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A B S T R A C T   

Vision transformers (ViTs) are a new class of deep learning algorithms that have recently emerged as a 
competitive alternative to convolutional neural networks. In this investigation, their application to two opera-
tions previously studied in the mineral processing industry is considered. These are image recognition of fines in 
coal particles on conveyor belts and characterisation of the particle size in the underflow of a hydrocyclone. 
Promising results were achieved by use of vision transformers, as they performed as well as, or better than 
convolutional neural networks in these image recognition problems. In addition, features extracted from the best 
ViT model could be used to visualise its performance and these features could also serve as a basis for nonlinear 
process monitoring models. Furthermore, explainability techniques such as attention maps for ViTs were 
implemented to better understand the ViT models, similar to techniques such as occlusion sensitivity maps used 
with convolutional neural networks.   

1. Introduction 

From early developments in the 1970s and 1980s, image-based 
sensor systems have become established as an important component in 
plant automation. Image analysis can comprise different operations of 
various complexity, ranging from the identification of operational con-
ditions based on image classification (e.g. Weixing and Liangqin, 2016), 
through to object identification in images based on image segmentation 
(e.g. Ghorbani et al., 2011; Wang et al., 2016; Wang and Chen, 2016) or 
higher-level image understanding (e.g. Qi et al., 2020; Hu et al., 2022). 

In particular, multivariate image analysis, where the images are 
treated as patterns associated with process conditions, have become well 
established in the flotation industries (Aldrich et al., 1997; Runge et al., 
2007; Duchesne, 2010; Aldrich et al., 2010,2022), and are also used for 
example in monitoring of particulate feeds on conveyor belts in mining 
and metallurgy (Miranda et al., 2012; Kistner et al., 2013; Li et al., 2022; 
Siami et al., 2022), hydrocyclone underflows (Olivier and Aldrich, 2021; 
Olivier et al., 2022), ore texture classification (Yacher et al., 1986; 
Tessier et al., 2007; Marchetti et al., 2022; Tang et al., 2022) and furnace 
operations (Lu and Wen, 2021; Nagadasari and Bojja, 2022; Popov and 
Todeschini, 2022). 

Owing to their deep architectures and large parameters sets, con-
volutional neural networks (CNNs) have essentially displaced tradi-
tional approaches in image recognition as the state-of-the-art in a 
rapidly increasing number of application scenarios. On the downside, 
these networks are computationally expensive and typically require 
high performance computing environments to train and maintain. 
Moreover, in some applications, CNNs’ inability to adequately capture 
the structural dependency between its features may inhibit their scal-
ability to more generalised image interpretation (Guo et al., 2022). 

In contrast, transformers (Khan et al., 2022) are deep neural network 
architectures that have originated from a need to address the challenges 
associated with natural language processing (Worsham and Kalita, 
2020; Peer et al., 2022). Like their CNN counterparts in image pro-
cessing, transformers have very rapidly become the dominant archi-
tecture used in natural language processing (Han et al., 2022). Vision 
transformers (ViTs) are transformer architectures adapted to image 
processing, where instead of processing sequences of words, they pro-
cess sequences of images or image patches. 

Vision transformers are rapidly rising as a competitive alternative to 
CNNs, owing to their superior scalability to larger databases, smaller 
image-specific inductive biases, higher computation efficiency, their 
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ability to handle sequences of images, as well as being capable of 
interpreting structural dependencies between image features. 

Recent work has shown that ViTs can achieve comparable or superior 
performance on image classification tasks at a significantly lower cost, 
although the results of comparative studies may vary. For example, Tuli 
et al. (2021) have among other shown that a ViT-B32 model was 
significantly more accurate than a Resnet-50 CNN model when bench-
marked on variants of the ImageNet image data set. Dosovitskiy et al. 
(2021) have likewise found that vision transformers outperformed CNNs 
on various benchmark data sets, albeit by a very narrow margin. Dein-
inger et al. (2022) have compared the DeiT-Tiny vision transformer with 
ResNet-18, a state-of-the-art convolutional neural network in the 
recognition of tumors and have found that the ViT performed slightly 
better than the CNN for three of four tissue types. Hütten et al. (2022) 
have shown that vision transformers significantly outperform CNNs on 
complex tasks. In contrast, Fanizzi et al. (2023) have concluded that 
transformers did not perform better than CNNs in predicting the 
recurrence of non-small cell lung cancer. 

As a consequence, vision transformers are becoming well-established 
in different fields, where image analysis plays an important role, e.g. the 

health sciences (He et al., 2022) and face recognition (Luo et al., 2022). 
ViTs have only very recently started to attract interest in the process 

industries, such as geometallurgy and mineral prospecting and mineral 
identification (Cui et al., 2022; Gao et al., 2024), mineral processing (Liu 
and Aldrich, 2023) and remote sensing (Wang et al., 2022). In some of 
these studies, the proposed ViT models showed better and more robust 
recognition than CNNs. However, very few studies have been docu-
mented to date, and the potential benefits of ViTs to image analysis in 
mineral processing is not well-established at present. 

Therefore, in this study, the use of ViT neural networks designed to 
identify different concentration levels of fines in coal particles on 
conveyor belts, as well as the particle size analysis in hydrocyclone 
underflow image data is considered and compared with previous results 
obtained with traditional methods, as well as with deep convolutional 
neural networks. The results suggest that their performance can match 
or exceed that of traditional methods and CNNs and that ViTs are 
therefore a new class of deep learning methods that show exceptional 
promise in the development of sensors in mineral processing. 

Section 2 of the paper gives a high-level overview of the analytical 
methodology followed in the paper, after which Sections 3 and 4 present 

Fig. 1. Basic analytical workflow for multivariate image analysis with ViT and CNN deep learning models.  

Fig. 2. Generic image processing with a vision transformer.  
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two case studies. In Section 5, the conclusions of the paper are 
summarised. 

2. Analytical methodology 

The basic analytical steps involve the acquisition of images, pre-
processing of the images, extraction of features from the images and use 
of these features in models capturing the relationships between the 
images and their labels, as indicated in Fig. 1. Preprocessing of the im-
ages could include removal of outliers (corrupted images) and resizing 
of the images where necessary. Data augmentation is also common, 
where the image database is enlarged by flipping of images, rotation or 
other means. Enhancement of the image contrast and centring the pixel 
values around zero can also be useful in scenarios where lighting con-
ditions vary. 

Both convolutional neural networks and vision transformers make 
use of internal feature extraction guided by their ability to predict the 
labels. This is a more powerful approach than traditional methods that 
depend on engineered features and the main reason for the success of 
these deep learning methods over their more traditional counterparts. 

2.1. Vision transformers 

With ViTs, image classification problems are cast as sequence pre-
diction tasks for series of image patches. This enables them to capture 
long-term dependencies within the input image. CNNs do not have this 
capability. In contrast, they learn to extract features hierarchically from 
images, among other owing to their use of progressively enlarged 
receptive fields. Interested readers could refer to the seminal or review 
papers by among other Vaswani et al. (2017), Dosovitskiy et al. (2021), 
Khan et al. (2022) and Han et al. (2023). 

Image processing with vision transformers broadly consists of the 
following steps, as outlined in Fig. 2 and briefly summarised below:  

i. Splitting of images into a series of image patches of a given size 

More formally, an image of size L × B with C channels, X ∈ RL×B×C is 
used to generate 1, 2,⋯N = LB/P2 flattened square image patches of size 
P that can be denoted as Xp ∈ RN×P2C. For simplicity, image patches are 
square.  

ii. Generating linear lower-dimensional embeddings from the flattened 
patches 

Typically by passing through a feedforward layer with a linear 

activation, to generate N × D patch vectors with embedding hyper-
parameter D, i.e. Xp′ ∈ RN×D To this a learnable class embedding vector is 
added to give vectors, Xp˝ ∈ R(N+1)×D.  

iii. Adding positional information to the embeddings 

Positional encoding vectors are usually added to the D-dimensional 
patch vectors Xpos ∈ R(N+1)×D. This gives linearly embedded patch vec-
tors Z = Xp˝ + Xpos ∈ R(N+1)×D.  

iv. Presentation of this sequence to a standard transformer encoder  
a. The encoder layer of the transformer consists of multiple encoder 

blocks. Each block contains a multihead attention unit and a 
multilayer perceptron, followed by a normalisation layer. In this 
block, the input vector Z is thrice duplicated and multiplied by 
D × D weight matrices, WQ, WK and WV to obtain a query, key 
and value matrix, Q ∈ R(N+1)×D, K ∈ R(N+1)×D and V ∈ R(N+1)×D.  

b. The dot product of Q and K is determined, normalized by dividing 
by the square root of D to obviate the vanishing gradient problem 
during training of the network. The normalised dot product is 
passed through a softmax layer and multiplied by V to produce 
the output or head H of the block.  

c. The scaled dot products of each of the attention heads are 
concatenated and passed through a multilayer perceptron or 
dense layer to generate a final vector of embedded dimension D.  

d. In the end, the Z input vector is passed through multiple such 
encoder blocks to produce a final context vector C. In this context 
vector, the context token c0, which in the final instance is passed 
through a multilayer perceptron to generate the class 
probabilities. 

As a very first introduction and application of vision transformer 
models in the field of mineral processing, two relatively basic or early 
variants of ViT models are adopted to demonstrate their capability, viz 
ViT-B32 and ViT-B16. These models are popular choices in many ap-
plications, where B (for ‘base’) is an informal descriptor of the archi-
tecture, as opposed to large (L) or huge (H), for example, while the ’16’ 
and ’32’ indicate the 16 × 16 and 32 × 32 patch sizes used by the models 
(Dosovitskyi et al., 2021). This means that ViT-B32 has a larger recep-
tive field than ViT-B16, which can be beneficial for better capturing 
global features in the image. However, this comes at the cost of 
increased computational complexity and memory usage. 

Both models are pretrained on the ImageNet-21k dataset and fine- 
tuned on the ImageNet-1k dataset. The ImageNet database (htt 
ps://image-net.org/) consists of more than 14 million annotated 

Fig. 3. Simplified architecture of a convolutional neural network.  
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images of 1000 common objects (Russakovsky et al., 2015), of which the 
above are subsets commonly used for benchmarking purposes. This 
image database also formed the basis of the ImageNet Large Scale Vision 
Recognition Challenge (https://image-net.org/challenges/LSVRC/) that 
was held from 2010 to 2017. 

By use of the transfer learning mode, the input images were resized 
to 224 × 224 resolution for these two models. ViT-B32 model has 12 
transformer layers, 88.3 million trained parameters and its patch size is 
32 × 32 (Dosovitskyi et al., 2021). ViT-B16 model also has 12 trans-
former layers with slightly fewer trained parameters (86.86 million). 
The patch size is 16 × 16. The smaller the patch size the model has, the 
more resource-intensive the model is, owing to the inversely propor-
tional relationship between the model’s length sequence and the patch 
size square. 

Moreover, it should be noted that since images presented to the 
pretrained vision transformers are resized to 224 × 224 pixels, this 
meant that with the differences in patch sizes of the two models, the ViT- 
B32 model produced a sequence of vectors from (224/32)2 = 49 patches, 
and the ViT-B16 model produced a sequence of vectors from (224/16)2 

= 196 patches. 
As can be seen from the architecture of ViT models, they effectively 

use the position information of the patches to greatly reduce the 
computational complexity. ViT has less image-specific inductive bias 
than CNNs and can handle arbitrary sequence lengths (subject to 
memory constraints). 

2.2. Convolutional neural networks 

The basic architecture of a convolutional neural network is shown in 
Fig. 3. CNN architectures are mainly composed of three consecutive 
sections, that is, an input section, a feature extraction section and an 
output section. Images at the input at a required size are passed through 
the whole architecture. Features which represent the images are 
extracted internally by use of convolution and pooling. These features 
are presented to the fully connected layers that act as the classifier and 
finally the predicted labels are obtained at the output layer. 

Two popular CNN models were used in this work, namely GoogLeNet 
(Szegedy et al., 2015) and MobileNetV2 (Sandler et al., 2019). These 
networks had been pretrained in the ImageNet database and to enable 
transfer learning, the input images were resized to 224 × 224 resolution 
for each of these two models. 

GoogleNet (Szegedy et al., 2015), or Inception V1, was developed by 
Google and its research partners. It was the winner of the ILSVRC 
competition in 2014. Its architecture is featured by 1 × 1 or pointwise 
convolutions, global average pooling, as well as inception modules. It is 
22 layers deep and contains approximately 7 million trained parameters 
or weights. 

MobileNet (Howard et al., 2017) is a relatively novel and lightweight 
convolutional neural network architecture adapted for use on mobile 
devices by significantly decreasing the number of operations and 
memory required, without sacrificing accuracy. Its architecture is 
characterised by inverted residual blocks with linear bottlenecks. It 
takes a low-dimensional compressed representation as input, which is 
subsequently expanded to a higher dimension and filtered using light-
weight depth-wise convolution. Afterwards, linear convolution is used 
to project the features back to a low-dimensional representation. It is 53 
layers deep, but contains only 3.4 million trained parameters. 

3. Case Study 1: Detection of fines in particulate coal feeds 

In unit operations, such as metallurgical furnaces or fluidised beds in 
power plants dependent on coal or coke feed material, the fines content 
in the feed needs to be monitored closely to prevent an excess of fines 
that could have a critical, adverse impact on the performance of process 
system (Aldrich et al., 2010). 

In this case study, a dataset of coal ore piled on a pilot-plant conveyor 
belt, as discussed by Jemwa and Aldrich (2012), was considered here to 
classify the coal ore in terms of the bulk fraction of fines or fines content. 
The proportion of fines or fines content is defined as the percentage of 
particulates passing a 6 mm sieve size (% − 6 mm). A total of seven 
classes of coal particles with varying fines compositions (0 %, 20 %, 40 
%, 50 %, 60 %, 80 %, 100 %) were manually prepared by sieving a batch 
of industrial coal into two parts—fines and coarse—and then taking 
properly weighted aggregates from each part in the required ratio. 

Partial simulation of the industrial conditions was realised by mixing 
and distributing each blended aggregate onto a pilot plant moving 
conveyor belt equipped with a hopper. 10 images of each mixture were 
captured. In this case study, each original high-resolution 2272 × 1704- 
pixel image was split into 16 smaller 568 × 426-pixel images. An 
example of each of these original images is shown in Fig. 4. The South 
African R5 coin with a diameter of 26 mm in each image serve as an 
indication of the actual particle sizes. 

Fig. 4. Exemplars of original 2272 × 1704 images of pilot plant coal ore on a conveyor belt associated with Classes A-G considered in Case Study 1. As an indication 
of scale, the diameter of a bimetallic South African R5 coin shown in each image is 26 mm. The fines content of each image is indicated in parentheses. 

X. Liu and C. Aldrich                                                                                                                                                                                                                          

https://image-net.org/challenges/LSVRC/


Minerals Engineering 208 (2024) 108599

5

Further analysis was restricted to these smaller images, so that as a 
result, each class contained 160 images and the whole dataset contained 
1120 images in total. The appearance of the coal ore on the conveyor 
belt was cast as a textural pattern recognition problem and the results 
are reported based on the smaller 568 × 426-pixel images. 

The two convolutional neural networks, namely GoogLeNet and 
MobileNetV2 and the two vision transformers, ViT-B32 and ViT-B16 
were trained to classify images as belonging to one of the seven clas-
ses shown in Fig. 4. 

3.1. Classification of coal particles with convolutional neural networks 

GoogLeNet and MobileNetV2 were used as representative of high 
performance CNNs. As suggested in a previous study by the authors (Liu 
and Aldrich, 2022), transfer learning strategy makes a marked differ-
ence, even when dealing with small data sets, and full retraining is 
recommended when sufficient computational resources are available. 
Therefore, full retraining or fine-tuning was used, that is, all the train-
able parameters in the CNNs were updated during the training process. 

3.2. Classification of coal particles with vision transformers 

In the second approach, coal particle images were identified from 
features extracted by use of two basic ViTs, viz. ViT-B32 and ViT-B16. 
Similarly, all the trainable parameters in the ViTs were also updated 
during the training process. 

The convolutional neural networks used in Case Study 1 were built 
using a PyTorch backend, while the vision transformers were con-
structed using a TensorFlow backend. All the experiments were run on a 
GPU device on the Google Colab platform. 

During retraining of the CNNs or ViTs, images of the coal particles 
were randomly split into training and test data sets in a ratio of 8:2, with 
the latter used as an independent test set to validate the generalization of 
the deep learning models. The training set was further randomly shuf-
fled, and 75 % of it was used to train the models, while the remaining 25 
% was allocated to a validation image data set. This was done on a four- 

fold basis. After training was completed, the models were tested with the 
test data set not used during training and validation of the models. This 
is illustrated in Fig. 5. 

The adaptive momentum estimation (ADAM) algorithm (Kingma & 
Ba, 2017) was used as the optimizer in this work. Hyperparameter 
optimization was done by use of a grid search. Different optimal learning 
rates with or without an L2 penalty were applied to different CNNs or 
ViTs. For most models, the optimal initial learning rate was 0.0003 with 
a weight decay parameter of 0.00003 (L2 penalty). 

The optimal batch sizes and numbers of epochs varied as well. For 
most models, the optimal batch size was 64 and the optimal number of 
epochs was 50. In order to deal with overfitting, image augmentation 
was used in the training stage by randomly rotating, shearing, shifting 
and horizontally flipping the original images. The fully retrained CNN 
and ViT models were used as end-to-end classifiers to discriminate be-
tween the seven classes of coal particles. 

The classification performance of the different models is summarized 
in Table 1, together with the number of features associated with each 
model. The ViT-B32 model achieved reasonably good performance with 
an accuracy of 68.8 %. This is comparable to the results from the two 
fully retrained CNN models, ranging from 70.5 %~71.9 %. Furthermore, 
the classification accuracy with the ViT-B16 model was improved by a 
large margin (~10 %) to 81.3 %. Considering the much faster training 
speed of ViT models, ViT-B16 is the best model in Case Study 1. 

The discriminative power of the different models can be further 
assessed by visualising the features extracted from the images by use of a 
t-distributed stochastic neighbour embedding (t-SNE) score plot (Van 
der Maaten and Hinton, 2008). The features were extracted from the 
“ExtractToken” layer for each of the two ViT models, as well as the layer 
immediately preceding the last fully connected layer for each of the two 
CNN models. These were the features that essentially served as the 
predictors of the fully connected front-ends of the networks responsible 
for final classification of the images. Fig. 6 shows the t-SNE score plots of 
the features extracted from the different models with the corresponding 
classification accuracy. In these graphs, the seven classes, S00, S20, S40, 
S50, S60, S80 and S100 are respectively represented by ‘black dot’, ‘red 
plus’, ‘light blue asterisk’, ‘dark blue star’,’green triangle’, ‘magenta 
diamond’ and ‘yellow circle’ markers. 

The two fully retrained CNN features and the ViT-B32 features form 
seven relatively sharply delineated clusters in the feature space and thus 
can separate most of the seven classes very well, although class S50 
seems to contribute to most of the overlap. In contrast, ViT-B16 features 
form more distinguishable clusters, especially for class S50, which can 
be further confirmed from its confusion matrix on the test set, as shown 
in Table 2. 

It should also be noted that these results are also significantly better 

Fig. 5. Training, validation and test data used during development of the ViT models.  

Table 1 
Classification performance of deep learning architectures on the test image data 
set in Case Study 1.  

Model Number of Features Accuracy (%) 

GoogLeNet 1024  70.5 
MobileNetV2 1280  71.9 
ViT-B32 768  68.8 
ViT-B16 768  81.3  
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than what had been achieved by Jemwa and Aldrich (2012), using 
optimised textons to extract features from the images that then served as 
predictors to support vector machines. Their best model had an overall 
average accuracy of 66.9 % compared to ViT-B16′s 81.3 %. Moreover, 

the vision transformer was able to identify the 20 % class with a 78.1 % 
accuracy, as opposed to approximately 52 % previously documented by 
Jemwa and Aldrich (2012). This is significant, as the class is particularly 
relevant to industrial operations. 

3.3. Attention maps 

Finally, it is also possible to generate so-called attention maps with 
ViTs (Abnar and Zuidema, 2020). As the name suggests, these maps 
show areas in the images that are weighted more heavily in others when 
the image is classified. Examples of these maps using ViT-B16 model are 
shown in Fig. 7. The first and second columns are the class name and the 
original image, respectively. The third column is the attention map 
obtained from ViT_B16 without fine-tuning by simply passing the orig-
inal image through the untrained model, and this column is presented 
here for better comparison. The approximate measure of scale shown on 
original images are in mm and this varied, as the original images were 

Fig. 6. t-SNE score plots of the features extracted from the images in Case Study 1. Top panel (left: ViT-B16, right: ViT-B32). Bottom panel (left: MobileNetV2, right: 
GoogLeNet). Classes S00, S20, S40, S50, S60, S80 and S100 are respectively represented by ‘black dot’, ‘red plus’, ‘light blue asterisk’, ‘dark blue star’,’green tri-
angle’, ‘magenta diamond’ and ‘yellow circle’ markers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Confusion matrix on test set for fine-tuned ViT-B16 in Case Study 1.  

Confusion Matrix Predicted 

S00 S20 S40 S50 S60 S80 S100 

Actual S00 29 2 0 0 1 0 0 
S20 2 25 1 3 1 0 0 
S40 0 1 23 4 3 1 0 
S50 2 2 2 21 4 1 0 
S60 0 0 1 3 27 1 0 
S80 0 0 1 0 2 26 3 
S100 0 0 0 0 0 1 31  
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not taken with a completely fixed camera setup. 
The last column is the attention map obtained from ViT_B16 after 

fine-tuning. The more heavily weighted, the brighter the specific area is. 
It should be noted that attention maps are not necessarily particularly 
informative when dealing with textural images, such as these images of 
coal particles, as image features may be interpreted collectively to 
identify patterns. 

Nonetheless, as indicated by these maps, it seems as if the vision 
transformer took its cues from the reflections and the associated high-
lighted pixels, as well as the edge profiles of the coarser particles in the 

classification of the images. In contrast, the finer particles seemed to 
have received less attention. This is somewhat similar to how human 
eyes may see these images, that is, attention is more likely to be captured 
by the coarser particles with specific reflections and more pronounced 
edge profiles. 

4. Case Study 2: Analysis of hydrocyclone underflow streams 

In the second case study, a dataset of hydrocyclone underflow images 
collected from experiments on a laboratory hydrocyclone setup at 

Fig. 7. Examples of attention maps of coal ore images generated with ViT-B16, showing images from classes S00 to S100 from top to bottom respectively. The left 
column (with scale in mm) shows the image, while the middle and right columns show the areas that the transformer focused on during classification of the images. 
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Stellenbosch University in South Africa was considered. These data 
obtained from platinum metal group ores obtained from the Merensky, 
Platreef and UG2 reefs in the Bushveld Igneous Complex in South Africa 
are discussed by Aldrich et al. (2015) and Olivier and Aldrich (2021) and 
are revisited in this case study, focusing on classification of the mean 
particle sizes in the underflow. 

During the experiments, both streams of underflow and overflow are 
fed back into a mixing tank, creating a closed-circuit slurry flow. 
Varying particle size distributions in the underflow were obtained by 
conducting experiments at different solids loadings in the mixing tank. 
The system reached stabilized after each increase in the solids loading, 
and then the underflow images were collected. 

Simultaneously, samples of the overflow and underflow streams 
were collected, and each sample’s particle size distribution determined 
using sieve analysis and a Saturn DigiSizer laser particle size analyser. 
15 such experiments yielded a total of 300 images of the hydrocyclone 
underflow with mean particle sizes ranging from 47 to 1400 μm. The 
images were grouped into three classes (Fine, Intermediate and Coarse) 

based on the mean particle size measured. Examples of these images are 
shown in Fig. 8. The number of images associated with the Fine, Inter-
mediate and Coarse classes were 100, 40 and 160, respectively. 

The same framework for classification of the different classes as in 
Case Study 1, was used in Case Study 2. The same training procedure 
was followed as in the first case study. The only difference was that the 
split ratio of training and test sets was 0.7:0.3 in Case Study 2. The 

Fig. 8. Typical images of the hydrocyclone underflow of the PGM slurries associated with the three classes (from left to right: Fine, Intermediate and Coarse) in Case 
Study 2. The size range for each class is indicated in parenthesis. The 32 mm spigot diameter of the hydrocyclone, as indicated in the panel on the right in the figure, 
serve as a measure of scale. 

Table 3 
Comparison of deep learning models on the test set of images in Case Study 2.  

Model Number of Features Accuracy (%) 

GoogLeNet 1024  92.2 
ViT-B32 768  93.3 
ViT-B16 768  96.7  

Fig. 9. Visualisation of the features generated by the ViT-B16 (left) and ViT-B32 (right) from images of the hydrocyclone underflow considered in Case Study 2. Fine, 
intermediate and coarse particles are indicated by red squares, black circles and blue star markers respectively. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Table 4 
Confusion matrix on test set for fine-tuned ViT-B16 in Case Study 2.  

Confusion Matrix Predicted 

Intermediate Fine Coarse 

Actual Intermediate 11 0 1 
Fine 2 28 0 
Coarse 0 0 48  

Table 5 
Confusion matrix on test set for fine-tuned GoogLeNet in Case Study 2.  

Confusion Matrix Predicted 

Intermediate Fine Coarse 

Actual Intermediate 7 1 4 
Fine 0 30 0 
Coarse 1 1 46  
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Fig. 10. Examples of attention maps of hydrocyclone underflow images generated with ViT-B16 for the PGM slurries considered in Case Study 2. The left column 
shows the original image. Shaded parts in the images in the middle and right columns indicate the parts of the images that played the most important role in their 
classification. As indicated in the top left panel, the 32 mm spigot diameter of the hydrocyclone can be used as an approximate measure of the scale of the images. 
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classification performance of the different models used in Case Study 2, 
is summarised in Table 3, together with the dimension of the corre-
sponding feature set. The results associated with GoogLeNet are taken 
from the work by Olivier et al. (2022). Again ViT-B32 achieved com-
parable performance (93.3 %) to GoogLeNet (92.2 %) and the best 
performance was achieved by ViT-B16 with an accuracy of 96.7 %. As 
before, the features extracted by different models were visualised by t- 
SNE score plots as shown in Fig. 9. As the features extracted from 
GoogLeNet are not directly available, the confusion matrices (Table 4 
and Table 5) were used for comparison instead. 

As can be seen from the t-SNE plots (Fig. 9) and confusion matrices, 
ViT-B16 in is again the best model, as it can perfectly discriminate Class 
‘Coarse’ from the other two classes and show reduced misclassification 
of Class ‘Intermediate’ to Class ‘Coarse’. 

Attention maps were also obtained for three examples of each class, 
as shown in Fig. 10. Although not as clearly as in Case Study 1, one can 
still see the differences by a careful look at which area in the image is 
brighter or dimmer. It seems that some areas within the texture of the 
underflow is brighter for Class ‘Intermediate’, while dimmer for Class 
‘Fine’. In contrast, all the areas of the textural part of the underflow for 
Class ‘Coarse’ seem to receive the same attention, while the spattering 
particles receive less attention. 

These observations from the attention maps of ViT models are to a 
large extent consistent with observations based on occlusion sensitivity 
maps of CNN models (Olivier et al., 2022). In the study by Olivier et al. 
(2022), the CNN model took its cues from the texture of the spray flow 
patterns for fine and intermediate particle sizes, while possibly also 
taking the spattering of particles and the spray angle of the underflow 
into account for coarse particles. 

5. Conclusions 

The following conclusions can be made regarding two case studies 
where convolutional neural networks and vision transformers were used 
to classify images of particles on conveyor belts and the underflow of 
hydrocyclones:  

• Vision transformers are comparable or superior to state-of-the-art 
convolutional neural networks in terms of accuracies of image 
recognition, as well as the time it took to construct the models. These 
results suggest that vision transformers dealing with sequences of 
image patches can be considered at least as a viable alternative or 
possibly as a better option to convolutional neural networks in image 
recognition.  

• The architecture of the ViT models make a difference, i.e. the smaller 
the image patch size presented to the ViT model, the better, but there 
is a computational cost trade-off.  

• ViT-B16 performed the best among the models considered in the two 
case studies. More advanced ViT models or variants can be explored 
in future work.  

• The features extracted from ViT models, or ViT features, can be used 
as such in other potential applications, such as unsupervised moni-
toring. In these case studies, they could be used to visualise the 
performance of the models, after dimensionality reduction.  

• Explainability analysis is an important approach interpret the results 
generated with deep learning models. Explaining the ViT models 
with attention maps is reliable and consistent with those explaining 
techniques applied together with CNN models. 
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