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Abstract: Public transport (PT) networks face significant challenges in achieving optimal outcomes due

to the presence of risk and uncertainty. Despite the importance of optimising PT networks’ performance,

limited research has applied risk management tools to tackle this issue. In response, this study

presents a three-stage framework to optimise PT networks’ performance in uncertain conditions.

First, we establish a PT criteria matrix using an analytic hierarchy process to develop a criteria

model and calculate the criteria weightings. Second, we propose a multi-aspiration-level goal

programming approach to optimise a PT network’s performance based on the weighted results. To

manage uncertainty, we use Monte Carlo simulation to analyse the probability of the optimal solution.

Finally, to validate our approach, we apply the three-stage framework to three case study areas in

Australia. The results of this research offer significant insights into identifying the likelihood of criteria

optimisation scenarios, thereby assisting decision makers in allocating resources for optimising the

delivery of PT network performance solutions in accordance with government requirements.

Keywords: uncertainty; public transport network optimisation; three-stage model; sampling;

multiple-criteria decision making

1. Introduction

1.1. Public Transport Networks

Public transportation is essential for the daily operation of society and is also consid-
ered a viable way to address the environmental issues that are caused by the increasing
number of private vehicles. Due to its significance for sustainable development, public
transport (PT) is being advocated by many countries, regions, and organisations, such as
the UN-Habitat [1]. A PT network is a network formed by various types of PT, such as
buses and trains, and an optimised PT network can not only provide residents easy access
to PT but also help better address environmental issues and contribute to the sustainability
of society. However, optimising a PT network is associated with uncertainty and risk,
which can have great impacts on optimising outcomes.

The amount of recent research on PT decision making under uncertain conditions is
increasing, with a focus on identifying the level of uncertainty that is associated with system
input variables [2,3]. Additionally, in the PT multicriteria optimisation decision making
problem, current research only considers one or two processes in terms of evaluation,
optimisation, and uncertainty [3–6]. Studies about combining these three processes are
limited. Therefore, this study’s integration of evaluation, optimisation, and uncertainty
processes in PT performance within a novel framework provides improved performance.
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1.2. Uncertainty and Risks in Public Transport Networks

The delivery of optimised results is, in practice, impacted by the uncertainty of events.
Uncertainty and variation are problematic when trying to optimise PT networks’ perfor-
mance. According to Altieri et al. (2017), PT is a complex system, whose quality analysis is
challenging because it must consider the risks and uncertainties that are associated with
human reasoning [7]. Additionally, there are numerous risks and uncertainties associated
with user demand, operations, and traffic conditions that must be considered when PT
performance improvement is being considered [8]. Therefore, whenever a PT optimisation
model is developed to replicate a complex system, its output will always be uncertain.

Uncertainty is usually related to risk, which is defined as the influence of uncertainty
on objectives or criteria [9–11]. Appropriate identification of major sources of risk can
eliminate or at least reduce the probability of discovering new sources of uncertainty
during the modelling process [4]. Thus, the uncertainty or risk identification process of the
criteria is required to deliver the project results. Risk management is the tool that provides
methods for mitigating project risk.

Risk management employs both qualitative and quantitative techniques. Dalmau
(2022) used risk management to forecast the likelihood of airspace user rerouting, which
aids the flow manager in air traffic flow management [12]. Similarly, Budzynski et al. (2021)
examined PT’s response to hazards using a qualitative method, risk registers [13]. To model
the likelihood of project objectives, this study employs a quantitative risk management tool.

In the PT sector, risk management models have already been used to model input and
uncertainty [14,15], and recent optimisation under uncertainty problems in PT frequently
employs quantitative risk management methods, which assist DMs in determining the
probability of the optimal solution [16,17].

1.3. Monte Carlo Simulation for Managing Uncertainty

Uncertainty cannot be fully investigated due to limited knowledge or the randomness
of some model components. Monte Carlo simulation (MCS) is a quantitative risk analysis
method based on a probabilistic model that employs probability distributions to model
uncertainty [18,19]. The results assist DMs in managing risk and uncertainty to complete
the project.

MCS is a risk management tool that is widely used in many fields, including medicine
and project management. For example, MCS is used in medicine to assess the likelihood of
viral transmission [20]. Yang et al. (2020) employed MCS to model uncertainty in a project
to assess the health of land ecosystems [21]. Kannan et al. (2021) used MCS to analyse the
sensitivity of VIKOR and grey relational analysis in a sustainable location of a solar site
selection project [22]. MCS is also used to improve the reliability of assessment results in a
lake eutrophication level evaluation project [23]. In most cases, MCS is used to assess the
likelihood of project outcomes.

MCS has attracted the interest of PT researchers in recent years. For instance, Manzo
et al. (2015) used MCS to analyse uncertainty in a four-stage transport model [4]. This
study focused on investigating how the uncertainty of model parameters and inputs
influences the model outputs. Conway et al. (2018) utilised MCS to account for variation
and uncertainty in accessibility metrics when planning PT sketches [24]. Furthermore,
Pencheva et al. (2021) applied MCS to determine the waiting time of passenger vehicles
in PT areas [25]. Research shows that despite the increased optimisation and uncertainty
analysis of PT, the existing studies focus more on single aspects of PT. Consequently, an
effective framework for optimising a PT network’s performance under uncertain conditions
in multiple aspects is increasingly necessary to propose optimal plans and strategies while
considering uncertainty.

1.4. Research Contribution

Probabilistic analysis is a commonly used technique for addressing evaluation-based
issues in project management. MCS is also used in mitigating uncertainty that is related
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to model inputs and outputs in various application areas. Despite its effectiveness in
addressing project management issues, little research has used MCS to address the problem
of optimising PT network performance. This study only examines one aspect of physical
performance. In PT network performance optimisation problems, the probability of a
scenario (scenario analysis) is thus required.

Multiple-criteria decision making (MCDM) and goal programming (GP) methods
provide a variety of frameworks, and a few MCDM and GP methods have been used to
optimise PT performance to meet the goals and requirements of DMs [5,26,27]. To solve
multicriteria optimisation problems, the analytic hierarchy process (AHP) is an MCDM
method that is frequently combined with the GP approach [5,27].

Previous research proposed the public transport criteria matrix (PTCM)-AHP-Multi-
Aspiration-Level Goal Programming (MALGP) model for optimising PT networks’ per-
formance [27,28]. The model considers the basic PT infrastructure level, sustainable de-
velopment level, PT service level, and economic benefit level for optimisation. In some
cases, due to uncertainty occurring during the optimisation process, it is difficult for DMs
to deliver an optimal solution. Previous research lacks an analysis of uncertainty that is
related to criteria uncertainty.

Despite the current literature, a multicriteria optimisation method that combines
these three processes in PT optimisation under uncertain conditions is still lacking. In the
pursuit of creating a comprehensive tool to optimise PT performance under ambiguous
circumstances at various levels of aspiration, several important aspects of enhancing PT
performance have been overlooked [5,16]. To bridge this gap, this study proposes a three-
stage approach for optimising PT networks’ performance under uncertain conditions. The
models optimise four levels of criteria with uncertainty to achieve the DMs’ PT network
optimisation goals. The primary goal of this study is to determine the level of criteria
uncertainty, and a sensitivity analysis is performed to guide the optimisation process. MCS
results can be used to assist DMs in making PT network optimisation decisions, as well as to
precisely indicate the probability of the uncertainty rate when delivering criteria outcomes.

Compared with the current research, this study introduces the following novel contri-
butions: 1. The three-stage model framework considers multiple aspects of PT network
criteria. 2. The three-stage model framework is developed to evaluate and optimise PT
networks’ performance under uncertain conditions. 3. The validity of optimal solutions is
examined in the case study areas.

The remainder of this paper is organised as follows: Section 2 explains the framework
of the proposed three-stage PT network performance optimisation under uncertain condi-
tions. Section 3 presents the input data of the three case study areas. Section 4 discusses the
analysis results of the three case study areas, and the conclusions and future directions of
the research are presented in Section 5.

2. Materials and Methods

In this study, we combine the PTCM-AHP, MALGP, and MCS models into a three-stage
framework to optimise PT networks’ performance under uncertain conditions. PT networks
face significant challenges in achieving optimal outcomes due to the presence of risk and
uncertainty. Despite the importance of optimising PT networks’ performance, there has
been limited research that applies risk management tools to tackle this issue. In response,
this research presents a three-stage framework to optimise PT networks’ performance under
uncertain conditions. First, we use the established PT network criteria matrix. Second,
we propose a MALGP approach to optimise PT networks’ performance based on the
weighted results. To manage uncertainty, we use MCS to analyse the probability of the
optimal solution. The results of this research offer significant insights into identifying the
likelihood of criteria optimisation scenarios, thereby assisting DMs in allocating resources
for optimising the delivery of PT network performance solutions in accordance with
government requirements.
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Figure 1 depicts the three-stage approach for optimising the uncertain PT network
performance, which includes an AHP process, a MALGP process, and an MCS process.
The following sections review the specifics of each stage.
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Figure 1. The proposed three-stage process for optimising public transport networks’ performance

under an uncertain process.

2.1. AHP Process

AHP is a structured model for analysing and solving complex decision issues [29,30].
To implement AHP to solve problems, there are three steps: criteria priority weight calcu-
lation, issue decomposition, and criteria comparison analysis [31]. In this study, first, the
model decomposes the PT network performance evaluation problem into numerous levels.
Second, to obtain the weight of each criterion, the model uses pairwise comparisons that
assign the relative importance between two criteria [29,30,32]. Based on the AHP process,
the PTCM-AHP model was proposed to evaluate a PT network’s performance [28]. The
following subsections review the specifics of the AHP process.

2.1.1. PTCM-AHP Model Structure

The decision variables of the AHP model have been described by Lin et al. (2021) [28].
Additional details of the PT network performance criteria can be found in Lin et al.
(2021) [28]. The criteria were selected from existing PT evaluation assessments and in-
dices [33–37]. These criteria are used to determine the PTCM-AHP model structure.

The PTCM-AHP model is based on four levels: the basic PT infrastructure level, the
PT service level, the economic benefit level, and the sustainable development level [28].
Figure 2 presents the hierarchy of the PT network performance criteria of the PTCM-AHP
model. The model includes 4 levels of criteria and 15 subcriteria.
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Figure 2. Hierarchy structure of public transport network performance criteria.

• The PT infrastructure level includes the harbour-type bus stop setting ratio, PT cover-
age ratio, PT priority lane setting ratio, and PT network ratio.

• The PT service level contains four subcriteria: passenger freight rate, PT on-time ratio,
PT driving accident rate, and peak hours intersection blocking rate.

• The economic benefit level contains the intact car rate, coverage ratio, and bus owner-
ship rate.

• The level of sustainable development considers the PT utilisation rate, PT energy
intensity, PT land area per capita, and green PT vehicle rate.

Once the PTCM-AHP model structure was established, the process of determining
criteria weights was undertaken to test and calculate the results of the weightings. The
details of the weighting process are shown in the following section.

2.1.2. Criteria Weight Determination

The major steps for determining the weights of criteria are described below [28].

(1) Construct the problem in a hierarchical structure and determine the criteria and
subcriteria.

(2) Create the decision matrix C =
(

Cig

)

and perform pairwise comparison between
criteria and subcriteria. Cig indicates the importance values for criteria (i) and (g),
which are between 1 and 9, provided by experts.

(3) Normalise the decision matrix C to be matrix D =
(

dig

)

:

dig =
cig

∑
n
i=1 Cig

(4) Calculate the arithmetic mean of matrix D rows to obtain the prioritisation vector (w):

w =
∑

n
g=1 dig

n

(5) Fulfil the calculation result of the highest matrix eigenvalue Tmax:

Cw = Tmaxw and Tmax ≈ T =
∑

n
i=1 Ti

n
.
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(6) Verify the consistency of the results. Hence, the consistency ratio (CR) must be
calculated. RI is the random index. The formulations of the consistency index (CI)
and CR for each matrix C are shown below:

CI =
Tmax − n

n − 1

CR =
CI

RI

(7) Repeat steps 2–6 until CR ≤ 10%. When CR ≤ 10%, the model result is deemed
internally coherent.

Hence, we can eventually identify the weight of the PTCM-AHP model criteria and
subcriteria, which are used as coefficient values in the MALGP process. The case study
area’s performance report is also created to identify the city’s PT network’s performance
score and show each criterion’s performance score, which are calculated based on the case
study areas’ criteria actual value. The results of the city performance report will be used
to determine the criteria aspiration level used in the calculation of criteria goal values in
the MALGP process. The criteria weights and performance results of the case study areas’
PTCM-AHP model results can be found in Lin et al. (2021) [28].

2.2. Multi-Aspiration-Level Goal Programming (MALGP) Process

GP is often combined with AHP to assist DMs, which can address MCDM problems
and identify optimal solutions [38,39]. The outputs of the AHP process are used to define
the objective function criteria priority of GP [5]. The model minimises the objective function
by selecting the criteria aspiration level from numerous criterion input values [5]. Based
on GP, MCGP further develops a model that allows DMs to address multiple goals or
aspiration levels per criterion [40–43]. However, MCGP does not consider the selection of
a criterion goal level among various aspiration-level cases. Hence, the establishment of
MALGP helps DMs choose different aspiration levels to solve the PT network performance
optimisation problem [27]. The model takes the selection of the criteria aspiration level
into consideration to help DMs in performance optimisation. The MALGP process is
shown below.

2.2.1. Criteria Aspiration Level Case Selection

The MALGP model includes the criterion case selection process. The aspiration level
criterion is selected based on the actual value of the criteria. The details of the criteria-level
grades can be found in Lin et al. (2021) [28]. According to Figure 3, the process contains
three cases [27].
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Figure 3. Grade level scale for subcriteria [27].

Case 1: The actual value is the aspiration value for the ith criterion when the ith
criterion’s actual value is greater than di ,max.

Case 2: The aspiration value of the ith criterion is less than di ,max but greater than
the actual value when the actual value for the ith criterion is less than di ,max but greater
than di,4.

Case 3: The aspiration value of the ith criterion is the (i + 1)th aspiration level when
the actual value level for the ith criterion is level 1, 2, 3, or 4.
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Then, the criteria aspiration-level case of the model can be identified. In the calculation
step, the conditions of the objective function formulation are based on the criteria aspiration-
level selection results.

2.2.2. Objective Function Formulation

After the case selection process for the criteria aspiration level, we establish the
objective function formulation for the PT network performance optimisation process. The
MALGP model uses criteria weights as coefficients in the model’s objective function [5].
The notations and formulation for the MALGP objective function are shown as follows [27]:

Notations:
s: criteria number, s = 1, 2, . . . e;
i: goal number, i = 1, 2, . . . n;
Ri: weight assigned for ith priority;
xs: sth decision variable;
bis: coefficient of the sth criteria for the ith goal;
pi: positive deviation;
qi: negative deviation;
di: aspiration grade level for goal i, i = 1, 2 . . . 5.

Min∑
n

i=1
Ri(pi + qi)

subject to

∑
e

s=1
bisxs−pi + qi = di,

pi, qi, xs≥ 0,

Case 1: If the constraint of di is the actual value of the criterion,

di ≥ di,max

Case 2: If the constraint of di is chosen between the criterion’s actual value and di ,max,

di,4 ≤ di ≤ di,max

Case 3: If the criterion’s actual value is less than di,4 and the criterion’s goal value is
less than di ,max,

di,min ≤ di ≤ di,max

During the MALGP model process, the constraint functions are based on the selected
grade for the criteria aspiration level and considering the relation of the criteria. The
details of the case study areas’ objective functions and constraints can be found in Lin et al.
(2022) [27].

2.3. Monte Carlo Simulation (MCS) Process

In this process, we used MCS to model the probability of optimal scenario delivery.
The proposed method was used to calculate the possibility of an optimal solution. MCS
performs calculations, allowing for multiple simulations of a project. The process was
used to quantitatively analyse project risk and identify the probability of the best solution
by randomly selecting criteria values [44,45]. MCS analyses risk and uncertainty using a
probability distribution. This study assumed that the DMs must control each criterion’s
performance and that the criteria probability was within a range of −5%/+10%. The model
outcomes were analysed to identify the probability of and confidence level for achieving
the goals. The results are obtained using @risk software Version 8.3. The details of the MCS
process are shown below.
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2.3.1. Criteria Probability Distribution Identification

Before we begin simulating the optimisation results, we must first determine the
probability of the criteria. The types of criteria probability distributions must be chosen
during the identification process. According to Figure 4, the criteria sampling process uses
a triangular probability distribution because the minimum, most likely, and maximum
values can be estimated. The MALGP process outputs are used as the most likely value
of criteria in the MCS process. Table 1 shows the criteria ratings for the uncertainty level,
which can be used to calculate the minimum and maximum values of the criteria. The level
of uncertainty is divided into five categories: very high, high, medium, low, and very low.

                   
 

         
                       
                         

                         
                     

                               
                             
                             

                             
   

 
                       

         

           
         

       
       

       
         

                           
                                 

                           
                               

                         
                             
                         
                     

                           
                           
             

     
                         

                     
                               

                           
                       

   

Figure 4. Triangular distribution of criteria for public transport network performance optimisation.

Table 1. Uncertainty level [46].

Uncertainty Level Min Most Likely Max

Very high 50% 100% 200%
High 75% 100% 150%

Medium 85% 100% 125%
Low 90% 100% 115%

Very low 95% 100% 110%

Thus, the criteria’s risk and uncertainty levels need to be identified. To determine
the input of the criteria, the uncertainty and risk level of a criterion are selected based on
the risk rating recommendation and existing risk ratings for the criteria. The current PT
risk assessment shows that the risk level of PT driving accident rates is high [47]. Based
on existing risk ratings, the uncertainty level of the intersection blocking rate during peak
hours, coverage rate, PT land area per capita, and PT utilisation rate are medium [48]. Other
criteria’s uncertainty levels are very low, since the optimisation process can be controlled
under the government implementation plan. After the criteria uncertainty levels have been
identified, the results are utilised in the sampling process. During the criteria sampling,
the sampling model needs to be selected. The details of the sampling model selection are
shown in the following subsection.

2.3.2. Sample Selection

MCS uses a random sampling process. Monte Carlo (MC) sampling can recreate the
full input distribution by making random selections across the entire probability distribu-
tion with large iterations [49]. With high iteration, the model results are closer to the actual
situation. Hence, this study used MCS performed by means of MC sampling. The details
of the model input for the criteria are described in Section 3.

3. Case Study

The analysis was implemented in three study areas in Australia, including the City of
Bayswater, the City of Cockburn, and the City of Stonnington. Stonnington and Bayswater
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are suburbs close to Melbourne and Perth Central Business District, respectively. Cockburn
is a suburb in the south of Perth. In these cities, trains and buses are the major means of
public transport, and the main land use type is residential. The details of the case studies
can be found in Lin et al. (2021) [28]. The locations and areas of these three cities are shown
in Figure 5.
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Figure 5. (a) City boundary of Stonnington; (b) city boundary of Bayswater; (c) city boundary of

Cockburn [28].

The MCS was conducted to analyse the likelihood of achieving PT network perfor-
mance optimisation goals. The input data for the three case study areas were derived
from AHP and MALGP outputs. As demonstrated in Section 2.1, the PTCM-AHP model
calculates the criteria weights that are later utilised in MALGP for the optimisation pro-
cess [27,28]. The criteria weights are presented in Lin et al. (2021) [27]. The mean value of
the criteria for MCS was extracted from the MALGP criteria optimising results, and the
details can be found in Lin et al. (2022) [28].

The sources of uncertainty for the optimisation process of public transport networks’
performance have not been fully investigated. Thus, the degree of uncertainty for each
criterion is defined based on the existing risk rating, which is discussed in Section 2.3.1.
This analysis focuses on the uncertainty of the implementation criteria of the optimisation
results. The risk level of criteria is defined based on an existing risk assessment of the
uncertainty level.

According to the risk rating description, the uncertainty level is medium for the
intersection blocking rate during peak hours, coverage rate, PT land area per capita, and
PT utilisation rate. Based on existing PT risk assessments, the uncertainty level of the PT
driving accident rate is high. The criteria’s mean values are each criterion’s optimal value.
The remaining criteria have very low uncertainty levels. Thus, the minimum and maximum
values for the criteria were calculated.

The type of probability distribution for all criteria sampling was assumed to be trian-
gularly distributed, since the minimum, most likely, and maximum values can be estimated.
The model input list of the three cities for MCS is shown in Tables A1–A3. The sampling
result is more likely to display the distribution accurately with a high number of draws.
Thus, the criteria used 5000 draws by applying MC sampling.

Sensitivity analyses on the three case study areas were implemented. Each PT criteria
performance was calculated on 5000 model runs. To explore the criteria model outputs’
uncertainty, criteria uncertainty was investigated via the criteria coefficient value, criteria
optimising value’s impacts on the model output, and the criteria’s probability of reaching
the DMs’ optimisation goals. The details of the model’s results and sensitivity analyses are
shown in the next section.
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4. Results and Discussion

Sensitivity analyses were implemented in the three case study areas. The most likely
values for the criteria during the optimisation process were also determined. Finally, the
results reveal the critical sensitive criteria that governments must take into account to
manage uncertainty for future optimisation plans and strategies for the case study areas.
Section 4.1 identifies the most sensitive criteria and the criteria’s most likely values during
the optimisation process. Section 4.2 shows the most important criteria of the MCS model’s
output for the study areas. Section 4.3 determines the probability of sensitive criteria to
achieve the government requirements.

4.1. Sensitivity Analysis

According to Tables A4–A6, all cities’ outputs are influenced by the on-time rate. Based
on the output of the probability distribution for the case study areas, three cities have a
50th percentile chance of achieving the performance optimisation goals for each criterion.
Except for the on-time rate, other criteria have at least a 60% likelihood of achieving the
optimal solution.

Figures 6–8 show the coefficient values of the criteria for the three case study areas.
The y-axis displays the names of the criteria from top to bottom in an order of sensitive
influence to the criteria. The x-axis indicates the coefficient values of the associated criteria.
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Figure 6. Bayswater PT network’s performance criteria’s coefficient values.
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Figure 7. Cockburn PT network’s performance criteria’s coefficient values.
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Figure 8. Stonnington PT performance criteria’s coefficient values.

According to the results, the most sensitive criterion for all cities is the coverage rate.
This criterion’s coefficient value is over 0.9 for the three cities. According to Table A7,
Bayswater and Cockburn’s most likely values are both 103.33%. The two cities’ minimum
and maximum values are 85.08% and 124.5%, respectively. Table A7 suggests that the
most likely value for Stonnington is 155%. The Stonnington minimum and maximum
values are 127.76% and 186.52%, respectively. To control and minimise the uncertainty of
this most sensitive criterion’s optimisation process, the DMs should consider improving
the PT service’s commercial revenue and reducing the operating expenses for all cities’
optimisation scenarios.

Figures 6–8 effectively offer an overall interpretation of the model based on each
criterion. However, the relative importance of the criteria on the model output has not been
discovered. For this reason, Figures 9–11 show the criteria for optimising the impacts of the
input on MCS output.
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Figure 9. Bayswater: criteria’s optimising value’s impact on model output.
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Figure 10. Cockburn: criteria’s optimising value’s impact on model output.
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Figure 11. Stonnington: criteria’s optimising value’s impact on model output.

4.2. Permutation Feature Importance

Figures 9–11 show the impacts of the three cities’ criteria for optimising the value on
the model results. The y-axis demonstrates the name of the criteria, based on importance
magnitude, from top to bottom. The x-axis indicates the criteria’s impact on the model
output. The line colour shows the impact of the criteria on the model output, which
supports the DMs in analysing the criteria’s impact on the city optimisation solution.

The figures show that the coverage rate has the highest impact on the model output of
the three case study areas. Furthermore, the higher the coverage rate value is, the greater
the influence on the model output is. However, this criterion suggests a baseline result
when the coverage rate input is low.
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For Bayswater, other criteria, such as the PT on-time rate, the PT network ratio, and
the PT coverage ratio, also have a high impact on the output (as shown in Figure 9).

Similarly, Figure 10 demonstrates that these three criteria have a high influence on
the model output for Cockburn. The results of the coverage rate also apply to these
three criteria.

Finally, Figure 11 suggests that the higher the PT on-time rate requirement is, the
higher the impact on the model optimisation results for Stonnington is. Except for the
criteria mentioned above, a higher other criteria requirement has a low influence on the
model optimisation output for the three cities. The figure results also validate the criteria
weighting results of the PTCM-AHP model. The PT network ratio and PT coverage ratio,
PT on-time rate, and coverage rate are the most important variables for the basic PT
infrastructure level, PT service level, and economic benefit level, respectively [28].

Figures 9–11 provide a method to analyse the effect of each criterion on the model
outputs. However, DMs are often subject to government requirements to control the
optimisation process. Therefore, it is necessary to identify the probability of criteria that
meet the government requirements.

4.3. Test Accuracy

Finally, we determined the criteria’s probability distribution in the PT network perfor-
mance optimisation process. The following section identifies the probability of the criterion
that meets the DMs’ requirements. DMs require the criteria probability to be within a
range of −5%/+10%. Figures 12 and 13 show the probability of the criteria reaching the
requirements for the three cities. The y-axis displays the probability of achieving the
criterion-optimising values. The x-axis indicates the input values of the associated criteria.
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Figure 12. Bayswater and Cockburn criterion probability distribution for reaching DMs’ optimising

goals. (a) Coverage rate probability distribution. (b) Intersection blocking rate during peak hours

probability distribution. (c) PT utilisation rate probability distribution. (d) PT driving accident rate

probability distribution.
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Figure 13. Stonnington: criteria’s probability distribution for reaching the DMs’ goals. (a) PT land area

per capita probability distribution. (b) Coverage rate probability distribution. (c) Intersection blocking

rate during peak hours probability distribution. (d) PT utilisation rate probability distribution. (e) PT

driving accident rate probability distribution.

Since the uncertainty levels of most criteria are very low, most criteria have a 100%
probability of meeting the government requirements. For Bayswater and Cockburn, there
are four criteria uncertainty levels that are higher than very low, including the coverage rate,
intersection blocking rate during peak hours, PT utilisation rate, and PT driving accident
rate. The details of the criteria’s probability distribution for Bayswater and Cockburn are
shown in Figure 12. Five criteria for Stonnington have an uncertainty level that is higher
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than the ‘very low’ level. Figure 13 shows the probability distribution of these five criteria,
namely, the PT land area per capita, coverage rate, intersection blocking rate during peak
hours, PT utilisation rate, and PT driving accident rate.

For Bayswater and Cockburn, Figure 12a shows that a coverage rate of 60.8% reaches
the government goal. According to Lin et al. (2021), this criterion has the highest weight in
the economic benefit level [28]. Hence, when cities implement the optimisation scenario for
economic benefit level, DMs are advised to plan ahead, which requires the implementation
of a management plan during the optimisation process to mitigate the uncertainty.

Figure 12b,c demonstrate that both cities have a probability of 60.8% of achieving
the requirement for intersection blocking rate during peak hours and PT utilisation rate.
Lin et al. (2021) show that these two criteria have low priority to achieve the optimal
goal [28]. Hence, DMs just need to effectively monitor and control the process to deliver
optimisation scenarios.

Figure 12d shows that the PT driving accident rate has a low probability, i.e., 36%, of
achieving the government requirement. According to Table A1, although the priority of
this criterion is low, the government still requires a management plan for the optimisation
scenario. Since this criterion has a high uncertainty level, the delivery of the optimal
solution will be influenced.

For Stonnington, Figure 13a,b show that both criteria have a probability of 60.8% of
fulfilling the government’s requirements. The criterion of PT land area per capita is not of
the highest importance at the sustainable development level, but its weight is higher than
that of the coverage rate. The coverage rate is the most important criterion in the economic
benefit level, for which the government needs to apply management plans to optimise PT
network performance. Hence, DMs are also advised to implement management action to
achieve an optimal solution.

According to Figure 13c, although Stonnington has only a probability of 19% of
achieving the DMs’ requirements for the criterion of the intersection blocking rate during
peak hours, the evaluation results show that the actual value achieved the highest level,
which is level A in Lin et al. (2021) [28]. Since it is difficult to further improve and achieve
optimising results in the criterion performance, the DMs can instead focus on maintaining
the current performance while controlling and optimising the criterion performance.

Figure 13d shows that there is a probability of 61.1% of achieving the government
requirement for the PT utilisation rate. Since the weight of this criterion is low, the DMs are
advised to implement monitoring and control during the optimisation process.

According to Figure 13e, the probability of Stonnington’s PT driving accident rate is
similar to the other two case study areas, which is 35.9%. The criterion uncertainty level is
high. Thus, Stonnington also suggests implementing actions to mitigate the risks during
the optimisation process.

Figures 12 and 13 are useful for analysing the probability distribution of each crite-
rion to fulfil the governments’ requirements. This approach helps governments allocate
resources for delivering case study area optimisation solutions.

This research establishes a solid framework for optimising PT networks’ performance
in the face of uncertainty. The combination of the PTCM-AHP model, the MALGP model,
and MCS enables DMs to make informed decisions based on criteria weights while op-
timising the PT network and accounting for uncertainty. The findings of this study help
advance PT network optimisation methodologies and provide practical advice for im-
proving urban transportation systems. DMs gain insights into the relative importance
of criteria, propose optimal solutions, and assess the probability of criteria optimisation
in uncertain environments by integrating the PTCM-AHP model, the MALGP model,
and MCS.

5. Conclusions

To mitigate the criteria uncertainty involved in the process of optimising PT networks’
performance, this paper proposes a three-stage optimisation model for optimising public
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transport networks’ performance under uncertain conditions. First, the PTCM-AHP model
was used to identify the weights of the model criteria and evaluate the case study areas’
PT networks’ performance. The obtained weights were then used by the second model,
MALGP, to propose the three cases’ PT network performance optimisation solutions. Finally,
MCS was implemented to analyse the sensitive criteria, discover the optimal solution under
criteria uncertainty, and identify the likelihood of criteria optimisation based on DMs’
requirements for the three case study areas. The research results indicate that the coverage
rate is the most sensitive criterion for these three cities. Furthermore, a higher coverage rate
and PT on-time rate requirement will lead to a higher impact on the model optimising result
for all cities. Last, although the PT driving accident rate has a low priority and probability
of achieving the DMs’ requirements, this criterion has a high level of risk. Governments
still need to implement management plans to achieve optimised solutions.

The model proposed in this paper can be used in the following areas: First, the DMs
can use the model to evaluate the performance of a PT network. The model also pro-
vides the weights of criteria for the optimisation process. Second, the model is based
on criteria weights and the governments’ goal for the criteria performance to propose
an optimisation solution for the case study areas. Third, the model results identify the
sensitive criteria and the criteria’s optimising value’s impact on the delivery of a PT
network’s performance optimisation solution. Fourth, the outcome of this research can
be used to identify the likelihood of a criteria optimisation scenario. Based on govern-
ment requirements, the MCS results were combined with weighted results, which pro-
vide a reference for DMs to allocate resources for optimising the delivery of PT network
performance solutions.

Despite innovations in the three-stage optimisation framework design, the models
and theories used in this study still have scope for improvement. Future research should
consider overcoming the relevant limitations. In terms of calculating city performance
scores and the optimisation processes, the processes of conducting results necessitate
collaboration with statistical programming software to enhance efficiency.

This model, however, did not consider the actual risk events and their corresponding
risk treatments. Hence, the framework can provide qualitative risk management methods
for the proposed associated risk treatments. Further work should go beyond the risk
analysis to achieve performance optimisation. Moreover, future research should consider
risk information that is received from other subject sources.
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Appendix A

Table A1. Bayswater model inputs.

Variable Risk Level Min Mean Value Max Shape

PT network ratio Very low 47.5 50 55 Triangular

PT coverage ratio Very low 47.5 50 55 Triangular

Harbour-type bus stop setting ratio Very low 23.75 25 27.5 Triangular

Public transportation priority lane setting ratio Very low 9.5 10 11 Triangular

PT on-time rate Very low 90.25 95 100 Triangular

Intersection blocking rate during peak hours Medium 6.8 8 10 Triangular

Passenger freight rate 1.75

PT driving accident rate High 1.125 1.5 2.25 Triangular

Coverage rate Medium 85 100 125 Triangular

Bus ownership rate Very low 17.1 18 19.8 Triangular

Intact car rate 100

PT land area per capita 20.47

PT utilisation rate Medium 0.68 0.8 1 Triangular

Green public transport vehicle rate 100

PT energy intensity Very low 0 0 3 Triangular

Table A2. Cockburn model inputs.

Variable Risk Level Min Mean Value Max Shape

PT network ratio Very low 47.5 50 55 Triangular

PT coverage ratio Very low 47.5 55 55 Triangular

Harbour-type bus stop setting ratio Very low 14.25 15 16.5 Triangular

Public transportation priority lane setting ratio Very low 9.5 10 11 Triangular

PT on-time rate Very low 90.25 95 100 Triangular

Intersection blocking rate during peak hours Medium 6.8 8 10 Triangular

Passenger freight rate 1.75

PT driving accident rate High 1.125 1.5 2.25 Triangular

Coverage rate Medium 85 100 125 Triangular

Bus ownership rate Very low 17.1 18 19.8 Triangular

Intact car rate 100

PT land area per capita 26.23

PT utilisation rate Medium 0.68 0.8 1 Triangular

Green public transport vehicle rate 100

PT energy intensity Very low 0 0 3 Triangular
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Table A3. Stonnington model inputs.

Variable Risk Level Min Mean Value Max Shape

PT network ratio Very low 57.74 60.78 66.86 Triangular

PT coverage ratio 83.72

Harbour-type bus stop setting ratio Very low 33.25 35 38.5 Triangular

Public transportation priority lane setting ratio Very low 24.11 25.38 27.92 Triangular

PT on-time rate Very low 80.75 85 93.5 Triangular

Intersection blocking rate during peak hours Medium 0 0 0.5 Triangular

Passenger freight rate 2.33

PT driving accident rate High 1.87 2.5 3.75 Triangular

Coverage rate Medium 127.5 150 187.5 Triangular

Bus ownership rate Very low 17.1 18 19.8 Triangular

Intact car rate 100

PT land area per capita Medium 9.35 11 13.75 Triangular

PT utilisation rate Medium 0.66 0.78 0.97 Triangular

Green public transport vehicle rate 100

PT energy intensity Very low 28.5 30 33 Triangular
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Table A4. Bayswater summary statistics in total.

Name
Description

Cell
Function

Public
Transport
Network

Ratio Input
B1

Public
Transport
Coverage

Ratio Input
B2

Harbour-
Type Bus

Stop Setting
Input B3

Public
Transporta-
tion Priority
Lane Setting
Ratio Input

B4

Public
Transport
on-Time

Rate Input
B5

Intersection
Blocking

Rate during
Peak Hours

Input B6

Public
Transport
Driving

Accident Rate
Input B7

Coverage
Rate Input

B8

Bus
Ownership
Rate Input

B9

Public
Transport
Utilisation
Rate Input

B10

Public
Transport

Energy
Intensity
Input B11

Percentiles

1% 47.9423 52.6870 14.3888 9.5849 90.8506 6.9989 1.18211 87.248 17.2467 0.70310 0.0160

10% 48.8639 53.7908 14.6576 9.7764 92.3835 7.4063 1.32963 92.678 17.5913 0.74373 0.1488

20% 49.3899 54.3977 14.8250 9.8893 93.2820 7.6744 1.41561 95.884 17.7949 0.76918 0.3182

25% 49.6484 54.6520 14.8904 9.9343 93.6105 7.7776 1.44542 97.148 17.8787 0.77872 0.4051

30% 49.8488 54.8737 14.9565 9.9764 93.8986 7.8663 1.47927 98.335 17.9534 0.78834 0.4959

35% 50.0314 55.0881 15.0156 10.0128 94.2359 7.9576 1.50881 99.338 18.0208 0.79696 0.5847

40% 50.2108 55.3207 15.0798 10.0493 94.5160 8.0470 1.54068 100.347 18.0893 0.80540 0.6768

45% 50.4319 55.5341 15.1414 10.0921 94.7778 8.1328 1.57329 101.406 18.1637 0.81324 0.7787

50% 50.6512 55.7906 15.2022 10.1350 95.0402 8.2244 1.60420 102.528 18.2412 0.82232 0.8829

55% 50.8657 56.0201 15.2677 10.1778 95.3043 8.3087 1.63717 103.779 18.3266 0.83136 0.9869

60% 51.0791 56.2985 15.3355 10.2232 95.5614 8.4048 1.67112 104.954 18.3989 0.84100 1.0974

65% 51.3197 56.5476 15.4093 10.2753 95.8875 8.5046 1.70788 106.238 18.4950 0.85092 1.2179

70% 51.5816 56.8067 15.4895 10.3302 96.1834 8.6281 1.75044 107.614 18.5947 0.86190 1.3509

75% 51.9094 57.1131 15.5744 10.3941 96.5048 8.7509 1.79612 109.069 18.6995 0.87317 1.4920

80% 52.2371 57.4395 15.6634 10.4586 96.8769 8.8751 1.83853 110.589 18.8310 0.88616 1.6728

90% 53.0088 58.3971 15.9010 10.6244 97.7727 9.1921 1.96308 114.884 19.1074 0.91765 2.0782

99% 54.4025 59.7433 16.3227 10.8925 99.2561 9.7271 2.14651 121.810 19.5711 0.97468 2.6878



Sustainability 2024, 16, 1325 20 of 24

Table A5. Cockburn summary statistics in total.

Name
Description

Cell
Function

Public
Transport
Network

Ratio Input
B1

Public
Transport
Coverage

Ratio Input
B2

Harbour-
Type Bus

Stop Setting
Input B3

Public
Transporta-
tion Priority
Lane Setting
Ratio Input

B4

Public
Transport
on-Time

Rate Input
B5

Intersection
Blocking

Rate during
Peak Hours

Input B6

Public
Transport
Driving
Accident

Rate Input
B7

Coverage
Rate Input

B8

Bus
Ownership
Rate Input

B9

Public
Transport
Utilisation
Rate Input

B10

Public
Transport

Energy
Intensity
Input B11

Percentiles

1% 47.9423 47.8973 23.7617 9.5849 90.8506 6.9989 1.18211 87.248 17.2467 0.70310 0.0160

10% 48.8639 48.9007 24.2686 9.7764 92.3835 7.4063 1.32963 92.678 17.5913 0.74373 0.1488

20% 49.3899 49.4525 24.5842 9.8893 93.2820 7.6744 1.41561 95.884 17.7949 0.76918 0.3182

25% 49.6484 49.6836 24.7076 9.9343 93.6105 7.7776 1.44542 97.148 17.8787 0.77872 0.4051

30% 49.8488 49.8851 24.8322 9.9764 93.8986 7.8663 1.47927 98.335 17.9534 0.78834 0.4959

35% 50.0314 50.0801 24.9431 10.0128 94.2359 7.9576 1.50881 99.338 18.0208 0.79696 0.5847

40% 50.2108 50.2916 25.0554 10.0493 94.5160 8.0470 1.54068 100.347 18.0893 0.80540 0.6768

45% 50.4319 50.4856 25.1615 10.0921 94.7778 8.1328 1.57329 101.406 18.1637 0.81324 0.7787

50% 50.6512 50.7187 25.2660 10.1350 95.0402 8.2244 1.60420 102.528 18.2412 0.82232 0.8829

55% 50.8657 50.9273 25.3788 10.1778 95.3043 8.3087 1.63717 103.779 18.3266 0.83136 0.9869

60% 51.0791 51.1805 25.4955 10.2232 95.5614 8.4048 1.67112 104.954 18.3989 0.84100 1.0974

65% 51.3197 51.4069 25.6226 10.2753 95.8875 8.5046 1.70788 106.238 18.4950 0.85092 1.2179

70% 51.5816 51.6424 25.7606 10.3302 96.1834 8.6281 1.75044 107.614 18.5947 0.86190 1.3509

75% 51.9094 51.9210 25.9067 10.3941 96.5048 8.7509 1.79612 109.069 18.6995 0.87317 1.4920

80% 52.2371 52.2177 26.0600 10.4586 96.8769 8.8751 1.83853 110.589 18.8310 0.88616 1.6728

90% 53.0088 53.0883 26.4690 10.6244 97.7727 9.1921 1.96308 114.884 19.1074 0.91765 2.0782

99% 54.4025 54.3121 27.1947 10.8925 99.2561 9.7271 2.14651 121.810 19.5711 0.97468 2.6878
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Table A6. Stonnington summary statistics in total.

Name
Description

Cell
Function

Public
Transport
Network

Ratio Input
B1

Harbour-
Type Bus

Stop Setting
Input B2

Public
Transporta-
tion Priority
Lane Setting
Ratio Input

B3

Public
Transport

on-Time Rate
Input B4

Intersection
Blocking

Rate during
Peak Hours

Input B5

Public
Transport
Driving
Accident

Rate Input
B6

Coverage
Rate Input

B7

Bus
Ownership
Rate Input

B8

Public
Transport
Land Area
per Capita
Input B9

Public
Transport
Utilisation
Rate Input

B10

Public
Transport

Energy
Intensity
Input B11

Percentiles

1% 58.2778 33.5281 24.3450 81.471 0.00195 1.9805 130.731 17.2430 9.6035 0.68273 28.7683

10% 59.3986 34.2305 24.8002 83.100 0.02521 2.2067 139.076 17.5887 10.1992 0.72272 29.3080

20% 60.0381 34.6167 25.0836 84.059 0.05237 2.3556 143.939 17.7927 10.5512 0.74777 29.6645

25% 60.3525 34.7785 25.1945 84.441 0.06522 2.4130 145.626 17.8731 10.6959 0.75717 29.8038

30% 60.5962 34.9196 25.3064 84.800 0.07794 2.4622 147.540 17.9486 10.8251 0.76664 29.9308

35% 60.8182 35.0561 25.4064 85.108 0.09474 2.5131 149.203 18.0126 10.9410 0.77512 30.0418

40% 61.0363 35.2041 25.5152 85.419 0.11044 2.5666 150.871 18.0813 11.0507 0.78331 30.1546

45% 61.3052 35.3399 25.6195 85.783 0.12673 2.6185 152.555 18.1552 11.1681 0.79084 30.2794

50% 61.5718 35.5031 25.7224 86.148 0.14482 2.6740 154.151 18.2334 11.2904 0.79954 30.4072

55% 61.8327 35.6491 25.8333 86.511 0.16374 2.7251 155.854 18.3206 11.4251 0.80822 30.5345

60% 62.0922 35.8263 25.9481 86.898 0.18214 2.7834 157.607 18.4025 11.5393 0.81747 30.6699

65% 62.3847 35.9849 26.0731 87.340 0.20550 2.8438 159.505 18.4920 11.6908 0.82698 30.8174

70% 62.7032 36.1497 26.2089 87.807 0.22669 2.9187 161.703 18.5880 11.8482 0.83752 30.9803

75% 63.1019 36.3447 26.3526 88.350 0.24970 2.9931 164.062 18.6894 12.0135 0.84833 31.1531

80% 63.5003 36.5524 26.5034 88.898 0.27635 3.0683 166.252 18.7954 12.2210 0.86079 31.3745

90% 64.4387 37.1618 26.9058 90.308 0.34050 3.2604 172.684 19.0948 12.6572 0.89100 31.8711

99% 66.1334 38.0184 27.6197 92.586 0.44673 3.5847 182.156 19.5776 13.3888 0.94571 32.6177
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Table A7. Case study areas’ MCS model results.

Criteria
Most Likely Value

Bayswater Cockburn Stonnington

PT network ratio 50.83 50.83 61.79

PT coverage ratio 50.83 55.91 -

Harbour-type bus stop setting ratio 25.33 25.33 35.58

Public transportation priority lane setting ratio 10.16 10.16 25.8

PT on-time rate 95.08 95.08 86.41

Intersection blocking rate during peak hours 8.26 8.26 0.16

PT driving accident rate 1.62 1.62 2.7

Coverage rate 103.33 103.33 155

Bus ownership rate 18.3 18.3 18.3

PT land area per capita - - 11.36

PT utilisation rate 0.83 0.83 0.8

PT energy intensity 1 1 30.5
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