Bounding of double-differenced correlated errors of multi-GNSS observations using RTK for AV positioning

Hassan Elsayed and Ahmed El-Mowafy

GNSS-SPAN GROUP,

SCHOOL OF EARTH AND PLANETARY SCIENCES, CURTIN UNIVERSITY, PERTH, AUSTRALIA

Contents

Introduction

Research objective

Methodology

Results

Conclusion

Future work

IM for Autonomous vehicles

 Real-time positioning is key component in Autonomous Vehicles (AV).

- Safety is paramount for AV.
- •We need to guarantee the reliability of positioning,
- i.e. Positioning integrity monitoring (IM).

Positioning Integrity Monitoring is about how much trust the user can put in the obtained position.

Integrity definitions:

- Alert Limit (AL)
- Protection level (PL)
- Probability of misleading information (P_{HMI})
- Probability of false alert

(P_{FA})

ARAIM

- Advanced Receiver Autonomous Integrity Monitoring or ARAIM
- Developed for aviation applications with multi-frequency observations and multi-hypothesis for faults

Airborne applications	Ground applications
Smoothed code observations	Phase observations
Snapshot positioning	Precise positioning (RTK)
Tens of meters accuracy	cm/dm accuracy

Multicorrelator techniques for robust mitigation of threats to GPS signal quality (R. E. Phelts, 2001)

ARAIM baseline steps and equations

Overbounding of the CDF of the error distribution

Overbounding using Two Step Gaussian Bounding Method (TSGB)

Research objective

Building a stochastic model that represents the double-differenced multi-GNSS observations errors for precise positioning of autonomous vehicles utilizing an error bounding technique.

$\sigma_{G1,2}^2$	$q_{G1,2,3}\sigma_{G1,2}\sigma_{G1,3}$	$q_{G1,2,4}\sigma_{G1,2}\sigma_{G1,4}$	0	0	0	0	0	0]
$q_{G1,2,3}\sigma_{G1,2}\sigma_{G1,3}$	$\sigma^2_{G1,3}$	$q_{G1,3,4}\sigma_{G1,3}\sigma_{G1,4}$	0	0	0	0	0	0
$q_{G1,2,4} \sigma_{G1,2} \sigma_{G1,4}$	$q_{G1,3,4}\sigma_{G1,3}\sigma_{G1,4}$	$\sigma^2_{G1,4}$	0	0	0	0	0	0
0	0	0	$\sigma_{E1,2}^2$	$q_{E1,2,3}\sigma_{E1,2}\sigma_{E1,3}$	$q_{E1,2,4}\sigma_{E1,2}\sigma_{E1,4}$	0	0	0
0	0	0	$q_{E1,2,3} \sigma_{E1,2} \sigma_{E1,3}$	$\sigma^2_{E1,3}$	$q_{E1,3,4}\sigma_{E1,3}\sigma_{E1,4}$	0	0	0
0	0	0	$q_{E1,2,4} \sigma_{E1,2} \sigma_{E1,4}$	$q_{E1,3,4} \sigma_{E1,3} \sigma_{E1,4}$	$\sigma_{E1,4}^2$	0	0	0
0	0	0	0	0	0	$\sigma^2_{C1,2}$	$q_{C1,2,3}\sigma_{C1,2}\sigma_{C1,3}$	$q_{C1,2,4} \sigma_{C1,2} \sigma_{C1,4}$
0	0	0	0	0	0	$q_{C1,2,3} \sigma_{C1,2} \sigma_{C1,3}$	$\sigma^2_{C1,3}$	$q_{C1,3,4}\sigma_{C1,3}\sigma_{C1,4}$
0	0	0	0	0	0	$q_{C1,2,4} \sigma_{C1,2} \sigma_{C1,4}$	$q_{C1,3,4} \sigma_{C1,3} \sigma_{C1,4}$	$\sigma_{C1,4}^2$

A simple example of a variance covariance matrix at one epoch encompassing 12 satellites, i.e. three DD from each constellation.

Collect one year of RINEX data from two Curtin CORS Compute Doubledifferenced errors Mass data classification, processing and analyzing

bounding using TSGB method

Collect one year of RINEX data from two Curtin CORS Compute Doubledifferenced errors

Mass data classification, processing and analyzing

bounding using TSGB method

Methodology: Data collection

Receivers configuration with station CUTB

Plane view of CORS on top of building 402 – Curtin University

Collect one year of RINEX data from two Curtin CORS Compute Doubledifferenced errors

Mass data classification, processing and analyzing

bounding using TSGB method

Methodology: Errors extraction

- For phase $\varphi_{rb,i}^{jk} = \rho_{rb}^{jk} + \lambda_i (B_{rb,i}^j B_{rb,i}^k) + \varepsilon_{\varphi} + b_{\varphi}$
- For code $P_{rb,i}^{jk} = \rho_{rb}^{jk} + \varepsilon_P + b_P$
- $\varphi_{rb,i}^{jk}$ and $P_{rb,i}^{jk}$: The DD value of phase and code measurements, respectively for satellites j and k and stations r and b for signal i.
- ρ_{rb}^{jk} : The DD value of the true range between the stations and the satellites.
- λ_i : The wavelength of the observed signal.
- $\left(B_{rb,i}^{j} B_{rb,i}^{k}\right)$: The DD value of ambiguity values.
- ε_{φ} and ε_p : are DD phase and code noise, respectively.
- b_{φ} and b_{P} : are DD phase and code biases, respectively.

Collect one year of RINEX data from two Curtin CORS Compute Doubledifferenced errors Mass data classification, processing and analyzing

bounding using TSGB method

Methodology: Data analysis – 1st empirical method

Classification: L1 L2 L1 L2 Obs. errors Code **E1** 4 Galileo E5a Phase **E**1 E5a **B1** Code BeiDou **B2 B1** Phase B2

Mapping: ٠ S_j S_k DD_{ze}, SD_1 $e_{r,b}^{SD_2}$ e^{S;} ik i Ŀ

$$\varepsilon_{rb}^{jk} = \varepsilon_{rb}^{j} - \varepsilon_{rb}^{k}$$
$$\varepsilon_{rb_{ze}}^{jk} = \varepsilon_{rb_{ze}}^{j} - \varepsilon_{rb_{ze}}^{k}$$
$$\varepsilon_{rb_{ze}}^{jk} = \varepsilon_{rb}^{j} f(e_{r}^{S_{j}}) - \varepsilon_{rb}^{k} f(e_{b}^{S_{k}})$$

•

Methodology: Data analysis – 1st empirical method

The variance matrix for undifferenced observations at stations r and b:

$$Q_{rb} = \begin{bmatrix} \sigma_0^2 f(e_r^{S_1}) & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_0^2 f(e_b^{S_1}) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_0^2 f(e_r^{S_2}) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_0^2 f(e_b^{S_2}) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_0^2 f(e_r^{S_n}) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sigma_0^2 f(e_b^{S_n}) \end{bmatrix}$$

 $f(e_r^{S_n})$ and $f(e_b^{S_n})$ are the mapping function dependent on EA $e_r^{S_n}$ or $e_b^{S_n}$, for satellites s1 to sn. The VC matrix for DD observations: $Q_{DD} = A(Q_{rb})A^T$

The correlation coefficient between DD observations:

$$q_{ij} = \frac{f(e_r^{S_1}) + f(e_b^{S_1})}{\sqrt{\left(f(e_r^{S_1}) + f(e_b^{S_1}) + f(e_r^{S_i}) + f(e_b^{S_i})\right)}} \times \sqrt{\left(f(e_r^{S_1}) + f(e_b^{S_1}) + f(e_b^{S_j}) + f(e_b^{S_j})\right)}$$

Methodology: Data analysis – 2nd empirical method

Each group of the frequencies' categories is then sorted into 9 groups based on the elevation angle of the pivot satellite with an interval of five degrees.

Each group of the pivot satellite's categories is then sorted into 15 groups based on the elevation angle of the secondary satellite with an interval of five degrees.

Methodology: Data analysis – 2nd empirical method

Methodology: Data analysis – 2nd empirical method

The correlation coefficient was calculated between each category using Pearson's Correlation Coefficient:

$$q_{ij} = \frac{n(\sum \varepsilon_i \varepsilon_j) - (\sum \varepsilon_i)(\sum \varepsilon_j)}{\sqrt{[n \sum \varepsilon_i^2 - (\sum \varepsilon_i)^2] [n \sum \varepsilon_j^2 - (\sum \varepsilon_j)^2]}}$$

where i and *j* are the correlated categories and *n* is the number of data in a certain category.

Collect one year of RINEX data from two Curtin CORS Compute Doubledifferenced errors

Mass data classification, processing and analyzing

bounding using TSGB method

Methodology: TSGB implementation

- Forming a symmetric and unimodal distribution.
- performed from both sides of the data and the mean of each half is computed.
- The second step is to find a standard deviation of a Gaussian distribution for each half that achieves the bounding status.

$$F(x) \leq F_s(x)$$
 for any x

$$F_s(x) \le \frac{1}{\sqrt{2\pi}} \int_{x-m}^{+\infty} e^{-\frac{t^2}{2\sigma^2}} dt \quad for any \ x \ge m$$

Overbounding using Two Step Gaussian Bounding Method (TSGB)

Bounding parameters at zenith of the three investigated systems at different signals and frequencies

System	Signal	Frequency	Mean (m)	Standard Deviation (m)
GPS	Codo	L1	0.03588	0.78321
	Coue	L2	0.03484	0.72368
	Dhaco	L1	0.00032	0.01381
	Phase	L2	0.00049	0.01345
Galileo	Code	E1	0.01254	0.45621
		E5a	0.01711	0.34738
	Dhaca	E1	0.00054	0.01291
	Phase	E5a	0.00054	0.01242
BeiDou	Carla	B1	0.02508	0.69540
	Code	B2	0.13323	0.42987
	Dhaca	B1	0.00171	0.01419
	Phase	B2	0.00257	0.01406

Results: Bounding distributions of the 1st method

Two-step bounding for the GPS L1 DD errors mapped to zenith. The figure shows on the right the actual data distribution, the symmetric unimodal distribution, and the final Gaussian distribution, and on the left their CDFs

sample distribution sym. uni. bounding dist.

OB of Right side

1.5

sample distribution sym. uni. bounding dist.

OB of Left side

2

3

gaussian bounding dist.

2 2.5

0

0.5

1

gaussian bounding dist.

Results: Bounding parameters of the 2nd method

BeiDou - code B1									
OB	Dias (arror Maan)								
parameters		Blas (error Mean)							
Pivot EA									
Secondary	45	50	55	60	65	70	75	80	85
EA									
15				0.19466	0.26285	0.32266	0.29991	0.23170	0.40755
20				0.18686	0.10546	0.11396	0.11536	0.14736	0.55807
25			0.10507	0.06350	0.05802	0.15963	0.14006	0.27170	
30				0.30927	0.28260	0.23619	0.21581	0.14710	0.48908
35				0.36730	0.16947	0.09088	0.07114	0.05901	1.02202
40				0.08993	0.16974	0.23970	0.32063	0.19173	0.27930
45				0.21434	0.09569	0.07527	0.10195	0.05343	
50				0.03522	0.07254	0.04934	0.13634	0.14650	0.21802
55				0.08351	0.03394	0.04740	0.03993	0.05372	0.32398
60				0.09527	0.03196	0.04228	0.05351	0.04640	0.68766
65					0.07643	0.04163	0.08280	0.09344	0.36900
70						0.06013	1.16393	0.04287	
75							0.11879	0.03069	
80									
85									

Bounding *mean* of data collected at different EAs of the reference and the secondary satellites.

BeiDou code B1 data

Results: Bounding parameters of the 2nd method

OB parameters	Standard deviation								
Pivot EA									
Secondary	45	50	55	60	65	70	75	80	85
EA									
15				1.26271	1.58852	2.32259	2.49742	1.27451	1.27737
20				1.15377	1.06690	1.34817	1.29533	1.11054	1.28488
25				1.15291	1.07174	1.05592	1.06467	1.05496	1.02945
30				0.89072	0.98765	0.90792	0.91941	1.06465	1.20275
35				0.98070	1.04903	0.97389	1.27317	1.12253	1.21600
40				1.00239	1.10752	1.16926	1.14126	1.06088	1.09598
45				1.11023	1.06245	0.94887	1.01617	0.94328	
50				0.80934	0.72393	0.74070	0.72991	0.84436	0.77159
55				0.67239	0.74650	0.62601	0.62805	0.60672	0.67492
60				0.68487	0.64432	0.65048	0.74803	0.62477	0.74399
65					0.59777	0.60996	0.65351	0.64201	0.63855
70						0.65612	0.61696	0.56838	
75							0.60486	0.57032	
80									
85									

Bounding *standard deviation* of data collected at different EAs of the reference and the secondary satellites.

BeiDou code B1 data

Results: Variation of bounding parameters of the 2nd method

Variation of the bounding standard deviation of the DD *code* errors with respect to the EA of the observed satellites

Results: Variation of bounding parameters of the 2nd method

Variation of the bounding standard deviation of the DD **phase** errors with respect to the EA of the observed satellites

Results: Bounding distributions of the 2nd method

Two-step bounding for the GPS L2 DD code errors collected at 85 and 45 degrees as an EA for the pivot and secondary satellites respectively.

It shows the actual data distribution, the symmetric unimodal distribution, and the final Gaussian distribution (right), and CDFs (left)

Results: Bounding distributions of the 2nd method

sample distribution sym. uni. bounding dist. 60 gaussian bounding dist. 50 OB of Left side 40 ₽đ 30 20 0.02 -0.015-0.01 -0.0050 0.005 0.01 0.015 Total DD Residuals

Two-step bounding for the Galileo E1 DD phase errors collected at 45 and 30 degrees as an EA for the pivot and secondary satellites respectively.

It shows the actual data distribution, the symmetric unimodal distribution, and the final Gaussian distribution (right), and CDFs (left)

-0.015

-0.01 -0.005

0

quantile

0.005

0.01

0.015

0.02

0.025

10-

-0.02

Results: Bounding distributions of the 2nd method

Overbounging of Galileo DD errors of code measurements for E1 at 45 and 30 degrees as elevation angles for pivot and secondary satellites

Conclusion

This research has proven the possibility to obtain a representative stochastic model that accounts for observations correlation based on empirical data of a relatively short period (one year) using a bounding technique. This weighting function can be used for IM of multi-GNSS precise positioning for autonomous vehicles.

$\sigma_{G1,2}^2$	$q_{G1,2,3}\sigma_{G1,2}\sigma_{G1,3}$	$q_{G1,2,4}\sigma_{G1,2}\sigma_{G1,4}$	0	0	0	0	0	0]
$q_{G1,2,3}\sigma_{G1,2}\sigma_{G1,3}$	$\sigma^2_{G1,3}$	$q_{G1,3,4}\sigma_{G1,3}\sigma_{G1,4}$	0	0	0	0	0	0
$q_{G1,2,4} \sigma_{G1,2} \sigma_{G1,4}$	$q_{G1,3,4} \sigma_{G1,3} \sigma_{G1,4}$	$\sigma^2_{G1,4}$	0	0	0	0	0	0
0	0	0	$\sigma^2_{E1,2}$	$q_{E1,2,3} \sigma_{E1,2} \sigma_{E1,3}$	$q_{E1,2,4} \sigma_{E1,2} \sigma_{E1,4}$	0	0	0
0	0	0	$q_{E1,2,3} \sigma_{E1,2} \sigma_{E1,3}$	$\sigma^2_{E1,3}$	$q_{E1,3,4} \sigma_{E1,3} \sigma_{E1,4}$	0	0	0
0	0	0	$q_{E1,2,4} \sigma_{E1,2} \sigma_{E1,4}$	$q_{E1,3,4} \sigma_{E1,3} \sigma_{E1,4}$	$\sigma^2_{E1,4}$	0	0	0
0	0	0	0	0	0	$\sigma^2_{C1,2}$	$q_{C1,2,3} \sigma_{C1,2} \sigma_{C1,3}$	$q_{C1,2,4} \sigma_{C1,2} \sigma_{C1,4}$
0	0	0	0	0	0	$q_{C1,2,3} \sigma_{C1,2} \sigma_{C1,3}$	$\sigma^2_{C1,3}$	$q_{C1,3,4} \sigma_{C1,3} \sigma_{C1,4}$
0	0	0	0	0	0	$q_{C1,2,4} \sigma_{C1,2} \sigma_{C1,4}$	$q_{C1,3,4} \sigma_{C1,3} \sigma_{C1,4}$	$\sigma_{C1,4}^2$

Future work

- Investigating the efficiency of the designed empirical weighting functions.
- Carrying out sensitivity analysis to examine different mapping functions or analysing longer periods of GNSS observations.
- Using adaptive Kalman Filter in the FDE step.
- Testing the developed methods by GNSS data collected by low-cost receivers.

