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Abstract

Humans are putting more satellites into low Earth orbit (LEO) than ever before,

driven by a desire for lower latency communication which, in turn, demands

large constellations of thousands of satellites. Due to the high speeds of these

satellites, micro-atmospheric drag, and other factors, LEO is very dynamic, and

these constellation satellites are independently manoeuvrable, resulting in LEO

now representing an incredibly challenging space surveillance problem. Because

of this, there has never been a greater need for wide area surveillance and sensors

that are able to detect objects uncued, without prior knowledge.

The underpinning technologies of radio telescope arrays are almost indistin-

guishable from those of radar receiver arrays, both trying to detect weak signals,

often in the presence of stronger or unwanted signals. Because of this similarity,

as well as a long history between the two disciplines, modern high time-resolution

radio telescopes are proving to be excellent receivers for the purposes of radar.

When radio telescopes are used as radar receivers, they are most often used

in conjunction with a dedicated radar transmitter. However, a different approach

to radar has gained significant focus in recent years: passive radar. Passive radar

uses pre-exisiting and non-cooperative transmitters as the radar source, namely

transmitters such as for commercial radio and television broadcast. There are

many challenges in running a passive radar. In particular, it is typically far more

computationally demanding than traditional active radar, and the signals are

often not suitable for this purpose. However, with so much television and radio

entertainment being inadvertently transmitted into the space environment, there
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is a large amount of ‘free’ energy that is available for radar purposes.

This thesis investigates the use of the Murchison Widefield Array (MWA) as

a passive radar receiver for the surveillance of space, investigating the techniques

and approaches required to achieve widefield space surveillance with a radio tele-

scope. The MWA is a low-frequency radio telescope located in remote Western

Australia. It is the low-frequency precursor to the forthcoming Square Kilome-

tre Array. Consisting of thousands of antennas forming hundreds of subarrays

distributed over a 30 km2 geographical footprint, it is a space surveillance sensor

with potential.

However, there are many challenges in implementing passive radar with a sen-

sor like the MWA, such as the incredible computational processing requirements.

In order to detect small satellites at ranges exceeding 1,000 km, the radar needs to

use long coherent processing intervals. However, this long integration time means

the significant orbital speeds, and changing geometry, result in a near-intractable

processing load.

To overcome these problems, this thesis will investigate the intersection of

the orbital motion parameter space and the radar measurement parameter space,

in order to find practical approaches to the passive radar challenge. These ap-

proaches are developed and demonstrated with observational campaigns. As part

of these observations, other techniques and advances are required, such as the

use of an external reference receiver, novel approaches to synchronisation and

calibration, as well as orbital parameter matched filtering.

This work culminates in the results of a large observation campaign, with

the MWA forming the receiver of a continent-spanning multistatic passive radar

network. These observations produce incredibly accurate orbital estimates across

a significant surveillance volume, including the detection of small objects at long

ranges. The results also demonstrate the benefit of using multiple transmitters,

as they provide complementary coverage in frequency, as well as geometric diver-

sity, also multistatic orbit determination greatly improves the accuracy of orbital

viii



parameter estimates.

In addition to space surveillance with the MWA, this thesis also includes the

demonstration of techniques developed using a smaller, deployable passive radar,

showing that these techniques are generally applicable to any space surveillance

radar.

With the LEO space surveillance problem becoming more challenging every

day, a larger number of space surveillance sensors, particularly widefield sen-

sors, are required. However, radar processing for such a large volume is very

challenging, especially since passive radar systems have no control over the illu-

mination signals. The work here shows how practical approaches can alleviate

these problems and how widefield sensors, utilising MWA-like technologies, can

help overcome these space surveillance challenges.
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Chapter 1

Background and Introduction

Radio telescopes, sensitive instruments designed to detect the faintest signals

from the most distant cosmic objects, are proving to be capable receivers for the

purpose of radar. Although radio telescope arrays have been used as imaging

interferometers, recent interest in phenomena such as pulsars, fast radio bursts,

and cosmic rays, is motivating the development of high time-resolution capabil-

ities for interferometric arrays (Tremblay et al., 2015; McSweeney et al., 2020;

Williamson et al., 2021). These high time-resolution modes enable the radiotele-

scopes to seamlessly be utilised as a radar.

The ever-increasing number of objects in Earth-centred orbit poses signifi-

cant challenges for space surveillance networks, particularly with the recent rise

of manoeuvring mega-constellations. Interest in lower-latency communications

is seeing long-range geosynchronous satellites being replaced by a much larger

number of satellites in low Earth orbit (LEO). Examples of these constellations

are Starlink, OneWeb and Project Kuiper (Rossi et al., 2017; Foreman et al.,

2017; McDowell, 2020). Thousands of satellites are needed to provide persistent

coverage on the Earth. Because these larger number of satellites cannot be in-

dividually launched, and also due to the dynamic nature of near-Earth orbits,

these megaconstellaiton satellites need to be far more manoeuvrable than typical

satellites. The result is a LEO population that is more crowded, congested and
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more dymanic than ever before.

The need for wide area surveillance sensors, in contrast to typically narrow

field optical and radar space surveillance sensors, has therefore never been greater.

This type of wide field radar is historically only used in large scale, billion dollar,

missile defence applications. Examples of phased array scanning radars which

have contributed (or continue to contribute) to the space surveillance network

include the AN/FPS-85 (the world’s first large phased array radar), PARCS and

PAVE PAWS (Johnson, 1993; Sridharan & Pensa, 1998; Weeden et al., 2010).

A scanning radar is a large phased array which rapidly scans a coverage area

with a narrow beam. The high power transmitted means the beam only needs to

illuminate a direction for a very short amount of time, typically tens to hundreds

of miliseconds, before scanning elsewhere. Another approach to surveillance radar

is a staring radar, which utilises a (typically bistatic) transmitter to provide broad

area illumination. With a large sector illuminated, a receive array is then able to

form any number of receive beams (in parallel) to surveil the region of interest,

sensing everything, everywhere, all at once.

Widefield surveillance with a high-powered electronically-steered scanning

radar is essentially a scheduling problem in ensuring the beam scans across the

sky for any new detections, whilst maintaining custody of known tracks. However,

for a staring radar, the problem is more challenging. A consequence of wide area

illumination is that longer integration times are required for equivalent/specific

sensitivity, and the long integration necessitates a significant computational task

to detect and track any fast moving objects in the wide field of regard.

This thesis investigates the use of the Murchison Widefield Array (MWA) as a

passive radar receiver for the surveillance of space, specifically using commercial

frequency modulation (FM) radio (88 - 108 MHz in Australia) as the illumina-

tion source. The radar configuration is a bistatic radar with a widefield staring

receiver able to surveil an extensive volume of the sky, with high power transmit-

ters at significant baseline distances, offering a significant illumination volume.
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This thesis details the challenges involved with long-integration radar processing

with an extremely large sensor, investigates the intersection between astrody-

namic motion parameters and radar detection parameters that make surveillance

feasible, and culminates in a large scale demonstration where the MWA is the

receiver as part of a continent-spanning multistatic radar network.

Figure 1.1: Single MWA tile at Inyarrimanha Ilgari Bundara the CSIRO
Murchison Radio-astronomy Observatory. Credit: Natasha Hurley-Walker
ICRAR/Curtin.

The MWA is a low-frequency radio telescope in remote Western Australia

(Tingay et al., 2013a; Wayth et al., 2018), a precursor to the forthcoming Square

Kilometre Array (SKA) (McMullin et al., 2020). The MWA is a large sensor,

consisting of hundreds of sub-receivers, known as tiles, distributed over a 30 km2

geographical footprint. An MWA tile is shown in Figure 1.1. The use of the MWA

as a passive radar receiver for space surveillance is made possible by building on
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recent understanding and technological advances across a large swathe of different

fields. The areas covered in this introductory chapter are passive radar (1.1),

radio astronomy (1.2), space surveillance (1.3), radar techniques for matching

high velocity and manoeuvring targets (1.4), and orbit determination (1.5). The

detailed history and background to these areas is outside the scope of this thesis,

and only a brief discussion and overview of the most relevant aspects is included.

Also covered in this chapter is the background and previous work undertaken by

the MWA for space surveillance (1.6). Section 1.7 concludes the chapter with an

outline of the rest of the thesis, detailing the progression from the initial results

through to the results from a demonstration space surveillance campaign.

1.1 Passive Radar

Passive radar is a form of radar that uses existing radio frequency (RF) energy

as a source of target illumination, instead of requiring a dedicated transmitter.

There are many advantages to this approach, such as the radar system being

electromagnetically covert and also far more cost efficient to operate. However,

this comes at the disadvantage of leaving the radar at the mercy of what is being

transmitted. The signals used are not guaranteed to be suitable for radar pur-

poses. The passive radar technique as a form of radar has been long understood

and in use, however, it is only in recent decades that passive radar has gained

prominence, mostly due to the increase in computational power available to radar

designers, and also the rise of wide-area broadcast entertainment, especially dig-

ital signals.

The origin of passive radar can be traced to the famous Daventry Experi-

ment, conducted on the 26th of February, 1935 (Wilkins, 2011). The aim of the

experiment was to validate calculations predicting the detection of an aircraft

from reflections of a radio transmitter. To test this theory, two antennas were

erected with their outputs combined to null the direct transmissions of the 10
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kW BBC Empire broadcast1. An aircraft was then flown around the area. Any

reflections from the aircraft would not be nulled and so should be detected. The

experiment was a success, the aircraft was able to be detected up to a range of

8 km. Ultimately this success led to the development of the Chain Home radar

system, and all Allied radar effort in the Second World War (Neale, 1985).

The Daventry Experiment also, indirectly, gave rise to the first operational

passive radar, with the German Klein-Heidelberg system utilising the Chain Home

transmissions to passively detect bomber aircraft. The system briefly operated

during the latter stages of the Second World War before the radar sites were

overrun by Allied forces (Griffiths & Willis, 2010).

In the years since the Second World War, interest in passive radar has waxed

and waned (Kuschel, 2013). However, there was a significant increase in research

and interest in the latter decades of the 20th Century (Griffiths & Long, 1986;

Beley et al., 1995; Sahr & Lind, 1997, 1998; Ringer et al., 1999; Howland, 1999).

Commercial passive radar systems were also developed during this time, most

notably the Silent Sentry system, a rapidly deployable wide area early warning

surveillance radar (Baniak et al., 1999).

In recent years, increased computational power and the widespread transition

to digital television and radio have fuelled a resurgence in passive radar research,

which continues to this day. This period of time saw the development of a num-

ber of demonstration systems and example experiments (Howland et al., 2005;

Poullin, 2005; Kulpa & Misiurewicz, 2006; Yardley, 2007; O’Hagan & Baker, 2008;

Palmer et al., 2008; Fabrizio et al., 2008; Coleman & Yardley, 2008; Malanowski

& Kulpa, 2008; Palmer et al., 2009), including a passive radar system utilising

illumination from geosynchronous orbit (Palmer et al., 2009). Other factors con-

tributing to this renewed interest in passive radar is the increasingly congested

electromagnetic spectrum and significant military interest in electromagnetically

1The illuminating signal was actually an unmodulated carrier, so it may potentially be more
correct to refer to the experiment as cooperative bistatic rather than truly passive (Wilkins,
2011).
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covert surveillance.

The development of FM radio based passive radar is of particular relevance to

this thesis. In comparison to other digitial illuminators, FM radio has typically

not been favoured for passive radar because of the poor range resolution and

the content-dependent radar properties (rock music yields different results to

voice). However, the attributes of FM radio passive radar are ideal for long range

surveillance due to the high flux density, smaller data volumes, and high powered

transmitters. For that reason, FM radio passive radar has been used for long-

range aircraft surveillance (Sahr & Lind, 1997; Ringer et al., 1999; Howland et al.,

2005; O’Hagan & Baker, 2008; Malanowski et al., 2012, 2014; Inggs et al., 2014;

Hennessy et al., 2022a).

With the expected future reduction in demand for wide broadcast entertain-

ment such as television and radio (as opposed to more directed and individual

streaming services), some have speculated that as of 2022 passive radar is at its

zenith, that is “peak passive radar” (Zatman, 2022). However, beyond broad-

cast entertainment there is significant potential for growth in passive radar with

many other potential transmitter options enabling wide area surveillance, in-

cluding hitchhiking radar and space-based passive radar, as well as solar and

extraterrestrial sources. Non-cooperative bistatic radar (also referred to as para-

sitic radar or hitchhiking radar) uses other radars as a source of illumination, and

offers many advantages over entertainment-signal based passive radar as the sig-

nals are designed for radar purposes (Willis, 2005; Johnsen & Olsen, 2007; Willis

& Griffiths, 2007; Strømøy, 2013; Samczynski et al., 2015; Crawshaw & Maxey,

2022).

With the significant increase in the use of space (as will be discussed further),

there is growing research into space-borne and space-based passive radar (Palmer

et al., 2009; Cristallini et al., 2010; Zavorotny et al., 2014; Cristallini et al., 2018;

Persico et al., 2018). Finally, although there has been research into geostationary

satellite based passive radar for decades, only recently has there been successful

6



demonstrations of solar and other extraterrestrial sources of illumination (Peters

et al., 2021; Bezrukovs et al., 2023). These far-flung and distant transmission

options imply large surveillance volumes illuminated by ever-present radiation

sources.

1.2 Radio Astronomy

Radio astronomy, much like passive radar, also originated from radar in the Sec-

ond World War. Many early radio astronomers worked on radar during the

war and many early achievements were made with repurposed radar equipment

(Lovell, 1990; Muller & Oort, 1951; Smith, 1951). This was especially true in

Australia: “The Australian development can be traced to the concentration on

radar development during World War II. This brought together in a well-equipped

laboratory a group of able young physicists with experience of radio techniques.”

(Pawsey, 1953). A large number of well-known radio astronomers contributed

significantly to radar development early in their careers (Goss et al., 2023; Lovell,

1964; Goss & McGee, 2010; Kerr, 1984).

Following the war, prescient scientific radar work was undertaken with a cam-

paign to better-understand the higher layers of the ionosphere using radar re-

flections from the moon (Kerr et al., 1949; Kerr & Shain, 1951). Australia was

the fourth country to detect the moon with radar (Lovell, 1990). These trials

consisted of large-scale bistatic radar experiments utilising a 20 MHz shortwave

transmitter 600 km away, and also attempted international multistatic reception.

Due to hardware requirements, the radar astronomy program was not continued

in Australia. The focus was shifted to reception-only radio astronomy (Kerr,

1952, 1984). Notwithstanding this, significant radar astronomy work has been

achieved throughout the 20th century (Ostro, 1993).

Early radio astronomy has been predominantly conducted with large receiver

dishes, with examples such as Jodrell Bank and Parkes. These systems pro-

duced a single timeseries channel of output and were well suited to time and
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frequency analysis. Large dishes are still used today but there has been a signifi-

cant improvement in their capability. The majority of modern radio astronomy is

conducted with arrays of individual antennas acting as interferometers, forming

correlation products from which images and other data products are produced.

It is only in recent years that computational processing and receiver improve-

ments have enabled high time-resolution capabilities for large scale arrays (van

Haarlem et al., 2013; Bhat et al., 2014; Tremblay et al., 2015). These high time-

resolution modes enable the direct implementation of radar processing algorithms

and capabilities.

1.3 Space Surveillance

Since the launch into orbit of Sputnik in October 1957, the use of space by humans

has continued at an increasing rate. This is reflected in the recent advent of many

megaconstellations, which means that there are now more human made objects

in space than ever before, especially in LEO. As the launch of Sputnik took the

West by surprise, one of the first space surveillance sensors that was able to detect

the launching rocket body was the Jodrell Bank Mark I radio telescope used as

a radar (Lovell, 1990). The need to detect and track the ever-growing number

of satellites, rocket bodies, and other resident space objects (RSOs) in orbit is

growing and becoming increasingly more challenging. Illustrations of the large

number of RSOs in orbit around Earth are shown in Figures 1.2 and 1.3, the

latter particularly highlighting the crowded nature of LEO.

In a similar vein to early radioastronomy sensors, the early space surveillance

sensors were dish-based tracking radars. These dishes are excellent sensors for

sensing the RSOs for tracking and predicting future locations. However, such

narrow field-of-regard sensors can only track one object at a time, and are not

suited for searching for new objects or lost (or even manoeuvring) objects.

Worldwide, the major space surveillance networks comprise a variety of sen-

sor types, including optical telescopes, tracking radars, space-based sensors, and
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Figure 1.2: Illustration of all the objects orbiting Earth that are currently be-
ing tracked by the Space Surveillance Network out to a range of approximately
50,000 km. At this range all the major orbital regimes, including geostationary
orbit, are visible.

phased array radars (Weeden et al., 2010; National Research Council, 2012; Geul

et al., 2017). The narrow field sensors (e.g. telescopes and tracking radars) main-

tain tracks on a large number of objects using cueing information to schedule

measurements of an RSO, then updating the tracks to cue subsequent sensors.

However, large scale phased array radars are typically required for uncued search-

ing and track initialisation.

Most of the phased-array systems were built for missile detection and warn-

ing purposes, and only perform a space surveillance function as a secondary role.

However, there are a large number of radar array systems designed specifically

for space surveillance, either scanning or staring, ranging from fully operational

elements of the space surveillance network (SSN) through to research and demon-
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Figure 1.3: Illustration of all the objects orbiting Earth that are currently be-
ing tracked by the Space Surveillance Network out to a range of approximately
10,000 km. At this range the LEO population, and part of the medium Earth
orbit population, is visible.

strator prototypes. Some examples include the operational systems of Space-

fence (Haimerl & Fonder, 2015) and GRAVES (Grand Réseau Adapté à la Veille

Spatiale) (Michal et al., 2005), the global network of LeoLabs’ linear arrays (Row-

land et al., 2021), a large number of high frequency (HF) and very high frequency

(VHF) wide area surveillance radar systems (Holdsworth et al., 2020; Heading

et al., 2022; Frazer et al., 2013b,a, 2016; Clarkson & Palmer, 2019; Finch et al.,

2022; Hennessy et al., 2023a,b), and a large number of other higher frequency sys-

tems, including some modular designs (Saillant, 2016; Wilden et al., 2016; Gomez
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et al., 2019; Wang et al., 2022; Wayth et al., 2022; Neuberger et al., 2023).

Of particular interest and relevance are the GRAVES system (Michal et al.,

2005), HFLOS (Frazer et al., 2013b), Buckland Park (Holdsworth et al., 2020),

and Silentium space surveillance systems (Finch et al., 2022). The key charac-

teristic that these radars have in common is their unconventional approach (or

unconventional compromises) when compared to a traditional missile approach

warning / space surveillance radar. By making tradeoffs, such as using lower

bandwidths, lower frequencies, or not utilising a dedicated transmitter, it is pos-

sible to achieve equivalent surveillance performance to larger systems (Frazer &

Williams, 2019). A similar approach is taken with this thesis to perform a space

surveillance function with the MWA using passive radar.

TX RX

Figure 1.4: Bistatic space surveillance radar diagram with a narrow-beam trans-
mitter and a narrow-beam receiver. The surveillance region is highlighted in the
blue region.

Following the initial success of the Jodrell Bank Mark I radiotelescope in

detecting rocket bodies, there has been a continual effort in undertaking the

surveillance of space using radiotelescopes as radar receivers. These radiotele-

scopes range from operational systems through to planning simulations and in-

clude: the MWA (the focus of this thesis) (Tingay et al., 2013b; Palmer et al.,

2017; Wayth et al., 2018; Hennessy et al., 2019; Prabu et al., 2020a,b; Hennessy

et al., 2021; Prabu, 2021; Hennessy et al., 2022b; Prabu et al., 2022, 2023); the
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Low-Frequency Array (LOFAR) (Malanowski et al., 2021a; Jędrzejewski et al.,

2022a); the Australia Telescope Compact Array (ATCA) (Nosrati et al., 2022);

the Green Bank Telescope (GBT) (Watts et al., 2015); the Northern Cross Ra-

dio Telescope (Losacco et al., 2019); the Sardinia Radio Telescope (SRT) (Pisanu

et al., 2020; Cataldo et al., 2020; Welch et al., 2022); MeerKAT (Dhondea & Inggs,

2019); the Tianlai radio array (Li et al., 2019); and the Arecibo Telescope (Murray

& Jenet, 2022).

Typically, when radio telescopes are utilised as radar receivers, the illumi-

nating source is a cooperative radar transmitter, with a bistatic configuration

generally consisting of a narrow transmit beam in conjunction with a narrow

receive beam (such as from a dish, or similar), this is illustrated in Figure 1.4.

The resulting surveillance volume is often highly limited, being the intersection

of these two narrow beams. An advantage to this configuration is that all of the

RF energy, and radar sensitivity, is concentrated in this narrow volume, meaning

the radar can detect very small RSOs. However, the disadvantages are that the

constrained surveillance volume limits the ability to accurately update tracks,

and is potentially unable to detect objects without cueing. Another common

configuration is a narrow-beam transmitter in conjunction with a receiver array,

referred to as a ‘pulse-chasing’ radar, and illustrated in Figure 1.5. The use of a

receiver array allows for a slightly larger surveillance volume, albeit a surveillance

volume still constrained by the narrow transmit beam.

Notable exceptions to this narrow field surveillance mode of operation are the

MWA and LOFAR, a northern hemisphere low frequency radiotelescope. These

systems are low-frequency receive array telescopes used as a radar receiver in

conjunction with wide illumination, resulting in a significant surveillance volume

as illustrated by Figure 1.6. With a receive array, after the surveillance data is

digitised, there is essentially no limit to the number of receive beams which can be

formed. This enables a greater degree of flexibility in testing target hypotheses,
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TX RX array

Figure 1.5: Bistatic space surveillance radar diagram with a narrow-beam trans-
mitter and a receiver array with seven notional receive beams. This configuration
is referred to as a pulse chasing radar. The surveillance region is highlighted in
the blue region.

the only (receive) limit to the surveillance volume is computational processing2.

LOFAR is an extremely large receiver array consisting of a large number of

subarrays, or stations. There is considerable research progressing the use of LO-

FAR stations as passive radar receivers with digital television as the illuminator

(Kłos et al., 2020; Malanowski et al., 2021a; Droszcz et al., 2021; Jędrzejewski

et al., 2021, 2022a,c,b; Malanowski et al., 2023; Jędrzejewski et al., 2023). The

LOFAR system utilises digital television, specifically DVB-T, as the illumination

source which is at a higher frequency and higher bandwidth than FM radio. The

higher bandwidths and frequency allow for more accurate range measurements

and potentially greater sensitivity to smaller objects, but also require additional

processing challenges and potentially smaller transmitter beamwidths, which may

reduce surveillance coverage.

With the recent advent of megaconstellations, space surveillance systems are

increasingly challenged by the large number of satellites (along with all the asso-

ciated launch debris) and other debris events such as collisions and anti-satellite

weapons tests. This problem is compounded by the emergence of new propulsion

2In practice, other constraints such as receiver beam-pattern and maximum detection ranges
will place limits on realistic surveillance volumes.
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TX RX array

Figure 1.6: Bistatic space surveillance staring radar diagram with a wide-beam
transmitter and a receiver array with seven notional receive beams. Typically, the
transmit beamwidth would extend considerably in azimuth as well (not shown).
The surveillance region is highlighted in the blue region.

technologies, which means these satellites are manoeuvrable in ways not previ-

ously encountered. The result is an incredibly complex and challenging space

surveillance problem, demanding new and wider surveillance options.

1.4 Keeping Up with Fast Targets

Another challenge faced by radars is the effective detection of fast moving, and

manoeuvring, targets. This is a particular challenge for radars requiring long time

integration for sensitivity, as even constant motion can cause the radar and target

geometry to change over the processing interval. If any of the radar measurement

parameters change across the processing interval, then the target’s energy returns

will be divided, or smeared, across the measurement bins, drastically reducing

sensitivity.

Radars primarily measure a transmitted signal’s delay, corresponding to the

reflector’s radial range, as well as the transmitted signal’s frequency (Doppler)

shift, corresponding to radial velocity (Woodward, 1953). However, this matching

process can be extended to additional motion parameters including Doppler-rate

as well as an arbitrary number of subsequent derivatives (Bello, 1960; Kelly,
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1961). Indeed, matching Doppler-rate, or acceleration, has been in use since the

1960s for improved detection of rockets and missiles (Jensen & McGeogh, 1963;

McGeogh & Jensen, 1967). General acceleration processing has been an ongoing

area of radar research (Abatzoglou & Gheen, 1998; Yasotharan & Thayaparan,

2002; Boashash, 2016; Sirianunpiboon et al., 2019; Wilden et al., 2019).

Research into the radar detection of accelerating targets (mitigating Doppler

walk) is a specialised case of more general fields such as detection of polynomial-

phase signals and time-frequency analysis (Abatzoglou, 1986; Boashash et al.,

1990; Djuric & Kay, 1990; Peleg & Porat, 1991a; Boashash, 1992; Peleg & Fried-

lander, 1995; Barbarossa & Petrone, 1997; Barbarossa et al., 1998; Xia, 2000;

O’shea, 2002). Such work is also directly applicable to the detection of other

chirping, or accelerating, signals in other fields such as sonar or even the study of

bat echolocation (Griffin et al., 1960; Altes, 1990). Just as passive radar research

has flourished due to the increase in modern computational power, all of these

methods are increasingly realisable.

While Doppler migration (caused by a non-zero Doppler-rate in conjunction

with large processing intervals) is perhaps the most deleterious source of sensi-

tivity loss resulting from motion, range-walk (caused by the changing delay to

a reflector) is also a significant source of loss. Range-walk mitigation typically

requires a form of resampling (Jin & Wu, 1984; Perry et al., 1999; Perry et al.,

2007; Kulpa & Misiurewicz, 2006; Pignol et al., 2018). For that reason, it is gen-

erally far more computationally demanding to mitigate range-walk compared to

Doppler-walk.

Of particular relevance is the work on passive radar research that has been

undertaken at the Warsaw University of Technology, focusing on fast targets.

The challenges of long integration, motion matching methods for accelerating and

jerking targets, and even multistatic methods are all explored. Results include the

detection of supersonic rockets (Malanowski & Kulpa, 2008; Malanowski, 2012;

Rzewuski et al., 2015; Borowiec & Malanowski, 2016; Malanowski et al., 2018a,b).
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Finally, a particular focus of this thesis is the investigation of the applicable

intersection of radar and orbital motion parameter spaces. Simple orbits can be

characterised by only six parameters, whereas the radar measurement parame-

ter space is potentially unbounded. This is a challenge for this type of radar

as the limiting factor in detection performance may in fact be computational

processing. By using radar constraints to limit the orbital search space, or spe-

cific orbital aspects to limit the radar search space, significant practical results

have been achieved to incorporate, or solely focus on, orbital motion and orbit

determination (Markkanen et al., 2005; Kohlleppel, 2018; Hoffmann et al., 2019;

Awadhiya & Vehmas, 2021; Schily et al., 2022).

1.5 Orbit Determination

Orbit determination is the process of taking a set, or track, of measurements to

calculate the orbital parameters of an object, such that its future position can be

predicted accurately in order to be detected in the future. Orbit determination

dates to the 17th century and the significant interest in understanding and pre-

dicting the motion of planets, moons, and other celestial bodies. Celestial orbit

determination techniques that have been developed over the centuries are just as

applicable to satellites and other RSOs in LEO (Bate et al., 2020).

The standard approach for orbit determination is, given a set of measurements,

to use a subset of the measurements (typically two or three) to geometrically de-

termine an initial, or preliminary, solution. Then this initial solution is used in

conjunction with the full measurement set to estimate the orbital state (Escobal,

1965; Vallado & McClain, 2001; Bate et al., 2020; Montenbruck et al., 2002).

This approach first makes an approximate guess, typically referred to as initial

orbit determination (IOD) or preliminary orbit determination. The IOD stage is

almost exclusively a two body problem, the simplest orbital model. Other com-

plicating factors such as the perturbations from forces such as from atmospheric

drag, the gravity field of other celestial bodies, or electromagnetic forces, are not
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incorporated until the full orbit determination step (Escobal, 1965).

The majority of IOD research is angles-only IOD (that is, methods to esti-

mate an object’s position and velocity with only spatial/angular information from

an observer), having regard to the historical celestial surveillance being entirely

conducted with optical telescope observations. Even today, the most common

space surveillance sensor is an optical telescope. Classical angles-only IOD meth-

ods are the Gauss, Laplace, and Double R methods (Escobal, 1965), although

there are an increasingly large number of modern approaches (Gooding, 1993;

Schaeperkoetter, 2012; Schwab et al., 2022; Gong et al., 2023).

In comparison, radar offers far more information to precisely determine the

orbit of RSOs: “The introduction of radar into the implements of modern science

has produced a great variation from established techniques in orbit determination

schemes. For the first time, the orbit determiner could measure the distance or

extension between the point of observation and the satellite, that is, the slant

range” (Escobal, 1965). That is, rather than an angle or line of bearing, a radar

detection itself provides an estimate of an object’s position. The most common

IOD approaches for these data are the use of two positional estimates and a time

of flight (known as Lambert’s Problem), or the use of three positional estimates

(and associated times). There is a wide range of approaches for solving Lambert’s

Problem (Izzo, 2015). For three positions, the common IOD methods are the

Gibbs and Herrick-Gibbs methods (Escobal, 1965). However, like other IOD

problems, this is still an area of ongoing research.

As IOD is typically a geometric problem, most of these methods use a set of

positional estimates only. However, often radars will not be able to accurately

estimate these (individual) detection positions, and this can result in a poor IOD

estimate. With long-integration radars, Doppler may be a system’s most accurate

measurement parameter. Because of this (as well as the fact that some radars do

not measure range, such as GRAVES), there has been considerable work in recent

years on IOD methods incorporating Doppler (Yanez et al., 2017; Zhang et al.,
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2019; Losacco et al., 2020; Christian et al., 2022; Losacco et al., 2023; Qu et al.,

2022b,a; D’Souza & Zanetti, 2023). In contrast, Doppler has always been used

as a key parameter in the full orbit determination stage (Guier & Weiffenbach,

1959; Patton, 1960).

Another approach, which has created considerable recent interest, is the use

of admissible regions, which can define the region of corresponding realisable or-

bits (Milani et al., 2004; Tommei et al., 2007; DeMars & Jah, 2014). Rather than

treating detections separately (that is, IOD followed by OD), each measurement

is instead used to narrow or constrain the region. This allows for the propagation

of uncertainties between possible orbits, as well as a probabilistic approach to

IOD (DeMars & Jah, 2014).

1.6 Space Situational Awareness with the MWA

Figure 1.7: Illustration of the use of the Murchison Widefield Array (MWA) as a
passive radar, showing two transmitters, one satellite and three MWA tiles. The
two transmitters’ elevation beampatterns (in blue) and the signal path (in green)
are also shown.

Since its inception, the MWA’s use as a passive radar receiver has been con-

sidered. As early as 2006, predictions were made that the MWA, used as a passive

radar, would detect FM radio reflections from satellites and RSOs (Lind, 2006).

Following these predictions, the first relevant results were published in 2012, de-
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tailing the amount of terrestrial radio frequency interference (RFI), particularly

FM radio, detected from moon reflections (McKinley et al., 2013). This work

inferred how the Earth would appear electromagnetically to a distant sensor in

the FM band. These reflections also highlighted the significant amount of energy

being transmitted in the FM band into the space environment.

The first MWA results on RSO detection used reflected FM radio to detect

the International Space Station (ISS) and were published in 2013 (Tingay et al.,

2013b). This was achieved by using images produced using radio astronomy

methods. That is, the MWA, used as an interferometer, is able to form wide

area images resolving the received power in the FM band spatially, essentially an

electronic support measure (ESM) product. These products are highly accurate

spatially and also provide coarse frequency accuracy, although they do not provide

range information. This approach is referred to as ‘incoherent’, with respect to

the transmitted signal, it is transmitter agnostic as the produced images are the

result of any and all received energy. This incoherent space surveillance approach

has progressed significantly since the early initial results (Prabu et al., 2020a,b;

Joubert & Tingay, 2021; Prabu, 2021; Prabu et al., 2022).

Both the 2012 and 2013 results were formed using an early version of the

MWA, consisting of only 32 tiles. Importantly for this thesis, the initial RSO

publication, (Tingay et al., 2013b), predicted that a 128 tile MWA, when used as

an incoherent passive radar receiver with a time integration of 1 s and a frequency

bandwidth of 50 kHz, would be able to detect an object the size of 0.5 m2 up to

a range of 1,000 km.

Following these initial detections, the first ‘coherent’ results were published

in 2017 (Palmer et al., 2017) and also consisted of detections of the ISS using

reflected FM radio. The term ‘coherent’ refers to the radar processing with re-

spect to the transmitted signal, where results were produced with full passive

radar (that is, pulse Doppler processing) methods. In this experiment, the ref-

erence signal, the information about what was transmitted, was observed by the
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MWA itself as there was sufficient sensitivity to detect diffracted FM radio over

the horizon with a distance of approximately 300 km. By comparing what was

transmitted to the reflected signal, it was possible to estimate the relative range

and Doppler of the reflecting satellite.

The continuation of coherent passive radar work is the core focus of this the-

sis. This includes further development of the understanding of processes and

algorithms to utilise the MWA as a passive radar for the surveillance of space,

particularly confirming the initial detection predictions for small objects at a

range of 1,000 km. An illustration of the use of the MWA as a passive radar re-

ceiver is shown in Figure 1.7, detailing several terrestrial transmitters illuminating

a satellite with the MWA observing the reflections.

1.7 This thesis: direction and scope

The work presented in this thesis is the result of a confluence of recent advances in

modern technology, particularly the high time resolution capabilities of modern

radio telescopes, the uptake in passive radar, and increased computational pro-

cessing capabilities. All of these factors are crucial to the implementation of space

surveillance processing on widefield sensors that utilise MWA-like technologies.

Early chapters of this thesis present detections of larger objects, such as the

Hubble Space Telescope and large rocket bodies. Subsequent chapters contain

the results of targeted searches of specific smaller satellites and debris. Finally,

the latter parts of the thesis contains the results from a general space surveil-

lance campaign reporting the detection of objects meeting the initial predictions

(Tingay et al., 2013b). However, beyond simply demonstrating a capacity to de-

tect a larger number of smaller objects, the key results from this work are: the

methods developed to achieve detections in wide area surveillance for matching

fast targets; the accurate determination of orbital parameters; and advances in

the translation of the theory to the practical implementation of these methods

for a real-world sensor.
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The structure of the rest of this thesis is as follows:

• Chapter 2 details the radar processing required to form a matched-product

for orbital motion with a sensor like the MWA, outlining the passive radar

and orbit determination challenges which are addressed in the following

chapters;

• Chapter 3 (originally published as Hennessy et al. (2019)) demonstrates

initial results in detecting and tracking smaller objects (in comparison to

the ISS), as well as some of the advanced radar slow-time techniques re-

quired. This chapter also highlights some of the novel approaches required

to realise radar functionality on a large scale system including calibration

and synchronisation;

• Chapter 4 (originally published as Hennessy et al. (2020)) investigates the

intersection of a two-body astrodynamic parameter space in conjunction

with radar parameter space. It shows how a six-parameter orbital search

space can be reduced to practically undertake blind searches for objects in

orbit, especially focusing on when the most-common target types are likely

to be most detectable;

• Chapter 5 (originally published as Hennessy et al. (2021)) develops and im-

plements the novel ideas from the previous chapter, including a brief obser-

vational campaign, demonstrating uncued IOD, an extremely challenging

task on a sensor like the MWA, and comparing the results against other

common IOD approaches;

• Chapter 6 (originally published as Hennessy et al. (2022b)) is the culmina-

tion of the previous chapters, demonstrating the full space surveillance ca-

pabilities of the MWA, including the results from a short trans-continental

observation campaign. The techniques discussed cover extreme baseline

length passive radar as well as accurate orbit determination, including mul-

tistatic orbit determination, of small objects at large distances;
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• Chapter 7 concludes the thesis by briefly summarising the main results and

briefly exploring future research directions; and

• Finally, Appendix A (originally published as Hennessy et al. (2022a)) demon-

strates how the approaches and techniques developed in this thesis (specif-

ically, for an extremely large sensor) are broadly applicable for all passive

radar space surveillance sensors, in this instance being applied to a much

smaller, deployable, real-time, long-range passive radar systems for the de-

tection of satellites.
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Chapter 2

Methodology, Signal Processing and

Problem Formulation

This chapter contains a description of the approaches and methods used to obtain

and process radar data used in this thesis, as well as an outline of the challenges

faced by a sensor like the Murchison Widefield Array (MWA) when used as a

radar for objects in low Earth orbit (LEO).

More specifically, this chapter provides an introduction to passive radar, in-

cluding the fundamental concepts of a bistatic radar system and the parameter

types these systems are able to measure and sense. The chapter details the tech-

nical aspects of the MWA which are relevant to the collection and pre-processing

of radar data, particularly signals at FM radio frequencies and bandwidths, in-

cluding the data pipeline as well as calibration. This chapter also describes the

population of objects in Earth-centered orbit, particularly LEO, and covers the

simple Keplerian orbital models used, highlighting the significant speeds which

are attained by objects at lower altitudes. Standard radar product formation

signal processing is detailed, with examples from the MWA.

All these aspects coalesce (Section 2.4.2) to highlight the problem of wide-area

space surveillance with the MWA using passive radar at FM frequencies. That is,

the extreme and dynamic velocities of objects in LEO present a significant signal
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processing problem. Some aspects of this problem are common to all staring

space-surveillance radar systems. However, some other aspects are unique to the

MWA. The signal processing challenge is so significant that any direct approach to

create a matching radar product would be impossible. This outlines the challenges

the rest of this thesis attempts to address and alleviate.

2.1 Passive Radar

An active radar will emit a high-powered, and known, signal, and then a receiver

system will receive signals from a surveillance region of interest and search for

reflected copies of the transmitted signal. This searching is achieved through

correlation, whereby a reference copy of the known transmitted signal is shifted

and contorted to match a hypothesised return, and so any correctly-matched

hypothesis will form a correlation peak. The specific implementation is achieved

through the incredibly efficient pulse-Doppler processing method (Stein, 1981;

Palmer et al., 2011), forming a delay-Doppler map.

Detections from these delay-Doppler maps will specify the delay, in time,

between the signal being transmitted and the reflected signal being received, as

well as the frequency, or Doppler, shift between the transmitted signal and the

reflected signal. If the radar’s transmitter and receiver are at the same location,

then this detected time delay will be proportional to the range to the reflector

and the Doppler shift will be proportional to the reflector’s radial velocity. The

measured range specifies a sphere of potential locations where a reflector could be

positioned, and this sphere can be combined with the knowledge of the receiver

system’s beam pattern (or beamformed direction) as well as the transmitter’s

beam pattern, to estimate the true reflector position.

The radar’s ability to measure this delay is proportional to the transmitted

signal’s bandwidth, and the radar’s ability to measure the Doppler shift is pro-

portional to the transmitted signal’s processing interval or length of correlation.

Additionally, the correlation properties of the transmitted waveform are also a
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determining factor.

A bistatic radar is a type of radar where the transmitter and receiver are

separated. The radar system operates in the same manner, but now the mea-

sured delay is proportional to a ‘bistatic range’, and the measured Doppler shift

is proportional to the rate of change of this bistatic range, referred to here as the

‘bistatic Doppler’. Instead of a sphere of potential locations, a bistatic delay mea-

surement defines an iso-range ellipsoid of potential locations, with the transmitter

and the receiver locations forming the ellipsoid’s foci. A two-dimensional cut of

this ellipsoid is shown in Figure 2.1, including the locations of the transmitter,

the target, and the receiver forming the ‘bistatic triangle’, with the bistatic angle

being the angle subtended between the transmitter, target, and receiver (Willis,

2005; Malanowski, 2019).

TX RX

Target

β

Figure 2.1: The bistatic triangle, formed by the location of the transmitter (TX),
receiver (RX), and the target. The bistatic angle, β, is also shown.

Another difference caused by separating the transmitter and the receiver (al-

though it should be noted that standard monostatic radar is simply a special

case of bistatic radar) is with the delay resolution. The radar’s ability to mea-
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sure bistatic delay is still proportional to the signal’s bandwidth, but it is also

inversely proportional to cos
(
β
2

)
, and so the range resolution varies depending on

where the target is relative to the bistatic geometry (Willis, 2005).

Passive radar is a form of bistatic radar which uses already existing sources

of radio frequency (RF) illumination, such as commercial radio and television

broadcasts, instead of a dedicated or cooperative transmitter. The operation of

the passive radar is essentially identical to that of any bistatic radar. There are

many advantages to using passive radar over active radar, such as reduced size,

weight and power of the radar systems. Another advantage of not requiring a ded-

icated transmitter is that passive radars are electromagnetically covert. However,

there are drawbacks, by not having control over the transmitted signal, a passive

radar system is at the mercy of the characteristics of existing transmissions.

By utilising a non-cooperative transmitter, the radar system may be required

to operate with sub-optimal illumination. Desired surveillance regions may not

be fully covered, there may be insufficient transmit power for required sensitivity,

and the transmitted waveform may not have the right radar properties. Many

different radar waveforms are used, and the common metric of their efficacy is

referred to as the ambiguity function.

The ambiguity function represents the ideal matched filter output with the

specified waveform, across all delay and Doppler values of interest. For example, a

tone signal would be indistinguishable to a delayed version of itself, and so has no

range resolution. Another common waveform is the chirp, a linear frequency mod-

ulated waveform. A (repeated) chirp is ambiguous in delay and also in Doppler.

A single detection could correspond to an infinite number of velocities. This type

of ambiguity function is referred to as a ‘bed of nails’. The advantages to such

an ambiguity function are that only a small section is required to be calculated

in order to sample the infinite delay and Doppler spans, and also the region be-

tween the nails will be zero. Conversely, a noise waveform’s ambiguity function

is referred to as a ‘thumb-tack’. A detection will uniquely correspond to the cor-
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rect delay and Doppler (with the accuracy determined by the signal bandwidth

and the processing interval), the main disadvantages of a thumb-tack respose (as

opposed to a bed of nails, from an ambiguous waveform) is that the non-matching

aspects of the cross correlation will be non-zero, and so the waveform will have a

pedestal (or clutter) floor (Malanowski et al., 2020).

Passive radar signal processing is essentially the passive form of continuous

wave (CW) noise radar, and allows ambiguity-free velocity and delay ranges. An

often overlooked benefit of passive radar processing is this flexibility, as passive

radar processing allows the coherent processing interval (CPI), and the pulse

repetition frequency (PRF), to be chosen arbitrarily as these factors are not

determined by transmitted signal. Received signals can be processed in multiple

ways in parallel. As mentioned above, the downside is the presence of the pedestal

floor. The presence of any strong signals will contribute to a floor across the entire

delay Doppler space. Any potential detection will need to be stronger than this

floor in order to be detected. Because of this potential to limit sensitivity, often

the first step in passive radar processing is a clutter filter to remove as many

unwanted strong signals as possible, prior to radar processing (Palmer & Searle,

2012; Searle et al., 2018). The process of forming delay Doppler maps, along with

some examples from the MWA, is detailed in Section 2.4 below.

A major challenge in operating a passive radar is obtaining a reference copy

of what was transmitted; as the transmitter is non-cooperative, the signal is not

known. Typically a radar system will be located close enough to the transmitter

in order to directly sample the reference, such as with an incredibly directive and

high gain antenna. This approach will ensure the reference is already synchronised

with the surveillance signals. However, being located so close to the transmitter

is problematic as the radar will need to detect the weak target reflections in the

presence of the significantly stronger signal. In addition, the direct signal, as

well as strong reflections of any clutter in the region (observed in the reference

collection or the surveillance), will be significant, making the clutter removal
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step all the more challenging. Finally, directly sampling the reference signal

will tether any potential radar location to be close to the transmitter, severely

limiting surveillance options. It is possible to have a distributed passive radar

system, so long as there is sufficient time and frequency synchronisation between

the reference receiver along with the surveillance receiver.

Although there are many potential passive radar options for the illumination

of objects in LEO, the focus of this thesis is on the use of FM radio. Just like

any potential source, FM radio provides its own set of advantages and disadvan-

tages. In Australia the FM band is 87.5 MHz through to 108 MHz. Although

the FM band spans over 20 MHz, each individual FM station only occupies 200

kHz, and any station’s instantaneous bandwidth may actually be much less. This

small bandwidth at these frequencies results in quite coarse range resolution of

1.5 km1. However, the use of the FM band also results in significant flux-density,

as FM transmitters are often quite powerful. Additionally, the coarse range res-

olution greatly reduces the size of the resulting radar product. This reduced

size minimises the computational burden of radar processes. FM radio, being an

analogue signal, has a highly variable ambiguity function; the radar properties

vary with the signal content (Ringer et al., 1999). Different styles of music, hu-

man voice and even radio silence all have different bandwidths (and repeating

patterns) which drastically change the radar-aspects.

The nearest (large) FM transmitter to the MWA is over 300 km away, and

most of Australia’s largest FM transmitters are thousands of kilometres away.

This large standoff distance is actually beneficial for space surveillance purposes.

This is due to the radiative characteristics of typical transmitters, meaning that

broadcast entertainment is directed at consumers on the surface of the Earth. FM

radio is typically transmitted from large towers located at significant elevation

relative to the intended reception area, and the signal from these towers will

1The bistatic range resolution is 1.5 km but a monostatic radar with 200 kHz bandwidth
has a range resolution of only 750 m. The two terms (’range resolution’ and ’bistatic range
resolution’) are often used interchangeably.
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be primarily directed to the ground (and the horizon). Notwithstanding this, at

these frequencies the beamwidths are quite substantial and there will be sidelobes

at higher elevation angles. This large separation between the MWA and any

transmitters will help to reduce unwanted signals and RF interference (RFI), but

it also ensures even narrow elevation beam FM transmitters will illuminate large

volumes of space above the radio telescope receiver. Finally, there are thousands

of FM transmitters around the country, ensuring that there will be a vast amount

of energy above the MWA, at any potential target altitude of interest.

2.2 The MWA used as a Radar Receiver

The MWA is the low-frequency precursor to the square kilometre array (SKA),

operating in the frequency range of 70–300 MHz (Tingay et al., 2013a; Wayth

et al., 2018). The main scientific goals of the MWA are to detect radio emis-

sions from neutral hydrogen during the Epoch of Reionisation (EoR), to study

the Earth’s Sun and its heliosphere, Earth’s ionosphere, and radio transient phe-

nomena, and to map the galactic and extragalactic radio sky (Beardsley et al.,

2019).

The telescope is strategically located in a legislated radio-quiet zone, the

Murchison Radio-astronomy Observatory, far from cities and other sources of

electromagnetic interference. That is because the MWA, and indeed all radio

telescopes, are attempting to receive and detect incredibly weak signals, and

these can be swamped and masked by terrestrial transmissions.

The MWA consists of 4,096 dual-polarised wideband dipoles configured into

subarrays of 4 × 4 square grids, referred to as tiles. The grid spacing for each

tile is 1.1 m (corresponding to a half-wavelength separation for 136 MHz), and

the 16 dipoles are attached to a 5 m × 5 m steel mesh ground plane. These 256

tiles are distributed over ∼30 square kilometres. The current phase of the MWA,

Phase II, allows for the use of half of the tiles at any one time, in compact or

extended configurations (Wayth et al., 2018).
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The extended array’s long and varied baselines provides extreme baseline

lengths, allowing for incredibly accurate spatial measurements as well lower peak

sidelobe levels. This enables the MWA to observe complex and fine detailed

structures. The compact configuration is far smaller, and driven by requirements

for the EoR power spectrum detection, with the majority of the baselines being

shorter than 200 m. The plan view of both Phase II configurations are contained

in Figures 2.3 and 2.4. The main feature of the compact configuration is the two

hexagonal configurations (made up of 72 tiles). This compact configuration allows

for broader beams (meaning fewer beams are required to scan a given area) but

the repeated baselines of the hexagonal configurations will contribute to coherent

sidelobe structure.

Additionally, some of the work included in this thesis (notably this chapter

as well as Chapter 3) result from an earlier phase of the MWA, Phase I. MWA

Phase I also consisted of 128 tiles, and was a large pseudo-random distribution of

tiles providing excellent spatial accuracy, without some of the extreme baseline

length tiles that are found in the Phase II extended configuration. The Phase I

configuration is shown in Figure 2.2. Additional receivers and future MWA phases

will enable the joint processing of all 256 tiles, and potentially more (Morrison

et al., 2023).

2.2.1 Data Collection Pipeline

Each tile’s (and each polarisation’s) 16 dipole antennas are combined with an

analogue beamformer to form a tile beam in a particular direction in the sky.

The beamwidth is approximately 40° at the zenith for FM frequencies. This

analogue pointing can be adjusted every 8 s.

The full frequency bandwidth for each tile, for both North-South and East-

West polarisations, is directly sampled at 327.78 MHz, covering the array’s fre-

quency range of interest. A polyphase filter bank (PFB) channelises these sig-

nals to 256 × 1.28 MHz-wide critically sampled coarse channels. The MWA is
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Figure 2.2: A plan view of the 128 tiles for the Murchison Widefield Array’s
Phase I configuration.

able to transfer a user-defined subset of 24 of these 256 channels in real time

to the high time-resolution voltage capture system (HTR-VCS), allowing for an

instantaneous bandwidth of 30.72 MHz. The previous phases of the MWA only

provided voltage capture modes for the fine channels, the output of a second PFB

stage where each 1.28 MHz coarse channel was channelised into 128 channels of

10 kHz (Tremblay et al., 2015). For Phase I of the MWA the coarse channel

needed to be reconstituted from the 128 fine channels through a PFB inversion

operation (McSweeney et al., 2020).

The coarse channels, consisting of 1.28 MHz HTR-VCS data, are then further

downsampled to select the various FM frequencies of interest for radar processing.

For typical space surveillance applications, the standard utilisation is a (wide)

beam-stare mode, with the tile’s analogue beam directed near the zenith.
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Figure 2.3: A plan view of the 128 tiles for the Murchison Widefield Array’s
Phase II Extended configurations.

The net output is 128 channels with a user-defined bandwidth of (typically)

100-200 kHz. These data are then calibrated to remove any impact of the dis-

tributed array and phase-align each channel to the antenna. Once calibrated, the

data are able to be used for precise electronic beamforming with the distributed

array forming a large aperture providing very narrow surveillance beams.

The transmitter reference signals are collected directly at sites close to the

transmitter with a small software-defined radio (SDR) system. These SDR ref-

erence systems are GPS-disciplined to allow synchronisation with the MWA’s

surveillance data. Additionally, despite its location in a radio-quiet zone, the

MWA is able to detect transmissions from the nearest radio transmitters 300 km

away, allowing for the direct observation of nearby reference signals.
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Figure 2.4: A plan view of the 128 tiles for the Murchison Widefield Array’s Phase
II Compact configurations. Note the scale is far smaller for this figure compared
with Figures 2.2 and 2.3.

2.2.2 Calibration

Because of the long cable lengths to the distant tiles and receivers, as well as the

challenging environmental conditions, calibration solutions are vital to accurate

tied-array processing. Temperature variations can drastically vary the electrical

length and alter impedance and loss. These variations need to be accounted for in

order to phase-align the received signals to each tile’s phase centre. This requires

complex gain (that is, amplitude and phase) corrections at every frequency of

interest.

This calibration solution is typically achieved by processing a dedicated cali-

bration observation that occurs close, in time, to the space surveillance observa-
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tion of interest. The calibration observation is directed at a known-good calibra-

tion source (or field of sources), and knowledge of the specific source’s location and

power levels, combined with the knowledge of the tile’s analogue beam-pattern,

is used to generate the calibration gains (Ord et al., 2019).

A unique issue faced with calibration of the MWA for the use of passive

radar, is the presence of the RFI in the frequency band of interest. Normally

RFI-impacted frequencies would not be used for astronomy purposes and so cali-

bration accuracy at these frequencies is not a typical concern. However, because

passive radar processing utilises the same transmitters which cause the RFI, the

calibration accuracy is of vital importance.

A sample of a typical calibrator output is shown in Figure 2.5. In this example,

because of the presence of RFI, there are discontinuities at 96.5 MHz, there are

also large gaps due to the frequency range spanning coarse channel boundaries.

All of these issues can contribute to a poor result when attempting to interpolate

across these impacted frequencies.

Figure 2.5: Sample calibrator output showing the calibration amplitude and phase
adjustments. Wide bands are not calibrated due to the coarse channel boundaries,
and the impact of RFI at 96.5 MHz is present.

Two techniques have been used throughout this thesis to refine calibration

solutions so that they are usable at frequencies where RFI is present. The first

is to simply interpolate across RFI-impacted frequencies, as typically there will
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be nearby frequency gaps in the RFI for the calibration process to resolve a so-

lution. Another approach taken here is a genetic algorithm process to adjust

the gains and phases (at a specific frequency) to improve the returns of exist-

ing targets (Boeringer et al., 2005). These returns can be environmental targets

(such as the ever-present meteor returns), or even radar detections of satellites.

The process can incorporate known-true locations such as satellites with accu-

rate ephemerides, in which the genetic algorithm will attempt to improve detected

power at known directions. Alternatively, the genetic algorithm process can be

direction agnostic, such as with unknown satellites or meteor returns, simply by

attempting solely to maximise the detected power at (or around) the original di-

rection. A genetic algorithm approach was chosen over other traditional numerical

methods because of the sizeable problem space (amplitude and phase for every

tile) compared with a relatively small number of data points. With only a small

number of data points, there is insufficient information to estimate a solution

gradient (Madsen et al., 2004). Genetic algorithms are a class of heuristic-based

search algorithms, inspired by broad notions of natural selection and genetics.

The algorithm operates by creating a large number of potential solutions, this

population is updated and propagated to attempt to find solutions which max-

imise a given metric or heuristic (Holland, 1992; Boeringer et al., 2005).

Figure 2.6 illustrates the genetic algorithm process. An adaptive parameter

process, as in Boeringer et al. (2005), was used to adjust the mutation rate, muta-

tion range and the number of crossovers, the population size was fixed at 200 and

the process ran until a steady population fitness was achieved, typically around

100 generations. Six meteor and radio-galaxy returns are used to optimise the

calibration returns to maximise target power, with the resulting observation cal-

ibration solution being the one which maximises the total power from all targets.

In this example only the calibration phase was adjusted, not the amplitude. The

beamforming adjustments have focused the returns, and increased the power, of

of all six targets and the resulting phase offsets can be incorporated into the
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Figure 2.6: Example output of the genetic algorithm process to update the phase
corrections from the calibration solution. The figure shows the power return of
six targets (Targets 1 – 4 are meteor returns, targets 5 and 6 are radio-galaxy
returns), and how over 100 generations the determined phase adjustments increase
the detected power of each. An individual colour scale has been used for each
target.

general calibration solution. This approach has consistently improved the SNR

of radar detections of resident space objects (RSOs) with the observation data

collected for this thesis, as any improvement in received surveillance power will

have a greater impact on SNR due to correlation in the radar processing.

These calibration steps can be applied prior to any space surveillance ob-

servation, and so they do not preclude real time observation. Additionally, the

environment or satellite based calibration can be implemented as a running cal-

ibration generation, that is, calibration on the fly. This would enable ongoing

surveillance without the need for dedicated calibration observations.

2.3 LEO Space Surveillance

For RSOs in an Earth-centered orbit, there are a large number of perturbing

forces determining the object’s trajectory, more than simply Earth’s gravity.
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Some examples include other planetary bodies, solar wind pressure, Earth’s non-

spheroidal/oblate shape, the effects of general relativity, and (particularly for

LEO) microatmospheric drag. This can make orbit determination quite chal-

lenging. However, for short time periods, such as a standard radar CPI or an

RSO’s pass above a radar site, a much simpler orbital motion model is more than

sufficient.

The simplest orbital model is the two-body, or Keplerian, orbital model. This

treats the Earth and the RSO of interest as point masses, and assumes gravity is

the only force. An object in this simple orbital model will trace an ellipse, and so

an advantage of the Keplerian motion model is that the RSO’s orbit is completely

determined by only six parameters (and an epoch). These six parameters can be

the three-dimensional cartesian position with a three-dimensional velocity. Al-

ternatively it is common to use the Keplerian Elements. These will be covered in

greater detail in Chapter 4. However they define the size and shape of the orbital

ellipse (with the eccentricity and the semi-major axis), and four parameters to

orient the ellipse relative to Earth. One parameter specifies the RSO’s location

on the ellipse. Although an orbit is defined by an ellipse, the vast majority of

objects in an Earth-centered orbit are in a circular, or near-circular, orbits.

RSOs in an Earth centered orbit can occupy altitudes from the Kármán Line2

at 162 km (Imamura et al., 2021), to beyond cislunar, approximately 380,000 km

away. In addition to the LEO regime, which are orbits with altitudes lower than

2,000 km, other important orbital regimes are medium Earth orbit (MEO), and

geosynchronous equatorial orbit (GEO). MEO orbits have altitudes between LEO

and GEO (Riebeek, 2009). MEO altitudes are typically used for navigation and

other special interest satellites, and GEO is typically used by persistent Earth-

observation systems and communication and entertainment satellites. However,

there are many different special-case satellites in all manner of orbits, as well as

2The Kármán Line is the proposed boundary for where Earth’s atmosphere ends and space
begins. There are various potential altitudes, such as 100 km, however in this thesis the lowest
recorded sustained orbital altitude of 162 km is used for the Kármán Line.
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rocket bodies (and other associated debris) at intermediate orbit stages between

launch and the final destination orbit.

A sensor like the MWA should be able to detect RSOs to a maximum range of

several thousand kilometres, depending on the object’s size. These ranges are far

smaller than the maximum potential Earth-centered orbital altitudes discussed.

However, they represent the majority of the space surveillance population that is

currently tracked. Figure 2.8 shows the semi-major axis against the eccentricity

of objects that are being tracked, showing that despite circular orbits being the

most common, there is a not-insignificant amount of RSOs with a considerably

non-circular orbits.

The closer an RSO is to Earth, the faster it will be travelling. Geostationary

satellites are at an altitude of approximately 36,000 km because that is the alti-

tude where an RSO in a circular orbit will be slow enough to match the rotation

of the Earth. RSOs in LEO travel much faster, with speeds between 7 km/s and

8 km/s being very common for circular orbits. The low-perigee (so, detectable)

RSOs in non-circular orbits will have even higher speeds. Unlike a circular orbit,

the speed of an RSO in an elliptic orbit changes depending on its range from

Earth, and the speed will be at its greatest extent at perigee. This is shown in

Figure 2.8, which details the maximum speed of all the objects currently in the

space catalogue. It shows that for the objects the MWA is likely to detect, the

maximum speeds will vary from 7 km/s up to almost 11 km/s. These speeds

present a significant challenge to space surveillance radars due to the changing

geometry and measurement parameter smearing.

Finally, with increased interest in lower-latency communications, use of LEO

for communication is increasing. This requires the use of a large number of

satellites in LEO instead of a smaller number of satellites in GEO. These ‘mega-

constellations’ are the driving force behind the recent dramatic increase in LEO

utilisation (Rossi et al., 2017; McDowell, 2020). Additionally, these megaconstel-

lation satellites are far more manoeuvrable than traditional satellites and other
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Figure 2.7: Semi-major axis vs. eccentricity diagram showing the distribution
of objects in the catalogue and their respective elements. RSOs with a perigee
less than 2,000 km above the surface of the Earth are highlighted red.

space debris, due to the fact that they (each individually) cannot be inserted di-

rectly at their target orbit, as well as general station-keeping requirements. The

unpredictable nature of LEO perturbing forces (e.g. space weather dependent

drag), the significant LEO speeds, and the recent increase in the number of ma-

noeuvrable satellites makes LEO surveillance significantly more challenging and

dynamic than it has previously been.
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Figure 2.8: The maximum speed (achieved at perigee) distribution of objects in
the catalogue against their eccentricity. RSOs with a perigee less than 2,000 km
above the surface of the Earth are highlighted red.

2.4 Signal Processing

2.4.1 Radar Product Formation

The fundamental radar product used for target detection is the delay-Doppler

map. This is a set of matched filter outputs, essentially correlations, provided by

the Woodward Ambiguity Function (Woodward, 1953). The ambiguity function
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describes a radar’s ability to determine the delay and Doppler shift of a reflected

signal. Given a reference copy of the transmitted signal r(t), and a surveillance

signal s(t), both sampled at rate B, the discrete implementation of the ambiguity

function for a coherent processing interval of length T of bistatic delay τ , and

bistatic-Doppler, fD, is given by:

χ[τ, fD] =
BT−1∑
t=0

s[t]r∗[t− τ ]e−j2πfD
t
BT . (2.1)

This essentially correlates a delayed and frequency-shifted reference signal

with the surveillance signal in order to match reflections, corresponding to a

hypothesised delay and Doppler frequency shift.

For a target at Cartesian position r, the receiver and transmitter’s positions

are rrx and rtx, respectively. Then the slant range between the receiver and

the target is given by ρrx = |r − rrx|, and the slant-range velocity given by its

time derivative ρ̇rx. Likewise the target-transmitter slant-range and slant-range

velocity are ρtx and ρ̇tx, respectively. For a signal transmitted with wavelength λ,

the target’s parameters will correspond to a detection in the delay-Doppler map

given by:

τ =
1

c
(ρrx + ρtx − |rrx − rtx|), (2.2)

fD =− 1

λ
(ρ̇rx + ρ̇tx). (2.3)

In practice, the ambiguity function is not estimated directly, as the need to

perform a correlation the length of the CPI for every delay and Doppler hypoth-

esis is not practical. Instead, an approximation (known as the pulse-Doppler

approximation or even the Batches Algorithm in recent literature) is used (Stein,

1981). Much like in standard pulse-Doppler processing, the signal is subdivided

into M pulses of length τc such that each pulse is made up of Bτc samples.

That is T = Mτc. Individual pulses (from the surveillance and reference signals)
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are correlated together. This collection of correlated pulses is referred to as the

range-compressed pulse stack, with each pulse representing a slow-time instanta-

neous measurement of delay, measured in fast-time. These pulses are coherently

combined to resolve the target’s Doppler by applying the Discrete Fourier Trans-

form across the slow-time dimension. The expression for the discrete Batches

Algorithm is:

χ[τ, fD] =

M
2∑

m=−M
2

e−j2π
fDm

M

Bτc−1∑
t=0

s[mBτc+ t]r∗[mBτc+ t−τ ]. (2.4)

The key approximation of the pulse-Doppler is that the pulse length, τc, is

short enough that the phase variation across the pulse due to the target’s motion

is insignificant. Whilst the fast-time across each pulse is given by t, each pulse’s

slow-time is mτc. Larger Doppler shifts will result in a steeper phase variation,

necessitating shorter pulses (Lombardo et al., 2012). The two processing steps

in the approximation is the fast-time range compression (t), and then the pulse

integration stage, coherently combining all the pulses across slow-time (mτc) by

an M-point Fourier Transform. It should be noted, the correlation at all delays

(the fast-time range compression) can be efficiently implemented in the Fourier

domain as well.

Directional information is estimated by beamforming. Although it is possible

to form a beam with the timeseries signals and then apply the delay-Doppler

processing, this is very inefficient as the pulse-compression is computationally

demanding. Instead, it is better to beamform on the delay-Doppler products

directly (Palmer, 2015). For a receiver array consisting of N elements, each with

corresponding delay-Doppler maps χn, the resulting delay-Doppler map can be
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formed by classical far-field beamforming3 in a direction of interest, such that:

χ[τ, fD, θ, φ] =
N∑
n=1

χn[τ, fD]e−j
2π
λ
k·un , (2.5)

where χn[τ, fD] is the delay-Doppler map formed from the signal at the nth an-

tenna, un is the position of the nth antenna, and k(θ, φ) is the signal wavevector

for azimuth θ and elevation φ. For an East, North, Zenith coordinate frame4 k

is given by:

k =


sin θ cosφ

cos θ cosφ

sinφ

 . (2.6)

Figure 2.9 is a typical delay-Doppler map as seen by the MWA. The delay-

Doppler map was formed in the direction of the ISS and shows the approaching

space station at a significant bistatic delay of approximately 2.25 ms. An outgoing

aircraft can be seen at close range, and with relatively low speed. An interesting

aspect is that despite being located in a legislated radio quiet zone, there is

significant signal refracted from the transmitter (in this instance located over 300

km, and many horizons, away) such that direct-path interference is the dominant

return, highlighting the great challenge radio astronomers face in dealing with

RFI. The delay-Doppler map’s pedestal floor, at 0 dB in the Figure, is set by

the strong signal (at around 32 dB). If this 32 dB signal is removed the resulting

floor would be lower, and this would increase the SNR of the satellite and aircraft.

Also, any targets with peaks lower than the floor may also be revealed.

Another key aspect of Figure 2.9 occupies a large (or at least, larger than

3Note the far-field assumption is reasonably valid for the compact configuration of the MWA
Phase II, it may not hold for the extended configuration.

4The specific coordinate used is not of any consequence, so long as the wavevector, k, and
each antenna location, un, match. A topocentric coordinate frame with the topocentric right
ascension and declination is used in Chapter 5 and a South, East, Zenith frame is used in
Chapter 6.
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Figure 2.9: Example delay-Doppler map formed using MWA data. Inset (a)
shows the direct path interference as well as an outgoing aircraft. Inset (b) shows
an approaching International Space Station.

the aircraft) number of ‘cells’ in the delay-Doppler map. The processing interval

used for Figure 2.9 was 1 s, and in this time the ISS has moved across the delay

Doppler map, akin to motion blurring in a photograph. This blurring, referred

to as delay and Doppler walk, is typically not of concern to standard surveillance

radars, but it is of extreme concern for long integration space surveillance radars.

The delay and Doppler walk reduces sensitivity to fast moving targets as the

returned energy is spread over many cells, minimising the maximum possible

energy detectable in any one cell.

2.4.2 Walk across all parameter space

Standard pulse-Doppler processing is described by (2.4) and (2.5), forming a

delay-Doppler map for every direction of interest. It represents the approach

that most radars take in forming surveillance products, although there are many

improvements and efficiencies which can be achieved and implemented (opposed

to the way the expressions are presented here). A common approach to improve
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a radar’s sensitivity to target returns is to integrate for longer, extending the CPI

to improve target SNR. However, this is problematic for fast-moving targets as

any CPI increase will also mean greater target movement and delay and Doppler

walk.

This is the fundamental challenge with the detection of RSOs with the MWA;

the need to extend the CPI to detect smaller and more distant RSOs is balanced

against the difficulty of coherently forming detection signals. Figure 2.9 was

formed with a CPI of only 1 s, and the RSO already exhibited considerable delay

and Doppler walk. It is not uncommon for staring radars to use CPI lengths

in excess of 10 s. In order to extend the processing interval, any RSO motion

through the delay-Doppler map will need to be mitigated in order to achieve

meaningful detections.

Figure 2.10: Segment of a delay-Doppler map centered on an approaching ISS.
Formed with a CPI of 3 s, the ISS exhibits considerable delay and Doppler walk
as it moves across the CPI.

Figure 2.10 is a cropped section of a delay-Doppler map, formed with a 3 s

CPI, showing the ISS moving through range and Doppler. Throughout the CPI

the ISS moves from one corner of the section to the other. Due to the Doppler-

walk and the delay-walk the ISS’ returned energy is smeared across hundreds of
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cells. Two horizontal spurs, or lines, are visible in the section. These are caused

by the changing ambiguity function across the CPI. Within the three seconds,

the FM content (music, voice, etc.) changes and so does the resulting bandwidth.

Two instances of low bandwidth, and so coarse range resolution, occur, resulting

in the horizontal spurs.

The two stages of (2.4) are the fast-time pulse compression, followed by the

slow-time pulse-integration. As the bistatic range to the target changes across

each subsequent fast-time pulse, the range compression will result in the peak

forming in subsequent delay cells. Likewise, as the relative bistatic velocity

changes across the CPI, the target’s bistatic Doppler shift will vary. This varying

delay and Doppler causes the migration seen in Figure 2.10.

As mentioned in Chapter 1, there are many methods for combating range-

walk. However, for this thesis the standard approach has been to utilise the

Keystone Transform (Perry et al., 1999; Perry et al., 2007). This is a slow-time

resampling which mitigates all constant radial delay-walk. It will be discussed

further in Chapter 3. It should be noted that even with the narrow bandwidths

offered by FM radio, delay migration is still a considerable challenge.

Similarly, there are a large number of approaches for mitigating Doppler-

walk, however the optimal approach is the chirpogram. This involves matching

any potential motion-induced chirp and evaluating the output. This acceleration

searching is covered in subsequent chapters but as Doppler-walk is the largest

source of sensitivity loss, it will be explored further here.

To mitigate the motion induced loss, a hypothesised Doppler-rate is applied

across slow-time to correct for the Doppler-walk. This essentially requires form-

ing a three dimensional delay-Doppler-Doppler-rate map. It should be noted

that the inner correlation products, the range-compressed pulses, do not need

to be recalculated for each Doppler-rate (or Doppler) hypothesis. Just as with

the standard pulse-Doppler/batches approach, the implementation implicitly as-

sumes the phase change across a single pulse (due to the radial acceleration) is
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insignificant, and the process only matches pulse-to-pulse phase changes. Note

that the pulse-integration Fourier transform needs to be implemented for each

acceleration hypothesis. For a Doppler-rate ḟD, the slow-time chirp can be miti-

gated by the phase term, e−jπḟD(mτc)
2

.

Rewriting (2.4) to incorporate this Doppler rate, ḟD (and noting thatM = T
τc
),

results in the expression for a delay-Doppler-Doppler-rate map:

χ[τ, fD, ḟD] =

M
2∑

m=−M
2

e
−j2π

(
fDmτc
T

+
ḟD(mτc)

2

2

)
Bτc−1∑
t=0

s[mBτc+ t]r∗[mBτc+ t−τ ] .

(2.7)

Figure 2.11: Four reproductions of 2.10 (utilising the same scale) with various mo-
tion mitigations applied to the pulsestack. The bottom two subfigures have had
a matching Doppler-rate applied, the right two subfigures have had the Keystone
transform applied.

Figure 2.11 is a reproduction of Figure 2.10 where the pulse stack has been

processed in four different ways. The bottom two subfigures have had appropriate

Doppler-rate compensation applied, and the right two subfigures have had the

47



Keystone Transform applied. The key aspect is that the top-left subfigure has

had no motion compensation applied to the pulse stack, whereas the bottom right

subfigure has had Doppler and delay migration mitigation techniques applied,

with the result being a dramatic 20 dB SNR improvement.

Figure 2.12: Two subfigures showing a satellite moving near zero-Doppler, the
left subfigure is a section of a delay-Doppler map and the right subfigure is the
spatial skymap, from the horizon to zenith, resulting from the beamforming.
The matching radar products were formed by implementation of (2.5). The
uncompensated Doppler-rate and spatial rates produce significant smearing.

Delay and Doppler migration is a challenging issue for any long-integration

space surveillance radar. The extreme speeds of RSOs at LEO (as outlined in

Section 2.3) will always result in loss in delay-Doppler map sensitivity. The MWA,

used as a passive radar, is no different in these aspects. What is unique about the

MWA is its sheer size. The extreme baselines (even with the Phase II compact

configuration) which enable the MWA’s detailed imaging capabilities also present

some significant challenges to moving target detection. The incredibly fine spatial
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resolution means that for even short CPIs, there will be spatial migration of the

RSO. Despite orbital altitudes typically being in excess of 300 km, the large extent

of the radar tiles and the extreme speeds are more than enough for spatial-walk

to occur. Figure 2.12 shows the motion of the ISS through the delay-Doppler and

spatial paramters. The left subfigure is a segment of a delay-Doppler map and

the right subfigure is the full sky coverage, with an inset highlighting the ISS.

Figure 2.12 is essentially the implementation of (2.5), and shows the significant

migration in all measurement parameters. In order for the target to be fully

coherently detected across the CPI, moving beams need to be incorporated in to

the processing.

First, to combat the extreme parameter walk shown in Figure 2.12, Doppler-

rate hypotheses are incorporated in to the spatial product forming a five-dimensional

search space, with ḟD, and building on (2.7). The result is:

χ[τ, fD, ḟD, θ, φ] =
N∑
n=1

e−j
2π
λ
k·unχn[τ, fD, ḟD] . (2.8)

The use of (2.8) is shown in Figure 2.13. It is clear the inclusion of the

Doppler-rate, ḟD, has completely mitigated the Doppler-walk in the left subfigure

of Figure 2.13, resulting in a significant sensitivity increase. However, the spatial

migration on the right subfigure still remains. To achieve the moving beams, the

wavevector needs to be changed pulse-to-pulse to move the beam across the CPI.

In order to adjust the wavevector across the CPI, angular rates (that is, az-

imuth rate, θ̇, and elevation rate, φ̇) need to be incorporated into the delay-

Doppler expression prior to the pulse-integration stage. This will require a pulse-

integration step for every acceleration hypothesis, as well as every azimuth-rate

and elevation-rate hypothesis. This will be a costly search space, as (2.8) is al-

ready a five dimensional product, and so including angular rates will grow the

product to seven dimensions. The spatial and Doppler motion essentially requires

a matching polynomial phase signal for every tile in order to track the hypothe-
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Figure 2.13: Identical figure as Figure 2.11, except the matching radar products
were formed by implementation of (2.8). The matched Doppler-rate has dramat-
ically improved SNR however the spatial rates still produce significant smearing.

sised motion. Writing the series of phase coefficients as wx,n where coefficient x

and antenna number n, the delay-Doppler map product is given by:

χ[τ, fD, ḟD, θ, θ̇, φ, φ̇] =
N∑
n=1

M
2∑

m=−M
2

e−j2π(w0,n+w1,nmτc+
1
2
w2,n(mτc)2)

×
Bτc−1∑
t=0

s[mBτc+ t]r∗[mBτc+ t−τ ] , (2.9)
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with

w0,n =
1

λ
k · un , (2.10)

w1,n =
fD
T

+
1

λ
k̇ · un , (2.11)

w2,n =ḟD , (2.12)

k̇ =


θ̇ cos θ cosφ− φ̇ sin θ sinφ

−θ̇ sin θ cosφ− φ̇ cos θ sinφ

φ̇ cosφ

 . (2.13)

The seven parameter delay-Doppler product, (2.9), is illustrated in Figure

2.14. When compared with Figures 2.12 and 2.13 it can be seen that both the

Doppler migration and the spatial migration have all been completely mitigated.

The peak spatial return is now a single point at the centre of the response,

highlighting the accurate spatial measurement capability of the MWA.

A near-unbounded seven parameter search space is an incredibly daunting

challenge. It represents a mammoth processing task that needs to be completed

every CPI, and further compounding this problem, this thesis (through Chapters

3, 5 and 6) demonstrates that it is actually insufficient. For even moderate

CPI lengths (e.g. 3 s), fast moving objects such as RSOs in highly eccentric

orbits (travelling at speeds beyond 10 km/s), the processing needs to account for

the radial-jerk, corresponding to the Doppler-acceleration as well as the spatial

acceleration terms. That is, (2.9) needs to be expanded to incorporate f̈D, θ̈, and

φ̈ such that:
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Figure 2.14: Identical figure as Figures 2.11 and 2.13, except the matching radar
products were formed by implementation of (2.9). The matched Doppler-rate
and matched spatial have dramatically improved SNR and stopped smearing in
all dimensions. Now the space station is spatially localised to a single point.

χ[τ, fD, ḟD, f̈D, θ, θ̇, θ̈, φ, φ̇, φ̈]=
N∑
n=1

M
2∑

m=−M
2

e−j2π(w0,n+w1,nmτc+
1
2
w2,n(mτc)2+ 1

6
w3,n(mτc)3)

×
Bτc−1∑
t=0

s[mBτc+ t]r∗[mBτc+ t−τ ] ,

(2.14)
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with w0,n, w1,n, and k̇ as before, and

w2,n =ḟD +
1

λ
k̈ · un , (2.15)

w3,n =f̈D , (2.16)

k̈ =


−(θ̇2 + φ̇2) sin θ cosφ+ θ̈ cos θ cosφ− φ̈ sin θ sinφ− 2θ̇φ̇ cos θ sinφ

−(θ̇2 + φ̇2) cos θ cosφ− θ̈ sin θ cosφ− φ̈ cos θ sinφ+ 2θ̇φ̇ sin θ sinφ

φ̈ cosφ− φ̇ sinφ

 .

(2.17)

It should be noted that this ten-parameter motion matching pulse integration

function is required even when utilising the compact configuration of the MWA.

This is shown in Figure 2.15. Figure 2.15 shows the spatial returns of the Hubble

Space Telescope (HST) observed with the Phase II MWA compact configuration,

in a similar vein to the spatial insets of Figures 2.12 – 2.145. The left subfigure

does not match any of the Doppler or spatial motion (implementing (2.5)) and

the HST is not detectable. The middle subfigure has matched the Doppler-rate

(implementing (2.8)) which has improved the sensitivity. The third subfigure

has matched the Doppler-rate and the spatial-rate motion (implementing (2.9))

improving sensitivity and also reducing spatial smear. In Figure 2.14 the ISS’

spatial returns are concentrated to a narrow point, whereas in Figure 2.15, the

HST is concentrated to a broader point with significant sidelobe structure. The

broader point is the result of the shorter baselines of the Phase II compact con-

figuration, and the ‘flower’ sidelobe structure is a result of the repeated baselines

of the two hexagonal subarrays (Wayth et al., 2018).

5Similar examples, resulting from a smaller passive radar system, are presented in Appendix
A.
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Figure 2.15: Spatial returns of the Hubble Space Telescope observed by the Phase
II compact configuration and processed in different ways, akin to the spatial insets
from Figures 2.12 – 2.14. The left figure is the result of (2.5), the middle figure
implements (2.8), and the right figure is the implementation of (2.9).

2.5 Summary

Given the large speeds of RSOs in LEO (outlined in Section 2.3), any attempt

to implement the required ten parameter search space, that is (2.14), would be

unrealistic. Even with supercomputing capabilities, such a process would not be

feasible for any long-integration space-surveillance staring radar, let alone a sensor

like the MWA with its large aperture and incredibly accurate spatial resolution.

A potential response to this challenge would be to use the MWA solely as a

tracking radar, that is, a sensor which takes known tracks and cues from other

sources, and uses this information to form detections and update tracks. However,

this approach would discard one of the advantages of a widefield staring radar in

being able to detect and track unknown and uncatalogued objects, and so would

not assist the challenging problem of modern LEO space surveillance.

Instead, this thesis aims to investigate practical and applied methods to over-

come this problem, primarily through exploring the intersection and overlap be-

tween the radar parameter space and the orbital parameter space with the ul-

timate goal of taking uncued detections through to precise and accurate orbit

determination. These ideas will be developed and demonstrated through a se-

ries of experimental observation campaigns with the MWA, illustrating how novel

space surveillance sensors, such as radiotelescopes, can assist with the challenging
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problems ahead.
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Chapter 3

Improved Techniques for the

Surveillance of the Near Earth

Space Environment with the

Murchison Widefield Array

The initial approach is to revisit previously collected data, and overcome the diffi-

culties raised by these data, in order to investigate methods to extend processing

intervals to detect smaller objects. This chapter is a faithful reproduction of the

author’s publication (Hennessy et al., 2019), as per Curtin University’s policy.

It differs from the original in only minor respects, including the formatting of

both the text and the images, and the numbering of the equations and figures.

Additionally, an appendix has been included, based on a section of the author’s

publication (Hennessy et al., 2023a), which covers range-walk and Doppler-walk

mitigation measures in greater detail. In both this and subsequent chapters,

the end matter (Acknowledgements, References) of the original papers have been

shifted to the relevant sections of this dissertation. The reader will encounter

some repetition of material in the introductory sections.
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3.1 Abstract

In this paper we demonstrate improved techniques to extend coherent process-

ing intervals for passive radar processing, with the Murchison Widefield Array.

Specifically, we apply a two stage linear range and Doppler migration compen-

sation by utilising Keystone Formatting and a recent dechirping method. These

methods are used to further demonstrate the potential for the surveillance of space

with the Murchison Widefield Array using passive radar, by detecting objects or-

ders of magnitude smaller than previous work. This paper also demonstrates how

the linear Doppler migration methods can be extended to higher order compen-

sation to further increase potential processing intervals.

3.2 Introduction

The Murchison Widefield Array (MWA) is a radio telescope located in Western

Australia (Tingay et al., 2013a). It is the low frequency precursor to the upcoming

Square Kilometre Array (Braun, 2015). Operating in the frequency range 70 −

300 MHz, the main scientific goals of the MWA are to detect radio emission from

neutral hydrogen during the so-called Epoch of Reionisation (EoR), to study our

Sun and heliosphere, the Earth’s ionosphere, and radio transient phenomena, as

well as map the Galactic and extragalactic radio sky (Bowman et al., 2013). The

MWA is sensitive to, as a source of radio interference, terrestrial transmissions,

such as FM radio and digital TV, reflected by objects in low Earth orbit (Tingay

et al., 2013b), but as far as the Moon in the case of a global ensemble of trans-

mitters (McKinley et al., 2013). Recently, it has been shown that passive radar

techniques using the MWA can detect and range these objects in low Earth orbit

(LEO), allowing orbits to be generated (Palmer et al., 2017).

With the ever increasing number of human-made objects in Earth orbit, the

reduction in barriers and costs of putting an object in orbit, and the rapid uptake

of small-satellite technology, the surveillance of space is an increasingly important
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area of interest. This is highlighted by the increasing fears over the Kessler

Syndrome, a scenario in which the density of debris in LEO is high enough that

a collision causes a chain reaction of subsequent collisions, potentially rendering

near-Earth space inaccessible (Patel, 2015).

Typically, the radars employed for the surveillance of space are very narrowly

focused tracking radars, and are only able to surveil a small solid angle at any one

time (National Research Council, 2012). The MWA has many beneficial charac-

teristics for passive radar: the wide-area field of view (100s to 1,000s of square

degrees); its location at the Murchison Radio-astronomy Observatory (MRO), a

designated radio quiet zone (subject to very low levels of interference); and the

MWA’s high sensitivity across a wide frequency range coinciding with numerous

terrestrial transmitters.

Recent publications detailing space debris detection with radar, both passive

and active, highlight the need to incorporate the object’s trajectory into the

processing in order to enable longer coherent processing intervals in order to

detect smaller objects (Laghezza et al., 2010; Benson, 2014; Mahmud et al., 2016).

In this paper we build upon previous work to further develop processing strate-

gies using the MWA as an element in a passive radar system, particularly, in

extending coherent processing intervals. In Section 3.3 prior work is detailed,

including recent work in upgrading the MWA. Section 3.4 covers the processing

strategies generally used in extending processing intervals in passive radar, as

well as the specific techniques used in this paper. Section 3.5 covers a 2016 obser-

vational campaign and details some results demonstrating improvements in the

detection of space debris. Last, Section 3.6 details future directions in this area

and includes plans for future observational campaigns.

3.3 Prior work

The MWA originally consisted of 128 ‘tiles’, with each tile made up of 16 dual-

polarised wide-band dipoles in a 4x4 configuration. The MWA covers a frequency
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range of 70 MHz to 300 MHz, with an instantaneous bandwidth of 30.72 MHz.

The MWA has previously been used to demonstrate non-coherent1 detections

of the Moon as well as the International Space Station (ISS) using reflected FM

radio (McKinley et al., 2013; Tingay et al., 2013b). This work went further to

present simulated results predicting that the MWA is capable of detecting much

smaller debris-sized objects2.

Following the non-coherent detection of the ISS, a data collection was under-

taken in 2015 in order to demonstrate the use of the MWA with passive radar,

focusing on the ISS. The MWA, despite being in the MRO, was able to directly

receive the reference signal from Geraldton, the FM signal diffracting the three

hundred kilometres. By comparing the directly transmitted signal, observed at

the horizon, and the reflected surveillance signal, passive radar techniques were

used to detect aircraft, ionised meteor trails and the ISS (Palmer et al., 2017).

This work proceeded to show that including the bistatic-range and Doppler

measurements of the ISS greatly improves the ability to generate an orbit, in

this case from a single pass. This is especially notable as this was achieved with

a single 10 kW radio station, at an elevation of over 60° at the point of closest

approach, well outside of the primary beam of the transmitter.

The MWA has recently undergone an upgrade, from Phase I to Phase II,

doubling the number of tiles, allowing the array to be reconfigured between ‘ex-

tended’ and ‘compact’ configurations (Wayth et al., 2018). Figure 3.1 shows

both the Phase I array layout as well as the Phase II compact configuration array

layout, including the two compact hexagons.

Observation data are collected through the Voltage Capture System for record-

ing high time and frequency resolution data (Tremblay et al., 2015). These volt-

ages are collected after two polyphase filter bank (PFB) stages which critically

sample the data into coarse 1.28 MHz channels and then 10 kHz fine channels.

These data are phase-adjusted to account for the cable delays and then a further

1That is, without reference to the transmitted signal.
2Debris radius of > 0.5m to ∼ 1, 000 km altitude (Tingay et al., 2013b).
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Figure 3.1: The left section shows the Phase I array. The right section shows the
Phase II compact configuration array.

calibration solution is applied to remove instrumental and atmospheric effects.

The calibration solutions are produced by recursively accounting for residuals af-

ter removing the visibilities from known strong compact sources (Tingay et al.,

2013a).

The second PFB stage is then inverted to combine the 10kHz sub-channels into

timeseries data, reconstituting the FM band for beamforming and delay-Doppler

processing.

3.4 Processing Strategies

Space debris radar research consistently highlights the need for much longer pro-

cessing intervals in order to improve system sensitivity; this mirrors similar con-

siderations in passive radar. With the increase in computing power and available

memory, extending processing intervals is far more achievable. This raises chal-

lenges for high-speed and manoeuvring targets as increasing the coherent pro-

cessing interval (CPI) will lead to range and Doppler migration. That is, the

target may be moving sufficiently fast to ‘smear’ returns across multiple delay
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and Doppler bins during a single CPI, thereby reducing the target’s power in

each delay and Doppler bin. Traditionally, this has meant constraining CPIs to

small values. Doppler migration is further exacerbated by increasing CPIs, as the

Doppler resolution is proportional to the CPI length.

Mirroring the need to incorporate debris trajectory to improve performance, as

in Section 3.2 above, incorporating target trajectory to avoid range and Doppler

migration is a consistent theme in general passive radar research (Christiansen

et al., 2014; Kulpa & Misiurewicz, 2006).

The classic solution for handling range migration is the Keystone Transform.

The Keystone Transform is a frequency dependant slow time resampling, to de-

couple range and Doppler, removing all linear range migration (Perry et al., 1999).

In order

to extend CPIs for detecting high-speed and manoeuvring targets, ambiguity

surface processing has been extended to incorporate acceleration (Malanowski &

Kulpa, 2008; Borowiec & Malanowski, 2016). As shown in (3.1), given a surveil-

lance signal s(t) and reference signal r(t), the narrowband ambiguity function

is a matched filter over CPI T to delay τ and Doppler v, but also extended to

include the Doppler rate w. The rate of Doppler change is analogous to target

acceleration.

χ(τ, v, w) =

∫
T

s(t)r∗(t− τ)e−j2π(vt+ 1
2
wt2) dt (3.1)

This processing only removes Doppler migration due to acceleration. Range

migration caused by accelerating targets will not be compensated as the delay

term τ is not adjusted. This method also requires the delay Doppler map to be

recomputed for each acceleration hypothesis. Because evaluating the complete

ambiguity function is computationally very expensive, approximations to these

methods are used (Howland et al., 2005; Palmer et al., 2011).

These involve producing a range-compressed pulse stack and resolving Doppler

with a Fourier transform. As well as being far more efficient to produce, they
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also enable more efficient methods of detecting accelerating targets.

In recent years the most common method for detecting accelerating targets is

the Fractional Fourier Transform (Melino & Tran, 2011). The Fractional Fourier

transform is a generalisation of the classic Fourier transform to an arbitrary order,

or ‘angle’, in the time and frequency plane, with the Fourier transform represent-

ing a π
2
order transform. For a target undergoing linear acceleration, the Doppler

returns will be smeared when extracted with the Fourier transform. However,

with a suitably chosen angle, the returns will be localised to a single bin with the

Fractional Fourier Transform.

A novel, and simple, improvement has come from noting that a target under-

going linear acceleration will produce a linear frequency modulation response in

slow-time.

The Fractional Fourier transform decouples the frequency-time dependence

in the signal to produce a tone. This leads to a great simplification. Rather

than using the Fractional Fourier transform, a non-linear phase correction can be

applied to dechirp the motion-induced chirp, and then the Fourier transform can

be used to resolve Doppler as before (Tran et al., 2014).

The non-linear phase correction, across slow-time, is given by:

e−2jπcrt2 , (3.2)

where the dechirp rate cr is given by a
λ
, a is the acceleration hypothesis and λ

the wavelength.

This is a much more efficient method for detecting accelerating targets. Not

only can it be incorporated into approximations to the complete ambiguity sur-

face, but significantly, the delay-Doppler map does not need to be recomputed

for acceleration hypotheses. The compressed pulse stack can be computed once,

and then only the Doppler-resolving Fourier transform needs to be repeated for

each acceleration value.

An example of this is shown in Figure 3.2, showing the results of a five second
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Figure 3.2: Ambiguity surface signal power in dB of the ISS, processed with
a five second CPI, along with the ISS returns processed with different dechirp
hypotheses.

CPI for the ISS moving through zero Doppler. The left panel shows a region

of the delay Doppler map with the ISS manifesting as a vertical line, smeared

across hundreds of Doppler bins, the result of Doppler migration. The right shows

a single range bin reprocessed for a range of dechirp hypotheses. The target SNR

is increased when the target is localised to a single Doppler frequency, with the

appropriate dechirp rate.

A common approach is to handle range and Doppler migration separately,

rather than attempting to compensate for both in one transform (Kodituwakku

& Melino, 2014; Li et al., 2017). Traditionally, this is achieved by processing to

remove linear range migration and then processing to remove Doppler migration

due to linear acceleration. The efficacy of extending processing intervals is limited

in this case, as a target undergoing acceleration will result in non-linear range

migration.

Orbital kinematics, however, are ideal for this type of extended integration

processing, as orbital object motion is very stable and reliable. In the space

64



situational awareness (SSA) case, the acceleration that is detected is primarily

due to apparent radial acceleration caused by the changing bistatic geometry.

For an object in orbit, the major contribution to acceleration is Earth’s grav-

ity, combined with other much smaller forces such as atmospheric drag and

space weather effects. The bistatic acceleration, rather Doppler rate, detected

in bistatic radar processing will be dominated by the relative geometry, as the

Doppler rapidly changes as the object passes overhead. This is incredibly benefi-

cial to extended processing, as the range and Doppler migration effects are quite

separate. The rate of Doppler change will be highest when the Doppler is zero, at

the object’s closest point, transitioning from positive to negative Doppler. There-

fore Doppler migration is greatest when the range migration is zero. Conversely

the range migration will be at its maximum at larger ranges, at which the Doppler

magnitude is at a maximum, and Doppler rate is approaching zero.

This only applies to objects in relatively stable orbits; if an object was falling

directly toward the radar then the true acceleration, due to gravity, would dom-

inate the Doppler rate, and these methods would not be suitable. Two stage

linear range and Doppler-rate methods will tend to defocus returns of non-orbital

objects, as seen in returns from meteors and aircraft.

3.5 Results

Previously reported detections of the ISS with passive radar using the MWA

were achieved by measuring range, Doppler, azimuth, and elevation and then in-

ferring azimuth, and elevation rates (Palmer et al., 2017). The results included

in this paper also measure Doppler rates using the dechirping method, mentioned

earlier. However, azimuth and elevation rates are also directly measured by con-

structing the surveillance signal based on ephemerides. The surveillance signal

is constructed by adjusting the beamforming weights during the CPI so that

the target is tracked throughout. This sub-CPI beamforming adjustment, whilst

suitable for demonstrating improved detection performance, is not tractable for
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wide-field, blind searches as it is essentially adding extra dimensions to the am-

biguity function.

Figure 3.3: The 2015 (left) and 2016 (right) data collection configurations, over-
laid on a map of Western and Central Australia.

3.5.1 2015 Data Reprocessing

The first passive radar detections of an object in orbit, were generated from

a dedicated MWA observation collected in 2015 (Palmer et al., 2017). In this

2015 dataset the ISS passes almost directly above the MWA3, providing ideal

conditions for detection. However, a significant issue with this earlier work was

the ISS’ SNR, or detectability, decreasing with longer processing intervals.

This was due to the ISS’ return smearing through the ambiguity surface and

search parameters. As well as the Doppler and range smearing, additional mi-

gration occurred in beamforming direction and direction rates. This is due to

the high angular resolution achievable with the MWA, particularly with the long

baselines in the initial configuration. With an angular resolution less than one
3Rather, passing at a maximum elevation of 70° from the MWA.
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tenth of a degree, our standard processing could not coherently follow the ISS as

it subtends almost three degrees per second at the point of its closest approach.

Another issue was that the reference signal was formed directly from the MWA

observation data. This had the result of limiting potential baseline lengths; with

Geraldton being 300 km away the elevation of the ISS from the transmitter was

large enough that the ISS was not in the primary transmitter beam. The reference

signal is likely to have suffered from multipath effects, diffracting over such a

distance, which may raise the clutter floor or cause destructive interference. The

map of the collection geometry with the transmitter in Geraldton, the MWA and

the ISS path is shown in Figure 3.3. The MWA was in its Phase I configuration,

as shown in Figure 3.1.

Figure 3.4 shows the reprocessing of the ISS’ pass from the 2015 data using

the Keystone Transform to mitigate range migration as well as dechirping to mit-

igate Doppler migration; for comparison it also shows the SNR from the original

publication, without any migration compensation.

Figure 3.4: The SNR (dB) of the ISS with no migration compensation applied
(corresponding to initial results (Palmer et al., 2017)) through to full range and
Doppler migration compensation.

The migration compensation methods result in a dramatic increase in the SNR
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due to the improved processing gain. In this instance the ISS is now initially

detected at a slant range of over 1,000 km from the MWA. More importantly,

however, the SNR of the ISS increases with the CPI, with Figure 3.4 showing an

expected ∼3dB increase changing from a one second CPI to a two second CPI.

Figure 3.5: Detected dechirp rate corresponding to the SNR in Figure 3.4.

Figure 3.5 shows the associated chirp rates for the SNR returns in Figure

3.4. It shows a very clear trackable curve, and again, results improve as the CPI

increases.

3.5.2 2016 Data Collection

As part of a broader demonstration campaign, FM band collections were under-

taken by the MWA in late 2016, targeting the ISS again, and also some lower

Radar Cross-Section (RCS) objects (Morreale et al., 2017). Specifically, the MWA

focused on a rocket body, a large piece of debris in LEO. For this collection, a ref-

erence signal was recorded separately in Perth, 600 km away from the MWA. The

reference collection recorded the entire FM band; the main focus was three 100

kW omnidirectional, mixed polarisation stations from the Bickley transmitters.

There was no direct-path FM signal present in the MWA collections, due to the

specific ducting/propagation conditions for the particular analogue beamforming
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configuration. The particular collection geometry, shown in Figure 3.3, was far

from ideal, being so far from the MWA. The MWA was in the Phase II compact

configuration, as shown in Figure 3.1.

Figure 3.6 shows the SNR of the ISS for three different CPI lengths, with

the migration compensation techniques applied. It shows the ISS being detected

with significant SNR despite being so far from Perth and the MWA. The closest

approach was at a bistatic range of 1,436 km, with a total reflected path distance

never less than 2,000 km. The ISS was almost certainly in the main beam of

the transmitter, being less than 15° elevation from Perth for the duration of the

observation.

Figure 3.6: The SNR (dB) of the ISS from the 2016 data collection with CPI
lengths of one, two and three seconds. The SNR improves with CPI.

An interesting aspect of these passes was that the reference signal was inadver-

tently recorded without any clock synchronisation. In order for the reference sig-

nal to be used for coherent processing, it needed to be synchronised, both in time

and frequency. Bright meteor returns were used for coarse time-synchronisation,

and then the returns of the ISS itself were used for fine time and frequency align-

ment. That is, reflections from meteor trails are sufficiently large that they are

easily detected incoherently, such that a time-aligned MWA surveillance signal,

known to contain meteor returns, can be formed. This meteor reflection is cor-
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related across the reference signal until the coherent meteor return is detected,

providing a coarse time alignment (as the exact location of the meteor return is

not known). This coarse time alignment then allows a surveillance beam to be

formed towards the ISS, so that coherent ISS detections, in delay and Doppler,

can then be compared to expected returns from ephemerides to provide fine time

and frequency offsets, which are corrected. This time and frequency alignment

was sufficient to be able to detect the other target from this collection, a rocket

body.

3.5.3 Rocket Body

The rocket body was a stage from the Atlas-Centaur launch system, launched

in August 1972. The object is 9 m long with a diameter of 3.05 m. Based on

a perfectly conducting cylinder of the same dimensions, the RCS at 100 MHz is

estimated to be between 10m2 and 100m2, an order of magnitude or more smaller

than the ISS (Frazer et al., 2013b).

As shown in Figure 3.3, this pass is sub-optimal for passive radar processing,

as the object passes much closer to the transmitter than the receiver. At the

point of closest approach, at a bistatic range of 894 km, the rocket body was

at an elevation of 73° from the transmitter; well outside the transmitter’s main

beam. Figure 3.7 shows the SNR of the rocket body for this pass when processed

using the migration compensation techniques. Unlike the ISS, the rocket body

is not detectable without accounting for the range and Doppler smearing. These

migration techniques allowed coherent improvements in detectability with CPIs

up to 10 s, at some points in its trajectory.

These results, as well as the sub-optimal geometry, both suggest that much

smaller targets will be readily detectable. The best SSA results will be achieved

when surveilling the wide area directly above the MWA, when the objects are

illuminated by the main beam of FM radio transmitters.

70



Figure 3.7: The SNR of the Atlas-Centaur rocket body from the 2016 data col-
lection with CPI lengths of one, two and three seconds. The SNR improves with
CPI.

3.5.4 Higher Order Hypotheses

The modified narrowband ambiguity function (3.1) has previously been extended

to incorporate higher order Doppler migration compensation terms (Malanowski

& Kulpa, 2008). This still requires recomputation of the ambiguity surface, so

is very computationally expensive. Similarly, the dechirp processing (3.2), can

be extended to include non-linear and higher order frequency modulation terms.

With this extension the non-linear phase adjustment can be applied to dechirp

and dejerk the target’s Doppler migration.

e−2jπ(crt2+cjt
3) (3.3)

The chirp rate, now varying over time, is given by cr + cjt, to include cj, the

rate of change of the chirp rate. This rate is here referred to as the ‘jerk’, as it is

analogous to the rate of change of bistatic acceleration.

Figure 3.8 shows a single snapshot in time of the SNR of the rocket body and

how it varies with CPI. It shows that by incorporating the higher order motion

compensation term, at least in Doppler, a modest improvement in maximum

CPI length is achieved. However, like previous methods mentioned, higher order
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Figure 3.8: A single snapshot in time of the SNR of the rocket body and how it
varies with CPI, comparing the dechirp technique with the higher order dechirp
and dejerk.

compensation means further extending the search space processing, as required

for the detection of unknown targets.

3.6 Future Work

In order to conduct surveillance processing with the MWA, more tractable pro-

cessing strategies will need to be developed. The methods in Sections 3.4 and 3.5

demonstrate improvements in the performance of passive radar using the MWA.

However, applied naively they would result in a 10-dimensional ambiguity surface

to search over. An improvement would be to work backwards from the orbital

parameters of interest, as an object’s orbit will largely constrain and define most

of the other search parameters (Kohlleppel, 2018). Incorporating orbital kine-

matics, even including highly eccentric orbits, will greatly reduce the subspace

of possible values for other parameters, including range and Doppler migration

factors, as well as pointing directions and their associated rates.

Further improvements to these methods would benefit from additional data

collections targeting even smaller RCS objects, including space debris, passing
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above the MWA. These data collections are planned for the near future and will

be reported in future publications.

3.7 Conclusion

This paper covers improved techniques for extending coherent processing intervals

with passive radar for space surveillance using the MWA. Specifically, applying a

two stage linear range and Doppler migration compensation by utilising Keystone

Formatting and a recent dechirping method.

These methods have limitations for accelerating targets, but work well for

objects in orbit by handling migration due to apparent radial acceleration due to

the bistatic geometry.

These methods are then used to further demonstrate the potential for the

surveillance of space with the Murchison Widefield Array using passive radar,

by detecting objects at least an order of magnitude smaller than previous work.

Notably, the detection conditions were difficult, including the sub-optimal bistatic

geometry and the separately recorded and unsynchronised reference signal.

This paper also demonstrates how linear Doppler migration methods can be

extended with higher order compensation to further increase potential processing

intervals.

Finally, this paper outlines approaches that may improve these techniques, by

directly incorporating orbital parameters into the ambiguity surface formation.

Planned future collections will further improve space debris detection and tracking

with the MWA.
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3.A Mitigating linear range-walk and linear Doppler-

walk

The Woodward Ambiguity Function, essentially (3.1), represents the optimal

method for matching delayed and frequency shifted narrowband signals. However,

in practice it is not implemented directly due to the computational requirements

of having to perform a long correlation for every delay and Doppler hypothesis.

This is further complicated by incorporating Doppler-rate, as in (3.1).

As detailed in Section 2.4.1, instead of evaluating the Woodward Ambiguity

Function directly, it is approximated by forming a series of short correlation

pulses, and then integrating these pulses through the Fourier Transform (FT), as

shown in (2.4). Each matched pulse represents a snapshot in slow-time, and the

full product is referred to as the slow-time fast-time pulse stack. The resulting

ambiguity function, the delay Doppler map, is essentially the fast-time slow-

frequency product.

This appendix illustrates how this approach is affected by target motion, and

how linear range-walk and Doppler-walk occur. It then details methods for mit-

igating these deleterious terms, specifically with the Keystone transform for the

range-walk and the chirpogram for the Doppler-walk.

If a target’s motion over a CPI is described by the bistatic-delay d(t), expres-

sions for the slow-time fast-time response can be generated with the assumption

that the target motion d only varies from pulse to pulse and any intra-pulse mo-

tion is negligible. If the the output of the match-filtered response, described in

(2.4), at slow-time index m is given by pm(t), then fast-time slow-time is approx-

imated by:

S(t, tm) = Apm(t− c−1d(tm))e−j
2π
c
fcd(tm) , (3.4)

where tm is the slow time for return index m such that tm = mBτc in (2.4), d(tm)

is the bistatic delay to the target for time instance tm and fc is the transmitted

centre frequency. Also, A is a constant that depends on the target radar cross
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section and the target range and c is the speed of light.

By taking the FT over fast-time, the received signal in fast-frequency slow-

time is:

S(f, tm) = APm(f)e−j
2π
c

(f+fc)d(tm) , (3.5)

where Pm(f) is the FT of pm(t).

With a constant bistatic velocity motion model across the CIT, d(tm) is given

by d(tm) = d+ vtm, and so (3.5) is now:

S(f, tm) = APm(f)e−j
2π
c

((f+fc)de−j
4π
c

((f+fc)vtm) , (3.6)

where the coupled term fvtm term represents the linear range migration during

the CIT.

There are many methods for mitigating range walk however the primary one

used in this thesis is the Keystone Transform. The Keystone Transform is a

method which can be applied to the slow-time fast-frequency expression to elim-

inate linear range walk by resampling slow-time as tm = fc
f+fc

t′m, where the re-

sulting fast-frequency slow-time expression is:

S(f, t′m) = APm(f)e−j
2π
c

((f+fc)d+fcvt′m) , (3.7)

which no longer contains the coupling between the fast-frequency, f , and slow-

time tm (Perry et al., 1999; Perry et al., 2007)

For accelerating motion, if a quadratic motion model is used with radial ac-

celeration a such that d(tm) = d+ vtm + 1
2
atm

2, then (3.5) is now given by:

S(f, tm) = APm(f)e−j
2π
c

((f+fc)d+(f+fc)vtm+(f+fc)
1
2
atm2). (3.8)

Mitigating all range-walk is now challenging because of the inclusion of both

linear and non-linear terms (fvtm and fatm2 respectively). These terms cannot

be mitigated with a single slow-time resampling, although there are methods
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which partially reduce the impact of both (Zhou et al., 2007; Scott et al., 2015).

However, given that the Doppler walk resulting from accelerating targets is almost

always a far more significant degrading factor than for non-accelerating targets,

the non-linear range-walk term is typically less of a concern. This is especially

true for space surveillance, where the radial acceleration will be at it’s greatest

when the satellite is at its closest approach and the radial range-rate will be zero.

The Doppler-walk term is the acceleration-induced slow-time chirp in (3.8)

of e−j
2π
c
fcatm2 . There are many methods applicable to estimating this radial-

acceleration, including time-frequency methods, which are crucial for removing

this significant source of loss (Kay & Boudreaux-Bartels, 1985; Peleg & Porat,

1991b; O’shea, 2002; Boashash, 2016; Sirianunpiboon et al., 2019). However, the

optimal method is the chirpogram which requires searching through accelera-

tion hypotheses and matching with a slow-time dechirp, allowing an unperturbed

Doppler term, e−j
2π
c
fcvtm , to be matched by the FT through the coherent integra-

tion. That is, when the matching non-linear phase term cr from (3.2) is applied

to (3.8), all linear Doppler-walk is mitigated as described in 3.4.
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Chapter 4

Orbit Determination Before Detect:

Orbital Parameter Matched

Filtering for Uncued Detection

With the daunting prospect of forming matching products with a large number

of measurement parameters, this chapter delves into astrodynamics and investi-

gates the application of orbital motion to the radar measurement space in order

to achieved uncued detection. Similar to previous chapters, this chapter is re-

produced from the author’s publication (Hennessy et al., 2020), an additional

appendix discussing the computational characteristics has been included here.

The reader will encounter some repetition of material in the introductory sec-

tions.

4.1 Abstract

This paper presents a novel algorithm to incorporate orbital parameters into

radar ambiguity function expressions by extending the standard ambiguity func-

tion to match Keplerian two-body orbits. A coherent orbital matched-filter will

maximise a radar’s sensitivity to objects in orbit, as well as provide rapid initial
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orbit determination from a single detection. This paper then shows how uncued

detection searches can be practically achieved by incorporating radar parameters

into the orbital search-space, especially for circular orbits. Simulated results are

compared to results obtained from ephemeris data, showing that the orbital path

determined by the proposed method, and the associated radar parameters that

would be observed, match those derived from the ephemeris data.

4.2 Introduction

Modern radar systems are able to generate optimal filters matched to increasingly

complex target motion, resulting in increased sensitivity to targets exhibiting

these motion at the cost of significant processing load. This problem is most

difficult for sensors targeting objects in low Earth orbit (LEO), especially sensors

with a significant field of regard. This is due to the observation time required

to detect smaller targets, combined with significant orbital velocities and large

search volumes, increasing the parameter space to impractical levels.

Extending radar processing integration times in order to increase detection

sensitivity requires mitigation against range migration, Doppler migration, and

angular migration. The correction of these migrations is further complicated by

the motion of the Earth, and hence the sensor located on the Earth. The direct

implementation of a matched filter in this radar search space may lead to the

incorporation of many parameters.

The nominal trajectory of orbits is well understood and is generally determin-

istic. The motion of a two-body Keplerian orbit, an idealised case of an object

of insignificant mass orbiting around a much larger central body1, can be ex-

pressed entirely by six parameters. Matching the processing to this well-defined

orbital motion for the purpose of improved radar detection and space situational

awareness is therefore a natural extension.

Whilst the primary aim of this general method is to increase a radar’s sen-
1Treated as a single point mass.
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sitivity to objects in orbit, detections from a filter matched to a target’s orbital

trajectory will additionally provide coarse initial orbit determination. Tradition-

ally, performing initial orbit determination requires many radar detections of a

pass of an object in space.

After briefly covering prior work, Section 4.3 details the problem formulation,

specifically in terms of ambiguity function expressions and Keplerian orbital dy-

namics. In Section 4.4, Orbit Determination Before Detect (ODBD) methods are

discussed, including matched processing to orbital parameters, constraining the

search volume, and constraining the orbit in radar measurement space, particu-

larly for uncued detections. Some specific applications, including single-channel

object detection and orbit determination are also discussed. Section 4.5 presents

simulated results, with comparison against ephemerides. Section 4.6 concludes

with a description of future work.

4.2.1 Prior Work

The motivation for this paper is to further develop techniques for the surveillance

of space with the Murchison Widefield Array (MWA) using passive radar. The

paper is particularly concerned with developing techniques for uncued detection

over a wide field of regard. The MWA is a low frequency (70 - 300 MHz), wide

field-of-view, radio telescope located in Western Australia (Tingay et al., 2013a).

The MWA has demonstrated the incoherent detection of the International Space

Station (ISS) (Tingay et al., 2013b) and other, smaller, objects in orbit (Prabu

et al., 2020b). However, for coherent processing, methods compensating for all

aspects of motion migration are required in order to detect smaller satellites and

space debris (Hennessy et al., 2019). As passive radar systems have no control over

the transmitter used for detection, improving processing gain through extended

Coherent Processing Intervals (CPIs) is a method used to achieve the required

sensitivity (Malanowski & Kulpa, 2008). Orbital trajectories are ideal targets

for such techniques, as stable and predictable relative motion allows for simpler
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measurement models. Such techniques have also been used with active radar, for

improved sensitivity and processing gain (Markkanen et al., 2005) (Zhang et al.,

2019).

Consisting of 256 tiles spread across many square kilometres, the MWA’s

sparse layout2 provides high angular resolution. Objects in orbit will therefore

transit many beamwidths per second at the point of closest approach. Because

of this, high angular resolution (normally a desirable attribute) can result in

significant angular migration. Highly eccentric orbits will transit significantly

faster. This is particularly challenging for the uncued detection of small objects,

where longer integration times are needed to achieve sufficient sensitivity.

Individual radar detections consisting of a single measurement of range, Doppler,

azimuth and elevation, only define a broad region of potential orbital parameters

(Tommei et al., 2007). This region may be constrained by incorporating angular

rates (DeMars & Jah, 2014), and even further by including radial acceleration

and jerk (Zhang et al., 2019). Usually, many radar detections are required to

perform initial orbit determination. The mapping between radar measurement

space and orbital parameters is an ongoing area of research (Kohlleppel, 2018).

4.3 Problem Formulation

4.3.1 Radar Product Formation

A standard timeseries matched filter is a function to detect reflected copies of a

reference signal d(t) in the surveillance signal s(t), specifically copies delayed by

τ and frequency shifted by fD:

χ(τ, fD) =

∫
T

s(t)d∗(t− τ)e−j2πfDt dt. (4.1)

2At FM radio frequencies, even the compact configuration of MWA Phase II is sparse (Wayth
et al., 2018).
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This matched filter can be extended to more complicated motions by dechirp-

ing (or even applying higher order corrections to) the motion-induced frequency

shift. For example, instead of matching to the radial velocity with a Doppler shift

of fD, higher order motions could be matched with a time varying frequency (that

can be represented as a polynomial phase signal) given by fD + fCt, where fC

is proportional to the radial acceleration. This can be extended to an arbitrary

number of parameters at the cost of adding extra dimensions to the matched filter

outputs. To account for any range migration, the delay term τ will also need to

be a function of time to match the radial motion.

For a receiver array consisting of N elements, the surveillance signal s(t) can

be formed by classical far-field beamforming in a direction of interest such that:

s(t) =
N∑
n=1

sn(t)e−jk(θ,φ)·un , (4.2)

where sn(t) is the received signal at the nth antenna, un is the position of the nth

antenna, and k(θ, φ) is the signal wavevector for azimuth θ and elevation φ. Time

varying adjustments can be made to every measurement parameter to create a

filter, χ, matched to the exact motion of an object with range ρ(t) and slant

range-rate ρ̇(t), in time-varying directions given by azimuth θ(t) and elevation

φ(t):

χ (θ(t), φ(t), ρ(t), ρ̇(t)) =

∫
T

[
N∑
n=1

ejk(θ(t),φ(t))·unsn(t)

]
d∗
(
t− 2c−1ρ(t)

)
e−j

4π
λ
ρ̇(t)tdt,

(4.3)

where the delay to the target is now given by the total path distance scaled by
1
c
, and the Doppler shift is given by 2ρ̇

λ
.
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4.3.2 Orbital Dynamics

The most common elements used to parameterise an orbit are the Keplerian,

or classical, orbital elements. These elements directly describe the size, shape,

and orientation of an orbital ellipse (with one focus being at the centre of the

central body), and the position of an object on this ellipse at some epoch, in the

Earth-Centered Inertial (ECI) coordinate frame (Vallado & McClain, 2001). The

ECI coordinate frame has its origin at the centre of the Earth, but it does not

rotate with the Earth. It is also worth noting that a Keplerian orbit can, in fact,

be any conic section. However, in this paper, it is assumed that orbits describe

Earth-captured closed orbits.

The Keplerian orbital parameters are: the semi-major axis, a, and eccentricity,

e, defining the size and shape of the ellipse; the right-ascension of the ascending

node, Ω, and inclination, i, which define the orientation of the elliptical plane to

the Earth’s equatorial plane; the argument of periapsis, w, defining the orienta-

tion/rotation of the ellipse in the orbital plane; and finally, the true anomaly, ν,

defining the position of the object on the ellipse (refer to Figure 4.1).

It is also assumed that the only force acting on the object in orbit is due to the

gravity of the dominant mass3, with the acceleration due to the Earth’s gravity

r̈, given by:

r̈ = − µ

|r|3
r, (4.4)

where µ is the standard gravitational parameter for the Earth.

Given the orbital parameters, and the acceleration due to the Earth’s gravity,

the Cartesian position r, and velocity ṙ, for an object in Earth orbit is completely

3Uniform acceleration does not take into account the ellipsoidal/oblate nature of the Earth
or other forces, such as micro-atmospheric drag, solar weather, and gravity due to other celestial
bodies. For the short duration of a single CPI, these factors are generally negligible.
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I

J

K

Ω

h

ω

ν

Celestial Bodyi

Figure 4.1: The orbital plane determined by orientation parameters Ω, ω, and i
relative to the plane of reference in the ECI coordinate frame. These parameters
define the direction of the angular momentum vector h. The axes I, J and K
define the ECI coordinate frame.

deterministic and is given by:

r =
a(1− e2)

1 + e cos ν
(cos νP + sin νQ) ; (4.5)

ṙ =

√
µ

a(1− e2)
(− sin νP + (e+ cos ν)Q) , (4.6)

where P and Q represent axes of a coordinate system co-planar with the orbital

plane in the Cartesian ECI coordinate frame (given by axes I, J , and K). The

third axis, W , is perpendicular to the orbital plane (Vallado & McClain, 2001).

These vectors are described by:
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P =


cos Ω cosω − sin Ω cos i sinω

sin Ω cosω + cos Ω cos i sinω

sin i sinω

 ; (4.7)

Q =


− cos Ω sinω − sin Ω cos i cosω

− sin Ω sinω + cos Ω cos i cosω

sin i cosω

 ; (4.8)

W =


sin i sin Ω

− sin i cos Ω

cos i

 . (4.9)

Note that a complicating factor with the ECI reference frame is that a nominally

stationary position on the surface of the Earth, such as a fixed radar sensor, will

have significant motion.

4.4 Orbit Determination Before Detect

Celestial Body

Sensor Location

r

q

ṙ

ρ

Figure 4.2: In the ECI coordinate frame the sensor is at position q, the celestial
body at position r with velocity ṙ (given by (4.5) and (4.6)) and the slant range
vector from the sensor to the object given by ρ.

For a two-body Keplerian orbit, the time-varying terms ρ(t), ρ̇(t), φ(t), and

θ(t) (4.3) can be completely described by an orbit’s six independent parameters.

Although the position of an object in orbit is given by (4.5), there are no closed

form solutions for the time varying position r(t). Instead, a Taylor series approxi-
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mation can be used to calculate an expression for the object’s position throughout

a CPI such that r(t) =
∑∞

n=0
r(n)(0)tn

n!
(where r(n)(x) denotes the nth derivative

of r evaluated at the point x), with t being the time through the CPI of length

T , t ∈ [−T
2
, T

2
]. With knowledge of the sensor’s location, q(t) (as in Figure 4.2),

and q̇(t) giving the slant range vector from the sensor to the object, as well as

the slant-range rate, as ρ(t) = r(t) − q(t) and ρ̇(t) = ṙ(t) − q̇(t), a polynomial

expression for the slant-range and slant-range rate equations of motion over the

CPI is possible:

ρ(t) = |ρ(t)| = |
∞∑
n=0

r(n)(0)tn

n!
− q(t)| ; (4.10)

ρ̇(t) = |ρ̇(t)| = |
∞∑
n=1

r(n)(0)tn

n!
− q̇(t)| . (4.11)

These expressions can be extended (or truncated) to arbitrary accuracy.

The directional angles are now calculated as topocentric right ascension and

declination, that is right ascension and declination relative to the sensor location,

given by α and δ, respectively:

α(t) =tan−1

(
ρJ(t)

ρI(t)

)
; (4.12)

δ(t) =tan−1

 ρK(t)√
ρI(t)2 + ρJ(t)2

 , (4.13)

noting that these expressions depend on the individual elements of ρ such that

ρ(t) = [ρI(t), ρJ(t), ρK(t)]T .

Using the expressions in this section, it is possible to form a matched filter to

the orbital elements themselves, essentially creating χ(e, a, i,Ω, ω, ν) at a given

epoch (4.3). This enables arbitrarily long CPIs by tracking an orbit throughout

the CPI. Additionally, instead of calculating a Taylor Series expression for the
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orbital position r(t), and deriving the parameters of interest, it is far more efficient

to directly calculate a Taylor Series expression for the parameters of interest.

For a sensor at known Cartesian position q, with known instantaneous velocity,

acceleration and jerk, given by q̇, q̈, and
...
q , respectively, and given the slant

range vector ρ = r − q, the slant range and its instantaneous derivatives are

given by:

ρ = |ρ| ; (4.14)

ρ̇ =
ρ · ρ̇
ρ

; (4.15)

ρ̈ = −(ρ · ρ̇)2

ρ3
+
|ρ̇|2 + ρ · ρ̈

ρ
; (4.16)

...
ρ = 3

(ρ · ρ̇)3

ρ5

− 3
(ρ · ρ̇)(|ρ̇|2 + ρ · ρ̈)

ρ3

+
3ρ̇ · ρ̈+ ρ · ...ρ

ρ
,

(4.17)

where ...
r is from the derivative of (4.4) and is given by:

...
r =

3µr · ṙ
|r|5

r − µ

|r|3
ṙ . (4.18)

Now, (4.15), (4.16), and (4.17) can be used to directly specify the target’s

Doppler, chirp rate, and radial jerk. This leads to more efficient expressions

(when compared to (4.10) and (4.11)) for the slant-range, and also slant-range

rate, throughout the CPI of length T such that t ∈ [−T
2
, T

2
]:

ρ(t) =ρ+ ρ̇t+
1

2
ρ̈t2 +

1

6

...
ρ t3 ; (4.19)

ρ̇(t) =ρ̇+ ρ̈t+
1

2

...
ρ t2 . (4.20)

A fourth-order Taylor Series approximation to the slant-range, ρ(t), was cho-
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sen due to previous work, which demonstrated that a third order polynomial

phase signal may be required in order to coherently match orbits for CPIs of

duration up to 10 seconds (Hennessy et al., 2019).

Similarly, equivalent approximations can be formed for the angular measure-

ment parameters α(t) (4.12) and δ(t) (4.13).

4.4.1 Search-Volume Constraints

The methods described above enable coherent processing that matches orbital

parameters; however, they are not suitable for searching to perform uncued de-

tections. The parameter space is far too large to be practically searched, and the

vast majority of orbits will not correspond to passes within a region of interest

above the sensor. Although, as stated earlier in Section 4.3.2, alternatives to

the Keplerian parameter set are available. In fact, it is possible to parameterise

a Keplerian orbit with the Cartesian position and velocity to constitute the six

elements (Vallado & McClain, 2001). It is also possible to utilise combinations of

both sets of elements in other formulations.

Instead of searching through classical orbital parameters, three parameters can

be expressed as a hypothesised ECI position within a search volume of interest.

This ensures any hypothesised orbit, determined from these initial parameters,

will be within the search volume. Given this potential orbital position, r, only

three more additional parameters are needed to fully define an elliptical orbit.

Although the three elements forming the orbital velocity could be treated as free

variables, the majority of possible velocities would not correspond to valid Earth-

captured orbits. Instead, given position r and semi-major axis a, the magnitude of

the velocity of the corresponding orbit is given by the Vis-Viva equation (Vallado

& McClain, 2001):

|ṙ|2 = µ(
2

|r|
− 1

a
) . (4.21)
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Furthermore, given position r and eccentricity e, the semi major axis length

will itself be constrained between the potential limits of the orbit’s apogee and

perigee ranges:

|r|
1 + e

≤ a ≤ |r|
1− e

. (4.22)

The semi-major axis is also constrained by realistic limits on an orbit’s range,

as well as a sensor’s maximum detection range, represented by minimum and

maximum allowable periapsides, rpmin and rpmax:

rpmin
1− e

≤ a ≤ rpmax
1− e

. (4.23)

Another constraint is the constant angular momentum of the orbit, h. This

vector is perpendicular to the orbital plane, parallel to W , with a magnitude

depending on the size and shape of the ellipse:

h =
√
µa(1− e2)W = r × ṙ . (4.24)

This cross-product may be rewritten to form an expression for the inner prod-

uct between the position and velocity:

r · ṙ = ±
√
|r|2|ṙ|2 − |h|2 . (4.25)

Combined with the magnitude of the velocity, from the Vis-Viva equation

(4.21), as well as the magnitude of the constant angular momentum (4.24), an

expression for this inner product can be formed which depends solely on the

position r and the size and shape of the orbital ellipse:

r · ṙ = ±

√
|r|2µ(

2

|r|
− 1

a
)− µa(1− e2) . (4.26)

Additionally, the specific relative angular momentum vector, h, is perpen-
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dicular to both the orbital position r and orbital velocity ṙ. This leads to the

expressions r · h = 0 and ṙ · h = 0, which result in another constraint on the

velocity, dependant on the right ascension of the ascending node, Ω:
rK sin Ω

−rK cos Ω

rJ cos Ω− rI sin Ω

 · ṙ = 0 . (4.27)

These expressions lead to a simple geometric solution for determining orbits

when r (and other parameters) are known, and ṙ is unknown. For determining

ṙ, (4.21) defines a sphere of radius
√
µ( 2
|r| −

1
a
), representing valid orbits in the

velocity vector’s element space. Additionally, (4.26) defines two parallel planes of

valid orbits, which intersect with (4.21) to define two circles. Finally, intersecting

these two circles with the plane defined by the position and the right ascension

of the ascending node, Ω, (4.27) will result in a maximum of four intersection

points, that is, four velocities, each corresponding to a valid orbit. An example

diagram is shown in Figure 4.3. Although this means that a choice of six orbital

parameters will result in up to four potential orbital matched filters, this approach

will be far more efficient than methods outlined earlier in this section, as the orbit

will be within the search volume, and each parameter choice restricts the range

of subsequent parameters.

Therefore, given an orbital position, r, a choice of eccentricity, e, semi-major

axis, a, and right ascension of the ascending node, Ω, four potential orbital ve-

locities, ṙ, are calculated, which leads to an expression for the complete matched

filter:

χ(r, ṙ) =

T
2∫

−T
2

[
N∑
n=1

ejk(δ(r,ṙ,t),α(r,ṙ,t))·unsn(t)] d∗(t− 2c−1ρ(r, ṙ, t))e−j
2π
λ
ρ̇(r,ṙ,t)t dt .

(4.28)
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ṙJ

ṙK

ṙI

P1

P2

P3

Figure 4.3: Four valid orbital velocities given by the intersection of the sphere
(given by (4.21)), parallel planes P1 and P2 (given by (4.26)), and plane P3 (given
by (4.27) or (4.29)).

The proposed method tests for only realistic orbits in a given search region.

Also, given a set of orbit parameters, this matched filter should maximise a

radar’s sensitivity to that orbit. Additionally, a detection in this matched filter

corresponds to a detection in the orbital element space, providing initial orbit

determination from a single detection.

This style of trajectory-match approach, has several advantages beyond just

maximising sensitivity to motion models. Coupling measurement parameters to-

gether through a trajectory model can improve achievable resolution compared

with using separate independent measurement parameters. As an example, a

radar’s range resolution is determined solely by the signal bandwidth, but its

Doppler and Doppler-rate resolution improve with the CPI length. Through cou-

pling the measurement parameters with the trajectory model, as a radar can

resolve finer Doppler and Doppler rate measurements it can essentially resolve
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finer trajectory states. This can potentially improve target localisation as in-

creasingly accurate state measurements could localise a target within a single

range bin.

4.4.2 Zero Doppler Crossing

The flexibility of the geometric formulation in Section 4.4.1 allows radar param-

eters to be used alongside, and in place of, other orbital parameters to constrain

the search space. A Doppler shift fD will define another plane in ṙ space, given

by:
ρ

ρ
· ṙ = −λfD

2
+
ρ · q̇
ρ

. (4.29)

Equation (4.29) can be used to search for a particular Doppler shift instead of

one of the orbital parameters. This is useful because it allows a blind search

to constrain the search-space solely for objects in orbit at their point of closest

approach to the sensor. As an object is passing overhead, its point of closest

approach will correspond exactly with it being at zero Doppler, which is when

it is most detectable4. If a radar is unable to detect an object at its point of

closest approach, at its minimum range, there is little value trying to detect it as

it moves further away, towards the horizon.

Another benefit to applying this constraint is that, as Doppler is proportional

to the range-rate, this constraint will also restrict the orbit search-space to a

point of minimal (or zero) range migration, which greatly simplifies matched-

processing5.

The vast majority of the objects in an Earth-captured orbit are in a circular,

or near-circular, orbit. Searching solely for objects in a circular orbit greatly de-

creases the potential orbital search space. A circular orbit means the eccentricity

of the orbital ellipse is zero, e = 0, and so (4.22) becomes a = |r|. In a circular

orbit, the position and velocity vectors will always be perpendicular, so (4.26)
4This may not necessarily hold in all instances, depending on particular beampattern and

radar cross section factors.
5Depending on the CPI length, it may be possible to make ρ(t) ≈ ρ.

91



simplifies to r · ṙ = 0, a single plane instead of two parallel planes. The result

is that a three-parameter search, within a region of interest, provides sufficient

information to match the closest approach of objects in a circular orbit. For a

given position in a search-region, there will be at most two possible orbits to

match against (determined from the intersection of (4.21), (4.26), and (4.29)).

This type of search approach, attempting uncued detection of the most common

types of orbit when they are most detectable, is a far more realisable and practical

approach than a completely unbounded search through measurement parameters.

Additionally, for an eccentric orbit, the orbital velocity and position are perpen-

dicular at perigee (Vallado & McClain, 2001). For typical radar detection ranges,

an object in a highly eccentric orbit is likely to be within a radar’s field of regard

solely at, or near, perigee. Because of this, the same simplification of r · ṙ = 0

could be used to reduce the number of potential orbits.

4.4.3 Single Channel Orbit Detection

Coupling together measurement parameters is not necessarily new; however, in-

corporating such techniques into the detection stage offers some significant ad-

vantages. By coupling together the measurement parameters using these ODBD

methods, it is possible to apply this matched filtering to single beam radar sys-

tems. This could be a post-beamformed surveillance signal from an array or even

a classic narrowbeam tracking radar. Because the trajectory model determines

all measurement parameters, a particular polynomial phase signal which results

in a detection is coupled to a particular location and orbit. This is shown in

(4.28). The beamforming parameters do not determine the location; rather the

(hypothesised) location determines the beamforming parameters. Removing the

array processing, as in (4.30), does not remove the ability to localise a target

using the algorithm.
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χ(r, ṙ) =

T
2∫

−T
2

s(t)d∗(t− 2c−1ρ(r, ṙ, t))e−j
2π
λ
ρ̇(r,ṙ,t)t dt (4.30)

In the case of a narrow beam radar, the pointing of the beam will be incorpo-

rated into the algorithm by determining the search region that is used. Because

it handles sensor motion, this type of processing would be ideal for a satellite-

based sensor, with the sensor location term q(t) (or its instantaneous components

q, q̇, q̈, etc.) themselves determined by a known orbit rather than the motion of

the Earth.

4.5 Simulated Results

These methods have been verified by comparing ODBD-derived measurement

parameters, described in section 4.4, of an object in orbit, against measurement

parameters propagated from available ephemerides. These ephemeris tracks con-

sist of the six Keplerian orbital elements, as well as several additional parameters

describing drag and orbital decay. These tracks are propagated with the standard

SGP-4 propagator used by the USSPACECOM two-line element sets (USSPACE-

COM, 2023).

The configuration used for these simulations, matching (Hennessy et al., 2019),

is a sensor located at the MWA (at a latitude of 27° south) in a bistatic config-

uration with a transmitter in Perth, approximately 600 km further south. This

transmitter is taken to be transmitting an FM radio signal at a centre frequency

of 100 MHz.

Figure 4.4 shows the path of an object in a near circular orbit at closest ap-

proach. The simulated measurement parameters match very well in both angular

and delay-Doppler space despite being based on a perfectly circular orbit. Like-

wise, Figure 4.5 also matches with the prediction, noting that the simulation used
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the matching eccentricity and semi-major axis.

Figure 4.6 shows the path of an object in a near circular orbit, but slightly

more eccentric than Figure 4.4 (e = 0.00126) at point of closest approach. The

simulated circular path matches well in the delay-Doppler space but diverges in

the angular space. Additionally, several other simulated close eccentricities are

shown, resulting in changes to the direction of travel but little difference in the

delay-Doppler space. The delay-Doppler results suggest good tolerance to small

eccentricity changes, however the sensor’s angular resolution may limit potential

processing intervals.

Figure 4.4: The measurement parameters of a close pass of an object in a near-
circular orbit (e = 0.0007), as well as the simulation made assuming zero eccen-
tricity at point of closest approach. The left plot is angular space and the right
is the delay-Doppler. Twenty seconds of the true pass is shown with ten seconds
of the simulated path overlaid.

The good agreement between the parameters derived from methods described

in this paper, when compared with ephemeris derived parameters, suggests that

earlier results, (Hennessy et al., 2019), can be practically achieved without re-

quiring a priori information.
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Figure 4.5: The measurement parameters of a close pass of an object in an
eccentric orbit (e = 0.7), as well as the four simulations made with the correct
eccentricity and semi-major axis. The left plot is angular space and the right is
the delay-Doppler. Twenty seconds of the true pass is shown with ten seconds of
the simulated paths overlaid.

Figure 4.6: The measurement parameters of a close pass of an object in a near-
circular orbit (e = 0.00126), as well as several simulations made using different
eccentricities. The left plot is angular space and the right is the delay-Doppler.
Twenty seconds of the true pass is shown with ten seconds of the simulated paths
overlaid.
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4.6 Conclusion

Modern radars are able to form matched-filter products with significant numbers

of measurement parameters, especially with digital beamforming and extended

processing intervals. Conversely, the motion of an object in a Keplerian orbit is

defined by only six parameters. Mapping radar measurement parameters from

orbital motion parameters constrains the search space for uncued detection, it

additionally allows for other constraints to be applied to further reduce the search-

space, most notably when searching for objects in a circular orbit at their point

of closest approach to the sensor. For a hypothesised orbit of this type, all range,

Doppler, and angular motion parameters can be derived entirely from a three-

dimensional position. Detections from this matched filter will correspond to the

hypothesised orbit. This means that initial orbit determination can be potentially

achieved from a single radar detection.

In future work, these algorithms will be experimentally validated with MWA

observations. Noting that although these methods have been developed for the

MWA, these methods also apply to conventional active space surveillance radar

or even to satellite-based sensors. Additionally, it is planned to investigate the

sensitivity of these techniques, characterising their variance by calculating the

Cramér-Rao lower bound (CRLB) on the variance of the initial orbital estimates.

4.A Signal Processing Computational Character-

istics

This appendix discusses the signal processing computational aspects of the meth-

ods discussed in this chapter and used throughout this thesis. The intent is to

bridge a gap between Section 2.4.2, which discusses the computational require-

ments in terms of number of parameter spaces, and Section 6.2 which discusses

computational requirements in terms of the number of orbits to be matched. Here,
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the orbital search space methods for initial orbit determination, which are first

described in this chapter and then implemented and demonstrated in Chapter 5,

are detailed in terms of signal processing requirements.

There are many actions a radar needs to perform each CPI, however, a sim-

ple way to describe a radar’s computational requirements is to say the number

of computational operations a radar performs each CPI is proportional to the

number of pulse integration stages multiplied by the length of each pulse integra-

tion step. That is, essentially the number of Fourier Transforms (FTs) multiplied

by the length of each FT. A standard approach would be to form a number of

surveillance beam to cover a region of interest, and for each beam, form a delay

Doppler map of sufficient range to cover a volume of interest. Then, for each

beam, and for each range bin, perform a single pulse-integrating FT to cover a

velocity-extent of interest. There are alternative approaches to reduce computa-

tional load, such as forming a delay-Doppler map for each receive channel and

beamforming on these (as detailed in Section 2.4.1), however these approaches are

not easily applicable to space surveillance systems because of the need to match

Doppler-rate and other higher order parameters prior to pulse integration.

A simple LEO space surveillance mission can hypothesised to further detail

the processing requirements. A region of interest may be described by, say, a

20° × 20° area of the sky, with a range extent of 1000 km, and a velocity range

of interest spanning ±5000 m/s. The number of pulse integration FTs can be

expressed in terms of these mission requirements, along with a radar’s angular

resolution ∆θ and the range resolution, which depends on the bandwidth fb. The

size of each FT can be expressed in terms of the mission requirements and the

CPI length T , along with the radar’s operating frequency fc. The combination of

all these space surveillance requirements, along with radar’s parameters, allows

us to form an expression for the number of operations required to form a beam in

every direction of interest and then form a pulse stack large enough for the range

extent and the velocity extent. This number is given by the number of beams
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times the number of range bins times the size of the FT:

(
20

∆θ

)2

× 1000fb
2c

× 2
5000fcT

c
, (4.31)

with c being the speed of light.

An MWA-like radar can be said to operate at a frequency of 100 MHz, a band-

width of 100 kHz, a CPI of 3 s and an angular resolution of 0.1°. Such a system

would need to form 40,000 beams, the range resolution would be 1500 m and the

Doppler resolution would be 1
3
Hz. The number of operations required to form a

sufficiently large delay-Doppler map in every region of interest is proportional to

the result of (4.31), which is approximately 6.68×107.

Such a system would not be able to detect satellites and other fast-moving

objects as there is no processing for mitigating the extreme motion of satellites.

The metric of 6.68×107 would in reality need to be multiplied by the number

of acceleration hypotheses, the number of acceleration-rate hypotheses as well

as the number of spatial-rate and spatial-acceleration hypotheses as given by

(2.14). However the metric of 6.68×107 is a useful one as it represents a standard

radar approach to the large surveillance volume (including large velocity extent)

required.

For space objects, the large number of acceleration, jerk, and spatial hypothe-

ses are not necessary, as most parameter sets will not correspond to a valid LEO.

Instead, these radar measurement parameters can be derived from the orbital

parameters of interest, a smaller dimension parameter space. A full search would

instead only require further searching through a number of eccentricity hypothe-

ses Ne, a number of semi major axis hypotheses Na and number of orbital plane

orientation hypotheses Nν . These numbers are not easy to estimate, as the ‘res-

olution’ of these parameters vary depending on the specific value of the other

parameters. Additionally, the eccentricity and semi-major axis search spaces are

bounded, the potential span of these values changes depending on other param-

eters as well, as outlined in Section 5.4.5. However, the number of operations
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required for a full orbital search is proportional to every three-dimensional point

in the search space (given by the number of beams times the number of range

bins), for every point there are three more orbital parameters, and for each orbit a

large pulse integration step. The final number is approximately 6.68×107NeNaNν .

The first step that reduce this search space, is to only consider circular orbits.

By only matching circularly orbits we reduce this six dimensional search space to

four parameters, with Ne = Na = 1, the only other remaining parameter is Nν .

This orbital plane parameter now represents the azimuthal direction of travel of

the object.

Another step to reduce this search space is to only consider objects at their

point of closest approach, as this represents a point objects are likely to be most

detectable. This constraint has two impacts on the number of operations on the

search space. First, it significantly reduces the number of potential orbits, for a

given point of interest there are only two possible orbits, secondly, it also reduces

the size of the pulse integration stage as now it is only required to match for

an object near zero Doppler. If now say we are interested in velocities between

±50 m/s then the number of operations required to detect an object in a circular

orbit near its point of closest approach is given by:

(
20

∆θ

)2

× 1000fb
2c

× 2
50fcT

c
× 2 . (4.32)

That is, the number of computational operations are proportional to the num-

ber of beams, the number of range bins, the two orbital hypotheses and the much

smaller pulse integration stage. For the MWA-like numbers used above the result

is approximately 1.34×106. Not only is this an order of magnitude smaller than

the number of operations required to form a standard radar’s coverage, it is many

orders of magnitude smaller than the operations required for a full orbital search

of the surveillance volume.
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Chapter 5

Uncued Detection and Initial Orbit

Determination from Short

Observations with the Murchison

Widefield Array

Having developed techniques to attempt initial orbit determination, data can be

collected with new observation modes in order to verify these new uncued ap-

proaches (comparing with other traditional methods) as well as detecting smaller

objects. Similar to previous chapters, this chapter is reproduced from the author’s

publication (Hennessy et al., 2021), albeit with the removal of some aspects of

the introductory sections, which were incorporated into Chapter 2.

5.1 Abstract

This paper details the latest developments in the use of the Murchison Wide-

field Array as a passive radar receiver for the surveillance of space. We cover

methods developed to incorporate orbital parameters into matched-filter process-

ing to achieve uncued detection without a prior track, and generate accurate
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detection-level initial orbit estimates. We present the results from a short collec-

tion campaign conducting broad surveillance stares, using FM transmitters as an

illuminator with a significantly large bistatic baseline length of 600 km. Initial

results demonstrate improved performance in the Murchison Widefield Array’s

detection of objects in typical low-Earth orbital regimes, detecting objects with

a radar cross section of 1 m2, as well as the generation of accurate initial orbital

estimates using very short arc detections spanning less than half a degree.

5.2 Signal Processing for Initial Orbit Determina-

tion

5.2.1 Space Surveillance Application

Many aspects of standard delay-Doppler map formation are poorly suited to the

detection of objects in LEO. The large orbital velocity leads to rapidly changing

bistatic geometry, which results in a target which is not stationary in any mea-

surement space during the measurement period. Untreated range-walk, Doppler-

walk, and angular-walk will severely limit the potential integration time. Some of

these issues can be addressed independently. For example, the Keystone Trans-

form removes all range-walk due to linear range migration (Perry et al., 1999).

However, Doppler and angular-walk can only be mitigated with a specific motion

hypothesis.

Rather than being a simple Doppler shift (as in (2.1) and (2.4)), orbital motion

imparts a time-varying phase adjustment on the reflected signal. This phase

adjustment varies across the CPI due to the rapidly changing bistatic geometry.

For extended processing intervals, this varying phase signal needs to be accurately

matched in order to ensure sensitivity is increased along with the processing

interval.

These phase matching methods have been used for extended CPI lengths in
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previous work in order to detect objects in orbit (Hennessy et al., 2019). The

Doppler shift throughout the CPI is modelled by a polynomial phase signal with

coefficients determined by the instantaneous velocity, acceleration, and subse-

quent rates. As Doppler is proportional to radial velocity, the Doppler rate is

proportional to radial acceleration and the Doppler acceleration is proportional

to the radial jerk (Borowiec & Malanowski, 2016). That is, rather than forming

a matched filter to a constant radial-velocity, products of a larger dimension can

be formed instead (Kelly, 1961; Stein, 1981). To extend a delay-Doppler map to

match Doppler-rate and Doppler-acceleration, a four dimensional matched filter

is required, e.g. χ[τ, fD, ḟD, f̈D] (Hennessy et al., 2019).

Finally, angular migration is particularly pernicious. Similar to range and

Doppler walk, angular migration results in reduced sensitivity due to the tar-

get smearing across angular bins, determined by the sensor’s angular resolution.

However, there is an additional impact. Unaccounted phase variations, which

are not matched by beamforming, will result in a slow-time frequency shift of

the signal. These time-varying phase residuals will be perceived as an antenna-

dependant Doppler shift. This will, at best, result in an overall Doppler error

for a detected target, or at worst, smear the target such that it is not detected.

Unaccounted higher-order phase variations will also have a similar impact on

higher-order Doppler measurements. To overcome this, the wavevector in (2.5)

will need to be updated to follow any potential targets throughout the CPI. Much

like the extra Doppler dimensions above, these issues can be mitigated by adding

extra search dimensions to the beamforming space. Rather than forming delay-

Doppler products at a fixed direction, the signal wavevector expression (2.5) can

be extended to incorporate directional rates and directional accelerations. How-

ever, this will extend a two-dimensional azimuth and elevation search space to a

four, or six, dimensional spatial search space. In fact, a 10 dimensional search

space would be needed in order to achieve the same sensitivity as previously

published results, which utilised the known track (Hennessy et al., 2019).
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5.2.2 Compressed Pulse Cube formation

Matching these additional measurement parameters requires a shift in processing

strategy. In order to match spatial and Doppler rates, these parameters need to

be included in the processing prior to the Doppler-resolving Fourier Transform

in (2.4). Instead of forming delay-Doppler maps for each antenna, this rapidly

changing bistatic geometry requires processing with individual pulse stacks at

each antenna. Instantaneous Doppler and signal-wavevector phase adjustments

are now applied on a pulse-by-pulse basis, with the phase adjustments determined

by the hypothesised spatial and Doppler rates.

Fig. 5.1 is an illustration of the processing strategy. To implement the

sub-CPI beamforming, the phase of a given delay cell of interest is updated

for each pulse to spatially track the time varying wavevector. Once a single

range-compressed pulse stack has been formed to match a specified direction

and directional rates, the higher order phase terms can be adjusted to allow the

Doppler-resolving Fourier transform to best match the radial velocity. That is,

a polynomial phase adjustment is applied to remove the effect introduced by the

target’s Doppler rates (due to radial bistatic acceleration, jerk, and higher order

motions) leaving only the linear phase adjustment caused by the target’s Doppler.

This is then resolved with the Fourier Transform resulting in a delay-Doppler map

specifically matched to a given direction, directional rates, and Doppler profile.

Note that it is possible to form such a delay-Doppler map by applying the

sub-CPI beamforming and Doppler rates to entire pulses, rather than a single

delay bin as in Fig. 5.1. However, this is not done in practice because there is

an intrinsic coupling between all parameters. A target’s hypothesised Doppler

and spatial profile will determine (at least in part) its potential valid ranges.

Combinations of individually realistic measurement parameters in range, Doppler

and direction may not be physically realisable. Instead, only a subset of potential

combinations will correspond to a physically-possible target motion, and only a

subset of these will correspond to a realistic orbital motion. Fig. 5.1 highlights
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Figure 5.1: An illustration of the processing strategy, for a delay cell of interest
the phase is adjusted for each antenna every slow-time pulse.

only one delay cell, because for a given delay only correspondingly valid Doppler,

and directional parameters are required to form the resulting delay-Doppler map.

This coupling between measurement parameters and target motion is covered in

more detail in the next section. It is also a focus of the planned signal processing

approach for the GESTRA space surveillance radar (Wilden et al., 2019).

5.2.3 Orbit Determination Before Detect

As outlined in Section 5.2.1, radar products need to be formed in larger measure-

ment dimensions to detect objects in orbit. This has been demonstrated previ-

ously utilising a priori information to track orbital objects throughout the CPI

(by adjusting the beamforming for each compressed pulse) and then searching in

Doppler-rate and Doppler-acceleration (Hennessy et al., 2019). This is effective

for the detection of space objects because although the velocity is significant, and

the rate at which the geometry changes is significant, the trajectory itself is sta-

ble and predictable. This is a common approach used by other space surveillance

radars, particularly incorporating Doppler-rate, or chirp, adjustments to match

radial acceleration (Vierinen et al., 2019; Holdsworth et al., 2020).

However, previous results with the MWA searching through these Doppler-

rates were all based on a priori information to determine the beamforming. De-
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spite using truth information for the beamforming, these detections still required

a search in delay, Doppler, Doppler-rate, and Doppler-acceleration to form detec-

tions. Naively extending these methods for uncued searching would be problem-

atic, with the four-dimensional search space needing to be extended significantly

to search in directional and directional rate parameters.

Instead of forming a matched filter from a significant number of measurement

search parameters, it is possible to limit the search space to realistic trajectories.

As detailed in earlier work (Hennessy et al., 2020), this Orbit Determination be-

fore Detect (ODBD) approach can be achieved by searching through hypothesised

target position and velocity and then deriving the measurement parameters. In

this way, the search space is limited in dimension, and the measurement space

can be completely unconstrained.

This type of approach is well suited to space surveillance as orbital trajectories

have very defined and predictable motions, and are generally not manoeuvring.

In fact, the simplest form of an orbit is a two-body, or Keplerian, orbit which

is completely determined by only six parameters. This treats the Earth and the

object of interest as point masses, and assumes gravity is the only force, with

the acceleration experienced given by the object’s position, r and the standard

gravitational parameter for Earth, µ:

r̈ = − µ

|r|3
r, (5.1)

From this, given a cartesian position r and velocity ṙ an object’s trajectory

can be determined for all time. With a Keplerian system, orbits form conics

with one focal point being at the (gravitational) centre of the Earth; however, in

this work we are only interested in elliptical orbits. It should be noted that the

orbits are only elliptical in the Earth-Centered Inertial (ECI) coordinate frame.

The ECI coordinate system has an origin at the centre of the Earth, however

the coordinate system does not rotate with the Earth. A six-tuple position and

velocity will sufficiently define an orbit for all time.
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Because there is no closed-form solution to Kepler’s equation, numerical meth-

ods must be used to calculate the parameters of interest over the CPI. We use Tay-

lor series approximations for the measurement parameters of interest - Doppler

and its subsequent rates as well as the directions and their subsequent rates. Es-

sentially, this determines the motion-induced polynomial phase signal coefficients

from the position, velocity, equation (5.1), and its instantaneous derivatives. (2.3)

can be rewritten as:

fD = −1

λ

(
ρrx · ρ̇rx
ρrx

+
ρtx · ρ̇tx
ρtx

)
(5.2)

with expressions for ḟD, f̈D, and any number of subsequent derivatives of the

Doppler frequency easily determined in a similar manner. Likewise, the expres-

sion for the topocentric right-ascension and declination, α and δ respectively, are

derived from the ECI coordinate frame. These are the directional parameters

used in place of azimuth and elevation, and are determined from the slant-range

vector from the target to the receiver ρrx = r − rrx = [ρrxX , ρrxY , ρrxz ]
T .

α =tan−1

(
ρrxY
ρrxX

)
(5.3)

δ =tan−1

(
ρrxZ√

ρrxX
2 + ρrxY

2

)
(5.4)

Although (5.1) is specific to Keplerian orbital trajectories, any motion model

could be applied to determine the measurement parameters; taking r̈ = 0 would

result in matching linear velocity.

5.2.4 Constrained Search Space

The work in the previous section (Section 5.2.3) limits the search space for uncued

detection to the six parameters required to define the orbit, the initial position,

and velocity. This enables searches to be limited to only the sets of measurement
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parameters corresponding to orbits of realistic Earth-captured Keplerian orbits.

This is still a significant search space. Not only is it six dimensional, a given

cartesian position will still leave three slack variables in the velocity vector. How-

ever, for a given position it is possible to further restrict the extent of potential

orbital velocities.

A method to significantly constrain this search is to limit the search to solely

match circular orbits. This ensures that any resulting orbit will be realistic, it

drastically limits the potential range of resulting velocities, and most importantly

it will not be overly restrictive. The vast majority of objects in an Earth-captured

orbit are in circular, or near-circular, orbits. This is especially true away from

the equator.

The circular orbit assumption is implemented by the Vis-Viva equation (with

orbit eccentricity set to zero) in (5.5) and also noting that the orbital position

and velocity must be perpendicular, (5.6) (Vallado & McClain, 2001).

|ṙ|2 =
µ

|r|
(5.5)

r · ṙ = 0 (5.6)

For a given position, (5.5) and (5.6) leave only one slack variable, as (5.5)

limits the magnitude of any velocity and (5.6) defines the plane it lies on. Only

one variable is needed to define the direction of the orbital velocity on this plane.

A final constraint which can be placed upon the orbital velocity is limiting the

search space to only those orbits with favourable geometry for uncued detection.

This is achieved by defining the velocity to correspond to an object at its point

of closest bistatic approach to the MWA. An object will be most detectable at

minimum range, as long as there are no mitigating factors such as unfavourable

bistatic radar cross section (RCS) or transmitter beampattern. This is achieved
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by expressing (5.2) in terms of the orbital velocity:

(
ρrx
ρrx

+
ρtx
ρtx

)
· ṙ = −λfD +

ρrx · ṙrx
ρrx

+
ρtx · ṙtx
ρtx

(5.7)

Choosing an (instantaneous) bistatic Doppler shift of fD = 0 in (5.7), and

solving for orbital velocity with (5.5) and (5.6), will ensure that the orbit for

object at position r will be circular and at minimum range.

The result is that for an uncued search only the three parameters, the cartesian

position, are needed to determine every measurement parameter necessary to form

matched radar products in order to detect an orbital object at this position. This

allows effective processing limited to a surveillance volume of interest.

It should be noted that there are two solutions to the intersections of (5.5),

(5.6) and (5.7), necessitating two matched filters per cartesian position; however,

this is still a significant improvement in limiting the scope of a blind search.

5.3 Initial Orbit Determination

Orbit determination is traditionally performed with a preliminary, or initial, orbit

determination step which is then refined with subsequent measurements, often in

a batch process (Montenbruck et al., 2002). That is, a number of detections are

used to perform an IOD step to provide an initial orbit, then this initial orbit is

used with the remaining detections to perform the OD step. This form of splitting

up the IOD and OD steps is useful as many space surveillance sensors, such as

narrowbeam or optical sensors, are not able to natively perform the IOD stage

and rely on an a priori track to update and refine. With radar measurements,

the most common IOD steps are the Gibbs and Herrick-Gibbs methods (Section

5.3.1 below).

Recently, there has been interest in harmonising the IOD and OD use of

measurements into a single step, through the use of admissible regions. Rather

than arbitrarily using some measurements for the IOD step and others for the OD
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refinement phase, instead a radar measurement will define a region of potential

orbits to which the detection could correspond, which is refined with subsequent

measurements. Individual radar detections consisting of a single measurement

of range, Doppler, azimuth, and elevation, define a broad region of potential

orbital parameters (Tommei et al., 2007). This region may be constrained by

incorporating angular rates (DeMars & Jah, 2014). In this approach, the OD

step is completely unified with every measurement incorporated identically, as a

single radar detection does not consist of enough information to define an orbit.

However, the classic approach of using an IOD step to generate an initial orbit,

which is used for follow on tracking, is well suited for processing with the MWA.

From Section 5.2.1 earlier, the measurement parameter space goes well beyond

traditional radar systems, and so it is not feasible to provide uncued detections

in measurement space from which to define an admissible region. Further, a

detection consisting of so many additional measurement parameters would go a

long way to defining an orbit. Instead, if the uncued search methods are employed

and are able to provide enough information to form an initial orbital estimate,

the standard track methods (normally used with a priori information) may be

sufficient to detect the object, and to confirm the orbit to a sufficient quality

(Section 5.2.4). Detections of the type outlined in Section 5.2.4 will naturally be

very short arcs, as they are specifically matched to a single Doppler value and

the relative velocity will be changing rapidly.

5.3.1 Gibbs/Herrick-Gibbs

The Gibbs and Herrick-Gibbs methods are two methods to define an orbit, a

six-tuple position and velocity, given three position measurements. From three

successive positions r1, r2 and r3 the Gibbs method determines the velocity, and

so an orbit, at the middle measurement ṙ2. The Gibbs method needs at least 5°

separation (in the orbital plane) between detections (Vallado & McClain, 2001).

An object would need to be tracked for a considerable amount of time in order to
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have detections spanning a 5° arc, for a typical object in LEO, this would exceed

one minute. For uncued detections, with the MWA, shorter arc IOD is necessary.

The Herrick-Gibbs method is an approximation of the Gibbs method, which

is far better suited to short-arc measurements. The Herrick-Gibbs method fur-

ther incorporates the time of each of the measurements to better estimate the

velocity ṙ2. If t1, t2, and t3 are the times of position measurements r1, r2 and r3

respectively, and if tij denotes the time between measurements i and j such that

tij = ti − tj, then the velocity at the middle point is given by:

ṙ2 = −t32(
1

t21t31

+
µ

12|r1|3
)r1+

(t32 − t21)(
1

t21t32

+
µ

12|r2|3
)r2+

t21(
1

t32t31

+
µ

12|r3|3
)r3 (5.8)

with r2 and ṙ2 now constituting a six-tuple Keplerian orbit estimate. The three

position vectors need to be coplanar for the Gibbs and Herrick-Gibbs methods to

provide an accurate estimate.

5.3.2 Direct Detection IOD

As discussed earlier, the simplest form of an orbit is completely defined by six

parameters (and an epoch) meaning that technically only six measurement pa-

rameters are required to generate an orbit. Given a detection consisting of an

azimuth, elevation, and a range (determining the orbital position) and Doppler,

Doppler-rate, and Doppler-acceleration it is analytically possible to determine

an orbital velocity (Zhang et al., 2019). However, the accuracy of this orbit

would be tremendously dependent on a radar’s ability to measure the subsequent

Doppler-rates.
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5.3.3 ODBD IOD

As well as Doppler and its rates, it is anticipated that by adding further measure-

ment parameters, particularly the spatial parameters, detections from the MWA

will contain enough information to determine an orbit. This is naturally incor-

porated into the methods outlined in Section 5.2.3. By hypothesising an orbit

to determine the measurement parameters, any subsequent detection generated

from these parameters would intrinsically be associated with the hypothesised

orbit. Because of the narrow beamwidths and the extended CPI lengths, any

ODBD-like detection will require the array to track the object spatially (and in

Doppler) throughout the CPI. Any detection will then be associated with the

implicit knowledge that the detection has been tracked, which provides a level of

confidence in the orbit used to define the track.

5.4 Results

To evaluate and verify these methods, the MWA conducted broad surveillance

stares tuned to FM radio frequencies. Results in this section are formed utilising

a single FM station transmitting from Perth, some 600 km to the South. This

constitutes a significant bistatic baseline length. For these observations, the MWA

was in the compact configuration of Phase II (Wayth et al., 2018).

The compact configuration is best suited for LEO space surveillance as some

of the baselines in the extended configuration are so long that orbital ranges are

not actually in the far-field of the array. Also, the larger beamwidths of the

compact configuration ensure the angular search space is not overly restrictive.

It should be noted that even in the compact configuration, at FM frequencies

the array is still considerably sparse. As shown in Fig. 5.2, the distinct feature

of the compact configuration is its two dense hexagonal cores. These identical

baselines are favourable for the EoR power spectrum experiment, however, they

do introduce significant grating lobes (Wayth et al., 2018). Although it is possible
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Figure 5.2: The layout of MWA the compact configuration of Phase II.

to apply a weighting to the array returns in order to reduce the grating lobes, this

will reduce sensitivity. Instead, orbital matched filtering techniques can provide

some level of discrimination by constraining the radar parameters used for each

beam.

Fig. 5.3 shows a single range and Doppler slice of the skymap of the Hubble

Space Telescope (HST) passing at point of closest approach. The left subplot

is created with standard delay-Doppler processing and the right is formed with

ODBD methods. However, with the short CPI length of only 100 ms the two plots
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Figure 5.3: Near-identical plots of a single bistatic-range and Doppler slice of the
sky map of the Hubble Space Telescope near zero-Doppler. 100 ms CPI. The left
plot shows standard delay-Doppler processing and beamforming, the right shows
ODBD methods. Data collected November 2018, with a frequency of 96.9 MHz,
bandwidth of 100 kHz.

Figure 5.4: Single bistatic-range and Doppler slice of the sky map of the Hubble
Space Telescope near zero-Doppler. Three second CPI. The left plot shows stan-
dard delay-Doppler processing and beamforming, the right shows ODBD meth-
ods. Data collected November 2018, with a frequency of 96.9 MHz, bandwidth
of 100 kHz.

are indistinguishable. The HST is located in the centre and is clearly visible with

the ‘flower’-like spatial structure which is associated with the Phase II compact

configuration, and significant grating lobes are clearly visible. In contrast, Fig.
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5.4 is from the same data but with the CPI extended to three seconds. Of interest

in this figure is that on the left subplot the object is now smeared spatially, and

will have also smeared in the other measurement domains. The right subplot

shows the ODBD processing has achieved greater coherence through the integra-

tion period, with the flower structure retained and the SNR considerably higher.

The grating lobes have also been attenuated with most being significantly atten-

uated1. This is because the orbital parameters for an object in a circular orbit

at point of closest approach will vary depending on the object’s true location,

meaning most of the grating lobes are significantly reduced. Of course, the HST

is a comparatively large target and these now-reduced grating lobes will be far

less apparent with smaller targets.

5.4.1 High Time Resolution Voltage Capture System

The MWA has previously supported high-time resolution radioastronomy through

the Voltage Capture System (VCS), with fine channels being recorded at 10 kHz

(Tremblay et al., 2015). These 10 kHz channels can be combined together by

inverting a second polyphase filter bank (PFB) stage to reconstitute the FM

band. This has been used for earlier work in order to correlate MWA-collected

timeseries surveillance data against a separate reference channel (Hennessy et al.,

2019). However, recent improvements have included the High Time Resolution

VCS mode, allowing sampling of the coarse channels (1.28 MHz bandwidth) di-

rectly. This enables direct correlation of the MWA surveillance data with external

reference signals without the need to perform a fine-channel PFB inversion stage,

which avoids loss from the fine channelisation as well as artefacts introduced by

the inversion and reduces the overall computational load.

1Similar examples, resulting from a smaller passive radar system, are presented in Appendix
A.
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5.4.2 Radar Configuration

The processing for the following results used a CPI length of 3 s, with a 0.5

s staggered offset between CPIs. We used the SBS Radio 96.9 MHz FM radio

station, from Perth, transmitting at 100 kW2. The data were downsampled to 100

kHz. For passive radar purposes, there is a general preference for high bandwidth

analogue signals, like rock music, however the MWA provides sufficient spatial

resolution for precise localisation rather than relying on somewhat improved range

resolution. Instead, the generally lower-bandwidth signal of SBS offers a better

signal for long CPI integration.

5.4.3 Surveillance Stare

The data for this section were collected in November 2018 and were processed

using the methods outlined in Section 5.2.4. That is, only searching through

cartesian position and constructing matched filters for an object in a circular orbit

at its point of closest approach. There was an analogue beamforming pointing

change during the observation. It should be noted that to generate results in

this section, we constrained the search volume to be 50 km cubes around known

objects of interest. Moving forward we will be preparing efficient implementations

of these methods in order to perform genuine uncued searches.

For the processing we used a simple threshold detector with a 16 dB SNR

cutoff to declare detections. This cutoff being sufficiently high to mitigate any

false detections with a very low probability of false alarm (Skolnik, 1970). The

trade-off, from using such a conservative threshold, is that any weak returns will

not be detected.

Fig. 5.5 shows the detection results from processing the data spanning eight

minutes and ten seconds. All of the detections correspond with known targets,

which have been manually associated. The detections occur over a wide area of the

2Note this is the maximum licensed transmit power; actual transmitted power may be lower
than this.
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Figure 5.5: Detections from the surveillance stares, overlaid on the track data.
Each detection has been associated with a NORAD (or Satellite Catalogue) Num-
ber.

sky. The detections all occur at significant elevation angles from the transmitter,

with the lowest transmitter-target elevation being 30°; all targets would certainly

be outside the transmitter’s main lobe (O’Hagan et al., 2017). The figure lists

the satellite catalogue numbers, also known as the NORAD numbers, associated

with the detections.

Table 5.1 lists the detected objects. Although all the objects are classified as
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Table 5.1: Detected objects and the detection’s respective ranges. Eccentricity
values taken from truth data.

NORAD Name TX Range RX Range Eccentricity
12155 SL-3 R/B 746 km 661 km 0.0030
17295 COSMOS 1812 630 km 624 km 0.0005
20303 DELTA 2 R/B 556 km 743 km 0.0098
26375 PEGASUS R/B 675 km 549 km 0.0679
34839 YAOGAN 6 596 km 548 km 0.0027
35867 FREGAT/IRIS 566 km 426 km 0.0006
36119 WISE 686 km 587 km 0.0001
43520 CZ-2C DEB 698 km 495 km 0.0007

large3 by the USSPACECOM (USSPACECOM, 2023), the objects are consider-

ably smaller than any previously detected by the MWA.

The smallest objects in Table 5.1 are likely to be the Widefield Infrared Survey

Explorer (WISE) and the Pegasus XL rocket body (R/B) 4, NORAD numbers

36119 and 26375, respectively. Both objects have dimensions less than one wave-

length, with the Pegasus XL Rocket Body being an Orion-38 rocket stage with

length 1.3 m and diameter 0.97m. At FM radio frequencies the RCS of such an

object would be close to 1 m2. Detections of objects this small are consistent

with earlier performance predictions (Tingay et al., 2013b).

5.4.4 Initial Orbit Determination Example

Because of the constraints applied to the search, particularly matching objects at

closest approach, the detections span very short arcs. This is illustrated in Fig.

5.5. This poses a potential problem as only minimal numbers of detections will

be available to form a best-estimate of the orbit for follow-on tracking.

Fig. 5.6 shows the SNR of detections from both the uncued search as well as

using a priori data for tracking. The shaping caused by the Doppler mismatch is
3That is, objects with an RCS greater than or equal to 1 m2, although this would almost

certainly be for a higher frequency than is being used here.
4The debris object, with NORAD 43520, would possibly be smaller, but its dimensions are

unknown.
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Figure 5.6: For the WISE, a comparison of detection performance of the uncued
methods against what is possible with a priori track information.

clear, as the SNR decreases the further it is from its closest approach.

Interestingly, Fig. 5.6 shows that the detectability of the WISE is at its

greatest at a point some 30 seconds after its closest approach. At this point its

bistatic range is 70 km greater than the minimum, this is most likely due to

the WISE moving into a transmit beam sidelobe. The baseline distance from the

MWA to Perth is insufficient to ensure targets will be in the main beam, even with

the large FM elevation beamwidths (O’Hagan et al., 2017). The vast surveillance

volume above the MWA will be punctured by transmit nulls and low elevation

side lobes. There will also be similar volume constraints imposed by the receiver

beampattern. The intersection of these limitations along with constraining the

search to only match orbital objects at minimum range may be overly restrictive

for uncued detection. Limiting the search volume to match the beampatterns

and increasing the parameter search space may significantly improve detection

results.
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5.4.4.1 ODBD IOD

Fig. 5.7 details the pass of the WISE, an infrared space telescope (NORAD

36119), shown in Fig. 5.5 above. The bottom left subplot of Fig. 5.7 shows the

aggregate delay-Doppler map for the detections. The orbital-derived higher order

Doppler terms have coherently integrated the target motion, as the detections do

not smear. The top subplot shows each detection’s associated orbit propagated

out 30 seconds, the wide fan in these predicted orbits (when compared to the

nominal truth) because the WISE is only at its point of closest approach instan-

taneously, and its Doppler varies by hundreds of Hz in a manner of seconds. It is

no surprise that the output of a zero-Doppler matched filter will have errors when

the target is not at zero-Doppler. The bottom right subplot of Fig. 5.7 shows the

same orbital predictions, except this time the orbital estimate has been updated

with the detection’s Doppler value. This is done by feeding back the measured

Doppler shift into (5.7) to adjust the hypothesised orbit. Now, with the correct

Doppler value incorporated there is a significantly improved agreement between

the detected orbits and the truth.

Fig. 5.8 shows the same detection-level orbital estimates as the right subplot

of Fig. 5.7, but now they are propagated forward an hour. This shows good

agreement for such a considerable propagation time; after the 60 minutes there

is less than 1° cross range error. These predictions are noteworthy because they

are each generated from a single 3 s detection. Also, the orbits have only been

propagated forward with two-body propagation, which itself will contribute to

errors.

Of course, the goal with this work is not to try to generate an orbit from a

single detection, and integrating many detections will improve any orbital esti-

mate. However, having such a rapid IOD step, and feature-rich detections, will

greatly assist ongoing tracking as well as measurement association.
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Figure 5.7: Aggregate detections of the WISE. The top subplot is an aggregate
of the delay-Doppler maps. The next two subplots show the detection-level IOD
from these detections. The left IOD subplot has no Doppler correction and the
right subplot shows orbits after the detected-Doppler feedback.

5.4.4.2 Other methods

Other IOD methods from Section 5.3 have been used with the initial detec-

tions of the WISE. Fig. 5.9 shows the results for using the Doppler-corrected

ODBD detection-level estimates, the Herrick-Gibbs estimates, and also analyti-

cally calculating the orbital velocity from the Doppler, Doppler-rate, and Doppler-

acceleration. For the Doppler analytic method, if we had taken the ODBD-derived

parameters directly, the resulting orbit would be identical to the left subplot

in Fig. 5.7. Instead, for each detection, a subsequent search was conducted

through all Doppler parameters to determine those which maximised the detec-

tion SNR. These Doppler parameters were those used to determine the velocity

in the Doppler analytic results in Fig. 5.9.

Fig. 5.9 shows that the Doppler-corrected orbits compare favourably against
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Figure 5.8: Detection-level IOD for the WISE, propagated 60 minutes forward.

Figure 5.9: Detection-level IOD for the WISE, propagated 30 s forward. The left
subplot shows the Doppler-corrected ODBD estimates, matching Fig. 5.8. The
middle subplot shows the Herrick-Gibbs method. The right subplot shows the
Doppler-analytic method.

other methods. This is because the IOD estimate is intrinsically incorporating

every measurement parameter, whereas the Herrick-Gibbs is incorporating three

positions and the Doppler analytic method only uses a position and three Doppler

parameters. However, Fig. 5.9 shows that MWA detections are not necessarily

well-suited to these other methods. The detections are all coplanar, however the

extent of the arc is only 0.41° which will cause issues with the Herrick-Gibbs
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solutions. Also, the direct analytic method of (Zhang et al., 2019) is very depen-

dant on the second derivative of the Doppler, and a 3 s CPI provides insufficient

resolution for estimating this. Further, this estimate will be highly susceptible to

noise, clutter, and signal amplitude changes across the CPI.

5.4.5 Non-Circular Orbits

The methods used to form the matched filters in Section 5.4.3 matched circular

orbits in order to reduce the search space. However, there were a few interest-

ing examples of slightly eccentric detections. A Delta 2 rocket body with an

eccentricity of 0.01 was detected, as well as a Pegasus XL rocket body with an

eccentricity of 0.068. Whilst these orbits are still quite circular, they represent

larger eccentricities than the vast majority of the catalogue.

Fig. 5.10 shows the orbits of the Delta 2 rocket body predicted out an hour.

Because the detection level orbits will have an eccentricity of zero, there is now a

noticeable offset between the detection-level predictions and the truth, although

the cross-range error is still quite small. Unfortunately, as the detections only

span a 0.39° arc, the Herrick-Gibbs predictions do not fare any better, however

the eccentricities of the Herrick-Gibbs estimates range from 0.00091 to 0.00116,

which are far more accurate.

The Delta 2 rocket body was detected 11 times, whereas the Pegasus XL

rocket body was only detected once. Two contributing factors are the RCS of the

Delta 2 is about ten times larger than the Pegasus XL, and the Delta 2 orbit is

less eccentric.

Fig. 5.11 shows the detected SNR of the Pegasus XL rocket body with both

the circular-uncued search as well as the track based on a priori truth information.

Not only is the SNR attenuated past its point of closest approach (as in Fig.

5.6 above), it will also be attenuated because the eccentricity is not zero. The

measurement parameters derived for a circular orbit will not match well with true

parameters. The object was also near its orbital perigee, and so its velocity is
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Figure 5.10: Detection-level IOD for the Delta 2 rocket body, propagated 60
minutes forward.

Figure 5.11: For the Pegasus XL rocket body, a comparison of detection per-
formance of the uncued methods against what is possible with a priori track
information.

considerably larger than that of an object in a circular orbit. This means that

the bistatic geometry is changing faster than it would otherwise, and the 0.5
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s staggered offset between CPIs may not be sufficient to ensure objects of this

eccentricity will near its point of closest approach at the mid-point of the CPI.

Because of these factors, it is very fortunate that the processing was able to

detect the rocket body, as mismatches attenuate the sensitivity and insufficiently

regular update times may also miss the optimal conditions. Fig. 5.11 shows

the object is detectable (with a simple track based detection method) for over a

minute and includes SNRs greater than 20 dB.

Rather than matching solely for circular orbits, the full Vis Viva and velocity-

position inner product expressions can be used instead of (5.5) and (5.6). With

a circular orbit, its position would define the semi-major axis, a = |r|. However

for non-circular orbits the search parameter space is extended by two dimensions,

to now include the orbital eccentricity and semi-major axis, which define the size

and the shape of the orbital ellipse.

|ṙ|2 =µ

(
2

|r|
− 1

a

)
(5.9)

r · ṙ =±

√
|r|2µ

(
2

|r|
− 1

a

)
− µa(1− e2) (5.10)

These additional dimensions are not completely unconstrained, for a given

target range |r| must lie between the orbital apogee and perigee ranges. Addi-

tionally, the perigee must be associated with a stable orbit (otherwise the Kep-

lerian model will not hold) so this must be greater than approximately 100 km.

Fig. 5.12 shows the detections corresponding to the WISE and the Pegasus XL

rocket body (from Figs. 5.6 and 5.11) reprocessed for eccentricities up to 0.1,

along with the corresponding semi-major axis.

Note that now there will be four solutions, so four matched filters, for a given

position combined with (5.7) , (5.9) and (5.10).
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Figure 5.12: SNR of a detection when processing is extended to account for non-
circular orbits. The plots show how the detection SNR varies with the size and
shape of the orbital ellipse. The true values for the WISE are 0.0001 and 6,858
km and the true values for the Pegasus XL rocket body are 0.0679 and 7,284 km,
both shown.

5.5 Conclusion

With traditional processing, the narrow beamwidth of the MWA would normally

limit the CPI interval for detecting moving targets. This paper has demonstrated

initial results incorporating novel methods to extend processing intervals, which

are needed for detecting small objects at orbital ranges. By accounting for the

target’s motion through range, Doppler, and spatial parameters, processing in-

tervals can be extended sufficiently in order to detect targets with an RCS of 1

m2.

The number of potential measurement parameters is quite large, with pro-

cessing needed to account for range, Doppler and its many derivatives, and the

directions and their subsequent derivatives. To account for this large space, this

paper has demonstrated results by searching through orbital parameters and gen-

erating measurement parameters from these orbits. This has the advantage of

limiting the search space to Keplerian orbits, ensuring detections will correspond

to a hypothesised orbit, and it allows the measurement space to be constrained

by orbital parameters.
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These detection-level orbits are accurate, despite being formed with only three

seconds of matched-processing. Additionally, having an accurate velocity esti-

mate will greatly assist ongoing tracking and measurement association.

The majority of objects in an Earth-captured orbit are in circular, or near

circular, orbits. Despite limiting the search parameters to circular orbits, small

objects have been detected at a significant eccentricity, despite the attenuation

caused by this mismatch.

In this paper, all objects were detected at SNRs above 20 dB, and the detection

threshold was set at a very conservative 16 dB. By incorporating a different

detector allowing lower, more realistic, detection limits, improved results against

smaller targets could be achieved. Smaller object detection will be limited as RCS

decreases exponentially as the objects move into the Rayleigh scattering region.

The initial results presented here further demonstrate the potential of the

MWA for wide area space surveillance as a passive radar receiver.

5.6 Future Work

The IOD step is performed to construct a preliminary orbit to assist with ongoing

tracking. This will be useful for the MWA as it will be able to track, confirm,

and update known tracks, and then have uncued preliminary orbits feeding in to

this process. Investigating orbit determination processes with the track data is a

key focus of future work in order to minimise the amount of searching required

to verify or reacquire tracks.

Western Australia has a low population density, and so, a low density of large

transmitters, one of the reasons it is an ideal location for radio telescopes. The

nearest and largest transmitter is 600 km away in Perth, however despite this

distance, orbital objects above the MWA are still at a large elevation from the

transmitter, being illuminated by elevation sidelobes. This means the surveillance

volume above the MWA will be limited by the transmit antennas elevation pat-

tern. If the transmit antennas sidelobes are more than 15 dB below the main lobe,
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then the signal level from the main lobe of transmitters thousands of kilometres

away will be stronger above the MWA than the Perth transmitter. Future obser-

vations will be conducted with reference collections situated near more distant

transmitters, to investigate this potential gain.

Last, to process the data in this paper, search regions have been limited for

efficient processing. As the processing requires two time-varying beams to be

formed, albeit only at a single range of interest, for each detection, an optimised

implementation will enable faster processing and a significantly increased detec-

tion volume.
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Chapter 6

Establishing the Capabilities of the

Murchison Widefield Array as a

Passive Radar for the Surveillance

of Space

With a full set of practical approaches minimising the radar search space, the

Murchison Widefield Array can now be used as a full space surveillance sensor,

from detection through to complete orbit determination, including multistatic

orbit determination. Similar to previous chapters, this chapter is reproduced

from the author’s publication (Hennessy et al., 2022b), albeit with the removal of

some aspects of the introductory sections, which were incorporated into Chapter

2.

6.1 Abstract

This paper describes the use of the Murchison Widefield Array, a low-frequency

radio telescope at a radio-quiet Western Australian site, as a radar receiver form-

ing part of a continent-spanning multistatic radar network for the surveillance of
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space. This paper details the system geometry employed, the orbit-specific radar

signal processing, and the orbit determination algorithms necessary to ensure

resident space objects are detected, tracked, and propagated. Finally, the paper

includes the results processed after a short collection campaign utilising several

FM radio transmitters across the country, up to a maximum baseline distance of

over 2500 km. The results demonstrate the Murchison Widefield Array is able to

provide widefield and persistent coverage of objects in low Earth orbit.

6.2 Signal Processing

An issue faced when using a sensor such as the MWA as a space-surveillance

radar is the tradeoff between needing to integrate for a longer amount of time

for increased sensitivity, and the changing geometry that orbital motion imparts.

The precise and narrow beamwidth, resulting from such a large aperture, means

that RSOs in LEO will occupy a beam for only a brief instant. For even a short

coherent processing interval (CPI), the object in orbit will need to be tracked

spatially throughout the CPI. Similarly, the object will need to be tracked in

delay and Doppler parameter space as well. This is the fundamental challenge

with the detection of RSOs with the MWA; the need to extend the CPI to detect

smaller and more distant RSOs is balanced against the difficulty of coherently

forming detection signals. This section covers efficient and scalable methods

for dealing with this problem by matching the radar-receiver parameters to the

orbital motion. This type of track-processing is achievable given the a priori

information on orbits, whereas for uncued detection and searches, earlier studies

have detailed practical methods for forming hypothesised orbits (Hennessy et al.,

2021).

Given a large number of potential orbits, either from known tracks, search-

ing a volume of orbits around known tracks, or uncued search hypotheses, the

surveillance data, and the collected reference signals, are able to be coherently

matched to detect an RSO in that orbit.
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Rather than directly processing across the received signals, range-compressed

pulses are formed for each antenna. These pulses are then matched to the RSO

motion (Stein, 1981; Palmer et al., 2011). The signals are split intoM pulses, each

with a duration of τ , such that the CPI length is given by Mτ . The pulse length,

τ , needs to be sufficiently short to ensure that any change in the Doppler frequency

across the pulse is insignificant (Palmer et al., 2011). Decreasing the pulse length

is equivalent to increasing the maximum unambiguous velocity coverage. For a

CPI length of 3 s, M will need to be in the order of 40,000 pulses in order to

unambiguously span potential orbital velocities.

Given a reference signal sr and N tiles that each have a received signal sn (n

ranging from 0 to N −1), the range-compressed pulses are formed by correlation.

Given the sample rate B, each pulse consists of Bτ samples, and the pulse com-

pression forming the range-compressed pulse stack is obtained with the following

formula:

χn[t,m] =
Bτ−1∑
t′=0

sn[mBτ + t′]sr
∗[mBτ + t′ − t] , (6.1)

where t is the fast-time (or delay) sample index, m is the slow-time pulse index,

and t′ is the fast-time correlation index for the two pulses. Note that the sample

rate, B, is treated here as equal to the signal bandwidth, although in practice the

true signal bandwidth will vary with the analogue content.

This pulse stack is formed for each tile, n, creating a compressed pulse cuboid.

Typically these pulses are coherently integrated simply with a Fourier transform

(FT), resolving Doppler. However, for rapidly changing geometries, this will not

be sufficient, and instead the phase resulting from the target’s motion needs to

be matched from pulse to pulse.

Constant radial motion will result in a linear phase rate across subsequent

pulses, which will be coherently matched by the FT. However, with orbital mo-

tion, the target’s radial slant range changes rapidly, as will its Doppler signal.

This results in a complicated signal with the Doppler changing rapidly, which
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is typically treated as a polynomial phase signal. For orbital motion, matching

higher-order terms in this polynomial phase signal results in significant increases

in the signal-to-noise ratio (SNR) (Malanowski & Kulpa, 2008; Hennessy et al.,

2019). The moving object’s phase will be different for each antenna as well,

resulting in differing polynomial phase signals from each tile which need to be

matched in order to be combined.

Although it is possible to form a single beam (and even a moving beam), and

then search in Doppler-rate terms (or indeed vice versa), the parameter space

is far too large and this approach is intractable. Instead, each tile’s matching

polynomial phase signal is determined from a hypothesised orbit in order to best

match the orbital motion. This essentially matches the Doppler phase signal and

the spatial phase signal in one process.

The bistatic radar configuration is illustrated in Figure 6.1, with a target

at position r, relative to the centre of the Earth, with the velocity ṙ. The

receiver’s Cartesian location is given by rrx and the transmitter’s by rtx. The

position vectors from the receiver and the transmitter to the RSO are ρrx, and ρtx,

respectively. The polynomial phase coefficients are derived from this geometry

with an orbital motion model.

r

rrx
rtx

ρrxρtx

ṙ

O

Figure 6.1: The bistatic radar configuration with the position of an orbital object
and its velocity, r and ṙ, along with the positions of the transmitter and receiver,
rrx and rtx, as well as the vectors from these sites to the object, ρrx and ρtx. The
origin, O, corresponds to the gravitational centre of the Earth.

The bistatic radar configuration is illustrated in Fig. 6.1, with a target at

position r, relative to the centre of the Earth, with velocity ṙ. The receiver’s
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cartesian location is given by rrx and the transmitter’s by rtx. The position

vectors from the receiver and the transmitter to the RSO are ρrx, and ρtx, re-

spectively. The polynomial phase coefficients are derived from this geometry with

an orbital motion model.

For the relatively short duration of a single CPI, the motion model assumes

that the only force acting on the object in orbit is Earth’s gravity. The accelera-

tion due to the Earth’s gravity r̈, is given by the inverse square law:

r̈ = − µ

|r|3
r, (6.2)

where µ is the standard gravitational parameter for Earth.

This type of orbit, a Keplerian orbit, describes two-body motion and is the

simplest orbital model. An orbit is fully determined by the state vector x =
[
r ṙ
]
,

and so every future or past motion parameter, and then the phase parameter can

be determined from the state vector x at a given time.

Given ρrx = r− rrx, ρ̇rx = ṙ− ṙrx, etc., the receiver range, range rate, range

acceleration and range jerk are given by:

ρrx = |ρrx| , (6.3)

ρ̇rx =
ρrx · ρ̇rx
ρrx

, (6.4)

ρ̈rx = −(ρrx · ρ̇rx)2

ρrx3
+
|ρ̇rx|2 + ρrx · ρ̈rx

ρrx
, (6.5)

...
ρ rx = 3

(ρrx · ρ̇rx)3

ρrx5

− 3
(ρrx · ρ̇rx)(|ρ̇rx|2 + ρrx · ρ̈rx)

ρrx3

+
3ρ̇rx · ρ̈rx + ρrx ·

...
ρ rx

ρrx
,

(6.6)

and this is similarly the case for the transmitter’s terms ρtx, ˙ρtx, ρ̈tx and
...
ρ tx.
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Additionally, ...r is determined from (6.2) and is given by:

...
r =

3µr · ṙ
|r|5

r − µ

|r|3
ṙ . (6.7)

Note that ṙrx, r̈rx and ...
r rx are the (known) motion terms for the receiver

on the Earth’s surface, and this is similarly the case for ṙtx, r̈tx and ...
r tx for

the transmitter. In this reference frame with a rotating Earth, the MWA is

travelling (instantaneously) 47 m/s faster than the southern-most transmitter

used in Section 6.5.

The expressions for the instantaneous bistatic delay and Doppler are

tD =
1

c
(ρrx + ρtx − |rrx − rtx|) , (6.8)

fD =− 1

λ
(ρ̇rx + ρ̇tx) . (6.9)

The spatial parameters, azimuth and elevation, and their rates, are deter-

mined directly from the orbit as well, ensuring that any RSO is spatially tracked

throughout the CPI. These parameters are determined from the receiver’s slant

range vector rotated from an Earth-centred inertial (ECI) geocentric equatorial

reference frame to a south-east zenith (SEZ) topocentric-horizon frame. The

rotated vector q and its subsequent rates q̇ and q̈ are given by the following

formula:

q = D−1ρrx , (6.10)

q̇ = D−1ρ̇rx , (6.11)

q̈ = D−1ρ̈rx , (6.12)

where D is the SEZ to ECI rotation matrix (Vallado & McClain, 2001). Note in

some publications q and ρ are instead written as ρsez and ρeci respectively.

From these topocentric pointings, the azimuth and elevation, θ and φ, respec-

tively, and their rates, are determined. Given q = [qS, qE, qZ ]T , the expressions
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for the spatial parameters are:

θ =
π

2
− tan−1

(
qE
qS

)
, (6.13)

θ̇ =
q̇SqE − q̇EqS
qS2 + qE2

, (6.14)

θ̈ =
1

(qS2 + qE2)2

(
(q̈SqE − q̈EqS)(qS

2 + qE
2) (6.15)

− 2(q̇SqS + q̇EqE)(q̇SqE − q̇EqS)
)
,

and

φ = tan−1

(
qZ√

qS2 + qE2

)
, (6.16)

φ̇ =
q̇Z − q̇ sinφ√
qS2 + qE2

, (6.17)

φ̈ =
1

qS2 + qE2

(
(q̇ sinφ− q̇Z)(q̇SqS + q̇EqE)√

qS2 + qE2
(6.18)

+ (q̈Z − q̈ sinφ− q̇φ̇ cosφ)
√
qS2 + qE2

)
.

Note that the slant ranges (and their rates) will be unchanged by the rotation,

q = |q| = ρrx, and again, this is also the case for the subsequent rates.

A previous study assumed that two terms for each of the spatial parameters

were sufficient (Hennessy et al., 2019). However, some particularly fast moving

objects, such as rocket bodies in geosynchronous transfer orbits, require additional

parameters. The full angular accelerations were required to detect an SL-12 rocket

body (NORAD 20082) travelling at 9.6 km/s (in the ECI reference frame).

An equivalent approach is to rotate the tile locations to the ECI frame,

in which case the spatial parameters and subsequent beamforming will have a

topocentric right ascension and topocentric declination (rather than the azimuth

and elevation) (Hennessy et al., 2021).

Given these spatial parameters, the polynomial phase coefficients can be de-
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termined for both Doppler and spatial aspects. The Doppler phase coefficients

for the first four terms are given by their respective-order Taylor series terms:

d0 =− 2π

λ
(ρrx + ρtx − |rrx − rtx|) , (6.19)

d1 =− 2π

λ
(ρ̇rx + ρ̇tx) , (6.20)

d2 =− π

λ
(ρ̈rx + ρ̈tx) , (6.21)

d3 =− π

3λ
(
...
ρ rx +

...
ρ tx) . (6.22)

Similarly, the expression for the spatial coefficients is given by:

bn,0 =− 2π

λ
(k · un) , (6.23)

bn,1 =− 2π

λ
(k̇ · un) , (6.24)

bn,2 =− π

λ
(k̈ · un) , (6.25)

where un is the location of the nth tile, and k, k̇ and k̈ are the wavevector and

its rates determined from (6.13)–(6.18).

Finally, the resulting matched phase signal for each antenna can be formed

by sampling each antenna’s polynomial phase signal at time instances mτ , for m

∈ [−M−1
2
, . . . , M−1

2
]:

Pn[m] = e−j(bn,0+(bn,1+d1)mτ+(bn,2+d2)(mτ)2+d3(mτ)3). (6.26)

This full set of matching phase signals ensures that a potential orbit deter-

mined by the state vector [r, ṙ] will be completely tracked both spatially and in

Doppler across every pulse and every tile.

This phase-matching matrix can then be applied to the data, by applying the

polynomial phase signal correction to each tile by forming the Hadamard product

between the two. These signals are then coherently combined by summing across

each tile to form a single, fully matched, slow time-series for a single range bin,
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pulse stack for N antennas [ r, ṙ ]
orbit description

⊙
single range slice phase matching matrix

Σ

FT

Doppler signal

Figure 6.2: Illustration of the signal processing steps outlined in Section 6.2. An
orbital state vector is used to determine the polynomial phase signal coefficients
to form a phase-matching matrix. A single range’s slow-time signals are matched
to the orbit, and combined using this matrix before detection.

χ[m]. The range bin delay sample is determined by the time delay tD, from (6.8),

as well as the sample rate B.
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χ[m] =
N−1∑
n=0

(Pn[m]� χn[t,m])|t=BtD . (6.27)

Finally, the Fourier transform will integrate the fully orbital-matched slow-

time pulses resolving the slow frequency, or Doppler, signal. This full process

is illustrated in Figure 6.2. This final signal is passed through a constant false

alarm rate (CFAR) detector to produce detections of the matched orbit.

χ[f ] =

∣∣∣∣∣∣
M−1

2∑
m=−M−1

2

χ[m]e−j2π
fm
M

∣∣∣∣∣∣
2

. (6.28)

Note that the d0 term is not included, since the final phase is not of immediate

interest; however, the inclusion of d1 ensures any matched target returns will be

close to zero Doppler. This allows for a pruned FT implementation. That is, only

those frequency bins sufficiently close to zero Doppler need to be determined to

cover any potential orbital velocity offset, and also large enough to encompass

sufficient bins allowing for accurate threshold estimation for the CFAR detector.

The process in (6.27) and Figure 6.2 only samples a single range bin; creating

an entire delay–Doppler map would serve little purpose, since the orbit-derived

parameters used to generate that map would only be relevant to a single range.

A common pitfall with passive radar and analogue signals is that the ambiguity

function is content-dependant; depending on the specific audio signal, the range

resolution can be quite poor (Ringer et al., 1999). By processing a single range

bin, this issue can be avoided, or at least moderated. Although signal content

might result in a poor ambiguity function, by matching orbits directly, the orbit-

derived parameters will vary across range bins and only one orbit will have the

best-matched parameters.

By forming detections with orbit-derived parameters, every detection will be
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associated with an orbital track with some confidence, since the beamforming

has followed the orbit through the CPI. This associated trajectory greatly assists

ongoing tracking and detection-track association. Additionally, having a known

trajectory estimate is required for the OD step outlined in Section 6.3.

This process is entirely flexible and the motion model can be extended to

more complicated orbital models, such as incorporating an oblate Earth or other

perturbing forces. The measurement model can also be tailored, rather than

applying far-field beamforming which is suitable for the MWA’s compact con-

figuration. The matched signals are able to be readily extended to near-field

beamforming. Instead of calculating beamforming coefficients as well as Doppler

coefficients, Doppler coefficients ((6.19)–(6.22)) can be determined for each tile’s

location and the resulting matched signal can be determined as before.

6.3 Orbit Determination

Given an orbital track, either from an RSO catalogue or an initial orbit hypothe-

sis, the six dimensional positions and velocities are determined and the processing

steps described in Section 6.2 are applied. The position and velocity state vec-

tors, or indeed the orbital elements, can be adjusted to form search volumes for

RSOs, either to detect manoeuvred targets or to update an old track. If an RSO

is detected, a series of associated measurements will be produced, although the

process utilises the six-dimensional state vectors. The measurements are pro-

duced in the standard radar measurements of azimuth, elevation, bistatic-range,

and Doppler.

The number of measurement parameters is extendable in many measurement

dimensions. As covered in previous sections, there is a need to account for higher-

order motion parameters such as Doppler rates as well as spatial rates. These

dimensions are not searched in the processing steps, as that would result in an

intractable search space. Instead, only azimuth, elevation, bistatic range, and

Doppler are the adjusted measurement parameters (either directly or via the
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orbital elements); the first three are searched over as part of the Cartesian location

and the latter, Doppler, is searched over via the FT as part of the final Doppler-

resolving step. If sufficient computational resources existed, it may be possible to

independently search through higher-order parameters, which would allow them

to be included as part of the OD step.

Orbit determination is achieved using the batch least-squares method outlined

in (Montenbruck et al., 2002). This method fits an orbit to a track (or collection)

of measurements z. The measurements vector z consists of k measurements such

that z =
[
z0 z1 . . . zk−1

]T
, each observed at times t0, t1 ... tk−1, with each

measurement consisting of the detected delay, Doppler, azimuth and elevation

such that zi =
[
tDi fDi θi φi

]T
.

If the function f maps a state vector x to its respective measurement param-

eters at times t0, t1 . . . tk−1 (for a single pass, two-body orbit propagation is used

such that f consists of Equations (6.8), (6.9), (6.13) and (6.16); for longer-term

orbit determination, more complicated models need to be used), the best orbital

fit is the state vector which, when propagated, minimises the residuals between

the measurements and the predicted measurements:

x̂ = argmin
x

(|z − f(x)|2) . (6.29)

As f is highly non-linear, finding a general minima is not trivial and instead

a solution is found by linearising all quantities around an initial state vector x0.

This initial solution may be provided a priori from a source such as a previous

pass or a space catalogue, or instead from the detections directly using an IOD

method. The residuals, ε, can then be approximated:

ε = z − f(x) , (6.30)

≈ z − f(x0)− ∂f

∂x
(x− x0) , (6.31)

= ∆z − F∆x , (6.32)
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with ∆x = x−x0 being the difference between x and the reference state vector,

and ∆z = z − f(x0) being the difference between the actual measurements and

the predicted measurements for the reference orbit. Additionally, the Jacobian

F = ∂f(x)
∂x
|x=x0 consists of the partial derivatives of the modelled observations

with respect to the state vector.

Now, the orbit determination step is achieved by solving a linear least-square

problem, with Equation (6.29) simplified as:

∆xls = argmin
∆x

(|∆z − F∆x|2) . (6.33)

x0

Reference Orbit∆xls
xls

Estimated Orbit

Measurements

Figure 6.3: Illustration of the orbit determination process, starting with a refer-
ence orbit and then estimating an orbit adjustment to best-fit the measurements.

With each detection and track associated with a state vector, x0, a solution

to Equation (6.33) is readily determined (Madsen et al., 2004). This process is

illustrated in Figure 6.3.

In order to compare different measurement types equally, the residuals are nor-

malised by scaling the measurements (and thus, the Jacobians) by the mean mea-

surement error σi. In Equation (6.33), F and ∆z are replaced by F ′ = ΣF and

∆z′ = Σ∆z, with Σ being the diagonal matrix Σ = diag(σ−1
0 , σ−1

1 , . . . , σ−1
k−1).The

mean measurement errors in Σ are determined experimentally and also from the

measurement resolutions, with the range measurement accuracy determined by

the signal bandwidth, the Doppler resolution determined by the CPI length, and

the azimuth and elevation resolutions determined by the size of the array aperture.
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In terms of signal processing, the only aspect that is within the system’s control

is the Doppler resolution through adjusting the CPI length. It is also possible

to further scale the errors using each detection’s SNR, such that stronger detec-

tions contribute to the orbital fit to a greater extent than the weaker detections

(Vierinen et al., 2017).

With this process, the linearised error covariance matrix is now obtained with

the following formula:

cov(xls,xls) = (F TΣ2F )−1 . (6.34)

The diagonal elements of this covariance matrix yield the standard deviation

of the estimate of each element of the state vector.

6.3.1 Multistatic Orbit Determination

The OD approach is readily extendable to incorporate multistatic returns, with

the detections from additional transmitters simply providing extra measurement

parameters to fit the orbit. Having each detection associated with a state vector

allows for the easy association of multistatic measurements.

A given detection’s position is defined by the narrow beamwidth of the elec-

tronically steered beam and its intersection with the isorange ellipsoid defined

by the time delay from Equation (6.8). However, the range resolution achievable

using FM radio signals is quite poor, and although the large aperture allows spa-

tially accurate beams, the volume of the intersection will extend radially. This

segment, when intersected with subsequent ellipsoids, will not dramatically im-

prove the estimation, as each subsequent coarse ellipsoid will still be intersected

with the identical narrow beam.

Conversely, the target’s velocity estimate can be dramatically improved. By

expressing (6.9) in terms of the orbital velocity, ṙ, it is clear that every Doppler
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measurement fD defines a plane of potential velocities:

(
ρrx
ρrx

+
ρtx
ρtx

)
· ṙ = −λfD +

ρrx · ṙrx
ρrx

+
ρtx · ṙtx
ρtx

. (6.35)

Additional Doppler returns from different sensors will drastically constrain

the extent of possible velocities. Two measurements will define a line, and three

or more detections will completely determine (or even overdetermine) the veloc-

ity. An accurate velocity estimate is the most important aspect of the orbital

state vector estimate, as errors in the velocity estimation will produce increas-

ingly erroneous position estimates when propagated forward. Even if multistatic

detections are not coincident, the resulting orbit will be improved for having

multiple Doppler measurements to constrain the region of possible velocities.

Other benefits of multistatic observations include the diversity of coverage,

both spatially and in terms of signal content, as well as resilience by making the

most of the vast amount of energy being radiated outward. If the bistatic configu-

ration is relying on narrow elevation sidelobes, there will be gaps in illumination.

Using multiple transmitters will help ensure any gaps are covered by at least one

other sensor. Additionally, analogue FM radio is not necessarily ideal for radar

due to the content-dependant nature of the ambiguity function, and diverse op-

tions (even multiple stations from the one tower) will provide resilience in the

event one station’s content is not suitable. FM radio signals have been shown to

be well suited for distributed bistatic radar systems (Sahr, 2007).

6.3.2 Initial Orbit Determination

The process outlined in Section 6.2 requires an orbit to match the parameters

in order to form detections. Although these orbits can come from a catalogue

of tracks, there will still need to be additional work for uncued detection. The

six-dimensional search space of all potential orbit state vectors is currently an

unreasonably large search space. However, earlier work has shown that the appli-
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cation of radar constraints can greatly simplify the process. By looking for RSOs

at their point of minimum bistatic range, and constraining ranges in orbital ec-

centricity, this search space can be reduced further (Hennessy et al., 2020). Akin

to creating a spatial fence with receiver beams, this approach only searches a

narrow region in orbital parameter space. RSOs that do not pass through the

right parameter space on one pass will pass through eventually. Tracked RSOs

can then be treated as normal, per the general steps in this section.

There may be thousands of objects from a typical space catalogue observable

from the MWA at any one point in time, and matching these tracks (and also

searching a region around these tracks) would potentially require matching a hun-

dred thousand orbits. An uncued search of a region, even including a constrained

orbital search space, will potentially require matching one million orbits.

Depending on the available computer memory, a region’s hypothesised orbits

and resulting parameters can be stored. The phase matrix coefficients, or indeed

the full phase matrices, are applicable for all subsequent CPIs and thus, storing

them saves on ongoing computation.

6.4 Continental Radar

The Australian continent provides a unique context for large-scale FM radio-based

passive radar. The majority of the population is concentrated in cities near the

coast, particularly in the south-east of the country. The FM radio transmitters

are similarly located in the population centres. This is illustrated by a map of the

most powerful FM transmitters in Figure 6.4. The MWA is naturally situated

far away from these powerful transmitters. This isolation benefits the MWA’s

astrophysics goals by reducing incident radio frequency interference (RFI). Such

a location would ordinarily be less than ideal for terrestrial passive radar purposes,

with most passive radar systems designed to be located within the footprint of

the illuminating transmitter. However, for detecting satellites at LEO altitudes,

such a separation becomes a significant advantage.
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Figure 6.4: A map of all the powerful (greater than 50 kW) FM radio transmitters
in Australia.

Typical FM radio transmitting antennas consist of six to eight antennas com-

bined to form a beam. These antennas are typically angled (as well as electroni-

cally beam-steered) towards the ground in order to direct the maximum amount

of energy to the population (O’Hagan et al., 2017). This can pose a challenge for

satellite illumination, as every effort is made to minimise the amount of wasted

energy being radiated outward from Earth, with the main elevation sidelobes

being as low as −15 dB compared to the main lobe (O’Hagan et al., 2017). How-

ever, these sidelobes will still provide sufficient illumination, and perhaps some
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Figure 6.5: Typical FM array’s in situ measured antenna pattern via an airborne
radio measurement system.

Australian transmitters are not so directive, especially given the widespread and

low population density found in some rural areas. Figure 6.5 details a typical FM

transmitter pattern. The main beam is directed to the ground; however, sidelobe

levels are not insignificant at elevations of up to 15°. At higher elevations, con-

siderable energy is still being radiated in some sidelobes. The patterns of other

transmitters may not be so directional.

Instead of relying on sufficient sidelobes for target illumination, it is possible

to make use of the main lobe for illumination. Given the number of transmitters

in the south-east of Australia, and the lack of large interfering transmitters in

between that region and the MWA, a target above the MWA will be illuminated

by the main beam of potentially dozens of significant sources. This is illustrated

in Figure 6.6, showing the incident power on an RSO at various altitudes above a

receiver with a wide range of potential transmitter–receiver separation distances.

It shows that the loss incurred by the increased transmitter to target distance,

ρtx, is more than offset by the transmitter gain of the main lobe, from Figure
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Figure 6.6: Incident power on an object above a receiver, for an equivalent isotrop-
ically radiated power (EIRP) of 100 kW, with a beam pattern as shown in Figure
6.5. Note that this figure is based on a spherical Earth model.

6.5. Indeed, the MWA has been used to detect FM radio returns from the moon,

undoubtedly from transmitters half-way around the world (McKinley et al., 2013).

The use of the main lobe is illustrated in Figure 6.7, showing the SNR of the

International Space Station (ISS), utilising a transmitter in Mount Gambier, over

2500 km away from the MWA. This shows that the strongest detections occur

at the lowest transmitter elevation angles (despite the larger signal path loss); it

even highlights the diffraction of signals along the Earth’s surface with detections

occurring at transmitter elevations of almost 2° below the horizon.

Finally, the majority of FM transmitters transmit a vertically polarised signal,

so the direction relative to the MWA will determine the best receiver polarisation.

The vertical polarisation to the south will be coplanar with the MWA’s north–

south polarisation, and there is a similar situation for transmitters to the east

and the MWA’s east–west polarisation. However, impacts from effects such as

Faraday rotation due to the ionosphere and other factors mean that the presence

of matching transmitter and receiver polarisations is not necessarily a decisive
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Figure 6.7: An example pass showing the detections of the International Space
Station utilising a distant transmitter versus the elevation of the target. The blue
line shows the detected signal to noise ratio and the red line shows the signal path
length and the reflected range. The reflected range is given by ρrx + ρtx and does
not include the baseline length to give the full bistatic range, as in Equation (6.8).

factor in the detected SNR.

6.5 Results

The results in this section are obtained from 20 min of data consisting of a series

of five minute dwells collected in December 2019. These dwells were recorded

and channelised in real-time and transferred to storage in Perth. Subchannels

were selected such that the full national FM band of approximately 20 MHz

was collected. The MWA’s analogue beamformer was directed to point at the

zenith. In addition to MWA observations, several transmitter reference signals

were collected from around the country. These are outlined in Table 6.1 and shown

in Figure 6.8. Despite being located in a radio-quiet observatory, a sufficient signal

is able to be observed from the nearby transmitters in Geraldton, some 300 km

to the south-west of the MWA. Reference observations were collected in Perth
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Table 6.1: Transmitters utilised in this section’s results.
Name (locale) Maximum Power Distance from MWA
Geraldton 30 kW 295 km
Perth 100 kW 591 km
Albany 50 kW 886 km

Mount Gambier 240 kW 2,524 km

utilising receiver hardware identical to that used in the MWA. Located at the

Curtin Institute of Radio Astronomy (CIRA), this MWA-like reference receiver

is synchronised with the MWA via GPS.

Transmitter reference signals were also collected at locations near Albany

and Mount Gambier with a SDR setup. These remote SDR nodes are all GPS-

disciplined in order to maintain synchronisation, the collections were manually

triggered, and each node was able to record a reference with a bandwidth of

10 MHz. Although 10 MHz is insufficient to collect the full FM band, it is

generally sufficient to collect every high-powered FM station from a single site.

The transmitter near Mount Gambier, over 2500 km away from the MWA and

situated in the south-east of South Australia, is one of the highest power radio

transmitters in the country. It should be noted that for each transmitter there

are many different FM radio stations, all potentially being broadcast at different

power levels. The figures in Table 6.1 are simply the maximum licensed power

level from that tower, and the true levels may, in fact, be lower.

Data from these remote SDR devices were then transferred to servers at CIRA

in Perth, alongside the MWA-collected data, allowing offline space surveillance

processing. This is achieved by downsampling the MWA data, as well as the SDR

transmitter reference data, to narrowband signals (typically 100 kHz) matching

known FM stations, and then undertaking radar processing as detailed in Section

6.2, utilising a 3 s CPI.
Figures 6.9 and 6.10 illustrate some of the aggregate detections from these

observations. These detections are formed by parsing the Doppler signal data

(from Equation (6.28)) through a cell-averaging CFAR detector. In passive radar

149



Figure 6.8: A map showing the Murchison Widefield Array as well as the trans-
mitters used to generate the results in Section 6.5. Details of the transmitters
are given in Table 6.1.

processing (and indeed, noise radar), target signals exist against a noise/clutter

pedestal floor formed by the cross correlation of the reference signal against other

unwanted/mismatched signals. The CFAR detector estimates this floor from a

local threshold region around the cell that is being evaluated, and the SNR is

determined by the peak signal against this floor. For these results, we have used

a very conservative threshold of 16 dB, greatly minimising the presence of any

false detections. System performance would be improved with a more realistic
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Figure 6.9: Example results showing dozens of tracks’ detections above the
Murchison Widefield Array (MWA), with each detection’s colour correspond-
ing to its altitude. The location of the MWA is shown, denoted by an X. The
transmitters are also shown, denoted by the black triangles. Additionally, rings
denoting a 1000-km range (from the MWA) are included.

threshold; however, care would need to be taken to ensure false detections are

not incorporated into orbital estimates.

The MWA is able to maintain tracks of many targets at various ranges. Dur-

ing these short and targeted dwells, the MWA was able to detect every large RSO

that was within the MWA’s main beam at a range of less than 1000 km. The

USSPACECOM catalogue defines a large object as having a median radar cross

section (RCS) of 1 m2 or greater and a medium object having a median RCS

between 0.1 m2 and 1 m2; however, these values are for microwave frequencies

which differ from those used in this paper, and should only be taken as a general

indicator of size (USSPACECOM, 2023). Additionally, many detections are found

outside these limits, including the detection of medium RSOs, RSOs at longer

151



Figure 6.10: Example results,matching Figure 6.9, showing dozens of tracks’
detections above the Murchison Widefield Array (MWA) with each detection’s
colour corresponding to its altitude. The location of the MWA is shown, de-
noted by an X. The transmitters are also shown, denoted by the black triangles.
Additionally, a ring denoting a 1000-km range (from the MWA) is included.

ranges, and indeed RSOs well outside of the main receiver beam. This is consis-

tent with the earlier theorised performance (Tingay et al., 2013b). Predictions of

the large RSOs with a closest approach of less than 1000 km indicate the MWA

would detect over 1800 RSO passes per day, when used in a beam-stare mode

pointing at the zenith. However, detections outside these conservative limits, as

well as the ability to rapidly adjust the analogue beamforming, suggest the true

number will be larger.

Figure 6.11 shows the detections of an outbound pass of COSMOS 1707 (NO-

RAD 16326), a large (now defunct) satellite. The detections were formed utilising

the transmitter near Albany and show the bistatic range, bistatic Doppler, az-

imuth and elevation. Tracked for almost 90 s, the RSO passes the closest bistatic
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Figure 6.11: The four measurement parameters from the detections of an out-
bound COSMOS 1707 detected using an FM transmitter in Albany.

approach (at zero Doppler) and moves north to the closest approach to the re-

ceiver (at its maximum elevation). Figure 6.12 shows the accuracy of the orbit

generated from the COSMOS 1707 measurements. The top row shows the accu-

racy of the positional and the velocity covariance, from (6.34). The bottom row

shows the accuracy of the position and velocity estimate in comparison to the

two-line element (TLE) ephemeris. The two rows are in general agreement as to

the resulting accuracy and the results are significantly improved when compared

to the initial study (Palmer et al., 2017). These results are typical of most of the

objects the MWA detects with a bistatic configuration.

With many more transmitters at the radar’s disposal, there is a scope for

increased coverage. Figure 6.13 shows the SNR of a pass of the International

Space Station for every transmitter collected in this campaign. It shows three

minutes of detections with almost 50 s of complete overlap for each bistatic pair.

The SNR fluctuations shown (for all transmitters) highlight the variable nature

of the illuminator coverage due to changes in the transmitter beampattern as
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Figure 6.12: The resulting orbit predictions from the measurements from Figure
6.11. The top row shows the covariance of the position estimate and the velocity
estimate; the bottom row shows the mean error when compared with the TLE.

well as variations in bistatic RCS. There may be additional contributing factors

such as Faraday rotation. The ISS is detected well outside of the MWA’s receiver

beam, to an elevation of as low as 5° above the horizon.

Although only the ISS and the Hubble Space Telescope were large enough to

be detected simultaneously using all transmitters, approximately three quarters of

all the detected targets had associated detections from another transmitter. Ad-

ditionally, every transmitter was able to detect objects that were not detected by

any other transmitter, including the comparatively weaker Geraldton site. This

highlights that FM broadcast transmissions do not uniformly cover the volume

above the MWA, and results will improve with more transmitters being utilised.

Despite only being licensed to transmit up to a maximum of 50 kW, the particular

configuration of the Albany transmitter, and its elevation sidelobes, produced the

largest number of detections of all the transmitters listed in Table 6.1.

Figure 6.14 shows the detection’s measurements for the same RSO pass as

in Figure 6.11; however, this time, the detections from the Perth transmitter
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Figure 6.13: An example pass showing the signal to noise ratio (SNR) of Inter-
national Space Station detections utilising all the transmitters covered in this
section.

are included. The spatial parameters are near-identical as expected, with the

differing geometry resulting in differing delay and Doppler tracks. When these

are combined together in the OD stage, the results are significantly improved.

Figure 6.15 shows the accuracy of the combined orbit, equivalent to Figure

6.12 showing a single bistatic case. The combined orbit is significantly more

accurate than either individual bistatic pairs, particularly the determined velocity.

A single detection from Perth (at the 17 s mark) reduces the velocity covariance

by an order of magnitude, matching the expectations outlined in Section 6.3.1.

As mentioned earlier, multistatic detections do not need to be coincident

to improve the overall orbit. Figures 6.16 and 6.17 show the results from the

detections of NADEZHDA 5 (NORAD 25567), a far smaller (albeit still classified

as large) RSO at a range of 1000 km. The figures again show detections from

both the Albany and Perth bistatic pairs, but instead of being coincident, the set

of the detections are separated by over a minute. However, just as before, the

multistatic detections greatly improve the accuracy of the orbit, confirmed both
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Figure 6.14: The four measurement parameters from the detections of COSMOS
1707 detected using FM transmitters in both Albany and Perth.

Figure 6.15: The resulting orbit predictions from the multistatic measurements
from Figure 6.14. The top panels show the covariance of the position estimate and
the velocity estimate. The bottom panels show the mean errors when compared
with the two-line element (TLE).
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Figure 6.16: The four measurement parameters from the detections of
NADEZHDA 5 detected using FM transmitters in both Albany and Perth.

by the reduced covariance as well as compared to the TLE.

An example of the three transmitters is simultaneously shown in Figures 6.18

and 6.19. In this example, the satellite OPS 5721 (NORAD 9415) is detected for

approximately 20 s with the Albany illuminator; however, these detections are

supplemented by a small number of detections achieved utilising the Perth and

Mount Gambier illuminators. Despite the short period of detections, the resulting

orbit is very accurate when compared against the TLE. Indeed, after only five

seconds, the resulting orbit utilising detections across all three transmitters is

very accurate.

There are complications when comparing and assessing determined orbits, es-

pecially when comparing them to the TLEs. Looking at the covariance of the

multistatic results in Figure 6.15, the increasing number of detections improves

the estimate, especially for velocity. However, when compared to the TLE, the

error does not improve; rather, it plateaus. This could be due to many factors;

however, these results are within the accuracy of the TLEs themselves, as posi-
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Figure 6.17: The resulting orbit predictions from the multistatic measurements
from Figure 6.16. The top panels show the covariance of the position estimate
and the velocity estimate. As the detections from each bistatic pair are not
coincident, the combined errors will be initially identical to Perth’s. The bottom
panels show the mean errors when compared with the two-line element (TLE).

tional errors generally vary from a minimum error of approximately 1 km at the

TLE’s epoch up to 5 km, depending on the age of the TLE (Vallado et al., 2006;

Ly et al., 2020). These uncertainties could potentially mask any systematic biases

or offsets, either from the system itself or from the ionosphere (Hapgood, 2010;

Holdsworth et al., 2020). Longer surveillance campaigns are needed to properly

assess any potential systemic issues and to fully evaluate the accuracy of short-arc

orbit determination.

The true RCS sizes of objects are challenging to estimate, particularly for a

passive radar. Without knowing the precise details of transmitter characteristics,

the amount of incident power is not known. Additionally, bistatic RCS is typically

a complicated function and without accurate knowledge of the precise size and

attitude of RSOs, the bistatic RCS is difficult to determine.

The RCS values for known RSOs can be coarsely estimated with simple

shapes, such as cylinders. Comparing the estimates of the detected objects pro-
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Figure 6.18: The four measurement parameters from detections of OPS 5721
detected using FM transmitters in Albany, Perth and Mount Gambier.

Figure 6.19: The resulting orbit predictions from the multistatic measurements
from Figure 6.18. The top panels show the covariance of the position estimate and
the velocity estimate. The bottom panels show the mean errors when compared
with the two-line element (TLE).
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vides additional data points to match against the earlier performance predictions.

For example, the medium RCS satellite OV1-5 (NORAD 2122) was detected at a

range of 1150 km from the MWA (the corresponding bistatic range was 1600 km)

with an SNR of 21 dB. The maximum monostatic RCS of a cylinder of matching

dimensions (1.387 m length and 0.69 m diameter) is approximately 0.7 m2. For

OV1-5, the RSO’s length is less than half a wavelength, meaning that for smaller

RSOs, the scattering will cause the RCS to decrease rapidly (Knott et al., 2004).

Conversely, for RSOs that possess trailing antennas that have low RCS at high

frequencies, these structures can produce a large RCS at MWA frequencies. Ex-

amples such as OV1-5 agree strongly with the initial predictions that the MWA,

used as a passive radar, is able to detect objects with an RCS of 0.5 m2 to a range

of 1000 km (Tingay et al., 2013b).

6.6 Conclusion

This paper has described the use of the MWA as a passive radar for the surveil-

lance of space with FM radio illumination. The MWA’s high time-resolution and

receiving capabilities have been described, and the orbital-specific signal process-

ing methods to form radar products have been detailed, from pulse compression

through to forming detections. These orbital-specific methods are required to

track an RSO’s motion throughout long CPIs to increase SNR. Following de-

tection, the paper details the orbit determination methods, and how multistatic

detections can greatly improve the orbital estimate. To demonstrate and verify

these methods, this paper includes the results of a short collection campaign, util-

ising four transmitters across the country. With the data collected during this

campaign the MWA was able to detect and accurately track every large object

that passed through its main beam at a range of 1000 km or less. It additionally

tracked many other objects outside these limits. These results are in agreement

with earlier predictions made of the space surveillance capabilities of the MWA

when used as a passive radar receiver.
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Multiple transmitters were used to form a multistatic radar network, with

multistatic detections allowing for rapid and accurate orbit determination, with

additional transmitters also providing greater coverage and resilience. By utilising

these many transmitters, the MWA is able to provide persistent and widefield

coverage of satellites in low Earth orbit. The MWA is able to achieve this coverage

using scalable and efficient signal processing matching the radar processing to the

RSO’s orbit. The widefield coverage ensures that RSOs are tracked for sufficient

time to accurately determine an orbit from a single pass.

Although it is not the SKA’s intended purpose, using the techniques described

here, the SKA will be a highly capable space surveillance sensor when used as

a radar (Stove, 2013). The SKA will be significantly more sensitive than the

MWA, and even a modest increase in sensitivity would enable the detection of

signals from a higher altitude (for example, from 1000 km to 2000 km). As shown

in Figure 6.6, higher altitudes would intrinsically allow the utilisation of trans-

mitters at even greater distances, including along Australia’s eastern seaboard.

Conversely, since transmissions reflected from RSOs are a source of interference

for astrophysical observations, knowledge of which RSOs are above the horizon

will be important information for the removal of RSO effects from SKA observa-

tions. Incorporating a system to remove interference reflected from RSOs would

be a natural extension for any radio telescope space surveillance radar.
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Chapter 7

Discussion and Conclusions

The primary aim of this thesis has been to investigate the use of the Murchi-

son Widefield Array (MWA) as a passive radar receiver for the surveillance of

space, with a particular focus on practical measures to achieve these surveillance

capabilities. These approaches have been developed and demonstrated with ob-

servations focused on signal processing improvements, initial orbit determination,

and a large scale set of observations for space surveillance.

The required novel approaches and ideas which have been discussed in this

thesis have included the investigation of radial acceleration and radial jerk pro-

cessing for long CPI integration and the demonstration of radar functionality with

separately collected reference signals. The analyses also include environmental-

based synchronisation and calibration of an undisciplined reference signal. These

advances have led to an improved sensitivity for the detection of smaller objects.

A key outcome for the uncued detection of space objects resulted from the

investigation of the intersection between the orbital motion parameter space and

the radar measurement parameter space. Following this, the thesis has shown

that linking the measurement parameters and the orbital motion parameters leads

directly to the most efficient implementation of the pulse-Doppler approximation

algorithm for matching orbits, ensuring that every radar measurement parameter

is mapped directly back to the requisite orbital elements.
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The demonstration of these methods culminated in a brief observational cam-

paign, with the MWA forming the radar receiver as part of a continental-scale

multistatic network. The large aperture of the MWA, which initially caused sig-

nificant processing challenges, now directly enables extremely accurate orbital

estimates of satellites and other objects. The accuracy is improved by utilis-

ing multistatic orbit determination arising from multiple transmitters across the

country. These detections met the initial predictions for the passive radar sen-

sitivity of the MWA. The ultimate result is a widefield sensor able to surveil a

significant volume of the low Earth orbit space above it.

More generally, the methods described in this thesis were developed for a large-

aperture observatory-scale system. However, these methods have been also been

demonstrated on a deployable passive radar system. This shows that any space

surveillance radar can benefit from orbital-specific radar parameter matching to

increase sensitivity and decrease processing requirements.

Radio astronomy is plagued by radio frequency interference from terrestrial

transmitters (as well as from space-borne transmitters). This problem is exac-

erbated by the reflected RFI from large satellites in low-Earth orbit. As well

as detecting satellites, the techniques described in this paper could be used to

remove the RFI from astronomy data. Indeed, as reference signals are needed

for coherent radar processing, collecting known-interfering signals directly would

also enable optimal RFI clutter removal. As high time-resolution observation

modes become more ubiquitous, and with improved computational processing,

time-series techniques may be more applicable to radio astronomy data, and see

more utility, prior to standard astronomical imaging.

Finally, the types of signals that radio telescopes are able to detect, such as so-

lar and extra-galactic emissions, have shown great potential as radar illumination

sources. Expanding passive radar processing to the concept of extreme-baseline

forward scatter space surveillance could very well unlock vast surveillance possi-

bilities.
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Appendix A

Deployable Long Range Passive

Radar for Space Surveillance

This thesis has focused on the development of techniques for space surveillance

capabilities with the Murchison Widefield array, an incredibly unique sensor,

these capabilities may be more broadly applicable and this will be addressed

in this appendix. Similar to previous chapters, this appendix is reproduced from

the author’s publication (Hennessy et al., 2022a). The reader will encounter some

repetition of material in the introductory sections.

A.1 Abstract

A deployable long-range passive radar system has been used to observe satellites

in low Earth orbit utilising distant transmitters in real time. This paper details

the experimental radar’s design, including its array, configuration and software.

Methods to improve satellite detections and initial orbit determination are also

described. The radar is capable of detecting objects the size of small rocket bodies,

in real time, utilising a transmitter 300 km away. Additionally, during post-

processing, satellites were detected when utilising a separately collected reference,

from a transmitter 1,600 km away. Such a system enables passive long-range
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detection at considerable standoff ranges from transmitters of opportunity.

A.2 Introduction

Radio broadcast transmissions at VHF are an excellent illuminator for long range

surveillance with passive radar. The large transmitter power and generally broad

elevation beam ensures a significant volume is illuminated, particularly at longer

distances from the transmitter. The majority of passive radar systems are located

within line-of-sight of the transmitter in order to ensure the direct collection

of the reference signal. Whilst this ensures a strong reference is collected, it

can hamper the performance of the radar as target returns are received in the

presence of the (significantly stronger) illuminating signal, with target returns

needing to be separated from the reference. Further, this configuration reduces

the potential locations for passive radars due to the limited transmitter footprint.

This limitation is particularly challenging in a large country like Australia.

The experimental radar described in this paper is a passive radar system de-

signed by the Defence Science and Technology Group (DSTG) to take advantage

of FM radio illuminators of opportunity for long range surveillance. During a

recent trial to test and evaluate this radar in the Woomera Test Range, there

was an opportunity to collect data focused on the detection of satellites utilising

transmitters at significant standoff ranges. The measurements of satellites are in-

cidental to the radar’s main purpose and were collected as part of system testing

and calibration.

The use of FM radio for passive radar has been well studied and developed,

with many systems achieving maximum aircraft detection ranges up to 350 km

(Howland et al., 2005; Malanowski et al., 2012, 2014; O’Hagan & Baker, 2008;

Sahr & Lind, 1997). These systems utilised baseline lengths less than 100 km, at

this distance performance is often limited by the interference of the transmitted

direct-path signal appearing in the surveillance receiver (O’Hagan & Baker, 2008).

Extending the transmitter-receiver baseline offers significant advantages for
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long-range surveillance, notably reducing the impact of the direct signal on the

receiver as well as increasing the surveillance volume by taking greater advan-

tage of the radiative properties of the transmitter. Greater separation from the

transmitter also increases the electromagnetically covert nature of a passive radar

system.

DSTG has long undertaken experimental research in passive radar. DSTG’s

research has focused on experiments within the large landmass of Australia, as

surveilling such a large coast line and airspace is a significant challenge, and tech-

nologies such as passive radar can assist in this challenge. DSTG has previously

investigated the application of passive radar with a wide variety of potential il-

luminators, including FM radio (Ringer et al., 1999), DAB, DVB-T (at VHF

and UHF) (Palmer et al., 2008), and DVB-S (Palmer et al., 2009). Recent space

surveillance radar research has investigated the use of a number of novel sensors

including a High Frequency Line of Sight system (Frazer et al., 2013b,a), a ra-

diotelescope (the Murchison Widefield Array (Tingay et al., 2013a)) used as a

passive radar receiver (Palmer et al., 2017; Hennessy et al., 2019; Hennessy et al.,

2021), and wind height profiling radar (Holdsworth et al., 2020).

With the ever-increasing amount of energy being radiated by terrestrial trans-

mitters, and the wide area of illumination, space surveillance with passive radar

is increasingly realisable (Sahr & Lind, 1997; Tingay et al., 2013b; Clarkson &

Palmer, 2019; Malanowski et al., 2021b). This paper describes the design of a de-

ployable radar system intended to operate in a low noise environment, including

the array, radar configuration and real-time signal processing. It details detec-

tions and tracks of both aircraft as well as objects in low Earth orbit (LEO) at

long ranges.

Section A.3 details the system design including the array, receiver system and

remote reference collection configuration. Section A.4 describes the real-time sig-

nal processing software, and Section A.5 includes the results of the system. This

includes details of the detections of satellites with different array configurations,

169



description of orbit determination and orbital-specific processing to mitigate spa-

tial ambiguities from grating lobes, detections with a remotely collected reference

from a baseline of 1,600 km, and long-range aircraft detections.

A.3 Radar System Description

Figure A.1: The configuration of the system for the experiments covered in this
paper. The passive radar receiver is utilising two transmitters, one close and one
at a significant stand-off range. The receiver-to-target and transmitter-to-target
paths are shown in red. The satellite trajectory (corresponding to a pass in Fig
A.6) is shown in blue.

The description of the system in this section relates to the configuration used

in a test deployment undertaken by DSTG during 2020. The aim of the test

was to evaluate the radar in a low noise environment, trialling a variety of array

configurations to observe both satellites in LEO and aircraft. The receiver system

was located in the Woomera Test Range and utilised two FM radio transmitters

as illuminators. The configuration is illustrated in Fig. A.1.

A.3.1 Array Design

A simple dipole array is ideal for all-sky surveillance, however this requires a large

number of elements for spatial accuracy, with sufficient array gain to compensate

for reduced element gain. Instead, the deployed system utilised a small number
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of directive antennas, with beamwidths of 50° in each plane, and 11 dBi gain.

The smaller number of elements allows the system to be more easily deployable,

while providing effective coverage of a smaller, but still considerable, region of

the sky.

The surveillance array consisted of seven antennas in an equispaced hexago-

nal configuration, with an element in the centre. The antennas are large, dual-

polarised Yagis. In an effort to minimise antenna pattern distortion, the antennas

are mounted on 3D printed reconfigurable mounts to adjust the antenna tilt whilst

minimising the metal near the elements.

Figure A.2: Sparse array configuration with the antennas directed at Zenith. Ar-
ray elements configured in a hexagonal configuration with an element separation
of λ.

Due to the long wavelengths, as well as the large antennas, the array-element

spacing was increased in order to minimise mutual coupling and other effects. The

advantage of a sparse configuration is that the spatial accuracy will be signifi-

cantly increased through the narrowing of the array pattern beamwidth, whereas

the disadvantage is an increase in grating lobes. These are less of a concern given

the directive antennas mean the system only surveils a specific region of the sky.

However, great care needs to be taken to ensure ambiguous spatial detections are
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handled appropriately.

Figure A.3: Hypersparse array configuration with the antennas directed at 30°
elevation above the horizon. Array elements configured in a hexagonal configu-
ration with an element separation of 2.5 λ.

For this paper the two configurations discussed are a sparse configuration with

an element separation of λ (as shown in Fig. A.2), and a hypersparse1 configu-

ration with a separation of 2.5 λ (Fig. A.3). At these frequencies, the element

separations for the two configurations were 2.86 m and 7.16 m respectively.

A.3.2 Radar Configuration

Low-loss and phase-matched cables connect the array elements to a front-end

amplification and calibration box. This includes the surveillance array and a

reference antenna pointed towards the transmitter. For each antenna, both po-

larisations are collected. The amplification and calibration box consists of front
1Hypersparse being five or more times greater than the standard unambiguous element

separation of λ2 .
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Figure A.4: Radar system block diagram, showing front-end amplification, cali-
bration, gain and filtering. The chain is replicated for each polarisation.

end filters, significant low noise amplification, a configurable calibration-signal

injection point and finally buffer-driver amplification. To maximise sensitivity to

the weak reflected signals in the environment, the system is located far from the

transmitter to help achieve a system that is externally noise limited.

The buffer-driver amplification is required to enable a standoff distance be-

tween the array and the EM-shielded cabin housing the receiver equipment. The

EM-protection is included to shield the receiver stages inside the cabin. However

in such a low noise environment, the shielding is most beneficial for preventing

EM interference generated by the electronic equipment from leaking out of the

container2. The radar system block diagram is illustrated in Fig. A.4.

The significant amplification and number of gain stages is required due to

the extreme baseline length between the transmitter and the receiver. For this

collection period the closest (large) transmitter was 300 km away. Despite this

large distance, there was sufficient signal diffracted/propagated along the base-

line to enable the direct collection of this reference signal, due to the favourable

propagation at low frequencies and the lack of competing sources. These types

of transmissions are readily received at these long distances in low noise environ-

ments across Australia (Tingay et al., 2020).

2Anecdotally, the noise floor increased by approximately 10 dB when the cabin door was
opened, releasing the electronic spuria.
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Calibration is achieved by switching the front-end input to a calibration

source, and estimating each channel’s relative phase-delay and gain from the

measurements of the calibration source.

A.3.3 Remote Reference Collection

Relying on sufficient over-the-horizon propagation in order to obtain a copy of

the reference signal can be problematic. Reduced signal levels, fluctuations in

weather conditions and changes to the background noise can all mask the desired

signal. Another issue with short baselines is the reliance on sufficient elevation

sidelobe levels to illuminate objects in orbit. Even with a baseline distance of

300 km, a satellite above the radar will still be at a significant elevation above the

horizon relative to the transmitter and well outside of the main beam (O’Hagan

et al., 2017).

In order to make use of very distant transmitters for larger baselines, a dif-

ferent method is needed to obtain the reference signal. The reference signal can

be obtained directly from a site closer to the transmitter, which is then relayed

to the receive site for real-time processing, or recorded for offline-processing.

This configuration is far better suited for satellite illumination as this allows the

surveillance receiver to be located at distances significantly beyond the broadcast

coverage of the transmitter, thereby allowing placement in extremely RF-quiet

locations.

For the work presented in this paper, such a remote reference collection system

was deployed at DSTG’s site in Tasmania, conveniently located near one of the

country’s largest radio transmitters. This geometry achieved a baseline of over

1,600 km.

The remote reference collection system consisted of a software defined radio,

a GPS receiver, and a laptop. The system was remotely triggered to record

signals at the same time as the surveillance receiver. Comparable reference col-

lection configurations are being utilised for similar systems requiring extended
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baselines (Jędrzejewski et al., 2021; Hennessy et al., 2021). Although the full

spectrum was collected at a high fidelity, FM radio reference signals are quite

tolerant to downsampling, further enabling real time remote reference utilisation

in future work (Sahr, 2007).

A.4 Praxis

A real-time demonstrator software system, Praxis, has been developed to demon-

strate a diverse range of passive radar signal processing algorithms. Praxis covers

three features of real-time demonstration; signal acquisition from the receiver,

signal processing and visualisation. The novel concept that drives Praxis’ devel-

opment is a real-time configurable topology of signal processing blocks, termed

Glisser. Glisser permits simultaneous processing of different target scenarios

with different signal processing requirements, termed Glides. For this experiment

Glisser was configured for a low-elevation air traffic scenario consisting of range

migration compensation and low-elevation direction-of-arrival (DOA) estimation,

and a high-elevation space target scenario consisting of Doppler migration com-

pensation and zenith-elevation DOA estimation. Each signal processing scenario

requires Direct Path Interference (DPI) clutter suppression (Palmer & Searle,

2012), pulse compression (Palmer et al., 2011) and range-migration mitigation

(Perry et al., 2007). Following this common processing the chain is split into two

separate but parallel processed Glides where the scenario dependent processing

is performed as shown in Fig. A.5. A DOA scheme similar to that described in

(Palmer, 2015) was used in order to digitally form beams in the delay-Doppler

domain rather than the time domain. Both scenarios require direct path inter-

ference cancellation. For this experiment, Praxis was running on consumer-grade

dual-CPU workstations with pairs of NVIDIA GPGPUs for parallelisation of sig-

nal processing algorithms.
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Figure A.5: Signal processing block diagram illustrating Praxis’ multiple Glides
for performing processing on two distinct target scenarios simultaneously.
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A.5 Results

For the satellite detection processing, Delay-Doppler maps are formed by search-

ing through azimuth, elevation and Doppler-rate (radial acceleration) and these

radar products are passed through a CFAR detector. The resulting detections

are associated with satellites, specified by a catalogue of orbital tracks, typically

characterised by two-line element set (TLE) descriptors (Vallado & McClain,

2001). The processing in this section utlised a CPI length of 3 s, and sample

rate of 100 kHz. In real time, the system was able to detect many large satellites

in orbit, including the International Space Station (ISS), smaller objects such as

rocket bodies, as well as Starlink satellites at their operational orbit altitude.

Figure A.6: Detection output of two near-identical passes of the ISS, one pass
observed with the sparse array, the other pass observed with the hypersparse
array. The left subplot shows the detected delay and Doppler, the right shows
the detections’ azimuth and elevation.

The common approach for detection and tracking undertaken by space surveil-

lance sensors is to perform an initial orbit determination (IOD) step and then

to refine and improve this initial estimate with subsequent orbit determination

(OD) (Vallado & McClain, 2001). For detections which are able to be associated

to a known track, the IOD step is not required. The separation of approaches is
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Figure A.7: Spatial returns from the sparse configuration of the ISS pass in Fig.
A.6, as well as the associated TLE.

Figure A.8: Spatial returns from the hypersparse configuration of the ISS pass in
Fig. A.6, as well as the associated TLE.

beneficial for space domain awareness generally, as many narrow-field sensors are

unable to perform the IOD step and instead require a priori tracks. However, a

wide-field passive radar system is able to perform the full uncued detection and

track objects throughout the pass.

The array configuration choices detailed in Sec. A.3.1 lead to interesting im-

plications for the IOD and OD steps. Increasing the element separation greatly

improves the spatial resolution, and so improves the accuracy of the orbit. How-

ever, the spatial ambiguities which are introduced by a separated array makes

IOD increasingly challenging.

This is illustrated in Fig. A.6, showing two near-identical passes of the ISS

observed by the two array configurations. It is clear that whilst the detections

are similar in delay and Doppler space, the spatial accuracy of the increased
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Table A.1: Errors of the generated orbits from the single ISS passes from Fig.
A.6, when compared to respective TLEs.

Array Configuration TLE position error TLE velocity error
Sparse 16.1 km 147.7 m/s

Hypersparse 5.6 km 74.3 m/s

separation is noticeable. This is particularly highlighted by Figures A.7 and A.8,

showing the spatial parameters of the two passes, compared with the truth. The

angular mean-square errors for the sparse array pass (Fig. A.7) was 6.7° azimuth

and 2.2° elevation, and for the hypersparse array pass (Fig. A.8) the errors were

2.1° azimuth and 0.8° elevation. The increased accuracy of the larger aperture

will greatly improve the quality and accuracy of any resulting orbit.

The OD step is achieved by finding the set of orbital elements given by a carte-

sian position and velocity that, when propagated to match the detections, min-

imise the residual differences between the detections and the predictions (Mon-

tenbruck et al., 2002). Table A.1 shows the results of this process on the two ISS

passes shown in Fig. A.6, comparing the generated elements against the TLE.

The extent of the errors, especially for the hypersparse configuration, are ap-

proaching the magnitude of the errors of the TLEs themselves, and will certainly

be improved by incorporating subsequent passes (Flohrer et al., 2008).

Although the residual errors from the OD step are greatly reduced, the am-

biguous spatial returns resulting from the increased separation makes direct IOD

quite difficult. Figures A.9 and A.10 show the spatial returns of a single range of a

near-zenith pass of the ISS and a Starlink satellite, respectively. The left subplot

shows the standard array response, with processing only in the spatial, range,

Doppler and Doppler-rate parameters. The grating lobes of the array results in

the large number of peaks in the map. However, because of the constrained nature

of orbital motion, only a small subset of potential spatial returns can correspond

to the delay and Doppler returns. As shown in other work (Hennessy et al., 2021;

Hennessy et al., 2020), by limiting the processing to only search through viable
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Figure A.9: The left subplot is the SNR spatial response of the ISS as it passes
near zenith and the right subplot shows the results when the combination of pa-
rameters are constrained to be valid orbits only. The spatial response is shown
from an elevation of 30° up to zenith. The array was in the hypersparse configu-
ration.

Figure A.10: As for Figure A.9, except for a Starlink satellite.

Doppler-rates (dependent on the Doppler and the direction), it is possible to re-

duce, or eliminate, a large number of these grating lobes. This is highlighted by

the right subplots of Figures A.9 and A.10. Note, any resulting ambiguities will

need to be handled with other methods, such as temporal filtering by comparing

IOD outputs against the resulting tracks.

180



A.5.1 Remote Reference Collection

The signal from the distant transmitter was also used for the detection of satel-

lites. Fig. A.11 shows detections of an ISS pass, with the target tracked for a

large duration of the pass at a suitable signal-to-noise ratio (SNR). When the ISS

was directly above the receiver, it was still at an elevation of 8° relative to the

transmitter despite the baseline distance being 1,600 km, possibly limiting the

illumination of the target. A longer transmitter-receiver separation is required

to ensure targets at these orbital altitudes will be at sufficiently low elevations,

relative to the transmitter, for main beam illumination.

Figure A.11: Detection output of an ISS pass with the hypersparse array, pro-
cessed using the reference signal from the distant transmitter in Tasmania. The
left subplot shows the detected delay and Doppler, the right shows the detections’
azimuth and elevation.

A.5.2 Aircraft Detection

In addition to satellites, the radar also consistently detected aircraft to a max-

imum distance of 350 km slant range from the receiver. Fig. A.12 highlights

some examples with commercial aircraft at ranges 350 km, 300 km and 210 km

from the receiver. Note for the target at 350 km, the total reflected path from

the transmitter, to the target, to the receiver was 780 km. These large ranges,
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Figure A.12: Three example long-range commercial aircraft detections are shown.
The left subplot shows the aggregate delay-Doppler map of three individual high-
lighted detections. The right subplot is a map of the configuration with the three
detections, and their iso-range ellipses, highlighting a large surveillance area.

when combined with the extended baseline result in a vast surveillance volume.

This is highlighted by the detection ellipsoids of the targets in Fig. A.12. This

result was unexpected given the targets were all well outside the receiving array

antennas’ main beam.

As shown in Fig. A.12, the largest receiver slant ranges were achieved with

targets in directions perpendicular to the baseline. This is due to the large sepa-

ration, with maximum distances being horizon limited when the targets were at

endfire, or over the shoulder, from the transmitter-receiver baseline. For example,

the endfire target in Fig. A.12 is at the limit of detectability, as it was 500 km

from the transmitter and 2° below the horizon.

It should be noted that the spatial ambiguities from the array, when config-

ured for satellite detection, make aircraft localisation unachievable. Even if the

elevation is constrained to search close to the horizon, there are still far too many

grating lobes causing ambiguities in azimuth. The commercial aircraft detections

mentioned here were confirmed by associated ADS-B truth information.
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A.6 Conclusion

A deployable passive radar system designed to operate at a significant standoff

distance from the transmitter has been described. The radar has been used in

real time to detect and track satellites in orbit, utilising a transmitter 300 km

away. The system was able to detect objects the size of small rocket bodies,

although the system is scalable to a larger number of elements and increased

processing intervals. Additionally, detections of satellites have been generated

utilising a separately-collected reference signal from a transmitter 1,600 km away.

The system also routinely detected commercial aircraft at significant ranges, with

the long baseline resulting in a large surveillance volume.
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Appendix B

Statement of Contributions

The contents of Chapters 3–6, and Appendix A, is my own work, with the fol-

lowing qualifications.

For Chapter 3 the MWA observations were scheduled and undertaken by

Steven Tremblay, with reference collection undertaken by Randall Wayth. Cal-

ibration solutions were generated by Paul Hancock. Sam McSweeney assisted

with understanding the synthesis filter for inverting the fine polyphase filter bank

channelisation, including providing the filter weights. Analysis of the data was

undertaken by myself under close supervision of Steven Tingay and Robert Young.

For Chapter 4 useful discussion on astrodynamics and Keplerian orbits were

had with Mark Rutten. Analysis of the problem was undertaken by myself under

supervision of Mark Rutten, Steven Tingay and Robert Young.

For Chapter 5 the MWA observations were scheduled and undertaken by

Marcin Sokolowski, with Brian Crosse undertaking the high time resolution ob-

servations. Calibration solutions were generated by Marcin Sokolowski and Paul

Hancock. Analysis of the data, including software development, was undertaken

by myself under supervision of Mark Rutten, Steven Tingay and Robert Young.

For Chapter 5, the high time resolution observations were undertaken by Brian

Crosse and calibration solutions were generated by Marcin Sokolowski. Remote

reference collections were undertaken by myself, Brian Crosse, Ashley Summers
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and Daniel Gustainis. Mark Rutten provided invaluable guidance for the orbit

determination. Robert Young provided guidance generally and contributed to

Figure 6.6. Data analysis and processing, including significant software develop-

ment, was undertaken by myself under supervision of Steven Tingay and Mark

Rutten.

For Appendix A, all coauthors assisted with the activity planning, conduct and

data collection, under the close supervision of Robert Young. Antenna modelling

and array layout was led by Nathan Misaghi. Ben Somers led the remote reference

collection. Daniel Gustainis was the lead architect, and developer, for the real-

time Praxis software, and also wrote Section A.4..

(Signature of candidate)

(Signature of supervisor)
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