L
Kyw(n) = Y ny(n)Q,0f (b.55)

=1

where n,(0) is the vector of eigenvalues of Ky, (0) and Q;1=1,2,...L are the
eigenvectors of PRP. This completes the derivation.




Generating a Reduced Set of Difference Equations
The difference equations (b.45) and (b.53) each represent a set of L difference

equations. These equations can be reduced to a set of L-] difference equations since
one of the components in each of the vectors is identical to zero. A component
corresponds to the zero due to the rank deficiency of P. As there is a zero eigenvalue in

P there are corresponding zero eigenvalues in PRP and Ky (n) , [40].

Letting the i component of each of the difference equations correspond to the zero

cigenvalue and @ the corresponding eigenvector then, n;{n) = ny{n) = 0.

Thus each of the difference equations can be reduced to a set of L-1 difference
equations. Defining the L-1 dimensional vectors A',d",n';(n) and a'5(n) such that the

i component is defined by

(b.56)

(),  i=12....l-1
); = {

()4 =LI+1..L-1

where (.)' denotes the (. — 1) x | dimensional vectors A',8",n';(n) and n',(n) and
(.) denotes the corresponding L x 1 dimensional vector. The (L—1)x (L -1)
dimensional matrix H', can similarly be defined by dropping the zero column and zero

row from H;.

Note that these set of equations correspond to a constraint matrix having a single linear

constraint.
Applying (b.56) to (b.45), (b.48) and (b.53) the reduced set of equations are
H'| = 4pA'— 4p2A2 —%Tr(PRP)uzﬁ'l)UT (b.57)

n(n+1)

(- H )n' (n) + uz%Tr(PRP)ko(n)S'l (b.58)

n'h(n+1)

(I H')n'y(n) + uz%Tr(PRP)ko(n)S'l

+ uzyz%(Tr(PRP))zﬁ'l (b.59)
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Derivation of Result 3.4.g.

Let an (L — 1) x 1 dimensional vector be defined as

D (n) = A'n'|(n) (b.60)
where n',(n) is defined by (b.58) and A’ is the diagonal matrix of the L-1 non zero

eigenvalues.of PRP. It follows from (b.57) and (b.58) that

D,(n+1) = (I _4PAT+4Ap2A? + uz%Tr(PRP)A'é?eT)DI(n)

+ u2%Tr(PRP)A'éko(n) (b.61)

where 2 is a column vectors of 1’s and k (n) is defined by (b.46)
The difference equation of the i component of D ; can be obtained from (b.61) as
L-1
D .(n+1) = (1 —4uA, +4u2AH)D 2 PRP)u2A |k D
1i = (1 -4pA; +4urf) 1;‘(”)+ET"( WALk (n) + 2 1(n)
=1 w62)

where A; represents the i vector component of A.

With
o = L—4pi, +4p2a? (b.63)
B, = FTr(PRP)2, (b.64)
E(n) = k,(n) = WH(n)RW(n) (b.65)
and
Cin) =0 (b.66)

(b.62) is similar to (a.28) and Theorem A.1 can be applied. The convergence criteria

(a.29)-(a.34) as established in this theorem are now examined.

Since lim W(n) = W (b.67)
H—>co
it follows from (b.65), lim &(n) = £, = WHRW (b.68)
n—>co

which is (2.29). (b.66) implies (a.30).
Since Ky (0) =0, it implies that D;,{0)=0 which satisfies (a.31).
All the eigenvalues of this system are positive since (b.61) is propagated by a

symmetric, positive definite transition matrix for all values of n. This satisfies (a.32).
Condition (a.33) requires
0<at,,, + B, <] (b.69)

=0<1-4pA

max

2
+4u22, 0+ ZTr(PRP)A,, 0, < 1 (b.70)
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1

Tr(PRP)
Momax* 3L

(b.71) is the first term of (3.46), and satisfies (a.33).

=0<u< (b.71)

Substituting for o; and B, , condition (a.34) requires
L-1

[T 13 +4pr(1—pr)
i=1
L- 1 L-1

— Z Tr(PRP)l W2 TT 18 + 4ur (1 - pA)I >0V(820) (b.72)
I= l [#i
any p which satisfies (b.71) will also satisfy
L-1
[T 08+4ur(1-pAr)1>0v(820) (b.73)
i=1
substituting (b.73) into (b.72)
L—l2 L-1 L-1
= zTr(PRP)?»iuz T8+ 4pr(1—prpl< JT I8 +4pA,(1-pui)]

i=1 1#1 i=1

L-1 —Tr(PRP)llp,

2 §+ AL - i) < (6.74)
L, WIr(PRP)
=Y 2L <1 Y(820) (b.75)

i=1m+(1—uli)

which is satisfied if

p,Tr(PRP) 2 1 _IML (5.76)

(b.76) is the second term of (3.46) and satisfies (a.34).

L-1

Thus the lim 2 D, (n) exists and is given by (a.35). From (b.63) - (b.65), if (b.71)
n— oo

i =1
and (b.76) are Isatisﬁeci

L-1
. B; nw RWTr(PRP) 1
L-1 é 2 _ai Z 1- l.lk
lim Y D(n) = —= = (b.77)
n—s oo L-1 B'
= -y uTr(PRP) 2 1
=
It also follows from (3.45) and (b.60) and the fact that A; = lmin = 0 that
L-1
lim Y D (n)=ATd(n) (6.78)
H—> oo

i=1
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Hence lim A7d(n) converges and is given by (b.77).

H—> o0

Using (3.44) and (b.77) gives (3.47). This establishes the result.

Derivation of (3.39) -1
the existence of lim Z D, ,(n),0 <A;<<Vi and (b.60) imply that

n—3e0
i=1

lim n';(n) exists. Assuming the conditions for convergence hold it follows that
n— oo

lim n';(n) = MZ%Tr(PRP)WHRWH'flﬁ'l (b.79)

n -} oo
Substituting for the inverse of H'y! in the above gives the converged values for the

eigenvalues of Kyyw(n) which 1s (3.39)

Derivation of Resuit 3.4.h.
Let an (L — 1) x 1 dimensional vector be defined as

D,(n) = A'n's(n) (b.80)

where n',(n) is defined by (b.59) and A' is the diagonal matrix of the L-1 non zero
cigenvalues of PRP. It follows from (b.57) and (b.59) that

Dy(n+1) = (1 _4pA' +4u2A7 + uz%rr(PRP)A'éé )Dz(n)
+ uz%Tr(PRP)(ko(n) +y?Tr(PRP)A'2 (b.81)
where 2 is a column vectors of 1's and k,(n) is defined by (b.46)
The difference equation of the i component of 1), can be obtained from (b.81) as
Dy (n+1) = (1-4pd; +4u2A2)D,.(n)
L-1

+ %Tr(PRP)pLzli[ko(n) +y2Tr(PRP) + ¥ Dzl(n)] (b.82)
=1

With
o, = 1 —dph; +4p2A?2 (b.83)
B; = %Tr(PRP)MZ?»i (b.84)
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E(n) = k,(n) = WH(n)RW(n) + y2Tr(PRP) (b.85)
Ci(n) =0 (b.86)

(b.82) is similar to (a.28) and Theorem A.1 can be applied. The convergence criteria

(a.29)-(a.34) as established in this theorem are now examined.

Since lim W(n) = W (b.87)
n—r o
it follows from (b.85) that lim §(n) = £, = WYRW +y2Tr(PRP) (b.88)
H— oo

which is (a.29). (b.86) implies (a.30).
Since Ky (0) = 0, it implies that D5,(0)=0 which satisfies (a.31).

All the eigenvalues of this system are positive since (b.81) is propagated by a

symmetric, positive definite transition matrix for all values of . This satisfies (a.32).

Condition (a.33) and (a.34) are the same as for the dual receiver dual perturbation
case shown previously and are not repeated here.

Since all the conditions of Theorem A.1 are satisfied it follows that
L-1
llm Z D, (n) exists and is given by (a.35). Hence from (b.83) to (b.88), if (b.71)
1 =1
and (b.76) are satisfied

oo v uTr(PRP) 1

L [WHRW +v2Tr(PRP)] 2 =y
lim Y Dy(n) = (b.89)
n—eo = . uTr(PRP) 2 1

1 - pa,

It follows from (3.45) and (b.80) and the fact that ?\. 1 =A,;, = 0 that

L-1
lim 2 D, (ny=A"d(n) (b.90)
n—oo

i=1

Hence lim ATd(n) converges and is given by (b.89). (3.50) follows from (b.89) and

n—yoeo

(3.44). This establishes the result.

Derivation of (3.40) -1
The existence of lim Z D, (n),0 <A; <eoVi and (b.80) imply that hm n's(n)

n—r e =1
exists. i
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Assuming that these conditions hold it follows that:

lim n'y(n) = MZ%Tr(PRP)(WHRW+72Tr(PRP))H';16’1 (b.91)

n—w
Substituting for the inverse of H'7! in the above gives the converged values for the

eigenvalues of Kyw(n) which is (3.40).

Derivation of Result 3.4.i.

In the first instance the single receiver analysis is handled differently from the dual
receiver analysis’ since it is not possible to diagonalise the weight covariance matrix
and PRP by the same unitary transformation. To overcome this we consider the
system to be in steady state and determine the gradient covariance.

Using lim W(n) = W and the property PRW = 0 the gradient covariance

n—yea
expression, (3.18), reduces to

lim Vea(W(n)) = aTr(PRP)WH(n)RW(n)P

L —> oo L

(b.92)

Note that (b.92) can be diagonalised by the same unitary transformation that
diagonalises Ky, (n) and PRP. We can now use the previous approach used for the
dual receiver cases. Substituting (b.92) into (3.24) gives

Kyw(n+1) = Kyw(n) - 2u[PRPK gy (n) + Kiyw(n)PRP]

+ W2aTr(PRP)

- Tr(PRPK (7)) P

+ mwli(n)RW(mP

+4u2PRPK y, (n)PRP (b.93)
Pre and Post multiplying (b.93) by Q¥ and Q respectively and using (3.29) and (3.45)
one obtains
din+1) = (ILL —4pA +4p2A2 + auzwmkqd(n)

, AW’ Tr(PRP)

- k,(n)d,  (b.94)

Note that d(0) =0 and due to the rank deficiency of the projection matrix equation
(b.94) can be reduced to a set of L-1 difference equations. As performed in the

previous derivations of Results 3.4.g and 3.4.h, using (b.56)
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d(n+1) = (1 _ARA 4 4p2A + aM%l—‘Da'lM)d'(n)
2
+ CMpf’@k(,(m&l (b.95)

where & and A' represent the L-1 non-zero eigenvalues of P and PRP respectively.

d'(n) represents the L-Idiagonal elements of QK 4, (n)Q.

Letting
Dy(n) = A'd'(n) (b.96)

it then follows from (b.95} and (b.96) that

Dy(n+1) = (I _ApA +4pPA? + auzT—r(lzRP)S'l?\.'T)D3(n)

< k (m)A'2 (b.97)

From (b.97) a difference equation of the i component of D3 can be written as

Dy (n+1) = (1-4ph; +4u2A2) D4 (n)

L-1
+ ﬂ’i@lf[ko(n) + ) D3z(”)} (b.98)
i=1

With
o = L—4pA; +4p2r? (b.99)
B; = 7Tr(PRP)U2, (b.100)
E(n) = k,(n) = WH(n)RW(n) (b.101)
C/(n) =0 (b.102)

(b.98) is similar to (a.28) and Theorem A.1 can be applied. The convergence criteria

(a.29)-(a.34) as established in this theorem are now examined.

Since lim W(n) = W (b.103)
n-—» o
it follows from (b.101) that lim E(n) = &, = WH/RW (b.104)
n—>co

which is (a.29). (b.102) implies (a.30).
Since Ky (0) =0, it implies that D3;(0)=0 which satisfies (a.31).
All the eigenvalues of this system are positive since (b.97) is propagated by a

symmietric, positive definite transition matrix for all values of . This satisfies (a.32).
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Condition (a.33) requires

0<a,  +B,. <1 (b.105)
= 0<1—4ph,,, +4uA2,, . + %Tr(PRP)p.zlmx <1 (b.106)
1
b.107
:’0<“<l aTr(PRP) (6.107)
max T T

(b.107)} is the first term of (3.51) and satisfies (a.33).

Condition (a.34) requires
L-1
TT 18 +4un,(1 - pd))

i=1

L-1 L-1
-y %Tr(PRP)?Liuz T (8 +4uA (1 ~pi)]>0V(8>0) (b.108)
i=1 LE]

any W which satisfies (b.107) will also satisfy
L-1
[118+4pr(1-pd)]>0v(820) (b.109)
i=1
substituting (b.109) into (b.108)
L-1 L-1 L-1
=y %Tr(PRP)kiuz TT18+4ur,(1-papl< J]18+4pr,(1-pip]
i=1 i=i i=1

L-1 ZTr(PRP)Ap

26+4u?»(1—u)&) (6.110)
., auTr(PRP)
- ¥ L <1 Y(§20) (b.111)
o
g=1ﬁ+4(1~u3\.i)

which is satisﬁed if

ap.Tr(PRP) Z 1
1—

< (b.112)

L-1
(b.112) is the second term of (3.51) and satisfies (a.34). Thus the hm 2 D (n)

1—1
exists and is given by (a.35). Hence from (b.99) to (b.102), if (b.107) and (b.112) are

satisfied
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L-1
~ ~ - auTr(PRP) 1
L-1 ﬁzl_ (W/RW] 21_ X

~ 4L S 1-pA,
1i_r:1w2 D,(n) = —= - = = (b.113)
1 -y Bi . auTr(PRP)E 1
1=
From (3.45) and (b.96) and the fact that A, =A_,, = 0 then
L-1
hm 2 D, (n)= ATd(n).Hence lim ATd(n) converges and is given by (b.113).

71— 00
x=l

(3.52) follows from (3.44) and (b.113). This establishes the result.

Extension to a Multiple Linear Con_straint Optimisation Problem
Even though we have only considered a single linear constraint system, the
expressions derived for the converged weight covariance matrix and the
misadjustment can be extended to encompass the multi-linear constraint problem
when the constraints are linearly independent. When there are & linearly independent
constraints placed on the system the rank of the projection matrix is reduced to L-k. In
this instance the projection matrix can be expressed as [9],[12]
c.c .
P =P,P,. P, whereP, = |:[LL_Tj| i=1,2..k (b.114)
C; C;
Due to the rank property of the projection matrix the eigenvalue expression for the
weight covariance matrix, n,(n + 1) and n,(n + 1) and n4(n + 1) can be reduced to
a set of (L — k) difference equations. The results for the multi-linear constraint
optimisatLio:l problem can be derived by inspection by performing the summation over

the field ¥  in equations (3.41) (3.42) (3.47) (3.50) and (3.52).

i=1
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Appendix C

This Appendix contains the derivation of intermediate results for the Bounds analysis
contained in Chapter 3. In this appendix to simplify the notation expressions such as
E[G(W)|W] may be abbreviated to E[G(W)]. Where this occurs it is assumed that

the reduced notation is obvious.

Derivation of (3.58), Norm of the Weight Error Vector

Considering a system with a single look direction constraint and substituting the
expression for the weight error vector, (3.54), into the weight update algorithm
defined by (2.27) gives

V(n+1) = P[V(n) - WG(W(n))] +%—W+PW (c.1)

using PW = W_C%C in (c.1) gives

V(n+1) = PV(n) - uPG(W(n)) ©2)

now it can be observed that
PV(n) = V(n) (c.3)

Forming the outer product of (c.2) and taking the conditional expectation of the
product with respect to X given W(n) gives
E[V(n+ 1)VH(n+1){W(n)] = E[PV(n)VH(n)P]

—~UPE[G(W(n))VH(n) + V(n)GH(W(n))]
+ WIPE[G(W(n))GH(W(n))IP (c.4)

Using (c.3), (b.1) and (2.69) in (c.4)
E[V(n+1DVH(n+1)] = E[V(n)VH(n)]

—2UPE[RW(n)VH(n) + V(n) WH(n)R]P
+ WIPE[V5(W(n)) + 4PRW(n)W(n)RP]P (c.5)
substituting the expression for the weight error vector in (c.5)
E[V(n+1)VH(n+1)] = E[V(n)VH(n)]
—2uPE[R(V(n) + W)VH(n) + V(n)(V(n) + W)¥R]P
+ WIPE[V(W(n))IP + u2PE[4PR(V(n) + W)(V(n) + W)*RP]P
(c.6)

using the property
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PRW = 0 €7

in (c.6) gives
E[V(in+DVHE(n+ 1)] = E[V(n)VHE(n)]

2UP(RE[V(n)VEm) ]+ E[V(n)VH(#)IR)P
+ UWPE[V5(W(n))IP + 4u?PRE[V(n)VH(n)IRP  (c.8)
Substituting B(n) = E[V(n)VH(n)] in (c.8) gives (3.58). This completes the

derivation.

Gradient Covariance With Respect to the Weight Error Vector

To determine the misadjustment we require the gradient covariance to be expressed in
terms of the weight error vector. Here we evaluate these expressions.
Substituting the expression for the weight error vector, (3.54), into (3.8), (3.10) and

(3.18) respectively one obtains the following

Vg (W(n) = 2(V(n) + WYHR(V(n) + W)PDiag(PRP)P (c.9)
Vo (W(n)) = 2y2LP(Diag(PRP))2P

+2(V(n) + WYR(V(n) + W)P(Diag(PRP))P (c.10)
Vai(W(n)) = 2P[Diag(PR(V(n) + W)(V(n) + W)RP)IP

+Pla(V(n) + WR(V(n) + W)Diag(PRP)]P (c.11)
substituting (c.3) and (¢.7) into the above three equations and rearranging gives
Vg (W) = 2(VE(m)RV(n) + WHRW)PDiag(PRP)P (c.12)
Vg (W(n)) = 2(VE(n)RV(n) + W/RW)PDiag(PRP)P

+ 2y2LP(Diag(PRP))*P (c.13)
Vai(W(n)) = a(VHE(n)RV(n) + WIRW)PDiag(PRP)P

+2PDiag(PRV(n)VH(n)RP)P (c.14)

The previous three equations can be expressed in a generic form given by

Vo (W(n)) = (dVH(n)RV(n) + e)PDiag(PRP)P
+ fPDiag(PRV(n)VH(n)RP) + E (c.15)
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where
1. Dual Receiver Dual Perturbation System
d=2, ¢ = 2WHRW, f=0 and E=0 (c.16)
2. Dual Receiver Reference Receiver System
d=2, ¢ = 2WHRW, f=0 and E = 2y2LP(Diag(PRP))2P (c.17)
3. Single Receiver System
d=a,e = aW”RW , f=2 and E=0 (c.18)
Pre and post multiplying (c.15) by P taking the expectant value with respect to W and

using the substitution

B(n) = E[V(m)VH (n)] (c.19)
the following is obtained.
PE[V4(W(n))]P = (dTr(RB(n))+ ¢)PDiag(PRP)P

+ fPDiag(PRB(n)RP)+E  (c.20)

Bounds Misadjustment Analysis

Here we evaluate the recursive equation for the norm of the weight error vector to

show that it 1s in a form similar to Theorem A.2

Substituting {c.20) into (3.58) and re-arranging
B(n+1) = B(n)-2uP[RB(n) + B(n)R]P + 4u*PRB(n)RP
+ n2(dTr(RB(n))PDiag(PRP)P + fPDiag(PRB(n)RP))
+ en?PDiag(PRP)P + n2E (c.21)

using (3.59), the previous equation can be expressed as

B(n+1) = G(B(n))+Q (c.22)
where

G(A) = G(A) +G,(A) (c.23)
G,(A) = P[A -2i{RA + AR) + 4uRAR]P (c.24)
G,(A) = uW’P[dTr(RA)Diag(PRP) + fDiag(PRARP)IP (c.25)
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and

Q = eu?PDiag(PRP)P + n2E (c.26)
The variables d,e,f and E are defined by (c.16), (c.17) and (c.18). Now (c.22)isin a
form similar form to (a.37) hence Theorem A.2 can be applied. The tests for
conditions of convergence are shown next. Note that Z(r) = 0 for all the receiver

structures.

Common Conditions of convergence for Tr(B(n))

Tests on the convergence of Tr(B(n)) for the three receiver structures are now
presented. It is only necessary to test conditions (a.36), (a.38), (a.39) and (a.42).
Condition (a.40) is always satisfied since Z(n} = 0. Condition (a.36) and (a.38) are
common to all receiver structures.

*Condition (a.36)

B(0) = E[V(0)VH(D)], B(0) € H* since it is a covariance matrix and

Tr[B(0)] = E[|V(0)||?] < by assumption. This verifies (a.36).

*Condition (a2.38)
Let Y be an arbitrary L dimensional vector and define the vector ¥' by

Y' = (AV2-2uAV2R)PY then (c.27)

¥ = YHP[AL/Z _ ZMRAIIZ][AUZ - 2].LRA1/2]PY

YHP[A - 2u[RA + AR] + 4u2RARIPY

YHG(A)Y (c.28)

since ||Y'|| = 0 and Y is an arbitrary vector this establishes G(A) € H'. G(A)
clearly is in H* for all A. Since G1(A) and G»(A) € H', G(A) € H'. This satisfies

condition (a.38).
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Conditions for Convergence of Tr(B(n)), Dual Receiver Dual Perturbation

To verify the condition (a.39) the trace of (¢.23) is taken with the appropriate
substitution from (c.16)

TrIG(A)] = Tr[G{(A)] + Tr[G,(A)] (c.29)
now Tr[G,(A)] = Tr[PAP - 2uP(RA + AR)P + 4u’PRARP] (¢.30)
Following the same steps of (c.27) and (c.28) it can be shown that the quantity in the
square brackets of (c.30)is € H'. Applying Lemma A.1 and using the fact that the

non-zero eigenvalues of P are 1

Tr[G(A)1 < Tr(A) - 4uTr(RA) + 4u2Tr(RAR) {c.31)
applying Lemma A.2 (c)

Tr[G,(A)] S Tr(A) + [~ 4u +4p2A, 1Tr(RA) (©.32)

max

where A represents the eigenvalues of R and A, is the maximum eigenvalue of R.
Also

Tr(G,(A)] = Tr(2p’Tr(RA)PDiag(PRP)P] (c.33)
Applying Lemma A.2 (a) to (¢.33)

Tr[G,(A)] = 2u2Tr(RA)Tr(PDiag(PRP)) (c.34)
combining equations (c.34) and (c.32)

TriG(A)] S TH(A) + [— 4p +4p2A + 2u2Tr(PDiag(PRP))]Tr(RA)  (c.35)

mdx

for the factor in parenthesis of (c.35) to be negative

—4p +4p?A,  +2u2Tr(PDiag(PRP)) <0
4
2Tr(PDiag(PRP)) + 44, .
|
Tr(PDiag(PRP))
2
If Assumption 3.3 is used in (c.36) it reduces to
|
Tr(PRP)
2
Using Lemma A.1 in (c.35) yields

=0<p<

=0<u< (c.36)

+ 1'PT!:ISLX'

=0<u<

+ )\‘max

TriG(A)] S Tr(A)+ A, [ 4+ 4u2h  +2u2Tr(PDiag(PRP))ITr(A) (c.37)

min

This can be written as
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Tr[G(AY]1 = BTr(A) (c.38)
where
B=1+2pA

[— 2 + uTr(PDiag(PRP)) + 2uA (c.39)

min max]
Equation (c.36) guarantees that B<1 and the fact that G(A) is a positive semi-definite
hermitian matrix shows that B>0. This verifies condition (a.39).

The final condition (a.42) requires Q to be a positive semi-definite matrix

Q = u22WHRWPDiag(PRP)P (c.40)
It is obvious this is true.
Therefore it has been shown that all the conditions for the convergence of the norm of
the weight error vector are satisfied. Thus there exists a ¢ < such that

lim Tr(B(n)) = lim E[{IV(»)||?] = ¢ {(c.41)
n—>ce n— oo

This establishes the convergence of the norm of the weight error vector for the dual

receiver dual perturbation system.

Conditions for Convergence of Tr(B(n)), Dual Receiver Reference Receiver

For the dual receiver reference receiver the conditions for the convergence of B(n),
(a.37)- (a.41) as established in Theorem A.2 are equivalent to the dual receiver dual
perturbation system using a 4L length sequence, hence they will not be repeated here.
The final condition, (a.42), requires Q to be a positive semi-definite matrix

Q = WP[2WIRWDiag(PRP) +272L(Diag(PRP)52]P (c.42)
1t is obvious this is true.
Therefore all the conditions for the convergence of the norm of the weight error vector
are satisfied. Thus there exists a g < o such that

lim Tr(B(n)) = lim E[[[V(®)||?] = ¢ (c.43)
n—soo n— oo

This establishes the convergence of the norm of the weight error vector for the dual

receiver reference receiver system.
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Conditions for Convergence of Tr(B(n)), Single Receiver System

*Condition (a.39)
The trace of (c.23) is taken with the appropriate substitution from (c.18)

Tr[G(A)] = Tr[G(A)]+Tr{G,(A)] (c.44)
now Tr[G,(A)] = Tr[PAP-2uP(RA + AR)P + 4u2PRARP] (c.45)
applying Lemma’s A.1 and using the fact that the non-zero eigenvalues of P are 1
Tr[G,(A)1 < Tr(A)-4pTr(RA) + 4p2Tr(RAR) (c.46)
applying Lemma A.2 (¢)

Tr[G (A STr(A) + [-4u+4p2h,  1Tr(RA) (c.47)
also

TriG,(A)] = Tr[ap’Tr(RA)PDiag(PRP)P + 2u?PDiag(PRARP)P]  (c.48)

= Trlap®Tr(RA)PDiag(PRP)] + 2u2Tr(PDiag(PRARP)) (c.49)
now applying Lemma A.2 to the second component of (c.49) yields
Tr(PDiag(PRARP)) < Tr(Diag(PRARP)) = Tr(PRARP)

<Tr(RAR)<LA__Tr(RA) (c.50)

max

combining equations (c.49), (c.47) and using (¢.50)
Tr[G(A)] < Tr(A)

+[- 4”"‘4”2;"max+ 2uZA, +ap’Tr(PDiag(PRP))]Tr(RA) (c.51)

max

for the factor in parenthesis to be negative

—4p+ 6, +ap?Tr(PDiag(PRP)) <0
4
aTr(PDiag(PRP)) + 67,

|
aTr(PDiag(PRP)) +15%

4 max

using Lemma A.1, (c.51) yields

=0<p<

=0<u< (c.52)

TrG(A)]1 < Tr(A)
+A, [—4pu+6u2h_ +ap?Tr(PDiag(PRP)|Tr(A)  (c.53)

This can be written as
Tr(G(A)] <BTr(A) (c.54)

where
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B=1+ 2ulm,-n[— 24 EZHTr(PDiag(PRP)) + 3u>»m} (c.55)

Equation (c.52) guarantees that <1 and the fact that G(A) is a positive semi-definite

hermitian matrix shows that §>0. This verifies condition (a.39).

The final condition requires Q to be a positive semi-definite matrix

Q = uP[aW’RWDiag(PRP)]P (c.56)
Tt is obvious this is true.

Therefore it has been shown that all the conditions for the convergence of the norm of
the weight error vector are satisfied. Thus there exists a g < == such that

lim Tr(B(n)) = lim E[||[V(n)||?] = ¢ (c.57)

n—yeo

This establishes the convergence of the norm of the weight error vector for the single

receiver system.

Derivation of Result 3.5.q.

Taking the trace of (c.22), substituting (c.16) and using Lemma A.2
Tr[B(n+ 1)] = Tr[B(n)] - 4nTr[RB(n)] + 4p2Tr(PRB(n)RP)
+ 2u2Tr(RB(n))Tr(PDiag(PRP)) + 2uWHRWTr(PDiag(PRP)) (c.58)
using Lemma A.1 and A.2(c), (¢.58) becomes
Tr[B(n+ 1)1 < Tr[B(n)]

+[—4p 4+ 2u2Tr(PDiag(PRP)) + 4u2A  1Tr(RB(n))

max
+ 202 WHRWTr(PDiag(PRP)) (c.59)
Taking the limit as n — oo if (c.36) 1s satisfied then
lim Tr(B(n+ 1)) = lim Tr(B(n)) = g<= (c.60)
n—»oo n—yoo
By applying Lemmas A.1 and A.2 (c.59) yields

UWWHARWTr(PDiag(PRP))
— W[ Tr(PDiag(PRP)) + 2A

lim E[VH(n)RV(n)]< 5

L — o0

(c.61)

max]

and similarly by applying Lemmas A.l and A.2

lim E[VH(m)RV(n)] 2 MWHRWTF(PDiag(PRP))

el 2 _piTr(PDiag(PRP))] (c62)
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Since the norm of the weight error vector exists Result 3.5.a can be derived using

(c.61), (c.62), (3.56) and (3.57).

Derivation of Result 3.5.b.

Taking the trace of (¢.22), substituting (c.17) and using Lemma A.2

Tr[B(n+1)] = Tr[B(r)] - 4nIr[RB(n)] + 4p2Tr(PRB(n)RP)
+2u2Tr(RB(n)Tr(PDiag(PRP))
+ 22y 2LTr(P(Diag(PRP))?) + 202 WHRWTr(PDiag(PRP)) (c.63)

using Lemma A.2(c}, (c.63) becomes
Tr[B(n+ D] <Tr[B(n)]

+[—4p + 2R2Tr(PDiag(PRP)) + 4p2i_ 1Tr(RB(n))

max

+ 2u2Y2LTr(P(Diag(PRP))2) + 2u2WHRWTr(PDiag(PRP)) (c.64)

Taking the limit as n — oo if the conditions for convergence of the ssemsp, Theorem
A.2, (c.306), are satisfied then

lim Tr(B(n+1)) = lim Tr(B(n)) = g<o (c.65)
n—yoo n—> oo

By applying Lemmas A.1 and A.2 (c.64) yields

lim E[VH(n)RV(n)]

71— oo
<Wy2LTr(P(Diag(PRP)?) + pWIRWTr(PDiag(PRP))  «c
2-u[Tr(PDiag(PRP)) +2A,,,.]
and similarly
J'lli_l’)nmE[VH(H,)RV(H)]
J WY2LTr(P(Diag(PRP))?) + pW 'RWTr(PDiag(PRP)) (c.67)

2—u[Tr(PDiag(PRP))]
As the bounds for the ssemsp exists Result 3.5.b can be derived using (c.66), (c.67),
(3.56) and (3.57).
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Derivation of Result 3.5.c

Taking the trace of (c.22), substituting (c.18) and using Lemma A.2
Tr[B(n+ 1)} = Tr[B(n)] — 4uTr[RB(n)] + 4u2Tr(PRB(n)RP)
+ aW2Tr(RB(n))Tr(PDiag(PRP)) + ap>WHRWTr(PDiag(PRP))
+ 2u2Tr(PDiag(PRB(n)RP)) (c.68)
using Lemma A.1, A.2(c), (c.68) becomes
Tr[B(n+1)] < Tr[B(n)] + ap?WHRWTr(PDiag(PRP))

+ [ 4p + ap2Tr(PDiag(PRP)) + 6u2A,_ 1Tr[RB(n)] (c.69)

max

Taking the limit as n — oo if the conditions for convergence of ssemsp, TheoremA.2,

(c.52) are satisfied then

im Tr(B(n+1)) = lim Tr(B(n)) = g<e (c.70)

n—r

By applying Lemmas A.1 and A.2 (c.69) yields

S _
i " < auW*RWTr(PDiag(PRP)) '
Jm ELVEmRY(m)) < 4 faTr(PDiag (PRP)) + 61, ] ©71)
and similarly

e _
. u , apWHRWTr(PDiag(PRP))
Jim ELVEmRY () 2 = T (P Diag(PRP)) 72)

Since bounds on the ssemsp exists Result 3.5.c can be derived using (c.71), (c.72),

(3.56) and (3.57).
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Appendix D

This Appendix contains the derivation of intermediate results for the New Bounds
analysis contained in Chapter 3.

Derivation of (3.73), (3.74) and (3.75)

Re-arranging the weight covariance matrix and using
PKyw(n)P = PKyw(n) = Kyw(n)P = Kyy(n) (d.1)
gives
Kyw(n+1) = (I, - 2uPRP)Kyy(n) - (I;; — 2UPRP)2uK gy (n)PRP
+ WPE[V (W (n))|P
= Kyw(n+1) = (I;; - 2uPRP)(Kyw — 20Ky wPRP) + p2PE[V (W(n))]P
= Kywn+1) = (I;; - 2uPRP)K (I, ; - 2uPRP) + W2PE[Vo(W(n))]P
(d.2)
For the three receiver structures the last term in (d.2) has been evaluated previously in
(3.25), (3.26) and (3.27). It can be represented generically by
PE[V,(W(n)IP = gTr(Kgpw(n)R)PDiag(PRP)P + bPDiag(PRP)P + D (d.3)
where g,b,D are defined as
1. Dual Receiver Dual Perturbation System
g=2, b=2WH (n)RW(n), D=0
2. Dual Receiver Reference Receiver System
=2, b=2WH(m)RW(n), D = 2y2LP(Diag(PRP))?P
3. Single Receiver System

2
g = [c+%) , ¢ is defined in (3.17)

2
b= (m-%) WH(n)RW(n), D = 2PDiag(PRRy,yRP)P

Substituting (d.3) into (d.2) and re-arranging

Kyw(n+1) = PKpp(n)P - 2UP[RK (1) + Ky (n)RIP
+4u>PRK i (7)RP + p2aTr(Kyw(n)R)PDiag(PRP)P
+u2pPDiag(PRP)P + 12D (d.4)
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Now assuming that the conditions for convergence of the weight covariance matrix as
established in Section 3.4 are satisfied, the trace of the weight covariance matrix in the
limit as # — o can be taken and 1s given by-

lim [Tr(Kyg(n+1))] = m [Tr(PKyy(n)P) - 4uTr(PRKyy(n))

n— oo

+ 4p2Tr(PRK yyyp (1)RP) + u2aTr(Kyyy (1) R) Tr(PDiag(PRP)P)
+ n2bTr(PDiag(PRP)P) + n2Tr(D)] (d.5)

Considering the term Tr(PRK . (n)RP), using Lemma A.2(c) and (d.1)

Tr(PRKyy(m)RP) <A (PR)TH(PRK yy(n))

max

= Tr(RPRK (1)) <A, (PR)Tr(RKyw(n)) (d.6)

max

Substituting (d.6) into (d.5) and using

lim [Kyw(r+1)] = lim [Kyy(n)] and rearranging, an upper bound for the
f—> oo n—yoa

lim Tr{Kgw(n)R] can be established and is given by
n—eo

lim [ubTr(PDiag(PRP)P) + uTr(D)]

. < H —» oo
,,IE,HWT"[KWV"(”)R] =4 —auTr(PDiag(PRP)) —4ur, . (PR) @7

and similarly
lim [ubTr(PDiag(PRP)P) + nir(D)]

. S e
Jim 7r[Kyy(n)R] = 4 —anTr(PDiag(PRP)) @

(d.7) and (d.8) are (3.73) and (3.74) respectively. When i is small it is easily observed
that the upper and lower bounds approach eachother hence the asymptotic
misadjustment for a suitably small gradient step size can be expressed as

lim [pbTr(PDiag(PRP)P) + uTr(D)]

M= 1 _ _ (d.9)
AWHRW

(d.9)is (3.75).
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Solving the Weight Covariance Matrix:
By rearranging (d.2) and using
B = (I;; - 2pPRP) the weight covariance matrix can be expressed as

Kyw(n+1) = BKyy (m)B + u2PE[V;(W(n)) P (d.10)

substituting (d.3)
Kyw(n+1) = BKyy(n)B + aTr(Kyy(n)R)PDiag(PRP)P

+ bPDiag(PRP)P + D (d.11)

From this expression a solution for the weight covariance matrix at the nh update can

be determined it is given by

-1
+ Y B~ iPDiag(PRP)PB"~{(aTr(Kyy(i— 1)R) +b)
i=1
n=-1
+ 2 B~-DB”-! forn>2 (d.12)
i=1
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Appendix E

This Appendix contains the derivation of the gradient covariance expression and the
misadjustment analysis contained in Chapter 4. In this appendix to simplify the
notation expressions such as W(n), X(I+i} and E[G(W)| W] may be abbreviated to W,
X and E[G(W)] respectively. Where this occurs it is assumed that the reduced
notation is obvious.

Firstly, for each receiver structure, we determine the expected values of the gradient
with the two quantisation methods. The gradient covariance is then determined.

A. Expected Gradient Estimate, Dual Receiver Dual Perturbation System
Quantisation Method 1.

Considering the dual receiver dual perturbation system, and applying Quantisation

Method 1 to the weights, (2.38) and (2.39), the quantised weights are given by

O(W,. i) = O(W, i)+ 0(Y8 (1)) = W(n)+m+73,(i} +ny(i) (e.1)
and
(W, i) = Q(W, D) - 0(v3,(i)) = W(n)+n-v8,(i) —n,(i) (e.2)

where 1 corresponds to quantisation error vector for W(n) and n, corresponds to the
quantised error vector of the perturbation sequence.
Substituting (e.1), (e L;) into the gradient expression, (2.40), gives

G (W, (n)) = E [(W +M+78,(0) + Ny XXH(W + 1 +v8,(i) + (D))
z—]

(W1 =78 ,(/) —M(NFXXHE(W +m —y8 (i) ()18 ,,(i)

ZL i 2WXXYS (i) + 82 (DX X" W)S (i)
5‘1"* i 2(WXX T n,() + n?(i)XXHW)ap(i)
ZL i 2" xx"y8,(i) + 8. (XX 'M)8 (i)
% E‘. 20" XX 0, (0) + 3 (DXX )8 (1) (€3)
i=1

Taking the conditional expectation, with respect to X, of both sides of (e.3) given W(n)
and using the Assumptions 4.1-4.3 and applying Lemma A.8

EMm 'yl = 0 (c.4)
E[G (W, (n))|W(n)] = 2PRW(n) + 2RE[N|W(n)] (e.5)

El



If the expectation is extended to occur over all W an additional assumption may be
made that the quantised error vector for the weight vector has zero mean then

E[G (W, (n))|W(n)] = 2PRW(n) (e.6)
This last assumption is equivalent to assuming there is no quantisation error for the
weight and isolates the effects of quantisation on the perturbation sequence.

The assumption is weak in the sense that quantisation errors are fixed at system

equilibrium and are not treatable as random.

Quantisation Method 2.

Using quantisation Method 2, the array weights are given by

Q(W,,, 1) = Q(W +73,(i)) = W(n) +78,(i) +1(i) e.7)
and

AW, i) = QW -¥3,(i)) = W(n)-v8,(i) + n,(i) (e.8)

substituting the quantised values for the weights into the expression for the gradient

estimate, (2.40), gives

GLW(m) = 5 T W XX y3,(0) + Y8, ()X X" W) 15,0
i=1

# 5 3 (WIXX 0,04 OXXW 4 (XX, 08,0
i=1
+ Z\/Lm 3 W XX 30 + 5 OXXW 0] HXX 0,08,
i=1
) m . ) . . .
+ szzl (8, (HXX"n () +ny (DXX"8,(1))8 (1)

+ 2%,”; (8, (DXX"n,y(i) + 05 (HX XS (1))8,,i) ©9)

taking the conditional expectation, with respect to X, of both sides of (€.9) given W(n),
applying Lemma A.8 and Assumptions 4.1-4.3 gives

E[G(W (n))|W(n)] = 2PRW(n) +0, R Y 8 (i)~ 0,,R Y §,() (c.10)
i=1 i=1

now as the two receivers are quantised in the same fashion

2 2
GI_GnZ

n (e.11)
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then
E[Gl(Wq(n))|W(n)] = 2PRW(n) (e.12)

B. Expected Gradient Estimate, Dual Receiver with Reference Receiver System.

Quantisation Method 1.

Using Method 1 the quantisation of the weights can be represented as

AW, i) = Q(W, i)+ Q(v8,,()) = W(n)+n+7¥8,(i) + My(i) (e.13)
and
Q(W, i) = W(n)+n (e.14)

where 1 corresponds to quantisation error vector for W(n) and 1), corresponds to the
quantised error vector of the perturbation sequence. Substituting (e.13) and (e.14) into
the expression for the gradient estimate, (2.44), and expanding gives

Gy(W (n)) = ’% Y (8, (XX W+ WIXX"5 (i)8,()
i=1

+ 13 (3,()XX"8,()3, (i)
i=1

+ Yim 3 (F XX W+ WX ()8 ()
i=1

+ (5 (XX T+ XX ()8 (1)
+Y@IOXX () + 0" (HXX"8 ()8 (1))
+ v_m.z (M3 (DXX "y +78] ()X X, (0) + ¥ (DX X8 ()8 ,()
=t (e.15)
Examining equation (e.15) it can be observed that the first two terms correspond to the

original gradient estimate with no quantisation effects, the second term being the

gradient bias. The third and fourth terms are additional quantisation bias effects.
Taking the conditional expectation of (e.15) given W(rn) and taking the expectation

over X and m separately as they are assumed to be independent processes, applying

Lemma A.3, A.8 and using Assumptions 4.1-4.3
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2
E[Gy(W (n))|W(n)] = 2PRW + L 2 (5 ()R ,(iNS, (z)+ ZR-S (i)

I =1 l! =1 (e 16)
Assuming an odd iength sequence is used the contribution of the quantisation

components to the gradient estimate is zero, by (a.11). Hence

E|G,(W(n))|W(n)] = 2PRW(n) (e.17)
Quantisation Method 2.

When the weights of the dual receiver system with reference receiver are quantised

using Method 2, the quantised weights can be represented by

QW ,, i) = QW +y8,(i)) = W(n)+v8,(i) +,(?) (e.18)
and
oW, = Q(W, i) = W(n)+112 (e.19)

substituting these quantised weight expressions into the expression for the gradient
estimate, (2.44), and expanding gives

Gy(W (n)) = ’% Y GEoxx"w+whixx"s (i)8,(i)
i=1

+ % Y (85 (HXX"8,(1))8,(i)
i=1

+YL2((n1(z)XX W+ W XX 1,())8,(0)
i=1

+y(T HXXT8 (i) + 85 (HXXM,())3 (i)
+ (MY OXX,()8,())

¥
— LS i xx"w o+ wxx"n, +nl xx"n,)8 (i) (e.20)

m
v i=1

Examining (e.20) it can be observed that the first two terms are the usual gradient
estimate and the third and fourth terms are the guantisation error effects from receivers
one and two respectively.

Taking the conditional expectation of (e.20) given W(n) and taking the expectation
over X and 7 separately as they are assumed to be independent processes, applying

Lemma A.3, A.8 and using Assumptions 4.1-4.3
2

E[Gy(W ()| W(n)] = = 2PRW + L 2(8 ()RS ,()8S, (z)+ ERS (i)

1_1 z—l
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m
1 .
T 3 EyRW + W Rn, + 15 Rn,)8 ,(0) (e.21)
i=1

Assuming an odd length zero mean sequence is used it can be observed that the
additional quantisation biases are equal to zero, hence the gradient estimate is

unbiased, E[G,(W ,(n))|W(n)] = 2PRW(n)

C. Expected Gradient Estimate, Single Receiver System

Quantisation Method 1.
When the weights of the single receiver are quantised according to Methodl they can

be represented by
Q(W,, i) = Q(W, )+ 0(v8,(1)) = W(n)+n+y8,(5) +M,(9) (e:22)

N and M, are the quantisation errors for the weight and the perturbation step size
respectively. Substituting (e.22) into the expression for the gradient estimate, (2.49),
and expanding

G3(W (n)) = #2 @ OXX W+ WIXX"5 (i))8,(1)
i=1

n% Z (8, (HXX"8,(i) + W XX W)5 (i)

~1-m 2 (T HXXTW + WIXXT0,())8 ()
+(n3 HXX "M+ 0" XX ,()8,(1)
+ (XX W+ wEXX ()8 ()
+7(8, (HXX (i) +n" (DX X8 (10)8 (1))

+-2(n2(z)xx My(0) +y8, (DX Xy () +yng (DX X & NONNO:
i=1

+— Z (m (HXX 111(1))5 (i)
i (e.23)
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Examining (e.23) it can be observed that the first two terms are the normal gradient
estimate with the second term being the gradient bias. By similar analysis to the dual
receiver cases the error contributions of the quantisation error in the single receiver
system also sum to zero. Hence
E[G3(Wq(n))|W(n)] = 2PRW(n) (e.24)
Quantisation Method 2.
When the weights of the single receiver system are quantised using Method 2, given by
OQ(W,, i) = QW +7d,()) = W(n) +73,(i) + 1, (D) (e25)
where 1, represents the total quantisation error. Substituting (¢.25) into the expression
for the gradient estimate, (2.49), and expanding gives
"
1 H,. H HyoHe .. .
G3(W,(m)) = —~ Y (3, (DXX "W+ W XX"8,())8,3)
i=1
"
. Ho . H o oH .
+ % 2 (Sp (HXX Sp(z) +W XX W)Sp(t)
i=1
o 2 (M DXXW + WIXX 0,(0)8,()
! =1
Y} (HXXYS () + 80 () XX n,(1))8,(1)
+ (N (DXX",())8,(i)) (e.26)

Taking the conditional expectation of (e.26) given W(n) and taking the expectation
over X and 1 separately as they are assumed to be independent processes, applying

Lemma A.3, A.8 and using Assumptions 4.1-4.3
2

E[G4(W (n))] = 2PRW+12(5 ()RS () + WRW)S, (:)+ ZRS (i)
i=1 1—1
(.27)

Assuming an odd symmetry zero mean perturbation sequence is used the additional
quantisation biases are equal to zero, hence the gradient estimate is unbiased

E[G3(W ,(n))|W(n)] = 2PRW ().
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Derivation of Result 4.4.a. Gradient Covariance Dual Receiver Dual Perturbation

Assuming the quantisation process is performed using Method 2 the output power

sequence of the array can be represented as

op (W) = dy (W) +dy (W) +dyy (W) (e.28)
where
dy (W) = 20W7x X8 (1) + 8, ()X X"W) (€.29)
dy 1 {W) = wix x? 711(1)+711(1)XX W+6 (:)XX nl(z)+n1(z)XX o (1)
+1, (z)XX n, (i) (e.30)
T]21(W) = —(W xx" 112(z)+'r]2 (L)XX W)
(53 (iyxx" M) + M, Shxx" 8,(i)) - nf(i)XXan(i) (e31)
and where Sg(i) = Yﬁp(i). (e32)

By setting d,(W) = op,(W)/2 in (a.7) one obtains T = Gl(Wq(n)) . By
assumption {X(7)} is a sequence of independent random vectors and this implies that
(a.9) is satisfied. Applying Lemma A.4 and substituting (e.29)-(e.31) gives
Var(Wm) = - —— — 2 {ELd(W)d; (W)|W(n)]

Ym;-q

~ELd(W)|W(n)IELd] (W)|W(m)118,()85 (D) (e.33)

5 3 Z {E[d“(W)dh(W)IW(n)]

) 4Y i=1
~E[d(W)|W(n)IELd;(W)| W(n)118 ()8 (i) (e.34)
T ; 5 3 {2E0d; (W)dy (W) + 2E[d, W)y (W)]
ymi o
+ 2E[dy ; (W)day  W)] + Eldy  (W)dry (W)
+ Eldyy (W)dhh (W18, ()8H(D) (€.35)
4«/; ; 21{E[d1;(w)[w(n)]E (dy (W) + dip (W))W (n)]
+ E[(dy (W) + dyy (W) | W(n)] x
El(dyy (W) + (W) + dy,(W))|W(m)] 18,()8H(i) (e36)
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The expressions on the left hand side of the above equation can now be evaluated. Note
that the first term, (e.34), is equivalent to the gradient covariance when no quantisation
effects are considered.
Evaluating (e.35).
The individual terms of (e.35) are evaluated separately. Using Assumptions 4.1-4.3
2E[d, (W)dy1 AW)) = 4E[(W"XX"8 (i) + 8, (DX X" Wyn| (DXX "0, ()]
(e.37)
Note that it is not necessary to consider terms with an odd number of quantisation error
vectors as the expected values of these components will be zero by definition.
Assuming X and 1 are independent, expectation over X and 1 can be taken separately.
Taking expectation over X and using Lemma A.3

2E[dy(W)dp (W) = 4E[W (RS, (i (DR +n] (HRS (DR, (i)
+8; (HRWnT (DR +71; (DRWRN ()]
= 4E[WIRS ()] ()R, (i) + n} (HRS, ()W RN, (i)

+ 8, (HRWN (HRN, () + 7 (HRWSE (HDRN(D)] (e.38)

taking expectation over N

2E[d (W)L (W)] = dar, [Tr(R)WRS (i) + WIR?S (i)

+Tr(R)S, (DRW +8, (DR°W]  (e.39)
similarly
2E[d\ (W)diy(W)] = —402,[Tr(RYW RS () + WRS (i)
+Tr(R)SL (HRW + 8, ())R'W]  (e.40)

Consider
Eldy {W)di (W)] = E[S; (DXX () + nf(i)xxh’sg(i)) X

(8¢ (HXX"n () + ] (HXXTS, (N (e41)
+E[WIxx () +nf @xx?wyow?xx"n, iy +nl Hxx"wy  (e42)

+2E[(WOXX " (1) + ] OXX"W)(B] (DX X" () + ] (DX XS (1)) Ne.43)

+2E[(WIXX () + ] Oxx W] XX, (e.44)
+2E[(8, (DXX " () +n{ (HXXTS () (] (HXX 0 ()] (e.45)
+EM) OXX 0, (0mY (Hxx ()] (e.46)
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(e.41)-(c.46) are now evaluated separately.
Applying Lemma A.3 and Theorem A 4 to (e.41) and taking expectation over X and 1

separately
E[(3, (DXX"m,() + 0} (DXX"8,())(8; (HXX"n (i) + 1) (DXX"8,(i))]
= E[8, (i)(Rn(i)8; ()R + 8 (HRN(HR)M, (i)
+8, ()R (IM] (DR + 0] (HRN (DR, (1)
+ 7 (H(RS,()B, (HR + 8] ()RS ()R, (i) taking E w.r.t. X
+ 17 (R3] (DR + 1] (HRS(HR)S ()] (c47)
re-arranging the terms
= 2EL8} ()Rn, (), ()R, (i) + 5, (DR, (] ()RS (i)
+17 (RN ()8, (HRS () + 1Y (HRS ()} (HRS ()] (e.48)

taking the expectation over 1 and using (5.1)
= 20, (8L ()R?8,(i) + Tr(R)SL ()RS (1)) (€.49)

By similar methods it can be shown that (e.42)
= 20% (W'R'W + Tr(R)W"RW) (.50)

Evaluating (e.46). Taking expectation over X and 1 separately and applying Lemma
A.2, A.3 and Theorem A.4

E GOXX ', (Om) (DX X, ()

E(ny G)(RN, ()} (OR + 1§ ()R, ()R)M, ()] , taking E w.rt. X

EL2n7 ()RN, ()} (DR, (0)]

= 2(Tr(0;,Ro5R) + Tr(c R)T7(6, R)) , taking E w.rt. 1

= 2(0,, Tr(R%) + 65 (Tr(R))) (e.51)

Evaluating (e.43). Taking expectation over X and using lemma A.3 and Theorem A.4
HyoH . H,. H H,. H_ .. H,. He .
2EL[(WH XX 0, (1) + 0] OXXTWYET () XX, () + il ()X X8 (0))

= 2E[W" (R, ()8, ()R + 8. ()R, (i)R)N, (i)

+ W RN (O] (DR +n1 (DRN (RS, ()
+ 1 (HRWS] ()R + 8, (HRWR)N ()
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+nfERWNY R+ (DRWR)S ()] taking Ewrt. X (e.52)
multiplying the terms and re-arranging
= 2E[WRn,(i)8; ()R, (i) + 8, (YR, ()W R, (i)
+ WIRN ()] (DR, (i) +ny (RN, (YW RS, (i)
+01 HRWS ()R, () + 85 (HRWn (HRN; (D)
+ 217 (HRWNT ()RS (1) (€.53)

taking the expectation over 1 and using Lemmas A.3 and TheoremA .4
= 205 [W'R?8,(i) + Tr(R)W RS (i) + Tr(R)S, (NRW + 8. ()R°W] (e.54)

using Lemma A.3 and Theorem A.4 the terms in (e.44) and (e.45) can be evaluated as:

EIW'XX"n()n{ (HXX ()] = 0 (e:55)
E[8, (DXX " (imy (DXX ' ()] = 0 (e:56)
EM} ()HXX"8,(im] (HXXn ()] = 0 (e.57)
Elny (DX X"Wn7 () XX ()] = 0 (c.58)

substituting (e.49), (e.50), (e.51), (€.54), (€.55)- (¢.58) back into the expression for

Eldy;(W)dy1 (W)| W(n)]then
E[dy (W)di (W)|W(n)] = 207, (W'R'W + Tr(R)W'RW

+ 81 (RS, (0) + Tr(R)S, ()RS, (i)

+ 0, (Tr(R%) + (Tr(R)))

+ Tr(R)(W'RS (i) + 8, ()RW)

+ WIRS (i) + 8] (HR*W) (.59)

by similar methods it can be shown that
E[dnzi(W)dﬁzf(WﬂW(n)] = 2012]2(WHR2W+ Tr(RYW'RW
+ 8 (DRS(0) + Tr(R)S, ()RS (1)
+ 00, (Tr(RY) + (Tr(R)))
~Tr(R)(WRS (i) + 3, ()RW)

~WAR?S (i) - 87 (HR*W) (€.60)
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Using the assumed property that quantisation errors between the two receivers are

independent of eachother

Eln, (g ()| W(m)] = Elny(y ()| W(m)] = 0 (e61)

Evaluating the other terms in (€.35) and using (e.61)
2E[dy ;| W(n)] = 2E[-0) (DXX ", (D)m; (DX X "ny()] (e.62)

taking expectation of (e.62) over X and 7 separately and using Lemma A.3 and
Theorem A.4

2E[dyy sy W) = ~2(05,62,)(TF(R)) + Tr(R) (€.63)

Evaluating (e.36)

Using (¢.61) and the following

E[d(W)|W(n)] = 2(W7RS (i) + 85 ()ORW) = E[d};(W)|W(n)] (e.64)

Eldy, (W)W ()] = Eldn;(W)|W(n)] = o7 Tr(R) (e.65)
Eld,, (W)|W(n)] = Eld,(W)|W(n)] = ~01,Tr(R) (€.66)

then

Eld; (W)|W(m)IEL(dg, (W) + dry (W) |[W(n)] =

200, Tr(R)(WRS (i) + 8, ()NRW)-20,,Tr(R)(W"RS (i) + 8} ()RW) (e.67)

and
El(d (W) + dnz,(W)) |W(n)]EL(d{i(W) + dy
= (02,Tr(R) -G, Tr(R)) X

(W) + dyy (W) W(n)]

nii n2i

(05, Tr(R) + 6;,Tr(R) + 2(W7RS (i) + 5 ()RW))  (c.68)

using O'ﬁl = 0]212 , (€.67) and (e.68) are equal to zero.

substituting equations (e.39), (€.40), (e.67), (.68),(e.59), (e.60), (e.63) back into the
expression for the covariance and using 01211 = 072]2 = 0’31 the covariance of the
gradient estimate is given by

Vei(Wy(n) = Vg, (W(n))

2 m
—22 {8 ()R’ (i) + Tr(R)S, ()RS (1) 18, ()84 (i)
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2 m
(s)
+—1 3 2WIRW + 2Tr(R)W"RW + 05 Tr(R%) +

2
2¥"m? 2

cf](Tr(R)V}sp(i)ag(i) (€.69)

where VGlmg(W(n)) is given by (3.1).

Substituting for the projected perturbation sequence, (2.67), and using Lemma A.6 the
covariance of the gradient is given by

Ve (W () = Vg (W(n)+ o2 P(Diag(PR’P) + Ir(R)Diag(PRP))P

b 2
+ S—”(Wszw + Tr(RYW'RW + %H(TF(RE) + (TV(R))Z))P (.70)
Y 2L

for a 4L length sequence
Vei(W,(m)) = VGlar.-g(W(n)) + 20'121P(Diag(PR2P) + Tr(R)Diag(PRP))P

2 2
+ %(WH R*W + Tr(RYW'RW + %—*‘(Tr(Rz) + (Tr(R))z)]P (€7D
vy'L

for a 2L length sequence
In (e.70) and (e.71), VG]M_S(W(n)) is given by (3.8) and (3.9) respectively.
When the non projected sequence is used the additional covariance terms are given by

Ve (W (n) = Vg, (W(n)+ 0y(Diag(R”) + Tr(R)Diag(R))

1{22L

2 2
8} ()
+ —”(WHRZW +Tr(RYW'RW + ?"(Tr(Rz) + (Tr(R))z)]ILL (€.72)
for a 4L length sequence

V(W (n) = VG-lur,_g(W(n)) + ZGi(Diag(Rz) +Tr(R)Diag(R))
o2 o’
+ ﬁ(w” R*W + Tr(R)W'RW + 7"(Tr(R2) + (Tr(R))z)JILL (e.73)
for a 2L length sequence and
In (e.72) and (e.73) VGlar.-g(W(")) is given by (f.1) and (f.2) respectively.
This establishes the result.




Derivation of Result 4.4.b, Gradient Covariance Dual Receiver Reference Receiver

Assuming the quantisation process is performed using Method 2 the output power

sequence can be represented as

d;(W) = d (W) +dy (W) +dpo (W) (e74)
where
dy (W) = WIXX™8 (i) + 87 () XX"'W + 8] (1) XX3 (i) (€.75)

dp (W) = WEXX 0, G) + 0] )X XT W+ 87 (X X () +n] (DXX"8,(0)

+n XX, () (e76)
dpg(W) = ~(W' XX "y() + 3 (DXX" W +m3 (DX X", €77

By setting (W) = (e.74) in (a.7) one obtains T = G,(W (n})). By assumption
{X(i)} is a sequence of independent random vectors and this implies that (a.9) is

satisfied. Applying Lemma A.4 and substituting (e.75)-(e.77) gives

Vor(W,(m) = 5= 3 {E[(W)d] (W)| W(m)]
m =1
~ELdW)|W(m)IELd; (W)|W(n)] 18 ,()84(i) (.78)
= o 3 {EWd, (W W) W(n)
Ym -

~Eld, (W)|W(mIELd}(W)| W(m)]18 ()85 (i) (2.79)

+ % Y {2E[d;(W)d, (W) +2E[d, (W)dyp (W)]

Yymi=
+2E[dy ;(W)dyo (W) + Eldy  (W)dy (W] (e.80)
+ Eldy(W)d] 5 (W)1}8,(1)8H (i) (e.81)

5 3 {E (W) WmIELEL, (W) + diy (W) | W(n)]

mi-1

+ EL(dyy (W) + dp (W) | W(m)] x
E[(dny (W) + dyy (W) +dy (W) W(n)1}8,()8H(i)  (e.82)

The expressions on the left hand side of the above equation can now be evaluated. Note
that the first term, (e.79), is equivalent to the covariance of the gradient estimate when

no quantisation effects are considered.
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Two approaches can be taken here to determine the gradient covariance. The first is to
consider the quantisation errors on the reference receiver to be modelled the same as
the perturbed receiver and the second is to assume that the quantisation error on the
reference receiver is constant over the gradient estimation period.

Approach 1

Evaluating (e.80)

Using the assumed properties of the quantisation error vectors and definitions

2ELd;(W)dy (W)]

= 2E[(WXX"3,()) + 8, ()X X" Wi ()X X", ()]
+2E5; HXXTS (M (HXX M ()] (e83)
The first term in (e.83) has been evaluated previously in (e.37)-(e.39), the second term
is derived below. Applying lemmas A.3 and Theorem A.4 and taking the expected

value over X and m separately

2E(8; (DXX"3, ()} (HXX"n(3)]

2E[5, (/R3] ()R + Tr(RS, (i} (i))R)n ()] taking E w.rt. X

Il

2E18, ()RS, (i)n] ()RN () +M{ (HRS, (/)8 (RN, ()] taking E w.rt. m

205, 8. ()RS, () Tr(R) + 207,85 (HR*8, (i) (.84)
substituting this back into (e.83) and using (e.39)
2E[d;(W)dT (W)] = 200, [Tr(R)W R (i) + WIR?S (i)

+ Tr(R)S] ()RW + 5. ()RW]

+205, (87 (DRS(DTr(R) + 8. ()HR’8,(i))  (e.85)
By similar methods using the assumption that the reference receiver quantisation errors
has the same distribution as the perturbed recetver then
2E[d, (W)dy, (W)] = 205, [Tr(R)W RS (i) + W'R*S (i)
+ Tr(R)S, ()RW + 8, ()R°W]

~207,(8, (DRS,()Tr(R) + 8, (DR*3 (1)) (e.86)

As was shown in the dual receiver with dual perturbation case, (€.59)

Eld, (W)d} (W)|W(n)] = 207 (W R’W + Tr(R)W'RW

nti nli

+ 8 (DR?8,(i) + Tr(R)S! ()RS, (i)

+ 02, (Tr(RY) + (Tr(R)))
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+ Tr(RY(W RS (i) + 8 ()RW)
+WIRS, () + 8, (DR*W) (.87)

Eld (W) dyty (W) | W(m)]

n2i
= ELW XX () + i OXXT W) (WHXXn,() + 3 (DX X" W)

H,. H_ . H,. H_ ..
+E[N; (XX M), (HX X n,(i)] (e.88)
Taking the expectation over X and 1 separately and applying lemmas A.3 and Theorem
A.4, then

ELd 1,(W)dy (W) | W(n)]

n2i
= 200,(W'R*W + Tr(R)W'RW + 62(Tr(R®) + (Tr(R))))  (e.89)

As shown in the dual receiver with dual pelturbation case, (e.63)

2E[dy | W(n)] = ~2(02,07)((Tr(R)) + Tr(R’)) (€.90)
E[m,-(W)ﬂz,-(W)|W(n)] = E[’ﬂz(i)m (W) =0 (e.91)
Evaluating (e.82)
Using (e.61), 0311 = 0‘312 and the following
E[d{W)|W(n)] = WYRS (i) + 8. ()RW + 8] ()R8 (i) (€.92)
Eld, ;(W)|W(n)] = Eldy,(W)|W(n)] = GfﬂTr(R) (€.93)
Eldyp,(W)|W(n)] = Eldpy,(W)|W(m)] = ~65,Tr(R) (€.94)
then
ELdy (W) |W(n)LE[(dy1 (W) + dy (W) W(n)] +
El(dy1{W) +d, (W)W (n)] x

E[(d} (W)+dnh(W)+dn21(W)) Wn)] =0 (€.95)

substituting equations (e.85), (e.86), (e.87), (e.89), (€.90) and (e.95) back into the
expression for the covariance of the gradient estimate and using 0'311 = 53‘]2 = 0'31

the covariance of the gradient estimate is given by

V(W (n)) = Vg, (W(n))

2 m
m—z“ Y {87 (OR?,(i) + Tr(R)S, ()RS, (i) }5,,(i)8H (i)
i=1

202 M
+ 5 3 2WIRW £ 2Tr(R)WRW + 0 Tr(R) + 0 (T7(R) 13, ()81 ()



2 m
2 {Tr(RY(W RS (z)+8 (z)RW)}B (;)SH(J) (e.96)
‘! m?, =y
H . H, .. 2 . .
2 {W"R ap(:)+6p(;)R W8 ()87 (i)
Y m i=1
where VGZM_E(W(n)) is given by (3.2)
Substituting for the projected perturbation sequence, (2.67), and using Lemma A.6 the
covariance of the gradient is given by
Vo Wo(n)) = cho,,.g(W(n)) + ZG%P(Diag(PRZP) + Tr(R)Diag(PRP))P

2

(2W R’ W+2Tr(R)W RW + 0 Tr(R )+0 (Tr(R))P (e.97)
y L

When the non projected sequence is used, the additional covariance terms are given by.
2, .. 2 .
Vo (W, (n)) = VGZM_K(W(n)) + ZGn(Dzag(R )+ Tr(R)Diag(R))
2

(2W R’ W+2Tr(R)W RW +6° Tr(R )+on(Tr(R)))ILL (.98)
y L

Approach 2
In this second approach the quantisation errors on the reference receiver is considered
to be constant in the estimation period. It is also assumed that this error is small and

can be ignored. The following terms will be affected in the previous analysis.

dyoi(W) =0 (€.99)
2E[dh(W)dn21(W)|W(n)] =0 (e.100)
E[dnzl(W)dnzl(W)|W(n)] =0 (e.101)
2E[dnh(W)dn21(W)|W(n)] =0 (e.102)
Eldy,(W)|W(n)] = E[dnzl(W)|W(n)] =0 (e.103)
Eldy (W)| W(n)E[(da; (W) + dry (W))| W ()] +

El(dy (W) + dyp (W))|W(n)] X
EUf{W) +dyy (W) + dn (W) | W)
= 207, Tr(R)(WRS, (i) + 87 ()hRW + 87 (i)R3, (i) (e.104)

Substituting (e.85), (e.87), (e.101), (e.101), (e.102) and (e.104) into the expression for
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the covariance of the gradient estimate then

Gz(w (n)) = V(;z (W(”))
2 m
= {48 ()RS (1)+2Tr(R)5 ()RS ,(i)}8,()3H ()
m i=1
2 m
Z{W R°W + Tr(R)WYRW + 62 2Ir(R )+cn(Tr(R))2}6 (DX ()
Y m i=1
2 m
2 {Tr(RYW'RS (;)+5 ()IRW)}8,(1)8H (i)
Y m 1-1

20

2 {WIR?S (i) + 8 (DRZW S ()82 (i) (€.105)
Y m i=1

where VGZMS(W(H)) is given by (3.2). For an odd symmetry sequence the last two
terms in (e.105) sum to zero.
Substituting for the projected perturbation sequence, (2.67), and using Lemma A.5,
A.6 the covariance of the gradient is given by
Ve (W (n)) = VG2 (W(n)) +0 P(4Dmg(PR P)+27Tr(R)Diag(PRP))P

0'2
+ ~———(W R°W + Tr(R)W RW+o Tr(R )+ Gn(Tr(R))z)P (e.106)

7221,

When the non projected sequence is used the gradient covariance is given by
2 , 2 .
Ve (W,(n)) = Vszg(W(n)) + 0, (4Diag(R") + 2Tr(R)Diag(R))

2

+i—(w R°W + Tr(R)W" RW +0° Tr(R )+ 0y, (Tr(R))Z)ILL (e.107)
Y 2

Derivation of Result 4.4.c, Gradient Covariance Single Receiver System

Assuming the quantisation process is performed using Method 2 the output power of
receiver 1 defined by (2.50) can be represented as

d(W) = di (W) +d, (W) (c.108)

where

dy (W) = WHXXP5 (i) + 8, (DXX"W + WHXX"W + 8] ()X X"8 (1) (e.109)

dy (W) = WIXX"n () + ] (DXXTW + 5, ()X X () + i ()X XS (i)
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+nY (ixx"n,6) (e.110)

By setting d,(W) = (¢.108) in (a.7) one obtains T’ = G3(Wq(n)) . By assumption
{X(i)} is a sequence of independent random vectors and this implies that (a.9) is

satisfied. Applying Lemma A.4 and substituting (e.109) and (¢.110) gives

Va(W,(n)) = %mz 3 {E[d(W)d} (W)|W(n)]
i=1

~ELd(W)|W(m)ELd; (W)|W(m)]1}8,()85 (i) (e.111)

= = 3 {Ed (W) w)|W(n)
Y m -y

~E[d|(W)|W(n)]ELd;(W)|W(n)]1}8 ()8 (i) (e.112)
AN

H H

+ —51—2 3 {2E[d;{W)dp; AW)] + E[dy (W)dy AW)1 18 ()8H(i) (e.113)

Yym;-q
_%2 ) {E[du(W)|W(n)]E[dgl,-(W)|W(n)]
Ymi;-y

+E[d?

1iW)|W(m)ELdy

HAW) + A (W) W18 ,(08H()  (e114)

The expressions on the left hand side of the above equation can now be evaluated. Note
that the first term, (e.112), is equivalent to the gradient covariance when no
quantisation effects are considered.

Using the assumed properties of the quantisation error vectors and definitions

Evaluating (e.113)
2E[d; (W)dy AW)] = 2ELWIXX78,(0) + 8] ()X X W[ ()X X" ()]
+2E[8, (HXX"8 () (DX X", ()]

+2E[W'xx"wnll(hxx"n, )] (e.115)
The first and second term in (e.115) has been evaluated previously in (e.37)-(e.39) and
(e.84) respectively. The last term can be derived by applying Lemma A.3, Theorem A 4

and taking the expectant value over X and m separately

2E(WHEXX Wl ()X X", ()]

= 20, W/RWIr(R) + 207, W'R’W  (c.116)
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using (€.39), (¢.84) and (c¢.116) in (e.115) gives

2E[d,(W)dp (W)] = 207, [Tr(R)W RS, (i) + WRS (i)
+Tr(R)S (HRW +8, ())R*W]
+202, (55 ()R8, () Tr(R) + 8¢ (HR*8, (1))

+ 202, (W'RWTH(R) + WR*W)

As was shown for the dual receiver dual perturbation case, (e.59)

E[d H

(Wyd, (W) Wm)] = 205 (WR'W + Tr(R)W'RW

nli nli
+87 (HR8, (i) + Tr(R)SY ()R8 (i)
+ 02 (Tr(R) + (Tr(R)))
+Tr(RY(WRS, (i) + 8, ()RW)
+ WIRS () + 8] ()R*W)
Evaluating (e.114)
Using the following

E[dy;(W)|W(m)] = (WIRS (i) + 8, (DRW + 5, ()RS () + W'RW)

H

Eld i

(W)|W(m)] = Eldg, (W)|W(n)] = o, Tr(R)

nli

then

ELd,(W)|W(n)]E[(d,,

W) W] +

H

Eld nli

(W)| W) LT (W) + dy, (W)| W ()]

nli
= 2(W'RW + WRS (i) + 8, ()RW + 5, ()R8 (1)), Tr(R)

(e.117)

(e.118)

(e.119)

(e.120)

4 2
+0,(Tr(R))" (e.121)

substituting (e.117), (e.118), (e.121) into the expression for the gradient covariance

then
Vs (Wo(n) = Vg (W(m)
+4—6$1 3 {WIRW +v287 ()RS (i) +
¥ » Y8, (OR™S (i)
mi=1

Y(WIR?S (i) + 85 (HDR*W) 18 ()8H(i)
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=

% ) {Tr(R)(YZSf(i)RSP(i) +Y(WTRS (i) + 85 ()RW) + W'RW)
=1

+
Y m;

2
o2 Tr(R?) + %H(Tr(R))z }SP(i)Sg(i) (e.122)

where VG30,;3(W(")) is given by (3.5).
Substituting for the projected perturbation sequence, (2.67), and using Lemmas A.5

and A.6 the covariance is given by

V(;3(Wq(”)) = Vg3m.g(W(n))

46 wiR*w
+ G.n —2

P+ PDiag(PRzP)P]
Y 4L

2 2
+ ﬁ[oﬁTr(RZ) + ﬁ(rr(R))QJP
Y 2

h

H
2 | W RW
+20'n[Tr(R)(PD1ag(PRP)P+ e PD (€.123)

When the non projected sequence is used the gradient covariance is given by

VG3(Wq(n)) = VG30”8(W(H))

2[WHR2W
+ 40

. 2
N —2—ILL+D“13(R )]
Y 4L
0’2 0’2
2 2
+ Tnz(onTr(Rz) + Tn(Tr(R)) ]ILL

W'RW D (e.124)

2 .
+ ZGn(Tr(R)(Daag(R) + W—ILL

where Vaa,,,,-g(w(")) is given by (f.9).

Gradient Covariance With Respect to the Weight Error Vector

To determine the misadjustment we require the gradient covariance to be expressed in
terms of the weight error vector. Here we evaluate these expressions.

Dual Receiver Dual Perturbation System- Gradient Covariance

Substituting the expression for the weight error vector, (3.54), into (4.8), one obtains
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the following

Ve (W, (m) = 2(V(n) + WYR(V(n) + W)PDiag(PRP)P
+ 6, P(Diag(PR’P) + Tr(R)Diag(PRP))P
2
+ g—n((V(n) + WYHR?(V(n) + W) + Tr(R)(V(n) + WYIR(V(n) + W))P

Y 2L
4

Oy 2 2
+ 2—(Tr(R Y+ (Tr(R)*)P (e.125)
Y 4L

Using (c.3) and (¢.7) in (e.125) gives
Voi(W,(n)) = 2(VI(m)RV(n) + WIRW)PDiag(PRP)P
+ 6L P(Diag(PR’P) + Tr(R)Diag(PRP))P
0_2
+ S (VEm)R2V(n) + WHR2W + VAm)R*W + WRV (n))P

Y 2L
2

+ g—"(Tr(R)(VH(n)RV(n) + WHRW))P
Y 2L
614.] 2
+ —=(Tr(R") + (Tr(R))*)P (e.126)
v'4L

taking expectation with respect to V(n) and using the following

B(n) = E[V(n)VH(n)] (€.127)
E[VEmR*W] = EIWHR*V(n)] = 0 (.128)
gives

Vei(W(n)) = 2(Tr(RB(n)) + W/RW)PDiag(PRP)P
+ 02P(Diag(PR’P) + Tr(R)Diag(PRP))P

2
(o) n n
+ —-(Tr(R2B(n)) + W/RW)P
Y 2L
2
a - ~
+ ——(Tr(R)(Tr(RB(n)) + WRW))P
vy 2L
Gﬁ 3
+ 5= (Tr(R") + (Tr(R))")P (e.129)
Y 4L
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and re-arranging the terms gives

2
Vo (W, (n) = Tr(RB(n))[Z(PDiag(PRP)P)+ on Tr(R)P]

2
5 ¥ 2L

c . R
+ 2" Tr(R2B(n))P + 2WHYRWPDiag(PRP)P
Y 2L

+ 6, P(Diag(PR’P) + Tr(R)Diag(PRP))P
2

2
G - . N -
+ —“[Tr(R)WHRW + WHR2W +

5 %(Tr(RZ) + (Tr(R))z)JP (e.130)
2

Y 2L Y

Dual Receiver Reference Receiver System - Gradient Covariance

Substituting the expression for the weight error vector, (3.54), into (4.10), one obtains

the following

Vo (W (n)) = 2y2LP(Diag(PRP))’P
+2(V(n) + WHIR(V(n) + W)P(Diag(PRP))P
+ ZGiP(Diag(PRzP) + Tr(R)Diag(PRP))P
26> o o
+ %(VH(n,)RZV(n) + WHR2W + VEmR’W + W RV (n))P
L

¥
2

2
+ %(Tr(R)(VH(n)RV(n) + WHRW))P
YL
4
%1 2 2
Y

Using (c.3), (c.7), (e.127) in (e.131) and taking expectation with respect to V(n} gives

VoW (n)) = 2y2LP(Diag(PRP))?P
+2(Tr(RB(n)) + WIRW)PDiag(PRP)P
+ ZUiP(Diag(PRZP) + Tr(R)Diag(PRP))P

2

20 A -

+ T“(Tr(R2B(n)) + WHRZW)HP
Y L

2

2611 VAR
+ YTL(T;’(R)(TF(R(B(H))) + WIRW))P
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U: )
+ TL(irr(R )+ (Tr(R))%)P (e.132)
Y

rearranging the terms gives

2
20
Ve (W (n) = Tr(RB(n))[EPDiag(PRP)P+ T”Tr(R)P]
vy L
+ 2y2LP(Diag(PRP))2P + 2(W'RW)PDiag(PRP)P
+20,P(Diag(PR’P) + Tr(R)Diag(PRP))P
2

ch
+ —=2Tr(R2B(n))P
YL
202 n . - » 02 2
+T“ WHR2W+Tr(R)WHRW+—2—"—(Tr(R Y +(Tr(R)?) P (e.133)
YL Y 2L

Single Receiver System - Gradient Covariance

Substituting the expression for the weight error vector, (3.54), into (4.12) one obtains

the following

Ve3(W (n)) = 2P[Diag(PR(V(n) + W)(V(n) + W) RP)|P
+Pla(V(n) + WYR(V(n) + W)Diag(PRP)|P
+20,P(2Diag(PR’P) + Tr(R)Diag(PRP))P

2

+ %((V(n) + WYIR (V(n) + W) + THR)(V(n) + W)ER(V (n) + W)H)P
YL

4
G'q 2 1
+ Yz—L(Tr(R ) + E(Tr(R))ZjP (e.134)

Using (c.3), (c.7) in (e.134) gives
Vgg.(Wq(n)) = a(VH(n)RV(n) + WIRW)PDiag(PRP)P
+2PDiag(PRV(n)VE(n)RP)P

+20.P(2Diag(PR’P) + Tr(R)Diag(PRP))P
2
o n o n N
+ S (VE(m)R?V (n) + WHRW + VE(m)R*W + W/R'V(n))P
YL
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2

+ ST RV )RV (n) + WHRW))P
YL

4
O (R4 L 2 |
+Y2L(Tr(R ) +5(Tr(R)) )P (e.135)

and taking expectation with respect to V(n) and using {¢.127) in (e.135)gives
Ves(W () = a(Tr(RB(n)) + W/RW)PDiag(PRP)P
+2PDiag(PRB(n)RP)P
+20, P(2Diag(PR’P) + Tr(R)Diag(PRP))P
2
g n ”
+ = -(Tr(R?B(n)) + W/R2W)P
YL

02 " 3
+ = (TrR)(Tr(R(B(n) + WRW)P
Y

4
On 2,1 2
+Y2L(Tr(R )+ 5(Tr(R)) )P (e.136)

re-arranging the terms )
N g
Vaas(W (n)) = Tr(RB(n))(aPDiag(PRP)P+ T“Tr(R)PJ
YL
0_2
+ 2PDiag(PRB(n)RP)P + —LTr(R2B(n))P
Y L
+aW'RWPDiag(PRP)P + 20, P(2Diag(PR’P) + Tr(R)Diag(PRP))P

2
g ~ - n -
+ %(WHRZW + Tr(R)WHRW + oﬁ(n(Rg) + é(Tr(R))zDP ©.137)
YL
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Gradient Covariance - Generic Expression

Examining equations (e.130), (e.133) and (e.137) it can be observed that the covariance

expressions are similar and can be expressed in a generic form given by the following

V(W (n)) = Tr(RB(n))A;+ Tr(R?B(n))A, + A,
+A,Tr(PDiag(PRB(n)RP)) (e.138)

The variables A, A,, A, and A, are defined below.

Dual Receiver Dual Perturbation System
2

(s)
A = [2(PDiag(PRP)P)+ 2“ Tr(R)P
v 2L
0_2
Ay = P
Y 2L
A, = 2WHRWPDiag(PRP)P+0'121P(Diag(PR2P)+Tr(R)Diag(PRP))P
2 2
(s} n n n n 0
+ 2—”[Tr(R)WHRW + WHR2W + T“(Tr(Rz) + (Tr(R))z)]P
v 2L Y2
(e.139)
Dual Receiver Reference Receiver System
_ 20,21
A, = |2PDiag(PRP)P + =1Tr(R)P
y°L
2
20
Ay = =7
Y L
A5 = 2y2LP(Diag(PRP))2P + 2(W/RW)PDiag(PRP)P
+20%P(Diag(PR’P) + Tr(R)Diag(PRP))P
20:,21 o Ao 03] 2
+—-| WHRZW + Tr(R)WRW + ———(Tr(R") + (Tr(R))?) |P
YL vy 2L
(e.140)

Single Receiver System

o
A, = aPDiag(PRP)P + -Tr(R)P

Yy L
02
Ay = P
Yy L
Ay = aWHRWPDiag(PRP)P + 20, P(2Diag(PR’P) + Tr(R)Diag(PRP))P

2
8] " ~ ~ =
s (W”R2W + Tr(RYWHRW + oﬁ(Tr(Rz) + %(Tr(R))ZDP
Y L

Ag=2 (e.141)
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Misadjustment - Bounds Analysis

In this abbreviated analysis we assume that the conditions for convergence of the norm
of the weight error vector as established in Section 3.5 and Appendix B are satisfied,
the trace of the norm of the weight error vector in the limit as n — oo can then be taken.
By substituting (e.138) into (3.58), and by using Lemma A.2 an upper and lower bound
for nli_l,n Tr(RB(n)) can be obtained. They are given by:

. HA,

Hm Tr(RB(n)) < e.142
n— oo (RB(n)) d—pwA +A, Ay +A, A, +4A, ) ( )
lim Tr(RB(n)) = hAs (c.143)
n—» o _4—H-A1 )

The equations (e.142) and (e.143) correspond to the upper and lower bounds for the

ssemsp. The bounds on the misadjustment can be obtained from these.

The asymptotic misadjustment can be obtained by considering p to be small in (e.142)

and (e.143). The asymptotic misadjustment is then given by the following
A
_ "MH 3 (e.144)
AWZRW
The misadjustment expression (4.15), (4.16) and (4.17) are obtained by making the

appropriate substitutions from (e.139), (e.140) and (e.141) into (¢.144).
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Appendix F

For reference purposes this appendix contains results derived in [2], [10], [39], [40].
For all the results shown here, the non projected Time Multiplex sequence is used

throughout the receiver structures.

Gradient Covariance of Dual Receiver Dual Perturbation System

Vei(W(n)) = 2WH(n)RW(n)Diag(R) for a 4L length sequence. (f.1)
Vg1 (W(n)) = 4WH(n)RW(n)Diag(R) for a 2L length sequence. (f.2)
Misadjustment of the Dual Receiver Dual Perturbation System - Direct Approach

For a given W(n) if the covariance of the gradient used in (2.27) is given by (f.1) and

L-1
1 WTr(R) 1
0<P-<h—-—-—Tr(R) and 3 _El—uli<l
max Ay i=1
2L
uTr(R) 1
2 1— pUA,;
then M = (£.3)
j.LTr(R) |
E 1 —pA,

where A represents the eigenvalues of PRP.

Misadjustment of the Dual Receiver Dual Perturbation System - Bounds Approach

For a given W(n) if the covariance of the gradient used in (2.27) is given by (f.1) and

1

if E[||V(0)||*] <o and 0 < < —
05( ):rr(R) +20

then the steady state excess mean square power is bounded and the corresponding

misadjustment is bounded by b; <M < b,

where
pL-1 H{L-1

- ZE( i )lTr(R):l nd b, = u 21|;( lL )Tr(R)] .
1_5[( - )Tr(R)J 1—-2{(T)Tr(R)+2l }
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where A represents the eigenvalues of R

Gradient Covariance of Dual Receiver Reference Receiver System

Vo (W(r)) = 2y2LP(Diag(R))2P + 2WH(n)RW (n)Diag(R) (.5)

for a 4L length sequence

Misadjustment of the Dual Receiver Reference Receiver System - Direct Approach

For a given W(n) if the covariance of the gradient used in (2.27) is given by (f.5) and

1 uTr(R)
°<“<l Tr(R) 24 Z1 W
max + 2L

2 L-1
[1 LY Tr(R)]p.Tr(R)ZI 1

WHRWI L & 1-ph,
then M = T 1= (f.6)
PTr(R) 1
! 2L 2 1 - uA,;

where A represent the eigenvalues of PRP.

Misadjustment of the Dual Receiver Reference Receiver System - Bounds Approach

For a given W(n) if the covariance of the gradient used in (2.27) is given by (f.5) and

1

if E[IV(0)])*] <= and 0 < p <
os(L 1)Tr(R)+?\.

then the steady state excess mean square power is bounded and the corresponding

misadjustment is bounded by b; <M < b,

fiezoter i)

h b, = &N
whnere L _%I:(LL I)Tr(R):I
g[(a;]mm@ +Y2;,%ﬂ
and b, = (£.8)

- g[(-L-Z—IJTr(R) + 2

where A represents the eigenvalues of R.
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Gradient Covariance of Single Receiver System

(WH(n)RW (n))?
vy22L

Vga(W(n)) = P(Y22L(Diag(R))2+
+2Diag(RW(n)WH(n)R) + 2WH(n)RW(n)Diag(R))P
(f.9)

Misadjustment of the Single Receiver System - Bounds Approach

For a given W(n) if the covariance of the gradient used in (2.27) is given by (f.9) with
1

W () RW (n)72
2Tr(R) }

F(W(n)) = c[
1

aflL-1
Z[T)T?’(R) + I‘SA’max

If E[||[V(0)||*] <o and 0 < p <

then the steady state excess mean square power is bounded and the corresponding

misadjustment is bounded by b; <M < b,

%[g(l%l)Tr(R) +0.5(L - 1)WHRW]
where b; = (f.10)

)

g[‘.’[?)ﬁ(m +0.5(L - I)WHRW}

4
and b, = (f.11)

- %“[(%)Tr(R) + 1.5}.max]

2
where A represents the eigenvalues of R and a = (c + 1)

C
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