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Abstract: Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to
the rapid technological advancements in CT scanning techniques. These advancements include the
development of multi-slice CT, from early generation to the latest models, which has the capability
of acquiring images with high spatial and temporal resolution. The recent emergence of photon-
counting CT has further enhanced CT performance in clinical applications, providing improved
spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based
anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-
printed patient-specific models are also superior to standard CT, offering advantages in terms of
educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well
as enhancing doctor–patient communication. Three-dimensional visualization tools including virtual
reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular
CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning,
and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has
significantly improved, with promising results being presented in terms of both disease diagnosis
and prediction. This review article provides an overview of the applications of cardiovascular CT,
covering its performance from the perspective of its diagnostic value based on traditional lumen
assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the
use of these advanced technologies. The limitations and future prospects of these technologies are
also discussed.

Keywords: cardiac computed tomography; 3D; visualization; diagnosis; coronary artery disease; 3D
printing; virtual reality; mixed reality; artificial intelligence

1. Introduction

Computed tomography (CT) is a widely used imaging modality in the diagnosis
of cardiovascular diseases [1–14]. The diagnostic value of cardiovascular CT has been
significantly enhanced with the rapid advancements in CT technologies over the last
few decades, allowing for the acquisition of high-resolution images with low radiation
doses [15–19]. In addition to the routine use of single-energy CT in daily practice, dual-
source and dual-energy CT are becoming increasingly available in most of the current
multi-slice CT scanners, further enhancing the diagnostic value of using cardiovascular CT
in the context of many cardiovascular diseases [15–21].

The recent emergence of photon-counting CT (PCCT) represents the latest techno-
logical development of CT scanning techniques, with this technique having superior
advantages over traditional CT scanners. PCCT enables the acquisition of high-resolution
images with improved contrast resolution and simultaneous multi-energy imaging, show-
ing superior advantages over traditional dual-energy CT in cardiovascular imaging [22–29].

Although cardiovascular CT is continuously gaining widespread acceptance and
significance, its clinical value mainly focuses more on lumen assessment and the detection
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of vascular abnormalities, and this feature meets the diagnostic requirements in most
situations due to its high diagnostic accuracy, thus serving as the first-line imaging modality
in cardiovascular disease [1–21]. The well-known limitation of cardiovascular CT lies in the
fact that it does not yield functional information, which is more apparent in the assessment
of lesion-specific ischemia in coronary artery disease. This has been overcome with the
increasing use of CT-derived fractional flow reserve (FFRCT) [30–34]. Single- and multi-
center studies have confirmed that FFRCT can guide patient treatment by identifying lesion-
specific ischemia, with coronary CT angiography (CTA) showing improved specificity and
positive predictive values when compared to conventional coronary CTA in the diagnosis
of coronary artery disease [35–48].

CT-derived post-processing approaches have transformed the clinical value of car-
diovascular CT in cardiovascular disease, and this transformation has led to the creation
of patient-specific physical models such as 3D-printed personalized heart and vascular
models [49–63] and virtual models for visualization, created using virtual reality (VR),
augmented reality (AR), and mixed reality (MR) [64–68]. These innovative 3D visualization
tools augment the current applications of cardiovascular CT to go beyond the traditional
diagnostic approach, as these novel tools can be used for educational purposes, medical
training, and the simulation of cardiac procedures, as well as to enhance doctor–patient
communication [49–68]. Further, with the increasing use of artificial intelligence (AI) in
medicine, the role of cardiovascular CT has also been enhanced with machine learning (ML)
and deep learning (DL) algorithms being incorporated into standard practices to improve
the workflow of current practices, in addition to increasing diagnostic accuracy and the
prediction of disease outcomes [69–73].

This review article provides an overview of cardiovascular CT in cardiovascular dis-
ease, with a focus on its current applications beyond lumen assessment. This includes
describing the diagnostic value of using the latest CT scanners; PCCT; CT-derived 3D
printing; VR, AR, and MR; FFRCT; and AI, ML, and DL in cardiovascular applications. Lim-
itations and future research directions are highlighted. This review aims to provide a useful
resource for readers who are interested in cardiovascular imaging research and the recent de-
velopments in CT technologies and their associated applications in cardiovascular disease.

2. Cardiovascular CT: Diagnostic Value Based on Standard Imaging Approach

Cardiovascular CT serves as the first-line imaging modality, being preferred over the
gold standard conventional catheter-based angiography in the diagnosis of many cardio-
vascular diseases, including coronary artery disease (CAD), aortic aneurysms or dissection,
peripheral artery disease, and pulmonary embolisms [1–9]. This is mainly because of its
high diagnostic sensitivity and specificity (>90%) in most of these areas, hence proving that
cardiovascular CT is a reliable alternative to conventional angiography. The main driving
force of the technological developments in CT lies in cardiac imaging, in particular, the
field of coronary CTA in CAD, which comes with strong demands in terms of both spatial
resolution to detect and assess small coronary arteries and temporal resolution to allow for
the acquisition of cardiac images with few motion-related artifacts [5–10]. Recent evidence
has highlighted the high sensitivity (>90%) and very high negative predictive value (>98%)
of coronary CTA in CAD, indicating that it is a reliable diagnostic tool for determining
coronary stenosis. However, it is also a well-known fact that coronary CTA struggles to
accurately assess heavily calcified plaques or coronary stented lumens due to blooming
artifacts resulting from the extensive calcification and stent wires. This significantly hinders
the diagnostic performance of coronary CTA, in particular, compromising its specificity and
positive predictive value (PPV), limiting its widespread application in these two particular
areas [74–78].

Various approaches have been proposed to address the issues encountered in coronary
plaques, such as the use of image post-processing methods, iterative reconstruction, and
thin slice thicknesses, as well as the use of AI algorithms [79–89]. This has improved
coronary CTA performance to some extent; however, the specificity and PPV are still mod-
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erate (less than 70%) [88–93]. The recent advancements in CT technology and specifically
the emergence of photon-counting CT have overcome this limitation to a greater extent,
with superior spatial resolution and multi-energy imaging characteristics contributing to
improving the diagnostic value [21–28].

3. Photon-Counting CT: The Latest Technological Advancements in Cardiovascular CT

Photon-counting detectors have the potential to overcome the current CT limitations by
directly converting x-ray photons into electric signals, thus optimizing CT dose efficiency at
an ultra-high resolution of 0.2 mm. The direct detection of photons also enables photons to
be separated into specific energy levels, thus eliminating noise with an improved contrast-to-
noise ratio. Further, PCCT allows for the acquisition of multi-energy images simultaneously;
hence, PCCT has many benefits in cardiovascular imaging, specifically in assessing calcified
coronary plaques or coronary stents with a reduction in noise and artifacts [21,22]. PCCT
was introduced into clinical applications about two years ago, but increasing evidence
derived from single- and multi-center studies has demonstrated its superior advantages
over the current CT scanners, regardless of the presence of severe calcification in the
coronary arteries or coronary stents [23,24,27,94–96].

Figure 1 is a schematic representation of a comparison between PCCT and the current
widely used CT scanners. Figure 2 shows an example of using PCCT in patients with high
calcification in the coronary artery, with PCCT allowing for an improved visualization of
the coronary lumen when compared to standard coronary CT angiography. Figure 3 shows
a clear visualization of coronary stents and a stented lumen, while Figure 4 presents aortic
valve prosthesis with the use of PCCT. Table 1 summarizes the main benefits of PCCT in
cardiovascular applications [22].

Figure 1. Imaging principle differences between standard energy-integrating detectors (EIDs) and
photon-counting detectors (PCDs). X-ray photons are directly converted into electrical signals by a
semiconductor on the PCD (right image); in contrast, X-ray photons are absorbed by the scintillator
and converted into visible light, which is then collected by the light sensor that generates an electrical
signal (left image). The long blue arrows indicate the difference of converting X-ray photons into
electric signals between PCCT and EID CT. Reprinted with permission under open access from
Tortora et al. [21].
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Figure 2. An 82-year-old man with coronary artery disease. The visualization of calcified plaques and
the lumen diameter of the proximal left anterior descending coronary artery was improved via the
acquisition of high-resolution photon-counting CT images (b) with 0.2 mm slice thickness rather than
images obtained using standard CT (a) with 0.6 mm slice thickness. Arrow refers to larger perfused
diameter of the proximal left anterior descending coronary artery in PCCT (b) than that observed
with standard CT (a) which shows nearly occluded coronary lumen. Reprinted with permission
under open access from Flohr et al. [24].
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Figure 3. Cardiac PCCT visualization of coronary stents and stented lumen. There are two stents
at the level of the proximal and middle RCA (A) and one stent on the marginal branch of the
left LCx (C); the LAD (B) is normal, without any detectable atherosclerotic disease. All stents are
perfectly visualized in terms of their inner struts and also in their inner lumen, which is difficult
to achieve using standard cardiac CT. PCCT—photon-counting CT, LAD—left anterior descending,
LCx—left circumflex, RCA—right coronary artery. Reprinted with permission under open access
from Cademartiri et al. [22].
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Figure 4. Cardiac PCCT: example of a follow-up of an aortic valve prosthesis that shows significant
signs of Hypo-Attenuating Leaflet Thickening (HALT) due to thrombotic apposition (arrowheads). A
very thin layer of hypodense tissue can be easily seen in the high-resolution PCCT image. Reprinted
with permission under open access from Cademartiri et al. [22].

Table 1. Benefits of using photon-counting detectors and their impacts on cardiovascular applications.
Reprinted with permission under open access from Cademartiri et al. [22].

Benefits of Photon-Counting Detectors Potential Cardiovascular Applications

Higher spatial resolution

Stent imaging
Coronary lumen evaluation
Atherosclerotic plaque imaging
Coronary artery calcium scoring
Aortic valve calcification score

Improved iodine signal Coronary lumen evaluation
Stent imaging

Multi-energy acquisition

Coronary lumen evaluation
Atherosclerotic plaque imaging
Dose reduction
Coronary artery calcium scoring
Aortic valve calcification score

Energy binning

Stent imaging
Atherosclerotic plaque imaging
Dose reduction
Myocardial tissue characterization.

Artifact reduction
Coronary lumen evaluation
Stent imaging
Atherosclerotic plaque imaging
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4. Cardiovascular CT: Beyond Lumen Assessment

Despite providing excellent anatomical information about coronary arteries and other
cardiovascular systems, the functional assessment of cardiovascular disease using CT is
not comparable to that based on cardiac magnetic resonance imaging or nuclear medicine
modalities. CT-derived image post-processing and analysis has overcome this limitation
and has further advanced its clinical applications well beyond original lumen assessment.
This is demonstrated by many innovative applications, including three-dimensional (3D)
printed models based on CT data; VR, AR, and MR visualizations; and CT-derived FFR
(FFRCT). The following sections provide an overview of the approaches involving the use
of original cardiovascular CT images for post-processing and analysis and a summary of
how these approaches enhance the clinical value of CT in cardiovascular disease.

4.1. Patient-Specific 3D-Printed Models: Medical Education

Three-dimensional printing has become an increasingly useful technology in medi-
cal applications, helping to generate patient-specific or personalized models to replicate
normal anatomy and pathology with high accuracy. Studies based on randomized con-
trolled trials have provided evidence that confirms the educational value of 3D-printed
models in cardiovascular anatomy and pathology when compared to the current teaching
methods [63,97–99]. The use of 3D-printed models has significantly increased students’
knowledge and understanding of complex cardiovascular anatomy and pathology, mainly
in congenital heart disease (CHD), compared to the use of diagrams, cadavers, or lectures
(the main techniques currently used in teaching) [97–99]. However, these randomized
controlled studies have some limitations, either due to their small sample sizes, their
singular focus on less complex cardiac anatomy without providing insight into the sur-
rounding soft tissue structures [98], or their comparisons of 3D-printed models with virtual
visualizations [100,101]. This latter limitation was addressed by a recent study that com-
pared 3D-printed models with plastinated human specimens [102].

Mogali and colleagues, in a randomized controlled trial, invited first-year medicine
students to demonstrate their learning of cardiac anatomy by comparing 3D-printed cardiac
models with plastinated cardiac specimens [102]. Three-dimensional printed models were
generated by scanning the plastinated cardiac specimens on a 64-slice CT scanner, with the
models being printed using multi-color materials (Figure 5). Overall, 32 and 31 students
were randomly allocated to the plastinated cardiac and 3D-printed cardiac model groups,
respectively. A significant improvement in students’ baseline knowledge was achieved by
29.7% and 31.3% of the participants in the plastinated and 3D printing groups, respectively.
There was no significant difference in terms of anatomy knowledge performance between
the two groups, with the mean post-test scores being 57.0 ± 13.3 and 60.8 ± 13.6 (p = 0.27)
for the plastinated and 3D printing groups, respectively. This study shows that use of 3D-
printed models did not disadvantage students in learning cardiac anatomy, thus indicating
that 3D printing serves as a reliable alternative to the current teaching tools.

Regarding the use of 3D-printed heart and vascular models in anatomy education, the
most commonly used imaging modalities are CT or MRI for the generation of 3D-printed
models. In a recent study, Arango et al. reported the feasibility of creating ultra-high-
resolution 3D-printed heart models using micro-CT [103]. They scanned perfusion-fixed
heart specimens using 0.1 mm resolution micro-CT scanning, with the images being post-
processed and segmented for 3D printing. The-3D printed heart models accurately repre-
sented cardiac walls, vessels, and the valvular and subvalvular structures of atrioventricular
valves (Figures 6 and 7), thus serving as useful tools to teach residents and cardiothoracic
anesthesia fellows and help them to learn basic and advanced echocardiographic views,
valvular pathology, and planned interventions. This study further advances the application
of 3D printing technology in cardiovascular anatomy by providing ultra-high-resolution
3D models that demonstrate the finer details of cardiac anatomy.
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Figure 5. Learning materials provided to the study groups: Phase 1 materials include plastinated
cardiac specimens (top row) and their three-dimensionally printed replicas and the coronary vessels
(bottom row). Reprinted with permission from Mogali et al. [102].

Figure 6. A 3D-printed model of the tricuspid valve of a human heart specimen (HH 223). (A) A
model printed using a clear material as viewed from the atrium, with leaflets labeled and the
moderator band marked with a red arrow. (B) A model printed using multiple colors and materials
and rotated to show the subvalvular apparatus. Yellow, tricuspid annulus; transparent, mitral leaflets;
blue, chordae tendinea; pink, papillary muscles. Reprinted with permission from Arango et al. [103].
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Figure 7. High-resolution fusion powder 3D-printed heart models representing the transesophageal
echocardiography (TEE) American Society of Echocardiography (ASE)-recommended views. Each
row represents two corresponding planes on each model that have been labeled accordingly. LAX,
long axis; RV, right ventricle; SAX, short axis; TG, transgastric. Reprinted with permission from
Arango et al. [103].

4.2. Patient-Specific 3D-Printed Models: Preoperative Planning and Simulation

Three-dimensionally printed personalized models have been shown to play an im-
portant role in the planning and simulation of complex cardiovascular procedures, and
this has been confirmed by a number of studies based on single-site investigations and
multi-center reports [49–53,57–62,104–112]. Most of the current reports in this area focus
on the usefulness of 3D-printed heart models in guiding CHD surgeries. This is most
likely due to the complexity and wide variations of CHD, which present challenges for
preoperative planning based on traditional 2D and 3D image visualizations. In contrast,
3D-printed personalized models assist cardiac surgeons in planning the treatment of CHD,
with up to 50% of surgical decisions involving the aid of 3D-printed models (Figure 8) [59].
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Figure 8. Surgical and interventional planning on 3D-printed heart models. DORV case, internal
vision from the left ventricle (left). DORV (another case), external view (right). DORV-double outlet
right ventricle. Reprinted with permission under the open access from Gomez-Ciriza et al. [59].

Three-dimensionally printed models also serve as a useful tool for hands-on surgical
training or the simulation of cardiovascular procedures. Three-dimensionally printed
heart models can be used to simulate congenital heart surgery with high satisfaction
scores. Furthermore, these models are also useful for simulating interventional cardiac
procedures such as the simulation of endovascular aortic stent grafting procedures for
the treatment of aortic aneurysms or aortic dissection (Figure 9) [113]; the simulation of
interventional treatment for transcatheter aortic valve replacement (TAVR) for predicting
the risk of coronary obstruction or complications [114,115] (Figure 10); and simulating
valvular stenosis (Figure 11) [116]. Another common application of 3D-printed models is
their use in guiding left atrial appendage occlude device selection, with improved outcomes
and reductions in the number of complications being reported [110,112,117–119]. Good
agreement in terms of occluder sizes was found between 3D model-based estimation and
the actual device sizes, with reduced procedure time and radiation exposure to patients
(Figure 12) [112].

Figure 9. Stent graft deployed in a 3D-printed model. (A) Deployed stent graft visible through
model wall. (B) Axial view from proximal arch. (C) Caudal view down arch vessels. Reprinted with
permission under open access from Wu et al. [113].
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Messarra and colleagues have further expanded the application of 3D printing tech-
nology to simulate coronary bypass procedures [120]. In their recent study, the researchers
developed an anatomic perfusion simulator to improve students’ understanding of can-
nulation sites, hemodynamic flow, and anatomy related to cardiopulmonary bypass. Six-
teen students were randomly allocated to two groups, with seven being allocated to the
bucket group, representing the standard bucket simulator, and nine being allocated to the
group representing the 3D-printed anatomic simulator with two different flow circuits
(Figure 13). In addition to the simulation of cardiovascular system flow, a continuous flow
pump was connected to the ports at the femoral arteries and veins to simulate the flow
generated by the heart. Their results showed a significant increase in the mean test scores
in the 3D printing group as opposed to the bucket group (18% vs. 3% increase). The 3D
printing group achieved eight instances of true learning, while in the bucket group, there
was only one. The largest gain in acuity confidence interval was found in the 3D printing
group. This study shows the potential value of using 3D-printed anatomic simulators to
teach perfusion students.

Figure 10. Cont.
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Figure 10. Three-dimensionally printed models with an a pulsatile circulation simulator for the
assessment of transcatheter valve hemodynamics. (A) Aortic root with left ventricular outflow tract.
(B) Three-dimensionally printed models of the thoracic aorta, abdominal aorta, and iliofemoral
arteries. (C) Pulsatile circulation system. (D) Representative hemodynamic waveforms of left
ventricular pressure (red line), aortic pressure (blue line), flow rate (green line), and the definition
of closing volume and PVL (red and yellow areas). PVL = paravalvular leakage. Reprinted with
permission from Tanaka et al. [115].
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Figure 11. Fluoroscopic documentation of the balloon dilatation of valvular stenoses with a 3D-
printed heart model. (A) Balloon dilatation of a valvular aortic stenosis. (B) Balloon dilatation of a
valvular pulmonary stenosis. AS—aortic stenosis, PS—pulmonary stenosis, LA—left atrium, LV—left
ventricle, RA—right atrium, RV—right ventricle. Reprinted with permission under the open access
from Brunner et al. [116].

Figure 12. Three-dimensionally printed patient-specific models based on echocardiographic images.
(A–F) From 3D transesophageal echocardiography (TEE) image to 3D physical model. (A,D) Segmentation
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of left atrial appendage (LAA) (shaded area) based on 3D TEE data. Measurements regarding the
major and minor ostial diameters and depth of the LAA were taken. (B,E) Creation of a digital object.
(C,F) Three-dimensional printed physical model made of tissue-mimicking material. Arrows denote
pulmonary vein ridge; stars denote appendicular trabeculations. (G–I) Modifying the size of the 3D
model. (G) Device compression and (H) protrusion in 3D model measured using a digital caliper.
(I) Tug test for stability. (J) Device compression and protrusion measured in a clinical procedure.
(K) Three-dimensional TEE en face view of final device position. (L) Color Doppler assessment
showing no peridevice leaks. (M) In another case, color Doppler assessment revealed a residual leak
with a jet width of 3.4 mm. Reprinted with permission under open access from Fan et al. [112].

Figure 13. A traditional bucket patient simulator (A) and a 3D-printed anatomic patient simulator (B).
1 indicates the venous line; 2 indicates the arterial line. IVC, inferior vena cava; SVC, superior vena
cava. The red arrows indicate the direction of flow. Reprinted with permission under open access
from Messarra et al. [120].

4.3. Patient-Specific 3D-Printed Models: Clinical Communication

Three-dimensional printed models have enhanced communication between colleagues,
clinicians, and patients, as well as the parents of patients. This is clinically important as
effective communication contributes to better patient care and clinical outcomes. Physicians
usually use visual aids to provide information to patients about their disease/condition
and treatment plans or options. However, it can be difficult for patients to comprehend
the complexity of cardiovascular anatomy and disease, particularly in more challenging
scenarios such as cases of congenital heart disease. The use of physical 3D-printed models
overcomes these limitations by presenting a realistic 3D model to the patient so that their
understanding of the anatomy and disease is significantly enhanced.

In their comprehensive review, Traynor et al. analyzed 19 studies about the use of 3D
printing technology in patient communication [121–127]. These studies confirmed that 3D-
printed models aided communication with patients/parents and colleagues (Figure 14) [122].
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Figure 14. Participants’ responses on how 3D-printed cardiac models improve communica-
tion with colleagues and patients/families. Reprinted with permission under open access from
Illmann et al. [122].

Deng et al., in a randomized controlled trial, studied the clinical value of using 3D-
printed heart models in surgical contexts related to congenital heart surgery [128]. The
guardians of 40 patients who were treated via ventricular septal defect repair were invited
to participate in the study, with 20 guardians being allocated to two groups: the study group
and a control group. The study group received the same information as the control group
(such as ventricular septal defect condition and surgical implications) as well as 3D-printed
models to help with the explanation of these details. This study’s results showed significant
improvements in participants’ understanding of congenital heart disease and surgical
procedures in the study group when compared to the control group (Figures 15 and 16).

4.4. Patient-Specific 3D-Printed Models: Optimizing CT Protocols

It is well known that CT is associated with relatively high radiation doses; thus,
minimizing radiation exposure is clinically significant, given the widespread use of CT in
daily practice. The traditional reliance on the use of commercial phantoms to study optimal
CT protocols has become less practicable due to expensive costs and the lack of simulations
regarding the situations of individual patients. The use of 3D-printed models to optimize
cardiovascular CT scanning protocols by representing realistic anatomical structures of
cardiovascular systems or organs has become a new research direction [129–137]. The
current literature shows the feasibility of using personalized 3D-printed heart or vascular
models to study CT protocols with minimized radiation doses. Despite only a few studies
on this topic being available in the literature, the use of patient-specific 3D-printed heart and
vascular models show promising results for the optimization of CT protocols [132,134–140].
Abdullah et al. and Morup et al. reported the feasibility of simulating human heart and
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vascular tissue properties using different materials, concluding that these simulations could
potentially be used to optimize cardiac CT protocols (Figure 17) [139,140].

Figure 15. Comparison of questionnaire results regarding different education levels (which did not
show significant differences). vsdknow: VSD knowledge, opknow: operation knowledge, OA: overall
understanding. Reprinted with permission under open access from Deng et al. [128].

Figure 16. Comparison of questionnaire responses between the two groups in the aforementioned
study conducted by Deng et al. Guardians’ understanding of both VSD and operation knowledge
was found to be significantly higher in the 3D printing group, although no significant differences
were found in the overall ratings. vsdknow: VSD knowledge, opknow: Operation knowledge, OA:
overall understanding. Reprinted with permission under open access from Deng et al. [128].
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Figure 17. The resulting axial CT of (A) four inserts in Catphan@ 500 phantom; (B,C) patient image
datasets for cardiac CT; (D) original cardiac insert of anthropomorphic chest phantom; (E,F) 3D-
printed cardiac insert phantom with the contrast materials (CM), oil, air, water, and jelly segmented
all labeled. Reprinted with permission under the open access from Abdullah et al. [139].

Sun et al. developed 3D-printed aorta and coronary artery models to study the
optimal CT protocols in imaging aortic dissection [135,137] and coronary plaques and
stents [130–132,138]. Patient-specific coronary artery models were developed to represent
realistic coronary artery trees via the simulation of calcified plaques in different locations
of coronary arteries showing extensive calcification (Figure 18) [130]. This allowed for the
study of different CT scanning protocols and the visualization of calcified plaques, which
always present challenges in accurately assessing the degree of coronary stenosis due to
the blooming artefacts associated with heavy calcification.

Three-dimensional printed aorta models can be used to optimize aortic CT angio-
graphic protocols for patients with type B aortic dissection after being treated via endovas-
cular stent graft repair (EVAR) [113,135]. CT angiography is routinely used to follow up
patients following EVAR treatment for aortic dissection; thus, reducing radiation doses
is necessary due to each patient receiving repeated CT scans. Three-dimensional printed
aortic dissection modeling based on the simulation of endovascular repair has been shown
to optimize CT protocols and reduce radiation doses by more than 20% while preserving
diagnostic image quality (Figure 19) [113]. These early results have laid a good foundation
for further experiments on the use of 3D-printed models for studying CT protocols.

4.5. The Use of 3D-Printed Devices in Treating Cardiovascular Disease

Patient-specific 3D-printed devices have been used in treating cardiovascular disease,
and promising clinical outcomes have been achieved. It has been reported that 3D-printed
devices including stents and valves have improved vessel patency and quality of life
in cases of pulmonary stenosis, coronary stenotic lesions, and complex valve patholo-
gies [104,107,110,112,117–119,141,142]. The factors that affect the long-term safety of using
3D-printed devices to model stents in patients with coronary artery disease, which include
biocompatibility, thrombosis, degradation and mechanical stability, long-term durability
and performance, vessel injury, adverse events and complications, patient suitability, and
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anatomical variability, should be considered [54,143]. Three-dimensional bioprinting is a
promising technology advancing the applications of 3D-printed models to another level, al-
though most of the current applications of 3D bioprinting in cardiovascular disease are still
in their early stages of development [144]. Significant progress has been achieved over the
last decade regarding the use of 3D-printed heart valves in treating valvular heart disease
and 3D-printed cardiac patch and heart models in treating myocardial infarction, and heart
failure [145–159]. Figure 20 presents an overview of the use of 3D bioprinting in cardiovas-
cular disease [159]. Another emerging area is 4D printing in cardiovascular disease, which
either utilizes smart materials to print models that are deformed or reshaped in response
to stimuli or printing 3D micro-tissues to form the expected functional tissue structures
and maturing them over time [159]. Please see the several excellent review articles on the
applications of 3D bioprinting in cardiovascular disease [148,150,152,158–160].

Of the imaging modalities used for developing personalized 3D-printed heart and
vascular models, cardiac CT and MRI are the most commonly used imaging modalities in
3D printing applications related to cardiovascular disease. Figure 21 is a flow chart showing
the steps that need to be followed to generate 3D printed models. Of the various image
processing software tools, Mimics (19.0-25.0) (Materialise, Leuven, Belgium) is the most
common commercially available software for image post-processing and segmentation,
while the open-source tool 3D Slicer (5.6.1) represents another commonly used software in
3D printing [161,162].

Figure 18. Three-dimensional printed patient-specific coronary models based on the simulation
of calcified plaques in the coronary arteries. (A) Three-dimensional printed models (n = 6) with
simulated calcified plaques in coronary artery branches. (B) Measurements of plaque dimensions on
2D maximum-intensity projection images using 0.5 mm slice thickness. Reprinted with permission
under open access from Sun et al. [130].
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Figure 19. Sagittal reformatted images of CTA protocols. When kVp was decreased to 80, image
noise increased with the use of high-pitch protocol values of 2.0 and 2.5. CTA: computed tomog-
raphy angiography; kVp: kilovoltage peak. Reprinted with permission under open access from
Wu et al. [113].

Figure 22 shows 3D printers that are commonly used in cardiovascular practice, while
Figure 23 provides an overview of the 3D printing technologies and materials that can
be used to generate patient-specific cardiovascular models [162]. The costs of printing
cardiovascular models depend on the size of the model and the materials used (soft versus
rigid versus multi-color materials), with costs being variable, ranging from less than USD
100 to more than USD 1000 [161,162].

4.6. Cardiac CT: CT-Derived FFR

The main limitation of using coronary CTA in predicting the functional significance of
coronary stenosis has been addressed using CT-derived fractional flow reserve (FFRCT),
and promising clinical outcomes derived from the use of FFRCT have been achieved in
many single-site and multi-center studies.

FFR is the reference method for determining lesion-specific ischemia. The clinical value
of FFR-guided patient management strategies has been well studied, with beneficial effects
being reported in many studies [66,163–170]. Maznyczka et al., in their recent meta-analysis,
analyzed eight randomized controlled trials to compare outcomes between FFR-guided
versus ICA-guided management strategies for patients with obstructive CAD [171]. Their
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analysis did not show significant differences in all-cause mortality (3.5% vs. 3.7%, p = 0.98),
myocardial infarction (5.3% vs. 5.9%, p = 0.69), and unplanned revascularization (7.4% vs.
7.9%, p = 0.37). However, in the FFR-guided group, the number of patients undergoing
planned revascularization either by stent or surgery was found to be significantly lower
than that in the invasive coronary angiography (ICA)-guided group (mean difference: 14,
95% CI: 3–25%, p < 0.001). They concluded that an FFR-guided approach could reduce
revascularization procedures by up to 25%, hence providing significant clinical benefits to
patients and also in terms of the efficient use of local health resources.

Figure 20. Diagram highlighting 3D bioprinting applications. Reprinted with permission under
open access from Häneke et al. [158]. CM—cardiomyocyte; HCM—hypertrophic cardiomyopathy;
hiPSC—human inducible pluripotent stem cell.

However, FFR is not widely used in clinical practice due to its invasive nature and
the potential risks associated with coronary interventional procedures. The use of FFRCT
has undergone rapid developments over the last few decades, from early studies to more
recent ones, as evidenced by the incorporation of deep learning models into simulations of
fractional flow reserve based on coronary CTA images [33–48].

FFRCT has unique advantages over standard coronary CTA by visualizing the coro-
nary stenosis and assessing its hemodynamic significance, thus allowing for a combined
anatomic–physiologic assessment of CAD. Representative multi-center studies including
DISCOVER-FLOW, NXT, DeFACTO, and NOVEL-FLOW published more than 10 years ago
confirmed that FFRCT has an enhanced diagnostic value, as well as especially enhanced
specificity in detecting hemodynamically significant CAD when compared to standard
coronary CTA based on lumen assessment (Figure 24) [41–43]. Recent randomized con-
trolled trials have further validated these findings. The PLATFORM study and FORECAST
trials involved multiple sites, with the results showing that use of FFRCT can guide pa-
tient management and resource use [44–49]. The results from the FORECAST trial did
not show significant differences in terms of major adverse cardiac and cerebrovascular
events between the study and standard groups, but a significant reduction in the use of
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invasive coronary angiography (19% vs. 25%, p < 0.01) was observed in the study group
after selective FFRCT use [48]. The ADVANCE registry also reported that FFRCT modified
the treatment of patients with stable chest pain in two thirds of cases when compared
to coronary CTA alone, and it was associated with significantly lower negative rates of
ICA [46].

Figure 21. Steps involved in creating 3D-printed models using cardiac CT and MR data. CTA—
computed tomography angiography; CMR—cardiac magnetic resonance. Reprinted with permission
under open access from Sun et al. [52].

Figure 22. Commonly used 3D printers. Reprinted with permission under open access from Gharleghi
et al. [162].
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Figure 23. Three-dimensional printing technologies and materials. FDM—fused deposition modeling,
SLA—stereolithography, DLP—digital light processing, ABS—acrylonitrile–butadiene–styrene, PLA—
polylactic acid, TPU—thermoplastic polyurethane, TPE—thermoplastic elastomers, HIPS—high-
impact polystyrene, PVA—polyvinyl alcohol, CJP—color jet printing, SLS—selective laser sintering,
SLM—selective laser melting, CoCr—cobalt–chromium, Ni—nickel, Ti—titanium. Reprinted with
permission under open access from Gharleghi et al. [162].

The TARGET trial was a recently conducted randomized controlled trial involving
1216 patients from six Chinese medical centers [172]. This trial mainly focused on the on-site
FFRCT-guided management of patients using machine learning (n = 608) with stable CAD
compared to standard care (n = 608 patients). Their results showed that FFRCT reduced the
proportion of patients undergoing ICA procedures without showing any improvements in
quality of life, but increased revascularization rates compared to the standard care group
were found (49.7% vs. 42.8%, p = 0.02). There was no significant difference in major adverse
cardiovascular events at 1 year follow-up between the two groups. This study also reported
cost savings with use of FFRCT, mainly because of a reduction in interventional procedures.
However, due to the differences between the reimbursement models of China and other
countries, further investigations into the cost-effectiveness of FFRCT in other healthcare
systems is needed.
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Figure 24. Examples of FFRCT in assessing the hemodynamic significance of coronary lesions at
three main coronary arteries (A,B). Coronary CT angiography shows significant stenoses on the left
anterior descending artery (LAD), right coronary artery (RCA), and left circumflex (LCx), while
FFRCT shows ischemia at RCA and LCx but not at LAD, as the FFRCT value is more than 0.80. This
was confirmed by invasive FFR measurements, as shown in (A(c)) and (B(c,f)). (a,b) in image (A),
(a,b,d,e) in image (B) refer to stenotic lesions of RCA and LAD on coronary CT angiography and
invasive FFR measurements, respectively, while ((A)d,(B)g) indicate FFRCT measurements at these
coronary arteries. Reprinted with permission from Norgaard et al. [43].
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4.7. Cardiovascular CT: VR, AR, and MR

Rapid developments in 3D innovative technologies, including VR, AR, and MR, have
further advanced the roles of traditional image visualizations in cardiovascular disease
and patient care, with increasing studies proving their educational and clinical value in
cardiovascular medicine. Due to complex cardiovascular anatomical and pathological
aspects and the importance of lifelong learning and training required to deliver high-
quality standards in cardiovascular care, these 3D visualizations serve as useful tools for
healthcare providers and patients [64–68,105,173–182].

VR allows the user to completely immerse themselves in a 3D virtual environment,
usually using a head-mounted display (Figure 25). In contrast, AR integrates virtual objects
into a real-world environment, thus enabling the user to interact with virtual models,
improving the simulation and management of complex cardiovascular procedures. MR
represents an advancement of AR, and it is a recently developed technology that mainly
involves overlaying virtual objects on real world settings (Figure 26) [172]. Extended reality
(XR) is a new term used to encompass all three of these tools (VR, AR, and MR). The use of
VR and AR and MR in medical education and training has been confirmed to improve the
understanding of 3D relationships in all medical disciplines [173–180].

Figure 25. VR completely immersing the user in a virtual 3D space. (A) User is completely immersed
in a virtual 3D space with use of a head-mounted display. (B) A real-life example of VR applica-
tion allowing trainees to perform virtual coronary angiograms. Reprinted with permission from
Jun et al. [173].

Barteit et al., in a systematic review, analyzed 27 studies, comprising a total of 956 par-
ticipants, about the usefulness of VR, AR, and MR in medical education [67]. The partic-
ipants included all types of healthcare professionals, of which medical students (59.9%)
and residents (30.2%) represented 90% of them. AR and MR were mainly implemented in
surgery training (48%) and anatomy learning (15%). Users showed great enthusiasm and
enjoyment in learning anatomy with the use of VR-, AR-, and MR-based head-mounted
devices. This review and other studies highlight the effectiveness of using innovative 3D
tools to enhance the learning of cardiac anatomy and pathology, with non-inferior results
when compared to conventional teaching methods being found [66–68,175].

In the context of cardiovascular disease, the applications of VR and AR mainly lie
in the field of interventional cardiology for the purposes of procedural simulation and
training, such as planning or simulating TAVR, CHD, or valvular interventions; left atrial
appendage occlusion; and/or cardiac ablation procedures [105,174–182]. Studies have
shown that the use of VR-/AR-guided approaches can result in more successful attempts
with fewer distance errors, shorter navigation times, and shorter path lengths during
valvular interventional procedures [65,105]. These techniques are showing great potential
for integration into cardiac catheterization laboratories, although more robust studies
including more patients are needed.
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Figure 26. AR integrates superimposed virtual elements into a real-world environment. (A) 3D CT
image of a patient’s vasculature could be imaged by an operator or (B) vascular calcifications could
be focused to guide the best puncture site and avoid complications during the procedure. (C) AR
superimposes virtual elements into a real-world environment. Reprinted with permission from
Jun et al. [173].

VR, AR, and, more recently, MR are being successfully used in CHD contexts, covering
different aspects, from education to the training and simulation of interventional proce-
dures [176,181–183]. Due to the variety of abnormalities associated with CHD presenting
challenges to understanding its complex cardiac anatomy and pathology, VR and AR
tools demonstrate superior advantages over traditional 2D/3D visualizations in medical
education, as well as surgical or interventional planning regarding CHD [182–184]. VR was
found to be the preferred display system in visualizing CHD, as assessed by students and
healthcare professionals, in [184,185]. Lau et al. compared VR with 3D-printed heart models
in four different CHD cases through conducting a survey-based study involving 29 partici-
pants [182]. Both the VR and 3D-printed models were comparable in terms of their degrees
of realism; however, VR was ranked as more useful than 3D-printed models in education
and preoperative planning. The same research group extended their study to compare MR
with 3D-printed models in two selected CHD cases, as assessed by 34 cardiac specialists
and physicians [183]. MR was ranked as the best modality, rather than 3D-printed models
and original DICOM images, in most clinical applications, including the demonstration of
complex CHD lesions, enhancing depth perception, the learning of cardiac pathology, and
facilitating preoperative planning (p < 0.05). In contrast, 3D-printed models were ranked as
the best tool for facilitating communication with patients.

Rad and colleagues reviewed the applications of XR in thoracic surgery by conducting
a systematic review of VR and AR in three main applications related to thoracic surgery:
virtual simulations for training, preoperative planning, and intraoperative guidance [186].
They identified 21 studies published from 2007 to 2019, leading to the consideration of
1570 patients. A total of 7, 11, and 9 studies were analyzed in relation to their focus on
training, preoperative planning, and intraoperative assistance, respectively. This review
represents the first updated analysis of XR (VR and AR) in thoracic surgery and shows
the potential of using these technologies in this field. XR increases procedural accuracy
and surgical confidence through improving our intraoperative understanding of patient
anatomy and the simulation of complex surgical procedures (Figure 27). An analysis of
these studies also confirmed that the use of VR/AR is more accurate than conventional
methods in establishing reference markers for surgical navigation [186].
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5. Cardiovascular CT: AI/ML/DL

The role of cardiovascular CT imaging in clinical practice continues to grow following
rapid technological advancements, and the introduction of AI, ML, and DL algorithms
into cardiovascular practice will further enhance its clinical value, from optimizing day-
to-day workflows to supporting clinical decision making [69–73]. AI has been applied in
all aspects of cardiovascular CT imaging, from the optimization of data acquisition, image
post-processing, and segmentation to improving image quality, automated detection, and
the quantification of cardiovascular lesions such as plaques and stenosis. AI could also
help to reduce inappropriate imaging studies, thus assisting clinicians to adhere to practice
guidelines and ever-changing appropriate use criteria [69].

5.1. AI/ML/DL in Coronary Calcium Scoring

Coronary calcium scoring is a routine procedure performed in clinical practice to
provide risk stratification for coronary artery disease; however, the quantification of cal-
cium scores could be a time-consuming job, as it still requires the involvement of human
observers in interpreting the non-contrast cardiac CT images. AI, specifically DL tools, has
been increasingly used for the automated quantification of calcium scores, showing high
accuracy compared to manual interpretation [40,187–190]. Wang et al. tested their DL algo-
rithm in 140 patients suspected of CAD, and no significant differences were found in terms
of the Agatston, mass, and volume scores between the DL and manual method [187]. There
was excellent agreement between the two methods regarding the Agastston score categories
and cardiac risk stratification, although 16% of patients were reclassified. Their findings
were confirmed by a more recent study that included more cardiac CT data acquired from
different scanners [190]. Mu et al. applied a DL model to spectral coronary CT angiography
and non-contrast CT data from 365 patients, which were used in the training and validation
datasets, while data pertaining to 240 cases were used for the independent testing of the
DL model [191]. CT images were acquired from Philips (IQon Spectral CT and iCT) and GE
(Revolution) scanners using different protocols. There was an excellent positive correlation
in Agatston score and also excellent agreement in risk categorization between the DL model
and human observer. Another advantage of their study over previous ones is the fact that it
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validated the DL model on different CT data from spectral and single-energy scanners, and
the results showed no significant difference regarding the scanner type, sex, and section
thickness (p > 0.05).

5.2. AI/ML/DL in Coronary Artery Disease

The use of advanced AI algorithms has shown significant improvements in assessing
calcified plaques, with the results of some studies showing reductions in the number of
false-positive rates [88,89,192–194]. In our recent study, we applied a fine-tuned DL model, the
real-enhanced super-resolution generative adversarial network (Real-ESRGAN), to process data
pertaining to 50 coronary CTA cases from patients with a total of 184 calcified plaques [88,89].
Measurements of coronary lumen stenosis from AI-processed images were compared to
those from original coronary CTA, with ICA being used as the reference method. The Real-
ESRGAN -processed images showed improvements in terms of specificity and positive
predictive value at all the three main coronary arteries, along with significant reductions in
false-positive rates (Figure 28). This DL model has significant clinical value, as reducing
false-positive rates will contribute to avoiding unnecessary downstream testing, mainly in
ICA procedures.

Figure 28. Cont.
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Figure 28. Multiple calcified plaques at the left anterior descending artery (LAD) in a 72-year-old
female. Coronary stenoses were measured at 80%, 78%, 72%, and 70% corresponding to the original
CCTA, Real-ESRGAN-HR, Real-ESRGAN-Average and Real-ESRGAN-Median images (short arrows
in (A)), respectively. ICA (short arrow in (B)) confirms 75% stenosis. The distal stenoses at LAD due
to calcified plaques were measured at 70%, 50%, and 51% stenosis on original CCTA, Real-ESRGAN-
HR, and Real-ESRGAN-Average images but measured at 45% on Real-ESRGAN-Median images
(long arrows in (A)). ICA confirmed the only 37% stenosis (long arrow in (B)). CCTA—coronary
computed tomography angiography; ESRGAN—enhanced super-resolution generative adversarial
network; HR—high resolution; ICA—invasive coronary angiography, Real-ESRGAN—real-enhanced
super-resolution generative adversarial network. Reprinted with permission under open access from
Sun and Ng [89].

Given the large number of images and coronary segments to review, resulting in a
time-consuming task for human observers, DL has great potential to increase efficiency in
interpreting coronary CTA images, with some reports documenting that DL similar or even
better diagnostic performance when compared to manual observation [189,194–199]. Han
and colleagues applied a DL model to 50 patients with CAD with AI-based coronary CTA,
reducing time to image reconstructions by 85% and time to diagnose CAD by 80% [189].
AI-based coronary CTA and the traditional method of observation being carried out by
expert observers have similar diagnostic value in identifying ≥ 50% coronary stenosis,
with the corresponding sensitivity, specificity, positive predictive, and negative predictive
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values being 88% and 59%, 85% and 94%, 73% and 81%, 94% and 83%, respectively. The
main limitation of using DL in coronary CTA is that most of the current studies are small
proof-of-concept ones. This limitation has been addressed by a recent multi-center study
involving nine cohorts at 11 international sites [194]. The novel DL model was trained
on data from 921 patients (5045 lesions) for the automated segmentation of coronary
plaques (Figure 29) before being applied to test 175 patients (1081 lesions), and another
50 patients (84 lesions) were assessed by intravascular ultrasound. The results showed
excellent agreement and correlations between the DL model and expert readers in terms of
measurements of plaque volume and lumen stenosis (intraclass correlation coefficient [ICC]
0.964 and 0.879, p < 0.001), as well as excellent agreement between DL and intravascular
ultrasound in these two measurements (ICC 0.949 and 0.904). The mean time for per-
patient plaque analysis was 5.65 s for the DL model and 25.66 min for the expert readers.
DL-based measurements can predict the risk of future myocardial infarction; thus, DL has
the potential to be implemented into routine cardiac CT workflows.

5.3. AI/ML/DL in Abdominal Aortic Aneurysm and Aortic Dissection

Abdominal aortic aneurysm (AAA) is a common and life-threatening cardiovascular
disease, and early diagnosis, especially the identification of the aneurysm growth and
risk of rupture, plays an important role in improving the management of patients with
AAA. The role of AI in the treatment of AAA patients has not been well explored. Raffort
et al. conducted a comprehensive review about the usefulness of AI in AAA through an
analysis of 34 studies [200]. Of these 34 studies, 15 were related to image segmentation and
automation, 14 were related to the prediction and prognosis of patients, and 5 were related
to AAA geometry and fluid dynamic analysis. Manual segmentation is time-consuming
and also subject to inter-operator and intra-operator variations. With the use of AI, the
mean segmentation time per patient was reduced to 7.4 min as opposed to 25–40 min per
patient with the human manual segmentation method (Figure 30) [200,201]. This finding is
similar to a recent study that showed the feasibility of using AI to screen for AAA [202].
Spinella et al. proposed a pipeline for the automatic segmentation of aortic lumen and
thrombus and the calculation of maximal aortic aneurysm in 48 patients with AAA and
25 control patients. The average automatic lumen and thrombus segmentation time was 25
s and 63 s per scan, respectively, and the processing time for screening was 7.12 min. Their
results showed the high value of their developed DL-based AAA screening method, which
achieved 98% sensitivity, 96% specificity, and 97% accuracy in correctly classifying AAA
and normal aortic dimensions.

Regarding the clinical value of using AI in prediction and prognosis, studies have
demonstrated that AI is able to develop predictive morality scores in patients undergoing
AAA repair and predict the risk of operative outcomes after endovascular aneurysm
repair by discriminating patients at low risk of aortic complications from those at high
risk of aortic complications [203–205]. In one specific study, a machine learning-based
approach was shown to precisely characterize AAA geometry and calculate hemodynamic
flow distribution at different cardiac cycle points, thus contributing to defining AAA risk
rupture patterns [200].

Aortic dissection (AD) is another common cardiovascular disease often presenting
as an emergency situation. Although contrast-enhanced CT is a routine modality for
the diagnosis of AD with sensitivity and specificity values of more than 98% [1,3,6], AD
can be missed upon non-contrast CT imaging due to non-specific symptoms. Hata and
colleagues developed a deep learning algorithm for the detection of AD using the non-
contrast-enhanced CT images of 170 patients [206]. Their developed DL algorithm showed
high accuracy in terms of detecting AD on non-contrast CT images, with a sensitivity value
of 91.8% and a specificity value of 88.2%, comparable to the performances of radiologists.
This study shows the potential of using AI tools to reduce missed aortic dissection cases.
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Figure 29. The use of deep learning for plaque segmentation. (A) Curved multi-planar reforma-
tion coronary CTA images showing lesions in the proximal-to-mid LAD (1) and the mid LAD (2).
(B) Deep learning segmentation of calcified plaque (yellow) and non-calcified plaque (red). (C) Three-
dimensionally rendered view of the coronary tree showing deep learning plaque segmentation in
the individual analyzed segments. All lesions in each vessel were analyzed by deep learning and
measurements summed on a per-patient level. CTA—computed tomography angiography; LAD—left
anterior descending artery. Reprinted with permission under open access from Lin et al. [194].
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Figure 30. Representative images of the segmentation of the aortic lumen (in red) and the intraluminal
thrombus (in green). (A) CT scan cross-sectional views of patients with infrarenal AAA. (B) Manual
segmentation. (C) Automatic segmentation. Reprinted with permission under open access from
Lareyre et al. [201].

AI can also be applied to low- or ultra-low-dose aortic CTA to enhance image quality,
despite the use of low-radiation doses and contrast medium doses. Zhou et al., in their
recent study, reported the feasibility of using AI-based ultra-low-dose aortic CTA images in
a prospective study that recruited 150 patients with suspected aortic disease [207]. Using
an augmented cycle-consistent adversarial framework, the contrast medium dose was
reduced by up to one-third of that from the low-dose contrast medium protocol. The
AI-based ultra-low-dose protocol produced better quantitative images than the low-dose
and ultra-low-dose protocols. There were no significant differences between these protocols
regarding the diagnosis of aortic diseases.

5.4. AI/ML/DL in Pulmonary Artery Disease

CT pulmonary angiography (CTPA) is a standard imaging modality in diagnosing
pulmonary embolisms (PEs) with high accuracy. However, the interpretation of CTPA
images is time-consuming and requires radiologist expertise. Further, the use of CTPA in
emergency departments has increased significantly over the last decades, and increased
workloads and fatigue may lead to more diagnostic errors in emergency radiology [208].
Therefore, the use of an automatic PE detection method could assist radiologists’ decisions
to ensure the rapid diagnosis of positive PE cases while avoiding mistakes.

Studies have reported promising results regarding the application of DL models for the
automatic detection of PEs based on CTPA images [209–212]. A recent systematic review
and meta-analysis of using DL in the detection of PEs showed a pooled sensitivity of 88%
and a specificity of 86% based on an analysis of five studies [209]. This indicates that further
studies are required to validate the DL models to detect PEs based on large datasets of CTPA
images. The Radiological Society of North America (RSNA) chose PE as its AI challenge in
2020, later publishing a public dataset of 12,195 annotated CTPA studies to encourage the
development of DL models for PE detection [213]. Ma et al. applied their developed DL
model to the RSNA Pulmonary Embolism Detection data for not only detecting PEs but also
for predicting the position of PEs in pulmonary artery branches, predicting PE condition
(acute or chronic), and analyzing specific features to suggest the presence of right heart
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strain [211]. Their model showed a sensitivity of 86% and a specificity of 85%, comparable
to the performance of radiologists (the corresponding values ranged from 67 to 87% and 89
to 99%). Further, through the use of attention-weighted heatmaps and gradient-weighted
class activation mapping (Grad-CAM), their model could predict PE existence and other
properties associated with PE cases, which could assist PE diagnosis and management
(Figure 31). A recent study by Grenier et al. also confirmed the high diagnostic value of
using a DL model in PE detection [212]. The authors validated a commercially available
AI model in 387 CTPA cases from multiple clinical sites (228 US clinical sites). The results
showed a sensitivity of 91.4% and a specificity of 91.5%, along with an area under the
receiver operating characteristic curve of 0.92.

Figure 31. Interpretation with Grad-CAM and attention weights. True-positive (a–d) and false-
negative (e,f) samples of Grad-CAM and original image for positional labels. For each sample, the
processed CT image (right) and the corresponding attention-mapped image are paired (left). The red
arrow points to the precise location of the PE identified by an experienced radiologist. The heatmap
below shows the attention weights of all windows in the study containing the image above, while
the orange square marks the exact window that includes the image. Darker colors in the heatmap
illustrate larger attention weights. Reprinted with permission under open access from Ma et al. [211].

AI is also used to assist the diagnosis of pulmonary hypertension based on CTPA [214].
Zhang et al. developed a fully automated CTPA-based framework through the segmenta-
tion of eight pulmonary and heart structures in 55 patients with pulmonary hypertension
(Figure 32), followed by the AI-based automatic extraction of features associated with
pulmonary artery pressure. The AI-based automatic extractions correlated well with the
manual measurements (Figure 33). High consistency was found between the regression
model and the gold standard in terms of the prediction of mean diastolic and systolic pul-
monary artery pressure (p = 0.000). Their developed AI model contributes to the diagnosis
and clinical management of patients with pulmonary hypertension.
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Figure 32. The performance of the proposed network framework. (a,d) The original images of
the heart and pulmonary artery, respectively; (b,e) the segmentation outputs of nnU-Net; (c,f) the
segmentation outputs of the proposed network framework. Segmented structures include right
atrium (yellow), right ventricle (green), left atrium (blue), left ventricle (red), main pulmonary artery
(red), right pulmonary artery (green) and left pulmonary artery (blue). Reprinted with permission
under open access from Zhang et al. [214].

Figure 33. Bland–Altman analyses for features assessed by AI automatic and manual measurements
show that the metrics measured by the automatic measurement method are in accordance with the
ground-truth measured manually by experienced physicians. Reprinted with permission under open
access from Zhang et al. [214].
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6. Summary, Concluding Remarks, and Future Directions

Cardiovascular CT is playing an important role in the diagnosis of cardiovascular
disease, and its role will continue to grow with further advancements in CT technology. The
traditional reliance on the standard CT imaging approach has been significantly augmented
with the use of recent technologies such as photon-counting CT, 3D printing, FFRCT, VR,
AR, and MR, and AI. This recent progress has created great opportunities for incorporating
these advanced technologies into education and clinical practice to achieve better outcomes.

The clinical value of CT has been further advanced with the recent emergence of
photon-counting CT, which can be used to obtain images with superior spatial and contrast
resolution. Despite being introduced into clinical practice very recently (in 2021), photon-
counting CT represents the future of cardiovascular CT imaging and is set to revolutionize
the current cardiovascular CT imaging approach, especially in the diagnostic assessment
of cardiovascular disease. Since it is a very new technology that is not widely available,
more promising results based on human studies are expected to be reported in the next
few years.

The current applications of 3D printing technology in cardiovascular research are
maturing, with more evidence available from multi-center or randomized controlled trials
being developed. Three-dimensionally printed models are highly accurate and reliable
when it comes to replicating both cardiovascular anatomy and pathology, thus serving as
a useful tool for medical education, surgical planning, and the simulation of challenging
cardiovascular procedures, guiding intraoperative surgeries to improve patient outcomes.
Three-dimensionally printed models improve communication between clinicians and pa-
tients, as well as communication between clinical colleagues. Owing to the development
of more 3D printing materials that are able to simulate cardiovascular tissue properties
(Figure 34) [215], more flexible and realistic 3D models could be printed in the future to
further advance the efficacy of using 3D printing technology in cardiovascular disease by,
for example, carrying out simulations of cardiovascular hemodynamics related to cardio-
vascular disease. Clinical studies, in particular longitudinal follow-ups on the impact of
using 3D-printed models on patients’ clinical outcomes and cost-effectiveness, are still lack-
ing, and these topics should remain the focus of further studies. Guidelines for appropriate
criteria need to be developed regarding the use of 3D printing in cardiovascular disease, as
such guidelines would provide guidance for clinical practice.

The clinical value of FFRCT has been validated by several multi-center randomized
controlled studies and many single-site studies, and its role will continue to grow with the
increasing use of DL algorithms in the medical domain. The main barrier to implementing
FFRCT in daily cardiology practice lies in the fact that most of the data analyses have been
performed at off-site workstations, although on-site image processing and analyses are
available, as evidenced by the TARGET trial. With the increasing prevalence of DL models
and widespread use of AI in clinical practice, FFRCT will be implemented into diagnostic
approaches to guide the revascularization of patients with coronary artery disease, leading
to improvements in the utilization of healthcare resources.

VR, AR, and, more recently, MR are showing great promise, and they are set to
complement traditional visualizations and assist healthcare providers and patients with
cardiovascular disease. However, their applications in current practice are still at an
early stage of development due to several limitations. First, the real-time integration of
cardiovascular CT imaging in a VR/AR environment is challenging, as most of the current
studies have applied segmented datasets to VR/AR/MR glasses or head-mounted devices.
Second, a critical aspect regarding the use of AR and MR in surgical planning or guiding
surgical procedures is to balance AR/MR with the real-world environment and add digital
elements to the field of view to achieve the harmonization of data flow and interfaces.
Third, ethical considerations need to be considered, as the main goal of using VR/AR/MR
should focus on enhancing the patient–provider relationship. Hepatic feedback (the tactile
experience that is available with 3D-printed physical models) is lacking in VR/AR/MR
techniques, so this needs to be addressed in future research.



J. Cardiovasc. Dev. Dis. 2024, 11, 22 34 of 45

Figure 34. Three-dimensionally printed heart model of a patient with Tetralogy of Fallot. This
model was printed based on cardiac CT images using Agilus30 material, and its tissue properties are
similar to those of human heart tissues. The model was printed in one piece (A) and a two halves
(B) to show the internal structures. The arrows refer to the pulmonary artery stenoses. AO—aorta,
PA—pulmonary artery, RV—right ventricle. Reprinted with permission under open access from
Sun [215].
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The widespread use of AI in medicine and the application of AI in cardiovascular
disease is inevitable, and clinicians must be aware of pitfalls when applying this rapidly
evolving technology to their practice. Figure 35 is a summary of AI applications in cardiol-
ogy practice [216]. Given the wide range of AI algorithms available, the input data used for
training purposes must be examined to ensure high data quality. AI model performance
must be examined to guarantee that findings are robust, and external validation is also
an important consideration. Medical graduates and clinicians’ skills and confidence in
managing AI applications need to be improved, as this will have a direct impact on using
AI in clinical practice. Ethical issues related to the sharing of healthcare data and legal
challenges should be addressed, and AI should be included in the medical curriculum
and professional education. Collaboration among a multi-disciplinary team consisting
of computer scientists, clinicians, clinical investigators, academic researchers, and other
users is essential for identifying the best approach and data sources to achieve the goal of
delivering personalized treatment in cardiovascular disease cases. The incorporation of
these technologies beyond standard cardiovascular CT into routine diagnostic workflows
and clinical decision making is expected to occur soon.

Figure 35. The applications of artificial intelligence in clinical cardiology practice. CAC—coronary
calcium score, CAD—coronary artery disease, EAT—epicardial adipose tissue, PVAT—perivascular
adipose tissue, LV—left ventricle. Reprinted with permission under open access from Jiang et al. [216].
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