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A B S T R A C T   

Rooftop solar is increasingly promoted as a source of low-carbon household energy; however, there is a plausible 
concern that solar installations might influence energy consumption patterns in ways that undermine potential 
environmental benefits. In this study, we examine the impact of residential rooftop solar panels on energy usage 
in Vietnam. Leveraging a comprehensive and unique panel dataset, we employ a difference-in-differences 
identification strategy to estimate the effects of solar installation on consumption. Our models reveal that 
households installing solar panels reduce grid consumption (typically carbon-intensive) by approximately 3.6 %. 
This reduction occurs concomitantly with an increase in total consumption of around 16 %, indicating a sub-
stantial rebound effect from solar panels. Nonetheless, dynamic models suggest a diminishing trend over time for 
both the decline in grid usage and the rebound effect, leveling off to 1.5 % and 3.5 %, respectively, within one 
year of solar installation. Acknowledging the marked differences in household consumption behavior and 
electricity demand dynamics between developing and developed nations, our research provides valuable insights 
into the understanding of the solar rebound effect and its dynamics over time.   

1. Introduction 

Replacing fossil fuels with renewable energy sources is considered 
one of the most viable options for mitigating climate change [1]. 
However, the success of solar installations in reducing carbon emissions 
depends heavily on their ability to substitute for other sources of energy, 
particularly grid electricity that runs on fossil fuels. If households that 
adopt solar panels also substantially change their energy consumption 
patterns, it is possible that the overall carbon emissions associated with 
energy use may be relatively unchanged. This phenomenon is known as 
a “rebound effect”, where increased supply fails to induce substitution 
between solar and grid energy. 

In this paper, we investigate the efficacy of residential solar energy in 
mitigating carbon-intensive energy consumption. Our motivation stems 
from the possibility that a rebound effect may occur through various 
behavioral changes, some of which could paradoxically counteract the 
environmental benefits of adopting clean energy. Renewable energy 
adoption is influenced by both non-financial motivations and financial 
incentives [2–4]. 

Regarding non-financial motivations, there is a consensus that solar 
adoption is both encouraged by and encourages more environmentally 

responsible behavior [5,6]. However, the effectiveness of these behav-
ioral interventions may be observable only over short periods or may not 
always be sustained over the long term [7,8]. The rebound effect can be 
explained by moral licensing, wherein solar users may consume more 
energy under the assumption that they have already taken a morally 
responsible action by installing solar PV [9,10]. On the financial front, 
the rebound effect may manifest when consumers perceive solar energy 
as synonymous with “free electricity.” This perception is particularly 
pronounced in contexts like Vietnam, where the initial phase of pro-
moting rooftop solar power installation employs the net metering 
mechanism. Under this mechanism, the solar power output generated is 
essentially free for consumption, given that the marginal price of elec-
tricity is zero [11]. 

We address this issue through an analysis of a distinctive panel 
dataset encompassing approximately 3500 households in Hanoi, Viet-
nam, focusing on their energy consumption patterns. Employing a 
difference-in-differences methodology, we assess the structural shifts in 
solar and grid energy utilization before and after households adopt solar 
panels. Our model findings indicate a modest 3.6 % reduction in grid 
electricity consumption among solar energy adopters, relative to non- 
solar households. Conversely, post-solar system installation, total 
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power demand among solar users exhibits a 16 % increase compared to 
homes without solar energy. Thus, the potential of household solar 
panels to substantively mitigate carbon emissions seems to be adversely 
affected. 

We further explore the temporal dynamics of both total electricity 
demand and grid power demand over a twelve-month period following 
the installation of solar systems. Our findings reveal a significant initial 
expansion in the gap between the total electricity demands of rooftop 
solar owners and non-solar households, as mentioned above at 16 %, 
which gradually diminishes over time, ultimately converging to 3.5 % 
after the twelve-month observation period. Simultaneously, an opposing 
trend is observed in grid electricity consumption. Initially, the reliance 
on the grid by solar prosumers is 3.6 % lower than that of non-solar 
households, yet this disparity contracts to 1.5 % over the same period. 
These dynamics suggest a partial reversion in the behavior of solar 
owners towards increased dependency on the grid. This trend may be 
attributed to factors such as a less attractive feed-in tariff, limited 
adoption of battery technology, and the persistence of entrenched long- 
term behavioral patterns. 

After obtaining these baseline results, we perform a set of model 
diagnostics related to causality/identification. These include an exami-
nation of parallel trend assumptions, running a placebo regression, and 
using stability assessments to simulate the potential effects of unob-
served confounding. Our models perform well in all instances, suggest-
ing that our estimates are likely to be causal. 

Our results are associated with the rebound effect, a conservation or 
energy economics concept on an adverse behavioral response to new 
technologies, which are usually more economical or efficient. The 
rebound effect was initially known as Jevons’ [12] paradox and revis-
ited in Khazzoom [13] before being widely adopted in a series of ana-
lyses for various energy services, especially papers focusing on energy 
efficiency. Some examples of this include but are not limited to studies 
by Du et al. [14], Wei & Liu [15], Zhang & Lin Lawell [16], Turner [17], 
Freire González [18], Mizobuchi [19], Frondel et al. [20], Dimitropoulos 
[21], and Bentzen [22]. The detailed surveys of the rebound effect in 
earlier literature can be found in studies by Sorrell et al. [23] and 
Greening et al. [24]. 

The solar rebound effect has become a focal point in scholarly 
discourse, with recent empirical studies consistently reinforcing findings 
from earlier research on this phenomenon. Notably, Beppler et al. [25] 
observed a rebound effect of 28.5 % in the eastern United States. Boc-
card & Gautier [26] contributed evidence revealing a significant 
rebound effect in consumption, often resulting in oversized installations 
due to a generous subsidy scheme in Wallonia, Belgium. Qiu et al. [27] 
reported a positive indication of a rebound effect in Arizona, showcasing 
an 18 % increase in electricity consumption from solar energy produc-
tion. Investigations into Australian households identified a rebound ef-
fect ranging from 16 % to 20 % in the consumption patterns of solar 
owners in Sydney from 2007 to 2014, with the prospect of a more 
pronounced effect under a higher feed-in tariff [28–30]. 

Our study modestly contributes to the emerging field by investi-
gating the solar energy rebound effect in a developing country context. 
Recognizing that household consumption behavior and electricity de-
mand dynamics in developing countries differ significantly from those in 
developed nations, our research adds valuable insights to the under-
standing of the solar rebound effect. Leveraging a substantial, distinc-
tive, and up-to-date panel dataset, we unveil a substantial rebound effect 
that challenges the presumed environmental advantages of residential 
solar energy. We are also (to our knowledge), among the first authors to 
study the dynamics of this process and show that both the primary effect 
and the rebound effect tend to diminish over time. 

The paper is structured as follows. Section 2 introduces the data set 
and variables. Section 3 presents our baseline estimates and discusses 
the immediate implications. Section 4 studies the dynamic properties of 
our data and Section 5 undertakes some causal diagnostics. Section 6 
discusses some policy implications and Section 7 concludes. 

2. Data 

We employ two datasets, household-level panel data and aggregated 
district-level panel data of Hanoi Capital, Vietnam. The household data 
are an unbalanced panel of more than 3550 households in Hanoi from 
2015M1–2021M11, in which 1688 households are solar energy con-
sumers and 1862 households do not use solar energy. It contains detailed 
monthly information on electricity demand and bill, solar system ca-
pacity, production, and installation time. This data are collected from 
the customer database of Hanoi Power company with encrypted identity 
information for privacy purposes. Meanwhile, the district-level data are 
a balanced panel dataset that provides aggregated social economics in-
formation of Hanoi’s 30 administrative regions (districts) in the same 
period. Because not all households’ socioeconomic and demographic 
were available, we adopted district-level data as proxies for exogenous 
impact factors to overcome that situation. The district-level data are 
balanced data published annually in Statistical Yearbooks by the Viet-
namese Statistics Office. 

2.1. Electricity demand variables 

Total electricity consumption, y1
it , and electricity purchased from the 

grid network, y2
it , are monthly data of household i in month t.1 They are 

measured in kilowatt-hour (kWh) and transformed into logarithmic 
form before being adopted into the models. Values of y1

it and y2
it are 

identical for those households that do not install or had not installed 
solar energy systems. Notably, all homes in the dataset did not possess 
solar batteries, but none fed solar energy into the national grid. It means 
all solar owners either consumed all solar production or wasted it, and 
the solar energy output always equals the subtraction of y1

it to y2
it. 

2.2. Electricity price variables 

The retail electricity tariff in Vietnam for residential purposes is the 
tier rate, in which the rate will increase after every 100 kWh of elec-
tricity consumed. It means that the individual household power price is 
endogenous to the demand. Thus, we calculate the average monthly 
electricity price for the whole administrative region, avepricedt, based on 
total bill and total demand at the district, d in month t. The variable cedt , 
which is measured in Vietnam Dong per kilowatt-hour, is then deflated 
and transformed into logarithm form before being input into the models. 
This proxy satisfies the price variable’s exogenous requirement. 

In addition, the impact of average electricity price on household 
demand could be influenced by the urbanisation rate of each district, i.e. 
urbandt. Specifically, the more developed the district is, the more 
dependent households are on electronic devices. Consequently, the in-
fluence of electricity prices on consumption in lower urbanisation areas 

1 In the initial phase of promoting the development of residential solar power 
systems, the Vietnamese government actively endorsed a net-metering initia-
tive. As part of this initiative, households in Hanoi installing rooftop solar 
power systems were mandated to have bi-directional electricity meters, 
ensuring the compulsory monthly recording of solar power self-consumption, 
and any surplus electricity transmitted to the grid. However, this program 
faced a setback due to the absence of guidance on finalization, payment 
schemes, and invoicing mechanisms from the Ministry of Industry and Trade 
and the Ministry of Finance. Consequently, the implementation of this initiative 
had to be halted.Subsequently, a new payment scheme for rooftop solar projects 
was introduced in the form of the feed-in-tariff (FIT). During the FIT policy 
period, electricity generated by rooftop solar power projects was consistently 
metered independently. The electricity supplied by Hanoi Power to consumers, 
including rooftop solar power investors, underwent regular metering proced-
ures similar to those applied to other households and consumers. Therefore, the 
monthly total electricity consumption of each household is recorded as the sum 
of the power obtained from the grid and the actual amount used from the 
rooftop solar system. 
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could be more substantial than that in more developed districts. Thus, an 
interaction term between price and urbanisation rate, avepricedt ×

urbandt , is included in models to capture this effect. 

2.3. Income variables 

We use aggregate-level income averaged by districts as a proxy for 
each households’ economic status. We use this approximate method as 
unit record data on household income is not available. This approxi-
mation is likely to be reasonable given the spatial associations in so-
cioeconomic well-being usually seen in microdata [31–33]. Variable 
incomedt, measured in Vietnam Dong, is deflated and transformed into 
logarithm form. We also include a quadratic term of log of income into 
our model to allow for any potential nonlinear effects. 

2.4. Other social demography variables 

Other socio-demographic covariates, which potentially influence the 
power demand, are also included in our model. For instance, the number 
of families living in the same house, familyit, may positively correlate to 
the demand. Meanwhile, the urbanisation rate (urbandt), the employ-
ment rate (empdt) and the rate of households having more than two 
children (thirdchilddt), which reflect the socioeconomic development of 
each district, are also adopted. Finally, the number of new rooftop solar 
installed in the district each month, solarcountdt, helps capture the solar 
adaptation level of the neighbourhood. 

The descriptive statistic of the dataset is provided in Table 1. 

3. Analysis of the rebound effect 

3.1. Baseline models 

We are interested in assessing the changes in household consumption 
behaviour after installing solar systems, reflected in power consumption 
and grid electricity demand. We set up a difference-in-differences 
(hereafter, DID) design, in which solar energy adoption was not 
geographically specified and the installation point is time-variant by 
households.2 

Let yit denotes the electricity demand of household i at months t; Dit is 
a dummy for the treatment, i.e., solar installation, that distinguish by 
households and time3; αi are households’ time-invariant fixed-effects; λt 
are time fixed-effects; and, xit is the vector of exogenous variables and 
interaction terms. For potential unobserved variables, the fixed effects 
estimation will help to capture their impacts. We define baseline models, 
including a model for total electricity demand and a model for power 
demand from the grid, as follows: 

yE
it = αE

i + λE
t + θEyE

it− 1 + δEDit + x′
itβ

E + εE
it (1)  

where the superscript E is to distinguish a model for total electricity 
demand, i.e., y1

it, from a model for power demand from the grid, i.e., y2
it. 

In addition, residential power consumption is usually serially correlated, 
even after applying controlling methods like time-variant fixed-effect 
dummies. It is potentially caused by the accumulation of electrical de-
vices or the stability of household financial conditions in the short term 
[30]. Thus, we accepted the setup with both fixed effects and lagged 
dependent variable, yE

it− 1. 
Baseline models in Eq. (1) can be estimated by least squares, and 

estimation outputs are displayed in Table 2. In Table 2, the dependent 
variables in columns (1) and (2) are the logarithm of households’ total 
electricity consumption, log (y1

it). Meanwhile, dependent variables in 
columns (3) and (4) are the logarithm of grid electricity demand, 
log (y2

it). All models included households’ time-invariant fixed-effects 
and time fixed-effects, but they are not shown in the output for 
simplicity of exposition. The only differences between models in each 
pair are the inclusion or exclusion of exogenous variables, and those 
differences are to test the consistency of the estimations. 

3.2. Implication of static estimates 

The estimation of the treatment dummy, Dit, in Model (1) showed a 
highly significant and positive impact on households’ total electricity 
demand. It implies that solar installations immediately increased the 
total electricity demand by approximately 16.3 %, i.e., suggesting the 
existence of a rebound effect of solar installation. The parameter of Dit in 
Model (2) also provided a similar pattern, which was 18.1 %, to confirm 
that the estimations are only marginally different regardless of the 
presence or absence of other exogenous variables. These results were 
analogous to the findings in studies of Qiu et al. [27] and Deng and 
Newton [30], in which increases in total electricity demand were 18 % 
in Arizona and more than 16.7 % in Sydney, respectively. 

Table 1 
Descriptive statistics of the dataset.  

Variable Description Mean Std. 
dev. 

Min Max 

y1
it Total electricity demand (log 

form) 
5.79 0.82 3.69 8.35 

y2
it Amount of electricity 

purchased from the network 
(log form) 

5.71 0.81 0.00 8.34 

montht t-1 dummy variables for t 
months 

44.66 23.99 1.00 83.00 

Dit Dummy variable of the 
installation period  
- Dit = 1: the solar system is 

installed  
- Dit = 0: not installed yet 

0.13 0.34 0.00 1.00 

familyit No. of families in the 
household 

1.11 0.44 0.00 8.00 

incomedt Log of average households’ 
income (by district) 

8.99 0.21 8.30 9.51 

pricedt Log of average electricity 
retail price (by district) 

7.57 0.15 6.22 7.77 

urbandt Urbanization rate (by district) 60.92 45.78 1.56 100.00 
empdt The employment rate (by 

district) 
37.85 22.56 2.25 125.18 

solarcountdt Number of the new solar 
system installations (by 
district) 

1.12 2.96 0.00 44.00 

thirdchilddt The rate of households have 
more than two children 

4.62 4.39 0.10 20.20 

Notes. 
- Table 1 presents the descriptive statistics of the data used in this study. 
- The first column displays the names of variables, which are included in the 
model in Eq (1). Meanwhile, the second column shows the meaning and how to 
transform variables from the raw dataset. 
- The dataset is unbalanced panel data, consisting of observations of 3550 
households in 83 months from January 2015 to November 2021. In the data, 
1688 solar energy consumers reflect the whole population; and 1862 households 
are samples of non-solar houses, which are randomly provided without any 
intervention or influence by the authors. 

2 In other words, the difference between this model and an ordinary DID 
model is that the treatment group is not naturally assigned, and some house-
holds get treated at particular times while others do not. Nonetheless, the DID 
panel model is still suitable because we have panel data of the same families 
over time [41].  

3 The pre/post-treatment periods are identified by dummy variables, Dit , 
while the identity of treatment/control groups is omitted because the model 
already includes time-invariant household variant fixed effects. Thus, variable 
Dit indicates two different periods, before (Dit = 0) and after (Dit = 1) installing 
the solar system, for each solar energy owner. Households that do not have a 
solar system will have Dit = 0 in all observations. 
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In the following estimations, the coefficient of Dit in Model (3) 
expressed a decrease of 3.6 % in grid power demand. A similar estimate 
of Dit in Model (4) highlights the robustness of this result. Jointly, these 
estimates imply that solar adaptation contributed to replacing a part of 
the household’s electricity demand from the grid network to reduce the 
dependence on the grid; however, that contribution was relatively small. 
Furthermore, the dataset indicated that no residential solar owner in 
Hanoi had sold solar power production to the grid. This implies the solar 
power production has been topped-up to the solar owner’s total demand 
and was not conducive to reducing the carbon footprint of the power 
generation industry. 

4. Dynamics of the rebound effect 

4.1. Modelling the dynamics 

The preceding estimations revealed a notable surge in a household’s 
overall energy consumption subsequent to the installation of solar 
panels, coupled with a slight reduction in grid demand compared to non- 
solar homes. This observed phenomenon may be indicative of a rebound 
effect, wherein behavioral responses lead to increased consumption 
following the adoption of a more economical energy source. Conversely, 
it could stem from a natural uptick in usage when individuals have an 

additional energy source to meet previously constrained demand. 
Furthermore, there is a plausible suggestion that these effects are dy-
namic, contributing to short-term spikes in household consumption that 
may not necessarily represent long-term adaptations. To address and 
scrutinize these concerns, we adapt our model in Eq. (1) as follows: 

yE
it = αE

i + θEyE
it− 1 + λE

t + δE
k Dit− k + x′

itβ
E + εE

it where k = 0,…, 12. (2) 

The difference between models in Eq. (2) to the models in Eq. (1) is 
the existence of twelve lagged treatment dummies, Dit− k where k = 0,1,
…,12. In more detail, thirteen estimations of parameter δE=1

k , i.e., δ1
0,δ

1
1,

…, δ1
12, reflect the impact of solar adaptation on the total electricity 

demand immediately after installation and in the next twelve months. 
Similarly, thirteen estimations of parameter δE=2

k , i.e., δ2
0, δ2

1, …, δ2
12, 

reflect the difference in the impact of solar adaptation on the grid power 
demand of rooftop solar owners in the same period. Estimations of pa-
rameters δE=1

k and δE=2
k , then had been plotted in Fig. 1 (a1) and (b1), 

respectively. Besides, Fig. 1 (a2) and (b2) demonstrated δE=1
k and δE=2

k 
when exogenous factors were excluded in Eq. (2) estimations as a 
robustness check. 

The dynamic of coefficients δE=1
k in Fig. 1 (a1) suggests that the 

impact of solar installation was remarkable in the first two periods, 
which caused total power demand to increase by approximately 16.5 % 
higher than in non-solar households. However, that difference dimin-
ished and reached about 3.5 % after thirteen months. Meanwhile, Fig. 1 
(b1) displayed an opposite dynamics pattern of coefficients δE=2

k . It 
showed that installing rooftop solar energy helped households reduce 
the grid energy demand by approximately 4 % in the first two months 
compared to homes without solar power. Nonetheless, this gap also 
faded out and reached approximately 1.5 % after thirteen months. 

4.2. Dynamic effects 

Three implications emerge from the dynamic impacts of solar 
installation on electricity consumption. Firstly, the diminishing trends 
observed in the gaps between total electricity consumption and grid 
power demand suggest that the associated demand shocks are transient 
and expected to dissipate over the long term. Consequently, it is 
reasonable to assert that the increase in total consumption was not 
instigated by restrained demand. If it were, we would anticipate an 
expanding demand gap after solar installation, which remains stable in 
the long term. Given Vietnam’s 100 % electrification, the absence of 
severe power shortages, and the relative affluence of households in 
Hanoi, who can afford ample energy, the dynamic points to a significant 
short-term rebound effect experienced by rooftop solar prosumers upon 
acquiring a cost-effective energy source, namely solar energy. 

Secondly, a discernible trend indicates the reduction of gaps in both 
total electricity consumption and grid demand between rooftop solar 
users and non-solar households over a thirteen-month period. This 
phenomenon suggests a gradual diminishment in the disparity of elec-
tricity usage behavior between the two household groups. It is plausible 
that these households were initially committed to altering their usage 
patterns of electrical appliances to maximize the utilization of solar 
energy. However, considering that a substantial portion of power con-
sumption, particularly for essential activities such as cooking, studying, 
and entertaining, predominantly occurs during nighttime when solar 
energy is unavailable, these solar energy consumers may gradually 
revert to their established dependency on the grid, potentially leading to 
a reduced reliance on solar energy.4 

Third, the reversion to previous consumption patterns may partially 
explain the dynamics of the rebound effect; however, it raises lingering 
questions regarding the decrease in solar energy consumption among 

Table 2 
Estimates output of baseline models.   

(1) (2) (3) (4) 

Solar installation 
(treatment) 

0.163*** 0.181*** − 0.036*** − 0.032*** 
(0.006) (0.006) (0.005) (0.005) 

Log of total electricity 
demand (lagged) 

0.693*** 0.699***   
(0.005) (0.005)   

Log of grid electricity 
demand (lagged)   

0.701*** 0.702***   
(0.005) (0.005) 

Average electricity price 
(log) 

− 0.150***  0.025*  
(0.017)  (0.014)  

Urbanisation rate (%) 0.004  0.011**  
(0.005)  (0.005)  

Average electricity price 
(log)* Urbanisation rate 

0.002***  − 0.00007  
(0.000)  (0.000)  

Income (log) 3.454***  2.261***  
(0.470)  (0.467)  

Squared income (log) − 0.191***  − 0.126***  
(0.026)  (0.026)  

Number of families 0.017**  0.019**  
(0.007)  (0.008)  

Employment rate − 0.001  − 0.001**  
(0.000)  (0.000)  

Rate of household having 
more than 3 kids 

0.0003  − 0.0003  
(0.001)  (0.001)  

Observations 223,562 223,562 223,562 223,562 
R-squared 0.660 0.658 0.594 0.594 
Groups 3544 3544 3544 3544 
Average group size 63.08 63.08 63.08 63.08 
Panel-level standard 

deviation (σu) 
0.720 0.195 0.427 0.217 

Standard deviation of ϵit 

(σe) 
0.286 0.287 0.294 0.295 

Adjusted R-squared 0.660 0.658 0.594 0.594 
R-squared within model 0.660 0.658 0.594 0.594 
R-squared overall model 0.507 0.852 0.647 0.842 
R-squared between model 0.559 0.991 0.721 0.997 

Notes. 
- The dependent variables in models (1) and (2) are the household’s total elec-
tricity consumption (in log form). 
- The dependent variables in models (3) and (4) are the household’s grid elec-
tricity demand (in log form). 
- All models include households’ time-invariant fixed-effects and time-variant 
fixed-effects. 
- Standard errors are clustered at the household level and reported in paren-
theses. 
- ***,**, *: significant at the significant level of 1 %, 5 % and 10 %. 

4 This phenomenon could be seen more obviously in the analysis of solar 
production in Section 6. 
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solar energy owners, who refrained from selling excess outputs to the 
grid.5 This phenomenon can be attributed to factual inadequacies in 
technology application and policy implementation, exemplified by the 
minimal adoption of solar batteries among residential consumers in 
Hanoi. Consequently, households installing solar panels faced a ‘take it 
or leave it’ scenario, unable to store surplus solar energy for nighttime 
use when power-intensive activities predominantly occur. Thus, those 
households were unable to mitigate their dependence on the grid, 
although they were determined to lean toward solar energy. In addition, 
the Vietnamese Government applies a feed-in-tariff policy to encourage 
households to sell unused solar power to the grid. However, the feed-in 
tariff, which is 8.38 cents/kWh,6 is lower than most tiers’ marginal 
prices in the retail electricity price.7 Meanwhile, households need to 
complete a tax registration procedure to be able to sell solar energy to 
the grid. Therefore, solar energy consumers may not have enough 
incentive to sell their solar production. 

5. Discussion on installed capacity and production 

Our results above do not actively address differences in installed 
capacity and production that will vary across households. In this section, 
we explore these variables and search for their potential to explain the 
rebound effect analysed earlier. 

We demonstrate the installed capacity distribution trend of house-
hold rooftop solar in Hanoi in Fig. 2. While most households selected a 
capacity smaller than 10 kW-peak (kWp) and mainly in the range of 3–7 
kWp in 2019, adopters in 2020 chose a higher range of 5–10 kWp or 
even more than 15kWp. This could be a response to a dramatic reduction 
of 58 % in terms of the levelized cost of solar PV during the period 
2016–2020 in Vietnam [34]. However, it is plausible that households 
are over-capitalising on solar investment and are creating excess supply, 
which may be linked to the behavioural responses hypothesised above. 
The potential solar energy production in Hanoi is about 3.3 kWh/kWp 
per day or approximately 100 kWh/kWp/month [35,36]. Based on that, 
the installed capacities required to fulfil the total electricity demand for 
households are approximately 1 kWp, 2 kWp, 3 kWp, and 4 kWp, 
respectively, for the households with consumption in Tier 2, Tier 3, Tier 
4, and Tier 5. Thus, the illustration in Fig. 3 implies that the majority of 
solar energy owners in Hanoi have oversized installations. 

Oversized installation could bring some potential benefits that 
include revenue from selling solar energy or independence on the grid 
for the owners, as well as reducing the peak load for the national system. 
However, those benefits were ambiguous or nonexistent in our study. 
Previously we found that the dependence on the grid was reduced by 
only approximately 4 %, while the whole solar energy output was added 
up to the owner demand. In addition, residential solar energy owners 
have zero revenue from selling the output based on our data in this 

Fig. 1. Dynamics of rooftop solar installation’s rebound effects 
Notes: 
The figures (a1) and (a2) illustrate solar adaptation’s impact on the total electricity consumption in 13 months compared to non-solar households. 
- The figures (b1) and (b2) illustrate the difference in solar adaptation’s impact on the grid power demand between rooftop solar owners and non-solar consumers in 
13 months. 
- The difference between models in figures (a1) versus (a2) and figures (b1) versus (b2) is the inclusion or exclusion of exogenous variables, respectively. And the 
purposes of figures (a2) and (b2) are to double-check the consistency of figures (a1) and (b1). 

5 This is observed from the declined trends of the gaps in both total electricity 
demand and grid electricity demand between solar energy consumers and non- 
solar households.  

6 Decision no 13/2020/QD-TTG issued on 06/04/2020 about the mechanism 
to encourage the development of solar power in Vietnam.  

7 The residential electricity retail price is following six tiers:Tier 1 (0–50 
kWh): 7.24 UScent/kWh- Tier 2 (51–100 kWh): 7.48 UScent/kWh- Tier 3 
(101–200 kWh): 8.69 UScent/kWh- Tier 4 (201–300 kWh): 10.94 UScent/kWh- 
Tier 5 (301–400 kWh): 12.22 UScent/kWh- Tier 6 (>400 kWh): 12.62 UScent/ 
kWhThe feed-in tariff of rooftop solar (8.38 cents/kWh) is only higher than tier 
1 and tier 2 marginal prices. 
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study, collected up to November 2021. Thus, installation of residential 
rooftop solar in Hanoi seems inefficient, resulting in higher total costs 
for the owners. 

We illustrate the self-consumption of residential rooftop solar power 
in Hanoi, organized by installed capacity across four distinct seasons, 
using scatter plots in Fig. 3. Additionally, we compare this data with the 
potential output calculated from a trial installation project conducted by 
Thanh et al. [36], represented by the red lines. The findings from Fig. 4 
suggest that only a limited number of households utilized their solar 
power output to its full potential, matching the capacity of their installed 
solar PV systems. Conversely, a significant proportion of homes consis-
tently consumed considerably less solar power than their systems could 
practically generate, irrespective of the season or installed capacity. 
Notably, the absence of records indicating households selling solar 
power to the grid implies that a substantial amount of the produced solar 
power has gone unused or been wasted. 

One plausible reason for this inefficiency is insufficient power stor-
age due to inadequate evaluation. The most common mistake solar 
owners had was relying on cost-benefit analysis only but overlooking the 
technical analysis, which is also seen in many studies or policy recom-
mendations. For example, Thanh et al. [36] considered that a 3kWp 
solar system without storage is about 45 % cheaper and has only almost 
half the payback period of the same system but with power storage. 
However, this result could be different if the fact that most residential 
power-consumed activities occur at night is counted. Then, if a solar 
owner does not sell solar output to the grid, the output can only be 
minimally consumed by certain frequently plugged-in appliances such 
as refrigerators. Without the storage, cost-benefit analysis may be 
misleading. 

Another possible reason for the inefficiency of residential solar en-
ergy in Hanoi is the lack of incentives in promoting policies. As discussed 
above, the feed-in tariff regulated by the Government is only 8.38 cents/ 

kWh, lower than most tiers’ marginal prices, while the procedure to 
apply to sell solar output has many red tapes. As a result, solar owners 
would rather waste their solar power than sell it back to system. A higher 
feed-in tariff, which is encouraging enough to motivate solar energy 
owners to produce and sell, is needed. However, what threshold is 
appropriate requires further study as there are evidence that high feed-in 
tariffs cause rebound effects to be more severe [28,29]. 

6. Models diagnostics 

6.1. Parallel trend assumption 

We first examine the electricity demand trends of two groups, solar 
owners and non-solar households. Specifically, we aim to verify the 
parallel trend assumption that the difference between the demands of 
two groups in the absence of solar installation is constant over time. 
Fig. 4 demonstrates the results for the total electricity demand (Fig. 4-a) 
and the network electricity demand (Fig. 4-b). It is noteworthy that the 
parallel lines are not required to be linear, depending on the nature of 
the data [37]. In this case, demand lines reflect the well-known sea-
sonality of electricity consumption. In addition, there is no apparent 
time boundary between before and after installation, and the lines 
depicting solar owners in two periods overlap in Fig. 4. This is because 
households installed rooftop solar systems at different points, so each 
solar PV owner moved from the pre-treatment sub-group to the 
post-treatment sub-group at various times. 

As illustrated in Fig. 4-a and 4-b, households without solar power 
installations exhibit similar electricity usage patterns. Upon the instal-
lation of rooftop solar systems, distinct shifts in the trend lines for total 
electricity demand and grid power demand become evident among solar 
power users. For instance, in Fig. 4-a, the green dashed line representing 
the total electricity demand of solar power users experiences a notable 

Fig. 2. Distribution of installed capacity of the household solar systems in Hanoi 
Notes: 
Fig. 2 demonstrates the distribution of installed capacity of the household solar systems by tiers of electricity consumption. The data are from two years, 2019 and 
2020, which recorded the installation of most households in Hanoi 
- Each boxplot displays the median, lower and upper quartiles of the capacity. The upper and under adjacent values are respectively determined by the formulas: Q3+
1.5 × Interquartile range and Q1 − 1.5× Interquartile range. Outliers are not presented in this figure. 
- The consumption range in each tier of power demand is explained in footnote 3 of this study. 
- In this figure, a household will be assigned to a specific tier based on its highest monthly consumption before installing solar energy. 
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increase, setting it apart from other households, particularly from mid- 
2018 onward. This divergence persists throughout the observed 
period. Conversely, the grid demand trend line for solar power users, as 
depicted in Fig. 4-b, initially exhibits a considerable decrease compared 
to other households but gradually converges with the original trend line 
over time. These visual trends serve as graphical evidence supporting 
the previously discussed rebound effect and its dynamic nature. 

6.2. Stability analysis 

Table 2 provides a comparison between our models of interest with 
all available covariates and the simplest models with only treatment 
variables, i.e. Dit. The results imply that the full models are reliable 
because the coefficients of interest, δE, are marginally affected when 
more covariates are added to the models. However, we caution that 
potentially poor measures of underlying cofounders could cause adding 
these variables to be meaningless or, more seriously, lead the estimation 
to problematic compositional changes. This can happen if the change in 
Dit is associated with changes in other explanatory variables, i.e., the 
solar installation is affected by some other factors included in the model. 

To examine this validity aspect of our models, we apply the process 
suggested by Pei et al. [38] to conduct balancing tests when putting 
covariates, xit , on the left-hand side (LHS). Pei et al. [38] argued that this 
strategy is more powerful than a conventional regression of Dit on other 

covariates, especially when the controls are bad measured. The LHS 
regressions are expressed by fixed-effects estimations in Eq (4): 

xit = αLHS
i + λLHS

t + πDit + uit, (4)  

where, αLHS
i are time-invariant fixed effects; λLHS

t are time fixed-effects. 
In addition, coefficient vectors π should be statistically equal to zero 
to verify the validity of our base models. The balancing tests against the 
null hypothesis that π equals zero are presented in Table 3. The results 
show that both individual and joint balancing tests cannot reject the null 
hypothesis at any significant level below 10 % so that all controls are 
statistically balanced. This suggests that the difference between solar 
energy owners and non-solar households is stable over time, and the 
causal impact of solar energy installation on demand is not associated 
with changes in the distribution of other factors. 

7. Conclusion 

This paper has studied the behaviour of household energy con-
sumption in Vietnam before and after the installation of household solar 
panels. Using a difference in differences approach, we have shown that 
upon installation, households tend to sharply increase their energy 
consumption, with relatively little substitution occurring from grid 
electricity to solar energy. As a consequence, the scope for solar panels 
to reduce carbon-intensive energy usage appears partially compromised, 

Fig. 3. Solar production consumed by households vs. potential output in four seasons 
Notes: 
Fig. 3 demonstrates the solar energy production consumed by households in our data versus the potential output of Thanh et al. [36] by solar energy capacities and 
four seasons. 
- The actual solar energy production is depicted by the dots, and the potential output is depicted by the red lines 
- Figures (a), (b), (c), and (d) respectively present four seasons, Spring, Summer, Autumn, and Winter. 
- We only record solar power output data from the 4th month after installation to ensure that the data are not recorded too low in the first few months of operation. 
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at least for developing countries like Vietnam. 
Furthermore, our findings indicate that the solar energy rebound 

effect manifested prominently in the short term but gradually dimin-
ished over time. To be specific, the total electricity demand of house-
holds with solar installations surged significantly by 16 % following the 
installation of solar systems, gradually tapering to approximately 3.5 % 
after a twelve-month period. While this decline might be viewed as a 
positive trend, it is indicative of a slow abandonment of solar energy 

over time, with potential adverse implications for both household wel-
fare and carbon pollution. We contend that fostering improved energy 
battery adoption and implementing more incentivizing policies could 
contribute to mitigating this issue. 

Since households that install solar panels may possess unobserved 
characteristics that distinguish them from households that did not, there 
is the potential for our results to be affected by unobserved confounding. 
However, across a range of diagnostic methods, we find little evidence 

Fig. 4. Dynamics of rooftop solar installation’s rebound effects 
Notes: 
Fig. 4 (a) illustrate the movement trends of total electricity demand, and Fig. 4 (b) depict the movement trends of network electricity demand. 
- The lines depicting solar owners in two periods, before and after installation, overlap because households have different points installing solar PV systems. 
- Demands are calculated based on the average monthly consumption of all households in each group 
- Total electricity demands are identical to the network electricity demand for non-solar households and yet-to-be-installed solar owners. However, the two demands 
are different in the case of solar owners since the solar PV is installed. 
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that endogeneity or misspecification issues may be biasing our results. 
As estimates need to be causal in order to meaningfully inform policy, 
the stability of our results is a major advantage. 

Nevertheless, our study is subject to certain limitations. Firstly, 
detailed demographic and financial data at the household level were not 
within the scope of our data collection. Additionally, the available data 
lack granularity in terms of electrical appliance usage, which would 
have provided a more nuanced analysis of how rooftop solar owners 
adjust their consumption post-installation. Despite our efforts to conduct 
surveys in Hanoi for the collection of such data, all attempts were 
regrettably cancelled due to the Covid-19 epidemic. These limitations, 
acknowledged herein, underscore the need for future research 

endeavors to address these aspects comprehensively. 
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Appendix 

Placebo regression 

Estimates of solar energy installation on electricity demands, measured by δE in Eq. (1), could be invalid if the model is incorrectly specified. One 
way to diagnose potential specification errors is to run a placebo regression. , where the treatment is shifted into a period where no effect is expected to 
occur. If our model produces significant results in these placebo specifications, it suggests that some other factor may account for the results. To 
examine that effect, we apply a Granger-type causality framework [39] to Eq (1) by including three (03) leading values of the dummy variable Dit, 
which are Dit+f with f = [1,3]. The test equations can be expressed as follows, 

yE
it = αE

i + θEyE
it− 1 + λE

t + δEDit +
∑3

f=1
δE

f Dit+f + x′
itβ

E + εE
it . (3) 

The estimation outputs provided in Table 4 suggest that all leading values Dit+f are insignificant. The Wald test further verified that three values of 
Dit+f (with f = 1, 2,3) jointly equal zero. Therefore, we can reject the null hypothesis that the solar energy installation is anticipated by outcomes 
measured in earlier periods, considering up to three periods.  

Table 4 
Granger causality tests for the placebo effect   

(1) (3) 

Solar installation (treatment) 0.164*** − 0.046*** 
(0.010) (0.009) 

Solar installation (1-period lead, δE
1 ) − 0.005 − 0.004 

(0.012) (0.012) 
Solar installation (2-periods lead, δE

2 ) − 0.010 − 0.009 
(0.012) (0.012) 

Solar installation (3-periods lead, δE
3 ) 0.002 0.011 

(0.009) (0.009) 
Log of total electricity demand (lagged) 0.670***  

(0.005)  
Log of grid electricity demand (lagged)  0.676***  

(0.006) 
Average electricity price (log) − 0.137*** 0.042*** 

(continued on next page) 

Table 3 
Balancing tests the associations between Dit and xit.   

p-values of π 

LHS balancing test: 
Individual: 

Average electricity price (log) 0.107 
Urbanisation rate (%) 0.764 
Average electricity price (log)* Urbanisation rate 0.442 
Income (log) 0.151 
Squared income (log) 0.144 
Number of families 0.296 
Employment rate 0.643 
Rate of household having more than 3 kids 0.646 

Joint: 0.5955 

Notes: Table 4 expresses the result of the left-hand side (LHS) balancing test 
suggested by Pei et al. [38]- The LHS balancing test is estimated based on the 
first different estimator of equationsxit = αLHS

i + λLHS
t + πDit + uit- The joint LHS 

balancing test is implemented by the suest command in Stata.  
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Table 4 (continued )  

(1) (3) 

(0.018) (0.015) 
Urbanisation rate (%) 0.004 0.011** 

(0.005) (0.005) 
Average electricity price (log)* Urbanisation rate 0.002*** 0.000 

(0.000) (0.000) 
Income (log) 3.731*** 2.333*** 

(0.495) (0.491) 
Squared income (log) − 0.206*** − 0.129*** 

(0.028) (0.028) 
Number of families 0.021*** 0.024*** 

(0.008) (0.009) 
Employment rate − 0.001 − 0.001** 

(0.000) (0.000) 
Rate of household having more than 3 kids − 0.0003 − 0.001 

(0.001) (0.001) 

Observations 195,299 195,299 
R-squared 0.651 0.592 
Groups 3541 3541 
Average group size 55.15 55.15 
Panel-level standard deviation (σu) 0.751 0.446 
Standard deviation of ϵit (σe) 0.275 0.281 
Adjusted R-squared 0.651 0.592 
R-squared within model 0.651 0.592 
R-squared overall model 0.478 0.625 
R-squared between model 0.529 0.694 

Wald test for δE
1 = δE

2 = δE
3 = 0 

F(3, 3540) 0.83 0.62 
Prob > F 0.4798 0.6021 

Notes. 
- The dependent variable in Model (1) is the log of the household’s total electricity consumption. 
- The dependent variable in Model (2) is the log of the household’s electricity purchased from the grid 
network. 
- All models include households’ time-invariant fixed-effects and time-variant fixed-effects. 
- Standard errors are clustered at the household level and reported in parentheses. 
- ***,**, *: significant at the significant level of 1 %, 5 % and 10 %. 

Magnitude of Nickell bias 

There are potential concerns in our dynamic panel data model regarding the inclusive of a first-order autoregressive model in a fixed-effect model, 
i.e. the appearance of yit− 1 in Eq (1) [40]. Pischke [41] and Angrist and Pischke [42] emphasised that if the model with first-order autoregressive is 
correct, the use of the fixed-effects model will lead to an overstated positive treatment effect, i.e. δ is too big. Conversely, the mistaken use of the 
first-order autoregressive model, while the fixed-effects model is correct, leads to an understated positive treatment effect, i.e. δ is too small. For this, 
we conduct Born and Breitung’s [43] portmanteau test for serial correlation in fixed-effects panel models to verify the inclusion of yit− 1 in Eq (1). The 
result of this test is given in the Appendix. 

Meanwhile, the model nest both lagged dependent variables and fixed effects could raise a downward biased if the time series (T) is short [40]. 
However, this issue can be neglected if T is “reasonably large”, e.g., Beck et al. [44] considered that T = 40 is sufficient. Given that T = 83, the potential 
bias in our models is very small and could be considered as zero following that guidance.8 We note that Nickell’s bias can be solved by applying the 
generalized method of moments (GMM). However, because the Nickell bias could be considered not significant, we only report results by regular 
fixed-effects regression. 

Portmanteau test for serial correlation in fixed-effects panel models 

Born and Breitung’s [43] portmanteau test for serial correlation in fixed-effects panel models is to test if the error term from εE
it from Eq (5) has 

serial correlation: 

yE
it = αE

i + λE
t + δE

k Dit− k + x′
itβ

E + εE
it k = 0,…, 12. (5)  

εE
it = σεE

it− 1 + eit  

where the difference of Eq (5) from Eq (2) is only the exclusion of the lagged dependent variable, yit− 1. 
The test is stated as follows:  

- H0: No auto-correlation of any order, i.e., σ = 0.  
- Ha: Auto-correlation up to order 1, i.e., σ ∕= 0. 

8 According to Nickell’s [40] Monte Carlo simulation, the simple approximation of the bias in a within-group estimator is − 1+θ
T− 1, where θ is parameter of lagged 

dependent variable yit− 1. Applying this approximation with θ = 0.69 and T = 83, the bias in this study is approximately 2 %. 
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The result of the test (Table 5) rejects the null hypothesis and suggests the alternative that there is an auto-correlation issue. Thus, the inclusion of 
lagged dependent variable, yit− 1, is reasonable.  

Table 5 
Testing for serial correlation in the base models   

(1) (2) 

Solar installation (treatment) 0.475*** − 0.049*** 
(0.016) (0.016) 

Average electricity price (log) − 0.520*** 0.154*** 
(0.051) (0.045) 

Urbanisation rate (%) 0.023 0.041** 
(0.015) (0.016) 

Average electricity price (log)* Urbanisation rate 0.004*** − 0.001 
(0.001) (0.001) 

Income (log) 9.129*** 7.225*** 
(1.479) (1.534) 

Squared income (log) − 0.507*** − 0.402*** 
(0.083) (0.087) 

Number of families 0.081*** 0.088*** 
(0.023) (0.025) 

Employment rate − 0.003** − 0.003** 
(0.001) (0.002) 

Rate of household having more than 3 kids − 0.0002 0.00004 
(0.004) (0.004) 

Observations 232,756 232,756 
R-squared 0.312 0.171 
Groups 3544 3544 
Average group size 65.68 65.68 
Panel-level standard deviation (σu) 2.040 1.383 
Standard deviation of ϵit (σe) 0.421 0.436 
Adjusted R-squared 0.312 0.170 

Inoue and Solon [45] LM-test as post estimation   
IS-stat 1559.61 1387.41 
p-value 0.000 0.000 
N 3544 3544 
maxT 82 82 

Notes. 
- The dependent variable in Model (1) is the log of the household’s total electricity consumption. 
- The dependent variable in Model (2) is the log of the household’s electricity purchased from the grid 
network. 
- All models include households’ time-invariant fixed-effects and time-variant fixed-effects. The difference 
between these estimations and the ones in Table 2 is the exclusion of lagged dependent variable, yit− 1. 
- The test for panel serial autocorrelation used Born and Breitung [43] implementation, initially described by 
Inoue and Solon [45]. This test can be conducted by xtistest command in Stata, implemented by Wursten 
[46]. 
- ***,**, *: significant at the significant level of 1 %, 5 %, and 10 %. 
- Robust standard errors are reported in parentheses. 

Estimations based on solar capacity explanatory variable 

An alternative method for assessing the rebound effect of installing rooftop solar power involves utilizing installed capacity as an explanatory 
variable, in contrast to employing a dummy variable that signifies the periods before and after installation. This approach presents the advantage of 
capturing various levels of rebound effect, with higher capacity often associated with more pronounced rebound effects. However, it is crucial to 
acknowledge the potential correlation between capacity and household wealth, an additional explanatory variable for electricity demand. Conse-
quently, the impact of solar capacity on electricity consumption and the rebound effect may be subject to bias due to multicollinearity. 

Nevertheless, for comprehensive consideration, we introduce the estimation results of this alternative approach in Table 6 as a reference.  

Table 6 
Estimates output of baseline models based on installed solar capacity   

(1) (2) (3) (4) 

Installed solar capacity 0.021*** 0.023*** − 0.004*** − 0.003*** 
(0.001) (0.001) (0.001) (0.001) 

Log of total electricity demand (lagged) 0.690*** 0.697***   
(0.005) (0.005)   

Log of grid electricity demand (lagged)   0.701*** 0.702***   
(0.005) (0.005) 

Average electricity price (log) − 0.164***  0.033**  
(0.014)  (0.014)  

Urbanisation rate (%) 0.006  0.010*  
(0.005)  (0.005)  

(continued on next page) 
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Table 6 (continued )  

(1) (2) (3) (4) 

Average electricity price (log)* Urbanisation rate 0.002***  0.000  
(0.000)  (0.000)  

Income (log) 3.361***  2.289***  
(0.477)  (0.468)  

Squared income (log) − 0.186***  − 0.128***  
(0.027)  (0.026)  

Number of families 0.017**  0.019**  
(0.007)  (0.008)  

Employment rate − 0.001**  − 0.001**  
(0.000)  (0.000)  

Rate of household having more than 3 kids 0.000  − 0.000  
(0.001)  (0.001)  

Observations 223,562 223,562 223,562 223,562 
R-squared 0.660 0.659 0.594 0.594 
Groups 3544 3544 3544 3544 
Average group size 63.08 63.08 63.08 63.08 
Panel-level standard deviation (σu) 0.747 0.190 0.422 0.218 
Standard deviation of ϵit (σe) 0.286 0.287 0.295 0.295 
Adjusted R-squared 0.660 0.659 0.594 0.594 
R-squared within model 0.660 0.659 0.594 0.594 
R-squared overall model 0.498 0.852 0.650 0.841 
R-squared between model 0.553 0.989 0.724 0.997 

Notes. 
- The dependent variables in models (1) and (2) are the household’s total electricity consumption (in log form). 
- The dependent variables in models (3) and (4) are the household’s grid electricity demand (in log form). 
- Installed solar capacity is zero for household does not have or have not installed rooftop solar. 
- All models include households’ time-invariant fixed-effects and time-variant fixed-effects. 
- Standard errors are clustered at the household level and reported in parentheses. 
- ***,**, *: significant at the significant level of 1 %, 5 % and 10 %. 
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