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Abstract

Sensors are crucial in detecting equipment problems in various plant systems.

However, detecting sensor abnormality is challenging because the data are nor-

mally acquired using IoT approach and stored offline in a dedicated server (data

logs). Hence this situation presents both opportunities and challenges when ex-

ploring the sensor abnormality detection task. In this thesis, the concept is to

apply a multistage compressor sensor fault detection method using data logs.

The objectives of this research are to device an approach to detect sensor ab-

normality and perform this in a ”white box” approach. The motivation of this

research thesis stems from a need of developing a transparent (”white box” model

for detecting sensor abnormality using low frequency data (10 minutes interval).

Hence, this only allows for static machine learning model implementation. In

the proposed approach, the compressor sensor output is modelled as a function

of other sensors using static approach. Subsequently, the model output is used

for detecting abnormality by observing the residuals. It has been shown that

the histogram of residuals offers rich information to predict abnormality of the

targeted sensor. In particular, to explore the concept using genetic programming

to generate regression model which offers more “white box” solution to the op-

erators. There are various advantages in this approach. Firstly, the conventional

”black box” approach lacks model transparency and, thus, is highly unfavored in

critical systems. Secondly, equations are more easily applied in Programmable

Logic Controller (PLC) in the case where autonomous flagging is required. Com-

parison between regression results with Multiple Linear Regression (MLR) and
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Neural Network Regression (ANN) are discussed. Results show that the best gen-

erated models are comparable with the latter but with more crisp “white box”

mathematical equations utilizing lesser feature inputs (four features only). In

terms of performance, the best model generated yielded a R2 = 0.9044 which

is comparable to ANN and MLR. Comparative results indicate that the perfor-

mance of MLR, GP and ANN differs slightly thereby showing that the models is

linear as MLR is known to perform optimally in such situations. However, the

main advantage in the GP generated model is that it only manage to generate

an solution model consisting only of 4 features with relatively well performance

as indicated from the R2 on independent test data. The research concludes that

the 1)proposed approach to identify the abnormally was feasible albeit with sim-

ulated sensor faulty data. The second finding suggest that a mathematical model

to predict the sensor output (for calculating the residual histogram) was feasible

as the R2 = 0.9044 was acquired on the independent test dataset.
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Chapter 1

Introduction

1.1 A Relevant Industrial Dilemma

Compressors are important in the oil and gas industry and have been in constant

research for detecting failure as exemplified in research works demonstrated in R.

Kurz and K. Brun (2012) and Priyanka et al. (2020). Primarily, these machines

are used in the export pipeline for transporting gas to the shore. Compressors

are often not spared due to economic reasons, making them vital for reliable op-

eration and continuous production. However, owing to issues with the operation

in matured gas fields, the compressors are constantly tripped, causing the oper-

ations to come to a halt. Therefore, various sensors can be mounted to monitor

the operation of the compressors.

Sensors are commonly used in industrial automation to detect abnormalities

and control system characteristics (Thangavel et al., 2021). The sensors measure

the compressor characteristics, such as shaft vibration, rotor position, gas tem-

peratures, pressures to determine thermodynamic performance, etc. It is worth

mentioning that the placement of the sensors is crucial to get useful informa-

tion related to the dynamic features of the machine (Goyal et al., 2019). Using

the correlation of sensor data, the operator can have an early detection system

to avoid early faults. For these reasons, in-depth knowledge of sensor data is
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needed. Due to the harsh environmental conditions, methods for continuously

tracking sensor health are needed to ensure data validity. However, apart from

adding redundancy to the sensors, no other solutions have been proposed. It is

difficult for plant operators to maintain the equipment in this condition.

An ideal scenario is to have a model that alerts the user if a sensor drift or

fault is observed. A high level concept of this research is shown in Figure 3.1 and

the research boundaries will be further discussed. Let’s assume that there are

six sensors (V1-V6) which correlate and respond to the various states that the

compressor is currently operating at. Data are collected and multiple regression

models are trained such that the sensor outputs can be modelled. In this scenario,

the six regression models, which correspond to V1-V6 sensors, are predicted and

compared to observe the output of the sensors. Residuals are the differences

between the sensor model’s prediction and the observed data. In ideal sensor

conditions, the residual distribution would be a normal curve with mean 0 for

V1-V6. The residuals’ standard deviation and change in the mean can discover

potential abnormalities of the compressors. For the sake of brevity, this thesis

investigation focuses on the shaft’s RPM sensor, it is widely considered as the

primary sensor for monitoring the compressor’s working condition. In practice,

the definition can be generalized to model all other sensors and can be extended

to other equipment like pumps and motors. There is essentially no restriction in

the use of ML models for predicting faults.

In stating this, algorithm in application would only be applied based on suit-

ability such as unbalance data set, limited data set or the presence of only positive

or negative class in faults. An example of this case can be seen in Priyanka et al.

(2020) and Thangavel et al. (2021) which applied unsupervised clustering algo-

rithms for detection of failure in gas transportation pipeline. The importance of

sensor in detecting machine faults cannot be overstated. In general, data analysis

or fault detection can be categorized into several categories. The first category

uses the dynamic approach and may require high-frequency data. This method
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may be costly due to high-frequency data collection and sampling, as shown in

Yazar et al. (2017). The second approach makes use of feature generation of data

and applies the static nature of the data, as presented in Jiang et al. (2019). In

any of the both stated case, a fault of intermittence may have adverse effects

causing false alarms of low detection of faults.

1.2 Research Motivations

This thesis proposes a system that is able to detect abnormalities in data logs

to predict equipment sensor failure. In particular, the use of regression model

with a more transparent and mathematical formulation which is well-known as

”white box” approach, as mentioned previously. This allows operators to pe-

riodically check on the health of sensors without relying on the high frequency

data and computation. Deviation from regression models indicated the health

and integrity of a particular sensor. Note that higher frequency data is more

computationally expensive and is not feasible for all systems, especially given the

cost of implementation.

The proposed method relies on ”offline” data logs and a low update rate (10

minute interval), making data streaming less computationally expensive. This

data logging system is a typical case for most operators, given the high cost of

operations. In this thesis, a GP tree approach (Cavagliá et al., 2020; Kai, 2017) is

used to mathematically model the compressor RPM sensor output as a function

from other sensors. Note that other than the RPM sensor, the compressor is

equipped with 46 sensors as shown in the Appendix A.

As previously stated, MLR and ANN models are excellent working choices,

but they lack model transparency or ”white box” sense. These models are used

as benchmark models for comparison purposes. Summary of the contributions is

as follows:

1. A method for predicting sensor failure using a mathematical model. The
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model is developed using a tree-based GP defined by the program length,

and it is then used to predict the compressor’s RPM sensor abnormality.

2. The proposed method is compared with the MLR and ANN models with

regards to model fitness metrics, i.e., Mean Squared Error (MSE) and R2.

3. The residuals and augmented actual data is used to predict various types

of faults in the sensor. In specific, actual data are augmented using the

approach proposed by (Tsai et al., 2019).

1.3 Research Contributions

The following research question arises: ”how sensor failures can be identified, the

primary instrument that detects machine problems?” With such a vast focus on

predictive maintenance, some of the concepts can be borrowed from the field of

predicting machine fault for sensor fault detection. The configuration of sensors

is typical for applications on an offshore gas compression facility, and thus, the

investigation sufficiently generalize to cases of similar nature. In fact, most of the

aforementioned concepts applied some form of machine learning (ML) that map

sensor output to fault flags. Hence the ML models may be similarly deployed to

map sensor reading to a predicted output in which deviation (residuals) can be

observed and analyzed to trigger sensor abnormality. In another words, methods

to model machine failure can be used to similarly flag abnormally as well with

a slight change in thinking. The purpose of this research is twofold. First, this

research investigates the application of multiple regression and curve fitting neu-

ral networks models to model machine sensor outputs as a function of the other

sensor readings. As such, the predicted model can be used and compared with the

observed output. Two shallow models were selected for a compressed model to

include every possible state of the compressor sensor (i.e., data approach). In jus-

tifying the application of the aforementioned model of ML, minimal complexity

models are preferred due to ”Occam’s Razor” principle and to avoid over-fitting
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for more reliable sensor output modelling and prediction. For this case, the obvi-

ous choices are shallow learners such as the selected curve fitting neural network

and multiple linear regression. In essence, a neural network may be considered as

a ’black box’ model, whereas a multiple regression is an equation-based model in

which both have their respective pros and cons. Neural networks operate effec-

tively by mapping inputs to outputs in a nonlinear fashion due to their connection

structure. On the other hand, multiple regression models can only map linearly,

but they may provide a clearer perspective on which sensors (features) are im-

portant. The contributions of this thesis can be summarized as follow:

1) A new approach in modelling sensor output using sensor output residual

method

2) Mathematical model for generating residual in (1) by modelling the ex-

pected output using as a function of other sensor output using Genetic Program-

ming (GP)

1.4 Aim and Objectives

Based on the research questions discussed above, sensors are the primary instru-

ment that detects machine problem, hence accurate identification of sensor failure

is important. The objectives of this research are as follows:

1) Implement an approach to detect the faults in sensors by only using low

frequency data logs. Data collected at an interval of 10 minutes.

2) Implement and modelling using ”White box” model approach. The defini-

tion of ”white Box” model refers to transparent mathematical model. The details

can be found in the subsequent chapters of the thesis
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An approach using low frequency data logs is needed because most of the

industrial system has low update rate. This is definitely an important advantage

that meets current system availability and practicality, for the system does not

need to “overdrive” in data collection. This thesis also aims to implement and

modelling using ”white box” approach as this criteria is important especially

in critical industrial system. Three machine learning models were considered,

and as a result, neural networks can offer a more complex and efficient prediction

while multi regression models can provide a mathematical rationale for the sensor

correlation. The third model using GP is proposed in view that it offers a “white

box” approach. Limitations and operational challenges win the current practices

will be discussed in the next chapter, so the approaches in this thesis can be

further supported by the detailed industrial operation and scientific literature

reviews.

1.5 Overview of The Thesis

The remaining section of this thesis is organized as follow. Chapter 2 discusses

the state- of-the-art of predictive maintenance/sensor fault detection research.

In Chapter 3, the methodology leading up to the proposed solutions is provided.

This includes the data collection and the compressor unit which is in discussion.

In Chapter 4, the results of the experiments are presented and discussed. Finally,

the conclusion and future work are presented in Chapter 5.
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Chapter 2

Literature Review

2.1 Introduction to Chapter

In order to provide the reader with a greater understanding of the idea proposed,

this section addresses the general concept, sensor analysis, and the use of ML to

model sensor output. Despite the attempt to investigate the sensor abnormality,

it is inevitable that the relationship between sensor and predictive maintenance

are intertwined, and many of the concepts of detecting component fault and sensor

fault share the same principles. Therefore some investigation of the research work

related to predictive maintenance is discussed as a possible reference to detect

sensor faults. The term predictive maintenance is a concept that has been studied

by automation researchers and academics, and it is part of early fault detection

of machines. Sensors are used as part of the model building for predicting states

of the machine. This corresponds to the implementation of Industry 4.0. Internet

of Things (IoT) and artificial intelligence have been utilized in the deployment of

Industry 4.0 in oil and gas platforms to identify and fix problems, such as pipeline

faults.

7



2.2 Predictive Maintenance

Predictive maintenance is a technique used to predict when a machine or equip-

ment is likely to fail, so that maintenance can be scheduled before the failure

occurs. The goal of predictive maintenance is to avoid unexpected downtime and

reduce maintenance costs, while improving reliability and safety.

Predictive maintenance is based on the use of data analysis techniques, such

as machine learning and statistical analysis, to identify patterns and trends in

machine performance data. The data used for predictive maintenance can come

from various sources, such as sensors, logs, and historical records.

The predictive maintenance process typically involves the following steps:

1) Data collection: Collecting data on machine performance, including sensor

data, logs, and historical records.

2) Data pre-processing: Cleaning and preparing the data for analysis, such as

filtering out noise and removing outliers.

3) Data analysis: Analyzing the data to identify patterns and trends, and

building a predictive model to predict future machine performance.

4) Maintenance planning: Using the predictive model to schedule mainte-

nance activities before a failure occurs, based on the predicted time to failure or

remaining useful life.

5) Maintenance execution: Performing maintenance activities as scheduled,

based on the predictive model.

Predictive maintenance has many benefits, including increased equipment re-

liability, reduced maintenance costs, and improved safety. It is widely used in

various industries, such as manufacturing, transportation, and energy, to improve

the performance and longevity of equipment and reduce downtime.

On application level, some of these research conducted is demonstrated in

(Priyanka et al., 2021b; Bhaskaran et al., 2021, 2020; Priyanka et al., 2020). In

particular, predictive maintenance has been used as a means of preventing a

severe failure that often results in a loss of productivity and, ultimately, revenue.
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In most cases, predictive maintenance uses sensor reading and data processing to

forecast machine malfunction or under-performance. Some research work about

predictive maintenance has been available in the literature. Authors in Hanachi

et al. (2017) used an adaptive neuro-fuzzy inference system (ANFIS) model for

predicting degradation of the compressor section in gas turbine engines (GTE). In

particular, the work focused on a particular problem called fouling. The fouling

state was characterized by the relative change of the ratio of the compressor

mass flow and efficiency against ideal conditions. Using the ANFIS model, the

overall forecast findings showed an increase of around 50% and 28% for the 2-hour

and 120-hour forecast cycles, respectively, compared to the logarithmic regression

model.

In Jegadeeshwaran & Sugumaran (2015), the authors used various classifica-

tion models to classify 10 hydraulic brake faults. With the inclusion of feature

reduction methods, the authors reported 96% recognition rate. There are dif-

ferent fine-tuning models that need to be taken into account and, thus, one ML

model does not indicate an absolute match for a particular application. This

involves a certain ’try-all’ approach, thereby validating further research studies

on the application of different ML models for the good of the manufacturing

community.

In Jose (2018), the authors proposed and advocated heterogeneous computing

involving edge devices, massive wireless networks, ML, cloud computing, and

advanced statistical approach among others for predictive maintenance. This

approach would go beyond traditional methods, requiring significant investment

in infrastructure. In the case of the modern automation setup and the declining

price of the computing equipment, this is a viable solution considering the possible

savings in terms of production shutdowns.

A similar trend was observed in Cachada et al. (2018), where the authors

introduced the use of various Industrial 4.0 concepts, such as Internet-of-Things

(IoT) and cloud computing, in the system architecture for the predictive main-
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tenance tasks. It should be noted that the authors in Cachada et al. (2018)

focused on a specific type of maintenance, called condition-based maintenance,

where machine performance was monitored, as opposed to event-based mainte-

nance (Naskos et al., 2020), which focuses on preventing failure. Both use the

same sensor technology, but the focus is on different aspects.

Researchers in Steurtewagen & Van den Poel (2019) applied several ML mod-

els for root cause analysis. The purpose of this case study was to investigate the

root cause of high vibration-scenarios that triggered the failure of the compressor

units in the oil refinery. In Rosli et al. (2018), the authors used principal compo-

nent analysis (PCA) feature reduction and multiple linear regression model for

investigating the main cause of air booster compressor failure. Using R2 and root

mean square error (RMSE) values, it was shown that multiple linear regression

was more suitable for determining the influential parameters causing the failure

of the compressor. In Sakthivel et al. (2014), the authors applied linear and non-

linear feature reduction techniques for classifying centrifugal pump faults. From

Rosli et al. (2018) and Sakthivel et al. (2014), the authors deduced that feature

reduction may be highly dependent on the type of rotating machine and the data

points used. This does not, however, result in absoluteness in the improvement

of the ML model.

In Rosli et al. (2019), the authors applied a stochastic optimization technique

for detecting air booster compressor failure. In particular, the authors applied

particle swarm optimization (PSO) for tuning neural network structures. The

results showed that there was slight improvement when compared to the gradient

based approach. Noted that some researchers have emphasized their prediction

model based on static analysis of sensor reading. However, some of them have

used time series data for analysis. For example, a long-term memory (LSTM)

model, a type of recurrent neural network, was used in J. S. Rahhal and D.

Abualnadi (2020) to predict compressor failure. The disadvantage of LSTM is

that time-based models are more dynamic and would require high frequency data.
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2.3 Sensor Fault Detection

Due to the importance of sensors with respect to predictive maintenance, it is

therefore imperative to ensure that sensors are in good working conditions such

that it does not trigger false notifications of equipment failures. The challenge

being faced is that not much accepted industrial practices apart from applying

redundant sensors for monitoring. This is by no mean an economical practice

albeit acceptable due to the importance it bears. An alternative and efficient

method would further create opportunities to ensure more efficiency in sensor

monitoring. In Byun et al. (2019), authors applied a logic and condition based

approach in detecting sensor faults in particular by sensor triangulation method.

The authors in Wang et al. (2017) proposed three methods to detect sensor fault

by observing transient state errors. The authors in X. Jia and Q. Cheng and Y.

Hou (2018) applied state estimations using fuzzy systems and compared with the

observed output. Residuals, which is the difference between sensor measurements

and the estimated outputs of the system based on an observer, were applied to

decide on the sensor faults.

An extensive review of sensor fault was examined in Li et al. (2020). In

the article, the authors cited three main categories of sensor detection methods,

namely model-based, data-driven, and knowledge-based methods. The model-

based method requires some forms of comparison between model and observed

data. This would require extensive modelling of a plant. Meanwhile, knowledge-

based requires prior knowledge of sensor faulty condition that may be indicated.

On the other hand, a data-driven approach would require some data mining ap-

proach for determining if the sensor is at fault state. However, as ML algorithms

evolve, more hybrid techniques are applied, thereby blurring the lines between the

methods. As an example, this suggested approach is a combination of the first

and third categories. Another elaborate review on sensor abnormality detection

was presented in Gaddam et al. (2020). Authors in the paper have attempted

to classify strategy for detection of sensors into three main categories namely
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the network level strategy, heterogeneous strategy and homogeneous strategy.

In particular, worth to highlight the authors’ explanation of the heterogeneous

strategy which may be related to the proposed approach in this paper. The au-

thor describes the strategy as applying other sensors to predict the sensor output

of interest. The principalis idea here is to use sensor values to gauge sensor of

interest ”correctness”, this essentially can be implemented in various ways. In

Kapitanova et al. (2012), authors have applied the state of activity in a smart

home environment to predict what the sensors should be in ideal normal sensor

state. This essentially agrees with the principle outlined by Gaddam et al. (2020).

By exploring the previous works that relate directly to sensor abnormality

detection, there is still room to explore, especially regarding the sensors repre-

senting complex and dynamic states of the system. Noted that the research area

in particular abnormality detection is highly context-dependent, particularly in

the system which is being applied on. It is imperative to explore these concepts

especially for the case of compressors which play such a critical role in the oil

and gas platforms. In this case, data acquired is from a lower frequency interval

making dynamic analysis undesirable. Due to the high correlation between the

sensors, it might be suitable to apply some forms of sensor correlation concept,

known as ”heterogenous strategy” (Gaddam et al., 2020). By borrowing concepts

from machine failure prediction, ML can be applied to correlate sensor output as

a function of other sensor outputs. Since the sensors are correlated, ML would be

able to model various states of operation enabling the model output to be com-

pared with the observed output over a prescribed span of time. This is further

discussed in the subsequent section.

Sensors have been widely adopted in system state and fault monitoring. The

bulk of research applies multiple sensor correlation to detect plant abnormality

(Sujeong & Duck-Young, 2019). Despite the importance of sensor integrity, not

many strategies have been proposed to check the abnormality of the sensors. Oil

and gas industries commonly apply redundancy of sensors as a fail-safe strategy
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(Johansen et al., 2021). In-depth discussion on this topic could be challenging

due to few reasons. First, sensor applications are numerous, and discussions in

specific applications can be considered niche discussions within an industrial/sci-

entific community. Second, sensor data is typically highly classified due to the

stakeholder’s critical operations, making it difficult to hold discussions between

sensor domain experts, operators, and machine learning specialists (the three

invested parties within this scope of research).

Despite these limitations, some important investigations on the fundamentals

of this topic of discussion which emphasizes from the industry point of view

need to be further investigated. On the other hand, from an economic point

of view, global uncertainty has caused operators to employ more automation

strategies when it comes to plan system maintenance. In particular, sensors

enable operators to gain a better understanding of the state of operations, from

the platform to the refinery plant. Nevertheless, the industry is skeptical of using

machine learning algorithms for operation due to a variety of reasons, including

the ”black box” nature, algorithmic biases, and uncertainty in machine decision

making, which are impeding growth in this area (Cavagliá et al., 2020). It is worth

mentioning that the term ”black box” refers to algorithmic models that are not

readable or transparent in nature, such as Deep Learning (DL) and Artificial

Neural Networks (ANN). Regardless of preference, economic pressure has caused

operators to reconsider the balancing act between increasing productivity, safety

concerns, and economic benefits. A preliminary research on the use of the ”black

box” approach for sensor abnormality detection is presented in ?.

In the oil and gas industry, some research works focus on the algorithmic

(machine learning or model-based) approaches for pipeline monitoring as demon-

strated in Priyanka et al. (2020),Priyanka & Thangavel (2020), Priyanka et al.

(2021b), Priyanka et al. (2021a). This aspect is considered as a critical area of ap-

plication where a mathematical model-based approach is preferred. Furthermore,

in Rosli et al. (2019) and Sakthivel et al. (2014), the authors investigated pre-
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dictive maintenance for air booster compressor motor failure with the intention

of sensor-based monitoring of the equipment conditions. Note that, predictive

maintenance generally can be categorized as event-triggered (Bousdekis et al.,

2017) and condition-based maintenance (Li et al., 2017). In the latter, data are

stored and monitored consecutively. As a result, it may incur more computations

as compared to the event-triggered maintenance. Another example of the event-

triggered predictive maintenance is shown in Naskos et al. (2020) where a factory

setting was applied as a case study.

In Cachada et al. (2018), the authors investigated how early investigation and

identification of faults could lead to lesser maintenance time which subsequently

lead to lesser economical impact due to fault related uncertainty. In Hanachi et al.

(2017), the authors emphasized the significance of various gas turbine degrada-

tion and it prompted an investigation into the use of the predictive maintenance

concept for mitigation purposes. In Byun et al. (2019), sensor fault detection

and signal restoration in intelligent vehicles were investigated. The paper shows

another example where critical integrity of sensor may cause safety and health

concerns. Specifically, condition-based approaches were implemented to detect

sensor faults. The paper demonstrated a simple yet effective method in diag-

nosis of sensor but the implementation was based on specific application and

other complex systems, such as a plant, may require a more complex modeling

to encapsulate the more complex states of the system.

A comprehensive survey of methods in detecting sensor abnormality is pre-

sented in Gaddam et al. (2020). In the report, the authors highlighted that

generally they exist three strategies in classifying the faults of sensors which are

network level strategy, heterogeneous strategy, and homogeneous strategy. A ho-

mogeneous strategy in this context refers to correlating the output of the same

type of sensors to detect sensor abnormalities. A heterogeneous technique, on the

other hand, employs a variety of sensor types to detect failure. The authors also

highlighted various machine learning models that could help feature researchers
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develop a strategy for detecting faults. In Li et al. (2020), the authors provided

an in-depth perspective on recent advances pertaining to sensor abnormality de-

tection. Similar to Gaddam et al. (2020), the authors highlighted various types of

sensor faults which can be considered for similar types of sensor abnormality re-

search work such as sensor drift, abrupt failure, random faults, short circuit, and

open circuit faults. The authors also highlighted similar mitigation strategies in

identifying these faults namely model-based, knowledge-based, and data-driven.

There is a growing community of researchers that applies model deviation with

actual measurement for sensor faults diagnosis. Cha et al. (2017) applied various

regression models such as support vector regression models and auto associative

neural network for predicting sensor drift. The research work focus on a particular

type of sensor faults which are sensor drift. The approach uses machine learning

to model sensor output and compared with measured reading. A method for intel-

ligent sensor validation in real time situations is presented in Ibarguengoytia et al.

(2001). For the purpose of locating a malfunction in a collection of sensors, the

program makes use of a Bayesian network. The relationships and inter dependen-

cies that exist between all of the sensors are represented by this Bayesian network.

A second Bayesian network is used to single out the malfunctioning sensor from

among all of the other apparent malfunctioning sensors. An online sensor defect

detection method that uses Auto-Associative Kernel Regression (AAKR) and the

Generalized Likelihood Ratio Test is presented in Sairam & Mandal (2016). The

AAKR technique is used to estimate the data, and the GLRT method is used as

a measure to identify the malfunctioning sensor on the residual space, which is

defined as the amount by which the approximated data deviates from the original

data. In Alves et al. (2021), authors implemented similar model based approach

for validation of sensors in oil and gas platform scenario, in particular an injection

pump. The authors provided strong mathematical justification on the proposed

approach by citing that even though metrics such as summed squared error is

reached, one or more of the individual performance metrics, including: i) accu-
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racy; ii) robustness; iii) spillover and iv) filtering of the neural network, may not

be satisfactory while validating sensor measurements.

In Galotto et al. (2015), authors presented a 10 years experience of data

driven models for sensor validation applied for petroleum and natural gas in-

dustry. Auto-associative kernel regression has been used as the main modeling

method. The models achieved were embedded in a software called Sentinell, which

is used for sensors diagnosis. The software is being used in a natural gas com-

pression station, and it has been evaluated in other industries such as: refineries,

offshore petroleum platforms, and thermoelectric power plants.

Another method based on modelling was presented in Galotto et al. (2007).

However, apart from detection of fault, this approach also considers compen-

sation. The goal of this study is sensor fault tolerance as well as sensor fault

compensation. These two goals are intertwined. In a typical method to fault tol-

erance, the defect would first be identified, and then the sensor would be removed

from the system. It’s possible that the faulty sensor has an off-set or scaling mis-

take, but that error may be adjusted for such that it can still be utilized. This is

accomplished with the use of a mathematical solution based on kernel regression

that is shown in this study. This approach is able to adjust for measurement

error, resulting in estimates that are more accurate and dependable. In the fol-

lowing, discussion and then application of this method can be expanded to motor

drives. The findings of both simulations and experiments are given and discussed

here.

2.4 Common Machine Learning

Amachine learning model is a mathematical algorithm that is trained on a dataset

to make predictions or decisions without being explicitly programmed to do so.

It is a key component of machine learning and artificial intelligence applications,

as it enables computers to learn and improve from experience.

There are different types of machine learning models, such as regression mod-
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els, classification models, clustering models, and neural networks. Each type of

model is suited to different types of tasks and datasets. The most relevant ma-

chine learning models for this project is to predict a continuous value. This is

also known as regression type machine learning models.

The process of building a machine learning model involves selecting an ap-

propriate algorithm, preparing and cleaning the data, training the model, and

evaluating its performance. Once a model is trained, it can be used to make

predictions on new data, and its performance can be measured and improved

through feedback and further training. In this section we discuss some relevant

regression based machine learning models.

2.4.1 Multi Linear Regression

Multiple linear regression is a statistical method used to model the relationship

between a dependent variable and two or more independent variables. It is an ex-

tension of simple linear regression, which only considers one independent variable.

In multiple linear regression, the relationship between the dependent variable and

the independent variables is represented by a linear equation of the form:

y = 0 + 1x1 + 2x2 + ...+ nxn+ (2.1)

where y is the dependent variable, x1, x2, ..., xn are the independent variables,

0 is the intercept, 1, 2, ..., n are the coefficients, and is the error term.

The goal of multiple linear regression is to estimate the values of the coef-

ficients that minimize the sum of squared errors between the predicted values

of the dependent variable and the actual values. This is typically done using a

method called ordinary least squares (OLS) regression. Multiple linear regression

can be used for various applications, such as predicting sales based on advertis-

ing spending, analyzing the impact of different factors on customer satisfaction,

or determining the factors that influence the performance of a machine learning

algorithm.
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2.4.2 Artificial Neural Network

A regression neural network is a type of artificial neural network used for predict-

ing a continuous output variable, such as a numerical value or a real number. It

is a machine learning model that is based on the principles of feedforward neural

networks, and is particularly useful for modeling complex nonlinear relationships

between input and output variables. In a regression neural network, the input

layer consists of one or more input variables, which are connected to one or more

hidden layers of neurons via weighted connections. The hidden layers use nonlin-

ear activation functions, such as the sigmoid or the rectified linear unit (ReLU),

to transform the input signals and produce a set of output signals. Finally, the

output layer produces a single continuous output value based on the activations

of the previous layers. The training of a regression neural network typically

involves minimizing a cost function that measures the difference between the pre-

dicted output values and the actual output values. This is typically done using

an optimization algorithm, such as stochastic gradient descent (SGD), to adjust

the weights of the connections between the neurons. Regression neural networks

have many applications, including in finance, healthcare, and engineering. For

example, they can be used to predict stock prices, model the behavior of patients

with a specific disease, or forecast energy consumption in a building.

2.4.3 Regression Support Vector Machine

A support vector machine (SVM) is a machine learning algorithm that can be used

for both classification and regression tasks. In regression tasks, SVM is known as

regression support vector machine (R-SVM) or support vector regression (SVR).

The goal of R-SVM is to find a function that best fits the training data while

minimizing the margin violations. The margin violations represent the difference

between the actual value and the predicted value, which the algorithm tries to

minimize. The basic idea behind R-SVM is to transform the input data into a

higher-dimensional space using a kernel function, and then find a hyperplane that
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best fits the transformed data. The hyperplane is chosen in such a way that it

maximizes the margin between the hyperplane and the data points closest to it,

which are called support vectors. The choice of kernel function is important in

R-SVM, as it determines the transformation of the input data. Commonly used

kernel functions include linear, polynomial, radial basis function (RBF), and sig-

moid. R-SVM is a powerful technique for regression tasks, especially when dealing

with nonlinear relationships between the input and output variables. It has many

applications, such as in finance, economics, and engineering, for predicting stock

prices, estimating demand for a product, or modeling the behavior of a system.

Let(−→x , y) be the feature pair representing the features and −→x = [x1x2x3] repre-

senting the features extracted from the ph(x1), temp(x2), sc(x3) respectively.

subsequently, the polynomials of higher order (1,2,3) were derived. we update

the x′ = [x1
1x

1
2x

1
3x

2
1.....x

3
1x

3
2x

3
3]

projecting x′ to a higher dimension, the RBF function ϕ(x′) was deployed in

as ϕ(x′) = exp(−γ(∥x′ − c∥)). In order to achieve higher non-linear mapping

capabilities, several changes were made. firstly, the polynomial augmented in-

puts were weighted. Secondly, γ values that controls the Rbf projection as also

considered for optimization. Thirdly, weights are added to augment x′ and c such

exp(−γ(∥x′ − c∥)) can achieve more non linear mapping. These 3 strategies were

deployed such that better non linear mapping can be achieved to correlate the

original features x to y.

2.5 Limitation of Non-Interpretable Machine Learn-

ing Models

Thus far in the discussion, it is noted that many researchers have presented var-

ious approaches that are mostly specific to a particular type of sensors. Despite

limited works in generalized sensor approach, the principles implemented may

provide a general approach. A validation reading can be acquired by using ma-
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chine learning models such as neural network and etc. As stated in previous

discussion, most researchers have preference for such models. These models lack

transparency despite cited to be highly efficient in various domains of implementa-

tion. Rudin (2019) discuses the limitation and dangers of using non interpretable

machine learning models with case study from medical and other industrial ap-

proach. Based on the highlighted issues, the term ”black box” refers to simplified

representations of mathematical models that are so difficult for human to com-

prehend that they are referred to as ”black box models.” A lack of interpretability

in predictive models may erode confidence in such models, which is particularly

problematic especially in the field of health care, where the many choices are all

literally a matter of life and death. In Loyola-González (2019), the comparison

of ”white box” vs ”black box” was further discussed with certain industrial prac-

titioners having preference for fully explainable models while justifying certain

cases where black box models may be advantages. In the case of the targeted

application (compressor sensor fault detection), there is an obvious advantage in

using white box modelling given the stakes involved and the industry preference

to understand ability of the model.

2.6 Summary of Literature Review and Research

Gap

Based on the literature reviews discussed in the chapter, research gaps were identi-

fied in this area. This thesis proposes a system that is able to detect abnormalities

using data logs. Regression model is preferred due to the ability to produce more

transparent and mathematical formulation, also well-known as the ”white box”

approach. This feature is important to allow operators to periodically check on

the health of sensors without necessitating high frequency data and computation.

Deviation from regression models will indicate the health and integrity of a par-

ticular sensor. Note that higher frequency update data is more computationally
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expensive and will not be feasible for all systems, especially given the cost of

implementation. The proposed method relies on ”offline” data logs and a low

update rate, making data streaming less computationally expensive. This data

logging system is a typical case for most operators, given the high cost of oper-

ations. In this thesis, a GP approach (Cavagli´a et al., 2020; Kai, 2017) is used

to mathematically model the compressor RPM sensor output as a function from

other sensors. Note that other than the RPM sensor, the compressor is equipped

with 46 sensors as shown in the Appendix A. As previously stated, MLR and

ANN models are excellent working choices, but they lack model transparency or

”white box” sense. These models are used as benchmark models for comparison

purposes. Summary of the contributions is as follows:

1. A method for predicting sensor failure using a mathematical model. The

model is developed using a tree-based GP defined by the program length,

and it is then used to predict the compressor’s RPM sensor abnormality.

2. The proposed method is compared with the MLR and ANN models with

regards to model fitness metrics, i.e., Mean Squared Error (MSE) and R2.

3. The residuals and augmented actual data is used to predict various types

of faults in the sensor. In specific, actual data are augmented using the

approach proposed by (Tsai et al., 2019).
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Chapter 3

Methodology

3.1 Concept

This chapter explains the methodology in carrying out this research work. First

section describes data acquisition process involved covering the multistage com-

pressor system and the sensor system. Next section starts with a high level process

flow overview, then followed by discussion of the coverage of the research data

which includes mechanical, auxiliary, and overall process systems of the compres-

sor. Each of these categories including machine functions are discussed briefly.

Strategies from data collection to the pre-processing steps are discussed, then

followed by the modeling approaches for MLR, ANN and GP. Phase 2 discusses

the identification of abnormality. The overall concept of the proposed sensor fault

detection is illustrated in Figure. 3.1. There are several assumptions in imple-

menting the concept proposed. Firstly in Phase 1, data training is assumed to be

pristine as no faulty sensor was reported within the time frame of data collection.

It is noteworthy that in this research thesis, the proposed Genetic programming

approach was selected due to the ”white box” nature and the MLR and ANN are

selected as comparative models as it is a common bench-marking exercise to do

so. The second assumption pertains to the implementation in Phase 2. The im-

plementation of Phase 2 using residual histogram to evaluate the proposed sensor
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abnormality. The error is based on simulated error reading using the approaches

proposed in Tsai et al. (2019).
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3.1.1 Acquisition of Data

The data were collected using the data logging system that records information

at ten-minute interval for more than 2 years. According to the literature, various

research works in this field also implement high frequency data analytic to antic-

ipate machine failure. However, such implementation is problematic due to the

enormous computational cost. Furthermore, rather than using dynamic oscilla-

tions, this technique detects abnormalities using a static approach. As a result,

lower frequency data is used in order to forecast such failures in this study.

These data were sent to and stored in a local database. The data were ex-

tracted from offshore equipment using OSIsoft PI system. OSIsoft is a software

development and support company that specializes in software that captures, pro-

cesses, analyses, and stores any kind of real-time data. In essence, the PI System

is a set of software tools that are used for data collecting, historical preserva-

tion, discovering, analyzing, distributing, and displaying information. Enterprise

infrastructure for the administration of real-time data and events is what it is

touted as being. The terms PI System and PI Server are often used interchange-

ably, however they are not the same thing. The PI System refers to all OSIsoft

software products, while the PI Server is the primary product of the PI System.

The PI System is comprised of the PI Server and all OSIsoft software products.

3.1.2 Multistage Compressor System and Sensor System

Sensors are installed in every part of the compressor as it is deemed as critical

machinery in process safety and production reliability. The explanation of the

subsequent subsections are imperative to enable an in-depth understanding on

the features as shown in the appendices. The machine health conditions can

be monitored and evaluated using key parameters such as shaft and bearing

dynamic vibrations, bearing metal temperatures etc. Machine thermodynamic

performance can be monitored using process variables and theoretical modeling

to trend machine degradation or efficiency. All these maintenance monitoring
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parameters relies on sensor data to enable proactive intervention by the operator

prior to failure due to the mechanical integrity or reliability of the units. Figure

3.2 shows placement of sensors at various critical sections of a compressor to

acquire data for the remote monitoring and diagnostic system (RMDS). Figure

3.3 is picture of the compressor unit in offshore platform. The data /reading as

shown in GUI are updated on 10 minutes interval. All 46 data tags extracted

for this research is tabulated in Appendix A, each category and the intended

functions is discussed in subsequent sections.
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Figure 3.3: Compressor in offshore compression platform

Quality data acquired from a centrifugal compressor is important factor that

will determine a model performance, as small inaccuracies (in certain areas) can

make a large difference between the measured versus actual conditions. The type

of field data acquired are normally pressure, temperature, flow rate, vibration etc.

Electronic pressure transmitters are utilized for control and safeguarding applica-

tions, they are used to measure and communicate a static or differential pressure

value to a different location for monitoring or control purposes. The uncertainty of

pressure transmitters is typically better than 0.1% of span if compared to reliabil-

ity and robustness of pressure gauges and switches. The sensor module measures

the pressure, converts the raw sensor measurement to a digital value and applies

any corrections for variances between the calibration temperature and ambient

temperature and for differential pressure transmitters for variances between the

calibration and process static pressures. The sensor module passes its measure-

ment and diagnostic information to the electronics module. The module then

communicates this information to the control or monitoring system using either

4-20 mA analog signals or digital signals such as Foundation Fieldbus. Pressure

transmitters are typically installed with instrument valves for verification and

maintenance purposes. Figure 3.4 shows an example of instrument manifolds for
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differential pressure transmitters.

Figure 3.4: (a) Pressure transmitter, (b) instrument manifolds example

Temperature is another important data to calculate a compressor performance

because the enthalpy of a gas is a much stronger function of temperature than

pressure. However, it is more difficult to obtain accurate temperature measure-

ments due to the slow response nature of temperature and the boundary layer

effect in piping. Important considerations in the field are the accuracy/calibra-

tion of the temperature sensing device, its location, and installation. The two

most common devices used to measure temperature are thermocouples and re-

sistance temperature detectors (RTD), supported in a temperature probe. The

functions of temperature probes are to provide mechanical support for tempera-

ture sensors (RTD and thermocouple), locate the sensor in close proximity to the

thermowell tip, isolate the sensor from ambient moisture. Temperature probes

are often spring loaded to ensure the probe tip is positioned at the bottom of the

thermowell bore to ensure rapid responses to temperature changes. Temperature

assemblies combine a temperature probe with a connection head as illustrated

in Figure 3.5. The connection head may contain a temperature transmitter or a

simple terminal strip for making connections between the temperature probe and

end device (e.g., PLC input card) located elsewhere. Temperature transmitters
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convert the raw temperature sensor output (e.g., resistance, voltage) in a temper-

ature reading and output the reading via analog (e.g., 4-20 mA) or digital means

(e.g., Foundation FieldBus). With suitable designs, temperature sensors may be

direct wired to a PLC, a DCS or a flow computer.

Figure 3.5: Temperature probe and transmitter

Other than the process measurements of pressure and temperature explained

earlier, vibration is another critical machinery performance data. All rotating

machinery have a portion of the ”absorbed energy” converted to vibration. Vi-

bration measurements may be expressed in terms of the type of acceleration or

known as rate of change of velocity, the rate of change of displacement or known

as velocity, displacement or the actual movement from a rest position, ampli-

tude and frequency range of the sensor. The type of sensors may vary greatly in

form and price; however, there are two basic classes, the seismic transducer and

displacement transducer. Seismic transducers use inertially referenced measure-

ment or a measurement relative to a point in space. The displacement transducer

senses change in position or vibration relative to the mounting frame. Radial vi-

bration or proximity probes and axial position or displacement probes are type
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of displacement transducers that are more widely used. The probes are shown in

Figure 3.6 and Figure 3.7. Transducers are sensors that convert physical behavior

to an analog electrical signal. Transmitters convert transducer analog signals to

analog electrical signals used in industry, 4-20ma.

Figure 3.6: Radial vibration probes
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3.1.3 Process Flow Overview

All 46 tags of data extracted for this research can be divided into 8 categories

and are discussed in the subsequent subsections. Figure 3.8 provides a high-level

process flow of how the gas producing platform operate for better appreciation

in the context of running a compressor. Starting from the wellhead or drilling

platform, fluid from wells is sent to the production platform of which contains

the water separation, condensate dehydration and gas dehydration facilities. A

compression platform is connected to production platform, the compression fa-

cilities were installed to increase the gas reservoir pressure. Wet gas undergoes

further water removal in the suction scrubber before it is compressed to export

pressure through a single gas turbine driven centrifugal compressor. Wet gas is

then routed from two production trains before the compressed gas is fan cooled

and sent back to the glycol contactor tower on the production platform for de-

hydration. Majority of the dehydrated gas is sent to export gas line before being

sent to shore for further gas treatment via trunklines. The remainder of the de-

hydrated gas is used as fuel gas, and for purging and blanketing purposes.
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3.1.4 Compressor and Condensate Export

As mentioned earlier regarding the suction scrubber, its function is to protect

gas compressors from fine particulate and condensate. Without proper filtration,

compressor performance is reduced and if this prolonged, internal parts might

damage. Gas from the compression suction scrubber is routed to the compressor

unit. The vessel internal components consist of a Schoepentoeter inlet device,

a swirldeck and a mist mat, fitted to optimize gas or liquid separation and to

coalesce and remove any liquid droplet entrained in the gas flow. Figure 3.9

shows the high and low liquid level is detected by level transmitter and suction

scrubber is also fitted with level gauge which gives indication of liquid level in the

vessel. These are important data to monitor performance as they send signal that

initiate alarm and trigger unit pressurized shutdown when high level in vessel is

detected. Table 3.1 shows the list of data features used in the models.

Figure 3.9: Level gauge, level transmitter and level bridle
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Table 3.1: Data tags for Compressor Condensate Export
No. Tag Description Unit
1 Tilted Plate Coalescer V-270 %
2 Tilted Plate Coalescer V-280 %
3 Suction Scrubber Level %
4 E-2410A/B Discharge Temperature degC
5 E-2410C/D Discharge Temperature degC

3.1.5 Compressor Thermodynamic Performance

Compressor thermodynamic analysis of a compressor is the most straight-forward

way to determine its health. However, it requires specific instrumentation of sen-

sors and transmitters to be installed in the unit, as shown in Figure 3.10. Com-

pressor suction, discharge pressure and temperature are normally well maintained

by continuously controlled machine speed. Pressures will vary with machine

speed and process gas composition, the purpose is to trend and recognize sig-

nificant changes in a stage performance resulting from fouling, mechanical issues

or possible fouling of inter-cooler heat exchangers. Compressor fouling refers to

the build-up of unwanted materials causing the surface of the compressor blades

rough. Temperatures can vary with machine speed, stage differential pressure

and process gas composition. Changes indicate efficiency losses that could be

attributed to fouling, excessive wear or internal damage to the machine. The

data features used as input into these models are listed in Table 3.2.

Table 3.2: Data tags for Compressor Thermodynamic Performance Monitoring
No. Tag Description Unit
1 Suction Pressure barg
2 Discharge Pressure barg
3 Suction Temperature degC
4 Discharge Temperature degC

36



Figure 3.10: Typical instrumentation for compressor monitoring setup

3.1.6 Compressor Mechanical Performance

The primary mechanical protection on the main compressor train comes from

axial thrust probes as shown in Figure 3.11. The thrust bearing maintains the

position of the rotor relative to the case and prevents rotor to case contact. In

the event of a thrust bearing failure, severe damage can result to both rotating

and stationary machine components, hence the measurements of axial thrust is

to protect against this damage. These are consider machinery protection system

for critical machine trains, hence measurement required high reliability. Axial

vibration is a good indication of machine surge, and axial rubs in machinery

due to fouling or thrust bearing failure. Compressor surge is a condition when

the amount of gas they are trying to compress is insufficient for the size of the

compressor and the blades lose their ability to transfer energy from the shaft to the

fluid, causing a reverse flow of the gas. Radial vibration is used as an indication

for many machine malfunctions including unbalance, fouling, rubs, instability,

seal problems etc. Typically two probes per bearing in XY configuration and

these probes are voted 2 out of 2. The list of data features extracted to run in
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these models is shown in Table 3.3.

Figure 3.11: Axial thrust probes in tracing high radial vibration, rotor behavior
and shaft orbit

Table 3.3: Data tags for Compressor Mechanical Performance Monitoring
No. Tag Description Unit
1 Vibration Drive End Radial X µm
2 Vibration Drive End Radial Y µm
3 Vibration Non-Drive End Radial X µm
4 Vibration Non-Drive End Radial Y µm
5 Axial Position A mm
6 Axial Position B mm
7 Drive End Radial Bearing Temperature °C
8 Thrust Bearing Active Temperature 1 °C
9 Thrust Bearing Active Temperature 2 °C
10 Non-Drive End Radial Bearing Temperature °C
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3.1.7 Compressor Turbine Thermodynamic and Mechan-

ical Performance

The primary function of the gas turbine engine in a compressor is to supply

air in sufficient quantity to satisfy the requirements of the combustion burners.

Vibration levels are monitored as they can be indicative of a change of balance

or bearing wear. Figure 3.12 shows accelerometers are mounted on the casing of

the gas generator and power turbine, it is important to ensure that the correct

type of vibration sensors is fitted so that good machine protection is achieved

and also using the data for trending purposes. Proximity probes are also fitted in

the journal bearings because heavy casings may not be sensitive enough to detect

rotor or bearing problems, especially when externally induced casing vibration is

present which may mask vibration generated by the turbine. An increase of casing

vibration may only be noted when a catastrophic failure has occurred. Proximity

probes are selected because they give the actual relative motion between the rotor

and bearing irrespective of the casing vibration. The challenges of proximity

probes is often inaccessibility in the case of failure, and difficulties of checking

calibration. Table 3.4 shows the list of features extracted from this monitoring

category used as input in this research.
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Figure 3.12: Turbine engine installed with proximity probes and accelerometer

Table 3.4: Data tags for Compressor Turbine Thermodynamic and Mechanical
Performance Monitoring

No. Tag Description Unit
1 Compressor Discharge Air Pressure barg
2 Gas Generator Bearing 1 Vibration mm/s
3 Gas Generator Bearing 2 Vibration mm/s
4 Power Turbine Bearing 4 Vibration mm/s
5 Power Turbine Bearing 5 Vibration mm/s

3.1.8 Gearbox Mechanical Performance

The purpose of a gearbox as shown in Figure 3.13 is to increase or reduce speed.

As a result, torque output will be the inverse of the speed function. Torque is the

turning force when load is applied at a distance away from the center of rotation.

If the enclosed drive is a speed reducer (speed output is less than speed input),

the torque output will increase; if the drive increases speed, the torque output

will decrease. Monitoring gearbox performance is to determine potential bearing

or rotor dynamic problems. Impact can be catastrophic when there is event

of bearing damage leading to high gearbox vibration transferring to compressor

40



leading to seal failure on compressor. List of features from this category is shown

in Table 3.5.

Figure 3.13: Gearbox location

41



Table 3.5: Data tags for Gearbox Mechanical Performance Monitoring
No. Tag Description Unit
1 High-Side Shaft Drive End Radial Vibration X µm
2 High-Side Shaft Drive End Radial Vibration Y µm
3 High-Side Shaft Non-Drive End Radial Vibration X µm
4 High-Side Shaft non-Drive End Radial Vibration Y µm
5 Low-Side Shaft Drive End Radial Vibration X µm
6 Low-Side Shaft Drive End Radial Vibration Y µm
7 Low-Side Shaft Non-Drive End Radial Vibration X µm
8 Low-Side Shaft Non-Drive End Radial Vibration Y µm
9 Low-Side Shaft Axial Position mm
10 High-Side Shaft Non-Drive End Radial Bearing Temperature °C
11 Low-Side Shaft Drive End Radial Bearing Temperature °C
12 Low-Side Shaft Non-Drive End Radial Bearing Temperature °C
13 Low-Side Shaft Thrust Bearing Temperature 1 °C
14 Low-Side Shaft Thrust Bearing Temperature 2 °C

3.1.9 Turbine Enclosure Monitoring

The gas turbine burner may be considered as a source of ignition, as it introduces

a flame for controlled combustion, hence the gas turbine should be located outside

the hazardous area. If the turbine is located within an enclosure it should have

an adequate ventilation system. The enclosure ventilation fans provide cooling

air flow through the enclosure to prevent damage to heat sensitive components.

The operation of the ventilation fans also maintains the turbine enclosure at

a slight positive pressure to prevent potential of hydrocarbon gases from the

surrounding area entering the turbine enclosure. Enclosure high temperature will

trip compressor unit as failure of early detection can be catastrophic as shown

in Figure 3.14 and 3.15 below. The list of data features used as input into these

models is listed in Table 3.6.

42



Figure 3.14: Enclosure temperature HH tripped on NPT signal failure caused by
oil and debris ingressed into the probes causing erroneous signal
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Table 3.6: Data tags for Turbine Enclosure Monitoring
No. Tag Description Unit
1 Turbine Enclosure Temperature °C
2 Turbine Enclosure Differential Pressure mbar

3.1.10 Dry Gas Seal System

Compressors are typically equipped with dry gas seals to prevent gas from escap-

ing between the stationary compressor body and the rotating shaft. Compressors

are normally shut down when high seal leakage occurs, indicating a seal failure.

Compressor can experience a catastrophic failure of the suction end dry gas seals

(both primary and secondary) resulting in high pressure gas entering the gas tur-

bine driver’s enclosure through the common lube oil system. Figure 3.16 shows

an event of gas and lube oil ignited, resulting in a fire that heavily damaged the

turbine enclosure. Leaking bearing housing seals are sometimes given low priority,

transmitter reliability is critical in providing data to decide if early intervention

is needed. The monitoring scope includes trending of all the primary seal vent

pressure, seal gas supply pressure and seal gas differential pressure (dp) if the

reading is genuinely high or low. Table 3.7 shows the list of features extracted

from this category used as input in this research.

Table 3.7: Data tags for Dry Gas Seal System Monitoring
No. Tag Description Unit
1 Primary Seal Gas Supply Pressure barg
2 Separation Gas Supply Pressure barg
3 Drive End Primary Vent Pressure barg
4 Non-Drive End Primary Vent Pressure barg
5 Seal Gas Filter dP barg
6 Seal Gas dP barg

45



Figure 3.16: Fire incident due to dry gas seal failure

3.1.11 Data Pre-processing

Data may be obtained automatically from a variety of sensors. Many different

OSIsoft and third-party PI Interfaces are used to obtain the majority of the

information. Users may then access this information using a standard set of tools

(such as Microsoft Excel, a web browser, or the PI Process Book) and check for

connections between the data points collected. All tags were analogue to simplify

the model i.e., to avoid unnecessary increase of input dimensions if discrete tags

were used. The coverage of the data tags includes mechanical, auxiliary, and

overall process systems of the compressor. Moreover, the min-max approach was

used to normalize the features such that their values fall inside the range [0,1].
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The min-max formula is given by

xi =
x̄i − x̄min

x̄max − x̄min

, (3.1)

where xi is the normalized feature data, x̄i is the original feature data, x̄min =

min(x̄i) and x̄max = max(x̄i). Furthermore, x denotes as the feature vector in

time t of which the element is obtained by using Equation 3.1 and y as the

output (RPM) at time t, and (x, y) ∈ [0, 1]. Here, x ∈ RD is the D-dimensional

multivariate features representing a normalized sensor input.

Figure 3.17: Correlation between the extracted features

As a preliminary investigation into the correlation, Fisher-Correlation was

used to evaluate the correlation between the features. Feature 1-46 represent

the various features in consideration while column 47 represents the normalized
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RPM value which is the regression target. Evidently, the diagonal entries are

1.00 showing correlation of the feature to itself. The figure shows some highly

correlated features to the normalized RPM value. The equation 3.2 express the

correlation between the 2 variables and B̂ and Â are average of the features

respectively. Part of the data are available at (Wong, 2022). Due to IP and policy

issue, this data is available for thesis defense (from 1st July 2022 to November

2022 only).

r =

∑∑
(Amn − Â)(Bmn − B̂)√∑∑
(Amn − Â)

2
(Bmn − B̂)

2
(3.2)

During the data pre-processing stage, there are additional considerations and

steps taken in order to improve the data quality. Industrial data often faced with

data quality challenges and this is unavoidable. The poor quality observed in

the data are such as a string text was found in a numerical data tag, the error is

caused by communication failures. When these errors are detected, affected data

is cleaned by back-filling with the most recent valid value. When timestamp is

unable to obtain reading, the normal practice is to use the previous T-1 sensor

data. There are four possibilities when handling data with zero reading, replace

with minimum, maximum, average or zero. Since data is continuous, it is a

common practice to replace with previous values by assuming data will not change

within the time interval (Kang, 2013). Sensor data collected is at both transient

and steady state, as seen in the data collected over more than 2 years. Time

domain data is applied and used for static modeling. Low variance tags are

removed as they are deemed inconsequential to sensor failures, they will not

vary sufficiently in the training duration to influence the instrument operating

conditions. Numerically, tags that behaved similar to a discrete data type are

excluded in the training data. There is no outlier data in regression model.

The extracted data was reviewed together with the operations and discipline
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engineers to further detect any possible data error that could affect quality of the

research and to collate information regarding health status and process condition

of the instrument. During the review sessions, 14 tags were removed based on

feedback from the engineers of which later the tags were confirmed for having

high multicollinearity, including them will distort the model outcome. Besides

cleaning bad quality data, historical trip events were also reviewed, events that

are not trendable to be excluded from the training data. Examples of such events

were manual shutdown for preventive maintenance work, nuisance instrument

failure with instantaneous spikes, and compressor starting up and ramping down.

3.2 Multiple Linear Regression and Neural Net-

works Models

Figure 3.18 illustrates the entire structure of the thesis. As illustrated, the data

collection phase was describe in detail in previous sections. In the phase 1, plant

modelling was implemented such that sensors deviation from normal or predicted

can be quantified. this is implemented using MLR, ANN, and GP. As explained

in introduction section , GP serves as our main target of implementation while

ML and ANN acts as comparison /benchmark approaches.

Establishing that ML concepts can be highly useful for modelling complex

relationships and building models for machines, similar concepts can be used

for sensor abnormality detection. In this case, the states of machines may be

modelled using ML, even if the model is complicated. The deviation at this point

is that sensor outputs or working conditions may be modelled by the output of

other sensors. In essence, it is a cross-correlation concept for sensors. The initial

intuitive decision is to choose the simplest model and proceed to a more complex

model if modeling complexity is insufficient. Note that the compressor machine

under examination is somewhat old and is best suited to ML modeling. Among

the candidates, artificial neural network and multiple linear regression fit this
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Figure 3.18: Block diagram : modelling of plant

description. Inevitably, neural networks are prone to vanishing gradients due

to the application of the transfer function, such as the tangent sigmoid function.

However, neural networks have an advantage of modelling more complex systems.

The two main disadvantages of the neural networks are that these models are

considered as a ’black box’ and difficult to comprehend. Despite being efficient

on record, they are normally not preferred in certain industries.

3.2.1 Multiple Linear Regression

Multiple linear regression is a multivariate version of the linear regression. Let

(yn, xn,i) be the value and feature value pair for n = 1, 2, · · · , N and i = 1, 2, · · · , I.

The multiple linear regression model for N observations and I features is given

by

yn =
I∑

i=1

x(n,i)βi, (3.3)
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where βi are the weighted coefficients to the particular variable. This can be

rewritten in a vector form as follows

y = xβT , (3.4)

where (·)T is the transpose operator.

The objective of the function is to minimize the least square error between y

and f(x,β) is minimal. The weight for each variable is as solved using the least

square method as follows

βi =
N

∑N
n=1 x(n,i)yn −

∑N
n=1 x(n,1)

∑N
n=1 yn∑N

n=1 x
2
(n,i) − (

∑N
n=1 x(n,i))2

, (3.5)

Note that the problem is almost always convex.

3.2.2 Curve Fitting Neural Networks

Neural networks generally work by cascading interconnected nodes linking the

inputs to the output forming a series of networks. Each node represents a function

of the weights and the values from the previous nodes. Hence, the output of a

node is a function of βxT + ϵ (multi-regression), where β is the weight vector

depicted by the edges and ϵ is the bias value. The expression for the transfer

function for each node is as expressed as

S
(∑

βxT + ϵ
)
=

1

1 + e−
∑

βxT+ϵ
, (3.6)

where S(·) is the sigmoid transfer function. For simplicity, from now on, the

vector β denotes a solution of 1 × n + 1 where n is the number of variables (β

include the bias term ϵ).

Neural networks have been deployed for various modelling works. Generally,

there are various means of which includes gradient descend or stochastic methods.

In each iteration, the weight vector, β is adjusted with the first order Jacobian.
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Given in each iteration (β + δ), δ can be calculated such that f(xi,β + δ) ≈

f(xi,β+Jiδi) for the ith instance (row), where Ji = ∂f(xi, βi)/∂β is the Jacobian

matrix.

The sum of the squared error, S(β + δ), is given by

S(β + δ) ≈
m∑
i=1

[yi − f(xi,β)− Jiδ]
2, (3.7)

where y is the target vector. Derivation of S(β + δ) w.r.t δ gives

(JTJ)δ = JT (y − f(β)). (3.8)

Adding a damping factor, λ to adjust the δ yields

(JTJ + λI) = JT (y − f(β)). (3.9)

Note that λ can be considered as a form of learning rate. Furthermore, the weight

vector β can be solved using Gauss-Newton method.

3.3 Data Collection and Curve Fitting Processes

As explained earlier, the purpose is to first model sensor outputs and subsequently

use model outputs to predict residuals. The equipment under consideration is a

multistage centrifugal compressor used to provide pressure for gas transport, these

machines are essential in gas production platforms. Data were collected from

the data logging system, which captures the information in a 10-minute interval

basis for more than 2 years. These data were streamed and stored in a local

database. According to the literature, most of the research works in the similar

areas have applied high frequency data analytic for predicting machine failure.

This is ideal, but it is difficult to be implemented due to high computational

complexity. Furthermore, this approach relies on a static approach and not on
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the dynamic fluctuations to detect the abnormality. Therefore, this research

investigates the lower frequency data for predicting such failure. The remaining

46 features are normalized such that the values are in the range of [0,1] using the

min-max method given by

xi =
x̄i − x̄min

x̄max − xmin

, (3.10)

where xi is the normalized feature data, x̄i is the original feature data, x̄min =

min {x̄i}, and x̄max = max {x̄i}.

x denotes as the feature in time t and y as the output (rpm) at time t,

where (x, y) ∈ [0, 1] is obtained by using Equation 3.10. Here, x ∈ RD is the

D-dimensional multivariate features representing a normalized sensor input. The

detail of these sensor readings or features is as attached in the Appendix A.

3.3.1 Settings

The plant management systems were used to collect data for training and testing,

which is a typical practice for oil and gas platforms in many regions. The data

collected were at a 10-minute interval, which is regarded appropriate because

increasing the frequency of data collection will dramatically increase data cost.

More than 2 years’ worth of data were collected for processing and training,

which is long enough to generalize faults. Sensor readings of many types, such

as temperature, vibration, pressure, and displacement sensors, are used to create

data (please refer to Appendix A). Two models were applied, i.e., neural network

and multiple regression models. In order to justify this application, the RPM

shaft sensor output is predicted using the outputs of other sensors. The accuracy

of the models is demonstrated by the R2 values.

For the neural networks, a single hidden layer of 10 neurons was applied in

the layer with tangent sigmoid as the processing transfer function and a learning

rate of 0.1. The Levenberg-Marquardt algorithm was also applied to reduce com-

putational training time as it enables gradient descent to be calculated without

computing the Hessian matrix (2nd order). Noted that the data sets were skewed
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towards the normal condition for the output < 4000 rpm. The variances in data

set are important such that the ML models may capture the different states of

the compressor. The data are separated into 70%, 15%, and 15% for training,

validation, and testing, respectively, for the case of neural network and 70% - 30%

(training - testing) for multiple linear regression cases. We note that there is a

fundamental difference in training process between neural network and multiple

linear regression. It can be considered that the data split is the best approach,

given not much discussion from the academic literature on this comparison, and

for the sake of best practices for comparison.

The overview of the entire concept revolves around training machine learn-

ing models and comparing the residuals (machine learning model output and

observed data) to identify the type of faults. As such, machine learning models

need to be fairly accurate and computationally light weight to calculate the resid-

uals. This is investigated this in the subsequent section. This approach applies

”conventional” training procedures to train the models. The parameter setting

and the model parameters description are justified in the model comparison sec-

tion. Subsequently, the concept of residual comparison and by calculating the

residuals (between the predicted and the independent test data) is tested. This

thesis is demonstrated by observing the histogram of residuals, the type of faults

can be identified (histogram analysis section).
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3.3.2 Genetic Programming

Genetic Programming (GP) was originally designed to generate equations us-

ing evolutionary approach (stochastic approach). There are several variants in

GP, such as those that utilize tree as equation encoding (tree-based GP) and

graph (Cartesian GP). This section details the mutation mechanism of genetic

programming. The idea behind the tree-based GP is to use encoded representa-

tions of generated equations to evolve over generations, which is similar to other

evolutionary algorithm approaches. The methods are described in detail in Kai

(2017).

In general, the tree-based GP applies four evolution operations: i) reproduc-

tion, ii) point mutation, iii) branch mutation, and iv) crossover. Figure 3.19 shows

a single equation tree representing an equation. The depth of the equation tree is

illustrated in the figure. The corresponding fitness of each depth configurations

are shown in Table 4.12. As shown in the figure, the depth of the tree indicates

the complexity of the equation. In this research report, the allowable maximum

depth of 4, 5, 6, 7, 8, 9, 10 are evaluated. From the population, a set number

of decision trees are chosen for a tournament, with the winners being promoted

to the next generation. It’s worth noting that the term ”reproduction” refers to

an exact clone of an existing candidate. There are no mutations added, and the

solutions are simply copied from the populations. Branches are randomly picked

from the population in branch mutation. A branch is a large portion of the tree

that contains the points and function nodes (Figure.3.20). In crossover mutation,

two trees selected as to produce two off springs with each appearance device are

swapped between the two parents to obtain two child solution candidates. In

point mutation, a single point of the tree is chosen for the operation Figure. 3.21,

function notes are preserved, and only points are changed at random. This might

be regarded as a tree’s modest random mutation.
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Figure 3.19: Structure of Equation Tree

Figure 3.20: Branch mutation
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Figure 3.21: Point mutation

Table 3.8: Table of function list

Basic function

α + β α− β α× β α÷ β

Extended Functions

α +
√
β α−

√
β α×

√
β α÷

√
β

α + β2 α− β2 α× β2 α÷ β2

α + β α− β α× β α÷ β

α + cos(β) α− cos(β) α× cos(β) α÷ cos(β)

α + sin(β) α− sin(β) α× sin(β) α÷ sin(β)

α + tan(β) α− tan(β) α× tan(β) α÷ tan(β)

α + lop1p(β) α− lop1p(β) α× lop1p(β) α÷ lop1p(β)

α + sign(β) α− sign(β) α× sign(β) α÷ sign(β)
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3.3.3 Simulation of Errors

It is certainly not economical/feasible to perform invasive approach to acquire

fault data. There is no available data on public domain for such purposes. In

the approach to acquire fault data, reference was made to the proposal by (Tsai

et al., 2019). Figure 3.22 shows the block diagram corresponding to this phase on

investigation. This phase is carried subsequent to the sensor reading modelling

phase. In the proposed approach, 3 types of faults were introduced : 1) complete/

constant faults 2) bias drift faults 3) degradation faults. The approaches to

generate the fault readings are subsequently discussed.

Figure 3.22: Block diagram : Abnormality detection

• Constant faults : pick successive samples , and replace them with constant

value

• Bias drift faults: pick successive samples and replace each value vi with

vi + constantvalue

• Degradation faults : pick successive samples start from i and replace value

vj with vj + degradationrate ∗ (j − i)

Noise faults : select a sensor measurement vi and multiply a factor f de-

termines the intensity of the noise fault a noise data v′i = vi ∗ f where

f = 1.2, 1.5, 2, 5, 10
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3.4 Summary of Chapter 3

In summary, the chapter outlines the entire methodology involved in achieving

the objectives stated. The goal of the research is to be able to detect sensor faults

over a period of time. 3 machine learning models were suggested which consist of

Multi linear regression (MLR), Neural network (ANN) and Genetic Programming

(GP). ANN are black box machine leaning models while MLR are not suitable

for non-linear mapping. In critical equipment, a more transparent model such

as mathematical model is preferred. This is the justification of applying GP for

mathematical model generation over the other alternative. Both MLR and ANN

may provide a comparative performance. Black box machine learning models can

be dangerous in certain circumstances. Firstly, it lacks transparency. It can be

difficult to understand how a black box model is making its predictions, which

can make it difficult to detect and prevent bias, errors. The behavior of a black

box model can be hard to predict, which can lead to unintended and potentially

harmful outcomes, such as discrimination or misinformation. In some cases, the

output of a black box model may be uncontrollable or difficult to manage, which

can result in negative consequences such as economic loss or harm to individuals.

Upon completion of model development, further evaluation on application to

detect the sensor fault is done in the subsequent phase. Essentially the model

will be used as a predictive tool by evaluating the differences between the observed

and the predicted. These will be discussed in the subsequent chapter.
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Chapter 4

Results and Analysis

As discussed in methodology chapter, this thesis consists of two phases. The

first component includes the mathematical modelling of the data. The second

involves implementation of the predictive modelling and using the model acquired

for analyzing the error. With respect to presentation of the results, the first

phase of the results is to evaluate the goodness of ”fit of the model” acquired

from the MLR/ANN and GP. The results were evaluated during the training

and validation phases to identify associated patterns. The results for ANN/MLR

were compared with the mathematical models generated by the GP algorithm.

As discussed earlier, the GP mathematical models were preferred due to their

”transparent” nature and ability to deal with non- linear mapping relatively well.

Subsequently, the best GP model was selected for further evaluation of error/fault

detection in the second phase. The two sections are named Phase 1 evaluation

of model fitness and Phase 2 evaluation of the identification of faults from the

histogram. For Phase 2, the error simulation approach was applied as it was not

feasible to acquire sufficient amount of faulty sensor data reading.
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4.1 Phase 1 Evaluation : Model Fitness

The Genetic Programming (GP) approach was run on various configurations and

compared to the MLR and ANN. The results are discussed in this chapter and

then compared with the MLR and ANN. The models were ran for 10 trials in

which the results are presented in subsequent sections. Upon comparing with

MLR and ANN, the mathematical models were applied with augmented dataset

to simulate error. R2 metric was applied as a goodness of fit evaluation for the

models. R2 is a statistical measure that represents the proportion of the variance

in the dependent variable that is predictable from the independent variable(s)

in a regression analysis. It is a value between −∞ and 1, where a value of 1

indicates that the model perfectly fits the data, and a value near 0 suggests

that the model has limited predictive ability. The Mean Squared Error (MSE)

is a measure of the average squared differences between the predicted values

and actual values in a regression model. R-squared is a statistical measure that

represents the proportion of variance in the dependent variable that is predictable

from the independent variable. There is a negative correlation between MSE and

R-squared, meaning that as R-squared increases, MSE decreases. In other words,

a higher R-squared value indicates a better fit of the model to the data, which

results in a lower MSE value.

R2 = 1−
∑i=N

i (yi − ŷi)
2∑i=N

i (yi − ȳi)2
, (4.1)

MSE =
1

N

i=N∑
i

(yi − ŷi)
2 (4.2)

Where N is the number of samples, yi and ŷi are the observed and predicted

values respectively

In this section, the machine learning models for regression will be evaluated.

Prior to comparing with the mathematical models (from GP), both ANN and

MLR were evaluated. Generally, ANN are ”black box models that perform well
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with non linear modelling. MLR are essentially a weighted regression model that

are relatively ”transparent” but do not thrive on non linear mapping. Multi Lin-

ear regression (MLR) is a statistical method that models the relationship between

a dependent variable and one or more independent variables as a linear equation.

It assumes a linear relationship between the independent and dependent vari-

ables, which means that changes in the independent variables produce a constant

change in the dependent variable. Non-linear mapping, on the other hand, refers

to mathematical process that maps input variables to output variables in a way

that is not proportional. Non-linear relationships are characterized by the output

changing at different rates for different values of the input. Non-linear regression

is a method used to model non-linear relationships between the independent and

dependent variables. It involves transforming the independent variables and fit-

ting a regression model to the transformed data. The objective of the model is

to acquire a mathematical approach to minimize target values with the predicted

values.

Table 4.2 and 4.4 show the evaluation and comparison of models acquired

using MSE metrices a feature reduced model and full feature set while Table 4.3

and 4.5 show the models in equivalent R2 metrices. The reduced features set were

acquired by considering the highest absolute weights in MLR. In order to gauge

the model performance, mean squared error (MSE) and R2 were used as fitness

of models. Table 4.2 and 4.3 show the comparison of the results of MSE and R2

before feature reduction for multiple linear regression and neural network models,

respectively. P-values (T-test) show the significance of the mean difference. In

conclusion, with a threshold of 0.001 significance, the difference between neural

networks and multiple linear regression cannot be dismissed as a random chance.

In other words, neural network fitting produced slightly better in that sense. It

can be seen from Table 4.2 that MSE of neural network model is slightly better

than the multiple linear regression model in terms of the mean error. However, the

p-value may be too insignificant to justify the conclusion since it could happen due
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to random chance. Furthermore, since there is no validation in the multiple linear

regression model, the p-value for this set (validation set) cannot be computed.

In this paper, 1% significance value is applied for the mean difference between

multiple linear regression and neural network models. In other words, any p-

value lower than 0.01 does not show that the mean difference is significant, but

the difference is only due to chances.

The coefficient values for both neural networks and multiple linear regression

models were obtained by averaging the values over 10 trials. Furthermore, it is

common to rank feature significance using regression coefficients. The five most

significant features/sensors correlated to the shaft RPM are listed in Table 4.1.

The most significant sensor correlating to the RPM sensor is sensor #44, i.e.,

the dry gas seal system monitoring (please refer to Appendix A). Table values

show the mean value of the 10 trials with the associated standard deviation. The

results shown in Table 4.1 further prompt subsequent analysis of applying models

after feature reduction was performed. Once again, feature reduction is another

common method to reduce complex models to a more compact model in line with

the ”Occams’ Razor” principle which states a more compact and concise model

is preferred over a bloated model. As such, the top five sensor readings were

selected for subsequent analysis.

Table 4.1: Feature ranking, mean, and standard deviation
Sensor Index 13 14 29 41 44
Average 0.61738 0.35238 0.48969 0.62478 3.6632
Std. dev 0.15271 0.023830 0.011879 0.13427 0.21069
Ranking 3 5 4 2 1

This would further add credibility on the findings. Furthermore, in-depth

analysis was performed by observing the changes of the coefficients in 10 trials.

Once again, the observed and verified feature (or sensor) of #44 was consis-

tently dominant throughout the 10 trials for the case of multiple linear regression

demonstrated by the high weight coefficient. Coefficient values in multiple lin-

ear regression may occur as positive and negative values and the absolute value
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of the feature are generally and indication of dominance and importance for the

regression model. The positive and negative values indicate the inverse and corre-

lation relationship of the features, respectively. When the results were interpreted

against the actual reliability records of the compressor, seal and bearings failures

were indeed the bad actors which escalated to multiple extended compressor shut-

downs in the past.

As mentioned previously, the features set is then reduced to only the top

five features as acquired from the regression analysis. Table 4.5 and 4.4 show

the MSE and R2 after feature reduction for both models, respectively. Both

implementations, using neural network fitting and multiple regression, do not

deteriorate the results, thereby indicating a progressive feature reduction. In

conclusion, both implementations (reduced or full feature set) may be equally

applicable for these purposes.

From the Tables 4.3 and 4.5, it can be observed that there were no signifi-

cant difference between feature selection dataset. This shows that the additional

features does not cause degradation to overall model performance. Similar ob-

servation can be seen from Table 4.2 and 4.4, it can also be concluded that ANN

performed slightly better than MLR as shown from the average higher R2 and

lower MSE. The results were subsequently compared to the GP generated math-

ematical models.
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Table 4.2: MSE of multiple linear regression and neural network models
MSE Train Validation Testing

MLR NN MLR NN MLR NN

Mean 1.76 · 10−4 3.29 · 10−5 N/A 4.05 · 10−5 1.831 · 10−4 4.05 · 10−5

Std. dev 1.01 · 10−5 7.94 · 10−6 N/A 1.21 · 10−5 2.38 · 10−5 1.94 · 10−5

P-value 4.97 · 10−7 N/A 2.94 · 10−6

MLR: Multiple Linear Regression, NN: Neural Networks

Table 4.3: R2 of multiple linear regression and neural network models
R2 Train Validation Testing

MLR NN MLR NN MLR NN

Mean 9.96 · 10−1 9.99 · 10−1 N/A 9.99 · 10−1 9.96 · 10−1 9.99 · 10−5

Std. dev 2.05 · 10−4 1.42 · 10−4 N/A 2.45 · 10−4 4.84 · 10−4 3.95 · 10−4

P-value 6.72 · 10−7 N/A 4.44 · 10−6

MLR: Multiple Linear Regression, NN: Neural Networks

Table 4.4: MSE of multiple linear regression and neural network models (after
feature selection)

MSE Train Validation Testing
MLR NN MLR NN MLR NN

Mean 7.52 · 10−5 3.33 · 10−4 N/A 3.65 · 10−4 1.30 · 10−3 3.56 · 10−4

Std. dev 9.68 · 10−7 2.84 · 10−5 N/A 7.37 · 10−5 2.93 · 10−5 2.48 · 10−5

P-value 1.86 · 10−7 N/A 2.89 · 10−7

MLR: Multiple Linear Regression, NN: Neural Networks

Table 4.5: R2 of multiple linear regression and neural network (after feature
selection)

R2 Train Validation Testing
MLR NN MLR NN MLR NN

Mean 9.74 · 10−1 9.92 · 10−1 N/A 9.93 · 10−1 9.75 · 10−1 9.92 · 10−1

Std. dev 3.10 · 10−4 1.56 · 10−1 N/A 2.45 · 10−3 7.67 · 10−4 4.89 · 10−4

P-value 2.21 · 10−7 N/A 3.83 · 10−7

MLR: Multiple Linear Regression, NN: Neural Networks

4.1.1 Acquired Genetic Programming (GP) Models

For the sake of brevity, only the best mathematical solutions are presented in

this section. It is noteworthy that rpm is the normalized value [0 1]. The fitness
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Table 4.6: Comparison on various models and solutions generated

MSE

Config. GP∗ (BF) GP∗ (EF) GP+ (BF) GP+ (EF) ANN MLR

Mean 1.09×1024 3.35×1029 2.67×1029 2.81×1030 4.04×10−5 1.83×10−4

Median 5.01×10−3 4.83×1018 5.74×1026 4.08×1027 4.81×10−5 1.79×10−4

Best 1.47×10−3 4.70×10−4 5.75×10−4 4.53×10−3 1.50×10−5 1.43×10−4

R2

Config. GP∗ (BF) GP∗ (EF) GP+ (BF) GP+ (EF) ANN MLR

Mean 6.58×10−1 4.15×10−1 3.46×10−1 1.67×10−1 9.99×10−1 9.96×10−1

Median 8.29×10−1 −4.51 ×
10−5

−3.19 ×
10−3

−8.07 ×
10−4

9.90×10−2 9.99×10−1

Best 9.08×10−1 9.91×10−1 9.88×10−1 8.97×10−1 9.99×10−1 9.97×10−1

∗ max node = 5; + max node = 10; BF = Basic Function; EF = Extended Function

are from the validation data. Only solutions with R2 ≥ 0.8 from validation are

selected for discussion. The fitness are shown in Table 4.7. Table 4.6 shows

overall comparison with the equivalent MLR and ANN models. From the tables,

the results show that the variance of the models are relatively high as compared

to their MLR/ANN counterparts shown in Table 4.3 and 4.2. This shows that the

solution space for GP is more complex and multimodal as compared to their ANN

/MLR counterpart. Multimodal refers to an optimization scenario in which there

are various ”local minima” that would cause the optimization algorithm to get

stuck in a non global minima. ANN uses backpropagation algorithm which is a

deterministic approach. Nevertheless, the fitness search space is less multimodal

in the situation of ANN as can be seen by the smaller variance of fitness within

the population of generated solutions. From Table 4.7, it can be observed that

the best model acquired from GP is as expressed in Equation 4.3.

Five constants were supplied which are {0.1, 0.3, 0.5, 0.7, 0.9}. Due to the

computation considerations, only five constants were evaluated and only node

depth of 10 was considered. Note that higher maximum node depth can be

considered for future evaluations. In spite of these limitations, a solution was

generated and applied for further implementation in sensor abnormality detection.

The best candidate solutions from genetic programming was given by
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rpm = x5 − (0.9) · (x22) · (x29)
2 · (x5)

2 ˙(x8)
2
· signx5

x9

(x30)x5
+ (x8)

2 (4.5)

rpm = x17 ·
x25√
(x37)

+
√

(x18)(x17) (4.6)

rpm = −
(
x28 × xx30

42 × x2
30 × x0.5

7

)2
+ x0.7

7 , (4.3)

where xi is the i-th feature or sensor of the compressor unit. The features and

the corresponding description of the sensors can be found in Appendix A. This

model yielded R2 of 0.991 and MSE of 4.7× 10−4.

In order to better understand the models developed, keep in mind that shaft

load is proportional to shaft RPM, and it also corresponds strongly with bearing

temperatures. Rotor radial loads are proportionate to shaft RPM, and so directly

effect the shaft’s radial displacement. The square of rotor RPM is exactly propor-

tional to any change in the pressure differential across the compressor (discharge

suction). As a result, it has a direct influence on the rotor’s axial movement

(active or inactive thrust direction).

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳi)2
, (4.4)

rpm = x22 · x44 + x7 (4.16)

rpm = x1
4 · x9

2 + x5 + x6
2 · x9 (4.17)

rpm = x7 + x14
2 · x23

2 · x38 ·
x45

(0.5 · x11)
(4.18)

rpm = −x7 · 0.5 · (x30)
2x28 · x42

2x30 + x0.7
7 (4.7)
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Table 4.7: Validation on selected models
Model MSE R2

4.5 4.38 E-3 0.9021
4.6 1.40 E-3 0.9683
4.7 4.70 E-4 0.9900
4.8 4.79 E-4 0.8394
4.9 4.73 E-4 0.8409
4.10 3.634 E-4 0.8902
4.11 4.737 E-4 0.8988
4.12 5.203 E-4 0.8219
4.13 5.090 E-4 0.824
4.14 1.472 E-4 0.967
4.15 4.296 E-4 0.8234
4.16 5.15 E-4 0.8234
4.17 4.290 E-4 0.9025
4.18 4.975E-4 0.8333
4.19 7.411 E-4 0.8150
4.20 5.05 E-4 0.8286
4.21 4.24 E-4 0.870
4.22 4.24 E-4 0.9053
4.3 4.77 E-4 0.9910

rpm =
x7

sign(x43)
− (x40) ∗ ·(x3)

2 + (x23)
2 + 2 · (x42)

2 + (x43)
2 (4.8)

rpm = xx7
31

˙(x28)
2
+ x7 − (x40)

2 · sign(x7)− (x40)
2 + (x43)

2 (4.9)

rpm = x27 +
√
(x29) (4.10)

rpm = x25 · x29 · x32 ·
x8

2

(x28 · x4)
+ x5 (4.11)

rpm = x38
2 · x4 · x45

3 + x7 (4.12)

rpm = x26 · x38
2 + x7 (4.13)

rpm = 0.3 · x29 + x1
2 · x11 · x40 + x1 · x40 + x18 + x24 (4.14)

rpm = x23
3 + x7 + x18 · x38

2 · x4
2

(0.7 · x36)
(4.15)
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rpm = x15 · x26 · x38 · x42 − x31 · x33 ·
x44

x8

+ x38 · x40 + x7 − x44 · x45 ·
x6

x4

(4.19)

rpm = x18 · x38
2 · x4 + x7 (4.20)

rpm = −0.3 · x1 · x16 ·
x42

2

x30
2
− x1 · x43 · x6 + x7 + x18 ∗ x23 · x30 · x43 ·

x45

x12

(4.21)

rpm = 0.9 · x18 · x33 · x43 · x45 + x10 · x6 − x12 · x5 + x14 · x16 · x2
38 − x42 + x5 (4.22)

In view that GP develops new equations as regression models based on equa-

tion tree structure, there will unavoidably be numerous maximum /minimal so-

lutions in the candidate solution space when applying the stochastic process de-

scribed previously. This is known to be a high modality issue. Aside from the

noticeable high modality, the population-based method to solution seeking would

result in high computation.

As a preliminary step and for the sake of having a more holistic view on the

effects of setting parameters on the targeted data application, the GP algorithm

was tested on sample set using 70% - 30% training - testing split.

Previously for ANN training , the dataset split based on 70% (Training)-15%

(Validation)-15% (Testing). Neural network training is based on 2 back propa-

gation processes, involving the forward and backward propagation. However GP

and MLR models are based on only 1 set of data which is training. Hence there

is a difference in splitting the data set. There is no ”apple to apple” comparison

in splitting the data in ANN, GP and MLR. In any case, 70% (Training), 30%

(Testing) would be considered a harder challenge as compared to 70% (Training),
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15% (Validation), 15% (Testing) because the test independent data set will fur-

ther legitimize the testing of the proposed algorithm. Therefore, we apply the

harder test for the selected algorithm (GP) against the comparison algorithms.

Two types of function sets were applied as shown in Table 3.8, where α̂ and

β̂ are two inputs applied to the functions. The basic function set consists of

four basic mathematical operations (addition, subtraction, multiplication, and

division) while the extended function set consists of more complex mathematical

operations, such as square and square root as well as absolute (| · |) functions.

The fitness evaluated is MSE from independent test data. The large differ-

ence between the mean, median and best configuration demonstrates that there

are substantial variations across configurations. The best configurations outper-

form the average configurations by a wide margin (refer to the difference between

mean, median and best). This implies that in consecutive trials with varying

generations, only the some acquire good fitness. This implies that the solution

fitness surface has many local minima regions thereby causing solution to be stuck

in local minima points. Local minima refers to a situation in optimization algo-

rithms, where the optimization process finds a minimum value (a local optimum)

that is not the global minimum, which is the true minimum value over the entire

search space. This occurs when the optimization process is trapped in a region

where the objective function has a low value, but this value is not the absolute

lowest over the entire search space. This can result in sub-optimal solutions, and

the optimization process can get stuck in a local minimum, unable to escape and

find the global minimum.

From Table 4.8, there is no obvious difference in applying either the full set

of math operators (extended function) or the basic function set. Observing that

there is not much effect in changing the maximum mathematical length with

regards to the fitness. This implies that it is not much of a link between fitness

and maximum program length. It is agreed that the maximum node lengths of

5 and 10 can be investigated further. Note that the function nodes that the tree
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is permitted to develop to optimize fitness are referred to as the program length.

The absolute error (the difference between the modelled and observed values) is

used to define the performance fitness.

Apart from the expected high variances in performance, there was no obvi-

ous pattern in determining the node depth. 10 trials were performed for every

configuration. Among the 10 trials, at least 1 trial achieved MSE of 10−3 on the

test data set (due to the random computation seed). Nevertheless, slightly better

results were acquired by observing the median of the solution fitness. Therefore,

this may not be highly substantial given that the mean performances were high

in both configurations. Moreover, it can generally be observed that there was

always an optimal solution generated in spite high average error recorded over a

number of 10 trials. Several trials were required due to the nature of the problem

being stuck in a local minima as the optimization progressed. Also, it can be seen

that there was not substantial statistical significance to eliminate or to conclude

any optimal node depth for further evaluation.

Table 4.8: Preliminary result to determine parameters
Extended Function Set

Max. Node Depth Mean Median Best

4 1.26× 1027 5.25× 10−3 5.13× 10−3

5 1.41× 1028 5.24× 10−2 2.38× 10−3

6 1.97× 1030 1.61× 1027 4.85× 10−3

7 5.39× 1026 8.28× 1024 3.63× 10−2

8 3.95× 1030 4.15× 1024 1.23× 10−3

9 3.99× 10−3 3.20× 10−3 2.71× 10−3

10 8.24× 1025 7.94× 10−3 4.87× 10−3

Basic Function Set

Max. Node Depth Mean Median Best

4 5.26× 10−3 4.77× 10−3 2.12× 10−3

5 5.66× 10−1 5.63× 10−3 3.20× 10−3

6 1.27× 1023 5.11× 10−3 1.26× 10−3

7 3.60× 1028 5.27× 10−3 1.32× 10−3

8 1.40× 10−2 4.62× 10−3 2.04× 10−3

9 1.33× 1026 5.87× 10−3 4.87× 10−3

10 4.95× 10−3 5.41× 10−3 2.18× 10−3
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4.1.2 Evaluation on Selected Model (Equation 4.3)

In the previous subsections, GP was applied to train and subsequently, the best

models were selected for further evaluation on the 20% independent dataset as

explained earlier. As an evaluation to the selected best model based on validation

data in the training phase, the corresponding regression plot (Figure 4.1) and cor-

responding histogram (Figure 4.2) shows the fitness of the acquired best model

(refer to Equation 4.3). Regression plots are common ways to evaluate visually

”goodness -of-fit”. The x axis represents the output of the prediction model while

the y axis represents the actual models based on the test data actual output. It is

observed that values greater than 0.6 are quite linear with the expected output.

However, regions less than 0.5 have lower correlation. This was investigated and

the cause can be attributed to the available data. 95% of the training data are

ranged at [0.6 1.00] (refer to the highlighted region). Further observation from

Figure 4.2 also confirm validation of this statement by observing the density of

the test data in the figure. The training phase tend to prioritize model develop-

ment based on the minimization of the training dataset error. Nevertheless, this

model (Equation 4.3) manage to score a ”goodness of fit” of 0.9044, based on R2

evaluation.

The data is independent test data reserved for test evaluation and has not

been ”seen” in the GP training phase. This model yields R2 = 0.9044 which

comparable to the R2 evaluation in the validation phase.

4.1.3 Histogram of Residuals for Sensor Abnormality De-

tection

Figure 4.3- Figure 4.7 show the residuals between model output expressed in

Equation 4.3 vs the augmented baseline data. Baseline data is the actual data

collected as described in previous section. The residuals against the various aug-

mented data is discussed in the subsequent chapters. Ideally, 100% of the residuals
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Figure 4.1: Regression plot predicted vs actual (independent test data)

Figure 4.2: Histogram of expected values and predicted values
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should fall into the center bin of 0 as shown in Figure 4.3. The slight deviation

shows sheds light on the amount of inaccuracy of the acquired regression model.

Nevertheless, the deviation from ideal case is practical as no machine learning

model is expected to output 100% accuracy. The model expressed in Equation

4.3, which uses only four features, i.e., x7, x42, x30, and x28, can be considered

as an extremely compact model compared to the MLR and ANN models, which

utilize all the 46 features. Recall that the Occam’s Razor principle in modelling

which states that a better descriptor refers to a smaller and compact model.

Degradation faults can be identified by the characteristic wider spread of the

histogram as shown in Figure 4.6. Constant faults and bias drift fault would

have multiple ”peaks” in the histogram. Lastly, noise fault can be identified by

a shifted residual mean as shown by Figure 4.7.

Theoretically, the abnormal data based on augmentation scheme proposed by

Tsai et al. (2019) can be further classified. However, noted that a limited config-

uration was presented for degradation and bias drift. In fact, there could be other

error configurations that can be introduced. This causes further classification of

complexity and may need to include a machine learning model to achieve this

purpose. Nevertheless, abnormality can be identified using algorithm without

the deployment of any complex model. The sensor is considered normal if the

majority of the obtained counts of residuals fall between -0.05 and +0.05. By

calculating the percentage of residuals in this bin, a probabilistic model may be

developed.

4.1.4 Concluding Remarks on Phase 1 Implementation

In this section, some discussion will be elaborated on the results acquired. In

the previous section, the MLR, ANN and tree based genetic programming (GP)

were applied first to model plant behavior and subsequently implementation in

sensor fault detection. ANN and MLR are competitive solution in plant mod-

elling approaches with MLR having more linear approximations as compared to
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ANN. However, linear regressions posses better interpretability as compared to

the embedded ”black box” nature of ANN. On the other hand, GP posses ”white

box” interpretability and non-linear mapping capabilities. Summary of the char-

acteristic of the 3 regression algorithms is expressed in Table 4.9 based on the

strengths and weaknesses. The ranking shown with 1 being the highest and 3

being the least. Both MLR and GP are highly interpretable given that they are

essentially equations. GP have higher transparency as they are essentially equa-

tion models generated. Non linear mapping refers to the capability of algorithm

to map the output to the inputs in non-linear correlations. This can be shown

from the R2 values shown. A higher R2 shows the capability of models to map

inputs to outputs. Referring back to Figure 3.2, these features score high fisher

correlation values (≥ 0.9). The advantages and justification of selecting GP was

explained in earlier chapters.

Table 4.9: Characteristic of approaches for modelling
ANN MLR GP

Interpretability 3 2 1
Non -Linear mapping 1 3 2

The implementation of MLR applies weightage to the individual features (x1

to x46). This provides opportunity to rank the features according to the magni-

tude of the weights. It is common for stakeholders to apply the weights obtained

as features ranking procedure. The most important features for RPM shaft pre-

diction includes x44, x41, x13, x29, x14 based on the absolute value of the weights.

Table 4.1 shows further details in the feature group. Based on this table, the

RPM shaft is mostly correlated to dry gas seal conditions, compressor and gear

box monitoring. However, this is only the case when linear MLR is considered.

In the non linear model approach, there may be other features selected when

non linear models are considered. The case in point is the model selected in

GP. In GP, non linear relationships may emerge from the inclusion of non linear

functions such as square or root square. As such, the best selected models as
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Table 4.10: Most contributive sensor group based on MLR Regression
Feature Monitoring sensor group
x44 Dry gas seal monitoring sensor
x41 Dry gas seal monitoring sensor
x13 Compressor mechanical performance monitoring sensor
x29 Gear box mechanical monitoring sensor
x14 Compressor mechanical performance monitoring sensor

Table 4.11: Features details as expressed in Equation 4.3
Feature Monitoring sensor group
x42 Dry gas seal monitoring sensor
x30 Gear box mechanical monitoring sensor
x7 Compressor thermodynamic performance monitoring
x28 Gear box mechanical monitoring sensor

expressed in Equation 4.3 shows different selection of features. Without alluding

to any feature ranking, Table 4.11 shows the details of the features selected for

the best models. Conclusion that can be made from this analysis is that models

may apply varying features as a results on non linear functions being involved.

In this case, feature training using MLR weights may not reveal much correlation

to selected features in non linear models.

Despite implementation with varying settings in GP, it is not conclusive that

there is any configuration can produce better mathematical models. The results

further solidify the notion that the fitness surface is indeed highly multimodal.

Nevertheless, from the results acquired, the best model from the population does

produce compatible results with the ANN/MLR models counterparts.

4.2 Phase 2 Evaluation: Identification of Faults

from Histogram

Recalling the error simulation methodology as proposed by Tsai et al. (2019),

the findings are listed in this section below. The histogram presents an obvi-
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Table 4.12: Preliminary result to determine parameters
Extended Function Set

Max. Node Depth Mean Median Best

4 1.26× 1027 5.25× 10−3 5.13× 10−3

5 1.41× 1028 5.24× 10−2 2.38× 10−3

6 1.97× 1030 1.61× 1027 4.85× 10−3

7 5.39× 1026 8.28× 1024 3.63× 10−2

8 3.95× 1030 4.15× 1024 1.23× 10−3

9 3.99× 10−3 3.20× 10−3 2.71× 10−3

10 8.24× 1025 7.94× 10−3 4.87× 10−3

Basic Function Set

Max. Node Depth Mean Median Best

4 5.26× 10−3 4.77× 10−3 2.12× 10−3

5 5.66× 10−1 5.63× 10−3 3.20× 10−3

6 1.27× 1023 5.11× 10−3 1.26× 10−3

7 3.60× 1028 5.27× 10−3 1.32× 10−3

8 1.40× 10−2 4.62× 10−3 2.04× 10−3

9 1.33× 1026 5.87× 10−3 4.87× 10−3

10 4.95× 10−3 5.41× 10−3 2.18× 10−3

ous approach to identify the faults from non-fault sensor readings. Accumulated

over time, most of the residual readings should fall within the histogram bin at

mean=0. The slight deviation is due to model imperfection. Hence, formally iden-

tification can be obtained with any deviation from this. In the case of constant

faults, histogram of residuals have multiple peaks as demonstrated in Figure 4.4.

Similarly, bias drift faults generate similar type of histogram profile as demon-

strated in Figure 4.5. The histogram of residuals apply ”flatter” to the distribu-

tion to other bin values. However, it can be seen that there are substantial values

at the 0 bin. The final histogram as shown in 4.7 shows the noise fault scenario.

They can be formally distinguished from a single peak observed from histogram

but not at mean value at 0. Observed from the equation that it is merely shifting

the actual value to higher value. Therefore, the residual is expected to resem-

ble non faulted residuals with shifted mean. By following the description above,

these faults can be categorized into various faults just by observing the residuals

(histogram of readings deviation).The summary of these observations correlating
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to the type of faults can be seen from Table 4.13. By observing the characteristics

of the fault from the histogram of residuals, stakeholders may be able to identify

the faults. Despite the abnormalities being simulated, the nature of the faults

(based on the description) is believed to be consistent with the observation listed

in the table with different degradation levels based on the description, the amount

of the histogram being ”flatten” may vary. However, the general characteristic of

the histogram correlating to the faults may be applied.

• Constant faults : pick successive samples, and replace them with constant

value

• Bias drift faults: pick successive samples and replace each value vi with

vi + constantvalue

• Degradation faults : pick successive samples start from i and replace value

vj with vj + degradation rate ∗ (j − i)

Noise faults : select a sensor measurement vi and multiply a factor f de-

termines the intensity of the noise fault a noise data v′i = vi ∗ f where

f = 1.2, 1.5, 2, 5, 10

Table 4.13 shows the summary of methods to identify fault types. The table is

acquired by observing the histogram of residuals as shown in Tables 4.4-4.7. The

table shows that differentiating between normal and abnormal sensor reading is

relatively trivial. In the normal conditions, there should be normal curve with

mean = 0 and should not be multiple peaks in the histogram. Constant faults

and bias drift have almost similar profile thereby causing it difficult to distinguish

between the both. Degradation faults causes the histogram to have a flatten

profile thereby can be identified easily. Noise faults are due to the presence of

noise thereby shifting the residual of mean from 0 Value.

This research only looked at one sensor anomaly. As the measurement is de-

pendent on the correlation model with other sensors, it may be slightly influenced
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Figure 4.3: GP model vs baseline data

Figure 4.4: GP model vs constant faults

79



Figure 4.5: GP model vs bias drift fault

Figure 4.6: GP model vs degradation fault
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Figure 4.7: GP model vs noise fault

Table 4.13: Identification of faults from histogram
Observations from Multiple peaks shifted mean ”flatten” Histogram
residual histograms

1 Constant faults yes no no
2 Bias drift yes no no
3 degradation faults no no yes
4 noise faults no yes no
5 Normal conditions no no no
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if numerous sensors are abnormal. Given the model’s small size (only four fea-

tures), it has the benefit of not being as influenced as an ANN or MLR model

that uses all 46 features. In other words, a model with a smaller feature set would

be more stable.

4.3 Benchmarking and Comparison with Rele-

vant Research Work

Comparison and bench marking will be discussed in this section. This section

will evaluate and compare research works that deals with failure modelling. This

will be approximate comparison since this is a specific implementation on shaft

sensors in compressor. It is noteworthy that this thesis was a top-down study

to predict abnormality using long term data. There is no exact bench marking

as this is an applied an investigation as our current approach is specifically for

compressor and niche research domain. Hence, some relevant/related comparison

will be discussed in this section. As stated, the fault data is simulated as it

is not practical to acquire real fault data. The real data were sectioned into

10 partitions and applied to generate fault data using the described approach.

This approach is commonly known as cross validation. 8 sections were used for

training and 2 partitions was used to simulate error fault. This was repeated 20

times. The recognition was implemented to differentiate normal and non-normal

distribution. By analyzing residuals that fall into the bin 0.1 with mean 0 and a

threshold of 0.95 distribution in this range, an accuracy of 100% was achieved.

However, this is based on simulated faults.

Authors in Khalastchi et al. (2013) outline a technique employing a structural

model for real-time identification and resolution of sensor malfunctions. Authors

validate this approach by applying it to Mobile Robotic system, a lab robot, and

FlightGear, a flight simulator, to experimentally assess its efficacy. The research

0.9% accuracy rate. In Guo et al. (2022), researchers implemented moving average
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analysis for energy system sensors. Using quartile analysis and statistical analysis,

a 83.96% recognition rate was acquired. In Tsai et al. (2019), authors attempted

to recognize multiple sensor degradation. In earlier section, similar simulation

of sensor fault were implemented in this thesis. A 96.00% accuracy rate was

recorded using this approach on simulated fault data.

Comparing with Khalastchi et al. (2013), Guo et al. (2022) and Tsai et al.

(2019), our current approach of using a mathematical model to model expected

output and comparing the residuals seems to suggest that approach is relevant

and comparable to other sensor diagnosis approach albeit it is noteworthy that

application wise, the environment could be different.

4.4 Discussion

In this chapter, the results are presented in 2 phases. It needs to be reiterated that

low frequency data (10 minutes interval) is implemented for this research project.

Higher frequency data would be computationally expensive for data storage. The

first phase deals with building a GP model that best describes prediction of RPM

sensor values based on other sensor values. GP approaches enable the genera-

tion of candidate mathematical models which exhibits ”white box” characteristic

rather than embedded ”black box” model. ”Black box” models are defined as

machine learning models that cannot be explained by stakeholders despite able

to perform well. It was found that GP models generated exhibit high perfor-

mance variances. The best model was selected and tested with independent data

set yields performance of R2 = 0.9044. Subsequently, this model was applied

for a detection of sensor (Phase 2). We consider only a single RPM sensor at

the moment. Histogram of residuals was calculated that reveals the abnormality.

The normal operating mode would yield a histogram of residuals centered at 0.

As stated earlier in the assumption is that the faulty sensor reading at this stage

are simulated. Nevertheless, the results section does indicate the working concept

proposed and fulfills the research objectives stated.
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Chapter 5

Conclusion and Future Works

In the previous chapters, various aspects of the research project was deliberated

and they intend to solve 2 research gaps. The first research gap deals with the

inability of current strategies to make use of existing algorithms to detect ab-

normality from ”data logs”. The complexity lies in the frequency update rate

of 10 minutes that makes usage of dynamic analysis (such as LSTM, RNN). As

such, a solution was proposed to apply static approach to predict the residual

(between observed and predicted). The second research gap lies in the percep-

tion that persist in the usage of machine learning models specifically those that

appears to be ”black box”. For example, consider the Neural network which has

been widely deployed for data driven models. The scholarly approach provides

some investigation on enhancing the optimality and tuning of neural network.

Despite ongoing for almost 2 decades, this approach still does not offer much

improvement in debunking the interpretability of the working models, this may

lead to doubt and resistance of usage. In order to cater to this specific research

gap, a math based model was preferred over the black box models. The discus-

sion on the applicability of non interpretable machine learning models is a well

known among industrial application practitioners as deliberated in Rudin (2019).

The deliberation presented in Rudin (2019) offers explanation on the difference

between explaining black boxes and using inherently interpretable models, lists
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several important arguments against using explainable black boxes in high-stakes

decisions, discusses obstacles to interpretable machine learning, and offers a num-

ber of examples where black box models might be replaced by interpretable ones

in the fields of criminal justice, healthcare, and computer vision. As such, in this

proposed solution, a Genetic programming approach was implemented to obtain

a generated mathematical models which is interpretable. The solution offers com-

pactness in solution in line with the ’Occham’s Razor’ principle. This principle

states that when presented with 2 models of system, the simper and more com-

pact model should be adopted. Therefore, even in the presence of equivalent

Neural network, a mathematical model should be considered. This is considered

as a strong justification to the approach.

5.1 Achievement of Objectives

Recall in Chapter 1, 2 objectives were proposed:

1) Implement an approach to detect the faults in sensors by only using low

frequency data logs.

2) Implement and modelling as much as possible using ”White box” model

approach (explainable AI approach).

In achieving objective 1, the proposed algorithm implements a short to long

term data evaluation and evaluates the abnormality of the sensor. The residual

histogram gives indication on the health of the sensor. The residual was attained

by evaluating the difference between the observed vs the normal. The abnormal

sensor data was simulated based on the methodology proposed by Tsai et al.

(2019), It is assumed that the data for training is sensor normal function as no

abnormality was reported in the span of data collection.

As for objective 2, the prediction model utilizes GP to generate a mathemat-

ical equation contrary to conventional ”black box” models. The best equation
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model was discussed.

5.2 Future Investigations

Despite the achievement of proving the concept of sensor fault using independent

portion of data log (20%) and subsequently model agreement (evaluated using

R2 = 0.9044), there are still several improvements that can be considered for this

research. Firstly, one of the primary improvements to be considered is related

to the dataset itself. Although it is universally accepted that it is impossible

to have perfectly balanced data set. In the current data, 95% of data output

(RPM sensor) is ≥ 0.6. This is unavoidable as there is only very few cases of

pressure drop (abnormality). Most of the time, the shaft RPM output should be

at 8000 rpm. In this problem, there is only a few solutions available and they

involve synthetic generation of data. One such solution is the SMOTE approach

(synthetic Minority Oversampling Technique). The approach applies a form of

inverse KNN (KTH Nearest Neighbor) to infer possible synthetic datasets. As

the name implies, implementation of this method is not without reproach. The

data are obviously synthetic and one could argue if such approach is feasible for

such an important facility. The alternative to this is massive collection of data

and manually selected such that the histogram of instances are almost constant.

This would be not a economical approach given the research time allocated for

this research. Hence, this could be a dilemma than can be resolved in the future.

Another important aspect that was considered is the simulation of sensor

fault data. It was explained earlier, the sensor fault was simulated based on the

methodology proposed by (Tsai et al., 2019). It is noteworthy that this is still

a simulated approach since installation of faulty sensor would not be feasible.

However, there is still room in the future research to investigate on the various

and more realistic approach in simulating with sensor faults.

As a future path of this study, the residuals may enable further categorization

into the various forms of sensor anomaly. However, given the varying degrees
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of mistake, this work is difficult. It is sufficient to infer at this point that the

suggested strategy for detecting anomaly utilizing enriched data set is effective.

Most importantly, the regression mathematical model developed using GP is small

and ideal for usage in Programmable Logic Controllers (PLCs) or offline periodic

detection.

5.3 Concluding Remarks

Compressors play an important role in various plants systems especially in the

context of oil and gas plants. While most the research are focused on detecting

faults of compressors, another aspect that are often overlook are the health status

of the compressors. This is more critical in compressor system as the sensors are

operating in harsh environment. While the principles discussed in this thesis

can be generalized to sensors, the discussion have been centered on compressors

system due to the stakes of the sponsor for this study. With this established,

further considerations have been made on the types and methods of detection.

From the literature review, methods pertaining to detection of faults in equipment

or sensor systems normally falls under 2 major category: dynamic or static. The

first category focuses on the pattern of changes in the readings. This is certainly

more complex without guaranteeing better results. The second category doesn’t

need to capture the changes of the data with respect to time. In this aspect, the

2nd method is more feasible for most of the applications involving compressor. In

this case, data were acquired using a 10 minute logging system thereby effecting

rendering dynamic approach non -feasible approach.

In the previous chapters of the thesis, motivations leading up to the results

and discussion sections were presented. Implementing any algorithms that are

”black box” in nature high risk and may not serve as a good ”ambassador” to

encourage adoption into the industry. By stating this as the primary motivations,

what is desired is to have a mathematical model that represents the relationship

between the sensor values.
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As a concluding remark, the major objective of this thesis is to establish a

method for generating mathematically based regression models that would effec-

tively detect abnormalities utilizing data logs. It is worth mentioning that the

fundamental benefit of using GP is the ”white box” character of produced equa-

tions. This is impossible to do with the ANN. Furthermore, the gradient per

permutation in GP is high so that the fitness surface becomes highly multimodal.

As a result, comparing to ANN or MLR equivalents, it would need several trial

runs with larger populations. Nevertheless, it can be stated that the GP pro-

duces the most ”white box” model as compared to other approaches due to the

mathematical model generation approach.
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Appendix A: List of Machine

Sensors

• x1: Compressor & Condensate Export Tilted Plate Coalescer V-270

• x2: Compressor & Condensate Export Tilted Plate Coalescer V-280

• x3: Compressor & Condensate Export Suction Scrubber Level

• x4: Compressor Thermodynamic Performance Monitoring Suction Pressure

(barg)

• x5: Compressor Thermodynamic Performance Monitoring Discharge Pres-

sure (barg)

• x6: Compressor Thermodynamic Performance Monitoring Suction Tem-

perature (◦C)

• x7: Compressor Thermodynamic Performance Monitoring Discharge Tem-

perature (◦C)

• x8: Compressor Mechanical Performance Monitoring Vibration Drive End

Radial X (µm)

• x9: Compressor Mechanical Performance Monitoring Vibration Drive End

Radial Y (µm)

• x10: Compressor Mechanical Performance Monitoring Vibration Non-Drive

End Radial X (µm)
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• x11: Compressor Mechanical Performance Monitoring Vibration Non-Drive

End Radial Y (µm)

• x12: Compressor Mechanical Performance Monitoring Axial Position A

(mm)

• x13: Compressor Mechanical Performance Monitoring Axial Position B

(mm)

• x14: Compressor Mechanical Performance Monitoring Drive End Radial

Bearing Temperature (◦C)

• x15: Compressor Mechanical Performance Monitoring Thrust Bearing Ac-

tive Temperature 1 (◦C)

• x16: Compressor Mechanical Performance Monitoring Thrust Bearing Ac-

tive Temperature 2 (◦C)

• x17: Compressor Mechanical Performance Monitoring Non-Drive End Ra-

dial Bearing Temperature (◦C)

• x18: Compressor Turbine Thermodynamic Performance Monitoring Com-

pressor Discharge Air Pressure (barg)

• x19: Compressor Turbine Mechanical Performance Monitoring Gas Gener-

ator Bearing #1 Vibration (mm/s)

• x20: Compressor Turbine Mechanical Performance Monitoring Gas Gener-

ator Bearing #2 Vibration (mm/s)

• x21: Compressor Turbine Mechanical Performance Monitoring Power Tur-

bine Bearing #4 Vibration (mm/s)

• x22: Compressor Turbine Mechanical Performance Monitoring Power Tur-

bine Bearing #5 Vibration (mm/s)
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• x23: Gearbox Mechanical Performance Monitoring High-Side Shaft Drive

End Radial Vibration X (µm)

• x24: Gearbox Mechanical Performance Monitoring High-Side Shaft Drive

End Radial Vibration Y (µm)

• x25: Gearbox Mechanical Performance Monitoring High-Side Shaft Non-

Drive End Radial Vibration X (µm)

• x26: Gearbox Mechanical Performance Monitoring High-Side Shaft Non-

Drive End Radial Vibration Y (µm)

• x27: Gearbox Mechanical Performance Monitoring Low-Side Shaft Drive

End Radial Vibration X (µm)

• x28: Gearbox Mechanical Performance Monitoring Low-Side Shaft Drive

End Radial Vibration Y (µm)

• x29: Gearbox Mechanical Performance Monitoring Low-Side Shaft Non-

Drive End Radial Vibration X (µm)

• x30: Gearbox Mechanical Performance Monitoring Low-Side Shaft Non-

Drive End Radial Vibration Y (µm)

• x31: Gearbox Mechanical Performance Monitoring Low-Side Shaft Axial

Position (mm)

• x32: Gearbox Mechanical Performance Monitoring High-Side Shaft Non-

Drive End Radial Bearing Temperature (◦C)

• x33: Gearbox Mechanical Performance Monitoring Low-Side Shaft Drive

End Radial Bearing Temperature (◦C)

• x34: Gearbox Mechanical Performance Monitoring Low-Side Shaft Non-

Drive End Radial Bearing Temperature (◦C)
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• x35: Gearbox Mechanical Performance Monitoring Low-Side Shaft Thrust

Bearing Temperature 1 (◦C)

• x36: Gearbox Mechanical Performance Monitoring Low-Side Shaft Thrust

Bearing Temperature 2 (◦C)

• x37: Turbine Enclosure Monitoring Temperature (◦C)

• x38: Turbine Enclosure Monitoring Differential Pressure (mbar)

• x39: Dry Gas Seal System Monitoring Primary Seal Gas Supply Pressure

(barg)

• x40: Dry Gas Seal System Monitoring Separation Gas Supply Pressure

(barg)

• x41: Dry Gas Seal System Monitoring Drive End Primary Vent Pressure

(barg)

• x42: Dry Gas Seal System Monitoring Non-Drive End Primary Vent Pres-

sure (barg)

• x43: Dry Gas Seal System Monitoring Seal Gas Filter dP (bar)

• x44: Dry Gas Seal System Monitoring Seal Gas dP (barg)

• x45: Compressor & Condensate Export E-2410A/B Discharge Temperature

(◦C)

• x46: Compressor & Condensate Export E-2410A/B Discharge Temperature

(◦C)
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