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Summary

This thesis is devoted to extending and applying the wave-packet convergent

close-coupling (WP-CCC) approach to ion-atom and ion-molecule collisions. In

this method the total scattering wave function is expanded in terms of bound

states and wave-packet pseudostates that represent the continuum of both the

target and projectile atoms. This expansion is substituted into the full time-

independent Schrödinger equation for the total scattering wave function and the

semiclassical approximation is used to derive the two-centre close-coupling equa-

tions. Numerical solution of the close-coupling equations yields the expansion

coefficients in the final channel, from which the transition amplitudes for all

single-electron processes are determined. The method is applied to calculate

integrated and differential cross sections important for modelling fusion plasmas,

ion-beam transport through matter, and interactions between solar wind ions and

planetary atmospheres. The results are compared to experimental and theoretical

data where available. For some collision systems and processes the present results

are the first available data.

First, an extensive set of integrated cross sections for electron capture, ion-

isation, and target excitation for Li3+, Be4+, and Ne10+ collisions with atomic

hydrogen is calculated over a wide range of incident energies relevant to fusion-

plasma modelling. These, and results for Be4+ scattering on initially excited

hydrogen atoms, represent the most comprehensive data for the investigated sys-

tems to date. The speed up obtained from utilising graphics processing unit

(GPU) accelerators is essential for enabling the use of sufficiently large bases for
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the calculations to converge.

Then, the method is applied to calculate all types of singly differential cross

sections in the fundamental three-body p + H collision system. The results are

the first coupled-channel calculations of the singly differential cross sections for

all interconnected processes occurring in proton-hydrogen collisions. Excellent

agreement with experimental data and improvement over previously available

calculations is found.

A novel approach to calculating electron capture within the single-centre close-

coupling formalism is developed. Results are compared to full two-centre calcu-

lations for p + H collisions, finding very good agreement for all integrated cross

sections. The method is applied to calculate integrated cross sections for ioni-

sation, electron capture, and target excitation in p + Li collisions. Accounting

for capture of both K- and L-shell electrons using the independent-event model,

good agreement is found with the experimental data.

An effective one-electron approach to ion collisions with multielectron targets

is developed and applied to proton scattering on alkali metal atoms. The multi-

electron wave function calculated from multiconfigurational Hartree-Fock theory

is summed over the spin variables of all electrons and integrated over the spatial

variables of all but one electron. The resulting wave function is used to reverse-

solve the one-electron Schrödinger equation to obtain an effective pseudopotential

that can be used to generate effective one-electron excited states and the contin-

uum solution. Total electron-capture cross sections for proton collisions with Li,

Na, and K atoms agree well with the experimental data, especially at energies

where the inner-shell electrons contribute significantly to the overall results. This

approach is readily scalable to larger atoms and pioneers the way for performing

detailed close-coupling calculating ion collisions with many electron targets.

Furthermore, the four-body WP-CCC approach that accounts for electron-

exchange and correlation effects throughout the collision is applied to calculate

singly differential cross sections for p + He collisions. Comparison with the ef-
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fective one-electron method reveals that, in most cases, the effective one-electron

method is sufficient to provide a satisfactory description of the experimental data.

Both approaches are also applied to calculate integrated cross sections for elastic

scattering, excitation, electron capture, and ionisation in He2++He collisions. It is

found that electron-exchange and electron-correlation effects are more important

for the He2+ projectile compared to protons.

An effective one-electron approach to proton collisions with molecular hydro-

gen is also developed. This approach uses a model potential that represents the

field of the H+
2 core averaged over all orientations. Then, integrated cross sections

for all one-electron processes occurring in p + H2 collisions are calculated using

the three-body WP-CCC method. Good agreement with experiment is found,

suggesting this approach is suitable for intermediate- and high-energy collisions.

Next the method is applied to calculate singly differential cross sections for elastic

scattering, target excitation, electron capture, and ionisation. The results agree

very well with experiment, especially for ionisation where significant improvement

over previously available theories is observed. Finally, the doubly differential cross

sections for ionisation in p + H2 collisions are calculated. The results provide

the first accurate description of the energy and angular distribution of emitted

electrons. The present calculations for p + H2 collisions are the first two-centre

close-coupling results for this system.

Main Results

• The two-centre WP-CCC method is extended to use GPU accelerators al-

lowing for significantly larger calculations to be performed:

- Offloading calculations of the scattering equations to GPU accelerators

provided a speed up of over two orders of magnitude. This significantly

increased the throughput of calculations and maximum practical basis

size.

- The method is applied to calculate integrated cross sections for total
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electron capture, ionisation and state-selective electron capture into all

2`- and 3`-states for Li3+ + H(1s) collisions in the energy range from

1 keV to 1 MeV.

- Integrated cross sections for total electron capture, ionisation, target

excitation and state-selective electron capture into all n`-states up to

5g are calculated for Be4+ + H(1s) collisions from 1 keV to 1 MeV.

- Integrated cross sections for total electron capture, ionisation, electron

loss, target excitation into the n = 3, 4, and 5 states, and state-

selective electron capture into projectile states up to 8j for Be4+ col-

lisions with H(2s), H(2p0), and H(2p1) are calculated from 1 to 500

keV.

- Integrated cross sections for total electron capture, ionisation, and

state-selective electron capture into all n`-states up to 10m are calcu-

lated for Ne10+ + H(1s) collisions from 1 keV to 1 MeV.

• The method is applied to calculate differential cross sections for the three-

body p + H collision system:

- Angular differential cross sections for elastic scattering, n = 2 target

excitation, and total electron capture are calculated.

- Singly differential cross sections for ionisation as functions of the en-

ergy of the and angle of the ejected electron are also calculated, finding

significantly improved agreement with experiment compared to other

theoretical results.

• A method is developed for extracting integrated cross sections for electron-

capture from the single-centre WP-CCC approach:

- Cross sections for total electron capture, state-selective capture, and

total ionisation are compared to results from the two-centre version of

the WP-CCC method, finding perfect agreement for p + H collisions.
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- The approach is applied to calculate cross sections for total electron

capture, total electron loss, and 2p-excitation in p + Li collisions using

the independent-event model to account for capture from both the L-

and K-shells.

• An effective one-electron description of multielectron atoms that accounts

for the electron-electron correlations in the target structure without using

the independent-event model is developed:

- Total electron-capture and ionisation cross sections are calculated for

p+Li, p+Na, and p+K collisions. Good agreement with experimental

data is observed, particularly for high-energy capture where inner-shell

electrons play an important role.

- The method is applied to calculate all types of singly differential cross

sections for p+He collisions and the results are compared to those from

the four-body WP-CCC approach. It is found that the effective one-

electron approach is capable of accurately describing the experimental

data in most cases, only for the singly differential cross section for

ionisation as a function of the angle of the ejected electron are notable

differences with the four-body WP-CCC results observed.

• The four-body WP-CCC approach is extended to collisions of multiply

charged ions with helium atoms:

- Cross sections for total electron capture, state-selective electron cap-

ture up to 3d, elastic scattering, state-selective target excitation up to

3d, and total ionisation are calculated for He2+ + He collisions.

- Results are also compared to those obtained using the effective one-

electron approach. It is found that direct-scattering cross sections are

very sensitive to the accuracy of the target description.
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• An effective one-electron approach to p+H2 collisions within the WP-CCC

framework is developed:

- Cross sections are calculated for total single-electron capture, single

ionisation, elastic scattering, target excitation, and state-selective elec-

tron capture up to 3d for non-dissociative collisions.

- All types of singly differential cross sections for one-electron processes

are calculated, significantly improved agreement with the experimental

data for ionisation compared to previously available calculations is

observed.

- The doubly differential cross section for ionisation as a function of

the energy and angle of the ejected electron is calculated, providing

the first accurate description of the energy and angular distribution of

electrons emitted in p + H2 collisions.

- The doubly differential cross sections for ionisation as a function of the

scattering angle of the projectile and energy of the ejected electron and

as a function of the scattering angle of the projectile and angle of the

ejected electron are also calculated.
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Chapter 1

Introduction

Ion collisions with atoms and molecules represent one of the most fundamental

physical processes and play an essential role in developing our understanding

of the structure of matter and its interactions. Investigations of atomic colli-

sions have resulted in a number of significant advancements in our understanding

of the physical universe. For example, experimental measurements of ion-atom

collisions lead Rutherford [1] to the development of the nuclear model of the

atom and later Chadwick [2] to the discovery of the neutron. Collisions between

ions, atoms, and molecules also occur in many natural environments such as

planetary atmospheres. A spectacular example of this are the aurora borealis

and aurora australis which Birkeland [3] discovered are caused by emission of

energy transferred in collisions of solar-wind ions with atoms and molecules in

the Earth’s upper atmosphere. The most powerful aurorae in the solar system

were observed on Jupiter by the Hubble Space Telescope [4]. Studies of X-rays

emitted as a result of ion collisions with atoms and molecules in extraterrestrial

environments provide insight into the composition and atmospheric dynamics of

other planets [5].

In addition to enhancing our understanding of fundamental physics, atomic

collisions underpin several state-of-the-art technologies such as nuclear fusion

reactors and hadron therapy. Fusion energy is capable of providing abundant

1
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clean power using the same mechanism as the sun to generate energy. Monte Carlo

(MC) simulations essential for diagnostics and control of the fusion plasma rely

on accurate data for collisions of injected atoms with various fuel and impurity

ions [6]. Hadron therapy is a major cancer treatment modality that uses ions to

bombard tumours very precisely. It was first proposed by Wilson [7] based on

Bragg’s [8] observations that ion beams travelling through matter deposit most of

their energy at the end of their path just before coming to a stop. This technique

spares far more healthy tissue that traditional X-ray therapy and can be an

effective alternative where surgical removal is not recommended [9]. Treatment

plans are developed with MC simulations of ion transport through biological

material. Accurate data for collisions between the beam ions and target atoms

and molecules is essential to ensure radiation is delivered to the correct location.

Predicting the various outcomes of atomic collisions has been a major focus of

scientific investigation since the inception of quantum mechanics [10, 11]. Often,

researchers face unique challenges and some types of collisions that are easier to

investigate in the laboratory are very difficult to calculate, and vice-versa. For

example, it is easier to prepare H2 targets experimentally than H atoms [12],

however theoretical modelling of collisions with molecules is a significantly more

challenging task than those involving atomic targets. Furthermore, some types

of atoms which are involved in important collisions, such as beryllium, are toxic.

Therefore, experiments may not be able to be safely performed, necessitating the

development of accurate theories capable of providing the required collision data

instead.

In this thesis we will investigate ion-atom and ion-molecule collisions with

state-of-the-art theoretical methods to provide the data essential for MC mod-

elling in fusion energy, hadron therapy, and astrophysical research. The theoret-

ical methods developed and results will further our understanding of the under-

lying physics and provide the most accurate description of the studied collision

systems.
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1.1 Physics of atomic collisions

On the energy scale in which atomic and molecular collisions occur the dynamics

of scattering is described by quantum mechanics. This means that the outcome

of a given collision is not exactly determined by the initial conditions of the

particles. Rather, there may be a number of possible outcomes, called reaction

channels, each of which has an associated probability. These probabilities are

quantified by the scattering cross section, a measure of the number of outgoing

scattered particles resulting from a particular reaction channel to the incoming

particle flux.

Consider a three-body collision system consisting of an ionic projectile collid-

ing with a one-electron atom, denoted as Aq+ and B, respectively. The incoming

projectile has electronic charge q+. The simplest mechanism is elastic scattering,

where the incident particle may be deflected but there is no transfer of energy

between the projectile and target,

Aq+ + B→ Aq+ + B. (1.1)

On the other hand, inelastic collisions involve energy transfer. They may be

caused by a number of different mechanisms. Target excitation occurs if the

target electron gains energy less than the ionisation energy of the atom,

Aq+ + B→ Aq+ + B∗. (1.2)

Ionisation occurs if the electron is given sufficient energy to leave the collision

system unbound to either the target or projectile,

Aq+ + B→ Aq+ + B+ + e−. (1.3)

For collisions involving positively charged projectiles, electron capture may occur
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where the target electron forms a bound state with the projectile ion,

Aq+ + B→ Aq−1 + B+. (1.4)

For multielectron targets, these mechanisms can occur simultaneously for different

electrons. However, for the collision systems considered herein single-electron

processes are typically at least an order of magnitude more likely. Therefore, we

consider only single-electron processes in this work.

1.2 Applications

Cross sectional data for various outcomes of atomic collisions is used in a number

of active fields of research [13, 14]. In this section we outline three areas in which

accurate data is required.

1.2.1 Fusion plasmas

The ITER (formerly the International Thermonuclear Experimental Reactor)

project aims to fuse hydrogen isotopes and harness the energy released to produce

electricity. This large-scale, decades-long, international project should demon-

strate the possibility of producing energy that is millions of times more efficient

than burning coal, with no pollution and significantly less radioactive waste than

traditional fission reactors [15]. The ITER project is an ambitious feat of en-

gineering, demanding state-of-the-art scientific knowledge to succeed. Activat-

ing hot fusion reactions requires carefully controlled heating of plasma fuel to a

temperature of millions of degrees. One method used by the ITER project for

heating and diagnostics of the fusion plasma is the injection of beams of neutral

atoms, in particular atomic hydrogen [16]. The neutral-beam injection system

for the ITER tokamak is illustrated in Fig. 1.1. Injected beam atoms collide

with various fully and partially stripped impurity ions present in the plasma

and transfer their energy [17]. Plasma diagnostics are performed using charge-
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exchange spectroscopy (CXS) [18]. The CXS technique is based on emission,

usually in the visible spectrum, of the excited one-electron or multielectron ions

resulting from electron capture. The application of the CXS technique requires

knowledge of state-resolved electron-capture cross sections. Therefore, accurate

data for collisions of ions with hydrogen is essential for precise monitoring and

control of the fusion plasma [6].

Figure 1.1: Neutral-beam injection system for the ITER tokamak. The grey torus is the
tokamak reactor and the locomotive-sized orange apparatus on the right is the neutral
beam injection system. Image courtesy of ITER [19].

1.2.2 Hadron therapy

Radiotherapy is an important method used in the treatment of cancer, particu-

larly for deep-seated tumours where surgical methods pose significant risks [20].

Traditional radiotherapy bombards cancerous cells with high-energy X-rays which

causes significant damage to healthy tissues, not only around the tumour site but

also along the beam path [21]. In fact, this technique delivers the maximum

radiation dose to the healthy cells near the surface of the skin. Furthermore,

successful X-ray treatment still carries a high risk of long-term complications

including recurrences and the development of secondary cancers. Hadron (or ion)

therapy offers an alternative where, instead of photons, ions are used to deliver

energy to the tumour site [7]. In contrast to X-rays, ion beams travelling through

matter deposit most of their energy in a small region toward the end of their
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path. This appears as a sharp peak in the depth-dose profile, known as the

Bragg peak [8], where the ions come to a full stop. Compared to X-rays, much

less energy is delivered to healthy tissue along the path and more to the cancerous

tissue [22].

The most commonly used projectiles in hadron therapy are protons. Heavier

ions like C6+ have several advantages such as a narrower Bragg peak and reduced

spreading of the incoming beam [23]. However, one disadvantage is that com-

posite particles can fragment, leading to a small number of lighter ions that can

penetrate beyond the target site. Efforts are currently underway to determine if

helium ions may provide a useful compromise [24].

Photons Protons Carbon ions

Key: Heart Spinal cord Target volume

Figure 1.2: Simulated dose distribution for irradiation of a liver tumour using photons,
protons, and carbon ions. With the photon beam the majority of energy is deposited in
the healthy tissue in the incoming channel, whereas the ion beams deliver the majority
of their energy to the target volume, sparing the heart and spinal cord. Simulation
created with matRad [25].

Figure 1.2 shows the simulated dose distribution for photon, proton, and

carbon-ion irradiation of a liver tumour. For the photon beam the majority of

energy is delivered in the entrance channel and significant amounts of radiation

penetrate beyond the target site, putting the sensitive spinal cord at risk. In

contrast, both the proton and carbon beams deliver the majority of their energy

near the end of their path. The carbon ions provide the most focussed energy

deposition at the tumour, doing the least damage in the entrance channel. A

small amount of energy is distributed in the distal region, but significantly less

than for the photon beam.

The intensity and position of the Bragg peak depend on the type of ion, beam
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energy, and type of target [21]. MC depth-dose simulations predict the Bragg

peak position using the stopping power data. The stopping power is a measure

of the energy lost by particles as they travel through matter. Therefore, accurate

knowledge of the various mechanisms responsible for energy loss is required to

generate stopping power data used to model beam transport through biological

media. However, current MC simulation packages are based on the Bethe-Bloch

stopping power formula [26]. This model is only accurate at very high energies.

Important processes such as electron capture and coupling between reaction chan-

nels, as well as the atomic and molecular target structure, are ignored. Further-

more, experiments showed that cell destruction is mostly caused by secondary

electrons rather than by the original ionising radiation directly [27]. Therefore,

modelling the energy and angular distribution of the secondary electrons emitted

when beam ions collide with target atoms and molecules is very important.

1.2.3 Astrophysics

Astrophysical phenomena occurring in space present a natural laboratory for

atomic collision physics. Scattering occurs in various astrophysical events such as

collisions of solar wind ions with planetary atmospheres [28] and charge transfer

between stellar remnants of distant supernovae [29]. Such systems provide ob-

servational experiments for obtaining very accurate and important information

for research in atomic collision physics that may otherwise not be attainable in a

laboratory. Conversely, improved knowledge of collision processes can help solve

outstanding problems in astrophysics.

Observations have found that several solar system objects shine in the X-ray

spectrum [30]. Depending on the properties of the X-ray radiation, it is possi-

ble to determine characteristics of the emitter environment. Two of the main

mechanisms that result in the production of X-rays from solar system objects are

charge exchange between solar-wind ions and neutral atoms, and charge exchange

between the neutral atoms and energetic heavy ions of planetary atmospheric and
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magnetospheric origin [31]. X-ray observations of spontaneous de-excitation fol-

lowing charge exchange between ions, atoms, and molecules in Jupiter’s upper

atmosphere provide evidence of ion precipitation which is responsible for the cre-

ation of currents that drive atmospheric dynamics [28]. Furthermore, collisions of

keV to MeV energy protons, present in the Jovian atmosphere [32], with molecular

hydrogen contribute significantly to the ion and electron currents through ioni-

sation and stripping processes. Currently there is a lack of detailed experimental

and theoretical data for both single and double-electron processes involved in

these collisions [28].

1.3 Aims of this work

The overall aim of this project is to extend and apply the highly successful wave-

packet convergent close-coupling (WP-CCC) approach to ion-atom collisions, im-

portant for modelling in fusion plasma science, hadron therapy, and astrophysics.

We intend to calculate differential cross sections, which provide a more detailed

description of the collision, for all single-electron processes, including ionisation.

Currently, the experimental data for relatively simple processes, like the ionisation

of atomic hydrogen by proton impact, are inconsistently described by available

theories. Furthermore, those calculations that are available consider different

scattering outcomes independently, without accounting for coupling between re-

action channels. We will calculate the differential cross sections for all (binary

and breakup) single-electron processes occurring in p+H collisions within a single

theoretical framework. The WP-CCC approach was recently applied to calculate

integrated cross sections for proton scattering on helium, taking into account

electron-electron correlations [33]. We also plan to calculate differential cross

sections in collisions of protons and alpha particles on He.

For the purposes of fusion plasma modelling, data on the state-resolved charge-

transfer cross sections for collisions of various ions with atomic hydrogen are

required by the ITER project. Previously, the WP-CCC method was successfully
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applied to He2++H collisions [34] and C6++H collisions [35]. In this work we will

consider collisions of Li3+, Be4+, and Ne10+ ions with hydrogen, for which data is

urgently needed for fusion plasma modelling [36]. These ion species are expected

to be present in the ITER tokamak where they will interact with neutral hydrogen

atoms. However, for many of the relevant inelastic processes no experimental and

little theoretical data is available. In this work we will provide accurate collision

data to fulfil this requirement.

In treatment planning for hadron therapy the water molecule is used as a ref-

erence target for modelling ion transport through biological media [21]. Hence,

there is an urgent need for accurate stopping power cross sections on proton col-

lisions with H2O. The path to developing theories that can accurately calculate

cross sections for ion collisions with water starts with the simplest molecular tar-

get, H2. However, even for simple molecules, currently available theoretical data

is based on the Bragg summation rule in which cross sections for the constituent

atoms are simply added together. This crude approximation is known to be in-

accurate at intermediate and low projectile energies. Previously, the convergent

close-coupling (CCC) method was used to calculate the integrated cross sections

in p̄ + H2 collisions, providing the most accurate theory for the total ionisation

cross section (TICS) to-date [37]. In this project we will extend the two-centre

WP-CCC method to tackle collisions of protons and positively charged ions with

H2.

A significant obstacle in the path of applying advanced scattering theory and

computer codes to generate cross sectional data is the increase in theoretical

complexity and computational requirements when considering molecules or mul-

tielectron atoms. To address this we intend to (i) implement GPU acceleration to

increase the computational efficiency of the WP-CCC code, (ii) develop a simpler

single-centre method to calculate electron-capture, and (iii) create an effective

one-electron approach to multi-electron targets that will allow the three-body

WP-CCC method to be applied to more complex systems. These developments
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will pave the way towards application of the two-centre WP-CCC approach to

ion-atom and ion-molecule collisions relevant to the areas outlined in Sect. 1.2.

The layout of this thesis is as follows. First, an overview of existing theoretical

methods for ion-atom collisions is given in Ch. 2 before detailing the three-body

WP-CCC approach in Ch. 3. After this the method is applied to collisions of

Li3+, Be4+, and Ne10+ ions with hydrogen in Ch. 4. In Ch. 5 we calculate, for

the first time, all types of singly differential cross sections in p + H collisions

within a single theoretical framework. The following chapter presents a novel

approach for determining integrated electron-capture cross sections within the

single-centre WP-CCC method. The idea is tested against the full two-centre

approach for p + H collisions before being applied to study proton scattering on

lithium atoms. In Ch. 7 we demonstrate a new method for calculating proton

scattering on alkali metals by developing a pseudopotential description of the

multielectron target that treats all electron on an equal footing. Then we apply

the WP-CCC approach to p + He collisions to calculate differential cross sections

in Ch. 8. The WP-CCC approach is applied to He2+ + He collisions in Ch. 9.

Extension of the present method to the molecular hydrogen target is considered

in Ch. 10 where we calculate integrated and differential cross sections for all

single-electron processes. Finally, Ch. 11 summarises the results of this work and

discusses the future outlook.

Atomic units are used throughout, unless otherwise stated.



Chapter 2

Overview of existing theoretical

methods

Many approaches have been developed to model ion-atom collisions. For low-

energy collisions, where the probability of ionisation of a target electron is neg-

ligible, methods based on expanding the scattering wave function in terms of

molecular orbitals provide accurate results. At high energies, ionisation plays

an integral role in the collision, becoming the dominant electron-loss mechanism.

Here perturbative methods can provide an accurate description of the experimen-

tal data. The intermediate-energy region lies between these two extremes where

the projectile speed is comparable to the orbital speed of the target electron. Here

the total ionisation cross section maximises and there are many competing reac-

tion channels. As a result, accurate modelling of intermediate-energy ion-atom

collisions represents a challenging theoretical problem. For ionic projectiles, the

intermediate-energy region spans from approximately 1 keV/u to several MeV/u.

The projectile speed is of the order 106 m s−1 and the collision timescale is very

short. However, the speed of the particles involved is sufficiently less than the

speed of light that non-relativistic mechanics provide a suitable description of

scattering.

This chapter provides an overview of the various methods developed for cal-

11
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culating ion collisions with atoms and molecules. Theories may be categorised as

either classical or quantum-mechanical. Classical approaches describe the colli-

sion system entirely using classical equations of motion. In contrast, quantum-

mechanical methods are based on the Schrödinger equation. For atomic hydrogen

and hydrogen-like atoms the Schrödinger equation can be solved exactly. How-

ever, when additional particles are added the equations become significantly more

complex and exact solution becomes impossible. Therefore, carefully considered

approximations must be made in order to ensure sufficiently accurate solution of

the quantum-mechanical equations of motion.

2.1 Classical methods

Methods based on a purely classical description of the scattering dynamics pro-

vide a relatively simpler alternative to more sophisticated quantum-mechanical

approaches. However, as the underlying physics is governed by the latter, the

classical picture cannot be considered a complete description of the collision sys-

tem. Nonetheless, classical methods have seen widespread use and at sufficiently

high collision energies can provide a simpler alternative to more sophisticated

methods, generally finding agreement with experimental data [38].

2.1.1 Classical trajectory Monte Carlo method

The classical trajectory Monte Carlo (CTMC) approach to ion-atom collisions is

based on the assumption that the scattering dynamics are entirely governed by

Newtonian physics. First, the initial impact parameter of the projectile as well

as the position and momentum of the target electrons are chosen randomly using

a Monte Carlo technique. Then, starting with the projectile and target far apart,

the classical Hamilton equations are solved numerically. This is repeated for many

randomly chosen initial conditions. Integrated and differential cross sections are

obtained from the calculated trajectories. The accuracy of the results depends
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on the number of trajectories used and the associated statistical uncertainty [39].

The advantages of this approach is that it can provide a kinematically com-

plete picture of the collision and the computations are relatively easy to perform.

Application to multielectron targets is also straightforward. However, the main

disadvantage is the omission of quantum-mechanical effects that are known to play

an important role in collisional dynamics. Furthermore, calculating a sufficiently

large number of trajectories to ensure statistical reliability of the results can be

computationally very expensive. However, the CTMC method has been applied

to many collision systems, often providing a reasonably accurate description of

the experimental data [38].

2.1.2 Gryziński method

Gryziński [40] proposed a method for calculating the energy and angular distribu-

tion of electrons produced in ionising collisions using a fully classical description

of the dynamics. In the so-called binary-encounter approximation the scattering

system is reduced to a simple two-body classical collision between the projectile

and target electron. Conservation of momentum leads to the result that the

electron should be emitted with approximately twice the speed of the incoming

projectile. One advantage of this approach is that the resulting analytical ex-

pression for the ionisation cross section is easy to compute. However, the binary-

encounter mechanism is only responsible for fast electrons and cannot describe

the cross section for electrons emitted with small energies. Furthermore, whilst

it can provide reasonable results for the energy distribution of emitted electrons,

the angular distribution is strongly influenced by the target nucleus [40]. There-

fore, application of the approach to calculate the angular distribution of emitted

electrons yields very poor results.
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2.2 Quantum-mechanical methods

Methods that describe part or all of the collisional dynamics with the Schrödinger

equation fall into this category. Quantum-mechanical methods may be further

divided into two types: perturbative or non-perturbative. In the former approach,

the interaction between the projectile and target is treated as a small perturbation

to the Hamiltonian of the isolated system. The scattering wave function is then

expanded as an infinite series where each successive term corresponds to a higher-

order correction to the approximate solution [41]. In practice, the series is often

truncated to only one or two terms that can be evaluated analytically. Including

additional terms makes analytical solution prohibitively difficult very quickly.

However, higher-order terms correspond to important physical processes and,

especially at low collision energies, cannot be neglected [42].

Non-perturbative methods attempt to solve the problem directly. This way

higher-order processes are intrinsically included in the solution. Typically, these

approaches make use of well-justified approximations to write the Schrödinger

equation in a form more amenable to numerical solution. The robustness of

the solution can be verified by performing calculations with increasing numerical

accuracy until the results converge to a constant value. The main obstacle with

non-perturbative approaches is the complexity of the equations and large compu-

tational requirements. However, non-perturbative quantum-mechanical methods

provide the most detailed description of the underlying physics and, consequently,

often describe the available experimental data very well.

2.2.1 First-order Born approximation

The Born perturbation series has been used to describe ion-atom collisions since

the inception of quantum mechanics. Electron capture in p + H collisions was

studied by Oppenheimer [11] and Brinkman and Kramers [43] using what is now

known as the Oppenheimer-Brinkman-Kramers (OBK) method. This approach
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used the first term of the Born series but neglected the interaction between the

heavy particles as this was believed to make no contribution [44]. Subsequent

experimental measurements revealed that this approximation provided an inac-

curate description of the differential cross section for electron capture. Jackson

and Schiff [45] and Bates and Dalgarno [46] included the interaction between the

two protons and found improved agreement with the experimental data. This ap-

proach could not, however, accurately describe scattering between other types of

ions and targets. This was later determined to be caused by incorrect description

of the Coulomb boundary conditions [47]. The first-order boundary-corrected

Born (CB1) approximation remedies this shortcoming [48] and provides a reason-

ably accurate description of the integrated cross section for electron capture [49].

However, even with the correct boundary conditions the method still remains

first-order and is incapable of reproducing features caused by higher-order pro-

cesses [50].

2.2.2 Second-order Born approximation

In many cases the first term of the Born series is insufficient to accurately describe

the collision. The second-order boundary-corrected Born (CB2) approximation

incorporates the first two terms of the perturbation expansion [51]. However, the

second-order term is considerably more difficult to calculate due to the presence

of an infinite sum over intermediate bound states and integration over the infinite

continuum [47]. A significant simplification based on replacing the correct Green’s

functions with the phase-modified free-particle Green’s functions was thus devel-

oped. This is known as the second-order boundary-corrected Born approximation

with simplified Green’s functions (B2B0) [52]. The second-order method has been

considerably more successful in describing the experimental data for the differen-

tial electron-capture cross section [50]. However, as with methods based on the

first-order term in the Born expansion, this approach is only accurate at high

energies and moreover extension to higher-order terms is prohibitively difficult.
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2.2.3 Distorted-wave Born method

In an attempt to improve the accuracy of the Born approximation the asymptotic

wave functions upon which the perturbation expansion is based can be replaced

by distorted waves. These may be chosen in infinitely many ways and are typi-

cally selected to describe certain physical features of the scattering system [47].

However, there is no way of knowing which distorted waves will yield the best

results before comparison with experiment. Nonetheless, both first- and second-

order calculations based on the distorted-wave Born (DWB) approximation were

found to provide a reasonably accurate description of electron capture in p + H

collisions [53].

2.2.4 Continuum-distorted-wave approach

The previously discussed perturbative methods rapidly become inaccurate at in-

termediate projectile energies and are typically only reliable for fast projectiles.

To address this shortcoming, Cheshire [54] developed the continuum-distorted-

wave (CDW) method which accounts for the distortion of the target wave func-

tion through inclusion of the effect of the interaction potentials in the unper-

turbed basis [47]. The first term in the CDW approach effectively includes some

contributions from the second-order term in the Born expansion, resulting in

more rapid convergence of the perturbation series. A commonly used approxima-

tion to the CDW method is to replace the distorted wave with the semiclassical

eikonal approximation [55]. In the continuum-distorted-wave eikonal-initial-state

(CDW-EIS) method the eikonal wave function is employed in the initial channel

whereas in the continuum-distorted-wave eikonal-final-state (CDW-EFS) method

the eikonal wave function is employed in the final channel.

Overall, methods based on the CDW approach provide some of the most

accurate results within the perturbative approximation. Furthermore, the util-

ity of an analytical expression makes it straightforward to perform calculations.
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However, for some processes, such as the fully differential cross section (FDCS)

for ionisation in p + H2 collisions, there exist significant discrepancies between

experimental data and currently available calculations based on the CDW-EIS

method [56, 57].

All of the methods discussed so far suffer from two major shortcomings. First,

higher-order terms in the perturbative expansion are too difficult to calculate,

making the methods inaccurate at low and intermediate impact energies. Second,

coupling between reaction channels, which is very important at intermediate en-

ergies, is not accounted for. As a result, perturbative methods cannot in practice

be considered as capable of providing an accurate description of the underlying

physics in the intermediate energy region.

2.2.5 Partial-wave approach

A common technique used in calculating electron collisions with atoms is to ex-

pand the projectile wave function in terms of partial waves. The accuracy of

the solution can be tested by systematically including additional terms in the

expansion. However, for collisions of heavy projectiles a very large number of

partial waves are required, making practical calculation prohibitively difficult [47].

Therefore, it is common for intermediate- and high-energy ionic projectiles to use

a semiclassical approximation where the projectile is assumed to move along a

straight-line trajectory. This is a reasonable approximation to make provided

that the speed of the projectile is comparable to or greater than the orbital speed

of the electrons. In such cases the scattering angle is very small and the projectile

can be modelled as a plane wave. There have been some attempts at applying

the partial-wave method to ion-atom collisions. In particular, Wong et al. [58]

showed that with modern computer technology it is possible to obtain convergent

results within the partial-wave formalism for proton scattering on both hydrogen

and helium atoms. However, there were discrepancies between the results and

the experimental data for angular differential cross sections.
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2.2.6 Lattice-based methods

The most direct method to solving the Schrödinger equation for a collision system

is to discretise the total scattering wave function and operators over a large grid

(lattice). The time-dependent Schrödinger equation (TDSE) is then solved nu-

merically at every point on the grid and cross sections are recovered from the total

scattering wave function [59]. Such methods are very accurate and applicable at

all collision energies, but extremely demanding computationally and therefore

only recently have become possible. The main utility of such approaches is to

provide a benchmark for other methods as the computational requirements can

make lattice-based direct solution impractical.

2.2.7 Molecular-orbital close-coupling method

If the collision energy is sufficiently low, e.g. no more than about 1 keV, then the

probability of ionisation is negligible in comparison to direct scattering (either

elastic scattering or target excitation) and electron capture. If this is the case,

then molecular-orbital close-coupling (MOCC) approaches provide very accurate

results. The idea is that the total scattering wave function can be expanded

in terms of molecular orbitals constructed by considering the electron in the

field of both the target and projectile nuclei [60]. The expansion is inserted

into the Schrödinger equation for the scattering system and a set of coupled

differential equations results. These are then solved numerically to determine

the expansion coefficients from which the cross sections are calculated. This

sophisticated approach provides a detailed description of the underlying physics,

accounting for coupling effects between the various reaction channels.

The main drawback with this method is the omission of the continuum which

prohibits application at intermediate and high energies where ionisation plays a

significant role. Compared to perturbative methods, it is also much more compu-

tationally difficult and in practice the number of states used in the close-coupling
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expansion is restricted by the available computational resources. However, for

slow projectiles the MOCC methods provides very accurate results [61–63] and

as a close-coupling method it is straightforward to determine state-resolved cross

sections as well as total cross sections, all within a single calculation.

2.2.8 Atomic-orbital close-coupling method

If the projectile speed is comparable to or greater than the orbital speed of the

electron then it is reasonable to assume that the projectile and target will not

form quasi-molecular orbitals, due to the speed at which scattering takes place.

The atomic-orbital close-coupling (AOCC) method expands the total scattering

wave function in terms of atomic orbitals. For collisions where electron capture

is unlikely (e.g. fast antiproton scattering on hydrogen) atomic orbitals centred

about the target are sufficient to describe all possible electronic configurations.

However, for positively charged projectiles, two sets of atomic orbitals are re-

quired: one centred on the target and the other on the projectile representing the

atom formed by electron capture. Even with very few states, accurate results can

be obtained if the dominant coupling is between the included channels [64].

The accuracy of the results obtained from close-coupling approaches depends

on the choice of basis functions used in the expansion of the total scattering

wave function. For hydrogen-like atoms, eigenfunctions can be used to describe

negative-energy states. However, for atomic systems in which the analytic func-

tions are unknown, alternative bases may be employed. Furthermore, at inter-

mediate and high energies coupling to the continuum plays an important role

in the collisional dynamics. Therefore, positive-energy electronic states must

be incorporated into the close-coupling expansion. However, unlike bound-state

eigenfunctions, continuum solutions for atomic systems are non-normalisable. A

solution to this is to construct normalisable pseudostates that effectively repre-

sent the continuum of the target. This can be done by diagonalising the target

Hamiltonian in terms of a set of square-integrable basis functions [38], effectively
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discretising the continuum. As the number of states included in the basis in-

creases, the discretisation becomes more dense. Some commonly used basis types

include Sturmian functions [65, 66], Slater-type orbitals [67], Gaussian-type or-

bitals (GTO) [68], B-splines [69], and Laguerre polynomials [70, 71].

Bates [44] first used the AOCC method within a simple two-state approxima-

tion to calculate electron-capture cross sections in p + H collisions. Subsequent

calculations with more basis functions enabled determination of the cross section

for target excitation [72, 73]. Positive-energy pseudostates were used by Cheshire

et al. [72], Gallaher and Wilets [74] and Shakeshaft [75] to calculate the TICS

using the AOCC method. Toshima and Eichler [76] used a large set of GTO

basis functions to accurately describe the experimental data for the differential

cross section for electron capture in collisions of MeV-energy protons with H.

Their methodology allowed for analytical evaluation of the matrix elements, sig-

nificantly reducing computational requirements that would otherwise have made

calculations with large basis expansions impossible at the time. The fully quantal

AOCC results by Kadyrov et al. [77] provided a good description of the experi-

mental data for the angular differential cross section for electron capture in p+H

collisions.

Overall, agreement between close-coupling calculations and experimental data

is quite good. However, due to limited computational resources it has historically

not been possible to perform thorough convergence studies to determine if a suf-

ficiently large number of states were included in the calculations. Furthermore,

while the traditional AOCC method can be used to calculate the TICS, the scat-

tering amplitudes for ionisation are unknown, making calculations of differential

cross sections for ionisation impossible.

2.2.9 Basis-generator method

One drawback with close-coupling approaches is that a large number of states

may be required to obtain accurate results. Kroneisen et al. [78] proposed an
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alternative implementation whereby the basis is dynamically generated in such

a way that the most important channels are incorporated, while states that are

only weakly coupled are omitted. This allows the close-coupling equations to be

solved with a minimal number of states, simplifying computational requirements.

The two-centre basis generator method (TC-BGM) was used by Zapukhlyak et al.

[79] to calculate the total integrated cross section for single-electron capture and

single ionisation in p + Na collisions. The multielectron target was described

using the independent-event model (IEM). Collisions of Li3+, C3+, and O3+ with

hydrogen atoms were investigated using the TC-BGM by Leung and Kirchner

[80].

2.2.10 Optical-potential method

In the limit of an infinite number of terms in the expansion of the total scattering

wave function, the close-coupling solution is exact. However, this is practically

impossible. Truncating the expansion with a finite number of basis states effec-

tively attempts to solve the collision problem over a finite-dimensional subspace.

If this subspace is sufficiently large then coupling to the excluded channels be-

comes small and the results converge to the exact solution. The optical-potential

approach was introduced to account for the coupling between the finite subspace

and the complementary infinite-dimensional Hilbert space [81]. This is achieved

through the introduction of an imaginary, non-local potential and a perturbative

expansion of the resulting close-coupling equations [47]. Second-order calculations

using this approach have demonstrated good agreement with experimental data

for elastic-scattering, target-excitation, and electron-capture differential cross sec-

tions in proton collisions with atomic hydrogen [82].

2.2.11 Impact-parameter Faddeev approach

This alternative approach to quantum scattering is based on solving the three-

particle Faddeev integral equations [83]. The impact-parameter Faddeev ap-
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proach (IPFA) was pioneered by Avakov et al. [84] and successfully applied to

calculate charge-exchange cross sections in proton collisions with H and He in

Ref. [85] and proton collisions with alkali atoms in Ref. [86]. The method is

based on the Alt-Grassberger-Sandhas approach [87, 88] which reduces the three-

particle Faddeev equations into effective two-particle Lippmann-Schwinger type

equations. Application of the IPFA to angular differential cross sections for elastic

scattering and electron capture resulted in good agreement with the experimental

data [89].

A drawback of this approach is that it cannot be applied to ionising collisions

because the Faddeev equations become non-compact. Macek [90] attempted to

overcome this problem using the first term in the Neuman expansion of the Fad-

deev integral equations to calculate differential cross sections for ionisation in

p + H2 collisions. However, the results, while qualitatively reasonable, quantita-

tively disagreed with the experimental data.

2.2.12 Convergent close-coupling approach

The CCC method was originally developed for electron scattering on atoms [70,

91]. This fully quantal approach solves the multichannel Lippmann-Schwinger

equation using the method of partial waves. An orthogonal basis of both negative-

and positive-energy pseudostates is constructed by diagonalising the target Hamil-

tonian with orthonormal Laguerre functions. The resulting set of pseudostates

forms a quadrature rule for the summation over the countably infinite space of

bound states and the integration over the uncountably infinite space of positive-

energy continuum solutions. With increasing basis size the negative-energy pseu-

dostates converge to the true eigenstates of the bound spectrum of the target.

The positive-energy pseudostates discretise the continuum of the target with in-

creasing density as the size of the basis is enlarged. Convergence in the results is

obtained by systematically increasing the basis size. The method was extended to

heavy projectiles by Abdurakhmanov et al. [71] and used to calculate integrated
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and differential [92] cross sections in p̄ + H collisions, demonstrating very good

agreement with the experimental data. The approach was applied to p̄ + He

collisions in Ref. [93]. A semiclassical version was developed for antiproton colli-

sions with molecular hydrogen, providing the first theoretical description of the

experimentally observed target-structure induced suppression of the orientation-

averaged TICS [37, 94].

The CCC approach to antiproton collisions with hydrogen was applied to

calculate differential ionisation by Abdurakhmanov et al. [95]. This work in-

troduced two important developments into the heavy-projectile CCC formalism.

First, following the ideas developed by Kadyrov et al. [96], they calculated the

momentum-space amplitudes for ionisation, allowing determination of all types

of differential cross sections within the close-coupling approach. Second, the use

of stationary wave-packet pseudostates to describe the target continuum afforded

a fine degree of control over the continuum discretisation that was not possible

with a Laguerre-type basis. Furthermore, comparison between fully quantal and

semiclassical versions showed that for intermediate- and high-energy projectiles

there is practically no difference between the two approaches.

A two-centre version of the semiclassical wave-packet CCC method was devel-

oped to tackle collisions involving positively charged projectiles by Avazbaev et al.

[97] and Abdurakhmanov et al. [98]. The method was applied to fully stripped

helium and carbon ions by Faulkner et al. [34] and Abdurakhmanov et al. [35],

respectively. Proton collisions with initially excited hydrogen atoms were studied

in Ref. [99]. The two-centre approach was applied to p+He collisions, accounting

for electron-electron correlations, by Alladustov et al. [33]. In all cases thorough

convergence studies were performed, leading to some of the most reliable results

to date for the studied systems.



Chapter 3

Two-centre wave-packet convergent

close-coupling method

In this chapter, the two-centre wave-packet convergent close-coupling approach is

formulated. We consider collisions of ions with one and quasi-one electron targets.

Initially, the electron is in a bound state of the target atom. The momentum of

the projectile relative to the target atom in the initial channel, i, and final channel,

f , is denoted as qi and qf , respectively. The kinetic energy of the projectile in

the laboratory frame is denoted Ei. The projectile ion has charge ZP and the

target nucleus has charge ZT.

The WP-CCC method is based on the semiclassical impact-parameter for-

malism. In this framework the electrons are treated fully quantum-mechanically

and the relative motion of the heavy particles is treated classically. It has been

shown [100] that results obtained in the semiclassical method are very close to

those obtained using the fully quantum theory, if the following conditions hold:

1. The momentum of the projectile relative to the target is large |qi| � 1.

2. The kinetic energy of the projectile motion is much larger than the energy

lost by the projectile during the collision, |qi| ≈ |qf | � (2µT∆E)1/2, where

∆E is the energy transfer.

24
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3. The scattering angle of the projectile is very small, arccos(q̂i · q̂f )� 1.

For the projectile energies considered herein, these conditions are satisfied and the

semiclassical approximation can be employed [47]. Under this approximation, the

electronic part of the wave function changes much more rapidly than the nuclear

part. The electrons are assumed to be able to arrange into a stationary state

effectively instantaneously in response to a change in the relative positions of the

target and projectile nuclei.

x

y

z

TZT

PZP

R

ϕbv

b

e−

rT

ϕT

θT

Figure 3.1: Three-body collision system in the laboratory frame.

The three-body collision system is shown in Fig. 3.1. The target is at rest with

respect to the laboratory frame and the origin is located at the target nucleus. The

projectile is incident parallel to the z-axis with velocity v and impact parameter

b such that v · b = 0. The semiclassical approximation effectively parameterises

the relative position of the projectile in terms of time t according to

R(t) = b+ vt, (3.1)

with ϕb being the azimuthal angle of the projectile. Therefore, the position of the
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projectile is described by the set of cylindrical coordinates,R = (vt, b, ϕb). We use

spherical coordinates to describe the position of the electron, rT = (rT, θT, ϕT).

The axis of quantisation of the electronic target states is chosen to be parallel to

the velocity of the incoming projectile.

For collisions where rearrangement is possible, the coordinate system defined

in 3.1 is insufficient. In order to formulate the two-centre scattering equations, we

use two sets of Jacobi coordinates shown in Fig. 3.2. The position of the electron

relative to the projectile nucleus is denoted rP = (rP, θP, ϕP). The position of

the projectile ion relative to the centre-of-mass of the target plus electron system

is σT. The position of the projectile plus electron system relative to the target

nucleus is σP.

TZTPZP
R

e−

rTrP

σT

σP

Figure 3.2: Three-body Jacobi coordinates used in two-centre WP-CCC method.

We first derive the two-centre coupled-channel equations, then provide details

of how the matrix elements are evaluated. Then, we describe the structure of

hydrogen and hydrogen-like atoms used to construct the required basis states

for the expansion of the total scattering wave function. Next we establish the

independence of both the scattering equations and matrix elements on the az-

imuthal angle of the incident projectile. Determination of scattering amplitudes

and cross sections is then presented. Finally, the computational implementation

is summarised.
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3.1 Two-centre scattering equations

The exact, non-relativistic, time-independent Schrödinger equation for the colli-

sion system is

(H − E)Ψ+
i = 0, (3.2)

where Ψ+
i is the total scattering wave function subject to the outgoing-wave

boundary conditions, H is the Hamiltonian and E is the total energy. The total

Hamiltonian may be written in two equivalent forms,


H = − 1

2µT

∇2
σT

+HT + V T,

H = − 1

2µP

∇2
σP

+HP + V P,

(3.3)

where µT is the reduced mass of the projectile and target atom, and µP is the

reduced mass of the projectile atom formed by electron capture and the residual

target ion. The Hamiltonians of the target and projectile atoms are


HT = −1

2
∇2
rT

+ VT,

HP = −1

2
∇2
rP

+ VP,

(3.4)

respectively, where


VT = −ZT

rT
,

VP = −ZP

rP
.

(3.5)

The interactions between the projectile and target atom, and between the pro-

jectile atom and residual target ion are


V T =

ZTZP

R
− ZP

|rT −R|
,

V P =
ZTZP

R
− ZT

|rP −R|
.

(3.6)
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The total scattering wave function is expanded as

Ψ+
i =

∞∑
α=1

Fα(σT)eiqα·σTψT
α (rT) +

∞∑
β=1

Gβ(σP)eiqβ ·σPψP
β (rP), (3.7)

where eiqα·σT is a plane wave describing the projectile motion relative to the target

atom, eiqβ ·σP is a plane wave describing the motion of the projectile atom rela-

tive to the target nucleus, ψT
α (rT) are target pseudostates, ψP

β (rP) are projectile

pseudostates, and Fα(σT) and Gβ(σP) are unknown expansion coefficients. The

target pseudostates form an orthonormal set

〈
ψT
α

∣∣ψT
α′

〉
= δαα′ , (3.8)

that diagonalises the target Hamiltonian,

〈
ψT
α

∣∣HT

∣∣ψT
α′

〉
= εTαδαα′ . (3.9)

Similarly, the projectile pseudostates form an orthonormal set

〈
ψP
β

∣∣ψP
β′

〉
= δββ′ , (3.10)

that diagonalises the projectile Hamiltonian,

〈
ψP
β

∣∣HP

∣∣ψP
β′

〉
= εPβδββ′ . (3.11)

Expansion coefficients Fα(σT) and Gβ(σP) contain all information about the state

of the system at a given time. In the limit as t→ −∞, the expansion coefficients

describe the system in the initial channel and in the limit as t → +∞, they

describe the system in the final channel.

To form the two-centre scattering equations we substitute Eq. (3.7) into
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Eq. (3.2), to get

(
− 1

2µT

∇2
σT

+HT + V T − E
) ∞∑

α=1

Fα(σT)eiqα·σTψT
α (rT)

+

(
− 1

2µP

∇2
σP

+HP + V P − E
) ∞∑

β=1

Gβ(σP)eiqβ ·σPψP
β (rP) = 0. (3.12)

In the α channel the total energy is the sum of the energy of the target bound state

α and the energy of the relative motion of the projectile, E = εTα+q2α/(2µT). In the

β channel the total energy is the sum of the energy of the projectile atom bound

state β and the relative motion of the residual target ion, E = εPβ + q2β/(2µP).

Next we act with −∇2
σT
/2µT on eiqα·σTFα(σT) and use the fact that

∇2
σT

(Fα(σT))� ∇2
σT

(eiqα·σT) (3.13)

to simplify the result. We are left with

−∇
2
σT

2µT

(
Fα(σT)eiqα·σT

)
= − 1

2µT

[2iqα∇σT
(Fα(σT))eiqα·σT − q2αFα(σT)eiqα·σT ].

(3.14)

Now consider the first term on the RHS of Eq. (3.14). We can write

qα
µT

· ∇σT
= v · ∇σT

, (3.15)

since qα = µTv. Furthermore, since ∇σT
is the differential operator with respect

to σT, and v is the time-derivative of σT, we see that

v · ∇σT
=

d

dt
. (3.16)

This means Eq. (3.14) reduces to

−∇
2
σT

2µT

(Fα(σT)eiqα·σT) = −iḞα(σT)eiqα·σT +
q2α

2µT

Fα(σT)eiqα·σT , (3.17)
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where Ḟα denotes the time derivative of Fα. Similarly, acting with −∇2
σP
/2µP on

Gβ(σP)eiqβ ·σT results in

−∇
2
σP

2µP

(Gβ(σP)eiqβ ·σP) = −iĠβ(σP)eiqβ ·σP +
q2β

2µP

Gβ(σP)eiqβ ·σP . (3.18)

where Ġβ is the time derivative of Gβ.

Therefore, Eq. (3.12) becomes

i

∞∑
α=1

Ḟα(σT)eiqα·σT + i
∞∑
β=1

Ġβ(σP)eiqβ ·σP

= (HT + V T − εTα)
∞∑
α=1

ψT
α (rT)Fα(σT)eiqα·σT

+ (HP + V P − εPβ )
∞∑
β=1

ψP
β (rP)Gβ(σP)eiqβ ·σP . (3.19)

Next we multiply Eq. (3.19) on the left by ψT∗
α′ (rT)e−iqα′ ·σT and integrate over

rT, to get

i
∞∑
α=1

Ḟα(σT)
〈
ψT
α′

∣∣ψT
α

〉
ei(qα−qα′ )·σT

+ i
∞∑
β=1

Ġβ(σP)
〈
ψT
α′

∣∣ei(qβ ·σP−qα′ ·σT)
∣∣ψP

β

〉
=
∞∑
α=1

Fα(σT)
〈
ψT
α′

∣∣(HT + V T − εTα)
∣∣ψT

α

〉
ei(qα−qα′ )·σT

+
∞∑
β=1

Gβ(σP)
〈
ψT
α′

∣∣(HP + V P − εPβ )ei(qβ ·σP−qα′ ·σT)
∣∣ψP

β

〉
. (3.20)

Since the centre-of-mass of the target atom is very close to the target nucleus and

the centre-of-mass of the projectile atom is very close to the projectile nucleus,

we make the approximation σT ≈ R and σP ≈ R. Therefore, Fα(σT) ≈ Fα(R)

and Gβ(σP) ≈ Gβ(R). Consider the exponential term appearing in the sum over

α in Eq. (3.20). Writing the momentum transfer as qT ≡ qα − qα′ we obtain

(qα − qα′) · σT ≈ (qα − qα′) ·R = qT ·R, (3.21)
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where

qT ·R = q
‖
Tz + q⊥T · b. (3.22)

In App. A it is shown that

qT ·R = (εTα′ − εTα)t+ q⊥T · b. (3.23)

Now consider the other exponential term appearing in Eq. (3.20). We define the

momentum transfer vectors 
pβ = γPqβ − qα′ ,

pα′ = qβ − γTqα′ ,

(3.24)

where 
γT ≡

MT − 1

MT

,

γP ≡
MP

MP + 1
.

(3.25)

Here MT is the mass of the target atom and MP is the mass of the projectile ion.

Then we use the following results from App. A:

qβ · σP − qα′ · σT = p
‖
βz + p⊥β · b+ v · rT, (3.26)

and

p
‖
β = −v

2
−

(εPβ − εTα′)

v
. (3.27)
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Combining Eqs. (3.23), (3.26), and (3.27) we write Eq. (3.20) as

ieiq
⊥
T ·b

∞∑
α=1

Ḟα(σT)
〈
ψT
α′

∣∣ψT
α

〉
ei(ε

T
α′−ε

T
α)t

+ ieip
⊥
β ·b

∞∑
β=1

Ġβ(σP)
〈
ψT
α′

∣∣eiv·rT∣∣ψP
β

〉
ei((ε

T
α′−ε

P
β )−v2/2)t

= eiq
⊥
T ·b

∞∑
α=1

Fα(R)
〈
ψT
α′

∣∣(HT + V T − εTα)
∣∣ψT

α

〉
ei(ε

T
α′−ε

T
α)t

+ eip
⊥
β ·b

∞∑
β=1

Gβ(R)
〈
ψT
α′

∣∣(HP + V P − εPβ )eiv·rT
∣∣ψP

β

〉
ei((ε

T
α′−ε

P
β )−v2/2)t. (3.28)

Since the momentum of the projectile in the incident channels, qα and qβ, is along

the direction of the z-axis, we have that q⊥T = −q⊥α′ and p⊥β = −q⊥α′ . Removing

these common terms from both sides we arrive at the first set of coupled-channel

equations in the two-centre formalism,

iḞα(σT) + i
∞∑
β=1

Ġβ(σP)
〈
ψT
α′

∣∣eiv·rT∣∣ψP
β

〉
ei((ε

T
α′−ε

P
β )−v2/2)t

=
∞∑
α=1

Fα(R)
〈
ψT
α′

∣∣HT + V T − εTα
∣∣ψT

α

〉
ei(ε

T
α′−ε

T
α)t

+
∞∑
β=1

Gβ(R)
〈
ψT
α′

∣∣(HP + V P − εPβ )eiv·rT
∣∣ψP

β

〉
ei((ε

T
α′−ε

P
β )−v2/2)t. (3.29)

Returning to Eq. (3.19) we now multiply on the left by ψP∗
β′ (rP)e−iqβ′ ·σP and

integrate over rP to get

i
∞∑
α=1

Ḟα(σT)
〈
ψP
β′

∣∣ei(qα·σT−qβ′ ·σP)
∣∣ψT

α

〉
+ i

∞∑
β=1

Ġβ(σP)
〈
ψP
β′

∣∣ψP
β

〉
ei(qβ−qβ′ )·rP

=
∞∑
α=1

Fα(σT)
〈
ψP
β′

∣∣(HT + V T − εTα)ei(qα·σT−qβ′ ·σP)
∣∣ψT

α

〉
+
∞∑
β=1

Gβ(σP)
〈
ψP
β′

∣∣(HP + V P − εPβ )
∣∣ψP

β

〉
ei(qβ−qβ′ )·σP . (3.30)

We again use the semiclassical approximation to write Fα(σT) ≈ Fα(R) and
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Gβ(σP) ≈ Gβ(R). We also make the approximation σP ≈ R in the exponen-

tial terms containing momentum transfer between two projectile channels. This

allows us to write

(qβ − qβ′) · σP ≈ (qβ − qβ′) ·R = qP ·R, (3.31)

where qP ≡ qβ − qβ′ and

qP ·R = q
‖
Pz + q⊥P · b. (3.32)

It is shown in App. A that

qP ·R = (εPβ′ − εPβ )t+ q⊥P · b. (3.33)

For the other exponential term in Eq. (3.30), we define the momentum transfer

vectors 
pα = γTqα − qβ′ ,

pβ′ = qα − γPqβ′ .

(3.34)

This allows us to write (see App. A for details)

qα · σT − qβ′ · σP = p‖αz + p⊥α · b− v · rP, (3.35)

where

p‖α = −v
2
−
εTα − εPβ′

v
. (3.36)
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With this, Eq. (3.30) becomes

ieip
⊥
α ·b

∞∑
α=1

Ḟα(σT)
〈
ψP
β′

∣∣e−iv·rP∣∣ψT
α

〉
e
i((εP

β′−ε
T
α)−v2/2)t

+ ieiq
⊥
P ·b

∞∑
β=1

Ġβ(σP)
〈
ψP
β′

∣∣ψP
β

〉
e
i(εP

β′−ε
P
β )t

= eip
⊥
α ·b

∞∑
α=1

Fα(R)
〈
ψP
β′

∣∣(HT + V T − εTα)e−iv·rP
∣∣ψT

α

〉
e
i((εP

β′−ε
T
α)−v2/2)t.

+ eiq
⊥
P ·b

∞∑
β=1

Gβ(R)
〈
ψP
β′

∣∣(HP + V P − εPβ )
∣∣ψP

β

〉
e
i(εP

β′−ε
P
β )t (3.37)

Considering that qα and qβ are directed along the z-axis, we find that, q⊥P = −q⊥β′

and p⊥α = −q⊥β′ . With this we arrive at the second set of coupled-channel equa-

tions in the two-centre formalism,

i
∞∑
α=1

Ḟα(σT)
〈
ψP
β′

∣∣e−iv·rP∣∣ψT
α

〉
e
i((εP

β′−ε
T
α)−v2/2)t + iĠβ(σP)

=
∞∑
α=1

Fα(R)
〈
ψP
β′

∣∣(HT + V T − εTα)e−iv·rP
∣∣ψT

α

〉
e
i((εP

β′−ε
T
α)−v2/2)t.

+
∞∑
β=1

Gβ(R)
〈
ψP
β′

∣∣HP + V P − εPβ
∣∣ψP

β

〉
e
i(εP

β′−ε
P
β )t (3.38)

Combined, Eq. (3.29) and Eq. (3.38) form a set of equations that couples together

all of the expansion coefficients:


iḞα′ + i

∞∑
β=1

ĠβK
T
α′β =

∞∑
α=1

FαD
T
α′α +

∞∑
β=1

GβQ
T
α′β,

i
∞∑
α=1

ḞαK
P
β′α + iĠβ′ =

∞∑
α=1

FαQ
P
β′α +

∞∑
β=1

GβD
P
β′β.

(3.39)

Note that in Eq. (3.39) we omit the functional dependence of the expansion coef-

ficients and matrix elements on R for conciseness. The direct-scattering matrix
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elements are 
DT
α′α(R) = ei(ε

T
α′−ε

T
α)tDT

α′α(R),

DP
β′β(R) = e

i(εP
β′−ε

P
β )tDP

β′β(R),

(3.40)

where 
DT
α′α(R) ≡

〈
ψT
α′

∣∣V T

∣∣ψT
α

〉
,

DP
β′β(R) ≡

〈
ψP
β′

∣∣V P

∣∣ψP
β

〉
.

(3.41)

The overlap matrix elements are defined as


KP
β′α(R) = e

i(εP
β′−ε

T
α)tKP

β′α(R),

KT
α′β(R) = ei(ε

T
α′−ε

P
β )tKT

α′β(R),

(3.42)

where 
KP
β′α(R) ≡ e−iv

2t/2
〈
ψP
β′

∣∣e−iv·rP∣∣ψT
α

〉
,

KT
α′β(R) ≡ e−iv

2t/2
〈
ψT
α′

∣∣eiv·rT∣∣ψP
β

〉
.

(3.43)

The exchange matrix elements are


QP
β′α(R) = e

−iv2t/2+i(εP
β′−ε

T
α)tQP

β′α(R),

QT
α′β(R) = e−iv

2t/2+i(εT
α′−ε

P
β )tQT

α′β(R),

(3.44)

where 
QP
β′α(R) ≡

〈
ψP
β′

∣∣e−iv·rP(HT + V T − εTα)
∣∣ψT

α

〉
,

QT
α′β(R) ≡

〈
ψT
α′

∣∣eiv·rT(HP + V P − εPβ )
∣∣ψP

β

〉
.

(3.45)

The set of equations in Eq. (3.39) is solved subject to the initial condition

Fα(−∞, b) = δαi, Gβ(−∞, b) = 0, (3.46)
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i.e. the active electron is initially in the state α = i of the target atom. The

expansion of the total scattering wave function is limited to finite size. Equa-

tion (3.39) is exact.1 However, for practical calculations the size of the basis

must be finite. Therefore, the infinite summations over α and β are truncated by

limiting the number of basis states used in the expansion in Eq. (3.7). The total

number of target states is NT = NT
b + NT

c , where NT
b is the number of bound

states and NT
c is the number of pseudostates representing the continuum of the

target. The total number of projectile states is NP = NP
b +NP

c , where NP
b is the

number of bound states and NP
c is the number of pseudostates representing the

continuum of the projectile. The final results converge as the number of included

basis states increases. If NP is set to zero then Eq. (3.39) reduces to

iḞα′(R) =
∞∑
α=1

Fα(R)Dα′α(R), (3.47)

and we recover the single-centre scattering equations.

3.2 Target structure

In this section we describe our method for constructing orthonormal basis states

that diagonalise the Hamiltonian of the hydrogen atom and hydrogen-like ions.

That is, systems consisting of a single electron and a Coulombic interaction be-

tween the electron and nucleus such as H, He+, Li2+, etc. We describe the struc-

ture of a hydrogen-like target but the same approach is used to construct pseu-

dostates for the hydrogen-like projectile atom formed by electron capture. The

interaction between the nucleus and electron is spherically symmetric. Therefore,

the radial and angular parts of the target-atom (or projectile-atom) wave func-

tion are separable. The radial part of the target wave function varies depending

on the target species. However, the solution to the angular part for spherically

symmetric potentials is always given by the spherical harmonic functions. We
1within the semiclassical approximation
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write

ψn`m(rT) ≡ φn`(rT)

rT
Y`m(r̂T), (3.48)

where φn`(rT) is the reduced radial wave function and n, `, and m are the prin-

cipal, orbital angular momentum, and magnetic quantum numbers, respectively.

The bound-state wave functions for hydrogen-like systems are the eigenfunctions,

ψT
α (rT), of the Schrödinger equation,

HTψα(rT) = εαψα(rT), (3.49)

where εα is the energy of the state α = {n`m} and the target Hamiltonian is

defined as in Sect. 3.1. The radial wave equation is

−d2φn`
dr2T

+

[
`(`+ 1)

r2T
− 2ZT

rT
− 2εα

]
φn`(rT) = 0. (3.50)

Equation (3.50) is solved in the standard way [101], leading to an analytical

expression for the radial wave functions,

φn`(rT) = Z
3/2
T

2rT
n2

√
(n− `− 1)!

[(n+ `)!]3

(
2rT
ZTn

)`
e−ZTrT/nL2`+1

n−`−1

(
2rT
ZTn

)
(3.51)

where L2`+1
n−`−1(x) are the associated Laguerre polynomials. The eigenvalues of

Eq. (3.49) are

εα = − Z
2
T

2n2
. (3.52)

3.2.1 Wave-packet pseudostates

Solution of the Schrödinger equation for a hydrogen-like atom is possible for both

negative and positive energy eigenvalues. However, while it is possible to obtain a

normalisable set of orthogonal solutions when εα < 0, the positive-energy solution
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is unbounded and extends to infinity. This makes it unsuitable for scattering

calculations since it is not square-integrable. Instead we take the approach of

constructing a finite set of orthonormal stationary wave packets to represent the

continuum. This is done by first discretising the electron momentum κ into a

finite set of npos intervals, [kN , kN+1], where N ∈ [1, npos]. Within each interval

we construct stationary wave-packet pseudostates for different orbital angular

momentum ` and angular momentum projection m according to

ψWP
α (rT) ≡ ψWP

n`m(rT) =
φWP
n` (rT)

rT
Y`m(r̂T). (3.53)

The reduced radial wave function, φWP
n` (rT), in Eq. (3.53) is determined by inte-

grating the true continuum-wave solution over the bin,

φWP
n` (rT) = Nn

∫ kN+1

kN

dκ
√
κφκ`(rT), (3.54)

where Nn is the normalisation constant, and φκ`(rT) is defined in terms of the

pure Coulomb wave as

φκ`(rT) =

√
2

π
F`κ(rT). (3.55)

The partial-wave expansion of the incoming Coulomb wave function is written

as [101]

ψ−κ (rT) =
4π

κrT

∑
λµ

iλe−iσ
T
λ (κ)F ∗κλ(rT)Y ∗λµ(r̂T)Yλµ(κ̂), (3.56)

where

Fκ`(rT) = 2`(κrT)`+1 exp
( π

2κ

) |Γ(`+ 1− i/κ)|
(2`+ 1)!

× exp(iκrT) 1F1(`+ 1− i/κ, 2`+ 2,−2iκr), (3.57)
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and for conciseness we have introduced the notation

∑
λµ

=
∞∑
λ=0

λ∑
µ=−λ

. (3.58)

The wave functions in Eqs. (3.55) and (3.56) are normalised according to

∫ ∞
0

drT φκ`(rT)φκ′`(rT) = δ(κ′ − κ), (3.59)

and

∫
drT ψ

−∗
κ (rT)ψ−κ′(rT) = (2π)3δ(κ− κ′), (3.60)

respectively.

The normalisation, Nn, is defined such that the wave-packet pseudostates are

orthonormal, i.e.

1 =
〈
ψWP
n`m

∣∣ψWP
n`m

〉
=

∫ ∞
0

drT r
2
T

φWP∗
n`

rT

φWP
n`

rT

∫
dr̂T Y

∗
`m(r̂T)Y`m(r̂T) (3.61)

The angular integral can be taken trivially. Then we substitute the integral

definition of the reduced radial wave function and rearrange to find that

Nn =

√
2

k2N+1 − k2N
≡ 1√

EN+1 − EN
, (3.62)

where EN is the energy corresponding to the momentum bin limit kN .

To find the energy of the wave-packet pseudostate we diagonalise the Hamil-

tonian,

εn ≡
〈
ψWP
n′`′m′

∣∣HT

∣∣ψWP
n`m

〉
. (3.63)
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After inserting Eqs. (3.54), (3.59), and (3.62), it is easy to see that

〈
ψWP
n′`′m′

∣∣HT

∣∣ψWP
n`m

〉
= δn′n

k2N+1 + k2N
4

. (3.64)

Thus, the energy of the wave packet is in fact defined as the midpoint between

the energies corresponding to kN+1 and kN . We also introduce the momentum of

the electron corresponding to the N th wave packet:

κn =
√

2εn. (3.65)

Combined, the negative-energy eigenstates given in Eq. (3.51) and the wave-

packet pseudostates defined by Eq. (3.53) form an orthonormal basis that diago-

nalises the target Hamiltonian.

3.3 Evaluation of matrix elements

3.3.1 Direct-scattering matrix elements

To evaluate the direct-scattering matrix elements we separate the radial and

angular parts of the target states and substitute Eq. (3.6) into Eq. (3.41). For

the first set of matrix elements this results in

DT
α′α =

∫
drT

φT
α′(rT)

rT
Y ∗`α′mα′ (r̂T)

(
ZTZP

R
− ZP

|rT −R|

)
φT
α(rT)

rT
Y`αmα(r̂T).

(3.66)

The Coulomb potential in the second term can be expanded in terms of spherical

harmonics [102], leading to

DT
α′α = 4π

∑
λµ

Y ∗λµ(R̂)

2λ+ 1

∫
drT φ

T
α′(rT)φT

α(rT)Uλ(R, rT)

×
∫

dr̂T Y
∗
`α′mα′

(r̂T)Y`αmα(r̂T)Yλµ(r̂T), (3.67)
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where we define

Uλ(R, rT) ≡


δλ0ZP

R
− ZPR

λ

rλ+1
T

, R ≤ r,

δλ0ZP

R
− ZPr

λ
T

Rλ+1
, R > r.

(3.68)

Taking the angular integral analytically results in

DT
α′α =

∑
λµ

√
4π[`α]

[`α′ ][λ]
C
`α′0
`α0λ0

C
`α′mα′
`αmαλµ

Y ∗λµ(R̂)

×
∫

drT φ
T
α′(rT)φT

α(rT)Uλ(R, rT), (3.69)

where [`] ≡ 2` + 1. This can be further simplified since the Clebsch-Gordan

coefficients are only non-zero if |`α′ − `α| ≤ λ ≤ `α′ + `α and mα′ = mα + µ.

Additionally, the upper limits for `α′ and `α are set by the size of the basis

used in the expansion of the total scattering wave function. Hence, the infinite

summation over λ is truncated at λmax = `α′ + `α, and the summation over µ is

removed since only the term in which µ = mα′ −mα is non-zero. The final form

of the direct-scattering matrix elements is therefore

DT
α′α =

`α′+`α∑
λ=|`α′−`α|

√
4π[`α]

[`α′ ][λ]
C
`α′0
`α0λ0

C
`α′mα′
`αmαλ(mα′−mα)Y

∗
λ(mα′−mα)(R̂)

×
∫

drT φ
T
α′(rT)φT

α(rT)Uλ(R, rT). (3.70)

The integral over rT is evaluated numerically.

For the second set of matrix elements in Eq. (3.41), we obtain

DP
β′β =

`β′+`β∑
λ=|`β′−`β|

√
4π[`β]

[`β′ ][λ]
C
`β′0

`β0λ0
C
`β′mβ′

`βmβλ(mβ′−mβ)Y
∗
λ(mβ′−mβ)(R̂)

×
∫

drP φ
P
β′(rP)φP

β (rP)Uλ(R, rP). (3.71)
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3.3.2 Overlap matrix elements

Defining the electron position vector, r = (r, θe, ϕe), from the midpoint of R we

have


rT = r +

R

2
,

rP = r − R
2
.

(3.72)

Using Eqs. (3.72), we can write the matrix elements in Eq. (3.43) as


KP
β′α = e−iv

2t/2

∫
dr ψP∗

β′ (r −R/2)e−iv·(r−R/2)ψT
α (r +R/2),

KT
α′β = e−iv

2t/2

∫
dr ψT∗

α′ (r +R/2)eiv·(r+R/2)ψP
β (r −R/2).

(3.73)

Using the fact that2

v · R
2

=
vR

2
cos(θvR) =

v2t

2
, (3.74)

where θvR is the angle between the vectors v and R, we obtain


KP
β′α =

∫
dr ψP∗

β′ (r −R/2)e−iv·rψT
α (r +R/2),

KT
α′β =

∫
dr ψT∗

α′ (r +R/2)eiv·rψP
β (r −R/2).

(3.75)

Taking the complex conjugate of KP
β′α yields

KP∗
β′α =

∫
dr ψP

β′(r −R/2)eiv·rψT∗
α (r +R/2) = KT

αβ′ . (3.76)

Thus, we see that the target and projectile overlap matrix elements are in fact

complex conjugates of one another. Therefore, it is sufficient to calculate only

the first of Eqs. (3.75) and use Eq. (3.76) to recover KT
α′β. For the remainder of

this section we make the replacement β′ → β and consider the overlap matrix
2The vector v is directed along the z-axis so the angle between R and v is simply the polar

angle of R, i.e. vt/R.
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element for transition from an arbitrary channel α to arbitrary channel β.

It is convenient to calculate the integral entering the overlap matrix elements

in the rotating molecular frame. Coordinates in the molecular frame are denoted

x′

y′

z′

TZT

PZP

v

R′

e−

r′T

r′P

r′

ϕ′e

θ′e

Figure 3.3: Spherical coordinates of the electron in the rotating molecular frame. Shown
here the projectile ion is at the position of closest approach, i.e. v′ is perpendicular to
the z′-axis.

with primes. The molecular frame is defined such that the z′-axis is oriented

along the vector R, and the origin is at the midpoint between the target and

projectile nuclei, as illustrated in Fig. 3.3. The target is positioned at −R′/2 and

the projectile is positioned at R′/2, where R′ is directed along the z′-axis from

the target nucleus to the projectile nucleus. Details of the transformation from

laboratory frame to rotating molecular frame are given in App. B.

We separate the target and projectile wave functions in terms of radial and

angular components. In the rotated frame the magnitudes rT and rP remain un-

changed so the radial wave functions are the same in both frames of reference. To
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express the angular parts in the rotated frame, we expand the spherical harmonics

in terms of Wigner-D rotation matrices [102],


Y`αmα(r̂T) =

mα∑
µα=−mα

D`α∗
mαµα(ϕb, θR, 0)Y`αµα(r̂′T),

Y`βmβ(r̂P) =

mβ∑
µβ=−mβ

D
`β∗
mβµβ(ϕb, θR, 0)Y`βµβ(r̂′P).

(3.77)

Using the identity

D`
mµ(α, β, γ) = e−imαd`mµ(β)e−iµγ, (3.78)

and symmetry property

d`mµ(−β) = (−1)m−µd`mµ(β), (3.79)

we write Eqs. (3.77) in terms of the real-valued (small) Wigner-d matrices as


Y`αmα(r̂T) =

mα∑
µα=−mα

(−1)mα−µαeimαϕbd`αµαmα(θR)Y`αµα(r̂′T),

Y`βmβ(r̂P) =

mβ∑
µβ=−mβ

(−1)mβ−µβeimβϕbd
`β
µβmβ(θR)Y`βµβ(r̂′P),

(3.80)

respectively. Furthermore, we write the spherical harmonic functions in terms of

the associated Legendre polynomials [102] so that Eqs. (3.80) become



Y`αmα(r̂T) = eimαϕb

√
[`α]

4π

mα∑
µα=−mα

(−1)mα−µαd`αµαmα(θR)

×
√

(`α − µα)!

(`α + µα)!
P µα
`α

(cos θ′T)eiµαϕT ,

Y`βmβ(r̂P) = eimβϕb

√
[`β′ ]

4π

mβ∑
µβ=−mβ

(−1)mβ−µβd
`β
µβmβ(θR)

×
√

(`β′ − µβ′)!

(`β′ + µβ′)!
P
µβ
`β

(cos θ′P)eiµβϕP ,



Chapter 3. Two-centre wave-packet convergent close-coupling method 45

respectively. The azimuthal angle of the electron in the target and projectile

frames is the same since the axis of quantisation is the same in both frames

(parallel to v) and the orientation of the xy-plane may be chosen identically.

Therefore, ϕT = ϕP = ϕe, and consequently upon rotation ϕ′T = ϕ′P = ϕ′e.

Next we make the transformation from spherical to prolate spheroidal coor-

dinates, (η, τ, ϕe), where 1 ≤ η ≤ ∞, −1 ≤ τ ≤ 1, and 0 ≤ ϕe ≤ 2π. Details of

the transformation are given in App. B. We also define the radial wave function

Rn`(r) ≡ φn`(r)/r. Then, the overlap matrix element is written in the rotating

molecular frame as

Kβα = ei(mα−mβ)ϕb(−1)mα+mβ
R3

32π

√
[`α][`β]

×
∑
µαµβ

(−1)−µα−µβd`αµαmα(θR)d
`β
µβmβ(θR)

√
(`α − µα)!(`β − µβ)!

(`α + µα)!(`β + µβ)!

×
∫ ∞
1

dη

∫ 1

−1
dτ (η2 − τ 2)e−i v

2t
2
ητRP

nβ`β

(
R(η − τ)

2

)
RT
nα`α

(
R(η + τ)

2

)
× P µβ

`β

(
ητ − 1

η − τ

)
P µα
`α

(
ητ + 1

η + τ

)∫ 2π

0

dϕe ei(µα−µβ′ )ϕeei
vb
2

√
(η2−1)(1−τ2) cos(ϕe).

(3.81)

Using the integral definition of the Bessel functions [103] the integral over ϕe can

be taken analytically, resulting in

Kβα = ei(mα−mβ)ϕb(−1)mα+mβ
R3

16

√
[`α][`β]

×
∑
µαµβ

(−1)−µα−µβ iµα−µβd`αµαmα(θR)d
`β
µβmβ(θR)

√
(`α − µα)!(`β − µβ)!

(`α + µα)!(`β + µβ)!

×
∫ ∞
1

dη

∫ 1

−1
dτ (η2 − τ 2)e−i v

2t
2
ητRP

nβ`β

(
R(η − τ)

2

)
RT
nα`α

(
R(η + τ)

2

)
× P µβ

`β

(
ητ − 1

η − τ

)
P µα
`α

(
ητ + 1

η + τ

)
Jµα−µβ

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (3.82)

Explicit expressions for both KP
β′α and KT

α′β are obtained from Eq. (3.82) as

follows. For KP
β′α, we first swap β → β′. Then, we replace τ → −τ in the integral



Chapter 3. Two-centre wave-packet convergent close-coupling method 46

and use the parity relation for the associated Legendre polynomials to get

KP
β′α = ei(mα−mβ′ )ϕb(−1)`α+`β′+mα+mβ′

R3

16

√
[`α][`β′ ]

×
∑
µαµβ′

iµα−µβ′d`αµαmα(θR)d
`β′
µβ′mβ′ (θR)

√
(`α − µα)!(`β′ − µβ′)!

(`α + µα)!(`β′ + µβ′)!

×
∫ ∞
1

dη

∫ 1

−1
dτ (η2 − τ 2)ei v

2t
2
ητRP

nβ′`β′

(
R(η + τ)

2

)
RT
nα`α

(
R(η − τ)

2

)
× P µβ′

`β′

(
ητ + 1

η + τ

)
P µα
`α

(
ητ − 1

η − τ

)
Jµα−µβ′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (3.83)

The other overlap matrix element is found by taking the complex conjugate of

Eq. (3.82), replacing α with α′, and applying the parity relation for the Bessel

functions,

KT
α′β = ei(mβ−mα′ )ϕb(−1)mβ+mα′

R3

16

√
(2`α′ + 1)(2`β + 1)

×
∑
µα′µβ

iµβ−µα′d`α′µα′mα′
(θR)d

`β
µβmβ(θR)

√
(`α′ − µα′)!(`β − µβ)!

(`α′ + µα′)!(`β + µβ)!

×
∫ ∞
1

dη

∫ 1

−1
dτ (η2 − τ 2)ei v

2t
2
ητRP

nβ`β

(
R(η − τ)

2

)
RT
nα′`α′

(
R(η + τ)

2

)
× P µβ

`β

(
ητ − 1

η − τ

)
P
µα′
`α′

(
ητ + 1

η + τ

)
Jµβ−µα′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (3.84)

3.3.3 Exchange matrix elements

To calculate the exchange matrix elements we express the electron position vectors

in terms of r and use Eq. (3.74) to obtain


QP
β′α =

∫
dr ψP∗

β′ (r −R/2)e−iv·r(HT + V T − εTα)ψT
α (r +R/2),

QT
α′β =

∫
dr ψT∗

α′ (r +R/2)eiv·r(HP + V P − εPβ )ψP
β (r −R/2).

(3.85)

Consider the action of HT on the target-atom basis state in Eq. (3.85). For

negative-energy states the result is the eigenvalue of the target-atom Schrödinger

equation. Thus, (HT − εTα)ψT
α = 0 when εTα < 0. However, for the wave-packet

pseudostates this is not the case. Instead, we insert the integral definition in
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Eq. (3.54) and operate the Hamiltonian on the Coulomb wave function,

HTψ
WP
n`m(rT) = Nn

∫ kn+1

kn

dκ
√
κ

(
κ2

2

)
φκl(rT)

rT
Y`m(r̂T). (3.86)

In this case we define the function

ξTnα`α(rT) ≡ Nn
rT

∫ kn+1

kn

dκ
√
κ

(
κ2

2

)
φT
κα`α(rT), (3.87)

where φT
κα`α

(rT) is the radial part of the true continuum-wave solution to the

target-atom Schrödinger equation for an electron with momentum κ =
√

2εTα

relative to the target nucleus. We also define the function

ΞT
α(rT) ≡ ξTnα`α(rT)Y`αmα(r̂T). (3.88)

In Eq. (3.85) we find an analogous result when considering the action of HP on

ψP
β (rP). Consequently, we define the functions

ξPnβ`β(rP) ≡ Nn
rP

∫ kn+1

kn

dκ
√
κ
(
κ2

2

)
φP
κβ`β(rP), (3.89)

and

ΞP
β (rP) ≡ ξnβ`β(rP)Y`βmβ(r̂P), (3.90)

where φP
κβ`β(rP) is the radial part of the true continuum-wave solution to the

projectile-atom Schrödinger equation for an electron with momentum κ =
√

2εPβ

relative to the projectile nucleus. Thus, we express the exchange matrix elements

as


QP
β′α =

(
ZTZP

R
− εTα

)
KP
β′α −X P

β′α + ZP
β′α,

QT
α′β =

(
ZTZP

R
− εPβ

)
KT
α′β −XT

α′β + ZT
α′β.

(3.91)
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In writing Eqs. (3.91) we introduced shorthand notations for the matrix elements


X P
β′α(R) =

∫
dr ψP∗

β′ (r −R/2)e−iv·r
ZP

|r −R/2|ψ
T
α (r +R/2),

XT
α′β(R) =

∫
dr ψT∗

α′ (r +R/2)eiv·r
ZT

|r +R/2|ψ
P
β (r −R/2),

(3.92)

and 
ZP
β′α(R) =

∫
dr ψP∗

β′ (r −R/2)e−iv·rΞT
α(r +R/2),

ZT
α′β(R) =

∫
dr ψT∗

α′ (r +R/2)eiv·rΞP
β (r −R/2).

(3.93)

These four matrix elements are evaluated using a similar procedure to the overlap

matrix elements. Close inspection reveals that X P
β′α differs from KP

β′α only by an

additional factor of ZT/|r −R/2| in the integrand and XT
α′β differs from KT

α′β

only by an additional factor of ZP/|r +R/2| in the integrand. Therefore, we find

that

X P
β′α = ei(mα−mβ′ )ϕb(−1)`α+`β′+mα+mβ′

R2

8

√
[`α][`β′ ]

×
∑
µαµβ′

iµα−µβ′d`αµαmα(θR)d
`β′
µβ′mβ′ (θR)

√
(`α − µα)!(`β′ − µβ′)!

(`α + µα)!(`β′ + µβ′)!

×
∫ ∞
1

dη

∫ 1

−1
dτ (η + τ)ei

v2t
2
ητRP

nβ′`β′

(
R(η + τ)

2

)
RT
nα`α

(
R(η − τ)

2

)
× P µβ′

`β′

(
ητ + 1

η + τ

)
P µα
`α

(
ητ − 1

η − τ

)
Jµα−µβ′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
, (3.94)

and

XT
α′β = ei(mβ−mα′ )ϕb(−1)mβ+mα′

R2

8

√
[`α′ ][`β]

×
∑
µα′µβ

iµβ−µα′d`α′µα′mα′
(θR)d

`β
µβmβ(θR)

√
(`α′ − µα′)!(`β − µβ)!

(`α′ + µα′)!(`β + µβ)!

×
∫ ∞
1

dη

∫ 1

−1
dτ (η − τ)ei

v2t
2
ητRP

nβ`β

(
R(η − τ)

2

)
RT
nα′`α′

(
R(η + τ)

2

)
× P µβ

`β

(
ητ − 1

η − τ

)
P
µα′
`α′

(
ητ + 1

η + τ

)
Jµβ−µα′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (3.95)



Chapter 3. Two-centre wave-packet convergent close-coupling method 49

The matrix elements ZP
β′α are expressed in terms of prolate spheroidal coordinates

in the rotating molecular frame by making the replacement

RT
nα`α

(
R(η − τ)

2

)
−→ ξTnα`α

(
R(η − τ)

2

)
(3.96)

in Eq. (3.83). The matrix elements ZT
α′β are expressed in terms of prolate

spheroidal coordinates in the rotating molecular frame by making the replacement

RP
nβ`β

(
R(η − τ)

2

)
−→ ξPnβ`β

(
R(η − τ)

2

)
(3.97)

in Eq. (3.84). Therefore,

ZP
β′α = ei(mα−mβ′ )ϕb(−1)`α+`β′+mα+mβ′

R3

16

√
[`α][`β′ ]

×
∑
µαµβ′

iµα−µβ′d`αµαmα(θR)d
`β′
µβ′mβ′ (θR)

√
(`α − µα)!(`β′ − µβ′)!

(`α + µα)!(`β′ + µβ′)!

×
∫ ∞
1

dη

∫ 1

−1
dτ (η2 − τ 2)ei v

2t
2
ητRP

nβ′`β′

(
R(η + τ)

2

)
ξTnα`α

(
R(η − τ)

2

)
× P µβ′

`β′

(
ητ + 1

η + τ

)
P µα
`α

(
ητ − 1

η − τ

)
Jµα−µβ′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
(3.98)

and

ZT
α′β = ei(mβ−mα′ )ϕb(−1)mβ+mα′

R3

16

√
[`α′ ][`β]

×
∑
µα′µβ

iµβ−µα′d`α′µα′mα′
(θR)d

`β
µβmβ(θR)

√
(`α′ − µα′)!(`β − µβ)!

(`α′ + µα′)!(`β + µβ)!

×
∫ ∞
1

dη

∫ 1

−1
dτ (η2 − τ 2)ei v

2t
2
ητξPnβ`β

(
R(η − τ)

2

)
RT
nα′`α′

(
R(η + τ)

2

)
× P µβ

`β

(
ητ − 1

η − τ

)
P
µα′
`α′

(
ητ + 1

η + τ

)
Jµβ−µα′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
. (3.99)

The dependence on ϕb in the direct-scattering matrix elements in Eqs. (3.70)

and (3.71) is contained entirely in the spherical harmonic of R̂. Therefore, we de-

fine direct-scattering matrix elements D̃T
α′α and D̃P

β′β independent of ϕb according
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to 
DT
α′α(R) = ei(mα−mα′ )ϕbD̃T

α′α(t, b),

DP
β′β(R) = ei(mβ−mβ′ )ϕbD̃P

β′β(t, b).

(3.100)

Examination of Eqs. (3.83), (3.94), and (3.98) reveals that the functional depen-

dence on ϕb is contained entirely within the factor ei(mα−mβ′ )ϕb . Therefore, we

define the matrix elements K̃P
β′α, K̃T

α′β, Q̃P
β′α, and Q̃T

α′β such that


KP
β′α(R) = ei(mα−mβ′ )ϕbK̃P

β′α(t, b),

KT
α′β(R) = ei(mβ−mα′ )ϕbK̃T

α′β(t, b),

(3.101)

and 
QP
β′α(R) = ei(mα−mβ′ )ϕbQ̃P

β′α(t, b),

QT
α′β(R) = ei(mβ−mα′ )ϕbQ̃T

α′β(t, b).

(3.102)

Since the collision system is cylindrically symmetric with respect to the z-axis, we

make the assumption that the expansion coefficients are separable with respect

to ϕb, 
Fα′(R) = ei(mi−mα′ )ϕbF̃α′(t, b),

Gβ′(R) = ei(mi−mβ′ )ϕbG̃β′(t, b).

(3.103)

Using these definitions, the first set of coupled equations in Eq. (3.39) can be

written as

iei(mi−mα′ )ϕb ˙̃Fα′ + i
∞∑
β=1

ei(mi−mβ)ϕb ˙̃Gβei(mβ−mα′ )ϕbK̃T
α′β

=
∞∑
α=1

ei(mi−mα)ϕbF̃αei(mα−mα′ )ϕbD̃T
α′α

+
∞∑
β=1

ei(mi−mβ)ϕbG̃βei(mβ−mα′ )ϕbQ̃T
α′β. (3.104)
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Simplifying, leads to

ei(mi−mα′ )ϕbi ˙̃Fα′ + ei(mi−mα′ )ϕbi
∞∑
β=1

˙̃GβK̃
T
α′β

= ei(mi−mα′ )ϕb

∞∑
α=1

F̃αD̃
T
α′α + ei(mi−mα′ )ϕb

∞∑
β=1

G̃βQ̃
T
α′β. (3.105)

Since ei(mi−mα′ )ϕb is always non-zero, we may cancel this common factor from all

terms, resulting in

i ˙̃Fα′ + i

∞∑
β=1

˙̃GβK̃
T
α′β =

∞∑
α=1

F̃αD̃
T
α′α +

∞∑
β=1

G̃βQ̃
T
α′β. (3.106)

For the second set of equations in Eq. (3.39) we find

i
∞∑
α=1

˙̃FαK̃
P
β′α + i ˙̃Gβ′ = i

∞∑
α=1

F̃αQ̃
P
β′α +

∞∑
β=1

G̃βD̃
P
β′β. (3.107)

Combined, Eqs. (3.106) and (3.107) form the two-centre close coupling equations

that are independent of the azimuthal angle of the impact parameter. The fact

that the coupled-channel equations can be written in a form that is independent

of the azimuthal angle of the impact parameter should not be surprising. Due

to the azimuthal symmetry of the potential, the result of scattering should be

the same regardless of the initial value of ϕb. Therefore, the solution should be

independent of ϕb.

3.4 Probability amplitudes and cross sections

In general, the post form of the on-shell T -matrix element is given by [104]

Tfi(qf , qi) =
〈
Φ−f
∣∣←−H − E∣∣Ψ+

i

〉
, (3.108)

where qf and qi are the relative momenta in the final and initial channels, re-

spectively, and Φ−f is the asymptotic state corresponding to the final channel.



Chapter 3. Two-centre wave-packet convergent close-coupling method 52

The arrow over the Hamiltonian indicates that it acts on the bra state
〈
Φ−f
∣∣. We

introduce the following projection operators formed by the outer product of our

complete set of target- and projectile-pseudostates


IT =

NT∑
α=1

∣∣ψT
α

〉 〈
ψT
α

∣∣ ,
IP =

NP∑
β=1

∣∣ψP
β

〉 〈
ψP
β

∣∣ . (3.109)

Equations (3.109) are inserted into Eq. (3.108), resulting in

Tfi(qf , qi) =
〈
Φ−f (IT + IP)

∣∣←−H − E∣∣Ψ+
i

〉
=
〈
Φ−f IT

∣∣←−H − E∣∣Ψ+
i

〉
+
〈
Φ−f IP

∣∣←−H − E∣∣Ψ+
i

〉
. (3.110)

This splits the amplitude into two parts. In both parts the final state is projected

onto the orthogonal basis states (either target- or projectile-centred). The action

of the operator IT leads to limiting the target subspace by replacing the full set

of the target states (including non-L2 continuum) with a set of L2 pseudostates.

This effectively screens the interaction between the projectile and target con-

stituents even in the continuum. Likewise, the action of the operator IP limits

the projectile subspace by replacing the full set of projectile states (including

non-L2 continuum) with a set of L2 pseudostates. This effectively screens the

interaction between the target and projectile constituents even in the continuum.

If the collision results in elastic scattering or excitation of the target, then

the final-state wave function is given by a plane wave representing the relative

motion of the projectile ion and a bound-state of the target, ψT
f . Therefore, we

define the direct scattering (DS) amplitude as

TDS
fi (qf , qi) ≡

〈
qfψ

T
f

∣∣←−HT + V T − εTf
∣∣Ψ+

i

〉
. (3.111)

Furthermore, if εTf < 0 then
〈
ψT
f

∣∣←−HT =
〈
ψT
f

∣∣ εTf . Hence, for negative-energy
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target states we obtain the standard definition of the T -matrix elements for elastic

scattering and excitation,

TDS
fi (qf , qi) =

〈
qfψ

T
f

∣∣V T

∣∣Ψ+
i

〉
. (3.112)

If scattering results in electron capture (EC), then the final state is given by

a plane wave representing the motion of the projectile-atom system relative to

the residual target ion and an eigenstate solution to the projectile Schrödinger

equation, ψP
f . Writing the full Hamiltonian in terms of the projectile Hamiltonian,

we have

TEC
fi (qf , qi) ≡

〈
qfψ

P
f

∣∣←−HP + V P − εPf
∣∣Ψ+

i

〉
. (3.113)

Furthermore, if εPf < 0 then
〈
ψP
f

∣∣←−HP =
〈
ψP
f

∣∣ εPf . Therefore, for negative-energy

projectile states we obtain the standard definition of the T -matrix elements for

electron capture,

TEC
fi (qf , qi) =

〈
qfψ

P
f

∣∣V P

∣∣Ψ+
i

〉
. (3.114)

If scattering results in ionisation, then the final state is given by the three-

body asymptotic wave that represents the three unbound particles. However,

after inserting IT + IP into Eq. (3.108) the amplitude is split into two parts. For

ionisation, the first part corresponds to ejection of the electron into the target

continuum, we call this direct ionisation (DI). The second part corresponds to

electron capture into the continuum (ECC) of the projectile. The DI amplitude

is written as

TDI
fi (κ, qf , qi) =

NT∑
α=1

〈
ψT
κ

∣∣ψT
α

〉 〈
qfψ

T
α

∣∣←−H − E∣∣Ψ+
i

〉
. (3.115)

For direct ionisation, the only surviving term in Eq. (3.115) is the wave packet

that corresponds to the interval that contains the momentum κ. All other pseu-
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dostates do not overlap with ψT
κ , by construction. The overlapping wave-packet

pseudostate may have any ` and m, within the size of the basis. Consequently,

the summation over all pseudostates α = {nα, `α,mα} reduces to a summation

over only `α and mα within the single momentum-bin that contains κ. So, we are

left with

TDI
fi (κ, qf , qi) =

∑
`αmα

〈
ψT
κ

∣∣ψT
α

〉
TDS
fi (qf , qi), (3.116)

where TDS
fi (qf , qi) is the T -matrix element for excitation into the positive-energy

pseudostates within the bin corresponding to nα = nf .

In the case of electron capture into the continuum of the projectile, we write

the amplitude as

TECC
fi (κκκ, qf , qi) =

NP∑
β=1

〈
ψP
κκκ
∣∣ψP

β

〉 〈
qfψ

P
β

∣∣←−H − E∣∣Ψ+
i

〉
. (3.117)

Here, the only surviving term in Eq. (3.117) is the wave-packet pseudostate of the

projectile basis that corresponds to the interval that contains the energy κ2/2.

The result is analogous to that for the DI amplitude. In the end we are left with

TECC
fi (κκκ, qf , qi) =

∑
`βmβ

〈
ψP
κκκ
∣∣ψP

β

〉
TEC
fi (qf , qi), (3.118)

where TEC
fi (qf , qi) is the T -matrix element for electron capture into the positive-

energy pseudostates within the bin corresponding to nβ = nf .

3.4.1 Integrated cross sections

For elastic scattering, target excitation, or electron capture into a bound state of

the projectile atom, the integrated cross section is given by [101]

σ
DS(EC)
fi =

µTµf
(2π2)

qf
qi

∫
dΩf

∣∣∣TDS(EC)
fi (qi, qf )

∣∣∣2, (3.119)
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where dΩf is the solid angle of the scattered projectile, µf = µT for direct scat-

tering, and µf = µP for electron capture. The T -matrix elements in momentum

space are found from the impact-parameter probability amplitudes according to

T
DS(EC)
fi (qf , qi) = iv

∫
db eiq

⊥
T(P)
·bADS(EC)

fi (b), (3.120)

where q⊥T(P) is the perpendicular momentum transfer,3 and ADS(EC)
fi (b) is the prob-

ability amplitude for transition into final state f , defined as


ADS
f (b) = lim

t→∞
[Ff (t, b)− δfi],

AEC
f (b) = lim

t→∞
[Gf (t, b)].

(3.121)

Inserting Eq. (3.120) into Eq. (3.119) and applying the rectilinear approximation

leads to

σ
DS(EC)
fi =

1

(2π)2

∫
dq⊥T(P)

∫
db′ e−iq

⊥
T(P)
·b′ADS(EC)∗

fi (b)

∫
db eiq

⊥
T(P)
·bADS(EC)

fi (b).

(3.122)

For collisions of ions with energies of several keV and higher the upper limit on

q⊥T(P) is very large and may be taken as approaching infinity [105]. Therefore, the

integral over q⊥T(P) is simply the definition of the delta function in two-dimensions,

∫
dq⊥T(P) eiq

⊥
T(P)
·(b−b′) = (2π)2δ(b− b′). (3.123)

The resulting delta function effectively takes the integral over b′ and we are left

with

σ
DS(EC)
fi =

∫
db
∣∣∣ADS(EC)

fi (b)
∣∣∣2. (3.124)

3It is worth noting that for direct scattering we have f = α′ so q⊥T = −q⊥α′ and for electron
capture we have f = β′ so q⊥P = −q⊥β′ .
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The differential element can be explicitly written in terms of the magnitude of

the impact parameter and the azimuthal angle, resulting in

σ
DS(EC)
fi =

∫ 2π

0

dϕb

∫ ∞
0

db b
∣∣∣ADS(EC)

fi (b)
∣∣∣2. (3.125)

Furthermore, the dependence on the azimuthal angle ϕb may be explicitly fac-

tored out of the expansion coefficients according to Eq. (3.103). Therefore, the

probability amplitudes are also separable with respect to ϕb. We define probabil-

ity amplitudes independent of the azimuthal angle of the projectile, ÃDS(EC)
fi (b),

such that

A
DS(EC)
fi (b) = ei(mf−mi)ϕbÃ

DS(EC)
fi (b). (3.126)

The integral over ϕb in Eq. (3.125) yields 2π and we are left with the following

final expression for the integrated cross section

σ
DS(EC)
fi = 2π

∫ ∞
0

db b
∣∣∣ÃDS(EC)

fi (b)
∣∣∣2. (3.127)

This result says two important things. First, for the purpose of determining the

integrated cross sections, the values of the expansion coefficients in the final chan-

nel are sufficient and there is no need to compute either the scattering amplitude

or the total scattering wave function. Second, the square of the magnitude of

Ã
DS(EC)
fi (b) is the probability for the transition to the final channel f and it is

independent of ϕb. The probabilities for direct scattering and electron capture

are therefore given by


PDS
fi (b) =

∣∣∣ÃDS
fi (b)

∣∣∣2 =
∣∣∣F̃f (t, b)− δfi∣∣∣2,

PEC
fi (b) =

∣∣∣ÃEC
fi (b)

∣∣∣2 =
∣∣∣G̃f (t, b)

∣∣∣2, (3.128)

respectively. When f is a target channel, then if f = i Eq. (3.127) corresponds

to elastic scattering. For f 6= i and εTf < 0 it is the cross section for excitation
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into the bound target state with quantum numbers {nf , `f ,mf}. When εTf > 0

the result is the integrated cross section for excitation into the corresponding

positive-energy pseudostate. When f is a projectile channel, εPf < 0 this is

the cross section for electron capture into the bound target state with quantum

numbers {nf , `f ,mf}. When εPf > 0 the result is the integrated cross section for

electron capture into the corresponding continuum pseudostate of the projectile.

3.4.2 Differential cross sections

We have shown that the integrated cross sections can be determined directly from

the expansion coefficients. However, the momentum-space scattering amplitude

must be explicitly evaluated in order to calculate differential cross sections. Start-

ing from Eq. (3.120), we separate the angular part of the integral by writing the

scalar product of the perpendicular momentum transfer and impact parameter

as

q⊥T(P) · b = q⊥T(P)b cos(ϕf − ϕb), (3.129)

where ϕf is the azimuthal angle of the projectile in the final stationary state.

Additionally, we factorise the azimuthal part of the probability amplitude using

Eq. (3.126). Then, using Eq. (3.129) and db = b db dϕb the transition amplitude

is written as

T
DS(EC)
fi (qf , qi) = iv

∫ ∞
0

db bÃ
DS(EC)
fi (b)

∫ 2π

0

dϕb eiq
⊥
T(P)

b cos(ϕf−ϕb)ei(mi−mf )ϕb .

(3.130)

Making the substitution u = ϕf − ϕb and writing dϕb = du4 this becomes

T
DS(EC)
fi (qf , qi) = 2πimf−mi+1ei(mi−mf )ϕfv

∫ ∞
0

db bÃ
DS(EC)
fi (b)Jmf−mi(q

⊥
T(P)b).

(3.131)

4since dϕf = 0
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For collisions resulting in elastic scattering, excitation, or electron capture

into a bound state of the projectile atom, the differential cross section is given by

dσ
DS(EC)
fi

dΩf

=
µTµf
(2π)2

qf
qi

∣∣∣TDS(EC)
fi (qi, qf )

∣∣∣2. (3.132)

Substituting Eq. (3.131) into Eq. (3.132), leads to

dσ
DS(EC)
f

dΩf

=
µTµf
(2π)2

qf
qi

∣∣∣∣2πimf−mi+1ei(mi−mf )ϕfv

∫ ∞
0

db bÃ
DS(EC)
fi (b)Jmf−mi(q

⊥
T(P)b)

∣∣∣∣2
= qfqi

∣∣∣∣∫ ∞
0

db bÃ
DS(EC)
fi (b)Jmf−mi(q

⊥
T(P)b)

∣∣∣∣2, (3.133)

where we made the approximation that the reduced mass in the initial and final

channels is the same.5 The differential cross section for elastic scattering is given

by Eq. (3.133) when f = i. The differential cross section for target excitation is

given by the sum of the result in Eq. (3.133) for all f ∈ {α}NT
b
. The differential

cross section for electron capture is given by the sum of the result in Eq. (3.133)

for all f ∈ {β}NP
b
.

3.4.3 Ionisation amplitudes

Before we can evaluate the differential cross section for ionisation, we must cal-

culate both TDI
fi (κ, qf , qi) and TECC

fi (κκκ, qf , qi). To do this, we must evaluate the

overlap of the continuum-wave solution and wave packet appearing in Eqs. (3.116)

and (3.118). Using Eqs. (3.56) and (3.55), we find that the overlap of a wave-

packet pseudostate with the continuum-wave can be expressed as

〈
ψ−κ
∣∣ψWP

n`m

〉
=

(2π)3/2

κ
(−i)`eiσT

` (κ)Y`m(κ̂)

∫
dr φκ`(r)φ

WP
n` (r), (3.134)

5Since 1/MP and 1/MT � 1, it is reasonable to assume µi ≈ µf .
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where

∫
dr φκ`(r)φ

WP
n` (r) = Nn

√
κ. (3.135)

So the final form of the overlap is

〈
ψ−κ
∣∣ψWP

n`m

〉
=

(2π)3/2Nn√
κ

(−i)`eiσT
` (κ)Y`m(κ̂). (3.136)

This result is valid for both target and projectile basis functions, provided the ap-

propriate continuum wave is used. With this result, the amplitude in Eq. (3.116)

becomes

TDI
fi (κ, qf , qi) =

(2π)3/2Nnα√
κ

∑
`αmα

(−i)`αeiσ
T
`α

(κ)Y`αmα(κ̂)TDS
fi (qf , qi). (3.137)

Similarly, the amplitude in Eq. (3.118) becomes

TECC
fi (κκκ, qf , qi) =

(2π)3/2Nnβ√
κ

∑
`βmβ

(−i)`βe
iσP
`β

(κ)
Y`βmβ(κ̂)TEC

fi (qf , qi). (3.138)

3.4.4 Differential cross sections for ionisation

For ionising collisions, the fully differential cross section is not only a function

of the solid angle of the scattered projectile, but also of the solid angle of the

ejected electron Ωe and the energy of the ejected electron Ee. Figure 3.4 shows

the coordinate system used to describe the fully differential cross section. The

z-axis is given by the momentum of the incoming projectile and we define the

x-axis by the projection of the post-collision momentum of the projectile onto

the plane orthogonal to the direction of incidence.

In the laboratory frame, the fully differential cross section for ionisation in

the two-centre WP-CCC approach is given by the incoherent sum of the direct
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x
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qf

θf

κ

ϕe
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Figure 3.4: Geometry of the momenta of the projectile and electron in ionising collisions.
The origin is positioned at the scattering centre.

ionisation and electron capture into continuum components [98],

d3σion
N

dEe dΩe dΩf

=
µ2
T

(2π)5
κqf
qi

(∣∣TDI
fi (κ, qi, qf )

∣∣2 +
∣∣TECC
fi (κ− v, qi, qf )

∣∣2), (3.139)

Before combining, the ECC component must be transformed into a common frame

of reference with the DI part. We choose the laboratory frame as a common

coordinate system. Therefore, the DI amplitude given by Eq. (3.116) does not

need to be transformed since it is defined in the laboratory frame. However,

the ECC amplitude given by Eq. (3.118) is defined in the projectile frame and

must, therefore, be converted into the laboratory frame of reference. To do this,

we substituted κ − v for κκκ and (qT(P) − κ)⊥ for q⊥T(P) in Eq. (3.118) (see also

Eq. (3.131)) to obtain (after integration) the amplitudes for charge transfer into

the projectile continuum with electron momentum κ. This provides amplitudes

for specific electron momenta determined by the distribution of the continuum

bins. Therefore, the result in Eq. (3.139) represents the fully differential cross

section for ionisation leading to electron emission with momentum κ ∈ [kN , kN+1]

in the target frame, where an electron is ejected with energy Ee = κ2/2 into the
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solid angle Ωe which corresponds to κ̂. It is important to note that this cross

section is for ionisation into the N th bin only, i.e.

Ee ∈
[
k2N
2
,
k2N+1

2

]
. (3.140)

To obtain the cross section across all ejection energies this quantity must be

calculated for each wave-packet pseudostate. Each wave packet will result in a

single non-zero overlap with the Coulomb wave, providing the FDCS at a discrete

number of energy points given by the energy of the wave-packet pseudostate.

To evaluate the FDCS we substitute Eqs. (3.137) and (3.138) into Eq. (3.139),

d3σion
N

dEedΩedΩf

=
µ2
T

(2π)2
qfκ

qi

(∣∣∣∣Nnα√κ ∑
`αmα

(−i)`αeiσ
T
`α

(κ)Y`αmα(κ̂)TDS
fi (qf , qi)

∣∣∣∣2
+

∣∣∣∣Nnβ√κ ∑
`βmβ

(−i)`βe
iσP
`β

(κ)
Y`βmβ(κ̂κκ)TEC

fi (qf , qi)

∣∣∣∣2), (3.141)

where κκκ = κ−v. The doubly and singly differential cross section for ionisation is

obtained by integrating the result in Eq. (3.141) over the desired variables. This

can be performed numerically. However, we also calculate the integrals for some

types of doubly differential cross section (DDCS) analytically. Comparison of

results obtained using both approaches provides a useful self-consistency check.

Inserting Eq. (3.131) into Eq. (3.141) and integrating over the azimuthal angle

and perpendicular momentum transfer yields

d2σion
N

dEe dΩe

= 2π

(
N 2
nα

`max
α∑
`α=0

`′max
α∑
`′α=0

`α∑
mα=−`α

Y ∗`αmα(κ̂)Y`′αmα(κ̂)e
i(σT

`′α
(κ)−σT

`α
(κ))

× (−i)`′α−`α
∫

db bÃDS∗
nα`αmα(b)ÃDS

n`′αmα
(b)

+N 2
nβ

√
κ

κ

`max
β∑
`β=0

`′max
β∑
`′β=0

`β∑
mβ=−`β

Y ∗`βmβ(κ̂κκ)Y`′βmβ(κ̂κκ)e
i(σP

`′
β
(κ)−σP

`β
(κ))

× (−i)`′β−`β
∫

db bÃEC∗
nβ`βmβ

(b)ÃEC
nβ`

′
βmβ

(b)

)
,

(3.142)
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where ÃEC
nβ`

′
βmβ

(b) denotes the probability amplitude for ECC after the transfor-

mation κκκ → κ − v. Equation (3.142) is the DDCS for ionisation resulting in

electron emission along the surface of a cone at an angle of θe to the z-axis with

a momentum between the boundaries of the N th target-centred continuum bin.

The singly differential cross section (SDCS) for ionisation as a function of the

ejected-electron energy and the SDCS for ionisation as a function of the emission

angle of the ejected electron can both be obtained by numerically integrating

Eq. (3.142) over the desired variables.

To calculate the TICS, the FDCS for ionisation must be integrated over all

variables. First, consider only the integrated cross section for DI into the bin

N . Starting with the first term in Eq. (3.142) we integrate over Ωe. Due to the

orthogonallity of spherical harmonic functions, this results in a factor of δ`α`′α .

Therefore, we are left with

dσDI
N

dEe

= 2πN 2
nα

∑
`αmα

∫
db b
∣∣∣ÃDS

nα`αmα(b)
∣∣∣2

= N 2
nα

∑
`αmα

σDS
nα`αmα . (3.143)

Integrating this result with respect to Ee over the width of the N th bin trivially

results in

σDI
N = N 2

nα

∑
`αmα

σDS
nα`αmα

k2N+1 − k2N
2

, (3.144)

where we used the fact that σDS
nα`αmα

is the integrated cross section for the fixed

energy representing theN th bin and is therefore not a function of Ee. Substituting

Eq. (3.62) into Eq. (3.144) we get

σDI
N =

∑
`αmα

σDS
nα`αmα . (3.145)

To evaluate the ECC contribution, we apply the same approach to the second
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term in Eq. (3.142). However, since integrated cross sections are frame-invariant,

there is no need to transform the DI and ECC amplitudes into a common frame

in order to calculate it. Therefore, we integrate the second term in Eq. (3.142)

over Ωe in the projectile frame without including the factor of
√
κ/κ that appears

from transforming into the laboratory frame. The result is

σECC
N =

∑
`βmβ

σEC
nβ`βmβ

. (3.146)

Therefore, the TICS is given by Eqs. (3.145) and (3.146) summed over the number

of target- and projectile-centred bins, nT
pos and nP

pos, respectively,

σion =

nT
pos∑

N=1

σDI
N +

nP
pos∑

N=1

σECC
N . (3.147)

3.5 Computational implementation

The set of two-centre equations for F̃α′(t, b) and G̃β′(t, b) is written in matrix form

as

i

 I K̃T

K̃P I


 ˙̃
F

˙̃
G

 =

D̃T Q̃T

Q̃P D̃P


F̃
G̃

 , (3.148)

where I is the identity matrix. Solution of the coupled equations is achieved using

the fourth-order Runge-Kutta approach. The axis of propagation is discretised

into Nz exponentially-spaced points that are symmetric about the origin where

the distribution is most dense. In this approach, zmin corresponds to the limit as

t → −∞ and zmax corresponds to the limit as t → ∞. The values of zmin and

zmax as well as the number of time-steps are chosen to be sufficiently large that

the results of interest converge. At each time-step the value of the expansion

coefficients are calculated using a weighted average of their values at the previous
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step as

F̃ i+1
α′ = F̃ i

α′ +
(zi+1 − zi)

6
(k1 + 2k2 + 2k3 + k4), (3.149)

where F̃ i
α′ is the time-discretised expansion coefficient for the channel α′ at the

ith time-step,6 zi+1 − zi is the width of the discretisation grid, and



k1 = f
(
zi, F̃

i
α′

)
,

k2 = f

(
zi +

(zi+1 − zi)
2

, F̃ i
α′ + (zi+1 − zi)

k1
2

)
,

k3 = f

(
zi +

(zi+1 − zi)
2

, F̃ i
α′ + (zi+1 − zi)

k2
2

)
,

k4 = f
(
zi + (zi+1 − zi), F̃ i

α′ + (zi+1 − zi)k3
)
.

(3.150)

At each time step, the integrals appearing in the direct-scattering, overlap, and

exchange matrix elements are evaluated numerically. Then, the solution of the

generalised eigenvalue problem in Eq. (3.148) at t = zi/v is offloaded to GPU

accelerators using the cuSolverDn library [106]. This greatly reduces the com-

putational time required and allows us to investigate problems requiring very

large basis sizes that would otherwise be prohibitively large for traditional CPU-

based computation. With this we can calculate the expansion coefficients using

Eqs. (3.149) and (3.150). The coupling of reaction channels is evident here since

calculation of each expansion coefficient at the next point in time depends on

the values of all (both target and projectile) expansion coefficients. According to

the boundary condition stated in Eq. (3.46) the only non-zero coefficient at the

initial step in the Runge-Kutta propagation is the one corresponding to the state

of the target in the initial channel. Probability flux flows from this coefficient to

all others throughout the propagation, effectively representing intermediate-state

coupling. Far from the scattering centre in the asymptotic limit, provided zmax

6i.e. F̃ iα′ = F̃α′(ziv, b).
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is sufficiently large, the value of F̃ i+1
α′ differs little from that of F̃ i

α′ , i.e.

F̃α′(∞, b) = lim
zmax→∞

F̃Nz
α′ . (3.151)

The projectile-centred expansion coefficients are evaluated in the same way.

So far we have considered only the z-dimension. However, the expansion

coefficients depend also on the impact parameter. In Sect. 3.4 it was shown

that the expansion coefficients determine the scattering probabilities entirely.

However, we must still solve the coupled equations for all values of b. Since

the value of Fα′(t, b) at a given impact-parameter point is independent of all

other impact-parameter values, we can straightforwardly discretise the impact-

parameter space and solve the coupled equations for each discrete value of b

independently. We choose an optimal distribution that accurately discretises

bP (b). The integration in Eq. (3.127) is performed using the trapezoidal rule.

Throughout the calculation the norm of the total scattering wave function is

monitored to verify the accuracy of the solution. All results presented herein were

obtained while preserving the unitarity of the total scattering wave function.

The integrated cross sections are then recovered from the values of the ex-

pansion coefficients according to the method outlined in Eq. (3.4). To calculate

differential cross sections, the momentum-space amplitudes are calculated from

the expansion coefficients using Eq. (3.131). Numerical evaluation of the inte-

gral in Eq. (3.131) is difficult due to the oscillatory nature of the integrand. One

method for dealing with this is to interpolate the calculated expansion coefficients

onto a very dense impact-parameter grid before integration. This saves significant

time by not having to compute the expansion coefficients for a very large number

of impact-parameter points. However, for some types of differential cross sections

for ionisation, very large values of perpendicular momentum transfer are required.

This makes the Bessel functions highly oscillatory and a more accurate approach

to evaluating the integral in Eq. (3.131) is required. Therefore, we use the fast

Hankel transform algorithm developed by Anderson [107]. This algorithm takes
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advantage of the fact that the Hankel transform can be expressed as a convolution

and evaluated using a set of pre-calculated filter weights, removing the need to

evaluate any Bessel functions during the calculation. We find that this method

is capable of calculating TDS
fi and TEC

fi accurately for large values of q⊥T(P) and is

approximately an order of magnitude faster than direct numerical integration.

Having obtained the momentum-space scattering amplitudes, the FDCS for

ionisation is calculated according to Eq. (3.141). The doubly and singly differen-

tial cross sections for ionisation are obtained either from the analytical formulas

derived in Sect. 3.4 or direct numerical integration of the FDCS. The SDCS

obtained from numerically integrating the FDCS is also integrated to check that

the total ionisation cross section agrees with the TICS calculated directly from

the impact-parameter amplitudes according to Eq. (3.147). In practice the TICS

differ by roughly 1%.

3.6 Chapter summary

In this chapter the two-centre semiclassical WP-CCC approach to positively

charged projectile collisions with hydrogen-like atoms was derived. First, the

total scattering wave function was expanded in terms of two sets of orthonor-

mal pseudostates. The first set diagonalises the target-atom Hamiltonian and

the second set diagonalises the projectile-atom Hamiltonian. Inserting this into

the Schrödinger equation for the three-body scattering system and applying the

semiclassical approximation led to the coupled-channel equations for the unknown

expansion coefficients. Then, we detailed how the matrix elements are evaluated,

and showed that the dependence on the azimuthal angle of the projectile could

be factorised from the scattering equations. Next, the probability amplitudes

and integrated cross sections were given in terms of the expansion coefficients

corresponding to the final channel. We then described the way in which differen-

tial cross sections are calculated for binary and ionisation processes. Finally, the

computational implementation of the method was outlined.
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Multiply charged ion scattering on

atomic hydrogen∗

In this chapter we apply the WP-CCC approach to calculate integrated cross

sections in collisions of Li3+, Be4+, and Ne10+ with atomic hydrogen. Previously,

the approach has been used to study He2+ + H collisions, resulting in the most

accurate calculations to date of the integrated cross sections for target excita-

tion, electron capture, and ionisation [34]. Here we consider three additional ion

species of relevance to the ITER project. Plasma diagnostic techniques [113]

require accurate knowledge of the n- and n`-resolved integrated cross sections for

electron capture and target excitation in collisions between the various impurity

ions and atoms present in the plasma. However, experimental data for these

collision systems are sparse and theoretical calculations are only available for

certain cross sections in limited energy regions. Therefore, we apply the two-

centre WP-CCC method to provide an accurate and comprehensive set of data

for the aforementioned processes over a wide energy range, all within a single

theoretical framework.

Integrated cross sections in collisions of fully stripped lithium ions with atomic
∗ This chapter is adapted from works published by the candidate [108–112]. The publishers

(IOP Publishing, MDPI, and the American Physical Society) provide the author with the right
to use the articles, or parts thereof, in a thesis or dissertation without requesting permission.
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hydrogen were measured by Shah et al. [114], Seim et al. [115], and Shah and

Gilbody [116]. Shah et al. [114] recorded the total electron-capture cross section

(TECS) at projectile energies between 14 and 300 keV/u. Shah and Gilbody [116]

performed measurements for the TICS at projectile energies between 50 and 400

keV/u. The TECS measurements by Shah et al. [114] have an average uncertainty

of 20% and the TICS measurements by Shah and Gilbody [116] have an average

uncertainty of 4.9%. Seim et al. [115] also performed measurements for the TECS

at projectile energies between 1 and 6 keV/u with an average uncertainty of 15%.

Due to the toxicity of beryllium, there exist no experimental data for comparison.

Experimental data for collisions of fully stripped neon ions with atomic hydrogen

is only available for the TECS. These data are by Panov et al. [117] and Meyer

et al. [118]. Both sets of measurements have an uncertainty of about 17%. They

made measurements at energies between 0.1 and 10 keV/u, however, there is poor

agreement between the two sets of data over this energy range. Furthermore, for

CXS, n-resolved cross sections are required instead of the total cross section and

the typical energy of the hydrogen beam in fusion plasma is between 10 and 100

keV/u, limiting the applicability of the available experimental data.

A number of theoretical methods have been employed to calculate cross sec-

tions for collisions of Li3+, Be4+, and Ne10+ ions with ground-state hydrogen [119].

Perturbative methods applied to the problem include the first-order Born ap-

proximation (FBA), the CB1 method [49], the three-body boundary-corrected

continuum-intermediate-state (BCIS-3B) method [120], the CDW method [121],

the CDW-EIS method [122], the eikonal impulse approximation (EIA) [123], and

the three-body eikonal approach (TBEA) [89]. Both atomic [62, 124–132] and

molecular orbital [61, 63] close-coupling approaches have also been used. The

CTMC method has been extensively applied to collisions of fully stripped ions

with hydrogen [63, 133–136]. There are also results from the lattice numerical so-

lution to the time-dependent Schrödinger equation (LTDSE) method [137, 138],

the advanced adiabatic (AA) method [139], and the TC-BGM [80]. However,
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significant differences exist between the various approaches and between theory

and experiment.

We also consider collisions of the Be4+ ions with hydrogen atoms in the 2`m

initially excited states. Although these targets are expected to be present in

relatively small quantities in the ITER plasma, it has been shown that charge

exchange cross sections for impurity ions colliding with H(2s, 2p0, 2p1) are ex-

pected to be at least an order of magnitude larger than that for collisions with

H(1s) [140]. Therefore, contributions to formation of the Be3+ ions in the reactor

due to scattering on excited hydrogen atoms cannot be neglected. There are no

experimental data for Be4++H(2`m) collisions and very few calculations are avail-

able. These are the CTMC method [141–143], the MOCC method [62, 144], the

AOCC method [128, 130], and the numerical grid approach to solving the time-

dependent Schrödinger equation for the total scattering wave function (GTDSE)

[141].

The two-centre wave-packet convergent close-coupling method can be used to

evaluate the total and n- and n`-resolved partial integrated cross sections for all

of the aforementioned processes. For these calculations, we used a symmetric

basis when expanding the total scattering wave function. To ensure the results

presented are accurate we establish convergence with respect to the parameters

used to model the collisions, including the number of basis functions that describe

the electronic states on each centre.

4.1 Li3++H collisions

In this section we present calculations of integrated cross sections for electron cap-

ture and ionisation in Li3+ + H(1s) collisions. We found that a symmetric basis

containing 10−` bound states and 20 continuum bins up to `max = 5 was sufficient

to obtain convergence to within 1% in the present results. In Fig. 4.1 we present

our results for the TECS alongside the existing experimental data and other

theoretical calculations. We find good agreement with both sets of experimental
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data [117, 118], which span most of the energy range considered in this work. Our

results are somewhat higher than the experimental measurements by Shah et al.

[114] at intermediate energies, which, however, is the case for most of the available

theoretical methods. We get good agreement with two sets of the CTMC results

by Errea et al. [63] at high energies. The microcanonical distribution for the

initial electron cloud yields a spatial density which is too compact, whereas the

hydrogenic distribution provides a better representation of the spatial density.

Therefore, the hydrogenic classical trajectory Monte Carlo (hCTMC) method is

expected to be more reliable than the microcanonical classical trajectory Monte

Carlo (mCTMC) one. Nevertheless, at intermediate energies, the hCTMC results

are also larger than the experimental measurements by Shah et al. [114]. Further-

more, within this energy region, the hCTMC calculations are in poor agreement

with the MOCC ones by the same authors. Fritsch and Lin [124] calculated the

TECS at low energies using the AOCC approach, however, the size of their basis

was too small to give convergent results. The AA calculations by Janev et al.

[139] are also available only at low energies. Both sets of results disagree with

the experimental measurements by Seim et al. [115] and the other theoretical

calculations available at these energies, including ours. The TBEA calculations

by Alt et al. [89] disagree with both sets of experimental measurements over the

entire energy range. In their calculations, Alt et al. [89] neglected the second-

and higher-order terms in the quasi-Born expansion of their effective potential.

This was suggested as a possible reason for disagreement with the experimental

data. Our results are in good agreement with the TC-BGM results by Leung

and Kirchner [80] and the AOCC results by Liu et al. [132] over the entire 1–

1000 keV/u energy range. The CDW calculations by Datta et al. [121] and the

BCIS-3B calculations by Delibašić et al. [120] significantly overestimate the data

at intermediate energies, but we see better agreement at high energies. This is

as expected, since both methods are perturbative approaches and accurate at

sufficiently high energies. Overall, the present results are in excellent agreement
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with the experimental data at low and high energies with slight disagreement

near the peak of the cross section.
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Figure 4.1: Total electron-capture cross section for Li3++H(1s) collisions. Experimental
data are by Shah et al. [114] and Seim et al. [115]. The theoretical results are: present
WP-CCC approach, AOCC method by Fritsch and Lin [124], CDW method by Datta
et al. [121], TBEA by Alt et al. [89], AA method by Janev et al. [139], hCTMC, mCTMC,
and MOCC methods by Errea et al. [63], TC-BGM by Leung and Kirchner [80], AOCC
method by Liu et al. [132], and BCIS-3B method by Delibašić et al. [120].
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Figure 4.2: Partial 2` and 3` electron-capture cross sections for Li3+ + H(1s) collisions.

In Fig. 4.2, we plot the partial cross sections for electron capture into 2`

and 3` states in collisions of fully stripped lithium ions with atomic hydrogen.

We present results for these states in particular because we find that capture

into these states have the largest contribution towards the TECS. Noticeable
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oscillations are observed in the 3s EC cross section at low energies. However,

since the magnitude of this cross section is small compared to the 2` and the

other 3` electron-capture cross sections, these oscillations are not visible in the

TECS. Generally, this oscillatory behaviour is seen in all n and n` cross sections

for n > 3 as well.

Figure 4.3 shows the TICS obtained with the WP-CCC method alongside the

existing experimental data by Shah and Gilbody [116] and previous theoretical

results. We observe that our calculations overestimate the experimental measure-

ments, especially in the region of the peak. Though the AOCC and TC-BGM

calculations appear to better agree with the experiment, it is unclear if these cross

sections are convergent in terms of the included states given that our smaller-size,

i.e., non-convergent, calculations (not shown) also appear to better agree with the

experiment. The WP-CCC results lie between the hCTMC and mCTMC calcu-

lations over the entire energy range under consideration. At low energies the AA

calculations by Janev et al. [139] and the AOCC calculations by Toshima [68] are

quite similar to the MOCC calculations by Errea et al. [63], but our results appear

to be smaller. However, at these energies, we get good agreement with the AOCC

calculations by Agueny et al. [131] and the TC-BGM calculations by Leung and

Kirchner [80]. The AA and AOCC methods are expected to be reliable at low

energies since they incorporate molecular features. The AOCC and TC-BGM

results are the most recent set of calculations performed for this system. All

the aforementioned calculations peak at practically the same projectile energy,

however, the respective peaks have different magnitudes. The CDW-EIS results

by Crothers and McCann [122] underestimate the TICS at intermediate energies,

but we get good agreement with their calculations at high energies. More exper-

imental measurements at intermediate energies could help resolve the disparity

between the theoretical methods.
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Figure 4.3: Total ionisation cross section for Li3+ +H(1s) collisions. Experimental data
are by Shah and Gilbody [116]. The theoretical results are: present WP-CCC approach,
CDW-EIS method by Crothers and McCann [122], AOCC method by Toshima [68], AA
method by Janev et al. [139], hCTMC, mCTMC, and MOCC methods by Errea et al.
[63], AOCC method by Agueny et al. [131], and TC-BGM by Leung and Kirchner [80].

4.2 Be4++H collisions

In this section we apply the WP-CCC approach to collisions of fully stripped

beryllium ions with atomic hydrogen. These collisions are very relevant for fusion

plasma modelling for ITER. In particular, beryllium metal is used in some plasma-

facing components in the ITER tokamak and, as a result, beryllium impurity

ions are expected to make their way into the plasma. We investigate the collision

processes leading to ionisation and electron capture in the energy region between

1 keV/u and 1 MeV/u, which is most relevant to fusion plasma modelling. The

wide energy range considered covers the lower energies in which electron capture

is dominant through to higher energies where excitation and ionisation prevail.

There are no experimental data for Be4+ + H collisions. Instead, we compare

our results with other calculations where available. First we present results for

scattering on hydrogen atoms initially in the ground (1s) state. Then we apply

the approach to beryllium scattering on hydrogen atoms in the lowest excited

levels (2`m).
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4.2.1 Scattering on ground-state hydrogen

In Fig. 4.4 we present our WP-CCC results for the TECS as a function of incident

energy alongside previous theoretical works. The present FBA results are also

shown. A symmetric basis containing nneg = 10 − ` bound states and npos = 20

bins with `max = 5 was found to be sufficient to obtain convergence within 1%.

For the EC channel, the FBA greatly disagrees with the more sophisticated WP-

CCC approach at the lower energies but does begin to improve in accuracy as the

energy increases. However, even at 1 MeV/u the percentage difference between

the FBA and WP-CCC results is 60% for EC. This leads to the conclusion that for

Be4+ + H(1s) collisions, either non-perturbative approaches are needed or higher

order terms are required in the perturbation series to obtain accurate electron

capture cross sections at and below 1 MeV/u. We see overall good agreement be-

tween the WP-CCC results and the AOCC method used by Igenbergs et al. [130]

across the energy range between 1 to 750 keV/u considered in their work. The

maximum difference between the WP-CCC and AOCC calculations is about 2%.

At energies greater than 25 keV/u we see the AOCCmethod employed by Toshima

[126] deviates from our results. A possible reason for this discrepancy is the fact

that the authors only included bound states of Be3+ up to n = 5, whereas in our

calculations we used bound states up to nneg = 10 to obtain converged results.

Another possibility could be the Gaussian type orbitals used to expand the total

scattering wave function. These are not true eigenstates of the system and thus

only provide approximations to bound state energy values. In Fig. 4.4 we also see

two calculations done by Ziaeian and Tőkési [134] using the CTMC and quasi-

classical trajectory Monte Carlo (QTMC-KW) approaches. The standard CTMC

method shows relatively good agreement with the WP-CCC results in the higher

energy range (≥ 100 keV/u), however, below this we see large differences between

the two calculations (100%). The reason for this is at lower projectile energies the

Coulomb interaction between the target electron and projectile is more significant

than at a higher projectile energy, thus a quantum mechanical description is re-
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quired in order to calculate accurate channel transitions into different eigenstates.

The QTMC-KW calculation corrects this issue of disagreement at lower energies,

however above 200 keV/u we see a deviation in results.
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Figure 4.4: Total electron-capture cross section for Be4+ + H(1s) collisions. The theo-
retical results are: present WP-CCC and FBA results, CB1 method by Belkić et al. [49],
AOCC method by Igenbergs et al. [130], CTMC and QTMC-KW methods by Ziaeian
and Tőkési [134], GTDSE method by Jorge et al. [138], and AOCC method by Toshima
[126].

Figure 4.5 shows the TICS as a function of projectile energy. We can again see

the FBA results differ from the WP-CCC calculations drastically, deviating by

orders of magnitude at low energies. Nonetheless, just as for the EC cross section,

the FBA to the ionisation cross section displays improvement in accuracy, albeit

slower, towards the upper energy limit. It is clear that, except for the FBA, all

calculations display the same maximum TICS around the 100 keV/u region. In

this energy region all calculations, excluding the CTMC results [134], agree within

a maximum of 10% difference of the WP-CCC results. The agreement between

the WP-CCC, QTMC-KW [134] and AOCC [126] continues into the high energy

region. However, towards the lower energy region the results begin to diverge

from one another. At 20 keV/u the WP-CCC results appear to agree with those

of the CTMC approach.

Figure 4.6 shows the partial n-resolved (summed over the orbital angular mo-
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Figure 4.5: Total ionisation cross section for Be4+ + H(1s) collisions. The theoreti-
cal results are: present WP-CCC and FBA results, CTMC and QTMC-KW methods
by Ziaeian and Tőkési [134], and AOCC method by Toshima [126].

mentum and magnetic quantum numbers) cross sections as functions of incident

projectile energy. We can see that n = 3 and n = 4 states dominate the TECS

presented in Fig. 4.4, below 100 keV/u. For n > 4 we can see a systematic

decrease in the contributions for the electron transfer process. For n = 2, as

the projectile energy increases above 100 keV/u the cross section for this state

begins to dominate. The n = 1 state is negligible for incident energies below

100 keV/u but further towards the upper energy limit (1 MeV/u) its contribution

becomes the primary EC channel into the Be3+ states. This result is a known

characteristic for highly charged projectile collisions with hydrogen [47].

Figure 4.7 shows the distribution of the n-resolved cross sections for EC at in-

cident projectile energies of 20, 100, and 500 keV/u. The present WP-CCC results

are compared with the AOCC calculations by Fritsch and Lin [125] and Igenbergs

et al. [130] as well as the CTMC and GTDSE calculations by Jorge et al. [138],

and EIA calculations by Jorge et al. [123]. At 20 keV we see that there is ex-

cellent agreement between the WP-CCC and AOCC results of Fritsch and Lin

[125] for the n = 2 and n = 3 partial cross sections. However, for n = 4 we

see considerable disagreement between the two approaches. A possible reason

for this discrepancy could be the limited size of the basis functions (2 ≤ n ≤ 4)
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Figure 4.6: Partial n-resolved cross sections for electron capture in Be4+ + H(1s) colli-
sions.

used in the scattering wave function expansion on the Be4+ centre in the AOCC

calculations. One can see from Fig. 4.6 that at 20 keV/u the n = 5 contribution

to EC transitions is greater than the n = 2 and n = 6 states. Thus the n > 4

states should be taken into account at 20 keV/u to obtain accurate distributions

of the n-resolved cross sections. For 100 keV projectiles, the WP-CCC results

agree with the shape of the calculations by Jorge et al. [138] across all values of

n shown. Returning to Fig. 4.7, for n > 5 the AOCC results by Igenbergs et al.

[130] show an unphysical rise that is not supported by any of the other methods,

and is perhaps a numerical problem. At 500 keV we see that the numerical issues

present in the AOCC calculations have lessened. However, the difference at n = 8

seems to indicate that the error present at 100 keV/u may still be present at this

higher energy. We do, however, see at smaller n states improved agreement with

the AOCC results, excluding n = 1 where the largest difference between the two

calculations is seen. Comparing the WP-CCC and GTDSE calculations, we find

very good agreement at the energies where results are available. The maximum

difference between the GTDSE results and our own is 4%. However, to achieve

this high density lattice meant only presenting up to n = 3 due to memory

limitations that are associated with this method. We see that the WP-CCC

calculations result in slightly smaller n-resolved cross sections in comparison to
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Figure 4.7: n-partial cross sections for electron capture in Be4+ +H(1s) collisions at 20,
100, and 500 keV/u. The theoretical results are: present WP-CCC approach, AOCC
method by Fritsch and Lin [125] and Igenbergs et al. [130], CTMC and GTDSE methods
by Jorge et al. [138], and EIA method by Jorge et al. [123].
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the CTMC approach for all n considered in Ref. [138]. The largest disagreement

between these two approaches occurs at n = 2, but improves in comparison for

n > 2. Regarding the EIA calculations by Jorge et al. [123], we see that the

WP-CCC method produces larger n-resolved cross sections at 500 keV/u. This is

especially noticeable at n = 2. As n increases, however, agreement between the

two calculations improves. This is especially evident for n > 7 where the results

practically coincide.
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Figure 4.8: Partial 2` cross sections for electron capture in Be4+ +H(1s) collisions. The
theoretical results are: present WP-CCC approach, CB1 method by Belkić et al. [49],
MOCC method by Harel et al. [61], LTDSE and AOCC methods by Minami et al. [137],
and AOCC method by Igenbergs et al. [130]. The key in the upper panel applies to
both panels.

In Figs. 4.8–4.11 we show the present WP-CCC results for the partial 2`, 3`,

4`, and 5` EC cross sections. Comparison is made with the CB1 results by Belkić

et al. [49], AOCC results by Igenbergs et al. [130], LTDSE and AOCC results
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Figure 4.9: Partial 3` cross sections for electron capture in Be4+ +H(1s) collisions. The
theoretical results are: present WP-CCC approach, CB1 method by Belkić et al. [49],
MOCC method by Harel et al. [61], and AOCC method by Igenbergs et al. [130]. The
key in the upper panel applies to all panels.
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Figure 4.10: Partial 4` cross sections for electron capture in Be4+ + H(1s) collisions.
The theoretical results are: present WP-CCC approach, CB1 method by Belkić et al.
[49], MOCC method by Harel et al. [61], and AOCC method by Igenbergs et al. [130].
The key in the upper-left panel applies to all panels.

by Minami et al. [137], and the MOCC results by Harel et al. [61], where avail-

able. Overall, the present WP-CCC results agree very closely with the LTDSE

and AOCC calculations as well as the MOCC calculations. However, the cross

sections obtained by Belkić et al. [49] using the CB1 method sit above the afore-

mentioned calculations at low energies for capture into the 2s, 2p, 3s, and 3p

states. This is expected for a first-order perturbation calculation as it neglects

higher-order terms important at these lower projectile energies. Nevertheless, we

see reasonably good agreement at higher projectile energies. For the 3d state we

see fairly good agreement with the CB1 calculations across the entire projectile

energy range considered in Ref. [49].

For the 4s-partial cross sections, there is some disagreement between the

present results and MOCC calculations by Minami et al. [137] at energies between

10 and 25 keV/u. The WP-CCC calculations for the 4` cross sections suggest that
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in this energy region there is an oscillatory behaviour with increasing `. Thus,

denser energy points are required in order to capture these oscillations. For 4`

and 5` partial cross sections, the CB1 results display a slightly different behaviour

at lower projectile energies than what is shown in Figs. 4.8 and 4.9. The CB1

method predicts significantly lower cross sections than the AOCC and WP-CCC

approaches at small energies. We do see improved agreement, however, for the

4d and 4f cross sections at higher energies.
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Figure 4.11: Partial 5` cross sections for electron capture in Be4+ + H(1s) collisions.
The theoretical results are: present WP-CCC approach, CB1 method by Belkić et al.
[49], MOCC method by Harel et al. [61], and AOCC method by Igenbergs et al. [130].
The key in the upper-left panel applies to all panels.
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Results for the 5`-partial cross sections show the most deviation between the-

oretical methods. In our calculations for all 5 states we see oscillatory behaviour,

at low incident energies. For the 5s cross section we see the WP-CCC results are

in good agreement with the AOCC calculation at energies greater than 5 keV/u.

However, at 1 keV/u the calculations differ significantly. Due to the lack of energy

points between 1 and 5 keV/u for the AOCC approach, it is difficult to conclude

where the WP-CCC results start deviating. It is apparent, however, that we have

captured the aforementioned oscillatory behaviour of the 5s cross section in this

energy range that was not seen in Ref. [130]. We observe quantitative disagree-

ment between the MOCC and WP-CCC results for the 5s cross section, however,

the oscillatory nature of the cross section is similar for both calculations. For the

5p cross section, between 1 and 10 keV/u we observe nearly an order of magnitude

disagreement between the WP-CCC and the AOCC results. Nonetheless, we still

see excellent agreement between the WP-CCC and MOCC results here. Apart

from this energy region, the WP-CCC and AOCC calculations appear to be in

excellent agreement with each other.

The present calculations have been performed on a fine energy mesh to identify

oscillatory structures in the n- and n`-resolved capture cross sections in the low-

energy region. Oscillations start to appear in the n = 4 partial cross sections

becoming pronounced for n > 4 below 20 keV/u. Similar oscillations were also

seen in target excitation and electron capture in proton-hydrogen [97, 145] and

He2+ + H(1s) [34] collisions. The structures appearing in the cross sections for

target excitation, capture into excited states and for ionisation in collisions of mul-

tiply charged ions with H(1s) at low collision energies were discussed by Schultz

et al. [146]. They have a physical origin and are associated with the number of

swaps that the electron undergoes during the collision. As described above we

have used symmetric bases on both centres. We have also performed calculations

using asymmetric bases where the wave-packet bin states are placed solely on

the target or on the projectile centre. However, our calculations showed that the
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symmetric basis is optimal for achieving convergent results in all channels. The

TICS did not converge when the positive-energy pseudostates were only included

in the projectile basis. Nevertheless the symmetric and two types of asymmetric

bases gave practically the same EC cross sections across all projectile energies.

4.2.2 Scattering on excited hydrogen

Here, we extend this research to bare beryllium ion scattering on hydrogen in

its lowest excited states within the projectile-energy domain between 1 and 500

keV/u. Specifically, this includes collisions with the hydrogen target initially in

the 2s, 2p0, and 2p1 states. Note that the cross sections for scattering on H(2p−1)

are identical to the cross sections for scattering on H(2p1). Therefore, we present

results for H(2p1) but they are applicable also to H(2p−1).

Figure 4.12 displays the total EC cross sections for Be4+ + H(2`m) collisions.

The present WP-CCC results for scattering on hydrogen in the 2s, 2p0 and 2p1

states are shown alongside our calculations for hydrogen in the 1s state for com-

parison. We also show theoretical results from other methods were available. We

find that in the energy range between 1 and 10 keV/u, the total EC cross section is

approximately an order of magnitude larger for the initially excited target. How-

ever, for projectile energies > 40 keV/u, the situation is reversed. The reason for

this is the difference in the radial probability distribution for finding the electron

at a certain distance from the target nucleus in the 1s and 2s states. In the 1s

state, the electron is most likely to be found closer to the nucleus. At sufficiently

high energies, the projectile can approach the target nucleus much closer. This is

why we see the total cross section for EC from H(1s) to be larger in comparison

to that from H(2s) at high projectile energies. Our calculations for Be4+ + H(2s)

collisions are in excellent agreement with the CTMC results by Ziaeian and Tőkési

[142], below 10 keV/u we also agree with the MOCC calculations by Errea et al.

[62]. However, above 10 keV/u the two sets of results deviate, possibly because

the energy becomes too high for a MOCC-type approach. The MOCC results by
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Figure 4.12: Total electron-capture cross section for Be4+ + H(2`m) collisions. The
theoretical results are: present WP-CCC approach, MOCC method by Errea et al.
[62] and Shimakura et al. [144], AOCC method by Igenbergs [128], CTMC method
by Hoekstra et al. [143], Ziaeian and Tőkési [142], and Jorge et al. [141], and GTDSE
method by Jorge et al. [141].
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Shimakura et al. [144] are substantially different at all energies. This contrasts

with the clear agreement found with the work by Errea et al. [62] also using the

same MOCC method. Our calculations also disagree with the results by Igen-

bergs [128] obtained using the AOCC approach across the entire energy domain.

Interestingly, at high energies, the AOCC results replicate the WP-CCC ones

for H(1s), while substantially overestimating the H(2s) results. The reason for

such a big deviation in the results from the two similar semiclassical approaches

remains to be understood. We find reasonable agreement with both the CTMC

and GTDSE calculations by Jorge et al. [141] at the projectile energies 20 and 200

keV/u. For scattering on H(2p0) and H(2p1) we also find notable disagreements

with the AOCC approach. Also, the WP-CCC EC cross sections display good

agreement with the CTMC ones.

Figure 4.13 shows the WP-CCC results for the n-partial EC cross sections

for Be4+ collisions with H(2s) (top), H(2p0) (centre), and H(2p1) (bottom). The

left, centre, and right columns are for collision energies of 20, 100, and 500 keV,

respectively. We compare our results with the MOCC calculations by Errea

et al. [62], GTDSE and CTMC calculations by Jorge et al. [141], and AOCC

calculations by Igenbergs [128]. As far as we are aware, these are the only other

data available for these processes. At 20 keV, the WP-CCC cross sections are in

complete agreement with the CTMC and GTDSE ones but not with the MOCC

calculations. Also, the MOCC results suggest the dominant n-partial EC cross

section for 20 keV Be4+ + H(2s) collisions occurs at n = 8. However, it is worth

noting that the MOCC approach is only applicable at low incident energies, and

20 keV/u could be too high. For 100 keV projectiles, our results again agree very

well with the GTDSE and CTMC results by Jorge et al. [141] for all n. However,

there is significant disagreement with the AOCC calculations by Igenbergs [128]

for capture from all three of the considered initially excited states of the target. In

terms of the distribution of the n-partial EC cross sections, the AOCC calculations

also display unphysical peaks at n = 8, where we expect the results to be steadily



Chapter 4. Multiply charged ion scattering on atomic hydrogen 87

0

10

20

30

40

50

60

70

80 EC from H(2s)
Ei = 20 keV

MOCC: Errea
GTDSE: Jorge
CTMC: Jorge
WP-CCC

0

5

10

15

20

25

30

35 EC from H(2s)
Ei = 100 keV

GTDSE: Jorge
CTMC: Jorge
AOCC: Igenbergs
WP-CCC

0

10

20

30

40

50

60
EC from H(2s)
Ei = 500 keV

AOCC: Igenbergs
WP-CCC

0

2

4

6

8

10

12

14

16

18 EC from H(2p0)
Ei = 20 keV

WP-CCC

C
ro

ss
se

ct
io

n
(1
0
−
1
6

cm
2
)

0

2

4

6

8

10

EC from H(2p0)
Ei = 100 keV

AOCC: Igenbergs
WP-CCC

C
ro

ss
se

ct
io

n
(1
0−

1
8

cm
2
)

0

1

2

3

4

5

6
EC from H(2p0)
Ei = 500 keV

AOCC: Igenbergs
WP-CCC

C
ro

ss
se

ct
io

n
(1
0
−
2
1

cm
2
)

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

EC from H(2p1)
Ei = 20 keV

WP-CCC

2 4 6 8 10 12 14 16
0

5

10

15

20

25 EC from H(2p1)
Ei = 100 keV

AOCC: Igenbergs
WP-CCC

Final state principal quantum number
1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

EC from H(2p1)
Ei = 500 keV

AOCC: Igenbergs
WP-CCC

Figure 4.13: n-partial cross sections for electron capture in Be4+ + H(2`m) collisions
at 20, 100, and 500 keV/u. The theoretical results are: present WP-CCC approach,
AOCC method by Igenbergs [128], MOCC method by Errea et al. [62], and CTMC and
GTDSE methods by Jorge et al. [141].

declining. The AOCC calculations use an asymmetric basis on both centres where

only eight hydrogen states are included. In our convergence studies, we apply a

symmetric basis expansion. We also tested an asymmetric approach to investigate

the contribution the target centred states have on the n-partial EC cross sections.

Our analysis showed that a large and nearly symmetric basis expansion is required

to obtain stable state-selective EC cross sections. Comparison between the WP-

CCC results and AOCC calculations by Igenbergs [128] at 500 keV/u is similar to

the situation at 100 keV/u. We find large discrepancies between the two results.

Specifically, the minimum difference between our two sets of results is 92%. More

calculations using alternative methods would help resolve the discrepancy.

State-resolved n`-partial electron-capture cross sections, represent a particular
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Figure 4.14: Partial 3` and 4` cross sections for electron capture in Be4+ + H(2`m)
collisions. The theoretical results are: present WP-CCC approach, CTMC method by
Ziaeian and Tőkési [142], and GTDSE method by Jorge et al. [141].

interest for plasma diagnostics. In Figs. 4.14–4.16 we present results for the n`-

partial EC cross sections in Be4+ collisions with H(2s), H(2p0), and H(2p1). We

compare to other theoretical results where available. The largest cross sections

are convergent within a few percent; however, the smallest ones are converged

only within ≈ 8%. For capture from H(2p0) and H(2p1), the WP-CCC results

for the 3`-partial cross sections appear to agree reasonably well with the CTMC

results by Ziaeian and Tőkési [142] across the majority of the overlapping energy

range. However, we do notice significant discrepancies when comparing our 3d-
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partial cross sections from H(2s) to the CTMC ones below 100 keV/u. Also, for

capture from H(2s), our 3`- and 6`-partial cross sections show excellent agreement

with the GTDSE calculations by Jorge et al. [141] at the two projectiles energies

reported in their work. This is excluding the results for capture into the 3s state

at 20 keV/u, where we find noticeable differences between our results and theirs.
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Figure 4.15: Partial 5` and 6` cross sections for electron capture in Be4+ + H(2`m)
collisions. The theoretical results are: present WP-CCC approach and GTDSE method
by Jorge et al. [141].

Overall we find that within each set of results for the 3`- to 5`-partial EC cross

sections, in the energy region between 5 and 50 keV/u, the dominant n state for
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Figure 4.16: Partial 7` and 8` cross sections for electron capture in Be4+ + H(2`m)
collisions.

capture is the one with the largest allowed orbital angular momentum within the

shell, i.e., ` = n−1. In the same energy region, the dominant contribution comes

from capture into the state with ` ≈ Z
3/4
P in the 6`- to 8`-partial cross sections.

This is in agreement with the findings of Olson [147].

We also calculate the n-partial excitation cross sections in Be4+ + H(2`m)

collisions in Fig. 4.17. To obtain these results a combination of single-centre

(denoted as 1c) and two-centre (denoted as 2c) calculations were performed.

This is done to establish the internal consistency of both calculations. For all
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Figure 4.17: Cross sections for target excitation into the n = 3, 4, and 5 states in
Be4+ + H(2`m) collisions. The theoretical results are: present single-centre (1c) and
two-centre (2c) WP-CCC approaches and GTDSE and hCTMC methods by Jorge et al.
[141].

overlapping projectile energies, excellent agreement between the two sets of the

WP-CCC results is found. This suggests that, at least starting from 20 keV/u,

the target excitation cross sections for Be4+ + H(2`m) collisions can be obtained
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Figure 4.18: Cross sections for ionisation and electron loss in Be4+ + H(2`m) collisions.
The theoretical results are: present single-centre (1c) and two-centre (2c) WP-CCC
approaches and hCTMC method by Jorge et al. [141].

through purely single-centre calculations. Figure 4.17 also shows that the n = 3

states represent dominant excitation channels across the entire projectile energy

range. Furthermore, we see the excitation cross sections decrease significantly
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with increasing n. Also shown in Fig. 4.17 are the GTDSE and hCTMC results

for collisions with H(2s) by Jorge et al. [141], available at 20 and 100 keV/u. The

WP-CCC cross-sections are in excellent agreement with the GTDSE ones at 20

keV/u. This level of agreement is also found at 100 keV/u with the exception of

the dominant excitation cross-section into the n = 3 states. Here, we find the

WP-CCC results to be approximately 25% smaller than the GTDSE ones. The

reason for this disagreement is undetermined. We also find the WP-CCC results

to be in excellent agreement with the hCTMC ones for excitations into the n = 4

and n = 5 states. However, the hCTMC results for the n = 3 target excitation

cross section [141] (not shown) are significantly larger than the present ones.

Figure 4.18 shows the TICS, obtained using the two-centre WP-CCC method,

and total electron loss (TEL) cross sections, obtained using the single-centre WP-

CCC method, for Be4+ +H(2`m) collisions. For the H(2s) target we compare our

results with the hCTMC results by Jorge et al. [141]. For both H(2p0) and H(2p1)

targets the present WP-CCC calculations are the first available data for these

cross sections. As one-centre calculations cannot distinguish electron capture

from ionisation, the TEL cross section represents these two processes together.

However, for collisions with excited state H, we found that the TECS becomes

considerably smaller than the ionisation cross section above 100 keV/u. Therefore,

we conclude that the TEL cross section accurately represents the TICS above

100 keV/u. Clearly, this is not the case at lower projectile energies, where we see

considerable differences between the electron-loss and ionisation cross sections.

Note that the WP-CCC and hCTMC ionisation cross sections are in excellent

agreement with each other at all projectile energies where the hCTMC results

are available.

4.3 Ne10++H collisions

In this section we use the WP-CCC method to calculate integrated cross sections

for electron capture in Ne10+ collisions with H(1s). Cross sections for n- and
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n`-resolved EC are required for plasma modelling and, as with the other ions

considered thus far, very little experimental data is available. Therefore, accurate

theoretical results are essential. Furthermore, obtaining converged results for

more highly charged projectiles is significantly more difficult due to the large

number of reaction channels that play important roles in the collisional dynamics.

Therefore, successful application of the WP-CCC method to Ne10+ + H collisions

also acts as a proof-of-concept for less highly charged ions that have yet to be

considered, such as B5+ and N7+.

For this collision system we found that a very large number of states were

required to obtain convergence in the electron-capture cross sections. Therefore,

we used an asymmetric set of basis states allowing us to omit unnecessary states

from the target side, optimising the computations. For the electron-capture cross

sections we include on the target side nT
neg = 11− `T bound states and nT

pos = 10

continuum bins with `Tmax = 7. On the projectile side we used nP
neg = 15− `P and

nP
pos = 10 with `Pmax = 9. For the TICS calculations we used a basis containing

nT
neg = 7 − `T and nT

pos = 20 with `Tmax = 5 states on the target side. On the

projectile side we used nP
neg = 10− `P and nP

pos = 20 with `Pmax = 8. These bases

were sufficient for the present results to converge to within 3%.

The calculated total electron-capture cross section is shown in Fig. 4.19 along-

side experimental data and other theoretical results over an energy range of

1–1000 keV/u. In their analysis, Meyer et al. [118] estimated the relative un-

certainties in their experimental data taking repeated measurements and using

counting statistics. They used the larger of the two for each measurement and

with an estimated 90% confidence level, most points typically have a relative

uncertainty of ±8%–12%. The quadrature sum of the relative uncertainty with

the absolute systematic uncertainty of ±13.5% then yields the total uncertainty

which is close to 17% for most measurements. In general, our results are in

good agreement with the hCTMC Errea et al. [63], AOCC [128] and two-centre

atomic-orbital close-coupling (TC-AOCC) Leung and Kirchner [80] results over
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Figure 4.19: Total electron-capture cross section for Ne10+ + H(1s) collisions. Exper-
imental data are by Panov et al. [117] and Meyer et al. [118]. The theoretical results
are: present WP-CCC approach, hCTMC, mCTMC, and MOCC methods by Errea
et al. [63], TC-AOCC method by Liu et al. [132], CTMC method by Perez et al. [136]
and Maynard et al. [135], and AOCC method by Igenbergs [128].

the entire considered energy range and with the MOCC results [63] at the low

energies. From the discrepancy between the experimental and theoretical works

it is evident that there is some systematic error in the experiment or the theory

which is leading to a consistent under or over estimation of the cross section at the

lower energies. The fact that calculations from multiple theoretical approaches

yield similar results suggests that the experiment by Meyer et al. [118] might be

underestimating the cross section. A new set of experimental data could help

alleviate this discrepancy. Within the existing data there was a large discrepancy

between the hCTMC results by Errea et al. [63] and the older CTMC results at

projectile energies less than 100 keV/u. The AOCC calculations by Igenbergs

[128] and Liu et al. [132] agree with the hCTMC results and we find that our

results do the same. This is similar to the situation for Be4+ projectiles where

we saw that the hCTMC method generally provided more accurate results that

the older mCTMC approach.

In Fig. 4.20 we present the calculated TICS and compare to the existing

theoretical data. We find that our results better agree with the hCTMC ones

by Errea et al. [63] while slightly underestimating them. At the same time, the
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Figure 4.20: Total ionisation cross section for Ne10+ + H(1s) collisions. The theoretical
results are: present WP-CCC results, hCTMC, mCTMC, and spherical Bessel monocen-
tric expansion methods by Errea et al. [63], other (older) CTMC methods by Maynard
et al. [135], Olson and Salop [148], and Schultz and Krstic [149], and AOCC method
by Igenbergs [128]. Also shown is the DI component of the total two-centre WP-CCC
calculations.
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Figure 4.21: Partial n-resolved cross sections for electron capture in Ne10+ + H(1s)
collisions.

present results significantly overestimate the mCTMC results [63], older CTMC

results [135, 148, 149] and the AOCC calculations [128]. In addition to the CTMC

calculations, Errea et al. [63] also used a basis of spherical Bessel functions to per-

form single-centre close-coupling calculations. Above 200 keV/u, there is good

agreement between the Bessel and hCTMC calculations, but at low energies the

Bessel approach significantly overestimates the TICS. This is because the Bessel
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Figure 4.22: Partial 1s, 2` and 3` cross sections for electron capture in Ne10+ + H(1s)
collisions.

approach gives the electron-loss cross section, which includes EC and ionisation

processes. Thus the ionisation cross section from the Bessel approach is accurate

only at sufficiently high energies, where ionisation dominates the total electron

loss cross section. In their AOCC calculations, Igenbergs [128] included pseu-

dostates representing a united atom and placed them on the target centre. This

means that they do not account for the EC into continuum component of the

TICS. This explains why their TICS is consistently lower than ours over the

entire energy range. To illustrate this, in Fig. 4.20 we show the DI component of

the TICS result from our calculations. Indeed, our DI cross section better agrees

with the AOCC calculations by Igenbergs [128]. However, agreement between

the present DI results and the mCTMC results is more difficult to explain. The

agreement is most likely coincidental since the present close-coupling method

and CTMC approach are fundamentally very different. The present approach

can be concluded to provide the most accurate TICS available for Ne10+ + H(1s)

collisions. The classical calculations disagree with one another and previously

available quantum results either over or underestimate the TICS because, unlike

theWP-CCCmethod, they do not account for both the DI and ECC contributions

to the total ionisation cross section.

Partial n-resolved electron-capture cross sections have also been calculated
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Figure 4.23: Partial 4` cross sections for electron capture in Ne10+ + H(1s) collisions.
The theoretical results are: present WP-CCC approach, TC-AOCC method by Liu et al.
[132], and AOCC method by Igenbergs [128]. The key in the upper-left panel applies
to all panels.

for capture into ground and excited states of the Ne9+ ion, up to n = 10. These

are shown in Fig. 4.21 as functions of the projectile energy. We find n = 6 to

be the most probable shell for EC at low and intermediate projectile energies.

This is in agreement with the hCTMC Errea et al. [63], AOCC [128] and TC-

AOCC [132] calculations at these impact energies. The older CTMC results,

however, predict n = 5 to be the dominant state for capture by the projectile.

There is no experimental data to shed light on the situation. The most recent

calculations predict n = 6 to be the dominant state, this suggests that the older

CTMC results either overestimate the n = 5 cross section or underestimate the

n = 6 cross sections. Regardless, both results seem to agree with the predictions

by Olson [147], which states that at low collision energies, in collisions of highly
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charged ions with atomic target, the dominant state is given by

nf = nf

(
ZP

ZT

)3/4

, (4.1)

where nf and ni are the captured electron’s final and initial state quantum num-

bers, respectively. In our case the formula gives nf = 5.6, suggesting the most

likely n-state for capture is either 5 or 6. We find that at projectile energies less

than 100 keV/u, for n ≥ 6 the cross section falls systematically as n increases.
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Figure 4.24: Partial 5` cross sections for electron capture in Ne10+ + H(1s) collisions.
The theoretical results are: present WP-CCC approach, TC-AOCC method by Liu et al.
[132], CTMC method by Schultz and Krstic [149], and AOCC method by Igenbergs
[128]. The key in the upper-left panel applies to all panels.
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Figure 4.22 shows our results for electron capture into the 1s, 2`, and 3`

states of the Ne10+ projectile. There are no other results available for the these

cross sections. It is very challenging to calculate these cross sections accurately

due to their small magnitudes at low energies. Nevertheless, their significance

grows with energy with the cross section for EC into the 1s state ultimately

becoming dominant in the MeV/u region. There are other calculations available

for the n = 4 to n = 8 shell states. We present our results for capture into

the 4` and 5` states of Ne9+ alongside these other calculations in Fig. 4.23 and

Fig. 4.24, respectively. We find very good agreement with the AOCC calculations

[128, 132] for projectile energies above 2 keV/u. The 5` partial cross sections are

also compared to the CTMC calculations by Schultz and Krstic [149], with which

we find good agreement at high energies but there is slight disagreement near 10

keV/u.

In Figs. 4.25–4.27 we present the partial 6`, 7`, and 8` cross sections, respec-

tively. As we saw in Fig. 4.21, below 100 keV/u the dominant contribution to the

TECS comes from the n = 6 shell. Generally speaking, we find good agreement

with the AOCC calculations [128, 132] for all three sets of partial cross sections

over the entire energy range considered in this work. The only discrepancy we

find is for capture into the s states. At energies below 5 keV/u, our results are

significantly larger than the corresponding results from the TC-AOCC calcula-

tions by Liu et al. [132]. However, we find excellent agreement with the older

AOCC calculations by Igenbergs [128].

We also compare our results to the CTMC calculations by Schultz and Krstic

[149] available for the n = 6 and n = 7 shell states. We find good agreement at

high energies, however, below 50 keV/u, the CTMC method appears to predict

significantly smaller cross sections for capture into all 6` and 7` states except

for the 6g and 6h states. Figure 4.25 also shows the 6` partial cross sections

obtained using the one-electron diatomic molecular (OEDM) orbitals method by

Salin [150]. These calculations seem to consistently overestimate the cross section
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Figure 4.25: Partial 6` cross sections for electron capture in Ne10+ + H(1s) collisions.
The theoretical results are: present WP-CCC approach, TC-AOCC method by Liu
et al. [132], CTMC method by Schultz and Krstic [149], OEDM method by Salin [150],
and AOCC method by Igenbergs [128]. The key in the upper-left panel applies to all
panels.

in comparison with our results and all other theoretical calculations for ` = 0,

1, and 2. However, agreement is much better for ` = 3, 4, and 5. Note that at

low energies the OEDM method is believed to be reliable. Our 6` cross sections

indeed agree with the OEDM ones at 1 keV/u. The TC-AOCC results by Liu

et al. [132] for the 6s cross section does not tend towards the molecular result at

low energies. This suggests that our 6s cross section could be more accurate. A

similar argument can be applied to the cross sections for capture into the 7s, 8s
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Figure 4.26: Partial 7` cross sections for electron capture in Ne10+ + H(1s) collisions.
The theoretical results are: present WP-CCC approach, TC-AOCC method by Liu et al.
[132], CTMC method by Schultz and Krstic [149], and AOCC method by Igenbergs
[128]. The key in the upper-left panel applies to all panels.
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Figure 4.27: Partial 8` cross sections for electron capture in Ne10+ + H(1s) collisions.
The theoretical results are: present WP-CCC approach, TC-AOCC method by Liu et al.
[132], and AOCC method by Igenbergs [128]. The key in the upper-left panel applies
to all panels.
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Figure 4.28: Partial 9` cross sections for electron capture in Ne10+ + H(1s) collisions.

and 8p states, where we see disagreement with the TC-AOCC results.

The 9` and 10` cross sections are shown in Figs. 4.28 and 4.29. Interestingly,

we observe pronounced oscillations in all the 9` and 10` partial cross sections

at energies below 10 keV/u. In fact, such oscillations start to appear in the 8`

partial cross sections as well. We note that these oscillations appear only in

non-resonant transitions. This is similar to the structures observed in our results

for collisions of Li3+ and Be4+ projectiles with H(1s). We find that within each

shell, the relative contribution of the n` cross section grows with increasing ` at

energies below 100 keV/u. At the same time, we also find that the contribution

from the largest allowed ` drops significantly at energies above 100 keV/u.



Chapter 4. Multiply charged ion scattering on atomic hydrogen 105

100 101 102 103

10−4

10−3

10−2

10−1

100
10s
10p
10d
10f
10g
10h
10i
10j
10k
10m

electron capture

Projectile energy (keV/u)

C
ro

ss
se

ct
io

n
(1
0−

1
6

cm
2
)

Figure 4.29: Partial 10` cross sections for electron capture in Ne10+ + H(1s) collisions.

4.4 Chapter summary

In this chapter we applied the WP-CCC approach to calculate integrated cross

sections for different processes taking place in collisions of the Li3+, Be4+, and

Ne10+ ions with atomic hydrogen. For the total cross sections for the lithium and

neon ion projectiles we find good agreement with the available experimental data.

However, for the Be4+ projectiles there are no experimental data to compare to.

Furthermore, there are no experimental measurements of the n- and n`-partial

cross sections for electron capture. Previous calculations are only available over

limited energy ranges or for certain processes. We presented calculations for all

significant processes over a wide energy range where accurate data are essential

for plasma modelling, all within the same theoretical framework and subject to

the unitary principle. The results converged within several percent over the entire

energy range considered. For Be4+ + H(2`m) collisions, we also performed purely

single-centre calculations to check for internal consistency in our results. Overall,

we find that the present results agree with the hCTMC calculations in most

cases, but differences are observed for the older microcanonical ensemble-based

CTMC calculations. In some cases, significant differences with existing AOCC

calculations was found, possibly due to numerical inaccuracies in the older AOCC
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results. At low energies, the WP-CCC method generally agrees well with the

MOCC calculations while at high energies we find agreement with perturbative

methods. We also find that our results agree very well with the sophisticated

GTDSE and LTDSE methods, where available.

We conclude that the data in this chapter represent the most comprehensive

set of state-selective cross sections for the considered collision systems. The data

presented in this chapter will be available in due course through the International

Atomic Energy Agency (IAEA) repositories within the framework of the IAEA

Coordinated Research Project (CRP) on Data for Atomic Processes of Neutral

Beams in Fusion Plasma [151].

The results presented in this chapter were performed on massively parallel

GPU-based supercomputers using significant computational resources. Obtaining

converged results for the presently considered n`-resolved cross sections within

the two-centre close-coupling framework would not have been possible with CPU-

based computing.



Chapter 5

Proton scattering on atomic

hydrogen∗

The three-body p+H collision system is the simplest ion-atom scattering problem

where rearrangement of particles is possible. As such, it provides a useful testing

ground for theoretical methods and has been extensively studied. Calculating the

angular differential cross section for elastic scattering, target excitation, or elec-

tron capture presents a more difficult challenge than the corresponding integrated

cross section. Differential cross sections for ionisation are further complicated by

the need to accurately represent the state of the electron in the continuum of the

target and projectile nuclei. As a result, very few calculations of the SDCS for

ionisation in p + H collisions are available and those that are, do not agree with

the experimental data in all kinematic regions.

In this chapter the WP-CCC method is applied to calculate all types of singly

differential cross sections for p+H collisions. We consider projectile energies from

20 to 125 keV, where experimental data are available. This is a challenging energy

region for theoretical methods where coupling between all reaction channels plays

an important role in the collision dynamics.
∗ This chapter is adapted from work published by the candidate [152]. The publishers

(the American Physical Society) provide the author with the right to use the articles, or parts
thereof, in a thesis or dissertation without requesting permission.
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5.1 Angular differential cross sections for p+H

collisions

Angular differential cross sections for elastic scattering, excitation into the n = 2

states and electron capture (summed over all included projectile bound states)

were calculated from the transition amplitudes for the corresponding states for

each of these processes. It was found that a basis containing 10− ` bound states

and 20 bin states (for each orbital angular momentum `), on both centres, with

the maximum orbital angular momentum `max = 3 was sufficient to obtain con-

vergence in the differential cross sections at all three energies considered. The

maximum ionisation-state energy was set by momenta κmax = 5.5 a.u., which was

verified to be sufficient for all the angular differential cross sections considered in

this work to converge. The trajectory of the projectile is discretised using 1200

points from zmin = −300 to zmax = 300 a.u. In calculating the angular differential

cross section (DCS) over the range from θmin = 0 mrad to θmax = 3.5 mrad, it was

found that including additional impact parameters beyond bmax = 14 a.u. made

no appreciable difference to the SDCS. While 64 impact-parameter points were

sufficient for most results, 128 were required to remove unphysical oscillations

in the differential cross section for n = 2 excitation at 125 keV. To check the

robustness of our results we numerically integrated the DCS and compared the

resulting values with the elastic, excitation, and electron-capture cross sections

obtained directly from the expansion coefficients. Surprisingly, to obtain 99%

agreement it was necessary to include scattering angles up to 20 mrad in the

integration.

Figure. 5.1 shows the WP-CCC results for the angular DCS for 25 keV p + H

collisions. The present results for elastic scattering agree well with the experi-

mental data by Rille et al. [153]. The multichannel optical-model (MOM) cal-

culations by Potvliege et al. [82] show a similar level of agreement with the ex-

periment. There is significant deviation between the various available theoretical
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Figure 5.1: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, excitation into the n = 2 target states, and electron capture summed over
all projectile states for 25 keV p + H collisions. Experimental data are by Rille et al.
[153], Park et al. [154], and Martin et al. [155]. The theoretical results are: present
WP-CCC approach, OP method by Henne et al. [81], MOM by Potvliege et al. [82],
Eikonal method by Rodriguez [156], Glauber approximation by Dewangan and Eichler
[48], PW approach by Wong et al. [58], Faddeev method by Alt et al. [157], and AOCC
method by Kadyrov et al. [77].

approaches. In particular, the elastic-scattering cross section by Wong et al.

[58], obtained in a partial-wave (PW) approach using only the ground state of
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H, substantially overestimates the experimental data above 1 mrad. Results for

excitation into the n = 2 states of the target atom agree well with experiment,

especially in the forward direction. At larger scattering angles the WP-CCC

calculations closely follow the results from Ref. [81]. Henne et al. [81] used a

doorway approximation within the optical potential (OP) method to calculate

differential excitation into the n = 2 states. Their results tend to underestimate

the experiment [154] near the forward direction. This should lead to signifi-

cant underestimation of the corresponding integrated cross section. The present

results for electron capture generally agree well with experiment. However, the

WP-CCC differential cross section is noticeably smaller for scattering angles from

1.5 to 2 mrad. The electron capture results agree best with those calculated using

a three-dimensional integral equation approach to the AOCC method [77] at 25

keV.

In Fig. 5.2 we present our results at 60 keV. Here there is generally good agree-

ment between the various theoretical results for elastic scattering. The WP-CCC

calculations agree well with the experimental data and again most closely follow

the MOM calculations of Potvliege et al. [82]. However, there is disagreement

with the results of the IPFA by Alt et al. [157] and the PW approach by Wong

et al. [58]. The Faddeev approach deviates from other calculations at scattering

angles below 0.5 mrad possibly due to insufficient number of channels included in

Ref. [157]. For n = 2 excitation the situation is the same as at 20 keV, although

the WP-CCC results are slightly higher than the OP calculations by Henne et al.

[81] at the larger scattering angles. The WP-CCC calculations of the angular

differential cross sections for electron capture generally agree well with the ex-

perimental data by Martin et al. [155]. We again find that the electron capture

results agree best with those by [77]. A recent extension of the BCIS-3B method

to include capture into many bound states by Milojević et al. [158] agrees well

with our results below 1 mrad. However, between 1 and 1.5 mrad it is smaller

and beyond 2 mrad it is larger than the other theoretical results.
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Figure 5.2: Same as Fig. 5.1 but for 60 keV protons. Also shown are the results from
the CB2 method by Belkić [50] and BCIS-3B method by Milojević et al. [158].

For 125 keV collisions, there is no experimental or theoretical data available for

the elastic-scattering differential cross section. Therefore, in Fig. 5.3 we compare

our calculations with those obtained using the FBA. Differences between the WP-

CCC and FBA results, especially in the forward direction, clearly demonstrate

the importance of including the contribution from the many interacting reaction
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Figure 5.3: Same as Fig. 5.2 but for 125 keV protons. Also shown are the results from
the Dodd-Greider approach by Lazur et al. [159] and the present FBA results for elastic
scattering.

channels. For excitation into the n = 2 states the present results overestimate

the experimental data of Park et al. [154] in the forward direction, but generally

agree well at larger scattering angles. For electron capture, we find excellent

agreement with the experimental data for small scattering angles. However, the

WP-CCC calculations underestimate the experiment from 1.5 to 2 mrad. A
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recently developed approach based on the first iteration of the Dodd-Greider

equations by Lazur et al. [159] appears to perform well for electron capture at

125 keV; however, no results are available at 25 and 60 keV. Also, it is unclear if

the approach can provide the cross sections for direct scattering and ionisation.

The BCIS-3B calculations by Milojević et al. [158] agree well with our results

below 1 mrad. From 1 to 2 mrad, the BCIS-3B results are closer to experiment

than the WP-CCC results but towards larger angles they converge.

Note that all the theoretical calculations mentioned above, except the present

WP-CCC ones and the recent BCIS-3B calculations, are for electron capture

into the ground state of hydrogen. These are scaled up by a factor of 1.202

to effectively compensate for the missing excited states. We find that in our

calculations the ground-state of the projectile atom contributes 71% of the total

electron capture cross section, indicating the inclusion of additional negative-

energy exchange channels has a significant effect on the results.

5.2 Singly differential cross sections for

ionisation in p+H collisions

For ionisation calculations, the maximum momentum, κmax, of the included pseu-

dostates was 5.0 a.u. for projectile energies of 20, 48, and 67 keV. For projectile

energies of 95 and 114 keV, κmax was set to 6.6 and 7.6 a.u., respectively. The

present results were checked by integrating the SDCS and comparing the resulting

TICS with that obtained directly from the expansion coefficients. In all cases, we

find 99% or better agreement. A basis of 5 − ` bound states and 30 continuum

pseudostates, on both centres, with `max = 4 was found to be sufficient to obtain

convergence in the results at 25 keV. For higher projectile energies, the same basis

as used for the angular DCS in Sect. 5.1 was sufficient.

In Figs. 5.4–5.8 we show our calculations for the singly differential cross sec-

tions for ionisation as functions of the energy and angle of the ejected electron
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Figure 5.4: Singly differential cross sections (in the laboratory frame) for ionisation in
20 keV p + H collisions as functions of the electron energy (left) and ejection angle
(right). Experimental data are by Kerby III et al. [160]. The theoretical results are:
present WP-CCC approach, CTMC and CDW-EIS methods by Kerby III et al. [160]
and FHBS method by Fu [161] and Reading et al. [162]. The DI and ECC components
of the WP-CCC cross sections are shown in the lower panels.

at 20, 48, 67, 95, and 114 keV, respectively. The upper-left panel in each figure

shows the ionisation cross section differential in the energy of the electron and the

upper-right panel shows the ionisation cross section differential in the emission an-

gle of the electron. The present results are compared with the experimental data

by Kerby III et al. [160] as well as CTMC and CDW-EIS calculations by Kerby III

et al. [160] and results obtained using a finite Hilbert basis set (FHBS) method

by Fu [161], Fu et al. [163], and Reading et al. [162]. Experimental uncertainties

are not shown because it is difficult to gauge them from Ref. [160]. However,

the experimental data on the singly differential cross sections were obtained by

numerically integrating the experimental doubly differential cross section over

electron angle or electron energy [160]. As mentioned in the associated work [12],

the uncertainties in the measured doubly differential cross sections were 26% at

1.5 eV, decreasing to 22% at 10 eV, but then increasing to 50% or more at the
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highest electron energies. Consequently, the uncertainties in the SDCS data are

expected to be even larger.
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Figure 5.5: Singly differential cross sections (in the laboratory frame) for ionisation in
48 keV p + H collisions as functions of the electron energy (left) and ejection angle
(right). Experimental data are by Kerby III et al. [160]. The theoretical results are:
present WP-CCC approach and FHBS method by Fu et al. [163]. The DI and ECC
components of the WP-CCC cross sections are shown in the lower panels.

For 20 keV projectiles, the results in Fig. 5.4 show improvement over previ-

ously available calculations, especially for the SDCS as a function of the angle of

the electron. The FHBS calculations for the energy-differential ionisation cross

section by Fu [161] are only available for small ejected electron energies where

they agree well with the experimental results. However, they start deviating from

the experiment rising too quickly above 20 eV. The calculations of the SDCS

differential in the angle of the electron by Reading et al. [162] agree well with

the experiment and our results for the ejection angles from 20 to 90◦. However,

beyond 90◦ the FHBS calculations rise too quickly suggesting they converged to

an incorrect result. For the SDCS as a function of the electron energy we find

reasonable agreement with the CDW-EIS calculations, but the WP-CCC results

tend to slightly overestimate the experiment as energy increases. The CTMC
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results underestimate the experimental data up until 70 eV, after which they

overestimate it. In contrast, the WP-CCC results are the only calculations that

accurately reproduce the experimentally measured cross section for the SDCS as

a function of the electron angle at 20 keV.
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Figure 5.6: Singly differential cross sections (in the laboratory frame) for ionisation in 67
keV p + H collisions as functions of the electron energy (left) and ejection angle (right).
Experimental data are by Kerby III et al. [160]. The theoretical results are: present
WP-CCC approach and CTMC and CDW-EIS methods by Kerby III et al. [160]. The
DI and ECC components of the WP-CCC cross sections are shown in the lower panels.

Figure 5.5 shows our results at 48 keV. One can see a small bump in the WP-

CCC results at the 20 and 48 keV incident energies at small ejection energies. This

occurs when the contribution from DI drops sharply as the ejection energy rises

while the contribution from ECC increases. This feature washes out as collision

energy goes up and is barely noticeable already at 67 keV. The FHBS calculations

for the energy-differential ionisation cross section by Fu et al. [163] again agree

with the experiment for very small emission energies, but begin to deviate above

50 eV. There are no other calculations available at this incident energy. The WP-

CCC results agree very well with the experimental data for SDCS as a function

of energy for small emission energies where DI is the primary mechanism leading
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to ionisation. However, when the ECC component dominates we consistently

overestimate the experiment. For the SDCS differential in the emission angle of

the electron, we find that our results agree reasonably well with the experimen-

tal data, although slightly overestimate it. Unlike for 20 keV protons, here the

WP-CCC calculation is somewhat larger than the first experimental point which

doesn’t seem to follow the trend of the other data. We also observe a small bump

at 140◦ which is not reflected in the experiment.
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Figure 5.7: Singly differential cross sections (in the laboratory frame) for ionisation in
95 keV p + H collisions as functions of the electron energy (left) and ejection angle
(right). Experimental data are by Kerby III et al. [160]. The theoretical results are:
present WP-CCC approach and DI and ECC components (lower panels).

At 67 keV, the results shown in Fig. 5.6 agree closely with the CDW-EIS

calculations by Kerby III et al. [160] for the SDCS as a function of the electron

energy. We see that all three theoretical methods significantly overestimate the

final data point near 160 eV. The reason for this is unknown. For the SDCS as

a function of the electron angle, our results agree closely with the experimental

data at all angles. In contrast, the CTMC results only agree at small angles and

the CDW-EIS calculations deviate from the experiment when θe < 50◦.
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Figure 5.7 shows our results for 95 keV projectiles. We find very good agree-

ment with the experiment for both types of SDCS. However, the last experimental

point for ejection of 300 eV electrons in the upper-left panel is larger than the

WP-CCC result and does not follow the trend of the other experimental data.
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Figure 5.8: Singly differential cross sections (in the laboratory frame) for ionisation in
114 keV p + H collisions as functions of the electron energy (left) and ejection angle
(right). Experimental data are by Kerby III et al. [160]. The theoretical results are:
present WP-CCC approach and FHBS method by Fu et al. [163]. The DI and ECC
components of the WP-CCC cross sections are shown in the lower panels.

In Fig. 5.8 we show results at 114 keV. We again find very good agreement

with the experimental data by Kerby III et al. [160]. The FHBS calculations

by Fu et al. [163] fall off steeply and underestimate all other theoretical methods

as well as the experiment, except at very small emission energies. At this energy

the CTMC and CDW-EIS results by Kerby III et al. [160] agree very well with the

experimental data for the SDCS differential in the energy of the electron. How-

ever, both methods still show significant discrepancies for the SDCS differential

in the ejection angle. The WP-CCC calculation is the only result available that

is capable of accurately describing the experimental data for this type of SDCS.

In the lower panels of Figs. 5.4–5.8 we show the DI and ECC contributions to
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the total WP-CCC SDCS. Overall we find that SDCS in ejected electron energy is

dominated by the DI component when the electron is slow indicating the electron

remains close to the target nucleus. However, when the ejected electron is more

energetic, the SDCS is dominated by ECC suggesting that the electron travels

closer to the scattered projectile. For the SDCS as a function of ejection angle

we find that ECC gives a dominant contribution when the electron is ejected

in the forward direction indicating the electron travels with the projectile. As

the ejection angle grows DI becomes dominant. Furthermore, the significance of

ECC drops as the collision energy goes up. This indicates that at higher projectile

energies the likelihood of charge-exchange processes decreases.

5.3 Chapter summary

The two-centre wave-packet convergent close-coupling approach was applied to

calculate singly differential cross sections for electron capture, direct scattering,

and ionisation in proton-hydrogen collisions at intermediate projectile energies.

Convergent results obtained for the angular differential cross sections of elastic

scattering, excitation, and electron capture agree well with experiment. The

convergent singly differential ionisation cross sections in the ejected electron angle

and in the ejected electron energy also agree well with available experiment.

The present results are the first calculations of all types of angular and singly

differential cross sections for p+H collisions performed within a single theoretical

framework. Furthermore, we conclude that the WP-CCC method is thus far the

only approach capable of consistently reproducing the experimental data for the

singly differential cross sections considered in this chapter.



Chapter 6

Single-centre approach to

rearrangement collisions∗

In this chapter we present a simpler alternative to the full two-centre WP-CCC

method that is capable of determining integrated cross sections for electron cap-

ture using a single-centre expansion of the total scattering wave function. The

method is applied to p + H collisions and compared with the results obtained

from the two-centre WP-CCC method. Having established the robustness of the

present approach, we then apply the method to proton scattering on lithium

atoms.

6.1 Electron-capture probabilities

We insert a single-centre expansion of the total scattering wave function (see

e.g. the first set of terms in Eq. (3.7)) into the definition of the electron-capture

T -matrix element given by Eq. (3.114), resulting in

TEC
fi (qf , qi) =

∫
dσT

∞∑
α=1

Fα(σT)

∫
drP ei(qα·σT−qf ·σP)ψP∗

f (rP)V Pψ
T
α (rT). (6.1)

∗ This chapter is adapted from work published by the candidate [164]. The publishers (IOP
Publishing) provide the author with the right to use the articles, or parts thereof, in a thesis or
dissertation without requesting permission.
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It can be shown that (see App. A for details),1

qα · σT − qf · σP = p‖αz + p⊥α · b− v · rP

= (εPf − εTα)t− v2t

2
+ q⊥P · b− v · rP, (6.2)

where εPf is the energy of the final state in the rearrangement channel. With this,

and writing F (σT) ≈ F (R), we can express Eq. (6.1) as

TEC
fi (qf , qi) =

∫
dR

∞∑
α=1

Fα(R)e−i
v2t
2 eiq

⊥
P ·b

×
∫

drP e−iv·rPψP∗
f (rP)V Pψ

T
α (rT)ei(ε

P
f−εTα)t. (6.3)

Then, using dR = v db dt, we obtain

TEC
fi (qf , qi) = v

∫
db

∫
dt

∞∑
α=1

Fα(t, b)e−i
v2t
2 eiq

⊥
P ·b

×
∫

drP e−iv·rPψP∗
f (rP)V Pψ

T
α (rT)ei(ε

P
f−εTα)t. (6.4)

We now define the electron-capture matrix element,

Cfα(t, b) ≡ ei(ε
P
f−εTα)te−i

v2t
2

∫
drP e−iv·rPψP∗

f (rP)V Pψ
T
α (rT). (6.5)

With this, Eq. (6.4) can be written as

TEC
fi (qf , qi) = v

∫
db

∫ ∞
−∞

dt
∞∑
α=1

Fα(t, b)eiq
⊥
P ·bCfα(t, b)

≡ v

∫
db eiq

⊥
P ·bAfi(b), (6.6)

1Note that the final channel belongs the basis of projectile-atom pseudostates, i.e. f = β′,
and p⊥α = −q⊥β′ = q⊥P .
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where

Afi(b) ≡
∫ ∞
−∞

dt
∞∑
α=1

Fα(t, b)Cfα(t, b). (6.7)

Comparing Eq. (6.7) and Eq. (3.120) we see that Afi(b) is a probability ampli-

tude for electron capture. Therefore, using a single-centre expansion of the total

scattering equation, we can calculate the integrated cross section for electron

capture by inserting Eq. (6.7) into Eq. (3.124). The matrix element in Eq. (6.5)

is evaluated in the same was as the overlap matrix elements in Sect. 3.3. In

the single-centre approach, the sum of the partial cross sections for excitation

into all positive-energy target pseudostates included in the basis yields the total

electron-loss cross section,

σTEL =
NT∑

α=NT
b +1

σDS
αi . (6.8)

The total ionisation cross section can be found by subtracting the total electron-

capture cross section from the total electron-loss cross section.

6.2 Hartree-Fock method for lithium structure

In this section we develop a self-consistent-field Hartree-Fock method for con-

structing basis states suitable for single-centre close-coupling calculations. The

Hamiltonian of the lithium atom is written as

HLi = −1

2
∇2
rT

+ VLi(rT), (6.9)

where rT is the position of the active electron relative to the target nucleus,

and VLi(rT) is the interaction of the active electron with the Li+(1s2) core. It is
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written as

VLi(rT) = Vst(rT) + Vex(rT), (6.10)

where the static potential of the Li(1s2) core can be written as

Vst(rT) = − 3

rT
+ 2

∫
dx
|ψc(x)|2
|rT − x|

, (6.11)

with ψc(x) being the state of the core which is generated by performing the self-

consistent-field Hartree-Fock calculations [165]. This potential has the following

properties,

lim
rT→0

Vst(rT) = − 3

rT
, (6.12)

and

lim
rT→∞

Vst(rT) = − 1

rT
. (6.13)

The limits in Eqs. (6.12) and (6.13) reflect the screening of the Li nucleus by the

1s2 electrons. The part of the potential representing exchange between the active

electron and the core electrons, Vex(rT), is taken into account in the framework

of the equivalent local-exchange approximation, i.e.

Vex(rT) =
1

2

(
Eex + Vst(rT)−

√
(Eex + Vst(rT))2 + ρ(rT)

)
, (6.14)

where,

ρ(rT) =

∫
dr̂T |ψc|2, (6.15)

is the electron density distribution in the core, and Eex is a potential parame-

ter [166].
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The lithium target pseudostates, ψα(rT), are obtained by diagonalising the

target Hamiltonian, HLi, using a square-integrable orthogonal Laguerre basis of

the form

ξk`(rT) =

(
2λ`(k − 1)!

(2`+ 1 + k)!

)
(2λ`rT)`+1e−λ`rTL2`+2

k−1 (2λ`rT), (6.16)

where L2`+2
k−1 (x) is the associated Laguerre polynomial and n ranges from 1 to the

basis size N` for each ` = 0, 1, . . . , `max. The complete set of pseudostates contains

both negative- and positive-energy states. Negative-energy states correspond to

the bound states of the atomic target, while positive-energy states provide a dis-

cretisation of the continuum. The Laguerre fall-off parameter, λ`, was optimised

for each target energy level to ensure alignment with experimentally verified elec-

tron binding energies. The resultant energies associated with the pseudostates

are shown in Tbl. 6.1. We find that agreement with the experimentally measured

values is consistently better than 99%.

Table 6.1: Comparison of calculated pseudostate energies to experimentally de-
termined binding energies of the valence electron for lithium.

Subshell Binding energy (eV) Pseudostate energy (eV) Variance (%)

2s −5.392 −5.404 −0.23
2p −3.544 −3.559 −0.42
3s −2.019 −2.021 −0.14
3p −1.557 −1.562 −0.30
3d −1.513 −1.513 −0.01
4s −1.051 −1.052 −0.10
4p −0.870 −0.872 −0.23

6.3 Calculations of integrated cross sections

In this section we apply the single-centre approach to electron-capture processes

described in Sect. 6.1. First, we test the approach on the well-studied p + H

collision system. Then, we apply it to p + Li collisions.
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6.3.1 Proton scattering on atomic hydrogen

The three-body p+H collision system represents the simplest ion-atom scattering

problem where electron capture processes are significant. This makes it ideal to

serve as a testing ground for the present method. Furthermore, we can readily

compare the results to those obtained using the two-centre WP-CCC method

which provide a reliable foundation to test the single-centre method within the

same theoretical framework.
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Figure 6.1: Convergence of the integrated cross sections for ionisation, total electron
capture, and electron loss with respect to the maximum angular momentum quantum
number of included states for 50 keV p + H collisions. The results are obtained using
the single-centre WP-CCC approach to rearrangement.

The number of both negative- and positive-energy target-centred pseudostates

used in the expansion of the total scattering wave function has a strong influence

on the final results. The fundamental idea behind the convergent close-coupling

approach is to increase the basis size until the results of interest converge within a

pre-determined tolerance. This ensures that the internal structure of the relevant

collision species is described sufficiently accurately. In Fig. 6.1 we investigate the

convergence of the of the results with respect to the maximum included angular

momentum `Tmax at a representative incident energy of 50 keV. Using nT
neg =

10− `T bound target states for each included angular momentum and nT
pos = 50

continuum bins, we systematically increase the value of `Tmax. Note that the
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bound states include angular momenta values up to `T = 9 due to the restriction

on atomic eigenstates that `T ≤ nT
neg−1. However, for wave-packet pseudostates,

`T is under no such restriction and for each bin there are pseudostates for all

values of `T from 0 to `Tmax. Altogether, the largest basis used contained 12760

basis states. The projectile-atom basis contained eigenstates with the principal

quantum number up to nP
neg = 5−`P for each angular momentum up to `Pmax = 4.

The contribution of partial electron-capture cross sections into states with nP > 5

was found to be negligible.

The convergence of all displayed cross sections in Fig. 6.1 is remarkable. One

can also see that for `Tmax = 0 the result for ionisation is negative which is unphys-

ical. This is due to the fact that the total ionisation cross section in the present

approach is calculated by subtracting the total electron-capture cross section from

the total electron-loss cross section. Therefore, the TICS should be calculated

only when a sufficient number of angular momentum states are included and a

desirable convergence in the total electron-capture and electron-loss cross sections

is achieved.

Table 6.2: Convergence with respect to the number of continuum bins of the
integrated cross sections for electron-loss processes in 50 keV p + H collisions
using the single-centre WP-CCC approach to rearrangement. Cross sections are
presented in units of 10−16 cm2.

nT
pos electron loss electron capture ionisation

10 2.63 1.27 1.36
20 2.69 1.26 1.43
30 2.70 1.17 1.53
40 2.70 1.00 1.70
48 2.71 0.966 1.74
49 2.71 0.951 1.76
50 2.71 0.951 1.76

Next we demonstrate that the number of bin states representing the contin-

uum, nT
pos, is sufficiently large to ensure convergence of the total electron-loss,

electron-capture and ionisation cross sections at `Tmax = 15 and nT
neg = 10 − `T.

Tbl. 6.2 displays a typical example of nT
pos-convergence at a projectile energy of
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50 keV. One can see from the table, all the considered cross sections converge well

as the number of continuum discretisation bins increases.

Having demonstrated the capability of the presently developed approach to

yield convergent results not only for the processes associated with the target, but

also for electron capture by the projectile, next we compare one-centre results for

all these processes with the corresponding results obtained with the symmetric

two-centre WP-CCC approach [99] which explicitly includes identical expansion

bases on the target and projectile centres. The two-centre WP-CCC calculations

were performed with a total number of 3350 states (1675 on each centre), where

for each angular momentum ` ∈ [0, 5], nneg = 10− ` bound states and npos = 40

continuum wave-packet pseudostates were used. For the purpose of illustration we

compare the total cross sections for electron capture, electron loss and ionisation,

as well as several state-resolved cross sections, obtained using the one-centre (1c)

and two-centre (2c) approaches.
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Figure 6.2: Total electron-capture cross section for p + H collisions. Experimental
results are by Wittkower et al. [167], McClure [168], Bayfield [169], and Hvelplund
and Andersen [170]. The theoretical results are: two-centre WP-CCC approach and
single-centre WP-CCC approach to rearrangement.

In Fig. 6.2 we show the energy dependence of the total electron-capture cross

section. The one-centre WP-CCC results are compared with the experimental

data by McClure [168], Bayfield [169], Wittkower et al. [167], and the results

of the two-centre WP-CCC approach. One can see the present results are in
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perfect agreement with the calculations of the more sophisticated approach and

the experimental measurements across all considered impact energies.
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Figure 6.3: Total electron-loss cross section for p + H collisions. The theoretical results
are: two-centre WP-CCC approach and single-centre WP-CCC approach to rearrange-
ment.

Figure 6.3 shows the energy dependence of the total electron-loss cross section.

In the one-centre WP-CCC approach this cross section is obtained directly by

using the time-dependent coefficients representing the excitation of the target

electron into the continuum. Unlike the situation with electron-capture cross

sections, to obtain the total electron-loss cross section no additional calculations

are required after the scattering equations are solved. Here again we can see

perfect agreement between the two approaches within the whole energy range

considered.

Figure. 6.4 compares the total ionisation cross section obtained from the two

WP-CCC approaches with the experimental measurements of Shah and Gilbody

[171], Shah et al. [172], and Kerby III et al. [160]. In both calculations this is the

most sensitive quantity with respect to the underlying expansion basis and deter-

mines the overall accuracy. In the one-centre approach we find the lowest energy

region to be the most difficult to deal with. This is because at these energies

the total electron-loss and electron-capture cross sections are comparable and an

order of magnitude larger than the ionisation cross section, defined as the dif-
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Figure 6.4: Total ionisation cross section for p + H collisions. Experimental results are
by Shah and Gilbody [171], Shah et al. [172], and Kerby III et al. [160]. The theoretical
results are: two-centre WP-CCC approach and single-centre WP-CCC approach to
rearrangement.

ference between the two. Nevertheless, excellent agreement between the present

one-centre and two-centre results has been obtained. There is some disagreement

between theory and experiment, and between experiments, at intermediate col-

lision energies. It has been discussed elsewhere, see, e.g. Refs. [173–176]. The

strength of the CCC formalism is that once convergence is reached, it should be

to the correct result.

Next, to demonstrate the capability of the one-centre method to produce

reliable results also for the state-resolved integrated cross sections, we present in

Fig. 6.5 the 2s and 2p (summed over magnetic quantum number m) excitation

and electron-capture cross sections for p + H(1s) collisions as a function of the

impact energy. For all displayed excitation and electron-capture transitions ex-

cellent agreement between the one and two-centre WP-CCC approaches has been

obtained over the entire considered energy range.

The elastic scattering, excitation and electron-capture cross sections summed

over ` and m for the states with the principal quantum number n = 1 to n = 3

are shown in Fig. 6.6. Here again we can see excellent agreement between one-

and two-centre results for all considered cross sections. The experimental data

by Park et al. [177] for n = 2 and n = 3 excitation cross sections lie higher than
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Figure 6.5: Partial 2` and 3` cross sections for excitation and electron capture in p + H
collisions. The theoretical results are: two-centre WP-CCC approach and single-centre
WP-CCC approach to rearrangement. The key in the upper-left panel applies to all
panels.

our results within the energy region of 50–100 keV, where the cross section peaks.

This disagreement was discussed in detail in Ref. [145] but is not the subject of

the present work. Here we are interested in agreement between the results of the

two different one-centre and two-centre WP-CCC approaches. Their difference

is significantly smaller than the relevant experimental error bars. Therefore, for

practical applications both approaches can be applied. In terms of computer

resources required, the proposed one-centre technique has a significant advantage

in calculation time. To be specific, e.g. at 10 keV incident energy, the single-centre

calculations are about 30 times faster than the two-centre ones.
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Figure 6.6: Partial n-resolved cross sections for elastic scattering, excitation, and elec-
tron capture in p + H collisions. Experimental results are by Park et al. [177]. The
theoretical results are: two-centre WP-CCC approach and single-centre WP-CCC ap-
proach to rearrangement.

6.3.2 Proton scattering on lithium

For proton scattering on lithium, we expand the total scattering wave function

in terms of pseudostates obtained by diagonalising the target-atom Hamiltonian,

according to the procedure described in Sect. 6.2. The interaction of the incident

proton with the lithium target, which enters the scattering equations, is written



Chapter 6. Single-centre approach to rearrangement collisions 132

as

V T(R, r) = −Vst(R)− 1

rP
. (6.17)

When the target is Li(2s), the interaction of the residual target nucleus with the

atom formed by the projectile after electron capture, required for calculating the

electron-capture amplitude, reads as

V P(R, r) = −Vst(R) + Vst(rT) + Vex(rT). (6.18)

With this, the single-centre scattering equations are solved as for the hydrogen

target.

Here, convergence in `Tmax was established by selecting a maximum principle

quantum number nT
max = 30 prior to solving the coupled-equations for values

of increasing `Tmax. The maximum magnetic quantum numbers, mT
max, for each

case was kept equal to `Tmax (i.e. the full set of the magnetic quantum numbers

is used for each included orbital angular-momentum quantum number). While

fixing the fall-off parameter of the Laguerre functions at λ` = 1, the value for

`Tmax was incrementally increased until the variance between subsequent runs for

a particular projectile energy was below 3%. The cross sections for the projec-

tile energies near 1 keV were found to converge the slowest (especially the total

electron-capture cross section) with the results becoming stable only when `Tmax

reached 10. Increasing `Tmax to 11 yielded results which deviated by less than 3%

from the `Tmax = 10 case. As such, the selection of `Tmax = mT
max = 10 was deemed

acceptable.

In Fig. 6.7 we show the energy dependence of the total electron-capture cross

section in p + Li(2s) collisions. The present CCC results are compared with the

experimental data from Refs. [178–185] and recent calculations by Mančev et al.

[187]. In the present approach the cross section is calculated using the amplitude

given in Eq. (6.7). One can see that the results are in excellent agreement with
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Figure 6.7: Total electron-capture cross section for p + Li collisions. Experimental
results are by D’yachkov [178], Il’in et al. [179], Grüebler et al. [180], Varghese et al.
[181], Aumayr et al. [182], Aumayr et al. [183], Shah et al. [184], DuBois and Toburen
[185] (I), and DuBois [186] (II). The theoretical results are: present single-centre CCC
approach to rearrangement for L-, K-, and both L- and K-shell Li and BCIS-3B method
by Mančev et al. [187].

the experimental measurements across all considered impact energies. At ener-

gies above 30 keV, the measurements of electron-capture cross sections display

a shoulder. This feature cannot be reproduced by considering only capture of

the valence 2s electron. Energetic protons can penetrate the target deeper and

there is a possibility of capturing one of the inner, K-shell electrons. Therefore,

this channel should be taken into account. We model capture of the K-shell

electron by considering proton scattering from the helium-like Li+(1s2) ion with

the nuclear charge of 3. This model neglects the influence of the outer electron.

It is expected, however, that the loosely-bound L-shell electron cannot signifi-

cantly influence the state of the tightly-bound K-shell electrons. The problem of

p + Li+(1s2) scattering is also solved using the procedures given in Sect. 6.1. The

two-electron pseudostates describing the helium-like Li+(1s2) ion are constructed

using the configuration-interaction approach in the frozen-core approximation

developed in Refs. [33, 188].

The CCC results represent a combination of the cross sections for capture of

the L-shell and K-shell electrons. One can see that the treatment described above

indeed leads to good agreement with experiment. The contribution of electron
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capture from the K-shell is an order of magnitude larger than that from the L-

shell at the incident energies above 100 keV. In contrast, at energies below 30 keV

capture of the L-shell electron is the dominant process. The three-body Faddeev

equation approach of Avakov et al. [86] also took into account electron capture

from the K- and L-shells of the Li(2s) target. However, in their case overall

agreement with experiment was less satisfactory.

Also shown are the results of calculations based on the BCIS-3B method

of Mančev et al. [187]. The BCIS-3B method is a hybrid formalism, which is

the combination of the continuum distorted-wave method in the exit channel and

the boundary-corrected first Born method in the entrance channel. The initial

ground state of the active electron in the three-electron Li target is described

by the Roothaan-Hartree-Fock wave function. Using this method, Mančev et al.

[187] separately calculated the cross sections for single electron capture from the

K-shell and L-shell of the Li(2s) target. The sum of their K- and L-shell electron-

capture cross sections are shown in Fig. 6.7. As one can see BCIS-3B results are

in good agreement with the experimental data and the present CCC calculations

above about 30 keV collision energy. However, at lower energies the BCIS-3B

cross sections tend to underestimate the data due to the perturbative nature of

the approach.

In Fig. 6.8 we present the energy dependence of the total electron-loss cross

section. One can see that above 10 keV the present CCC results are in agreement

with the AOCC calculations of Lühr and Saenz [69] and above 100 keV also

with the CDW-EIS calculations of McCartney and Crothers [190]. However,

below 100 keV the CDW-EIS results start underestimating the total electron-

loss cross section since this perturbative model is not applicable at low collision

energies. The AOCC calculations of Schweinzer et al. [189] are systematically

lower than the other calculations above 10 keV. This most likely indicates the

lack of convergence in these results. At energies below 10 keV the present results

are larger than the AOCC calculations of Schweinzer et al. [189] where `max = 4
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Figure 6.8: Total electron-loss cross section for p + Li collisions. The theoretical results
are: present single-centre CCC approach, AOCC method by Schweinzer et al. [189],
CDW-EIS method by McCartney and Crothers [190], and AOCC method by Lühr and
Saenz [69].

was used and the AOCC calculations of Lühr and Saenz [69] where `max = 8 was

used. This discrepancy is due to the smaller number of the pseudostates used

in the previous close-coupling calculations. At the same time, adequate effective

representation of the electron-capture channel demands significantly larger single-

centre expansion than those used in the aforementioned approaches. Note that

in this low-energy region the electron-loss cross section essentially corresponds to

electron capture.

Fig. 6.9 presents the integrated cross section for excitation of the 2p subshell

states of the Li target. The CCC results are compared with the experimental

measurements of Aumayr et al. [191] and the theoretical calculations of Lühr and

Saenz [69], Pindzola [192], Stary et al. [193], Brandenburg et al. [194], and Lee

and Pindzola [195]. One can see that the present results agree well with the

AOCC calculations of Lühr and Saenz [69] in the entire energy range considered.

At high energies the results of Stary et al. [193] obtained within the framework

of the optical potential model significantly deviate from the former two. There

is also reasonably good agreement between the present results and the AOCC

calculations of Brandenburg et al. [194] below 10 keV. However, there is signifi-



Chapter 6. Single-centre approach to rearrangement collisions 136

100 101 102 103
100

101

Aumayr 1984

LTDSE: Pindzola
OP: Stary
AOCC: Brandenburg
TDCC (α = 0.25): Lee
TDCC (α = 0.74): Lee
AOCC: Lühr
CCC

2p excitation

Projectile energy (keV)

C
ro

ss
se

ct
io

n
(1
0−

1
6

cm
2
)

Figure 6.9: 2p-excitation cross section for p + Li collisions. Experimental results are
by Aumayr et al. [191]. The theoretical results are: present single-centre CCC approach,
LTDSE method by Pindzola [192], OP method by Stary et al. [193], AOCC method
by Brandenburg et al. [194], TDCC method by Lee and Pindzola [195], and AOCC
method by Lühr and Saenz [69].

cant deviation between the results of the other presented methods. Whereas the

present results and the results of two other close-coupling approaches go through

the upper edge of the experimental error bars, some of the other calculations are

significantly lower than the experiment.

Finally, one has to emphasise that the experimental data for the 2s → 2p

excitation cross section from Ref. [191] shown in Fig. 6.9 were extracted from

the data for the Li 2p → 2s emission cross section using cascade contributions

estimated from the Li 2s → 3` excitation cross sections calculated by Ermolaev

[196]. However, since these calculations were performed with a very small basis

size (the basis only included n ≤ 3 states of negative energy on both centres)

and did not include any pseudostates to represent the continuum, the accuracy of

the resulting 2s→ 3` excitation cross sections reported in Ref. [196] is question-

able. Thus, possible uncertainties from the calculations of Ermolaev [196] may

be imprinted in the experimental data for 2s→ 2p excitation.
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6.4 Chapter summary

In this chapter we presented a novel technique for extracting integrated electron-

capture cross sections from close-coupling calculations performed using a single-

centred expansion of the total scattering wave function. Starting from the general

post-form of the T -matrix we inserted a basis of projectile-atom pseudostates for

the final-channel and the single-centre expansion in terms of target pseudostates

for the initial channel. From this we found that the probability amplitudes for

electron capture are given by the time integral of the product of the single-centre

expansion coefficients and electron-capture matrix elements. The method was

benchmarked against highly accurate two-centre close-coupling calculations for

p + H collisions. Remarkable agreement between the single- and two-centred ap-

proaches was found for the integrated cross sections for target-excitation, charge-

exchange, and ionisation processes. It was found that a much larger basis was

required to obtain convergence in the results using the single-centre approach.

However, due to the complexity of the two-centre method, the single-centre ap-

proach demonstrated a significant reduction in computational time.

Having tested the utility of the method on proton collisions with the one-

electron target (hydrogen), we applied the method to study proton scattering

on the multielectron Li(2s) target. The obtained results for the 2s → 2p ex-

citation and total electron-capture cross sections are in good agreement with

corresponding experimental data. At higher collision energies the incident pro-

tons can penetrate the target deeper and capture one of the K-shell electrons as

well. To calculate the cross section for K-shell electron capture we considered

proton scattering from the helium-like Li+(1s2) ion with the nuclear charge of 3,

assuming that the loosely bound L-shell electron cannot significantly influence

the state of the tightly bound K-shell electrons. Good agreement between the

obtained results and experiment shows this assumption to be plausible.



Chapter 7

Proton scattering on alkali metals∗

In ion-atom collisions involving multielectron targets the role of inner-shell elec-

trons becomes important with increasing collision energy. Faster projectiles can

penetrate further into the target core, interacting with inner-shell electrons. How-

ever, only collisions with one- or two-electron targets can be treated without

significant approximations. Usually, the contributions of the outer and inner-

shell electrons are taken into account using the IEM, where processes involving

the outer-shell and inner-shell electrons are separated and treated independently.

However, the IEM becomes impractical when the number of shells is more than

two.

In this chapter we develop an ab initio effective one-electron approach to mul-

tielectron atoms that treats all of the electrons on an equal footing. We consider

targets with a single valence electron, i.e. alkali metal atoms. These atomic

targets contain a single valence electron well isolated from the inner electronic

shells. This fact suggests that it may be reasonable to consider the target atom

with one active electron in the field of the frozen core. Several previous theoret-

ical approaches used this approximation but they were only able to account for

processes involving the valence electron. In Ch. 6 we applied the single-centre
∗ This chapter is adapted from work published by the candidate [197]. The publishers

(the American Physical Society) provide the author with the right to use the articles, or parts
thereof, in a thesis or dissertation without requesting permission.
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WP-CCC approach to rearrangement collisions to model p + Li scattering. The

target structure was based on the frozen-core approximation, meaning that the

projectile can capture only the valence electron. This separation appeared to

work well in this case, but may not work for other targets where the ionic core is

not well separated and the frozen-core approximation is not applicable. Here we

develop a new method that accounts for the multi-core structure of the target.

7.1 Structure of multielectron atoms

Consider an atom with Ne electrons and assume that the nucleus is sufficiently

light that a non-relativistic description of the electronic wave function is suitable.

The goal is to construct a wave function that represents any one of the electrons

subject to the average field of the nucleus and all other electrons. We will call this

the active electron and denote its position as r and spin as s. The position and

spin coordinates of the ensemble of all other electrons are r′ and s′, respectively. It

is important to note that we do not single-out any particular electron, rather any

of the target electrons may be equivalently interchanged with the active electron.

The Schrödinger equation for the atom is

HTψT(r, r′, s, s′) = εTψT(r, r′, s, s′), (7.1)

where HT is the Hamiltonian of the atom and εT is the energy of the ground state

multielectron wave function, ψT. The Hamiltonian is given by

HT = −1

2
∇2
r −

1

2
∇2
r′ −

Ne∑
i=1

ZT

ri
+

Ne∑
i=1

Ne∑
j=1

(1− δij)
|ri − rj|

, (7.2)

where −∇2
r/2 is the kinetic-energy operator of the active electron and −∇2

r′/2

is the sum of kinetic energy operators for the Ne − 1 remaining electrons. The
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multielectron wave function is normalised according to

∑
ss′

∫
dr

∫
dr′ ψ∗T(r, r′, s, s′)ψT(r, r′, s, s′) = 1, (7.3)

and possesses the necessary antisymmetrisation requirements. In order to con-

struct a one-electron wave function that effectively describes any one of the Ne

target electrons we make use of the single-electron density function,

ρ(r) ≡ Ne

∑
ss′

∫
dr′ ψ∗T(r, r′, s, s′)ψT(r, r′, s, s′). (7.4)

This represents the probability of finding an electron at position r and, therefore,

contains information about the overall distribution of the remaining electrons.

From Eq. (7.4) we can obtain a radial density by averaging over the angular

coordinate of the active electron,

ρ(r) ≡ 1

4π
Ne

∑
ss′

∫
dr̂

∫
dr′ ψ∗T(r, r′, s, s′)ψT(r, r′, s, s′). (7.5)

If we integrate Eq. (7.5) over r we find that the angular part simply evaluates to

4π and therefore we are left with

∫
dr ρ(r) = Ne. (7.6)

Taking the square root of the radial density in Eq. (7.5) we can construct a

spherically symmetric pseudo-ground-state wave function for the active electron.

We define this wave function in a normalised form as

ψE1E
0 (r) =

√
ρ(r)

Ne

(7.7)

Recognising that Y00(r̂) = 1/
√

4π we define the following effective one-electron
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(E1E) ground-state radial wave function,

RE1E
0 (r) =

√∑
ss′

∫
dr̂

∫
dr′ ψ∗T(r, r′, s, s′)ψT(r, r′, s, s′). (7.8)

The pseudostate, ψE1E
0 (r) = RE1E

0 (r)Y00(r̂), equivalently represents any one of

the target electrons in the ground-state configuration of the multielectron atom.

To construct a set of orthogonal pseudostates for scattering calculations we first

calculate the effective potential, U(r), experienced by this ground-state wave

function, assuming that it satisfies the effective one-electron Schrödinger equa-

tion,

(
−1

2
∇2
r + U(r)

)
ψE1E
0 (r) = εE1E0 ψE1E

0 (r), (7.9)

where εE1E0 is the energy of the ground state. We call the potential appearing in

Eq. (7.9) a pseudopotential. Separating the radial and angular parts results in the

following equation for the radial part of the effective one-electron wave function,

(
−1

2

d2

dr2
− 1

r

d

dr
+ U(r)

)
RE1E

0 (r) = εE1E0 RE1E
0 (r), (7.10)

which can be solved for the pseudopotential, yielding

U(r) = εE1E0 +
1

RE1E
0 (r)

(
1

2

d2

dr2
+

1

r

d

dr

)
RE1E

0 (r). (7.11)

Equation (7.11) is solved numerically subject to the conditions,


lim
r→0

U(r) = −ZT

r
,

lim
r→∞

U(r) = −1

r
.

(7.12)

Once the pseudopotential is calculated it can be used to construct wave func-

tions for excited and continuum states using the reduced radial single-electron
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Schrödinger equation for arbitrary angular quantum number `,

(
−1

2

d2

d2r
− 1

r

d

dr
+
`(`+ 1)

2r2
+ U(r)

)
Rα(r) = εαRα(r). (7.13)

Here index α corresponds to the set of quantum numbers specifying the single-

electron atomic state. Equation (7.13) is solved using a Numerov method. If

the energy, εα, is negative then solutions only exist for discrete energies with

α = {n`}, corresponding to bound states. The resulting states form a set of

negative-energy pseudostates approximately representing the target space, in-

cluding the ground state. The latter, of course, coincides with RE1E
0 (r) and is

accurate by construction. For positive energies, there exists a continuum solution

with α = {κ`}, where κ =
√

2εα. The latter can be used to construct wave-packet

pseudostates according to the method outlined in Sect. 3.2.

The question remains, how to construct the multielectron wave function re-

quired for this approach? Many methods have been developed for this purpose

such as Hartree-Fock (HF), multiconfigurational self-consistent field (MCSCF),

and time-dependent density-functional theory (TDDFT). We use the multicon-

figurational HF method in which the radial probability density function is given

by

ρ(r) =
1

4π

∑
n`

wn`
∣∣RHF

n` (r)
∣∣, (7.14)

where wn` is the number of electrons in the n` orbital and RHF
n` is the radial elec-

tron wave function obtained from the HF equations for the orbital with quantum

numbers n and `. We note that the standard HF approach does not account for

electron-electron correlations. However, for alkali atoms the correlation energy is

small.

In Fig. 7.1 we present the radial dependence of the pseudopotential U(r)

multiplied by r for the Li, Na, and K atoms. Here U(r) is the potential which

is felt by any one of the electrons in the field produced by the nucleus and the
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Figure 7.1: The pseudopotential U(r) (upper panel) and effective one-electron ground-
state radial wave function (lower panel) weighted by r for for Li, Na, and K.

remaining electrons of the atom. We infer from the figure that for all three

atoms the pseudopotential tends to the expected functional form of −ZT/r near

the origin and has the asymptotic −1/r tail at large distances. Generally, the

pseudopotential is attractive except in the intermediate region where one can see

an oscillatory behaviour. This is consistent with the electronic structure of the

considered atoms. In particular, for the Li atom with the 1s22s1 electronic con-

figuration there is a region around 1.42 a.u. where the pseudopotential becomes

repulsive. This is due to the occupied n = 1 shell. The states in this shell are

on average either unavailable or unlikely to be available for the active electron.

Similarly, for the Na atom with the 1s22s22p63s1 electronic configuration there

are two regions, one around 0.23 a.u. and the other around 1.94 a.u., where the

potential is positive. The first peak is due to the complete n = 1 shell and the
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second is due to the n = 2 shell. For the K atom with the 1s22s22p63s23p64s1 elec-

tronic configuration there are three regions (located around 0.12, 0.62, and 2.83

a.u.) where the pseudopotential turns repulsive, corresponding to the complete

n = 1, n = 2, and n = 3 shells, respectively. It is noteworthy to mention that

no such oscillatory features in the intermediate region are observed in the model

effective potential proposed by Klapisch [198] and employed in proton-alkali atom

scattering calculations by Lühr and Saenz [199]. The Klapisch potential based

on multiple tuning parameters accurately reproduces the −ZT/r behaviour near

the origin and the asymptotic −1/r tail. However, it goes from one functional

behaviour to the other smoothly and monotonically. Our pseudopotentials appear

to better reflect the physical situation that the active electron should experience.

The presently calculated ionisation potentials of the ground-state Li, Na, and

K atoms are 5.34, 4.96, and 4.21 eV, respectively. They compare favourably to

the corresponding experimentally measured values of 5.39, 5.14, and 4.34 eV,

respectively [200]. This level of agreement with experiment is consistent with the

underlying Hartree-Fock approach used in the current model.

The above method reduces the description of the multielectron atom to the

effectively two-body system consisting of a core ion and one active electron. The

mutual interaction of electrons, the electron-exchange effects and the interaction

of multiple electrons with the atomic nucleus are all represented by one pseu-

dopotential for the active electron and the core ion. With this description of

the target, the collision system reduces to an effectively three-body scattering

problem. Therefore, we can apply the WP-CCC approach to ion collisions with

one electron targets from Ch. 3 with necessary modifications which involve intro-

ducing pseudopotentials representing interactions of the target core ion with the

active electron and the incident proton.

It is worthwhile to emphasise the distinguishing features of the present model

from the approaches which are based on the IEM. The ground-state wave func-

tion, ψE1E
0 (r), is obtained from the probability density function, which contains
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all necessary information about the electrons in every subshell of the target. Ad-

ditionally, all other target pseudostates used in expansion of the total scattering

wave function also contain this information since they are obtained using the same

pseudopotential constructed to describe the ground state of the multielectron tar-

get. For this very reason, the present approach is capable of describing the fate

of any one of the target electrons on an equal footing. In contrast, the models

which are based on the IEM treat the target atom as if it has a frozen core and

one electron (which is in the outermost shell of the atom), where the interaction

potential between them represents the collective field of all electrons in the frozen

core. Therefore, the pseudostates representing the active electron in those models

by construction describe only the fate of the electron in the outermost shell of

the target.

Within this representation, we effectively split the Ne-electron problem into

Ne equivalent single-electron ones. Therefore, the resulting probabilities found

from solving Eq. (3.39) are multiplied by a factor of Ne to account for any of the

electrons occupying a given final channel.

7.2 Proton collisions with Li, Na, and K atoms

In this section we apply the developed method to calculate the total electron

capture and the total ionisation cross sections in proton collisions with Li, Na,

and K atoms. A large amount of experimental data [178–186, 201–208] for proton

scattering on these targets has been collected for integrated electron-capture and

excitation cross sections. These measurements for single electron capture and

single electron ionisation only detect an electron without specific information

whether it originated from the outermost or inner shells of the target. Therefore,

these systems provide an ideal testing ground for the present approach which also

does not distinguish which electron is ionised.
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7.2.1 Overview of previous works

There have also been a number of theoretical investigations of proton collisions

with alkali atoms. Some of the earliest calculations were performed by Stary et al.

[193] using an optical-potential approach. The CDW-EIS method was used used

by McCartney and Crothers [190] to calculate the TICS in proton collisions with

lithium. Dubois et al. [209] used the AOCC approach to investigate differential

cross sections, alignment, and orientation effects for electron capture in p + Na

collisions. More recently Lühr and Saenz [199] investigated single-electron loss

by alkali atom targets for a wide range of proton projectile energies ranging from

0.25 to 1000 keV. In their method they construct one-electron pseudostates for

the valence electron using the model potential of Klapisch [198] to simulate the

interaction between the atom’s active electron and its frozen-core pseudonucleus.

The pseudostates were then constructed using B-spline functions and used to

expand the total scattering wave function. While good agreement was found

between the obtained results and those presented by McCartney and Crothers

[190], notable discrepancies were seen when compared with the results of Stary

et al. [193]. Another time-dependent close-coupling approach was developed by

Pindzola et al. [210]. Their method used frozen Hartree-Fock potentials to gener-

ate the pseudostates. For the considered projectile energy range (1 to 100 keV),

good agreement was found between their results and those presented by Lühr

and Saenz [199]. However, all these theoretical studies were not successful in pro-

ducing accurate total cross sections for single-electron capture at intermediate to

high collision energies. The conclusion was that, at these energies, the incident

proton is more likely to capture the electron from the inner shells of the atom

rather than the valence electron.
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7.2.2 Single-electron-capture cross sections

We now present our results for single-electron capture in proton collisions with

Li, Na, and K atoms using the pseudopotential method developed in Sect. 7.1.

Convergent results were obtained with a symmetric basis for all incident energies

with `max = 4, nneg = 5 − `, κmax = 5.4 a.u., and npos = 20. In our calculations

we found the low-energy region (1–10 keV) to be the most challenging. In this

region we encountered ill-conditioning problems due to norm unity violation.

However, these issues have been successfully mitigated by significantly increasing

the number of Runge-Kutta time steps (e.g., at 1 keV it had to be increased to

10000).
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Figure 7.2: Total single-electron-capture cross section for p+Li collisions. Experimental
data are by D’yachkov [178], Il’in et al. [179], Grüebler et al. [180], Varghese et al.
[181], Aumayr et al. [182], Aumayr et al. [183], Shah et al. [184], DuBois and Toburen
[185] (I), and DuBois [186] (II). The theoretical results are: present effective one-electron
two-centre WP-CCC approach, BCIS-3B method by Mančev et al. [187], and single-
centre CCC approach to rearrangement for L-, K-, and both L- and K-shell Li from
Ch. 6.

In Fig. 7.2 we show the total single-electron-capture cross section as a function

of incident energy in proton-lithium collisions. Our results are displayed in com-

parison with the experimental data from Refs. [178–186] and theoretical results

of Mančev et al. [187]. We also show the calculations from Ch. 6 obtained using

the frozen-core approximation. Agreement with experimental data is good in the
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entire range of impact energies considered in this work. At the energy region

of 30 keV and above, the measured total single-electron-capture cross sections

display a shoulder-like structure. This behaviour cannot be explained by taking

into account only the capture of the outer 2s electron of the lithium atom. At

high impact energies incident protons can go deeper into the lithium atom and

interact with its inner electrons which leads to the capture of K-shell electrons.

In Ch. 6 we modelled this process by considering it as a collision of protons with

the helium-like Li+(1s2) target. That model neglected the effect of the valence L-

shell electron. This is a widely used approximation. The sum of the capture cross

sections of the L- and K-shell target electrons indeed displayed good agreement

with experiment. Analysing the results one can see that at energies above 100 keV

the electron capture from the K shell is significantly more pronounced than that

from the L shell. At the same time, at low energies the L-shell electron capture

is the main contributor. In a similar way, the BCIS-3B method of Mančev et al.

[187] also considered the capture of K- and L-shell electrons of the lithium target

as two independent processes. The BCIS-3B results are in overall good agreement

with experimental data at intermediate and high-energy regions. However, due to

the perturbative nature of the BCIS-3B method their results are systematically

lower than the measured data below 30 keV.

In our present calculations the Li target is treated using a pseudopotential in

a way which takes into account the possibility of K- and L-shell electron capture.

Therefore, the final electron-capture cross section already includes their aggregate

effect.

In Figs. 7.3 and 7.4 we present our results of the total single-electron-capture

cross sections for proton collisions on atomic targets targets of Na, and K, respec-

tively. Here also the obtained results are in good agreement with available exper-

imental measurements [185, 201–208] across a wide energy range. If considered

separately, similarly to the Li case, the contribution of electron capture from the

inner shells would dominate over capture from the outermost shell at the incident
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Figure 7.3: Total single-electron-capture cross section for p+Na collisions. Experimental
data are by O’Hare et al. [204], Anderson et al. [206], DuBois and Toburen [185], Morgan
et al. [205], Aumayr et al. [201], Ebel and Salzborn [203], Müller et al. [202], and Wang
et al. [207]. The theoretical results are: present effective one-electron two-centre WP-
CCC approach, IPFA by Avakov et al. [86], MOCC method by Kimura and Lane [60],
AOCC method by Fritsch and Lin [125], and TC-BGM method by Zapukhlyak et al.
[79].
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Figure 7.4: Total single-electron-capture cross section for p+K collisions. Experimental
data are by Morgan et al. [205], Ebel and Salzborn [203], and Gieler et al. [208]. The
theoretical results are: present effective one-electron two-centre WP-CCC approach,
IPFA by Avakov et al. [86], MOCC method by Kimura and Lane [60], and AOCC
method by Fritsch and Lin [125].

energies above 30 keV. These figures demonstrate a clear advantage of the present

method over the IEM. The latter would require combination of the cross sections

for three independent events for the Na target and four independent events for

the K target. Clearly, the IEM becomes very cumbersome and impractical for
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targets with several shells. In addition, it neglects the effect of coupling between

the shells of the target to the final results. Instead the IEM introduces several

screening parameters corresponding to each target shell. This leads to the final

results becoming too sensitive to the choice of these parameters. At the same

time we note that the results of Zapukhlyak et al. [79] for p + Na obtained by

considering three independent events show good agreement with experiment.

7.2.3 Single-ionisation cross sections

Here we calculate the total cross sections for single ionisation in Li, Na, and K

collisions with H. These calculations where performed with the same basis as the

calculations of the single-electron-capture cross sections.
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Figure 7.5: Total ionisation cross section for p + Li collisions. Experimental data are
by Shah et al. [184], DuBois [186], and D’yachkov [178]. The theoretical results are:
present effective one-electron two-centre WP-CCC approach and CDW-EIS method
by McCartney and Crothers [190].

Figure 7.5 presents the TICS a function of incident energy for p+Li collisions.

The obtained results are in excellent agreement with the measurements of Shah

et al. [184] and DuBois [186], but significantly overestimate the measurements of

D’yachkov [178] at collision energies below 70 keV. At the same time, at energies

above 100 keV the measurements of D’yachkov [178] are larger than the present

calculations and the measurements of Shah et al. [184]. One should note that



Chapter 7. Proton scattering on alkali metals 151

these single-ionisation cross sections include also the contribution of inner-shell

electrons, as in the case with electron capture. The results of CDW-EIS cal-

culations of McCartney and Crothers [190] are generally lower than the present

results and in better agreement with the measurements of D’yachkov [178] at 30

and 40 keV. Measurements of DuBois [186] are for multiple ionisation, however

here single ionisation is expected to dominate.
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Figure 7.6: Total ionisation cross section for p+Na collisions. Experimental data are by
O’Hare et al. [204], DuBois [211], and Zapukhlyak et al. [79]. The theoretical results are:
present effective one-electron two-centre WP-CCC approach, CTMC method by Lundy
and Olson [212], AOCC method by Jain and Winter [213], and TC-BGM by Zapukhlyak
et al. [79].

The total single-ionisation cross section for p + Na collisions is shown in

Fig. 7.6. The obtained results for p + Na collisions are in reasonable agreement

with the measurements of Zapukhlyak et al. [79] but significantly underestimate

the measurements of O’Hare et al. [204] and DuBois [211]. Again, measurements

of DuBois [186] are for multiple ionisation. We should also note overall good

agreement of the present results with the CTMC calculations of Lundy and Ol-

son [212]. In general, all the calculations appear to agree in shape but can differ

in magnitude up to 60%.

Figure 7.7 presents the total cross section for single ionisation in p + K colli-

sions. Our results disagree with the measurements of O’Hare et al. [204] except at

100 keV. Above 100 keV our results agree well with the measurements of Elliott
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Figure 7.7: Total ionisation cross section for p + K collisions. Experimental data are by
O’Hare et al. [204] and Elliott et al. [214]. The theoretical results are: present effective
one-electron two-centre WP-CCC approach.

et al. [214]. To our best knowledge, for the K target there are no other theoretical

studies of this process.

Discrepancies between theory and experiment for single ionisation of Na and

K around the peak region are striking. Zapukhlyak et al. [79] speculated that the

experimental p+Na ionisation cross sections might be higher than the theoretical

ones possibly due to contributions from autoionising doubly excited states, which

were ignored in their calculation. Our effective single-electron approach also

neglects such contributions. However, Zapukhlyak et al. [79] estimated these

contributions to be about two orders of magnitude smaller than the net ionisation

cross section over the whole range of impact energies. Indeed this makes sense. We

also notice that the disagreement appears to worsen as the projectile energy falls

from 100 down to 20 keV. This is counter-intuitive as the likelihood of exciting an

inner-shell electron to form an auto-ionising state should fall with energy. This is

because the probability of the projectile penetrating deeper into the target atom

is smaller at lower energies. Thus, not only do the discrepancies for single-electron

ionisation in p+Na collisions above 20 keV still remain unexplained but a similar

issue also exists for p + K collisions.
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7.3 Chapter summary

In this chapter we developed an effective one-electron approach to proton colli-

sions with alkali atoms. The method allows the calculation of single-ionisation

and single-electron capture cross sections taking into account the effect of all the

inner- and outer-shell target electrons. The approach does not differentiate which

one of the many target electrons is captured or ionised. The ground-state wave

function obtained in the multiconfigurational Hartree-Fock approach is used to

calculate the probability density averaged over spins and all the configuration-

space variables except for the position of one electron from the nucleus. The

obtained single-electron probability density is then used to derive a pseudopoten-

tial describing the interaction of one electron with the collective field produced by

the target nucleus and the other electrons. This pseudopotential is also used to

construct the effective three-body Schrödinger equation of the scattering system.

This can then be solved using the two-centre WP-CCC formalism developed for

one-electron systems. Results for the TECS in proton collisions with Li, Na, and

K atoms are in very good agreement with the available experimental measure-

ments. However, considerable disagreement for single ionisation of sodium and

potassium has been found. The method has a clear advantage over approaches

based on the IEM, especially as the number of target electrons increases.



Chapter 8

Proton scattering on helium∗

In this chapter we investigate differential cross sections for proton collisions with

helium atoms. This is a four-body problem and presents a significant theoretical

challenge. The WP-CCC method was extended to p+He collisions by Alladustov

et al. [33]. By freezing one electron in the ground state they were able to generate

a correlated two-electron structure for the helium target. The obtained two-

electron wave function is then used to expand the total scattering wave function

in a similar way to the three-body WP-CCC method. However, the resulting scat-

tering equations are more complex and require significantly more computational

resources to solve. Results for integrated cross sections for all interconnected pro-

cesses occurring in intermediate-energy p + He collisions demonstrated very good

agreement with experiment, even at lower energies where electron correlations

are believed to play an important role.

Here we apply the pseudopotential idea from Ch. 7 to the helium atom to

develop an effective one-electron description. We then compare the two-electron

and E1E versions of the WP-CCC method by calculating singly differential cross

sections for direct scattering, electron capture, and ionisation in p+He collisions.
∗ This chapter is adapted from works published by the candidate [215, 216]. The publishers

(the American Physical Society) provide the author with the right to use the articles, or parts
thereof, in a thesis or dissertation without requesting permission.
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8.1 Two-electron WP-CCC approach to ion

collisions with helium

In this section we give a brief overview of the two-electron WP-CCC approach

to ion collisions with helium. Full details of the four-body WP-CCC approach

to proton-helium collisions are provided in Refs. [33, 217]. While this chapter is

devoted to the study of differential cross sections in p + He collisions, the method

is readily extended to collisions involving multiply charged ions. In Ch. 9 we

apply the approach to He2+ +He collisions. Therefore, to avoid repetition, in this

chapter we present equations for scattering of a multiply charged ion PZP on He.

8.1.1 Four-body scattering equations

For ion collisions with He, the total scattering wave function Ψ+
i is the solution

of the Schrödinger equation

(H − E)Ψ+
i = 0, (8.1)

where H is the four-body Hamiltonian. The total energy E can be written in

three equivalent forms,



E = εHe+

1s +
q2α

2µT

+ εα,

E = εHe+

1s +
q2β1
2µP

+ εPβ1 ,

E = εHe+

1s +
q2β2
2µP

+ εPβ2 ,

(8.2)

where εHe+

1s is the binding energy of the frozen target electron. Here α and β

denote the full set of quantum numbers representing states in the PZP + He and

PZP−1 + He+ channels, respectively. Furthermore, qα is the momentum of the

projectile relative to the helium atom in the α channel, µT is the reduced mass of

the PZP + He system, εα is the energy of the pseudostate α, qβ1 (and qβ2) is the
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momentum of the formed PZP−1 ion relative to the residual helium ion in the β1

(β2) channel, and µP is the reduced mass. The total energy of the helium target

in state α is εTα = εHe+

1s + εα. Channel β1 is the same as channel β2 but with the

electron of the residual target and that of the PZP−1 ion exchanged. Therefore,

the energy of the hydrogen-like ion in channel β1 is the same as in channel β2,

i.e. εPβ ≡ εPβ1 = εPβ2 .

The four-body Hamiltonian can also be written in three equivalent forms,


H = KσT

+HT1 +HT2 + V T + V12,

H = KσP1
+HP1 +HT2 + V P1,

H = KσP2
+HP2 +HT1 + V P2.

(8.3)

where the kinetic energy operators are defined as



KσT
= −∇

2
σT

2µT

,

KσP1
= −∇

2
σP1

2µP

,

KσP2
= −∇

2
σP2

2µP

(8.4)

and the interaction potentials as



V T =
2ZP

R
− ZP

rP1
− ZP

rP2
,

V P1 =
2ZP

R
− 2

rT1

− ZP

rP2
,

V P2 =
2ZP

R
− 2

rT2

− ZP

rP1
,

V12 =
1

|r1 − r2|
.

(8.5)

Vectors rT1 and rT2 are the position of the two electrons from the target nucleus

(located at the origin) and rP1 and rP2 are the positions of the two electrons from

the projectile ion. We use σP1 and σP2 to denote the position of the PZP−1 system

relative to the residual helium ion. The Hamiltonians of the He+ and PZP−1 ions
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are



HT1 = −∇
2
rT1

2
− 2

rT1

,

HT2 = −∇
2
rT2

2
− 2

rT2

,

HP1 = −∇
2
rP1

2
− ZP

rP1
,

HP2 = −∇
2
rP1

2
− ZP

rP2
.

(8.6)

Therefore, the Hamiltonian of the helium atom can be written as

HT = HT1 +HT2 + V12. (8.7)

As in the case of the three-body WP-CCC method, we use the impact-

parameter method and write the position of the projectile nucleus relative to

the origin as R = b+ vt. The total scattering wave function is expanded as

Ψ+
i =

∞∑
α=1

Fα(σT)eiqα·σTψHe
α (rT1, rT2)

+
1√
2

∞∑
β=1

Gβ(σP)
[
eiqβ1 ·σP1ψ

(ZP)
β (rP1)ψ

He+

1s (rT2)

+ eiqβ2 ·σP2ψ
(ZP)
β (rP2)ψ

He+

1s (rT1)
]
, (8.8)

where ψHe
α and ψ(ZP)

β are the wave functions for the helium atom and the hydrogen-

like atom formed through electron capture by the projectile nucleus, respectively.

The helium wave functions are constructed according to the method outlined in

Sect. 8.1.2 whereas the wave functions for the hydrogen-like ion are made using

the approach described in Sect. 3.2. We use the notation ψHe+

1s to denote the

ground-state wave function of He+.

Next we insert Eq. (8.8) into Eq. (8.1) and apply the semiclassical approx-

imation. Then, to obtain the first set of coupled equations we pre-multiply by

ψHe∗
α′ (rT1, rT2)e

−iqα′ ·σT and integrate over rT1 and rT2. The second set of equa-
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tions is obtained by pre-multiplying by

1/
√

2[ψ
(ZP)∗
β′ (rP1)ψ

He+

1s (rT2)e
−iqβ′1 ·σP1 + ψ

(ZP)∗
β′ (rP2)ψ

He+

1s (rT1)e
−iqβ′2 ·σP2 ]

and integrating over rT1 and rT2. Altogether, the four-body scattering equations

are 
iḞα′ + i

∞∑
β=1

ĠβK
T
α′β =

∞∑
α=1

FαD
T
α′α +

∞∑
β=1

GβQ
T
α′β,

i
∞∑
α=1

ḞαK
P
β′α + i

∞∑
β=1

ĠβL
P
β′β =

∞∑
α=1

FαQ
P
β′α +

∞∑
β=1

GβD
P
β′β.

(8.9)

The direct-scattering matrix elements are given by



DT
α′α(R) =

〈
qα′ψHe

α′

∣∣HT − εTα + V T

∣∣ψHe
α qα

〉
,

LP
β′β(R) =

1

2

∑
i,j=1,2

〈
qiβ′ψ

(ZP)
β′ ψHe+

1s

∣∣∣ψ(ZP)
β ψHe+

1s qjβ

〉
,

DP
β′β(R) =

1

2

∑
i,j=1,2

〈
qiβ′ψ

(ZP)
β′ ψHe+

1s

∣∣∣HPi − εPβ
∣∣∣ψ(ZP)

β ψHe+

1s qjβ

〉
+

1

2

∑
i,j=1,2

〈
qiβ′ψ

(ZP)
β′ ψHe+

1s

∣∣∣V Pi

∣∣∣ψ(ZP)
β ψHe+

1s qjβ

〉
.

The overlap matrix elements are


KP
β′α(R) =

1√
2

∑
i=1,2

〈
qiβ′ψ

(ZP)
β′ ψHe+

1s

∣∣∣ψHe
α qα

〉
,

KT
α′β(R) =

1√
2

∑
i=1,2

〈
qα′ψHe

α′

∣∣∣ψ(ZP)
β ψHe+

1s qiβ

〉
.

(8.10)

The exchange matrix elements are defined as


QP
β′α(R) =

1√
2

∑
i=1,2

〈
qiβ′ψ

(ZP)
β′ ψHe+

1s

∣∣∣HT − εTα + V T

∣∣∣ψHe
α qα

〉
,

QT
α′β(R) =

1√
2

∑
i=1,2

〈
qα′ψHe

α′

∣∣∣HPi − εPβ + V Pi

∣∣∣ψ(ZP)
β ψHe+

1s qiβ

〉
.

(8.11)

Evaluation of the matrix elements is detailed in Ref. [217]. We follow the same
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ideas as for the matrix elements in the three-body WP-CCC method. However,

it is worth noting that calculation of the matrix elements is significantly more

computationally demanding than in the three-body case. The coupled equations

in Eq. (8.9) are solved using the approach outlined in Sect. 3.5. In the final

channel, expansion coefficients Fα(+∞, b) and Gβ(+∞, b) are used to calculate

the transition probabilities and T -matrix elements for all possible single-electron

processes in exactly the way discussed in Sect. 3.4.

8.1.2 Two-electron helium structure

There is no known analytical solution for the Schrödinger equation for the helium

atom. Therefore, approximate methods must be employed to calculate the two-

electron wave functions. To ensure an accurate description of the electronic wave

function both electron-electron correlation as well as electron-exchange effects

should be accounted for in the model. The two-electron WP-CCC approach to

ion collisions with helium is based on the wave-packet description in the frozen-

core approximation. The symmetrised helium wave function is written as

ψHe
α (rT1, rT2) = ψα(rT1)ψ

He+

1s (rT2) + ψα(rT2)ψ
He+

1s (rT1), (8.12)

where ψHe+

1s is the ground-state wave function of the hydrogen-like ion, He+.

We assume that the total spin (S = 0) is conserved throughout the collision

and therefore use only singlet states in expansion Eq. (8.8). Equation (8.12) is

normalised to unity. The two-electron wave function, ψHe
α , is obtained from the

Schrödinger equation,

HTψ
He
α (rT1, rT2) = εTαψ

He
α (rT1, rT2). (8.13)

Here εTα is the total energy of helium in the α state. The Hamiltonian is given

by Eq. (8.7). We substitute Eq. (8.12) into Eq. (8.13) and, after some algebra,
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obtain an equation for the reduced radial wave function, φα(rT1), of ψα(rT1),

[
d2φα
dr2T1

−
(
`α(`α + 1)

r2T1

− 4

rT1

+ 2W0[φ
He+

1s , φHe+

1s ]− 2εα

)
φα(rT1)

]
=

[
2

2`α + 1
W`α [φHe+

1s , φα]

− 2δ0`a

∫ ∞
0

drT2 φ
He+

1s (rT2)W0[φ
He+

1s , φHe+

1s ]φα(rT2)

]
φHe+

1s (rT1), (8.14)

where φHe+

1s (rT1) = 4
√

2e−2rT1rT1, and εα is the eigenenergy of the state described

by ψα. In Eq. (8.14) we define the functional

W`[f, g] =
1

r`+1

∫ r

0

f(t)g(t)t` dt+ r`
∫ ∞
r

f(t)g(t)

t`+1
dt . (8.15)

Equation (8.14) is solved numerically using an iterative Numerov approach. The

ground-state energy obtained with this method is very similar to the experimen-

tally measured value, see Tbl. 8.1 for a detailed comparison. Radial wave func-

tions for excited states are obtained by using different values of α = {nα, `α,mα}

when solving Eq. (8.14). For positive energies, Eq. (8.14) can be solved nu-

merically to obtain the continuum wave function from which the positive-energy

pseudostates are constructed using the wave-packet discretisation approach.

8.2 Effective one-electron description of helium

Proton scattering on a two-electron system is a complex problem to solve due

to the electron-electron correlations and exchange effects between the captured

electron and the electron of the residual helium ion which belong to different

centres. On the other hand, there are no such complications in the case of bare-

ion collisions with a hydrogen-like system. In Ch. 7 we developed an effective one-

electron approach to proton collisions with alkali metals that allowed us to utilise

existing theoretical techniques and numerical methods for three-body collisions.

Application of the pseudopotential idea to helium is the same as for the alkali

metals. First, we generate an accurate two-electron wave function using the
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multiconfigurational HF approach, then integrate over the spatial coordinate of

one and spin coordinates of both of the two electrons. Averaging over the angu-

lar coordinate of the remaining electron yields the single-electron radial density

function which is then used to calculate an effective one-electron ground-state.

This wave function is used in the one-electron Schrödinger equation to solve for

the pseudopotential. Once the pseudopotential has been obtained we can use

an iterative Numerov approach to calculate one-electron wave functions for ex-

cited and continuum states. Wave-packet pseudostates are constructed from the

continuum solution as per the method described in Sect. 3.2.
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−1.6
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)
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Figure 8.1: The effective one-electron pseudopotential U(r) weighted by r for He.

Figure 8.1 shows the radial dependence of the effective potential U(r) multi-

plied by radius r for the helium atom. Here U(r) is the potential which is felt by

any one of the electrons in the field produced by the nucleus and the remaining

electron of the atom. As we can see the potential is attractive, and tends to the

expected functional form of −2/r near the origin and has the asymptotic −1/r

tail at large distances. The pseudopotential has a ground-state energy of −0.904,

corresponding exactly to the first ionisation energy of helium. In Tbl. 8.1 we

compare the first few energy levels of helium calculated with the two-electron

approach in Sect. 8.1.2 and the E1E approach with the experimentally measured

values from Kramida et al. [200]. The ground-state energy from the E1E approach
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is very close to the experimental value (by construction), whereas the two-electron

structure leads to a ground-state energy that is about 3% different to the exper-

imental value. However, the excited states have more accurate energies when

constructed using the two-electron method.

Having obtained the effective one-electron pseudostates we use the three-body

WP-CCC method from Ch. 3 to calculate the probability amplitudes for all one-

electron processes. Compared to the two-electron method this approach is signif-

icantly faster to calculate, but at the cost of neglecting electron-exchange effects

and electron-electron correlations in the scattering equations. We emphasise,

however, that electron-electron correlations are not neglected in constructing the

E1E wave functions.

Table 8.1: Comparison of calculated singlet-state energy levels of helium from
two-electron and effective one-electron structures with experimentally measured
values from Kramida et al. [200]. Labels in the first column are for one electron,
the other is frozen in the 1s orbital.

Subshell Two-electron energy (a.u.) E1E energy (a.u.) Exp. (a.u.)

1s −0.8725 −0.9036 −0.9037
2s −0.1434 −0.1574 −0.1460
2p −0.1224 −0.1280 −0.1238
3s −0.0606 −0.0644 −0.0613
3p −0.0547 −0.0565 −0.0551
3d −0.0555 −0.0556 −0.0556

8.3 Angular differential cross sections for p+He

collisions

In this section we consider angular differential cross sections for elastic scattering,

target excitation, and electron capture in p+He collisions. A number of methods

have been applied to calculate differential cross sections for this system. The

CTMC calculations of Schultz et al. [218] produced results in good agreement

with the experiment of Martin et al. [219] for differential electron-capture cross

sections into all projectile states at 100 keV. The classical static-potential scat-
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tering (SPS) method employed by Kobayashi and Ishihara [220] was applied to

elastic scattering at 25, 50, and 100 keV. Kobayashi and Ishihara [220] found a

large discrepancy between the experimental data of Ref. [221] and their results

at 100 keV. These authors also used the Glauber approximation to calculate the

differential elastic-scattering cross section. This method gave better agreement

with the experimental data in shape, however, the discrepancy in the magnitude

remained.

Methods based on the first Born approximation by Ghanbari-Adivi [222],

[220], and Mančev et al. [223] achieved some success in the narrow forward-

scattering cone but displayed unphysical dips and disagreement with experiment

at larger angles. In these works, the results for electron capture into all states were

obtained from the calculations into only the 1s state by using the Oppenheimer

scaling rule.

Other perturbative methods such as the CDW-EIS method of Abufager et al.

[224], the four-body boundary-corrected continuum-intermediate-state (BCIS-

4B) method of Mančev et al. [225], the symmetric eikonal (SE2) method of Ro-

dríguez et al. [226], and the distorted-wave Hartree-Fock (DWHF) method of

Wong et al. [58], have employed the distorted-wave formalism to calculate elastic

scattering [58], electron capture into the 1s state [224, 225], and excitation into the

2p state [226]. All these methods resulted in good agreement with experiments for

the particular processes they were applied to, except for the partial-wave method

of Wong et al. [58] which gave reasonable agreement only after scaling by a factor

of 0.1. No justification for such scaling was given.

The perturbative methods mentioned above are applicable at sufficiently high

energies. In the intermediate energy range, various reaction channels are interde-

pendent. Therefore, coupling between these channels is important. These effects

can be accounted for in the close-coupling formalism. In a two-centre AOCC

approach of [227], it was found that the effect of electron exchange has increasing

importance with decreasing projectile impact energy. The approach is found to be
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in good agreement with experimental data for electron capture into all projectile

states [219] and excitation into 2s and 2p states of the target [228], but it showed

poor agreement for elastic scattering [221] at a projectile energy of 100 keV. The

basis-generator method (BGM) was applied to differential scattering in p + He

collisions by Zapukhlyak et al. [229]. Two different approaches were used to treat

the two-electron target structure: the independent-event-model basis-generator

method (IEM-BGM) and the one-active-electron basis-generator method (OAE-

BGM). Both implementations of the method were used to calculate electron cap-

ture into all states of hydrogen over projectile energies ranging from 25 to 200

keV.

We now apply the two-electron and E1E WP-CCC methods to calculate an-

gular differential cross sections for direct scattering and electron capture in p+He

collisions. The two-electron results are labelled as WP-CCC and results obtained

using the effective one-electron method are labelled as E1EWP-CCC. The present

calculations are compared with experimental data and other theoretical calcula-

tions where available. Results are presented in the centre-of-mass frame.

In both approaches the number of included negative- and positive-energy pseu-

dostates are increased until adequate convergence is achieved in the predicted

cross sections for the investigated collision processes We found that a basis con-

taining nneg = 5 − ` bound states and 20 continuum bins on both the target

and projectile centres was sufficient to obtain converged results. In all cases the

maximum angular momentum required was `max = 3.

In Fig. 8.2 we present our calculations of the angular differential cross sections

for target excitation into all n = 2 states and electron capture into all projectile-

atom states included in the basis for 75 keV p + He collisions. As seen from the

figure, both the two-electron and E1E WP-CCC results agree very well with the

experimental data of Kvale et al. [228] for n = 2 excitation. For total electron

capture, our results are in excellent agreement with the most recent measurements

by Guo et al. [231]. The data by Schulz et al. [230] suggests a larger cross section
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Figure 8.2: Angular differential cross sections (in the centre-of-mass frame) for excita-
tion into the n = 2 target states, and electron capture summed over all projectile states
in 75 keV p + He collisions. Experimental data are by Kvale et al. [228], Schulz et al.
[230], and Guo et al. [231]. The theoretical results are: present two-electron and E1E
WP-CCC methods and IEM-BGM by Zapukhlyak et al. [229].

in the forward direction which is not supported by the measurements by Guo et al.

[231] or either the IEM-BGM results or our calculations. We generally find good

agreement between our calculations and the IEM-BGM results by Zapukhlyak

et al. [229], except between 0.5 to 0.8 mrad where the IEM-BGM underestimates

the experiments.

Figure 8.3 shows our results at 100 keV. For n = 2 excitation, we find excellent

agreement between the two-electron and E1E WP-CCC calculations and exper-

imental data by Kvale et al. [228]. We also find very good agreement with the

measurements by Schulz et al. [232]. For the total electron-capture cross section,

we compare our results with the experiments of Martin et al. [219] and Guo et al.
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Figure 8.3: Angular differential cross sections (in the centre-of-mass frame) for excita-
tion into the n = 2 target states, and electron capture summed over all projectile states
in 100 keV p + He collisions. Experimental data are by Kvale et al. [228], Schulz et al.
[232], Martin et al. [219], and Guo et al. [231]. The theoretical results are: present
two-electron and E1E WP-CCC methods, CB1 and BCIS-4B methods by Mančev et al.
[225], and CTMC method by Schultz et al. [218].

[231] along with the CB1 and BCIS-4B calculations by Mančev et al. [225] and

CTMC calculations by Schultz et al. [218]. In the forward direction we find both

our methods agree very well with the data by Guo et al. [231], and slightly over-

estimate the data by Martin et al. [219]. At larger scattering angles the WP-CCC

calculations underestimate the measurements of Martin et al. [219], but we find

generally good agreement with those of Guo et al. [231]. The CB1 and BCIS-4B

calculations by Mančev et al. [225] show unphysical dips and deviate significantly

from the experimental results away from the forward direction. Meanwhile, the

CTMC calculations by Schultz et al. [218] tend to agree with the data by Martin
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Figure 8.4: Angular differential cross sections (in the centre-of-mass frame) for excita-
tion into the n = 2 target states, and electron capture summed over all projectile states
in 150 keV p + He collisions. Experimental data are by Schulz et al. [232], Mergel et al.
[233], and Schöffler et al. [234]. The data from Schöffler et al. [234] is for capture into
the 1s state only. The theoretical results are: present two-electron and E1E WP-CCC
methods and CB1 and BCIS-4B methods by Mančev et al. [225].

et al. [219]. Overall we find that both the two-electron and E1E WP-CCC results

more consistently describe the available experimental data.

Our results for 150 keV collisions are shown in Fig. 8.4. At this energy the

present results for n = 2 excitation slightly overestimate the data of Schulz et al.

[232] in the forward direction but agree well at larger scattering angles, espe-

cially the two-electron WP-CCC calculations. For electron capture, the CB1 and

BCIS-4B calculations by Mančev et al. [225] again fail to accurately describe the

available experimental data at this incident energy. At large scattering angles our

results agree very well with the data of Mergel et al. [233], however significant
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Figure 8.5: Angular differential cross sections (in the centre-of-mass frame) for excita-
tion into the n = 2 target states, and electron capture summed over all projectile states
in 300 keV p + He collisions. Experimental data are by Mergel et al. [233], Loftager
(from Ref. [223]), and Schöffler et al. [234]. The data from Schöffler et al. [234] is for
capture into the 1s state only. The theoretical results are: present two-electron and
E1E WP-CCC methods and CB1 and BCIS-4B methods by Mančev et al. [225].

differences are seen for scattering angles less than 0.9 mrad. For comparison,

we also include the more recent measurements for capture into the 1s state by

Schöffler et al. [234]. From our calculations we find that capture into the 1s

state is by far the dominant channel for charge exchange, contributing 80% of the

total electron capture cross section. Interestingly, we observe significantly better

agreement with the data of Schöffler et al. [234] than that of Mergel et al. [233].

The latter significantly underestimates the ground-state data in a narrow cone

around the forward direction (that defines the integrated capture cross section)

and predicts a different slope.
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Figure 8.5 shows our results for 300 keV p + He collisions. As far as we are

aware, there are no data available for n = 2 excitation at this energy. For the

total electron-capture cross section, we compare with the measurements by Mergel

et al. [233] and Loftager. We again include the data for 1s capture by Schöffler

et al. [234]. Here we find that our results agree very well with the Schöffler et al.

[234] and Loftager data, but again differ from the measurements by Mergel et al.

[233] at smaller scattering angles. This leads us to conclude that the data by

Mergel et al. [233] may be inaccurate for small scattering angles. Once again,

the perturbative methods used by Mančev et al. [225] consistently differ from the

experimental data and our results.

Next, we calculate angular differential cross sections for for elastic scattering,

2s and 2p target excitation, and electron capture into the 1s, 2s, and 2p states

of the projectile atom. In Figs. 8.6–8.9 we show our results at 75, 100, 150, and

300 keV, respectively. We compare to the experimental data of Refs. [221, 228,

234, 235] and other calculations [58, 218, 220, 225–227, 229] where available.

For elastic scattering, presented in the upper-left panels of Figs. 8.6–8.9, we

find the most significant differences between the two-electron and E1E WP-CCC

results. The only experimental data available for this process are the measure-

ments by Peacher et al. [221] at 100 keV. Here there are also a number of other

theoretical results available. However, none of the calculations, including the

present results, agree with the magnitude of the data of Peacher et al. [221].

Previously, the failure of the theoretical treatments to adequately account for

the effects of the various inelastic channels, particularly ionisation and charge

transfer, was suggested to be a possible source of this discrepancy. Therefore,

we expected that including a sufficient number of negative-energy and positive-

energy pseudostates would resolve the discrepancy as such a large basis correctly

accounts for the polarisability of the target. However, as we can see from the

figure, this is not the case. As Peacher et al. [221] mentioned, relative data from

their experimental chamber, the interaction length of which was uncertain, were
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Figure 8.6: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, 2s and 2p target excitation, and electron capture into the 1s, 2s, and 2p
projectile-atom states in 75 keV p+He collisions. Experimental data are by Kvale et al.
[228]. The theoretical results are: present two-electron and E1E WP-CCC methods.

normalised to the absolute differential cross sections using a single normalising

constant. Given the two-electron WP-CCC method is based on the very accurate

correlated two-electron target structure and the obtained results are convergent

in terms of the included target- and projectile-centred states, one can cautiously

suggest that there could be a normalisation error in the experiment. Indeed,

agreement in shape between the experiment and the two-electron WP-CCC re-

sults is excellent. Note that there was no such disagreement in similar calculations

for the proton-hydrogen system (see Sect. 5.1).
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Figure 8.7: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, 2s and 2p target excitation, and electron capture into the 1s, 2s, and 2p
projectile-atom states in 100 keV p + He collisions. Experimental data are by Peacher
et al. [221], Kvale et al. [228], Seely et al. [235], and Schöffler et al. [234]. The theoretical
results are: present two-electron and E1E WP-CCC methods, DWHF method by Wong
et al. [58], AOCC method by Slim et al. [227], Glauber approximation, SPS, and FBA
by Kobayashi and Ishihara [220], CTMC method by Schultz et al. [218], CB1 and BCIS-
4B methods by Mančev et al. [225], OAE-BGM and IEM-BGM by Zapukhlyak et al.
[229], and SE2 method by Rodríguez et al. [226].

For target excitation into the 2s and 2p states (centre-left and lower-left pan-

els of Figs. 8.6–8.9, respectively) we find that the E1E WP-CCC results overes-

timate the two-electron WP-CCC calculations for larger scattering angles with

the difference between the two methods decreasing as projectile energy increases.

Nevertheless, both two-electron and E1E WP-CCC calculations agree very well

with the experimental results by Kvale et al. [228] available at 75 and 100 keV
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and for scattering angles up to 1.07 and 0.83 mrad, respectively. The AOCC

calculation by Slim et al. [227] at 100 keV also agrees well with the experiment,

following a very similar pattern as the two-electron WP-CCC method within the

angular range where the data are available. The cross section for 2p excitation

is the combination of the cross sections for excitation into the 2p−1, 2p0, and 2p1

states. Here, the situation is very similar to that of 2s excitation. Rodríguez

et al. [226] performed SE2 calculations at 75 and 100 keV for scattering angles

up to 0.5 mrad. Their results agree very well with our two-electron WP-CCC

calculations. Again, the E1E WP-CCC 2p angular cross section is somewhat

higher than the more accurate two-electron one away from the forward direction,

but the difference between the E1E and two-electron results is still within the

experimental uncertainties.

For angular differential cross sections for electron capture into the ground

state of the projectile, (upper-right panels in Figs. 8.6–8.9) Schöffler et al. [234]

reported data at 100, 150, and 300 keV using the accurate cold target recoil ion

momentum spectroscopy (COLTRIMS) technique. The E1E and two-electron

WP-CCC methods are in excellent agreement with their data over the entire

angular range at all three energies, especially for small scattering angles less than

0.5 mrad. At very small scattering angles our results agree with the CTMC

calculation of Schultz et al. [218] available at 100 keV. Agreement is reasonably

good also at larger angles with some deviation between 0.4 and 1.2 mrad. The

CB1 and the BCIS-4B methods of Mančev et al. [225], predict unphysical dips

around 0.4 and 0.8 mrad, respectively, as they did for total capture. They agree

with the data in the narrow forward cone which should ensure the resulting

integrated cross section is accurate. The IEM-BGM and OAE-BGM results [229]

are available for ground-state capture at 100 and 150 keV. They exhibit a similar

level of agreement with the experimental data as the E1E WP-CCC results.

For capture into the 2s state of hydrogen, the two-electron and E1E WP-

CCC results are very close to each other over the entire angular range. No
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Figure 8.8: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, 2s and 2p target excitation, and electron capture into the 1s, 2s, and 2p
projectile-atom states in 150 keV p + He collisions. Experimental data are by Schöffler
et al. [234]. The theoretical results are: present two-electron and E1E WP-CCC meth-
ods, CB1 and BCIS-4B methods by Mančev et al. [225], and OAE-BGM and IEM-BGM
by Zapukhlyak et al. [229].

experimental data is available for this process. The CTMC calculations by Schultz

et al. [218] are available at 100 keV. The difference between the CTMC results

and the WP-CCC ones is somewhat similar to the situation with ground-state

capture. For capture into the 2p state of hydrogen, the two-electron and E1EWP-

CCC methods are in agreement for scattering angles less than ≈ 0.55 mrad after

which they slightly deviate from each other. However, both methods disagree

with the experiment conducted by Seely et al. [235] for 100 keV. The WP-CCC
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Figure 8.9: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, 2s and 2p target excitation, and electron capture into the 1s, 2s, and 2p
projectile-atom states in 300 keV p + He collisions. Experimental data are by Schöffler
et al. [234]. The theoretical results are: present two-electron and E1E WP-CCC meth-
ods, CB1 and BCIS-4B methods by Mančev et al. [225], and OAE-BGM and IEM-BGM
by Zapukhlyak et al. [229].

calculations overestimate it for scattering angles near the forward direction and

underestimate it at larger angles. The CTMC results by Schultz et al. [218]

are in somewhat better agreement with the experiment but still do not correctly

reproduce the shape of the cross section, underestimating the experiment at small

angles and overestimating it at larger angles. As a matter of fact, we note that

the two-electron WP-CCC results at 25 keV are in very good agreement with the

corresponding measurements by Seely et al. [235], but at 50 keV agreement is
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already not good, just like at 100 keV (not shown).

Overall, we conclude that non-perturbative methods describe the experimental

data well. We note that our method includes all interaction potentials. Some

authors mentioned above solve the semiclassical Schrödinger equation without the

internuclear potential and incorporate the latter in the form of a phase factor.

The two-electron WP-CCC method is based on the full Schrödinger equation

with the full four-body Hamiltonian. Finally, we remark that in all cases the

differential cross sections display somewhat similar behaviour. They fall off fast

at small angles. This changes around 0.5 mrad beyond which the fall off is

slower. Larger scattering angles correspond to smaller impact parameters and

vice versa. Accordingly, scattering into large angles is mostly due to the heavy-

particle interaction at short distances while the electron interaction with the

projectile and the target nucleus is responsible for scattering into small angles

where collision takes place at relatively long distances.

8.4 Singly differential cross sections for

ionisation in p+He collisions

We now turn our attention to the SDCS for single ionisation of helium. Using both

the two-electron and E1EWP-CCC methods, we calculate all three types of singly

differential cross sections for ionisation at 75, 100, 150, and 300 keV. Compared

to p + H collisions, there is significantly more experimental and theoretical data

available for the SDCS for ionisation in p + He collisions. Since ionisation is a

challenging process to model, the majority of theoretical approaches are based on

the FBA, such as the calculations by Manson et al. [236] and Salin [237]. Schulz

et al. [238] also applied the first-order Born approximation with post-collision

interaction (FBA-PCI) method and Fukuda et al. [239] used the partial-wave

Born approximation (PWBA) to calculate the SDCS for ionisation in proton

collisions with helium. The theoretical approaches based on the FBA typically
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agree with experimental data for the TICS at high collision energies, but close

quantitative agreement in differential ionisation has been weak, particularly for

angular distributions.

Other perturbative methods applied to differential ionisation in p + He col-

lisions are the CDW method of Barna et al. [240], the CDW-EIS approaches of

Bernardi et al. [241] and Barna et al. [240], and the eikonal distorted-wave method

with static potential (DW-S) and eikonal distorted-wave method with Coulombic

potential (DW-C) approaches of Fukuda et al. [239].

Calculations based on classical descriptions of the collision are also available

for the different types of SDCS for ionisation in p + He collisions. Reinhold and

Olson [242] and Barna et al. [240] applied the CTMC method to the problem and

Meng et al. [243] used the dynamical classical trajectory Monte Carlo (dCTMC)

method. Results obtained with the binary-encounter free-fall (BE-FF) method

of Gryziński [40, 244] are available for the SDCS for ionisation as a function of

the emitted-electron energy.

As for the angular differential cross sections presented in Sect. 8.3, we found

that a basis of nneg = 5 − ` bound states and 20 discretisation bins, on both

centres, was sufficient with `max = 3. The value obtained by integrating the

SDCS for ionisation agreed with the TICS calculated directly from the expansion

coefficients within 99% for all results presented herein.

First, we present the SDCS differential in the energy of the emitted electron in

Fig. 8.10. The results are presented in the laboratory frame in comparison with

experiment [236, 238, 245–248] and other available calculations [40, 236, 238, 242,

244]. As seen from the figure, the two-electron and E1E WP-CCC results agree

very well with all the available experimental data at 75, 100, and 300 keV, but

only one set of measurements at 150 keV.

To be more specific, at 75 keV, the two-electron WP-CCC results are in ex-

cellent agreement with the experimental data by Schulz et al. [238] over the

electron-energy range where the data are available. Noticeably, they also repro-
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Figure 8.10: Singly differential cross sections (in the laboratory frame) for ionisation
as functions of the electron energy for 75, 100, 150, and 300 keV p + He collisions.
Experimental data are by Schulz et al. [238], Rudd and Jorgensen [245], Rudd et al.
[246], Rudd and Madison [247], Manson et al. [236] (labelled as Toburen), and Rudd
et al. [248] (labelled as Stolterfoht). (Note: The raw data labelled in the figure as
Rudd, Toburen and Stolterfoht are taken from Ref. [248]. As described in Ref. [248],
the data from Refs. [246] and [245] were recalculated to remove certain experimental
error, while the Toburen data came from Manson et al. [236] and was averaged to
reduce the number of data points. The Stolterfoht data came from multiple sources.
See Ref. [248] for details). The theoretical results are: present two-electron and E1E
WP-CCC methods, BE-FF method by Gryziński [244], CTMC method by Reinhold
and Olson [242], FBA, and FBA-PCI and CTMC methods by Schulz et al. [238], and
FBA by Manson et al. [236].

duce the slight shoulder present in the experimental data. This feature occurs

when the ejected-electron speed is approximately equal to that of the projectile.

At the matching speed the ejected-electron energy is 40.8 eV, and that is exactly

where is the shoulder of the SDCS obtained in the two-electron and E1E WP-

CCC approach. Other calculations available at this energy are the FBA and

FBA-PCI results of Schulz et al. [238]. The FBA-PCI results were originally

presented with a scaling factor of 0.5 to compare with the experiment in shape.

Figure 8.10 shows unscaled results. Though the FBA-PCI results overestimate

the experimental data in magnitude, they are in better agreement in shape. On
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the other hand, the simpler FBA results are in better agreement with the data in

magnitude, however, they do not reproduce the shoulder structure around 40.8

eV.

The situation at 100 keV is somewhat similar. The WP-CCC results are

in excellent agreement with all experimental data [238, 245–247] over the en-

tire ejected-electron energy range. The FBA-PCI results of Schulz et al. [238]

and FBA results of Manson et al. [236] fall below the experimental data of all

experiments, though, somewhat surprisingly, agreement improves for the simple

hydrogenic FBA [236] for ejected-electron energies larger than 100 eV. Of note is

the fact that the present WP-CCC results again exhibit a slight but noticeable

shoulder at 54.4 eV ejection energy which is the ejection energy where the speed of

the electron matches that of the projectile. The CTMC results by Reinhold and

Olson [242] also agree with the experimental data, particularly at small ejected-

electron energies, though these calculations do not display the shoulder structure.

The results of Reinhold and Olson [242] begin to slightly underestimate the ex-

perimental data and other methods as the ejected-electron energy increases. The

classical BE-FF approach of Gryziński [40] does not agree with any experimental

data at all, having too steep a slope initially and falling below and then flattening

to overestimate the data at large ejected-electron energies.

At 150 keV, again the present WP-CCC results exhibit a slight but quite

noticeable shoulder at 81.6 eV ejected-electron energy corresponding to the speed

of the projectile. Our results agree perfectly with the experimental data of Rudd

and Jorgensen [245] over the entire ejected-electron energy range. We also observe

reasonably good agreement with the experiment of Schulz et al. [238] at the lower

emission energies where these measurements were taken. The FBA-PCI and

CTMC calculations of Schulz et al. [238] are in excellent agreement with both

sets of experimental data as well as our results for ejection-energies below 40 eV,

though they begin to underestimate the data after this point. These calculations

also display a slight shoulder around 81.6 eV ejected-electron energy while the
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FBA does not. The FBA-PCI approach tends to overestimate the experiment of

Rudd and Jorgensen [245] and all other theoretical approaches across the energy

range presented. However, for ejected-energies greater than 50 eV, the FBA-PCI

method is in good agreement with the Schulz et al. [238] experiment. At these

energies, this experiment slightly deviates from the other available experimental

data [245].

By 300 keV projectile energy, the aforementioned shoulder structure, expected

at 163.3 eV, has dissipated completely, a change that is reflected in our results.

The present WP-CCC results are in excellent agreement with the experimental

data of Refs. [236, 246, 248]. Agreement with the results from the hydrogenic

FBA by Manson et al. [236] and classical BE-FF by Gryziński [40, 244] methods

is very good for low ejected-electron energies, however, they slightly deviate from

the experiment at emission energies greater than 100 eV.
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Figure 8.11: DI and ECC components for the two-electron WP-CCC result shown in
Fig. 8.10.

In Fig. 8.11 we present the DI and ECC components of the two-electron

WP-CCC results for the SDCS as functions of the emitted-electron energy. The
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components of the SDCS obtained in the E1E WP-CCC approach are not shown

here but are very similar. The effect of electron capture to the continuum changes

depending on the ejected-electron energy. It can be seen that at collision energies

of 75 and 100 keV, the ECC contribution constitutes most of the net differen-

tial cross section everywhere except for a narrow range of small ejected-electron

energies. At 150 keV, the ECC component dominates the total SDCS at ejected-

electron energies above 50 eV. By 300 keV, the low-energy region where the DI

component dominates extends to about 80 eV. For low ejected-electron energies,

the ECC component is negligible but becomes dominant beyond 80 eV, ensuring

excellent agreement with the experiment. This demonstrates the importance of

accounting for both the DI and ECC mechanisms in order to accurately describe

the experimental data at intermediate collision energies.
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Figure 8.12: Singly differential cross sections (in the laboratory frame) for ionisation as
functions of the electron angle for 75, 100, 150, and 300 keV p + He collisions. Exper-
imental data are by Gibson and Reid [249], Bernardi et al. [241], Rudd and Jorgensen
[245], Rudd et al. [246], Rudd and Madison [247], Manson et al. [236] (labelled as
Toburen), and Rudd et al. [248] (labelled as Stolterfoht). The theoretical results are:
present two-electron and E1E WP-CCC methods, CDW-EIS and CTMC methods by
Bernardi et al. [241], CTMC method by Reinhold and Olson [242], and FBA, CTMC,
CDW, CDW-EIS, and AOCC methods by Barna et al. [240].
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The two-electron and E1E WP-CCC results for the SDCS for ionisation as

a function of the ejected-electron angle shown in Fig. 8.12, in comparison with

experimental data [236, 241, 245–249] and other calculations [240–242]. Similar to

the SDCS as a function of the ejected-electron energy, the results are presented

in the laboratory frame. Generally, the WP-CCC calculations agree very well

with experimental measurements, where available. For this type of SDCS we

see some differences between the two-electron and E1E WP-CCC results. They

are practically identical when the emission angle is less than 90◦, but at higher

ejection angles the E1E results tend to be slightly higher than the two-electron

ones.

There are no experimental data available at 75 keV but we present our results

for completeness. At 100 keV the WP-CCC results agree well with the experi-

ments of Rudd and Jorgensen [245], Rudd et al. [246], and Rudd and Madison

[247] over the entire ejected-electron angle range. However, they do not agree with

the experimental data of Gibson and Reid [249] and Bernardi et al. [241]. Our

results are lower at small angles, though at the same time they overestimate these

experimental data at larger angles. Gibson and Reid [249] suggested that the data

of Rudd and Jorgensen [245], Rudd et al. [246], and Rudd and Madison [247] were

inaccurate due to the influence of electrons reflected by the chamber walls or mul-

tiple scattering in the target gas. The CTMC calculations of Reinhold and Olson

[242] are in agreement with the Gibson and Reid [249] experiment, however, they

do not conclude that this experiment is more accurate than the others. This is

because their CTMC approach neglects the correlation effects between the two

electrons. However, the present two-electron WP-CCC method uses a correlated

two-electron description of the target. This could suggest that the Rudd and

Jorgensen [245], Rudd et al. [246], and Rudd and Madison [247] measurements,

with which the two-electron WP-CCC results agree, might be more accurate in

the entire range of ejected-electron angles. The CDW-EIS method of Bernardi

et al. [241] extends only to 90◦, like the CTMC method of Reinhold and Olson
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[242], but agrees better with the WP-CCC results within that region.

The two-electron WP-CCC results at 150 keV are in excellent agreement with

the experimental data by Rudd and Jorgensen [245] over the entire range of

ejected-electron angles. No other theoretical calculations are available at this

collision energy. The E1E WP-CCC results are practically the same up until 90◦

after which they slightly overestimate the two-electron results and data of Rudd

and Jorgensen [245].

Overall good agreement between the WP-CCC results and the experimental

data [236, 246, 248] is again found at 300 keV. A comparative study of several

different methods was performed by Barna et al. [240] at this energy. The study

included the CTMC, FBA, CDW, CDW-EIS, and one-centre AOCC methods.

The FBA results sharply deviate from the experimental data for small angles

pointing at the importance of the (missing) Coulomb distortion. The CDW and

CDW-EIS results of Barna et al. [240] that do include the Coulomb distortion

indeed give significantly better agreement with the experiment. However, they

deviate from each other, and from the experimental data, for angles less than

30◦. Here the CDW results lie above the CDW-EIS ones and are closer to the

experimental points. At angles greater than 30◦ both approaches agree with the

experimental data. The CTMC results agree with the experimental data for

angles below 90◦ but then significantly underestimate the data at larger angles.

The single-centre AOCC results do not agree with the experimental data. This

could be due to the small size of the expansion basis used and not due to the

single-centre nature of the expansion since our calculations show that adding the

second centre would give a negligible contribution to the SDCS in emission angle

at 300 keV.

Figure 8.13 shows the DI and ECC components of the two-electron WP-CCC

results for the SDCS for ionisation as functions of the emitted-electron angle. Our

calculations reveal an interesting interplay between direct ionisation and electron

capture into the continuum in the angular-differential cross section as well. They
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Figure 8.13: DI and ECC components for the two-electron WP-CCC result shown in
Fig. 8.12.

clearly demonstrate that the ionisation cross section differential in the angle of

the ejected electron is dominated by electron capture into the continuum for

emission into small angles, while emission into large angles is purely due to direct

ionisation.

The present results for the SDCS for ionisation as a function of the scattered-

projectile angle are shown in Fig. 8.14. We compare the two-electron and E1E

WP-CCC calculations to the available experimental data [243, 250, 251] and

other calculations [237, 239, 243, 252]. To be consistent with the angular differ-

ential cross sections shown in Sect. 8.3, the results are presented in the centre-

of-mass frame. Experimental results are available only at 300 keV. The present

calculations are in particularly good agreement with the experimental data of

Giese and Horsdal [250] and Kristensen and Horsdal-Pedersen [251], however, the

measurements of Meng et al. [243] substantially deviate from them for scattering

angles less than 1 mrad. The DW-S and DW-C approaches of Fukuda et al. [239]

also exhibit good agreement with the experimental data of Giese and Horsdal
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Figure 8.14: Singly differential cross sections (in the centre-of-mass frame) for ionisation
as functions of the scattering angle of the projectile for 75, 100, 150, and 300 keV p+He
collisions. Experimental data are by Giese and Horsdal [250], Kristensen and Horsdal-
Pedersen [251], and Meng et al. [243]. The theoretical results are: present two-electron
and E1E WP-CCC methods, CTMC method by Schultz and Olson [252], PWBA, DW-
C, and DW-S methods by Fukuda et al. [239], and dCTMC, method by Meng et al.
[243].

[250] and Kristensen and Horsdal-Pedersen [251]. The PWBA method by Fukuda

et al. [239] demonstrates agreement with these experimental data for small angles,

though their cross section falls off steeply to significantly underestimate all the

other results for scattering angles greater than 0.6 mrad. The FBA of Salin [237]

performed better due to its use of the Hartree-Fock-Slater wave function for the

helium target. It is in agreement with our results in the forward direction though

overestimates the experiments elsewhere. The dCTMC approach of Meng et al.

[243] significantly overestimates the experimental data by Giese and Horsdal [250]

and Kristensen and Horsdal-Pedersen [251] and all other theoretical results over

the entire angular range considered. However, these authors agree with their own

measurements below 0.5 mrad. The CTMC method of Schultz and Olson [252]

was applied at 100 keV. The resulting cross section appears to have a somewhat
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different shape to the WP-CCC one. However, there are no experimental data

available at this energy to help resolve this discrepancy.

The DI and ECC components of the two-electron WP-CCC results for the

SDCS as functions of the scattering angle of the projectile are shown in Fig. 8.15.

At 75 keV collision energy, electron capture into the continuum dominates in

the SDCS as a function of the scattered-projectile angle near the forward direc-

tion. However, as the collision energy increases the direct ionisation mechanism

gradually becomes dominant. This finding reflects the fact that at 75 keV the

cross section for electron capture into all bound states of the projectile atom

is significantly large and comparable with the ionisation cross section, but falls

sharply as the energy increases and becomes orders-of-magnitude smaller than

the ionisation cross section at 300 keV (see Sect. 8.3).
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Figure 8.15: DI and ECC components for the two-electron WP-CCC result shown in
Fig. 8.14.

In conclusion, we find that both the two-electron and E1E WP-CCC methods

generally agree very well with the experimental data on the SDCS for ionisation

in p+He collisions. The present results are the first two-centre close-coupling cal-
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culations of these cross sections available in the literature. We find improvement

over perturbative methods which inconsistently describe the experimental data

and the CTMC method which in some cases differs significantly from experiment.

Furthermore, we are able to distinguish between the DI and ECC parts of our

results, which allows us to analyse the relative contribution of each mechanism

in different kinematic regimes. Overall, it is clear that both DI and ECC play

essential roles in the collision dynamics at the considered energies. Finally, we

see that the significantly simpler E1E WP-CCC method is capable of accurately

reproducing the SDCS as a function of electron energy and the SDCS as a func-

tion of the scattering angle of the projectile. Only in the case of the SDCS as a

function of ejected-electron angle for angles greater than 90◦ do we find that any

significant differences between the present two-electron and E1E approaches.

8.5 Chapter summary

The two-centre wave-packet convergent close-coupling approach was applied to

calculate singly differential cross sections for elastic scattering, target excita-

tion, electron capture, and ionisation in proton-helium collisions at intermediate

projectile energies. Results are presented using both the four-body WP-CCC

approach based on the correlated two-electron treatment of the target and the

three-body effective one-electron version based on the method developed in Ch. 7.

Calculations for the angular differential cross sections of excitation and electron

capture agree well with experiment. For elastic scattering, there is significant

disagreement between the only available experiment at 100 keV and all available

theories, though agreement in shape between the experiment and the two-electron

WP-CCC results is excellent. We cannot explain the discrepancy. New exper-

iments and independent calculations would shed more light on the situation.

Overall, the results of the two-electron and effective one-electron methods agree

with each other quite well indicating that the angular differential cross sections

are not very sensitive to electron-electron correlations. We find that the differ-
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ence between the E1E and two-electron WP-CCC results are largest for elastic

scattering and for the ionisation cross section differential in the ejection angle of

the electron.

We conclude that the WP-CCC method is a unique approach capable of pro-

viding a realistic differential picture of all interdependent and interconnected

processes taking place in proton-helium collisions at intermediate energies where

coupling between various channels is important. It does this in a unitary fashion

by conserving the norm of the total scattering wave function throughout the

collision process.



Chapter 9

Fully stripped helium-ion scattering

on helium∗

In this chapter we apply the two-electron and E1E WP-CCC methods described

in Ch. 8 to collisions of He2+ ions with helium atoms. This is an example of a

four-body scattering problem with the residual long-range Coulomb interaction in

the rearrangement channel. We present cross sections for total electron-capture,

excitation, and single ionisation for collisions energies from 10 keV to 5 MeV.

There are many experimental measurements and other theoretical calculations of

the integrated cross sections for the considered processes and we make compar-

isons wherever available. Furthermore, we present state-selective electron-capture

cross sections into the 1s, 2s, 2p, 3s, 3p, and 3d states of the hydrogen-like He+

ion formed after electron capture. However, for He2+ + He collisions, after the

electron is captured by the projectile, the formed and the residual ions become

indistinguishable, which makes the state-selective measurements very challenging.

Therefore, accurate calculations are required for state-selective cross sections to

fill the gap where experimental data is unavailable. Collisional data for these

processes is important for the ITER project.
∗ This chapter is adapted from work published by the candidate [253]. The publishers

(the American Physical Society) provide the author with the right to use the articles, or parts
thereof, in a thesis or dissertation without requesting permission.
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9.1 Overview of previous work

There have been a number of experimental measurements of the total cross section

for electron capture [254–258] and the total ionisation cross section [255, 257, 259–

261] for He2+ + He collisions. State-selective electron-capture cross sections were

measured by Mergel et al. [262] and Alessi et al. [258], however, the experiments

were unable to distinguish which He+ ion is in the excited state in the final chan-

nel. This is because when the reaction products are symmetric their experimental

separation becomes very challenging. Therefore, for n = 2 and 3 Refs. [258, 262]

provide data for the sum of the cross sections for electron capture and residual

target-ion excitation into the corresponding shell.

Depending on the projectile energy, a number of theoretical methods have

been applied to the He2+ +He scattering problem. At high energies, perturbative

methods such as the four-body boundary-corrected first-order Born (CB1-4B)

approximation by Mančev et al. [263] and the four-body CDW-EIS method by

Abufager et al. [264] agree well with the experimental data. Terekhin et al. [265]

used the three-body CDW-EIS method to study electron capture and ionisation

in multiply charged ion collisions with helium. The results agreed well with the

experimental data, especially at high impact energies. Very recently, Delibašić

et al. [266] calculated total and state-selective cross sections for single-electron

capture from the helium atom in its ground state by a number of multiply charged

ions using the BCIS-3B method at intermediate and high projectile energies.

At sufficiently high energies, where the probability of electron capture is small

in comparison with excitation and ionisation, single-centre close-coupling meth-

ods can produce accurate results. Barna et al. [267] and Pindzola et al. [268]

applied the single-centre AOCC method to calculate the TICS at 600 keV/u,

finding good agreement with the experimental data. Barna et al. [267] also ap-

plied the CTMC method to He2+ + He collisions. They used two versions of the

approach. In the non-equivalent electron classical trajectory Monte Carlo (NEE-
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CTMC) method the four constituents of the collision system are treated explicitly,

although the electron-electron interaction is neglected. The helium wave func-

tions were built as products of two different single-particle wave functions. The

second approach, called the equivalent electron classical trajectory Monte Carlo

(EE-CTMC) method, is a three-body method consisting of the projectile, the

active electron, and the remaining He+ ion. The two-electron wave functions

were constructed as products of two identical single-particle wave functions. The

NEE-CTMC method was found to agree better with the experiment than the EE-

CTMC one; however, both methods were not as successful as the AOCC method

for the purpose of investigating the ionisation process.

Baxter and Kirchner [269] developed two methods for calculating ion colli-

sions with helium based on the TDDFT. These are the time-dependent density-

functional theory using the Wilken-Bauer correlation integral (TDDFT-WB) ap-

proach and the time-dependent density-functional theory using the independent-

event-model (TDDFT-IEM) approach. Comparison with experimental data re-

vealed that the former provides a more accurate prediction of the cross sections for

electron capture and ionisation. In particular, the TDDFT-WB method signifi-

cantly improved agreement between theory and experiment for the total electron-

capture cross section in the problematic region below 100 keV/u.

The two-centre AOCC method was applied to study low- and intermediate-

energy He2+ + He collisions by Fritsch [270]. Their approach accounted for

electron-electron correlations, which play an important role at lower incident en-

ergies. Particular attention was paid to obtaining partial cross sections for single

transfer, transfer-excitation, and excitation of the target, which are sensitive to

the target description.

9.2 Calculations of integrated cross sections

We now present our results for the integrated cross sections for He2+ + He colli-

sions. Using both the two-electron and E1E WP-CCC methods systematic calcu-
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lations were performed. The convergence of the results was tested by gradually

increasing the number of both target-centred and projectile-centred states. We

found that a basis containing nneg = 5− ` bound states and npos = 20 to 30 bins,

depending on the incident energy, with `max = 3 was sufficient for the integrated

cross sections to converge. Impact parameters up to bmax = 15 a.u. were found to

be sufficient to obtain convergence and the maximum electron momentum varied

from κmax = 4.0 to 8.0 a.u. across the considered range of incident energies.

9.2.1 Single-electron-capture cross section

In Fig. 9.1 we present the two-electron and E1E WP-CCC total cross sections for

single-electron capture for He2+ + He collisions. The experimental data are only

available below 1 MeV/u. In the lower panel we show the results for a wide en-

ergy range on a logarithmic scale. There is very good agreement between all the

theoretical calculations and the experimental measurements above 200 keV/u.

Thus, we can conclude that the high-energy electron-capture problem is fairly

well understood as far as the integrated cross section is concerned. However, the

situation is less clear in the intermediate-energy region highlighted in the upper

panel of Fig. 9.1 using a linear scale. As one can see, there is significant deviation

among the theoretical results. As expected, the high-energy perturbative methods

[263, 264, 266] substantially overestimate the experimental data in this region.

On the other hand, the non-perturbative methods [269] predict dumping of the

cross section as energy decreases. The present results produce the maximum of

the cross section to be around 35 keV/u, in agreement with the measurements.

However, both two-electron and E1E WP-CCC methods overestimate the exper-

imental data near the maximum of the cross section. Not surprisingly, the two-

electron WP-CCC method performs better as it accounts for the electron-electron

correlation and electron-exchange effects. The deviation from the data by Rudd

et al. [254] is about 15% at most. This can be considered as reasonably good

agreement given the fact that the deviation between the two sets of independent
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Figure 9.1: Single-electron-capture cross section for He2+ + He collisions (upper and
lower panels are in the linear and logarithmic scales, respectively). Experimental data
are by Rudd et al. [254], Shah and Gilbody [255], de Castro Faria et al. [256], Shah
et al. [257], and Alessi et al. [258]. The theoretical results are: present two-electron and
E1E WP-CCC methods, CB1-4B method by Mančev et al. [263], BCIS-3B method by
Delibašić et al. [266], CDW-EIS method by Abufager et al. [264], dCTMC method by
Alessi et al. [258], and TDDFT-WB method and TDDFT-IEM method by Baxter and
Kirchner [269]. The key in the lower panel applies to both panels.

measurements by Rudd et al. [254] and Shah et al. [257] reaches 25%. The two

sets of results by Baxter and Kirchner [269] based on the TDDFT are similar in

shape, with the TDDFT-WB method giving a systematically larger cross section

than the TDDFT-IEM one, in better agreement with experiment, at all energies.

The dCTMC calculations are in very good agreement with the experimental data

of Shah and Gilbody [255] and Shah et al. [257] starting from 30 keV/u. Overall,

we can see that the two-electron WP-CCC and TDDFT-WB calculations agree

best with the experimental data in the entire energy range considered.



Chapter 9. Fully stripped helium-ion scattering on helium 193

9.2.2 State-selective electron-capture cross sections
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Figure 9.2: Partial 1s cross section for electron capture in He2+ + He collisions Exper-
imental data are by Mergel et al. [262] and Alessi et al. [258]. The theoretical results
are: present two-electron and E1E WP-CCC methods, CB1-4B method by Mančev
et al. [263], BCIS-3B method by Delibašić et al. [266], dCTMC method by Alessi et al.
[258], and AOCC method by Fritsch [270].

Figure 9.2 shows the cross sections for electron capture into the ground state

of the He+ ion. Our two-electron and E1E WP-CCC results are compared with

the experimental data by Mergel et al. [262] and Alessi et al. [258], as well as

the dCTMC [258], CB1-4B [263], BCIS-3B [266], and AOCC [270] calculations.

The figure exposes a huge discrepancy between various theoretical methods for

this important capture channel. The two-electron WP-CCC results are overall in

fairly good agreement with the experimental data, while the E1E WP-CCC ones

significantly overestimate the data near its maximum, highlighting the impor-

tance of accounting for the electron-electron correlation and electron-exchange

effects. The AOCC method of Fritsch [270], which also takes the interaction of

the electrons into account, is the only theory that agrees well with the experi-

mental data of Alessi et al. [258]. However, the results are available only below

65 keV/u. The dCTMC calculations of Alessi et al. [258] overestimate the two-

electron WP-CCC results at lower energies but are in good agreement above 60

keV/u.
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Figure 9.3: Partial 2` cross sections for electron capture in He2++He collisions. The the-
oretical results are: present two-electron and E1E WP-CCC methods, CB1-4B method
by Mančev et al. [263], BCIS-3B method by Delibašić et al. [266], and AOCC method
by Fritsch [270]. The key in the upper panel applies to both panels.

In Figs. 9.3 and 9.4 the two-electron and E1E WP-CCC calculations for cap-

ture into excited states are compared with the similar results based on the CB1-4B

method by Mančev et al. [263] and the BCIS-3B method by Delibašić et al. [266].

The cross sections for the 2s and 2p states are shown in Fig. 9.3 and the results

for the 3` states are presented in Fig. 9.4, summed over the magnetic quantum

numbers where applicable. Figure 9.3 reveals substantial discrepancy between

various theoretical methods for these n = 2 capture channels at low energies. We

emphasise, however, that all the methods are in excellent agreement with each

other at high energies, not only for the total cross section (shown in Fig. 9.1) but

also for practically all the state-selective cross sections (not shown). We can see
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substantial deviations for the n = 3 capture channels as well, however the two-

electron WP-CCC and the AOCC methods are in reasonably good agreement,

except for capture into the 3s state where the WP-CCC results are much higher.

It can be seen that the E1E cross sections somewhat overestimate the two-electron

WP-CCC ones at intermediate energies, but the difference is not as high as it

was for capture into the ground state. The results from all the methods merge as

the incident energy increases above 200 keV/u. Another observation is that both

two-electron and E1E WP-CCC calculations for electron capture into the 3d state

show oscillatory behaviour at low energies, where there is no clear maximum.

Figure 9.5 shows the cross sections for electron capture into the n = 2 and

3 shells (summed over the orbital angular momentum and magnetic quantum

numbers). We use the notation suggested by Mergel et al. [262] to denote

the states of the ion formed by the projectile after electron capture and the

residual target ion in the final channel. In this notation, (n, n′) indicates the

He2+ + He(1s2) → He+(n) + He+(n′) process. We contrast our results against

the experimental data by Mergel et al. [262] and Alessi et al. [258] for the

(n, n′) + (n′, n) process, meaning that the experiments do not distinguish which

He+ ion is in which state. We emphasise that the dCTMC calculations by Alessi

et al. [258] are for the (n, n′) + (n′, n) process, however our results as well as the

CB1-4B [263] and BCIS-3B [266] calculations ones correspond to the (n, 1) case.

As one can see from the figure, our E1E and two-electron WP-CCC results for

the (2, 1) channel agree with the experimental data for (2, 1)+(1, 2) starting from

60 keV/u. Agreement with the experimental data for the (3, 1) + (1, 3) process is

seen starting from 100 keV/u. This allows us to conclude that above 60 and 100

keV/u the dominant contribution to the cross section of the (2, 1) + (1, 2) and

(3, 1) + (1, 3) processes come from the (2, 1) and (3, 1) channels, respectively. We

also note that there is fair agreement between our two approaches throughout

the entire energy range, especially at high energies. The dCTMC results for the

(2, 1) + (1, 2) process roughly follow the experimental data even at low energies
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Figure 9.4: Partial 3` cross sections for electron capture in He2++He collisions. The the-
oretical results are: present two-electron and E1E WP-CCC methods, CB1-4B method
by Mančev et al. [263], BCIS-3B method by Delibašić et al. [266], and AOCC method
by Fritsch [270]. The key in the upper panel applies to all panels.

but they completely fail to reproduce the data for the (3, 1) + (1, 3) process. The

lower panel in Fig. 9.5 appears to suggest that the CB1-4B method of Mančev

et al. [263] better describes the (3, 1) + (1, 3) data at 20 and 50 keV/u. However,
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the agreement is accidental since, first, the CB1-4B results are for the (3, 1)

process only and, second, the method is known to significantly overestimate the

state-selective electron-capture cross sections at these energies. Overall, there is

clearly a need for better modelling for the (n, n′) + (n′, n) process.
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Figure 9.5: State-selective electron-capture cross sections for the He2+ + He(1s2) →
He+(n) + He+(n′) processes for (2, 1) + (1, 2) (upper panel) and (3, 1) + (1, 3) (lower
panel). Experimental data are by Mergel et al. [262] and Alessi et al. [258]. The mea-
surements do not distinguish which He+ ion is which state. The theoretical results are:
present two-electron and E1E WP-CCC methods, dCTMC by Alessi et al. [258], BCIS-
3B method by Delibašić et al. [266], and CB1-4B method by Mančev et al. [263]. The
asterisk after the method name indicates that the corresponding calculations include
the contributions from the He2++He(1s2)→ He+(n)+He+(n′ = 1) channels only. The
key in the upper panel applies to both panels.
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9.2.3 Elastic-scattering cross section

The present results for elastic scattering are shown in Fig. 9.6. The E1EWP-CCC

cross section is consistently larger than the two-electron WP-CCC one across the

entire energy range considered. The E1E WP-CCC results appear to increasingly

overestimate the elastic-scattering cross section as the projectile energy dimin-

ishes. To the best of our knowledge, there are no experimental data or other

theoretical results for elastic scattering available in the literature.
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Figure 9.6: Elastic-scattering cross section for He2+ + He collisions. The theoretical
results are: present two-electron and E1E WP-CCC methods and AOCC method by
Fritsch [270].

9.2.4 State-selective target-excitation cross sections

Figures 9.7 and 9.8 show our results for excitation into the 2` and 3` states of the

target, respectively. The E1E WP-CCC results for excitation into the 3d subshell

are shown only from 70 keV and above due to difficulties in reaching convergence

while maintaining the unitarity of the norm of the total scattering wave function

at lower energies. In both figures we also show the AOCC calculations of Fritsch

[270]. Starting from 50 keV/u, the cross section for excitation into the 2` state

becomes larger than all the other excitation cross sections, making this channel

the most probable target-excitation channel at higher energies.
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Figure 9.7: Partial 2` cross sections for target excitation in He2+ + He collisions. The
theoretical results are: present two-electron and E1E WP-CCC methods and AOCC
method by Fritsch [270]. The key in the upper panel applies to both panels.

We observe different levels of agreement between the three sets of calcula-

tions for different states. While below 40 keV/u the AOCC and WP-CCC partial

excitation cross sections appear more or less to agree with the corresponding coun-

terparts, at 65 keV/u they deviate substantially. For instance, the AOCC cross

sections for 2s and 2p excitation are about 70% larger than the corresponding

two-electron WP-CCC results. Disagreement is even bigger for 3p excitation. We

note the present cross sections for excitation into states with the largest orbital

angular momentum show a minimum at small energies. For 2p and 3d states, the

minima can also be seen in the AOCC calculations, though the density of the

energy points used by Fritsch [270] is not sufficient to exhibit this feature clearly.
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Figure 9.8: Partial 3` cross sections for target excitation in He2+ + He collisions. The
theoretical results are: present two-electron and E1E WP-CCC methods and AOCC
method by Fritsch [270]. The E1E WP-CCC results are shown only for energies where
convergent results could be obtained. The key in the upper panel applies to all panels.

The E1E WP-CCC results are consistently larger than the corresponding two-

electron calculations for all considered target-excitation channels except for 3d.

At the highest energies the two methods begin to converge, but the E1EWP-CCC
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results are still larger for the 2p and 3p channels. Combined, Figs. 9.6–9.8 seem

to suggest that electron-correlation effects are particularly important for direct-

scattering channels. This makes sense as these cross sections are very sensitive

to the accuracy of the target structure.

9.2.5 Single-ionisation cross section
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Figure 9.9: Single-ionisation cross section for He2+ + He collisions. Experimental data
are by Puckett et al. [259], Knudsen et al. [260], Shah and Gilbody [255], DuBois
[261], and Shah et al. [257]. The theoretical results are: present two-electron and
E1E WP-CCC methods, AOCC, EE-CTMC, and NEE-CTMC methods by Barna et al.
[267], CDW-EIS method by Terekhin et al. [265], and TDDFT-WB and TDDFT-IEM
methods by Baxter and Kirchner [269].

Finally, we consider ionisation of the helium target. Figure 9.9 shows the

present two-electron and E1E WP-CCC results for the integrated cross section

for single ionisation of helium in comparison with available experimental data and

other calculations. We note that both our methods include not only direct ioni-

sation of the target but also electron capture to the continuum of the projectile.

The two-electron and E1E results agree well with each other at low- and high-

energies. However, the E1E results somewhat overestimate the two-electron ones

at the intermediate energies, the difference being especially noticeable around 150

keV/u, where the peak of the cross section is observed. Overall, the discrepancy

between the two theories is within 15%.
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Our results are generally similar in shape to the experimental data by Shah

and Gilbody [255] and Shah et al. [257]. While they are in good agreement with

the data at low and high energies, one can see a noticeable discrepancy at inter-

mediate energies. Near the peak, the two-electron WP-CCC results overestimate

the data from Shah and Gilbody [255] by about 20%. This appears to be a

systematic problem in practically all close-coupling approaches to ionisation in

ion-atom collisions (see Refs. [33, 173, 227, 271, 272]). The WP-CCC results are

also in very good agreement with the experiment of Puckett et al. [259] in the

energy range above 150 keV/u.

We note that our two-electron calculations agree very well with the experi-

mental data of Knudsen et al. [260] available at three projectile energies (0.63,

1.44, and 2.31 MeV/u). At these energies, Barna et al. [267] provided the re-

sults of three distinct theoretical methods: the single-centre AOCC approach

and the EE-CTMC and NEE-CTMC methods. The AOCC results are in ex-

cellent agreement with the experimental data and our calculations. However,

both of the CTMC theories underestimate the experimental data, with the NEE-

CTMC method agreeing better than the EE-CTMC one. Pindzola et al. [268]

also performed single-centre AOCC calculations at high energies (not shown). As

expected, their results were practically identical to those by Barna et al. [267].

The TDDFT-WB and TDDFT-IEM methods by Baxter and Kirchner [269] were

also applied to calculate the single-ionisation cross section. We can see that the

results obtained using the TDDFT-WB approach agree with the TDDFT-IEM

calculations at low and high energies, but overestimate them in the intermediate-

energy region. The TDDFT-WB calculations are in very good agreement with

the available experimental data above 250 keV/u. The three-body CDW-EIS

approach by Terekhin et al. [265] demonstrates very good agreement with the

data of Shah and Gilbody [255] and Shah et al. [257].
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9.3 Chapter summary

In this chapter we applied the two-electron and E1E WP-CCC methods to cal-

culate the integrated cross sections for all single-electron processes occurring in

He2+ + He collisions. Results are presented over a wide range of incident en-

ergies from 10 keV/u to 5 MeV/u, where one-electron processes are expected

to dominate. Attention is focussed on the intermediate-energy region where we

find substantial deviations between various theoretical methods. Overall, our

two approaches show fairly good consistency with each other for all considered

processes, perhaps with the exception of capture into He+(1s). The cross sections

for total and state-selective electron capture as well as for single ionisation show

good agreement with the available experimental results and other theoretical

calculations. For total electron capture, we observe generally good agreement be-

tween our results and the experimental data throughout the entire energy range

considered. However, discrepancies between various theoretical results for the

total and state-selective electron-capture cross sections below 100 keV/u require

more investigation using independent methods. For single ionisation, excellent

agreement with experiment is obtained at high and low energies, whereas at inter-

mediate energies the agreement with the data remains somewhat unsatisfactory.

For electron capture and ionisation processes, the correlated two-electron cal-

culations show much better agreement with the available experimental data than

the effective single-electron ones. In particular, our results demonstrate that

accurate description of state-selective electron capture and direct scattering at

intermediate and low energies requires proper account of the electron-electron

correlations in the target treatment and electron-exchange effects between the

reaction products in the electron-transfer channels.
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Proton scattering on molecular

hydrogen∗

Accurately modelling the various processes that take place in ion collisions with

molecules is a challenging problem. The simplest homonuclear diatomic molecule

is H2, but even for this system the development of accurate electronic wave func-

tions is very difficult. In addition to the presence of two electrons, the multicentre

nature of the molecule makes it difficult to accurately represent its structure, re-

quiring complex theoretical descriptions and computationally demanding codes.

However, as the most abundant molecule in nature and the simplest molecu-

lar target it represents a first step towards developing theories for scattering on

more complex targets. One important reason for developing accurate methods

for calculating ion collisions with molecules is to improve the quality of beam

transport models used in hadron therapy treatment planning. Treatment plans

for hadron therapy are developed using Monte Carlo simulations, which rely on

accurate stopping power cross sections for collisions of the beam ions with bi-

ological molecules. The water molecule is used as a reference target in these

simulations [21]. Hence, there is an urgent need for accurate stopping power
∗ This chapter is adapted from works published by the candidate [273–277]. The publishers

(Springer, the American Physical Society, and MDPI) provide the author with the right to use
the articles, or parts thereof, in a thesis or dissertation without requesting permission.
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cross sections on proton collisions with H2O. The path to developing theories

that can accurately calculate cross sections for ion collisions with water starts

with the simpler H2 molecule target.

In this chapter we extend the two-centre WP-CCC method to proton colli-

sions with molecular hydrogen. To do this we use a spherically symmetric model

potential to construct one-electron wave functions representing the state of one of

the target electrons subject to the field of the remaining electron and two protons

averaged over all orientations. The method is first applied to calculate the TICS

for p̄ + H2 collisions where accurate calculations that account for the electron

correlations and multicentre nature of the target are available for comparison.

Then, we apply the approach to calculate integrated cross sections for all single-

electron processes in p + H2 collisions. Next we calculate singly differential cross

sections for elastic scattering, target excitation, electron capture, and ionisation.

Finally, the method is applied to calculate the doubly differential cross sections

for ionisation where currently available theory cannot describe the experimental

data well.

10.1 Overview of previous work

The p + H2 collision system has been extensively investigated. There are many

experimental measurements available for integrated and differential cross sections.

However, theoretical investigations have mainly focussed on integrated cross sec-

tions. Furthermore, calculations for H2 are typically performed by multiplying

the results for the atomic target by 2 or by using an empirical energy-scaling

procedure [278, 279].

10.1.1 Experimental data

Electron-loss and electron-capture cross sections were measured by Stier and Bar-

nett [280] as early as 1956. The total electron-capture cross section was also
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measured by Refs. [168, 281, 282], without making distinction between capture

that lead to dissociation of the residual H+
2 ion or not. However, measurements by

Shah et al. [283] and Shah and Gilbody [284] of the separate dissociative and non-

dissociative capture channels showed that the contribution from capture events

leading to dissociation are approximately an order of magnitude smaller than non-

dissociative capture processes. Rudd et al. [285] made empirical calculations and

estimated uncertainties by fitting an analytical formula to the range of available

experimental data. Additionally, state-selective cross sections for electron capture

have been measured for charge transfer into various states of the projectile atom

[286–294].

Hooper et al. [279] and Toburen and Wilson [295] provided data for the TICS

at high energies where the electron-capture contribution to total electron loss is

negligible in comparison with ionisation. Later, measurements by Edwards et al.

[296] and Shah et al. [283] showed that dissociative ionisation becomes negligible

in comparison with non-dissociative ionisation above 20 keV.

The first and only measurements of the DCS for electron capture in p + H2

collisions available in the literature are those by Sharma et al. [297] at energies

of 25 and 75 keV. However, the differential cross sections for ionisation have been

thoroughly investigated experimentally. The first comprehensive study of the

SDCS for ionisation in p + H2 collisions was performed by Kuyatt and Jorgensen

[298]. They measured both the angular and energy distribution of emitted elec-

trons at proton energies of 50, 75, and 100 keV. However, their integrated results

were significantly larger than the accepted TICS. Rudd and Jorgensen [245] also

measured the singly differential cross section for ionisation at 100 keV. They

extended their work to a wider energy range (up to 300 keV) in Ref. [246]; how-

ever, their integrated cross sections also overestimated the TICS. Later, Rudd

[299] measured the differential ionisation cross sections at small incident energies

from 5 to 100 keV. Gealy et al. [12] used a new apparatus designed to minimise

experimental error in measurements of the singly differential cross sections for
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ionisation in low-energy collisions. They measured the SDCS as a function of

ejected-electron energy and angle at projectile energies of 20, 48, 67, 95, and

114 keV. Additionally, the integrated ionisation cross sections from their SDCS

agreed well with independent measurements of the TICS. An extensive review

of experimental studies of the differential ionisation cross sections is given by

Rudd et al. [300]. As far as we are aware, there are neither experimental nor

theoretical data for the singly differential ionisation cross section as a function of

the scattered-projectile angle.

The doubly differential cross section for ionisation was measured by Rudd

and Jorgensen [245] at 100 keV over a wide range of ejected-electron energies

and angles. Kuyatt and Jorgensen [298], Rudd et al. [246], and Gealy et al.

[12] measured both the angular and energy distributions of the emitted electrons

simultaneously. In fact, they obtained the SDCS data by integrating over one

of the variables. In addition to this, Toburen and Wilson [295] independently

measured the DDCS for ionisation from 300 keV up to 1.5 MeV. In general,

their results agree well with those of Rudd et al. [246] at 300 keV. However,

their data deviate from those of Rudd et al. [246] at ejection energies less than

50 eV for ejection angles greater than 30◦. The most significant difference is

seen at the highest measured ejection energies and for emission in the backward

direction where the cross section is very small and the signal-to-noise ratio in

their measurements is low. At the larger impact energies considered by Toburen

and Wilson [295], the binary-encounter peak becomes visible for ejection of high-

energy electrons at small emission angles. This secondary peak in the DDCS is

the result of binary collisions between the projectile and the active electron.

Gibson and Reid [301] measured the DDCS for ionisation at 50 keV for ejection

energies over a range from 5 to 150 eV and emission angles from 0 to 100◦; however,

the TICS found by integrating their results differed from direct measurements by

33%. Furthermore, subsequent experiments called into question the accuracy of

their results due to potential spreading of their proton beam [302].
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The DDCS for ionisation as a function of the scattering angle of the projectile

and emission energy of the ejected electron for p+H2 collisions was first measured

by Alexander et al. [303] at 75 keV. Their data suggests the presence of some

structure in the cross section around a scattering angle of 1.4 mrad at some

emission energies considered. The authors suggested this may be due to two-

centre interference resulting from the indistinguishability of which target centre

the electron is emitted from. A further study was undertaken by Egodapitiya et al.

[304] for the single emission energy of 14.6 eV. The results slightly underestimate

the data of Ref. [303]. The most recent experimental measurements of this cross

section were performed by Sharma et al. [305]. Compared to the data from

Refs. [303] and [304], background signals were reduced, potentially increasing

the accuracy. Unlike the other experimental data, the measurements by Sharma

et al. [305] fall off smoothly at large scattering angles and show no evidence of

additional structure in the DDCS.

10.1.2 Theoretical methods

Thus far, the majority of theoretical works on ion collisions with molecular hy-

drogen is limited to negatively charged projectiles such as antiprotons [37, 69,

94, 306]. This removes the possibility of charge-exchange processes, significantly

simplifying the collisional problem. Accurate ionisation cross sections for an-

tiproton scattering on H2 were calculated by Abdurakhmanov et al. [37, 94] over

a projectile energy range from 1 to 2000 keV. They used a full two-electron two-

centre treatment of the target, constructing the electronic wave functions using

a configuration-interaction (CI) expansion in terms of the product of two one-

electron orbitals. While they obtained very good agreement with experiment,

even at low energies where other theories deviate significantly, the treatment

of the target structure significantly increased the complexity of the theory and

computational implementation when compared to methods that use a spherically

symmetric effective one-electron target description [69]. Lühr and Saenz [306]
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also used a single-centre AOCC method to calculate ionisation cross sections for

p̄ + H2 scattering. However, the same caveats apply whereby the two-electron

non-spherical treatment of the hydrogen molecule complicates the theory. Fur-

thermore, this complicates the generalisation of these sophisticated single-centre

approaches to include the second centre required for allowing capture of one or

both electrons from the target.

For proton projectiles, Corchs et al. [307] applied the CB1 method to calculate

cross sections for capture into the ground state of the projectile at collision en-

ergies from 100 to 1000 keV. The CDW-EIS and CDW-EFS methods were used

by Busnengo et al. [308] to calculate cross sections for single-electron capture

to all bound projectile states in p + H2 collisions from 20 keV to 10 MeV [308]

and state-selective cross sections for capture into the 2s, 3s, 2p, 3p, and 3d or-

bitals of the projectile [309]. While they found generally good agreement with

experiment [287, 289–291, 291, 293, 294] at intermediate impact energies, the

CDW approaches deviate from one another and some significantly overestimate

the low-energy experimental data.

The single-ionisation cross section for p + H2 collisions was calculated by

Galassi et al. [310] using the CDW-EIS method. Two methods for determining

the cross section were used. The first one is based on the simple Bragg additivity

rule, which multiplies the CDW-EIS results for p + H scattering by a factor of

2. The second one treats the target as two independent H atoms separated by

the equilibrium internuclear distance of the H2 molecule. The cross section for

proton scattering on H2 is then given by the integral over all orientations of

the target and an orientation-dependent factor resulting from the two scattering

centres. The authors refer to the latter approach as the continuum-distorted-wave

eikonal-initial-state molecular-orbital (CDW-EIS-MO) method. Good agreement

with the recommended data [285, 311] for the TICS was observed at high energies.

The CTMC method has also been applied to the p + H2 scattering problem.

Meng et al. [312] calculated single-ionisation and electron-capture cross sections
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as well as the state-resolved cross sections for transfer into the 2s, 2p, 3s, and

3p states of the projectile [313]. Results by Illescas and Riera [133] demonstrate

good agreement with experimental ionisation and electron-capture cross sections

from Refs. [279, 283, 295] over an energy range from 9 to 225 keV. Schultz et al.

[28] used the CTMC approach to calculate total electron-capture and ionisation

cross sections from 1 keV to 25 MeV. After applying a Born correction and nor-

malising to recommended data from Ref. [314], their results agree well with the

experimental results reported in Refs. [168, 281–285, 296].

The modified molecular-orbital (MMO) close-coupling method was employed

by Kimura [315] to calculate the 1s-capture cross section for p + H2 collisions

from 1 to 20 keV. Shingal and Lin [316] calculated ground-state electron-capture

cross sections using the travelling atomic-orbital expansion (AO) method. In this

approach the close-coupling equations for proton scattering on atomic hydrogen

are first solved. Then, the molecular wave function is constructed using a linear

combination of atomic orbitals (LCAO) and the scattering amplitudes for the

p + H2 system are calculated from the amplitudes for scattering on the atomic

target using perturbation theory.

The spherically symmetric model potential proposed by Vanne and Saenz

[317] was used in the single-centre AOCC method to calculate total electron-

loss cross sections for p + H2 collisions from 10 keV to 4 MeV [318]. Elizaga

et al. [319] calculated the electron-loss cross section using the travelling molecular-

orbital (MO) method and the optimised dynamical-pseudostates (ODP) method.

They also used a model potential in a CTMC approach. Their results agree

closely with those of Lühr et al. [318], except below 30 keV where the CTMC

results underestimate both the experimental data [285] and the other calculations.

However, the aforementioned methods cannot give any information on electron

capture.

The differential cross section for electron capture was calculated by Igarashi

[320] for incident energies of 25, 75, and 300 keV. They used the DWB approxima-
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tion and presented results obtained using a number of different structure models

for the H2 target. Agreement with the experimental data of Sharma et al. [297]

is mixed. Their calculated angular differential cross sections for electron capture

into the ground state agree well with the experimental data for scattering angles

less than 0.5 mrad. However, at larger scattering angles discrepancies are seen

between various approaches based on changing the target description. In partic-

ular, using a LCAO approach, they were able to deduce information about the

final vibrational state of the residual ion; however, the angular differential cross

sections for electron capture found using this model are very similar to results

using a fixed-nuclei (FN) approximation. In fact, they find that using the two-

effective-centre (TEC) method gives improved agreement with the experimental

data despite a less detailed description of the molecular nature of the target. In

the TEC approach the target is simply treated as two independent hydrogen-like

atoms separated by the equilibrium internuclear distance of H2.

Adivi [321] also used an effective one-electron target description to calcu-

late the differential cross section for electron capture at 300 keV using the CB1

method. Ghanbari-Adivi and Sattarpour [322] applied the four-body eikonal ap-

proximation (EA) at 100 and 300 keV. There is no experimental data available

at these energies for comparison.

There are far fewer theoretical investigations of differential cross sections for

ionisation. Rudd et al. [246] performed calculations of the SDCS differential in

both ejected-electron angle and energy at 100, 200, and 300 keV using the FBA.

They also compared the differential cross section in energy to that predicted by

the classical Gryziński theory. Both the FBA and Gryziński binary-encounter

method are only applicable at high incident energies, and while agreement with

their experimental results was generally good, the latter deviates from the ex-

perimental points at large ejection energies. Lühr and Saenz [69] used their

one-centre AOCC method to calculate the electron-loss cross section differential

in ejected-electron energy at 48 keV. Comparison with the experimental results
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of Gealy et al. [12] shows good agreement except around the region where the

ejected electron has a similar speed to the incident projectile. Here, the inability

of the one-centre AOCC method to distinguish between pure ionisation and elec-

tron capture results in an unphysical peak in the presented cross section. More

recently, Schultz et al. [28] used the CTMC method to calculate cross sections

for ionisation singly differential in electron angle and in energy. At 50 and 75

keV, their results for the ionisation cross section as a function of ejection energy

are smaller than the experimental data of Refs. [246, 298, 299]. At 100 keV,

their results agree with the FBA calculations and Gryziński approach for small

ejection energies, but deviate further from the experimental points than the FBA

calculations.

Calculating the doubly differential cross section for ionisation as a function

of the ejected-electron energy and angle in p + H2 collisions has proven to be

a significant challenge. There are only a few attempts to calculate this cross

section available in the literature. Moreover, most calculations have used the

FBA that is only applicable at high projectile energies. A different approach

was taken by Macek [90]. They used the first term in the Neuman expansion

of Faddeev’s equations for the final state of the projectile-electron-residual ion

system to calculate the DDCS for ionisation. The calculations were performed at

an incident energy of 300 keV. The results showed improved agreement with the

measured cross section compared to the FBA calculations but still demonstrated

significant deviation from the experimental data. In particular, the results of

Macek [90] significantly overestimate the cross section near small ejection energies.

This is possibly due to the fact that the Faddeev-equation approach is not valid

for breakup in a system of three charged particles. In this case, the kernel of the

Faddeev equations becomes non-compact.

The most recent calculations of the DDCS for ionisation as a function of

ejected-electron energy and angle in p + H2 collisions were performed by Galassi

et al. [310]. Using the FBA and the CDW-EIS approach and they calculated the
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DDCS at 114 keV and compared to the experimental data by Gealy et al. [12].

Their results show that Bragg’s additivity rule is inadequate at providing accu-

rate doubly differential cross sections for ionisation, overestimating the results

of Ref. [12], particularly for ejection at angles greater than 90◦. Nevertheless,

overall, the CDW-EIS-MO calculations demonstrate improved agreement with

experiment.

Since the first measurements of the DDCS as a function of the projectile-

scattering angle and electron energy by Alexander et al. [303], there have been a

number of attempts to calculate this cross section. The CDW-EIS approach to

proton collisions with atomic hydrogen was used in Ref. [303] by introducing a

two-centre interference factor to apply the results to the molecular target. The

results agree well with their experimental data at the lowest emission energies but

significant discrepancies are observed as the emission energy increases. Chowd-

hury et al. [323] used the molecular three-body distorted-wave-eikonal initial-

state (M3DW-EIS) approach in which the molecular target is represented by

orientation-averaged electronic wave functions [324], rather than averaging the

orientation-dependent cross sections over all possible orientations of the molecule

as is commonly done for diatomic molecular targets [306]. Quantitatively, the re-

sults were found to consistently underestimate the experimental data of Alexander

et al. [303] but demonstrated improved agreement in shape compared to the pre-

viously available CDW-EIS results. Chowdhury et al. [323] also used the FBA to

calculate this DDCS. The results significantly differ from the experimental data

and all other calculations. The CDW-EIS-MO approach was used by Igarashi

and Gulyás [325] to investigate the DDCS for ionisation in proton collisions with

H2. They used a number of different approximations to represent the interac-

tion potential between the projectile nucleus and residual target ion, resulting in

significant differences between their various calculations. To account for the two-

centre nature of the target nucleus they employ the TEC approximation. They

compared their results to those for the p + H collision system, i.e. without the
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interference factor arising from the way in which they model the nuclei of the

molecular target. Overall, it is shown that the inclusion of the two-centre factor

does not significantly alter the shape of the DDCS. As with the other results

based on the CDW formalism, the agreement is best for low emission energies

and worst at the highest emission energy considered.

10.2 Effective one-electron description of H2

There is currently no known method to determine of the exact electronic wave

functions for H2. However, several approximate methods exist for constructing

orthogonal sets of electronic states. Sophisticated approaches such as those based

on the CI expansion in terms of one-electron orbitals are capable of generating

two-electron wave functions for ground and excited states whose energies corre-

spond closely with experimentally measured values. Application of such methods

to collisions of antiprotons with H2 has resulted in highly accurate calculations

of the integrated ionisation cross section [37]. However, due to the mixing of the

electrons in the two-electron state, it is not possible to determine which electron

was ionised. This makes differential studies of ionisation impossible within the

CI framework.

Simpler, effective one-electron descriptions have also been used to generate

electronic wave functions for H2. These approaches typically reduce the problem

to a spherically-symmetric model system. An analytical potential is then chosen

such that the ground-state produced by solving the target Schrödinger equation

with this interaction has an energy corresponding to the experimentally measured

ground-state energy of H2. Although these methods are unable to distinguish

between different orientations of the molecule, they have seen considerable success

in application to scattering problems [69, 306, 326]. In practice, cross sections

for scattering on molecular targets averaged over all orientations are of significant

interest since they represent the usual situation where the molecules are randomly

oriented.
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One of the main aims of this work is to investigate differential ionisation

in proton collisions with molecular hydrogen. To that end, in this section we

describe an effective one-electron description of H2 that can be used to generate

orthonormal one-electron target states. Then, these states can be used in the

one-electron WP-CCC framework, allowing us to utilise highly optimised codes

already developed for one-electron atomic targets. In this method, the target is

treated as a spherically-symmetric H+
2 ionic ‘core’ with a single active electron

subject to the effective potential of the two protons and other electron. To rep-

resent the interaction of the active electron with the effective H+
2 ion we employ

the model potential [317]

Vmod(r) =
1

r
(1 + e−ζr). (10.1)

The parameter, ζ = 5.4824, is chosen such that the energy of the lowest-energy

state is equal to −0.5976 a.u. This value corresponds to the difference in en-

ergy between the ground state of H2 at the average internuclear distance of the

hydrogen molecule, 〈d〉 = 1.45 a.u., and the ground state of H+
2 at the same

internuclear distance. This effectively represents the hydrogen cation as a spheri-

cally symmetric system, so that there is no possibility of the residual ion existing

in a vibrationally excited state. Thus, this ground-state energy is analogous to

the adiabatic ionisation energy rather than the vertical ionisation energy of the

hydrogen molecule.

Practically, employing the model potential given in Eq. (10.1) within the WP-

CCC method consists of first writing the target Hamiltonian as

HT = −1

2
∇2
rT
− ZTVmod(rT). (10.2)

Then, description of the target is reduced to that of a quasi one-electron atom.

The effective charge is ZT = +1 for the H+
2 ion. To find bound-states, we solve

the target Schrödinger equation using an iterative Numerov approach for negative
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values of the energy. This results in a set of eigenstates for the (quasi-atomic)

hydrogen-like system. To represent the continuum, we construct wave packets

using the method outlined in Sect. 3.2. The pure Coulomb wave is replaced with

the continuum wave solution obtained by solving the Schrödinger equation for

positive values of the energy using the iterative Numerov approach.

10.2.1 Matrix elements in E1E approach to H2

Using the effective one-electron description of H2, the interaction potential V T

entering the matrix elements in Eq. (3.39) becomes

V T = ZTZPVmod(R)− ZP

|rT −R|
, (10.3)

where we choose to represent the interaction between the projectile nucleus and

H+
2 ion with the same model potential as the interaction between the electron

and the H+
2 ion.

First, consider the direct-scattering matrix elements in the α → α′ channel.

We substitute Eq. (10.3) into Eq. (3.41) and expand the potential of interaction

between the projectile nucleus and active electron in terms of partial-waves as

V T = 4π
∑
λµ

1

2λ+ 1
Uλ(R, rT)Y ∗λµ(R̂)Yλµ(r̂T), (10.4)

where

Uλ(R, rT) =


δλ0ZTZPVmod(R)− ZPR

λ

rλ+1
T

, R ≤ rT,

δλ0ZTZPVmod(R)− ZPr
λ
T

Rλ+1
, R > rT.

(10.5)

The radial and angular parts of the integral over rT can then be separated and

we obtain the same result as in the pure three-body Coulombic case in Sect. 3.3.

The only difference is the functional form of Uλ(R, rT).

For the β → β′ channel, the total interaction potential is the sum of the
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heavy-particle interaction and the interaction between the target H+
2 core and

the electron,

V P = ZTZPVmod(R)− ZTVmod(rT). (10.6)

There is an additional term here compared to V T with an exponential factor due

to the model potential acting between the residual target ion and electron (but not

between the projectile and electron). This additional term can be partial-wave

expanded in terms of the product of the spherical Bessel and spherical Hankel

functions [102], leading to

V P = 4π
∑
λµ

(−1)λ

2λ+ 1
U ′λ(R, rP)Y ∗λµ(R̂)Yλµ(r̂P). (10.7)

The expansion coefficients are defined as

U ′λ(R, rP) = Uλ(R, rP) +


ζ(2λ+ 1)jλ(iζR)h

(1)
λ (iζrP), R ≤ rP,

ζ(2λ+ 1)jλ(iζrP)h
(1)
λ (iζR), R > rP,

(10.8)

where jλ and h(1)λ denote the spherical Bessel and spherical Hankel functions of

the first kind, respectively. Evaluating these special functions with complex argu-

ments accurately is challenging. We used the coulcc subroutine from Thompson

and Barnett [327]. Evaluating the direct matrix elements this way is more ac-

curate compared to a purely numerical approach. This has a significant effect

for low-energy projectile scattering where small inaccuracies can exaggerate the

ill-conditioning caused by the lack of orthogonallity between the two basis sets.

The overlap matrix elements are unchanged in the effective one-electron de-

scription of H2. Meanwhile, the interaction potential in the exchange matrix ele-

ments is replaced with the new form of V T or V P defined in Eqs. (10.3) and (10.6)

as appropriate. Overlap and exchange matrix elements are then evaluated nu-

merically in spheroidal coordinates the same way as described in Sect. 3.3.



Chapter 10. Proton scattering on molecular hydrogen 218

10.2.2 Probabilities and cross sections for single-electron

processes

In the three-body WP-CCC method the integrated ionisation cross section is

given by Eq. (3.147). To calculate cross sections for scattering from the two-

electron H2 target, we can write the probability entering Eq. (3.147) in terms of

the probability for a single-electron, P SE
f (b), as

Pf (b) = 2P SE
f (b) (10.9)

to account for the equivalent chance of either electron transitioning to the final

state f in the physical two-electron collision system [318]. The reason for the

factor of 2 is the fact that there are 2 electrons and both of them can be modelled

in exactly the same way. In other words, the two-electron problem is cut into two

equal effective single-electron halves. When the single-electron problem is solved,

the two halves must be brought together, hence, the factor of 2.

An alternative method is to employ the independent-particle model (IPM)

[328]. The IPM writes the probability of a single-electron process as

P IPM
f (b) = 2P SE

f (b)[1− P SE
f (b)]. (10.10)

This corresponds to one electron occupying the state f while preventing the

other electron from occupying the same state. A disadvantage of this approach

is that the two-electron amplitudes cannot be calculated, only the probabilities.

Therefore, it is impossible to calculate differential cross sections for ionisation.

However, in the first approach, Eq. (10.9), the amplitudes for scattering on the

two-electron target can be obtained simply by multiplying the one-electron am-

plitudes by a factor of
√

2 which follows from normalisation (to unity) of the

two-electron target wave function.
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10.3 Calculations of integrated cross sections

10.3.1 Electron loss in p+H2 collisions

Before considering p + H2 collisions, we first apply the developed idea to an-

tiproton projectiles. With no electron capture to consider, and the probability

of protonium formation being negligible, we can test the target structure in the

WP-CCC method without the additional complexities associated with positively

charged projectiles. Therefore, a one-centre expansion is sufficient. In this case,

the only surviving matrix elements in Eq. (3.39) are DT
α′α.

To obtain convergent results, the radial grid extended to 300 a.u., and the

z-grid extended from −100 to +100 a.u. relative to the target nucleus with

400 points. A total of 32 impact-parameter points which ranged from 0 to 22

a.u. were used for antiproton scattering. The maximum momentum value for

the continuum discretisation varied from 5 to 8 a.u. depending on the incident

energy.
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Figure 10.1: Single-electron-loss cross section for p̄ + H2 collisions. Experimental data
are by Andersen et al. [329], Hvelplund et al. [330], and Knudsen et al. [331]. The
theoretical results are: WP-CCC method, WP-CCC method without the factor of 2 in
Eq. (10.9) (Test 1), WP-CCC method using the IPM in Eq. (10.10) (Test 2), effective-
one-electron AOCCmethod by Lühr and Saenz [69], two-electron AOCCmethod of Lühr
and Saenz [306], and two-electron CI CCC approach by Abdurakhmanov et al. [37].
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Figure 10.1 shows the total cross section for ionisation in p̄ + H2 collisions

as a function of the projectile energy. At high impact energies there is good

agreement between our results and the experiments by Andersen et al. [329]

and Hvelplund et al. [330]. Between 30 and 80 keV the WP-CCC results un-

derestimate the experimental data which includes the region near the peak of

the ionisation cross section. However, the same is true of the other theoretical

results shown in Fig. 10.1. At low energies our results do not fall sufficiently

to match the experimental data, as is also seen in the results of Ref. [69] which

use the same model potential representation in a close-coupling formalism. We

see small deviations from the results of Ref. [69]. These are due to different

types of the pseudostates used. The theoretical works that use a full two-electron

treatment of the target [37, 306] both fall in a similar fashion to the experiment

at low energies. The calculations by Abdurakhmanov et al. [37] showed that the

reduction of the ionisation cross section at low energies observed in experiment

is due to the two-centre nature of the molecular target. It follows that theories

which use spherically symmetric target structures would not replicate this so-

called target structure-induced suppression of the ionisation cross section. This

suggests that the simple effective potential cannot accurately model the properties

of the hydrogen molecule in low-energy antiproton collisions. Proton collisions are

fundamentally different, however, due to low-energy collisions being dominated

by electron-capture processes.

In Fig. 10.1 we also compare our results with those obtained in two test

calculations. In Test 1 the factor of 2 in Eq. (10.9) is dropped, while Test 2 is

based on the IPM. Agreement with experiment is significantly worse in Test 1 at

intermediate and high energies. The Test 2 results are not too bad, but clearly

this approach does not change the low-energy behaviour of the cross section. That

is because this disagreement with experiment is purely due to the single-electron

spherical treatment of the target structure. Such an approximation cannot ac-

count for the target-structure induced suppression responsible for the shape of the
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low-energy p̄ + H2 ionisation cross section [37, 94]. We conclude that multiplying

the single-electron probability by 2 confirms the widely-used approach. In addi-

tion, we should note that in our approach there is no need to explicitly prevent

the second electron from occupying the same final state as there is effectively

no second electron. We use Eq. (10.9) for all following results. Since our model

cannot differentiate between one- and two-electron processes, to avoid confusion,

we label our result as a single-electron one.

10.3.2 Integrated cross sections for p+H2 collisions

Now we apply the two-centre WP-CCC method to calculate the integrated cross

sections for elastic scattering, excitation, electron loss, single ionisation, and single

electron capture in proton collisions with H2. Additionally, we present state-

resolved capture cross sections for exchange into the 1s, 2s, 2p, 3s, 3p, and 3d

states of the projectile. To do this we switch the charge of the projectile to

+1 and use a two-centre expansion of the total scattering wave function. With

this we solve the full set of coupled equations given in Eq. (3.39). The single-

electron-loss cross section is given by the sum of the single-ionisation and single-

electron-capture cross sections. The required basis for converged results contained

bound states with principal quantum numbers up to nneg = 10 − ` and angular

momentum up to `max = 4. For incident energies below 25 keV the continuum

was discretised with 15 bins up to a maximum electron momentum of κmax = 4

a.u. Then, from 25 keV we used 20 bins and κmax was increased up to 7 a.u.

at a projectile energy of 500 keV. At the highest impact energies considered, 35

continuum bins were required to obtain sufficient continuum discretisation up to

κmax = 11 a.u. The z-grid extended from −300 to +300 a.u. with 600 to 1000

points depending on the incident energy. These parameters were sufficient for the

elastic-scattering, total capture, and ionisation cross sections (and state-resolved

capture cross sections), presented below, to reach 99% convergence. The net

excitation cross section has converged to within 95%, with nneg = 10, however,
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adding additional states caused unitarity violations at low incident energies. A

total of 32 impact parameters ranging from 0 to 22 a.u. were used at low impact

energies, while 64 points from 0 up to 40 a.u. were required to obtain convergence

in the results at high impact energies.
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Figure 10.2: Single-electron-loss cross section for p + H2 collisions (upper and lower
panels are in the linear and logarithmic scales, respectively). Experimental data are by
Stier and Barnett [280], Hooper et al. [279], Rudd et al. [285], and Shah et al. [283]. The
theoretical results are: present WP-CCC method, MO and ODP methods by Elizaga
et al. [319], CTMC approach by Elizaga et al. [319] and Schultz et al. [28], and single-
centre AOCC approach by Lühr et al. [318]. The key in the lower panel applies to both
panels.

Our results for the total single-electron-loss cross section for p + H2 collisions

are shown in Fig. 10.2. They agree well with available experimental data and

single-centre close-coupling calculations by Lühr et al. [318] as well as MO and

ODP results by Elizaga et al. [319] from 20 to 1000 keV. The CTMC results by
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Schultz et al. [28] are shown as points connected with straight lines. They under-

estimate the experimental results by Rudd et al. [285] and Shah et al. [283] as well

as the present ones below 70 keV, but are slightly larger than the experimental

data by Stier and Barnett [280]. However, above 100 keV the CTMC calculations

underestimate both the experiment by Hooper et al. [279] and our calculations.

At lower incident energies, our results overestimate the cross section. The 1s-

capture channel accounts for the majority of the total cross section for electron

capture. As discussed below, the observed overestimation of the electron-loss

cross section at low energies is due to an increasing contribution from capture

into the 1s state of the projectile.
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Figure 10.3: Single-electron-capture cross section for p + H2 collisions. Experimental
data are by Stier and Barnett [280], Barnett and Reynolds [281], McClure [168], Toburen
et al. [282], Rudd et al. [285], and Shah et al. [283]. The theoretical results are: present
WP-CCC method, CTMC approach by Meng et al. [312], Illescas and Riera [133], and
Schultz et al. [28], and CDW-EIS method by Busnengo et al. [308].

Using our two-centre method, we are able to decompose the electron-loss

cross section into electron-capture and single-ionisation contributions. The total

electron-capture cross section is shown in Fig. 10.3. Our results overestimate the

experiments of Shah et al. [283] and McClure [168] below 30 keV, but converge to

their data above 60 keV. The empirical data from Rudd et al. [285] are higher than

the other experimental results, and our calculation agrees more with these data.

In the high-energy regime, our results are slightly larger than the experimental
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data by Toburen et al. [282] and Barnett and Reynolds [281]. Across the entire

energy range shown, the WP-CCC cross sections are larger than the CTMC

results of Schultz et al. [28]. We also show the CDW-EIS calculations of Busnengo

et al. [308]. Our calculations are larger than the latter across the entire energy

range considered.
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Figure 10.4: Single-ionisation cross section for p + H2 collisions. Experimental data
are by Hooper et al. [279], Toburen and Wilson [295], Edwards et al. [296], Shah and
Gilbody [284], and Shah et al. [283]. The theoretical results are: present WP-CCC
method, CTMC approach by Meng et al. [312], Illescas and Riera [133], and Schultz
et al. [28], and CDW-EIS-MO method by Galassi et al. [310].

The results for the non-dissociative single-ionisation cross section are given

in Fig. 10.4. This provides a good representation of the total cross section for

single ionisation since the dissociative channel contributes significantly less [283].

The WP-CCC results agree very well with available experimental data from 30

to 1000 keV. This indicates that the ionisation cross section is less sensitive (than

the electron-capture one) to the accuracy of the target wave function. At higher

energies, our calculations fall between the experimental results of Toburen and

Wilson [295] and Shah and Gilbody [284], very close to the data from Hooper

et al. [279]. The results by Edwards et al. [296] overestimate the other experiments

and theories around the peak in the ionisation spectrum but converge to those

of Shah and Gilbody [284] at higher energies. Our results agree well with the

CTMC calculations in the energy region below 100 keV. However, above 100
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keV the calculations of Schultz et al. [28] are somewhat higher and those from

Illescas and Riera [133] are lower than ours, with all three sets of results being

within the experimental uncertainty. The CDW-EIS-MO calculations by Galassi

et al. [310] produce larger cross sections than the WP-CCC method, especially at

lower energies where the CDW approaches are less reliable. In particular, they

overestimate the ionisation cross section in the region of its maximum around 100

keV, whereas our calculations agree well with the experimental results.

The total cross section for elastic scattering is shown in Fig. 10.5. The only

other calculation available in the literature that we are aware of is the CTMC

one by Schultz et al. [28]. Our results appear to significantly differ from the

CTMC ones in the entire energy range. Experimental data and further theoretical

calculations are required to resolve this discrepancy.
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Figure 10.5: Elastic-scattering cross section for p+H2 collisions. The theoretical results
are: present WP-CCC method and CTMC approach by Schultz et al. [28].

Figure 10.6 presents the net cross section for excitation into all states included

in the target-centred basis (nneg = 10 and `max = 4). The results of Schultz et al.

[28] are also shown. Note that unlike their other results, the excitation cross

section is not normalised to the experimental data from Ref. [314]. The CTMC

results are larger than ours above 50 keV, generally agreeing in shape. Below 20

keV the shape of our results is different. However, we should note that this is the

energy region where our model potential is expected to become less reliable.
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Figure 10.6: Net target-excitation cross section for p + H2 collisions. The theoretical
results are: present WP-CCC method and CTMC approach by Schultz et al. [28].

We also calculated the state-selective electron-capture cross sections for those

channels for which experimental or theoretical data is available. Figure 10.7 shows

capture into the ground state of the projectile. This is the dominant channel

contributing to the total electron-capture cross section presented in Fig. 10.3.

Our results are in good agreement with the CB1 calculations by Corchs et al.

[307] at 100 keV and above. Below 30 keV, the WP-CCC results overestimate

the MMO calculations of Kimura [315] and AOCC ones by Shingal and Lin [316].

Although above 40 keV the AOCC calculations are larger than both the CB1

calculations and our results.

In Fig. 10.8 we present results for capture into the 2` states of the projectile

in comparison with the available experimental data. Note that the experimental

results of Shah et al. [292] are normalised absolutely, as are those from Andreev

et al. [286]. However, the other experimental data are normalised to cross sections

from other scattering systems (see Ref. [292] for a detailed discussion). For

capture into the 2s state, our results describe the shape and magnitude of the

experimental works [286–288, 292] at all energies, except for overestimating the

data from Hughes et al. [290]. The lower panel of Fig. 10.8 shows the cross section

for capture into the 2p projectile state. As with capture into the 2s state, here
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Figure 10.7: Partial 1s cross section for electron capture in p + H2 collisions. The
theoretical results are: present WP-CCC method, CB1 method by Corchs et al. [307],
MMO method by Kimura [315], and AOCC method by Shingal and Lin [316].

we find that the WP-CCC results reproduce the magnitude and shape of the

available experimental data very well.

Figure 10.9 shows the cross section for electron capture into the 3` states of

atomic hydrogen. Agreement between other theories and our results for electron

capture into the 3s state (upper panel) is very similar to capture into the 2s

state. Our calculations are consistently larger than the CDW-EIS calculations.

The CTMC calculations agree fairly well with the WP-CCC results, but deviate

below 40 keV. Our results agree well with the experiment of Williams et al. [293]

above 20 keV, but underestimate it below this energy. Experimental data from

Hughes et al. [289] are smaller than the WP-CCC results like for 2s capture.

In the middle panel of Fig. 10.9, we see that the WP-CCC results overestimate

the experimental data from Hughes et al. [289] for capture into the 3p projectile

state. However, at low energies our calculations agree with the data from Dawson

and Loyd [294], although not in the same shape as their points suggest. The

CDW-EIS and CTMC calculations agree well with our results above 50 keV.

We finally consider capture into the 3d state of atomic hydrogen in the lower

panel of Fig. 10.9. Here, our result is slightly larger than the experimental data

by Dawson and Loyd [294] below 10 keV while above 40 keV, we underestimate
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Figure 10.8: Partial 2` cross sections for electron capture in p + H2 collisions. Ex-
perimental data are by Andreev et al. [286], Bayfield [287], Hughes et al. [290], Birely
and McNeal [288], Shah et al. [292], and Hughes et al. [291]. The theoretical results
are: present WP-CCC method, CTMC approach by Meng et al. [313], and CDW-EIS
method by Busnengo et al. [308].

the experimental points of Hughes et al. [289]. The CDW-EIS calculation of

Busnengo et al. [308] is the same as ours above 50 keV but suggests a different

shape to the experimental data at lower energies.

To summarise, we have presented the first two-centre coupled-channel calcu-

lations of the integrated cross sections for p + H2 collisions. Agreement with the

experimental data for the TICS is very good. For electron capture, the measure-

ments of the total and state-selective cross sections are generally described well by

our approach. Interestingly, our results significantly overestimate other theoreti-

cal calculations for charge transfer into the ground state yet generally agree well
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Figure 10.9: Partial 3` cross sections for electron capture in p + H2 collisions. Exper-
imental data are by Hughes et al. [289], Williams et al. [293], and Dawson and Loyd
[294]. The theoretical results are: present WP-CCC method, CTMC approach by Meng
et al. [313], and CDW-EIS method by Busnengo et al. [308].

with experimental data for low energy capture into 2` and 3` states. A possible

reason for the observed differences between the present results and experimental

data at low projectile energies is the simple target structure. Electron-correlation
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effects and the anisotropy of the target potential play a more important role in

the collision dynamics for slower projectiles.

10.4 Angular differential cross sections for p+H2

collisions

In this section we present singly differential cross sections for elastic scattering,

target excitation, and electron capture. Differential cross sections provide a more

detailed description of the collision processes and therefore represent a more strin-

gent test on theoretical methods than integrated cross sections.

Our calculations for the elastic-scattering, total excitation, and total single-

electron-capture cross sections for collision energies of 25, 75, 100, and 300 keV

are presented in Figs. 10.10–10.13, respectively. In the upper panels, we compare

the differential cross sections for these three processes. In the lower panel, we

compare our results for electron capture to other theories and experimental data

where available. To the best of our knowledge no experimental or theoretical

data is available for the orientation-averaged elastic-scattering or excitation cross

sections for p + H2 collisions at intermediate energies.

The upper panels allow us to gauge comparative information about the values

of these three cross sections. If we consider scattering into small angles, which

practically define the integrated cross section, at 25 keV the dominant process

is electron capture. However, as the collision energy grows, the excitation cross

section grows, while the elastic-scattering and electron-capture cross sections di-

minish, so that at 75 keV and above, excitation becomes dominant. We can

also see that the EC cross section diminishes faster, becoming smaller than the

elastic-scattering cross section at 300 keV.

For the angular differential cross sections for electron capture there are a

number of investigations with which we can compare our results. At 25 keV, we

find that our calculations agree well with the data of Sharma et al. [297] up to 0.8
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Figure 10.10: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, total excitation, and single-electron capture (upper panel) in 25 keV p + H2

collisions. In the lower panel the present results for EC are compared with the ex-
perimental data by Sharma et al. [297] and other available calculations. The other
theoretical results are: various DWB methods by Igarashi [320].

mrad, more closely following the experiment than other calculations. However, at

larger scattering angles the WP-CCC method overestimates the experiment and

more closely resembles the shape of the DWB (I) and DWB (II) models of Igarashi

[320]. The DWB (I) result contains information about the vibrational state of

the residual ion, while the DWB (II) calculation used the FN approximation. At

larger angles, the DWB (III) method shows the best agreement with the exper-

iment, despite describing the molecular target with the simple TEC treatment.

This allows us to conclude that neglecting the vibrational motion of the target

is not responsible for the discrepancy between our result and the experimental

data.



Chapter 10. Proton scattering on molecular hydrogen 232

10−13

10−12

10−11

10−10

10−9 WP-CCC elastic
WP-CCC excitation
WP-CCC capture

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10−13

10−12

10−11

10−10

electron capture

Sharma 2012
DWB (I): Igarashi
DWB (II): Igarashi
DWB (III): Igarashi
EA: Adivi
WP-CCC

Scattering angle (mrad)

d
σ
/d

Ω
f

(c
m

2
/s

r)

Figure 10.11: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, total excitation, and single-electron capture (upper panel) in 75 keV p + H2

collisions. In the lower panel the present results for EC are compared with the ex-
perimental data by Sharma et al. [297] and other calculations. The other theoretical
results are: various DWB methods by Igarashi [320] and EA by Ghanbari-Adivi and
Sattarpour [322].

In Fig. 10.11 we present our calculations for 75 keV projectiles. The WP-CCC

results generally agree with the experimental data quite well, except they do not

suggest any dip around 0.9 mrad. The DWB methods of Igarashi [320] and the

EA by Ghanbari-Adivi and Sattarpour [322] also do not show any local minimum.

The DWB (III) method again agrees best with the experimental points.

The results for 100 keV collisions are shown in Fig. 10.12. Here we compare

to the EA calculations of Ghanbari-Adivi and Sattarpour [322] and find that our

results fall off less steeply at higher scattering angles where the nucleus-nucleus

interaction dominates. There are no experimental data to compare to at this

energy.



Chapter 10. Proton scattering on molecular hydrogen 233

10−14

10−13

10−12

10−11

10−10

10−9
WP-CCC elastic
WP-CCC excitation
WP-CCC capture

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10−15

10−14

10−13

10−12

10−11

10−10
electron capture

EA: Adivi
WP-CCC

Scattering angle (mrad)

d
σ
/d

Ω
f

(c
m

2
/s

r)

Figure 10.12: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, total excitation, and single-electron capture (upper panel) in 100 keV p + H2

collisions. In the lower panel the present results for EC are compared with the EA results
by Ghanbari-Adivi and Sattarpour [322].

The highest energy considered for the angular differential cross sections is 300

keV. Our results for this energy are shown in Fig. 10.13. Here the different meth-

ods based on the DWB approach by Igarashi [320] agree well with one another,

while our calculation shows a somewhat different shape. Near the forward direc-

tion our cross section is slightly lower than the DWB ones, as it was the case at

other projectile energies. Interestingly, we see a secondary peak around 1.2 mrad.

While the CB1 results from Ref. [321] also show a secondary peak, this is due

to the unphysical dip in the CB1 cross section resulting from cancellation of the

projectile-electron and projectile-residual ion interaction terms in the first-order

Born series. This unphysical feature is not present in our theory. The comparison

between our results and the EA ones by Ghanbari-Adivi and Sattarpour [322] is
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Figure 10.13: Angular differential cross sections (in the centre-of-mass frame) for elastic
scattering, total excitation, and single-electron capture (upper panel) in 300 keV p + H2

collisions. In the lower panel the present results for EC are compared with other avail-
able calculations. The other theoretical results are: various DWB methods by Igarashi
[320], EA by Ghanbari-Adivi and Sattarpour [322], and CB1 method by Adivi [321].

similar to the 100-keV case. Both the WP-CCC and DWB calculations are larger

than the EA and CB1 results.

One possible reason for the discrepancy between our calculations and the

other models is that our results include electron capture into all projectile-atom

states, not only the ground state. Furthermore, unlike the other available calcula-

tions, the WP-CCC method accounts for coupling effects between all the reaction

channels.
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10.5 Singly differential cross sections for

ionisation in p+H2 collisions

Next we consider the singly differential cross sections for single ionisation. We

calculate all three types of SDCS for ionisation: the SDCS as a function of the

electron energy, the SDCS as a function of the electron angle, and the SDCS as

a function of the scattering angle of the projectile. We emphasise that the inte-

gration of each of the three singly differential cross sections reproduces the TICS

in Fig. 10.4 calculated directly from the expansion coefficients using Eq. (3.147).

The deviation is at most 1%. Results are presented in the laboratory frame.

In Fig. 10.14, we present our results for the singly differential cross section for

ionisation as a function of ejected electron energy. There are experimental data

at a number of incident projectile energies. The results are shown at 10 typical

impact energies from 20 to 300 keV at which there are experimental data from

multiple groups. There are also theoretical calculations to compare to at these

energies.

In general, the obtained results agree very well with the experimental data by

Gealy et al. [12]. They also agree with the data by Rudd et al. [246] available

at projectile energies within the range 100–300 keV. However, our results slightly

underestimate the data from Kuyatt and Jorgensen [298] and Rudd [299] avail-

able from 5 to 100 keV. The drop seen in the results of Kuyatt and Jorgensen

[298] for low ejection energies at collision energies of 50, 75, and 100 keV was

due to the inability of their apparatus to detect all of the low-energy electrons

produced in the collision (see Ref. [12] for a detailed discussion of the various

experimental results). We find that the WP-CCC calculations appear to better

replicate experiment than the CTMC calculations by Schultz et al. [28] available

at 50, 75, and 100 keV. At high impact energies, there is good agreement between

our calculations and the FBA results by Rudd et al. [246].

At the lowest considered projectile energy, 20 keV, our results are slightly lower
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Figure 10.14: Singly differential cross sections for ionisation in p + H2 collisions as
functions of the electron energy. Experimental data are by Gealy et al. [12], Rudd
[299], Kuyatt and Jorgensen [298], and Rudd et al. [246]. The theoretical results are:
present WP-CCC approach, one-centre AOCC method by Lühr and Saenz [69], CTMC
method by Schultz et al. [28], and FBA and Gryziński method by Rudd et al. [246].
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than the experimental data by both Rudd [299] and Gealy et al. [12], at all ejected-

electron energies, except for the last data point at 100 eV. At a projectile energy

of 48 keV, we see excellent agreement with the experimental data from Gealy et al.

[12] for low emission energies, but our results overestimate the experiment at high

ejection energies. At this collision energy, Lühr and Saenz [69] used a one-centre

effective one-electron close-coupling approach to calculate the singly differential

ionisation cross section. Their cross section has a peak around 26 eV, the energy

that is close to the region where the speed of the ejected electron matches that

of the projectile making electron capture significantly more likely. The single-

centre method cannot separate pure ionisation from electron capture leading to

the unphysical peak. For 50 keV incident protons, we compare our results to the

experimental data by Kuyatt and Jorgensen [298] and Rudd [299]. Similar to

the 20-keV case, our calculations underestimate the data from Rudd [299] across

the entire ejected-electron energy range considered. The WP-CCC results are

systematically smaller than the data measured by Kuyatt and Jorgensen [298] for

all but the smallest ejection energies where, as mentioned above, the experimental

data are unreliable. Below 10 eV emission energy, our results are very close to the

CTMC ones by Schultz et al. [28]. However, as the energy of the ejected electron

increases, our results fall less steeply, better replicating the experimental data.

At 67 keV, the WP-CCC results agree well with the data from Gealy et al. [12],

especially at low emission energies. At 75 keV, our calculations again fall slightly

below the data from Kuyatt and Jorgensen [298], except for their unphysical

result at small ejection energies. Here we also see that our result falls less steeply

than the CTMC calculations [28]. As the incident energy increases to 95 keV, we

find very good agreement with the experimental results of Gealy et al. [12]. For

an incident projectile energy of 100 keV, the WP-CCC results agree well with the

experimental data by Rudd et al. [246], Kuyatt and Jorgensen [298], and Rudd

[299]. We also see very good agreement with the FBA calculations by Rudd [299].
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Figure 10.15: DI and ECC components for the WP-CCC results shown in Fig. 10.14.
The key in the upper-left panel applies to all panels.
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The classical Gryziński method produces a different shape to the experimental

data, dipping slightly around 50–100 eV and then turning sharply down at 300

eV. Similar to lower impact energies, we find the WP-CCC results to be slightly

larger than the CTMC ones by Schultz et al. [28], better agreeing with the exper-

imental data. Our results again agree well with the experimental data by Gealy

et al. [12] at 114 keV. At large ejection energies, our cross section overestimates

the experiment. At 200 keV, agreement between the WP-CCC results and the

data of Rudd et al. [246] is excellent. We also see good agreement with the FBA

calculations. The largest impact energy considered is 300 keV. Here again our

results agree very well with the experimental data across four orders of magni-

tude from the ionisation threshold up to an ejection energy of 700 eV. The FBA

calculations from Rudd et al. [246] also agree well with the experimental data.

The Gryziński method slightly underestimates the experiment between 100 and

300 eV and overestimates it above 600 eV. It appears that, somewhat surprisingly,

the simple FBA suffices for the purpose of calculating the SDCS in the emission

energy at projectile energy of 100 keV and above.

In Fig. 10.15 we show the DI and ECC components of the total WP-CCC

results from Fig. 10.14. This allows us to analyse the relative contributions of

these mechanisms. As one can see, the singly differential cross section for ionisa-

tion as a function of ejected-electron energy is dominated by DI, while energetic

electrons are emitted purely due to ECC of the projectile. At the smaller impact

energies considered, we see a slight shoulder in our results. This occurs when the

contribution from electron capture into the continuum of the projectile peaks.

Figure 10.16 presents the singly differential cross section for ionisation as

a function of the electron emission angle at the same projectile energies as in

Fig. 10.14. Generally, we see very good agreement between the WP-CCC results

and available experimental data at all collision energies considered, except for 20

keV. At 20 keV, our SDCS is systematically smaller than the experimental data

by Rudd [299] and Gealy et al. [12] though agreeing in shape.
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Figure 10.16: Singly differential cross sections for ionisation in p + H2 collisions as
functions of the electron angle. Experimental data are by Gealy et al. [12], Rudd [299],
Kuyatt and Jorgensen [298], and Rudd et al. [246]. The theoretical results are: present
WP-CCC approach, CTMC method by Schultz et al. [28], and FBA by Rudd et al.
[246].
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This is consistent with our results for the TICS where we found that the effective

one-electron WP-CCC approach slightly underestimates the TICS for impact

energies below about 20 keV. At 48, 67, 95 and 114 keV, our results agree very

well with the experimental data from Gealy et al. [12] for the entire range of

ejection angles. At 50 keV, we observe good agreement with the experiments of

Kuyatt and Jorgensen [298] and Rudd [299] up to 110◦. Above this angle, the

WP-CCC method underestimates the experimental data. For an incident energy

of 75 keV, our calculations agree well with the measurements from Kuyatt and

Jorgensen [298] up to about 110◦. Otherwise, the situation is similar to the 50-

keV case. At 100, 200 and 300 keV, our results are in excellent agreement with

the data from Rudd et al. [246].

The only other two theoretical approaches applied to calculate the SDCS in

the emission angle are the FBA by Rudd et al. [246] and the CTMC method by

Schultz et al. [28]. At 50, 75, and 100 keV, our results agree with the CTMC ones

by Schultz et al. [28] reasonably well. As one can see, the FBA results by Rudd

et al. [246], available at 100, 200, and 300 keV, fail to reproduce the experiment,

significantly underestimating the data below 50◦ and overestimating at larger

angles. Thus, our method provides significant improvement over the FBA.

The direct ionisation and electron capture to continuum components of the

WP-CCC results for the SDCS for ionisation as functions of the ejected-electron

angle are shown in Fig. 10.17. As one can see, at collision energies from 20 to

114 keV, the singly differential cross section for ionisation as a function of ejected

electron angle is dominated by electron capture to continuum when electrons are

emitted into a cone around the forward direction. Above 200 keV, the situation is

opposite. Electrons emitted into large angles are purely due to direct ionisation

regardless of the projectile energy.

In Fig. 10.18, we present the singly differential cross section for ionisation as

a function of the scattering angle of the projectile. There are no experimental

data or other theoretical calculations available in the literature to compare to.
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Figure 10.17: DI and ECC components for the WP-CCC results shown in Fig. 10.16.
The key in the upper-left panel applies to all panels.

Therefore, the present WP-CCC results are compared with the present FBA ones.

As one can see from the figure, the FBA is expected to fail at all collision energies,
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even as high as 300 keV. It would be interesting to verify these results using other

methods. The DI and ECC components of the WP-CCC results are also shown.

At sufficiently low collision energies (50 keV and below), the dominant mechanism

of ionisation is ECC if the projectile is scattered into small angles. At 67 and 75

keV, both DI and ECC mechanisms contribute equally. However, starting from 95

keV direct ionisation becomes the dominant channel for electron emission. If the

projectile is scattered into large angles, electrons are ejected primarily through

direct ionisation.
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Figure 10.18: Singly differential cross sections for ionisation in p + H2 collisions as
functions of the scattering angle of the projectile. The theoretical results are: present
WP-CCC approach and present FBA results. The DI and ECC components of the
WP-CCC cross sections are also shown. The key in the upper-left panel applies to all
panels.
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10.6 Doubly differential cross sections for

ionisation in p+H2 collisions

Now we apply the WP-CCC method to calculate doubly differential cross sec-

tions for ionisation in p + H2 collisions. There are three DDCS for single-electron

ionisation. These are the DDCS as a function of the electron energy and electron

angle, the DDCS as a function of the electron energy and scattering angle of

the projectile, and the DDCS as a function of the electron angle and scattering

angle of the projectile. Experimental data for the energy and angular distribution

of electrons emitted in p + H2 collisions has been available since the first mea-

surements by Kuyatt and Jorgensen [298] in 1963. The DDCS as a function of

projectile scattering angle and electron energy was first measured by Alexander

et al. [303] relatively recently. We first focus on the former type of DDCS.

We find that a basis containing 10− ` bound states for each included orbital

quantum number ` up to `max = 7 was sufficient to obtain converged results at

all impact energies considered. The continuum was discretised with 25 bins and

the electron-momentum cutoff κmax varied from 6.0 to 10.0 a.u., depending on

the impact energy. The z-grid extended from −400 to +400 a.u.

10.6.1 DDCS as functions of the electron energy and the

electron angle

There are many combinations of ejection angle and ejection energy at different

incident energies for which experimental data exist. Here, we present the results

for a wide range of electron energies and angles for impact energies from 48 to 300

keV, and compare these with the available experimental data. Where possible,

we also compare to previous calculations existing in the literature. In most of the

panels we also show the DI and ECC components of the cross section. These lines

are omitted in the panels that contain other calculations to prevent crowding of
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the figures. We calculated the DDCS by numerical integration of Eq. (3.141) and

also directly using Eq. (3.142) as a self-consistency check for the method. In both

cases the results were practically identical.

Our results for different impact energies are presented in Figs. 10.19–10.26.

Within each figure, individual panels correspond to different emission angles. At

the top of each panel we also show the speed of the ejected electron, ve, in terms

of the projectile speed. In the forward direction the ECC component peaks when

ve/vi = 1. The smallest emission angle considered here is 10◦. Nevertheless, the

presence of the ECC peak is still observed, though to a lesser extent, even for 10◦

emission.
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Figure 10.19: Doubly differential cross sections for ionisation in 48 keV p+H2 collisions
as functions of the electron energy at various emission angles. Experimental data are
by Gealy et al. [12]. The theoretical results are: present WP-CCC approach. The DI
and ECC components of the WP-CCC cross sections are also shown.

In Figs. 10.19 and 10.20 we present our calculations of the DDCS for ioni-

sation at 48 and 67 keV. Here, the projectile speeds were vi = 1.386 and 1.638

a.u., respectively. The only available data for the DDCS for ionisation at these
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Figure 10.20: Doubly differential cross sections for ionisation in 67 keV p+H2 collisions
as functions of the electron energy at various emission angles. Experimental data are
by Gealy et al. [12]. The theoretical results are: present WP-CCC approach. The DI
and ECC components of the WP-CCC cross sections are also shown.

energies were the measurements by Gealy et al. [12]. To our best knowledge there

are no other calculations at these collision energies either. For ejection angles of

110◦ and smaller, we observe excellent agreement between our results and the

experimental data. At 130 and 150◦ our DDCS agree well with experiments for

low-energy electrons but for high-energy electrons they overestimate the exper-

imentally measured cross section at backward emission angles. There could be

two possible explanations for this, one is experimental and the other theoretical.

First, this is the region in which the DDCS is several orders of magnitude smaller

than for low-energy electrons and, therefore, the experimental measurements have

the greatest uncertainty due to low counting rates. Second, ionisation resulting

in emission in the backward direction is dominated by the DI mechanism. The DI

component of the ionisation cross section is given by the product of the amplitude

for excitation into a positive-energy pseudostate and the overlap between the true
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continuum wave and corresponding wave-packet pseudostate. The pseudostates

and the continuum wave are found by numerically solving the Schrödinger equa-

tion with the model target potential. At asymptotically large distances this poten-

tial tends towards a Coulomb attraction with charge +1 a.u. However, in reality

the electron would be on the opposite side of the residual target ion from the

projectile proton, resulting in an effective Coulomb interaction at asymptotically

large distances with charge +2 a.u. Hence, in our approach to calculating DI

the emitted electron does not account for the additional attraction, due to the

projectile proton. Therefore, the current approach may somewhat overestimate

the probability of emission in the backward direction.
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Figure 10.21: Doubly differential cross sections for ionisation in 75 keV p+H2 collisions
as functions of the electron energy at various emission angles. The theoretical results
are: present WP-CCC approach. The DI and ECC components of the WP-CCC cross
sections are also shown.

Figure 10.21 shows the DDCS for ionisation at 75 keV for ejection angles from

10 to 160◦. For the smallest emission angle, we find that the ECC component of

the DDCS peaks when the speed of the ejected electron is slightly less than that of
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the projectile, meaning that the likelihood of the electron staying slightly behind

the outgoing projectile is higher. The projectile speed is vi = 1.733 a.u. at this

impact energy. The ECC peak is strongest for emission at 0◦. Our calculations

suggest it has an influence on the cross section for electron emission, even at 10◦.

At 60◦, the DI and ECC components are comparable for most of the considered

electron energies. Then, for emission into angles of 90◦ and greater, DI becomes

the dominant mechanism contributing to the total DDCS for ionisation. Only for

very high electron energies does the ECC component have a significant effect on

the overall results at 120, 140 and 160◦. For emission into the backwards direction

the DDCS is entirely dominated by DI, as expected.
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Figure 10.22: Doubly differential cross sections for ionisation in 95 keV p+H2 collisions
as functions of the electron energy at various emission angles. Experimental data are
by Gealy et al. [12]. The theoretical results are: present WP-CCC approach. The DI
and ECC components of the WP-CCC cross sections are also shown.

In Fig. 10.22 we present our DDCS for ionisation at 95 keV for ejection angles

from 20 to 150◦. The projectile speed at this energy is vi = 1.950 a.u. Our

results are compared with the experimental data of Gealy et al. [12]. To our
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best knowledge there are no other experimental measurements or calculations at

this collision energy. We observe very good agreement between the WP-CCC

calculations and the experimental data. At the smallest considered ejection angle

of 20◦, the interplay between the DI and ECC contributions near the matching

speed results in an overall smoother cross section that follows the experimental

data more closely than observed at lower projectile energies. At this incident

energy we also see improved agreement between our results and the experimental

data for high-energy electrons emitted at 130 and 150◦, compared to 48 and 67

keV.

10−24

10−23

10−22

10−21

10−20

10−19

10−18
Ei = 100 keV
θe = 10◦

Ei = 100 keV
θe = 23◦

Ei = 100 keV
θe = 30◦

Ei = 100 keV
θe = 45◦

0 100 200 300
10−24

10−23

10−22

10−21

10−20

10−19

10−18 Ei = 100 keV
θe = 50◦

d
2
σ
/d
E

e
/d

Ω
e

(c
m

2
/e

V
/s

r)

0 100 200 300

Ei = 100 keV
θe = 70◦

Electron energy (eV)
0 100 200 300

Ei = 100 keV
θe = 90◦

0 100 200 300

Ei = 100 keV
θe = 160◦

0 1 2 0 1 2

ve/vi

0 1 2 0 1 2

Rudd 1963 FBA: Rudd WP-CCC: DI
Kuyatt 1963 WP-CCC WP-CCC: ECC

Figure 10.23: Doubly differential cross sections for ionisation in 100 keV p+H2 collisions
as functions of the electron energy at various emission angles. Experimental data are
by Rudd and Jorgensen [245] and Kuyatt and Jorgensen [298]. The theoretical results
are: present WP-CCC approach. The DI and ECC components of the WP-CCC cross
sections are also shown. FBA by Rudd and Jorgensen [245].

In Fig. 10.23 we compare our results for 100 keV collisions with the experi-

mental data of Rudd and Jorgensen [245] and Kuyatt and Jorgensen [298]. Rudd

and Jorgensen [245] also performed the FBA calculations. The FBA results sig-
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nificantly underestimate the cross section at an emission angle of 10◦, whereas

the WP-CCC calculations show excellent agreement with the experimental data

across the entire measured energy range. We also see a clear shoulder, due to the

ECC peak for emission at 10◦, in both the experimental data and our calculations.

At this impact energy, the matching speed is vi = 2.000 a.u. At 23◦, the WP-

CCC results agree well with the experimental data of Kuyatt and Jorgensen [298],

except for small energies of the emitted electrons. However, these experimental

data were unreliable in that region, due to inefficiencies in the apparatus at de-

tecting low-energy electrons [12]. In this energy region the DDCS is dominated

by the DI mechanism. At energies above 30 eV, ECC is the most significant

contributor to the ionisation cross section. At 30◦, the FBA calculations continue

to underestimate the experimental data, although less significantly, whereas the

WP-CCC calculations follow the experiment very closely at all ejection energies.

For emission into an angle of 45◦, we find good agreement with the experimental

results of Kuyatt and Jorgensen [298], except for the narrow region near the

ejection energy of 30 eV, where the DI and ECC components contribute equally

to the ionisation cross section. Here, our calculation underestimates the experi-

ment. At an emission angle of 50◦, we also observe a similar difference between

our result and the experimental data of Rudd and Jorgensen [245]. However, the

difference is smaller than at 45◦. For ionisation resulting in electron emission at

70◦, the WP-CCC results agree well with the experimental data, although as the

ejection energy increases our results begin to underestimate the measured cross

section. The FBA calculations by Rudd and Jorgensen [245] show similar be-

haviour, except beyond 100 eV, where they fall off more steeply, deviating from

the experiment and the WP-CCC calculations. The FBA results show similar

behaviour also at 90◦, whereas the WP-CCC results display excellent agreement

with the experiment at all emission energies. Lastly, for 160◦ emission the FBA

overestimates the experimental cross section near the ionisation threshold and

then falls off too steeply with increasing energy. Our calculations agree well with
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the data of Rudd and Jorgensen [245] for low-energy electron emission, slightly

underestimating the experimental data above 50 eV.
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Figure 10.24: Doubly differential cross sections for ionisation in 114 keV p+H2 collisions
as functions of the electron energy at various emission angles. Experimental data are
by Gealy et al. [12]. The theoretical results are: present WP-CCC approach and FBA
and CDW-EIS-MO method by Galassi et al. [310]. The DI and ECC components of the
WP-CCC cross sections are also shown.

Figure 10.24 shows the DDCS at an incident energy of 114 keV, along with

the experimental data of Gealy et al. [12] and the FBA and CDW-EIS-MO cal-

culations by Galassi et al. [310]. The projectile speed is vi = 2.136 a.u. At

an emission angle of 20◦, the WP-CCC calculations agree very well with the

experimental data below 250 eV emission energy. Above 250 eV, however, our

results slightly overestimate the experiment. The same is observed at 30 and 50◦.

The FBA calculations of Galassi et al. [310] suggest a shoulder at 150 eV for 30◦

emission, which is not present in the other calculations or experimental data. At

both 30 and 50◦, the CDW-EIS-MO results agree well with the experiment. At

70◦ and above, the WP-CCC results agree well with the experimental data for
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smaller ejection energies, then tend to overestimate the data as the emission angle

and energy increases. At emission angles of 90 and 150◦, the FBA results over-

estimate the cross section for low-energy electron emission, but agree well with

the experimental data at high ejection energies. The CDW-EIS-MO calculations

show the opposite behaviour, agreeing well with the experiment at small ejection

energies, but underestimating it at larger emission energies. We conclude that

the WP-CCC method describes the experimental cross section more consistently

than the FBA and CDW-EIS-MO methods.
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Figure 10.25: Doubly differential cross sections for ionisation in 200 keV p+H2 collisions
as functions of the electron energy at various emission angles. Experimental data are
by Rudd et al. [246]. The theoretical results are: present WP-CCC approach. The DI
and ECC components of the WP-CCC cross sections are also shown.

In Fig. 10.25 we present our results for a collision energy of 200 keV in com-

parison with the experimental data of Rudd et al. [246]. For emission into 10◦,

the experiment shows a clear shoulder near the matching speed of vi = 2.829 a.u.,

which is perfectly reproduced by the WP-CCC results. We find good agreement

between the WP-CCC results and experimental data across all ejection angles
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and energies for which experimental data is available. At the emission angles

of 10, 30 and 70◦, our calculations slightly deviate from the experimental data

when moderate-energy electrons are emitted. At this impact energy, we see the

binary-encounter peak clearly resolved at small emission angles. In particular, at

10◦, our calculations show a wide, but pronounced, peak at 350 eV, reproducing

the shape of the measured cross section. There is no experiment at 130◦. Here,

the WP-CCC results are given for completeness.
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Figure 10.26: Doubly differential cross sections for ionisation in 300 keV p+H2 collisions
as functions of the electron energy at various emission angles. Experimental data are
by Rudd et al. [246] and Toburen and Wilson [295]. The theoretical results are: present
WP-CCC approach, FBA by Rudd et al. [246], and approach based on the first term
in the Neuman expansion of the Faddeev equations by Macek [90]. The DI and ECC
components of the WP-CCC cross sections are also shown.

Figure 10.26 shows the present results for the DDCS for ionisation at an

incident energy of 300 keV as a function of the ejected electron energy for emission

angles from 10 to 130◦. We compare our calculations to the two independent sets

of experimental data from Rudd et al. [246] and [295]. For emission at 10◦, we

can compare the present results to the FBA calculations by Rudd et al. [246] and
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the calculations based on the first term in the Neuman expansion of the Faddeev

equations by Macek [90]. There are no other calculations for other emission angles

at this incident energy.

We find excellent agreement between our calculations and the experimental

data of Rudd et al. [246]. The present results agree well with the measurements

of Toburen and Wilson [295] as well, but only within the energy range where their

data are in agreement with the data of Rudd et al. [246]. For emission into 10◦, the

FBA calculations by Rudd et al. [246] significantly deviate from the experimental

results, underestimating the data from 0 up to 600 eV and then falling off sharply

at higher emission angles. At this impact energy, the projectile speed is vi = 3.465

a.u. It is sufficiently high for the FBA to be considered suitable for calculating the

TICS. However, we see that the FBA fails to reproduce the underlying DDCS. The

approach used by Macek [90] overestimates the experimental data significantly

at small emission energies and then decreases to eventually agree at 650 and 700

eV. The reason is the same as indicated earlier.

The WP-CCC results reproduce both the main peak in the DDCS for the very

low emission energies and the binary-encounter peak. Furthermore, we find that

for small ejection angles the DDCS is dominated by DI for small energies and

ECC for larger ejection energies. Near the emission angle of 70◦, the DI and ECC

components become comparable, except for very small ejection energies where the

ECC part falls off steeply towards the ionisation threshold. At 90◦ and above,

the DDCS is primarily made of the DI component, only for very large ejection

energies does ECC contribute for backward ejection angles. This makes physical

sense since ejection into angles greater than 90◦ will result in the electron being

closer to the target nucleus while the projectile nucleus moves away from the

scattering system in the forward direction.

The present results represent the first calculations of the DDCS for p + H2

collisions in the intermediate-energy range, in particular, that are capable of

describing the available experimental data. A wide range of experimental results
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exist, spanning from the initial measurements of Kuyatt and Jorgensen [298]

to the latest data of Gealy et al. [12]. However, theorists have struggled to

accurately reproduce these experiments. All currently available theoretical results

are obtained using perturbative approaches that are applicable only at sufficiently

high projectile energies. The WP-CCC method is the only non-perturbative

approach to differential ionisation that accounts for the strong coupling between

the reaction channels. Additionally, we are able to distinguish between the DI

and ECC mechanisms, providing further insight into the underlying physics.

Our results demonstrate excellent agreement with all available experimental

data at projectile energies from 48 to 300 keV and electron emission angles less

than 130◦. We observed an overestimation of the experimental data for emission

into backward angles greater than 130◦. It is suggested that this may be due

to the large uncertainty in the experimental data in this region. In part, this

could also be due to the approach to calculating the total breakup amplitude

used herein that assumes a weaker effective charge experienced by the emitted

electron at asymptotically large distances from the origin than it actually might

be in this particular kinematic regime. Our results agree particularly well with

the most recent experiment by Gealy et al. [12] and the high projectile energy

data by Rudd et al. [246]. At the highest impact energies considered the WP-

CCC method reproduces both the main peak in the DDCS near the ionisation

threshold and the binary-encounter peak.

Furthermore, we explicitly calculated the DI and ECC contributions to the to-

tal DDCS. We find that both mechanisms mechanisms play important roles in the

electron emission cross sections. This indicates that inclusion of the two-centre

nature of the scattering system is essential for accurately calculating differential

cross sections for ionisation. Additionally, the present results demonstrate that

strong coupling between reaction channels plays an important role in determining

the energy and angular distribution of emitted electrons.
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10.6.2 DDCS as functions of the projectile scattering

angle and the electron energy

Figure 10.27 shows the present calculations for the DDCS for ionisation as a

function of the scattering angle of the projectile at selected electron-emission en-

ergies. Specifically, results are presented for electron energies of 14.6, 34.6, 37.6,

41.6, 49.6, and 54.6 eV, where experimental data are available. The projectile

energy is 75 keV, which corresponds to a speed of 1.733 a.u. At the matching

speed, the emitted electron would have an energy of 40.8 eV. In the upper-left

panel we present results for an electron energy of 14.6 eV. The three sets of

experimental data available at this emission energy agree well with one another

for scattering angles less than 0.5 mrad. However, at larger scattering angles the

data of Alexander et al. [303] and Egodapitiya et al. [304] suggest the presence of

some structure around 1.0 mrad, whereas the measurements reported by Sharma

et al. [305] do not. The CDW-EIS calculations by Alexander et al. [303] agree

with the experimental data in the forward direction but from 0.4–0.9 mrad they

overestimate the data from both Alexander et al. [303] and Egodapitiya et al.

[304]. Above this the CDW-EIS calculations agree with the magnitude of data

recorded by Alexander et al. [303], but don’t reproduce the shape. As the scatter-

ing angle increases the CDW-EIS results fall off more slowly than all other results.

The M3DW-EIS calculations by Chowdhury et al. [323] generally reproduce the

shape of the experimental data, including the structure reported by Alexander

et al. [303] around 1.0 mrad. However, they are consistently smaller across all

scattering angles. The FBA results of Chowdhury et al. [323] demonstrate sig-

nificant disagreement with all experimental and other theoretical results. In the

forward direction the FBA vastly overestimates the DDCS, then falls off steeply

and underestimates the other results at large scattering angles. The CDW-EIS-

MO calculations by Igarashi and Gulyás [325] more closely follow the experimental

data than the other available theoretical results. In particular they agree very
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well with the measurements by Alexander et al. [303] at scattering angles less

than 0.9 mrad, then continue to fall off smoothly, similarly to the data of Sharma

et al. [305]. The present WP-CCC results agree very well with the experimental

data of Alexander et al. [303] and Sharma et al. [305] in the forward direction,

then from 0.4–0.9 mrad they continue to closely follow the data of Alexander

et al. [303], slightly underestimating the measurements by Sharma et al. [305].

Our calculations show no evidence of any structure at large scattering angles,

instead falling off smoothly in agreement with the more recent data by Sharma

et al. [305] above 1.0 mrad.
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Figure 10.27: Doubly differential cross sections for ionisation in 75 keV p+H2 collisions
as functions of the scattering angle of the projectile at various ejected-electron energies.
Experimental data are by Alexander et al. [303], Egodapitiya et al. [304], and Sharma
et al. [305]. The theoretical results are: present WP-CCC approach, CDW-EIS method
by Alexander et al. [303], M3DW-EIS method and FBA by Chowdhury et al. [323], and
CDW-EIS-MO method by Igarashi and Gulyás [325].

The remaining panels in Fig. 10.27 show the DDCS results at the other emis-
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sion energies where Alexander et al. [303] reported experimental data. At 34.6 eV,

the situation is very similar to that at 14.6 eV. The WP-CCC results agree well

with the experiment up to a scattering angle of 1.2 mrad. However, thereafter, the

structure suggested by Alexander et al. [303] is not replicated by our calculations.

In the forward direction our results are very similar to the CDW-EIS and CDW-

EIS-MO calculations, but above 0.5 mrad the WP-CCC results decrease like the

CDW-EIS-MO ones in agreement with the experimental data whereas the CDW-

EIS calculation begins to fall off less steeply. The M3DW-EIS result is again in

qualitative agreement with the experiment but underestimates the magnitude.

At 37.6, 41.6, and 49.6 eV, the measurements of Alexander et al. [303] suggest

that the structure is less pronounced or absent. As a result, improved agreement

between the WP-CCC results and the experiment is observed at large scatter-

ing angles. However, like in all other calculations, at small scattering angles

significant discrepancies are observed when more energetic electrons are ejected.

The CDW-EIS-MO ones also agree better with experiment. However, in the

forward direction all available theoretical results underestimate the experimental

measurements. The experimental data suggests a narrowing of the forward peak

at emission energies near the 40.8 eV where the speed of the electron matches

that of the projectile. However, our results agree with the CDW-EIS-MO predic-

tion that the DDCS should continue to steadily decrease in magnitude, without

significantly changing shape. At an emission energy of 54.6 eV the experimentally

measured DDCS falls off at a similar rate to that recorded at 14.6 and 34.6 eV.

The theoretical results are in better agreement with the experiment at this energy

than at 37.6, 41.6, and 49.6 eV. However, the experimental data of Alexander et al.

[303] again suggest some form of structure at large scattering angles which could

not be resolved in the data at 49.6 eV. None of the available theoretical results

support this observation at any of the emission energies considered.

To summarise, we find that the WP-CCC results demonstrate very good

agreement with the CDW-EIS-MO calculations by Igarashi and Gulyás [325].
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Both methods more consistently reproduce the experimental data than the other

available theoretical approaches. The CDW-EIS calculations by Alexander et al.

[303] show a similar level of agreement in the forward direction but overestimate

the experiment and CDW-EIS-MO and WP-CCC results as the scattering angle

increases. The M3DW-EIS calculations always underestimate the experimen-

tal data and other theoretical methods, although the shape is very similar to

the CDW-EIS-MO and WP-CCC results qualitatively, except for the small peak

present in the M3DW-EIS results for 14.6 eV electrons. With the exception of

the not yet fully understood structure in the experimental data of Alexander

et al. [303] and Egodapitiya et al. [304] at large scattering angles, the WP-CCC

calculations demonstrate very good agreement with experiment at 14.6, 34.6, and

37.6 eV. At higher emission energies agreement is less satisfactory, in particular

when the electron’s speed is close to the projectile’s. At both 41.6 and 49.6 eV

the WP-CCC calculations fall off less steeply than the experimental data and

underestimate the measured DDCS in the forward direction. Calculation of the

DDCS for ionisation is easiest at the smallest scattering angles. Moreover, we

find very close agreement between the CDW-EIS, CDW-EIS-MO, and WP-CCC

results at all considered electron energies when the projectile is scattered into the

forward direction. Therefore, the discrepancy between theory and experiment for

small scattering angles observed in the lower three panels in Fig. 10.27 is some-

what puzzling. The experimental data by Sharma et al. [305] do not support the

structure observed at large scattering angles by the other two experiments. How-

ever, improved data for large scattering angles is not available for other emission

energies. Interestingly, the SDCS and TICS obtained by integrating our DDCS

was consistent with our results presented in Sect. 10.3 and Sect. 10.5, respec-

tively. Recall that at 75 keV it was found to slightly overestimate experiment.

Consequently, we would expect our DDCS for ionisation to generally be slightly

larger than experiment, but in fact we see the opposite.

A possible reason for the observed discrepancy between calculation and ex-
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Figure 10.28: DI and ECC components for the WP-CCC results shown in Fig. 10.27.

periment for large electron energies could be the omission of electron-correlation

effects in the theoretical models. However, this appears to be a reasonable ap-

proximation for calculating integrated and singly differential cross sections at in-

termediate projectile energies. Furthermore, the present approach gives excellent

agreement with the experimental data for the DDCS as a function of the energy

and angle of the ejected electrons. As seen in the lower three panels of Fig. 10.27,

when more energetic electrons are emitted, the disagreement in the forward di-

rection is as large as 70%. It is difficult to expect that electron-correlation effects

can change the present results by that much. We should also mention that the

WP-CCC approach to doubly differential ionisation in p + He collisions with and

without electron-correlation effects [332, 333] gave practically the same result in

all domains including the forward-scattering angle. In any case, the reason for

the discrepancy remains to be understood and warrants further investigation.
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In Fig. 10.28 we show the same WP-CCC results as in Fig. 10.27, but this time

together with the DI and ECC components. At all emission energies considered,

except the smallest, we see that the forward scattering DDCS is dominated by

the ECC mechanism. As the emission energy increases this becomes more pro-

nounced. Physically this can be explained by the emitted electron being pulled

along by the attractive charge of the projectile. Higher energy electrons are

travelling faster, making it more likely for them to be closer to the projectile

nucleus than the target nucleus if they are emitted into the forward cone. At

larger scattering angles DI and ECC are generally of similar magnitude, with

ECC dominating for low energy electrons and gradually becoming less significant

as the energy increases. However, at all considered emission energies both DI and

ECC play a significant role in determining the total DDCS for ionisation.
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Figure 10.29: Doubly differential cross sections for ionisation in 100 keV p+H2 collisions
as functions of the scattering angle of the projectile at various ejected-electron energies.
The theoretical results are: present WP-CCC approach. The DI and ECC components
of the WP-CCC cross sections are also shown.

In Figs. 10.29 and 10.30 we present the DDCS for ionisation differential in the

projectile scattering angle and electron energy at incident energies of 100 and 200

keV, respectively. We show the total DDCS and its DI and ECC components.

The electron energy that corresponds to the matching speed is 54.4 and 114.3

eV for 100 and 200 keV projectiles, respectively. There are no experimental data

available at these projectile energies. As one can see, DI and ECC both make
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significant contributions to the total DDCS at all three emission energies. For 10

eV electrons, the DI component is dominant across all scattering angles, whereas

at 50 eV the ECC one is two orders of magnitude larger in the forward direction.

At 0.5 mrad both components are comparable, and DI contributes more at higher

scattering angles. For 100 eV emission, ECC is the dominant mechanism from 0

to 2.0 mrad. Since this energy corresponds to an electron speed much larger than

the projectile speed and electron emission near forward angles is most likely, this

suggests that the majority of high-energy electrons leave the scattering system

ahead of the projectile.
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Figure 10.30: Doubly differential cross sections for ionisation in 200 keV p+H2 collisions
as functions of the scattering angle of the projectile at various ejected-electron energies.
The theoretical results are: present WP-CCC approach. The DI and ECC components
of the WP-CCC cross sections are also shown.

At an incident energy of 200 keV, we see that the DI component is less sig-

nificant in the forward direction. For 100 eV electrons the results show a small

shoulder around 0.5 mrad. For emission of 200 eV electrons the DDCS is almost

constant from 0 to 0.5 mrad. This is similar to the behaviour observed for ejection

of 100 eV electrons by 100 keV proton collisions in Fig. 10.29. The origin of this

behaviour is unknown. However, it is reminiscent of the secondary-peak observed

in angular differential cross sections for electron capture by positively charged

ions at projectile energies in the MeV region. The secondary peak in electron

capture DCS is attributed to the Thomas double-scattering mechanism [334].
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According to this classical explanation, the projectile scatters the target electron

by 60◦, transferring energy and increasing the electron speed to approximately

that of the projectile. Then, the electron elastically scatters from the residual

target ion, altering its trajectory by 60◦ again such that it leaves the scattering

system in approximately the same direction as the projectile. The momentum

transfer required for this corresponds to a projectile scattering angle of 0.47 mrad.

Therefore, the DCS for electron capture is increased at this angle. The structure

observed in the present DDCS for ionisation occurs very close to the Thomas

angle and is primarily caused by the ECC component. Perhaps it is possible that

the Thomas mechanism is causing a secondary peak in the DDCS for ionisation

by increasing the probability of ECC near 0.47 mrad. However, the projectile

energies considered herein are significantly smaller than those typically associ-

ated with the Thomas mechanism. This feature is only observed in the DDCS

for ionisation for emission of electrons with large energies and is not significant

enough to have an effect on the SDCS for ionisation studied in Sect. 10.5. It

should be noted however, that the rather pronounced peak structure in the DI

channel is not due to the Thomas process. Rather, it can be explained as a simple

effect of the kinematic conservation laws in a binary process.

10.6.3 DDCS as functions of the projectile scattering

angle and the electron angle

Finally, for completeness, in Fig. 10.31 we present the DDCS for ionisation of

H2 by proton impact as a function of the scattering angle of the projectile and

emission angle of the ejected electron. The azimuthal angle of the electron is

measured relative to the scattering plane, i.e. ϕf = 0. Since the interaction

between the particles is symmetric relative to the scattering plane, we include

angles only for one hemisphere of the collision geometry. To the best of our

knowledge there are no experimental measurements or calculations of this type

of DDCS for p + H2 collisions available in the literature. For comparison we
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present FBA calculations as well. Each row in Fig. 10.31 shows our results for

electrons emitted at a fixed polar angle θe with varying azimuthal angle, ϕe.

Each column represents emission into a fixed azimuthal angle for different polar

angles. For small scattering angles the FBA results are larger or comparable to

the WP-CCC calculations across all considered collision geometries. Conversely,

at the larger scattering angles the FBA results fall off much more rapidly. The

overall magnitude of the WP-CCC calculations decreases with increasing θe for

all considered azimuthal angles, suggesting emission in the forward direction is

more likely. However, for a fixed polar angle, different values of ϕe have less of

an effect on the magnitude of the cross section. Instead, we see that the shape of

the DDCS is influenced by the azimuthal angle.
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Figure 10.31: Doubly differential cross sections for ionisation in 75 keV p+H2 collisions
as functions of the scattering angle of the projectile at various emission angles. The
theoretical results are: present WP-CCC approach and present FBA results. The DI
and ECC components of the WP-CCC cross sections are also shown.

10.7 Chapter summary

In this chapter we developed an effective one-electron approach to p+H2 collisions

within the WP-CCC framework. This approach allows us to utilise the efficient

computational techniques developed in our one-electron code and avoid signifi-
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cant complexities associated with a two-electron target description. Despite the

simplicity of the approach, the converged total cross sections for single-electron

capture and ionisation show good agreement with experiment in a wide energy

range. While previous close-coupling methods applied to this system used only

a single-centre expansion, our two-centre method allows differentiation between

ionisation and electron capture, providing a more detailed picture of the collision

process. We also calculate state-resolved capture cross sections and find reason-

ably good agreement with experiment. Overall, our results improve over previous

theoretical studies.

Next, we calculated the angular differential cross sections for elastic scatter-

ing, excitation and electron capture, and the singly differential ionisation cross

sections as functions of the ejected-electron energy and angle, as well as projectile

scattering angle. This is the first time that the close-coupling approach has been

applied to the singly differential cross sections for p + H2 collisions. We find sig-

nificantly improved agreement with experiment compared to previously available

classical and perturbative calculations, where available. Furthermore, we iden-

tify specific mechanisms responsible for electron emission in particular kinematic

regimes by analysing the DI and ECC components of the total SDCS. The present

results demonstrate that the effective one-electron WP-CCC approach to proton

collisions with H2 can provide an accurate description of the singly differential

cross sections for all interconnected processes taking place in p + H2 collisions.

Finally, we calculated all types of doubly differential cross sections for single-

ionisation in p+H2 collisions. A wide range of experimental results exist, spanning

from the initial measurements of Kuyatt and Jorgensen [298] to the latest data

of Sharma et al. [305]. However, theorists have struggled to accurately reproduce

these experiments. All currently available theoretical results are obtained using

perturbative approaches that are applicable only at sufficiently high projectile

energies. The fundamental assumptions that these methods are based on become

questionable at the incident energies considered in this work, where the orbital
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speed of the target electrons is comparable to, or somewhat greater than, the

projectile speed. The present WP-CCC method is the first non-perturbative

approach to differential ionisation that is applicable at all considered incident

energies. Furthermore, it is the only method applied to this collision problem

that accounts for the strong coupling between reaction channels, including cap-

ture into the continuum. When electrons are emitted at angles less than 130◦,

our results demonstrate excellent agreement with all available experimental data

for the DDCS as a function of the energy and emission angle of the electron over

a wide range of projectile energies from 48 to 300 keV. At larger emission angles

where the DDCS is very small, the present calculations systematically overesti-

mate the experimental data. This may be the result of the large uncertainty in the

experimental data in this region. Alternatively, it may be due a weaker effective

charge the electron emitted in the backwards direction is assumed to experience

at asymptotically large distances from the origin than it actually might be in

this kinematic regime. Overall, we conclude that the present results provide the

first accurate description of the experimental data for the energy and angular

distribution of electrons emitted in p + H2 collisions, resolving a long-standing

theoretical challenge.

The present results for the DDCS for ionisation as a function of the projectile

scattering angle and emitted electron energy generally agree well with experiment,

although differences exist for some emission energies where the old measurements

have not been updated.
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Conclusion and outlook

The two-centre WP-CCC approach to ion-atom and ion-molecule collisions was

extended and applied to a number of collision systems and processes for which

accurate collision data are required for practical applications. Integrated cross

sections for all the interconnected processes occurring in collisions of Li3+, Be4+,

and Ne10+ ions with H(1s) were calculated over a wide energy range from several

keV to several MeV. We also performed calculations for fully stripped beryllium-

ion scattering on hydrogen in the 2`m states. The results provide the most

comprehensive set of accurate collision data for these processes to date. The

state-resolved cross sections for electron capture are of particular interest to the

IAEA CRP on Data for Atomic Processes of Neutral Beams in Fusion Plasma

[151]. The integrated cross sections generated in this work that are relevant to

fusion plasma modelling have been made available world-wide in the IAEA online

repositories.

Next we calculated all types of singly differential cross sections for p + H

collisions. The proton-hydrogen collision system has fundamental significance

in scattering theory since it represents a genuine three-body problem where the

interactions between all of the particles and the two-body bound-state wave func-

tions in the reaction channels are analytically known. We find that the WP-CCC

method gives a complete differential picture of all the interconnected processes

269
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at once, subject to the unitary principle. Results for elastic scattering, target

excitation, and electron capture agree well with the available experimental data.

In particular, significant improvement over previously available calculations was

observed for the SDCS for ionisation.

Computing the two-centre close-coupling equations is a computationally de-

manding task, especially for highly charged ions where a large number of basis

states are required to obtain convergence in the results. Therefore, a novel tech-

nique was developed to extract probability amplitudes for electron capture from

the single-centre WP-CCC method. Calculated cross sections for total and state-

resolved electron capture agreed very well with results obtained using the two-

centre version of the WP-CCC theory. The proposed method is simpler and faster

than the full two-centre implementation. We also applied it to p + Li collisions,

using the independent-event model to account for the possibility of capture from

either the L- or K-shell, finding very good agreement with the experimental data

for electron capture.

The WP-CCC method was extended to multielectron atomic targets through

development of an effective one-electron structure model. This method allows the

calculation of single-ionisation and single-electron-capture cross sections taking

into account the effect of all the inner- and outer-shell target electrons without

making distinction between which of the many target electrons is captured or

ionised. In this approach the scattering calculations are of the same level of com-

plexity as those for three-body systems, significantly simplifying the many body

problem. Application to proton collisions with alkali metal atoms showed that

accounting for both the inner- and outer-shell electrons is essential for accurate

description of the experimental data on the electron-capture cross section at high

energies. Our calculations are the only ones for capture in p + Na and p + K

collisions above 100 keV.

We also performed a comprehensive investigation of the four-body proton-

helium differential scattering problem. Using the four-body WP-CCC method
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that takes into account electron-exchange and electron-correlation effects we cal-

culated the SDCS for all single-electron processes occurring in p + He collisions.

The results agree well with experimental data, where available. For comparison,

calculations were also performed using the E1E method. Somewhat unexpectedly,

the results of the effective one-electron method exhibit a very good level of agree-

ment with the full two-electron ones. Therefore, we also conclude that, at least

for the purpose of calculating the singly differential cross sections, an effective

one-electron treatment of the target suffices. This provides a promising avenue

for consideration of targets with more electrons by using an effective one-electron

model since the four-body WP-CCC method is significantly more complex than

the three-body version, making extension to systems with more active electrons

very difficult within the current framework.

The two-electron version of the WP-CCC approach was generalised to multi-

ply charged ion collisions with helium and applied to calculate integrated cross

sections for all single-electron processes occurring in He2++He collisions. Results

were presented from 10 keV/u to 5 MeV/u, finding good agreement with the ex-

perimental data and other calculations where available. Comparison with the E1E

WP-CCC method showed good agreement at high energies, but differences were

observed as the projectile energy was decreased, especially for direct-scattering

processes. These findings suggest that cross sections for ion scattering on He are

more sensitive to the accuracy of the target structure when the projectile charge

is higher.

Finally, the two-centre WP-CCC method was extended to proton collisions

with molecular hydrogen. A model potential was used to construct effective

one-electron wave functions representing one active electron in the orientation-

averaged field of the two protons and remaining electron. With this we per-

formed the first two-centre coupled-channel calculations of the integrated cross

sections for all single-electron non-dissociative processes in p+H2 collisions. Cal-

culated cross sections for total and state-selective electron capture and ionisation
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agreed well with the available experimental data, improving on previous theo-

retical studies which consider different collision outcomes in isolation. Next, we

calculated the differential cross sections for elastic scattering, net target exci-

tation, and single-electron capture. Good agreement was found with the only

available measurements for total electron capture. The present results are the

first data for the orientation-averaged DCS for elastic scattering and target ex-

citation in intermediate-energy p + H2 collisions. We also calculated all types

of singly differential cross section for ionisation over a wide energy range from

20 to 300 keV. Consistent agreement with the experimental data was observed.

Moreover, significant improvement is found over previously available calculations

that rely on perturbative or classical methods. The present calculations of the

SDCS for ionisation as a function of the scattering angle of the projectile are the

first available for this system.

Until now accurate description of the energy and angular distribution of elec-

trons emitted in p + H2 collisions has presented a major theoretical challenge.

We have provided the first solution to this problem. The results for the DDCS as

a function of the energy and angle of the ejected electron agreed very well with

the experimental data, providing significant improvement over sparsely available

previous calculations.

Although a number of calculations exist for the DDCS for ionisation as a

function of the scattering angle of the projectile and energy of the ejected electron

for proton collisions with H2, discrepancies still exist between different theories

and the experimental data. We applied the present method to calculate this type

of DDCS, finding good agreement with the experimental data in the forward

direction when the electron energy is small. However, at larger scattering angles

and for higher-energy electrons our results agreed more closely with previously

available calculations, therefore disagreeing with the measurements. Lastly, we

presented calculations for the DDCS for ionisation in p+H2 collisions as a function

of the scattering angle of the projectile and emission angle of the ejected electron.
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These are the first available data for this quantity.

For the ionisation process, our approach also allows for the distinction between

direct ionisation and electron capture into the continuum of the projectile. We

show the separate DI and ECC components for all singly and doubly differential

cross sections for ionisation calculated herein. This provides insight into which

mechanism is most responsible for the production of free electrons in the different

kinematic regions considered. Our calculations reveal an interesting interplay

between DI and ECC. In particular, we demonstrate that the ionisation cross

section differential in the angle of the ejected electron is dominated by electron

capture into the continuum for ejection into small angles, while ejection into large

angles is purely due to direct ionisation.

The work done in this thesis lays the foundations for detailed theoretical

studies of numerous collision systems and processes of practical importance. Con-

vergent cross sections for total and state-selective processes in multiply charged

ion collisions with hydrogen calculated over a wide energy range demonstrate

that the WP-CCC method is uniquely positioned to provide accurate collisional

data for collisions involving impurity ions in fusion plasmas. An obvious area for

consideration is extension to other projectile species important for fusion plasma

modelling, such as N7+ [335] and Ar18+ [336]. Furthermore, the present calcula-

tions for Be4++H(2`m) collisions show that the approach is capable of producing

accurate data for scattering of multiply charged ions on initially excited states

of hydrogen. Collisions of other types of impurity ions with initially excited

hydrogen presents another possible avenue for future research.

In Ch. 9 we applied the three-body and four-body versions of the WP-CCC

method to He2+ +He collisions. Collisions of other types of multiply charged ions

with helium could be readily calculated with these methods. Impurity ions in the

ITER tokamak are expected to interact with helium as well as hydrogen. Data

for these collision systems is also in demand for fusion plasma modelling [36].

The two-centre calculations for state-selective electron-capture cross sections
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required very large bases and numerical parameters to obtain convergence. Only

through offloading computation to GPU accelerators was this possible. Moreover,

as the charge of the projectile increases the calculations become more demand-

ing. Therefore, modelling electron transfer in collisions of ions like Ar18+ may

require alternative methods, such as the single-centre approach to rearrangement

developed in Ch. 6. This technique effectively reduces the two-centre problem

to a single-centre one, significantly simplifying description of rearrangement pro-

cesses. This method could also be used to treat positronium formation in positron

collisions with atoms and molecules as an alternative to the two-centre approach

[337] to help avoid the complicated theoretical treatment of the Ps-formation

channels. This could be especially useful when the positron collides with charged

targets, as well as multielectron targets [338]. One of the main challenges in

the two-centre treatment of positron scattering on multielectron targets is the

necessity to deal with electron exchange between the formed Ps and the residual

target ion explicitly.

The effective one-electron description of multielectron atoms presented in

Ch. 7 was successfully applied to proton collisions with alkali metal atoms. In

particular, the new approach has the potential to simplify stopping-power cal-

culations for many electron targets. At the moment, sufficiently accurate two-

centre calculations of the stopping power of hydrogen for protons are possible

[339], however, these are significantly more challenging than the corresponding

one-centre calculations for antiprotons [340, 341]. Furthermore, the single-centre

approach presented herein should also work for quasi-one-electron alkali-like ions

and quasi-two-electron alkaline-earth atoms and alkaline-earth-like ions with one

or two electrons in their valence shell. Application of the present theory and

computer code to such atoms is straightforward.

The present results for the differential cross sections for ionisation demonstrate

the potential of the two-centre WP-CCC method to investigate the ionisation

process further and calculate the fully differential cross sections for ionisation
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of H, H2, and He by proton impact. We recently calculated doubly differential

cross sections for ionisation in proton-helium collisions and obtained excellent

agreement with the available experimental data [332, 333]. Currently, there is

no theory that can describe the experimental data for the fully differential cross

section at 75 keV, recently measured by Schulz et al. [342] and Dhital et al. [57]

in all kinematic regimes. Existing theoretical methods deviate from one another

significantly and cannot reproduce the experiment well. The single-centre version

of the WP-CCC method has already been applied to the fully differential cross

sections for ionisation in proton-helium collisions [188, 343] at sufficiently high

impact energies where the electron-capture channels are believed to be negligi-

ble. The results agreed very well with the recent high-resolution experiment by

Gassert et al. [344]. However, the approach predicted a slight, but unexpected,

shift in the position of the binary peak compared to the experimental data. Fur-

thermore, recent measurements of the FDCS for ionisation in p + H2 collisions in

various geometries also demonstrate significant differences with currently avail-

able distorted-wave theories [57]. Application of the two-centre WP-CCC method

to calculate the FDCS for these collision systems should reveal if higher-order ef-

fects, resulting from the presence of the second centre, are able to explain the

aforementioned discrepancies.

Lastly, the H2 molecule is a two-centre target. In principle, the waves scat-

tered from the two centres may interfere. One can expect that this may affect

the cross sections. However, this effect is explicitly excluded in the present E1E

method and we found good agreement with the experimental data for the SDCS

and DDCS for ionisation. Nevertheless, experiments by Hossain et al. [345] and

Stolterfoht et al. [346] suggest that interference becomes important at signifi-

cantly higher projectile energies and for highly charged ions. At the same time,

interference could also be important for the DDCS as a function of the projectile-

scattering angle and electron energy where some discrepancies between theory

and experiment still remain. Furthermore, the FDCS provides the most detailed
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description of the ionisation process and therefore may be more sensitive to this

effect. The possibility of two-centre interference influencing the ionisation cross

section remains a controversial topic. Development of a more detailed target

structure that accounts for the two-centre nature of the H2 molecule within the

two-centre WP-CCC method may provide insight into this situation.

Summarising, the two-centre WP-CCC method was extended to multielectron

targets, including H2, through the development of effective one-electron target-

structure models. Then, both three- and four-body versions of the approach were

applied to calculate integrated and differential cross sections for a number of

different projectile and target species. In most cases the results agree very well

with the available experimental data over a wide energy range, providing signif-

icant improvement over previously available theoretical data. The effective one-

electron approach is particularly promising since it readily facilitates application

of the WP-CCC method to more complex multielectron targets, provided suitable

model potentials can be constructed and the collision energy is sufficiently large

that electron-electron correlations play a negligible role in the collision dynamics.

The method accounts for the coupling effects between the many competing re-

action channels that play important roles in the intermediate energy region. All

present calculations were performed in a unitary manner, preserving the norm of

the total scattering wave function throughout the collisions. This paves the way

for applying the approach to other types of collision systems of practical interest

and calculating the fully differential cross section for ionisation which remains a

challenging problem.



Appendix A

Momentum-transfer algebra

A.1 α→ α′ channel

Energy conservation requires that

q2α
2µT

+ εTα =
q2α′

2µT

+ εTα′ . (A.1)

This can be written as

qα − qα′ =
2µT(εTα′ − εTα)

qα + qα′
. (A.2)

Then making the assumption that qα′ ≈ qα ≈ µTv, Eq. (A.2) reduces to

qα − qα′ =
εTα′ − εTα

v
. (A.3)

Since the scattering angle of the projectile is very small, we can approximate the

parallel component of the momentum transfer vector as q‖T ≈ qα−qα′ . Combining

this with Eq. (A.3) we can write Eq. (3.22) as

qT ·R = (εTα′ − εTα)t+ q⊥T · b. (A.4)
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A.2 β → β′ channel

Following the same ideas as for the α→ α′ channel we use the fact that

q2β
2µP

+ εPβ =
q2β′

2µP

+ εPβ′ (A.5)

to obtain

qβ − qβ′ =
2µT(εPβ′ − εPβ )

qβ + qβ′
(A.6)

and

qβ − qβ′ =
εPβ′ − εPβ

v
. (A.7)

In the small-angle approximation we have q‖P ≈ qβ − qβ′ . Therefore,

qP ·R = (εPβ′ − εPβ )t+ q⊥P · b. (A.8)

A.3 β → α′ channel

Using the definitions,


σT = R− rT(1− γT),

σP = R+ rP(1− γP),

(A.9)

we write

qβ · σP − qα′ · σT = R · (qβγP − qα′) + rT · (qβ − qβγP + qα′ − qα′γT). (A.10)

Then we define pβ and pα′ according to Eq. (3.24), and obtain

qβ · σP − qα′ · σT = pβ ·R+ (pα′ − pβ) · rT. (A.11)
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The second term can be simplified. For this first we write

pα′ − pβ = qβ − γTqα′ − γPqβ + qα′

= qβ(1− γP) + qα′(1− γT). (A.12)

Then, assuming the velocity of the projectile is approximately constant through-

out the collision we have that qβ ≈ µPv and qα′ ≈ µTv. Using the reduced

masses,


µT =

MTMP

MT +MP

,

µP =
(MT − 1)(MP + 1)

MT +MP

,

(A.13)

and Eq. (3.25) we get

qβ(1− γP) + qα′(1− γT) = µPv(1− γP) + µTv(1− γT)

=
MT +MP − 1

MT +MP

v

≈ v, (A.14)

where we made the assumption that MT + MP − 1 ≈ MT + MP since MT and

MP � 1. Therefore, Eq. (A.12) is simply

pα′ − pβ ≈ v, (A.15)

which allows us to write Eq. (A.11) as

qβ · σP − qα′ · σT = p
‖
βz + p⊥β · b+ v · rT, (A.16)
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since R = b + vt. In the small-angle approximation, the parallel component of

pβ is given by

p
‖
β = γPqβ − qα′ . (A.17)

Additionally, energy conservation requires that

q2α′

2µT

+ εTα′ =
q2β

2µP

+ εPβ , (A.18)

which implies

qα′ = qβ

√
µT

µP

√
1 +

2µP(εPβ − εTα′)

q2β
. (A.19)

The Maclaurin series for the function (x+ 1)
1
2 is

(1 + x)
1
2 = 1 +

1

2
x− 1

8
x2 + · · · . (A.20)

Setting x = 2µP(εPβ − εTα′)/q2β we obtain

(
1 +

2µP(εPβ − εTα′)

q2β

) 1
2

= 1 +
1

2

(
2µP(εPβ − εTα′)

q2β

)
− 1

8

(
2µP(εPβ − εTα′)

q2β

)2

+ · · · .

(A.21)

Since the energy difference, εPβ − εTα′ , is small, we keep only the first two terms.

With this we can express Eq. (A.19) as

qα′ ≈ qβ

√
µT

µP

(
1 +

µP(εPβ − εTα′)

q2β

)
. (A.22)

Therefore, Eq. (A.17) is written as

p
‖
β ≈ γPqβ − qβ

√
µT

µP

(
1 +

µP(εPβ − εTα′)

q2β

)
. (A.23)
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Also note that

√
µT

µP

=

√(
MT

MT − 1

)(
MP

MP + 1

)
=

1√
1− 1

MT

1√
1 + 1

MP

. (A.24)

Now we use 1/
√

1 + x ≈ 1− x/2 and set x = −1/MT and x = 1/MP, to get

√
µT

µP

=

(
1 +

1

2MT

)(
1− 1

2MP

)
≈ 1 +

1

2MT

− 1

2MP

. (A.25)

Additionally, we write

γP =
1

1 + 1
MP

≈ 1− 1

MP

. (A.26)

With Eqs. (A.25) and (A.26) the parallel component of pβ from Eq. (A.23) is

p
‖
β = qβ

(
1− 1

MP

)
− qβ

(
1 +

1

2MT

− 1

2MP

)(
1 +

µP(εPβ − εTα′)

q2β

)

= −qβ
(

qβ
2MT

+
qβ

2MP

)
−
(

1 +
1

2MT

− 1

2MP

)(
µP(εPβ − εTα′)

qβ

)
. (A.27)

Since MT and MP � 1, we find that

1

2MP

− 1

2MT

=
MP −MT

2MTMP

≈ 0, (A.28)

and

(
1

2MT

+
1

2MP

)
=
MT +MP

2MPMT

≈ 1

2µP

. (A.29)

Finally, recalling qβ = vµP we get

p
‖
β = −v

2
−

(εPβ − εTα′)

v
. (A.30)
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A.4 α→ β′ channel

Using the definitions in Eq. (A.9) we write

qα · σT − qβ′ · σP = R · (qαγT − qβ′)

+ rP · (−qα + qαγT − qβ′ + qβ′γP). (A.31)

Then we define pα and pβ′ according to Eq. (3.34) and obtain

qα · σT − qβ′ · σP = pα ·R+ (pα − pβ′) · rP. (A.32)

The second term can be simplified by considering that

pα − pβ′ = γTqα − qβ′ − qα + γPqβ′

= qα(γT − 1) + qβ′(γP − 1). (A.33)

Then, following a similar procedure as for the β → α′ channel we get

pα − pβ′ ≈ −v, (A.34)

which allows us to write Eq. (A.32) as

pα ·R+ (pα − pβ′) · rP = p‖αz + p⊥α · b− v · rP, (A.35)

since R = b+ vt. The parallel component of pα is given by

p‖α = γTqα − qβ′ . (A.36)

Then, following the same procedure as in Sect. A.3 we get

p‖α = −v
2
−

(εTα − εPβ′)

v
. (A.37)
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Frames of reference transformations

B.1 Rotating molecular frame

To evaluate the matrix elements in Sect. 3.3 we make use of the rotating molecular

frame illustrated in Fig. 3.3. In this frame the origin is positioned halfway between

the target and projectile nuclei and the z′-axis is directed along the vector R.

Thus, the orientation of the primed axes is dependent on the relative position of

the projectile, i.e. the angle θR.

Rotation from the laboratory frame to the molecular frame is characterised

by the Euler angles α, β, and γ, given by


α = ϕb

β = θR

γ = 0.

(B.1)

We use the convention that the rotation is performed by the following sequence:

1. Rotation about the z-axis through an angle γ in the direction such that the

positive x-axis rotates towards the positive y-axis.

2. Rotation about the original y-axis through an angle β in the direction such

that the positive z-axis rotates towards the positive x-axis.
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3. Rotation about the original z-axis through an angle α in the direction such

that the positive x-axis rotates towards the positive y-axis.

In this scheme the inverse transformation is given by the angles


α→ −γ,

β → −β,

γ → −α.

(B.2)

The polar angle of the projectile in the laboratory frame is straightforwardly

given by

θR = arcsin

(
b

R

)
= arccos

(
vt

R

)
. (B.3)

The Cartesian coordinates of the active electron are written as (xe, ye, ze) and

(x′e, y
′
e, z
′
e) in the laboratory and molecular frames, respectively. The magnitudes

of rT, rP, and r remain unchanged under rotation of the coordinate axes. We

can write these in terms of the Cartesian coordinates of the electron according to


rT = r′T =

√
x′2e + y′2e + (z′e +R/2)2,

rP = r′P =
√
x′2e + y′2e + (z′e −R/2)2,

r = r′ =
√
x′2e + y′2e + z′2e .

(B.4)

The cosines of the polar angle of the electron in the rotating molecular frame are

given by



cos θ′T =
z′e +R′/2

r′T
,

cos θ′P =
z′e −R′/2

r′P
,

cos θ′e =
z′e
r′
.

(B.5)

In the rotating molecular frame, we move from spherical to prolate spheroidal

coordinates. Figure B.1 shows the orthogonal isosurfaces used to construct the
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T

P
(η, τ, ϕe)

τ = 0.8

η = 1.3 ϕe =
3π
4

x′

y′

z′

Figure B.1: Definition of the prolate spheroidal coordinate system used in this work.
The foci of the hyperboloids and ellipsoids are positioned at the target and projectile
nuclei. In this example the electron is located at η = 1.3, τ = 0.8, ϕe = 3π/4.

basis vectors in spheroidal coordinates. Surfaces of constant η are confocal ellip-

soids of revolution, surfaces of constant τ are hyperboloids of revolution, and ϕe

is defined the same way as in spherical coordinates. The domains of η, τ , and ϕe

are 
η ∈ [1,∞],

τ ∈ [−1, 1],

ϕ ∈ [0, 2π].

(B.6)

The transformation between the Cartesian and prolate spheroidal coordinates is

given by


x′e =

R

2

√
(η2 − 1)(1− τ 2) cosϕ′e,

y′e =
R

2

√
(η2 − 1)(1− τ 2) sinϕ′e,

z′e =
R

2
ητ.

(B.7)

To find r′T, r′P, and r′ in spheroidal coordinates we substitute the expressions in

Eq. (B.7) into the equations in Eq. (B.4). First consider the term, x′2e +y′2e , which
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is common to each expression in Eq. (B.4),

x′2e + y′2e =

(
R

2

)2

(η2 − 1)(1− τ 2) cos2 ϕ′e +

(
R

2

)2

(η2 − 1)(1− τ 2) sin2 ϕ′e

=

(
R

2

)2

(η2 − 1)(1− τ 2). (B.8)

Using this result, the magnitudes in Eq. (B.4) are

r′T =
R

2

√
(η2 − 1)(1− τ 2) + (ητ + 1)2

=
R

2

√
η2 − η2τ 2 − 1 + τ 2 + η2τ 2 + 2ητ + 1

=
R

2

√
η2 + τ 2 + 2ητ (B.9)

=
R

2
(η + τ),

and

r′P =
R

2

√
(η2 − 1)(1− τ 2) + (ητ − 1)2

=
R

2

√
η2 − η2τ 2 − 1 + τ 2 + η2τ 2 − 2ητ + 1

=
R

2

√
η2 + τ 2 − 2ητ (B.10)

=
R

2
(η − τ),

and

r′ =
R

2

√
(η2 − 1)(1− τ 2) + (ητ)2

=
R

2

√
η2 − η2τ 2 − 1 + τ 2 + η2τ 2

=
R

2

√
η2 + τ 2 − 1. (B.11)

Now consider the cosines of the polar angles of the electron position vectors.



Appendix B. Frames of reference transformations 287

Substituting for z′e and r′T we have1

cos θ′T =
R
2
ητ + R

2
R
2

(η + τ)

=
ητ + 1

η + τ
, (B.12)

and

cos θ′P =
R
2
ητ − R

2
R
2

(η − τ)

=
ητ − 1

η − τ , (B.13)

and

cos θ′e =
R
2
ητ

R
2

√
η2 + τ 2 − 1

=
ητ√

η2 + τ 2 − 1
. (B.14)

The scalar product of the velocity and electron position vector is evaluated as

follows. First, we write2

v′ · r′ = v′r′ cos θv′r′ , (B.15)

where θvr is the angle between v and r. The cosine of the angle between two

vectors, r1 = (r1, θ1, ϕ1) and r2 = (r2, θ2, ϕ2), in R3 is given by

cos θr1r2 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2). (B.16)

Since ϕ′v = 0 we have

v′ · r′ = v′r′[cos θ′e cos θ′v + sin θ′e sin θ′v cosϕ′e]. (B.17)

1Recall that R′ = R.
2The scalar product is invariant under rotation of coordinates, therefore v · r = v′ · r′.
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The vector v′ makes an angle of 2π − θR to the z′-axis. Therefore,


cos θv′ = cos(2π − θR) = cos θR =

vt

R
,

sin θv′ = sin(2π − θR) = − sin θR = − b

R
.

(B.18)

Lastly, using Eq. (B.14) and Pythagoras’ Theorem we find that

sin θ′e =

√
η2 + τ 2 − 1− η2τ 2√

η2 + τ 2 − 1

=

√
(η2 − 1)(1− τ 2)√
η2 + τ 2 − 1

. (B.19)

Substituting Eqs. (B.14), (B.18), and (B.19) into Eq. (B.17) yields

v′ · r′ = v′r′
[

ητ√
η2 + τ 2 − 1

vt

R
−
√

(η2 − 1)(1− τ 2)√
η2 + τ 2 − 1

b

R
cosϕ′e

]

=
v2t

2
ητ − vb

2

√
(η2 − 1)(1− τ 2) cosϕ′e. (B.20)

Finally, we note that in spheroidal coordinates, the differential element of

volume, dr′, is written as

dr′ =

(
R

2

)3

(η2 − τ 2) dη dτ dϕe . (B.21)

B.2 The laboratory and centre-of-mass frames of

reference

The cross sections differential in the scattering angle of the projectile are cal-

culated in the centre-of-mass (CoM) frame. However, in some cases we convert

the results to the laboratory (Lab) frame for comparison with experimental data.

Here we derive the relation of the scattering angle and angular differential cross

section in the centre-of-mass and laboratory frames.

In the CoM frame the projectile moves along the z-axis in the positive direction
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while the target moves in the negative direction. Consider that the motion of

the CoM itself is purely along the z-axis. This implies that azimuthal angles are

unchanged under transformation between the Lab and CoM frames, ϕLab = ϕCoM.

The component of the projectile velocity in the Lab frame is given by

vLab cos θLab = vCoM cos θCoM + V, (B.22)

where V is the speed of the motion of the CoM, θLab and θCoM are the scattering

angle in the Lab and CoM frames of reference, respectively, and vLab and vCoM

are the speed of the projectile in the Lab and CoM frames, respectively. We also

have

vLab sin θLab = vCoM sin θCoM. (B.23)

Dividing Eq. (B.23) by Eq. (B.22) we obtain

tan θLab =
sin θCoM

cos θCoM + τ
, (B.24)

where τ ≡ V/vCoM = MP/MT. We can also derive an expression for cos θLab

which will be useful when considering how differential cross sections transform

between these frames. To do this we use the expression tan2 x ≡ sec2x− 1 on the

LHS of Eq. (B.24) to get

cos θLab =
cos θCoM + τ

(1 + 2τ cos θCoM + τ 2)1/2
. (B.25)

The relationship between the cross section differential in the scattering angle

of the projectile in the Lab and CoM frames can be found by considering that

the integrated cross section is frame-invariant, σLab = σCoM, and that the flux of

projectile particles scattered through ΩLab is the same as the number that pass
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through ΩCoM. Hence,

dσLab
dΩLab

dΩLab =
dσCoM

dΩCoM

dΩCoM

dσLab
dΩLab

sin θLab dθLab dϕLab =
dσCoM

dΩCoM

sin θCoM dθCoM dϕCoM

∴
dσLab
dΩLab

=
d(cos θCoM)

d(cos θLab)

dσCoM

dΩCoM

, (B.26)

since d(cosx) = − sinx dx, and dϕLab / dϕCoM = 1. Thus, all that remains is to

find the derivative of the cosine of the polar angle in the Lab frame with respect

to the cosine of the polar angle in the CoM frame. Let’s first consider the inverse

relation since we already have an expression for cos θLab in terms of cos θCoM in

Eq. (B.25),

d(cos θLab)

d(cos θCoM)
=

d

d(cos θCoM)

(
cos θCoM + τ

(1 + 2τ cos θCoM + τ 2)1/2

)
,

=
1

[1 + 2τ cos θCoM + τ 2]1/2
− τ [cos θCoM + τ ]

[1 + 2τ cos θCoM + τ 2]3/2

=
1 + τ cos θCoM

[1 + 2τ cos θCoM + τ 2]3/2
. (B.27)

Therefore, the differential cross sections in the laboratory frame of reference can

be recovered from the calculated cross section in the centre-of-mass frame of

reference using

dσLab
dΩLab

=
[1 + 2τ cos θCoM + τ 2]3/2

1 + τ cos θCoM

dσCoM

dΩCoM

. (B.28)
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Abbreviation Description

AA advanced adiabatic

AO travelling atomic-orbital expansion

AOCC atomic-orbital close-coupling

B2B0 second-order boundary-corrected Born approximation

with simplified Green’s functions

BCIS-3B three-body boundary-corrected

continuum-intermediate-state

BCIS-4B four-body boundary-corrected

continuum-intermediate-state

BE-FF binary-encounter free-fall

BGM basis-generator method

CB1 first-order boundary-corrected Born

CB1-4B four-body boundary-corrected first-order Born

CB2 second-order boundary-corrected Born
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Abbreviation Description

CCC convergent close-coupling

CDW continuum-distorted-wave

CDW-EFS continuum-distorted-wave eikonal-final-state

CDW-EIS continuum-distorted-wave eikonal-initial-state

CDW-EIS-MO continuum-distorted-wave eikonal-initial-state

molecular-orbital

CI configuration-interaction

COLTRIMS cold target recoil ion momentum spectroscopy

CoM centre-of-mass

CPU central processing unit

CRP Coordinated Research Project

CTMC classical trajectory Monte Carlo

CXS charge-exchange spectroscopy

DCS differential cross section

dCTMC dynamical classical trajectory Monte Carlo

DDCS doubly differential cross section

DI direct ionisation

DS direct scattering

DW-C eikonal distorted-wave method with Coulombic

potential

DW-S eikonal distorted-wave method with static potential

DWB distorted-wave Born

DWHF distorted-wave Hartree-Fock

E1E effective one-electron

EA eikonal approximation
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Abbreviation Description

EC electron capture

ECC electron capture into the continuum

EE-CTMC equivalent electron classical trajectory Monte Carlo

EIA eikonal impulse approximation

FBA first-order Born approximation

FBA-PCI first-order Born approximation with post-collision

interaction

FDCS fully differential cross section

FHBS finite Hilbert basis set

FN fixed-nuclei

GPU graphics processing unit

GTDSE numerical grid approach to solving the time-dependent

Schrödinger equation for the total scattering wave

function

GTO Gaussian-type orbitals

hCTMC hydrogenic classical trajectory Monte Carlo

HF Hartree-Fock

IAEA International Atomic Energy Agency

IEM independent-event model

IEM-BGM independent-event-model basis-generator method

IPFA impact-parameter Faddeev approach

IPM independent-particle model
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Abbreviation Description

ITER formerly the International Thermonuclear Experimental

Reactor

Lab laboratory

LCAO linear combination of atomic orbitals

LTDSE lattice numerical solution to the time-dependent

Schrödinger equation

M3DW-EIS molecular three-body distorted-wave-eikonal

initial-state

MC Monte Carlo

MCSCF multiconfigurational self-consistent field

mCTMC microcanonical classical trajectory Monte Carlo

MMO modified molecular-orbital

MO molecular-orbital

MOCC molecular-orbital close-coupling

MOM multichannel optical-model

NEE-CTMC non-equivalent electron classical trajectory Monte Carlo

OAE-BGM one-active-electron basis-generator method

OBK Oppenheimer-Brinkman-Kramers

ODP optimised dynamical-pseudostates

OEDM one-electron diatomic molecular

OP optical potential

PW partial-wave
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Abbreviation Description

PWBA partial-wave Born approximation

QTMC-KW quasi-classical trajectory Monte Carlo

SDCS singly differential cross section

SE2 symmetric eikonal

SPS static-potential scattering

TBEA three-body eikonal approach

TC-AOCC two-centre atomic-orbital close-coupling

TC-BGM two-centre basis generator method

TDCC time-dependent close-coupling

TDDFT time-dependent density-functional theory

TDDFT-IEM time-dependent density-functional theory using the

independent-event-model

TDDFT-WB time-dependent density-functional theory using the

Wilken-Bauer correlation integral

TDSE time-dependent Schrödinger equation

TEC two-effective-centre

TECS total electron-capture cross section

TEL total electron loss

TICS total ionisation cross section

WP-CCC wave-packet convergent close-coupling
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