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ABSTRACT
Highly siderophile elements (HSEs), including Re and Os, are used extensively as geochemical 

tracers and geochronometers to investigate the formation and evolution of Earth’s crust and 
mantle. Mantle rocks are commonly serpentinized, but the effect of serpentinization on the 
distribution of HSEs is controversial because HSEs are commonly hosted by rare, micrometer- 
to sub-micrometer-scale grains of platinum group minerals (PGMs) of ambiguous origin that 
are challenging to identify, characterize, and interpret. In this study, atom probe tomography 
(APT) is used to characterize two spatially close PGM grains hosted by a partially serpentinized 
harzburgite from Macquarie Island, Australia. The APT data reveal an extraordinary level of 
detail that provides insights into the origin of a complex Cu–Pt alloy grain (average composition 
∼Cu4Pt). The grain hosts Fe-, Ni-, and Pt-rich sub-grains associated with Rh, variably 
overlapping networks of Pd- and Cd-enrichment, and OH-rich volumes identified as fluid 
inclusions. Osmium and Ru are hosted by an idioblastic laurite (RuS2) grain. Compositional, 
textural, and phase-diagram constraints are consistent with a modified pre-serpentinization 
origin for the PGMs, and a comparison between observed and calculated grain distributions 
indicate that while Os isotope ratios were probably unaffected by serpentinization, whole-rock 
and grain-scale HSE and isotopic ratios may have been decoupled during serpentinization.

INTRODUCTION
Highly siderophile elements (HSEs), including 

Re and Os, are hosted dominantly by non-silicate 
sulfide minerals and metallic alloys. They provide 
a unique and valuable complement to elements that 
record changes to silicate mineral assemblages and 
melts and are used extensively to interrogate Earth 
systems (e.g., Day et al., 2016). Further, the HSEs 
are variably compatible during mantle melting, so 
the HSE characteristics of peridotites provide a 
sensitive record of the evolution of Earth’s mantle 
and the processes that drove that evolution (e.g., 
Luguet and Reisberg, 2016).

However, mantle peridotites are commonly 
partially or extensively serpentinized. Mantle 
rocks are highly reactive in the presence of 
water, and most accessible peridotites have 
been exposed to either seawater or crustal flu-

ids (Becker and Dale, 2016). Conditions dur-
ing serpentinization can be sufficiently reducing 
that primary sulfide minerals such as pentlandite 
(Fe,Ni)9S8 are destabilized in favor of secondary 
minerals such as heazlewoodite (Ni3S2), alloy 
phases such as awaruite (Ni3Fe), and platinum 
group minerals (PGMs), including alloys (e.g., 
Zhu and Zhu, 2019). The effect of serpentiniza-
tion on the distribution of HSEs and the Re-Os 
system is controversial. Commonly, it is assumed 
that 187Os/188Os ratios are unaffected by serpenti-
nization (e.g., Rudnick and Walker, 2009; Sec-
chiari et al., 2020; Zhang, 2008). But there is 
growing evidence that HSEs, including Re and 
Os, are mobilized by serpentinization (Beinlich 
et al., 2020; Cabri et al., 2022; Gorman et al., 
2019; Jiménez-Franco et al., 2020; Keays et al., 
2021), with implications for the interpretation 
of HSE and Os isotope data (Foustoukos, 2019).

To constrain HSE mobility during serpentini-
zation, it is necessary to understand the origins of 
PGMs in serpentinites. Proposed origins for ser-

pentinite-hosted PGMs include formation within 
Earth’s core during ancient depletion events, for-
mation within the mantle during melting or refer-
tilization, serpentinization, and weathering (Aigl-
sperger et al., 2016; Cabri et al., 2022; Garuti 
et al., 2012; Keays et al., 2021; Lawley et al., 
2020; Parman et al., 2015; Wainwright et al., 
2015). This diversity reflects challenges inher-
ent in characterization of these phases, which are 
typically rare and tiny (Foustoukos et al., 2015). 
Fortunately, atom probe tomography (APT), a 
relatively new technique in the Earth sciences 
(Reddy et al., 2020), permits atom-scale recon-
struction of the compositions of alloy grains (Par-
man et al., 2015). Here, we derive insights into 
the origins and mobility of HSEs during serpen-
tinization via nanometer-scale APT analysis of 
an alloy grain from Macquarie Island, Australia.

GEOLOGICAL SETTING
Peridotite samples were collected from the 

Boot Hill locality, Macquarie Island, Australia 
(Figs. 1A and 1B). Macquarie Island exposes 
oceanic crust uplifted, without obduction, by 
intra-oceanic faulting and presents an ideal 
opportunity for investigating serpentinization 
that occurred on or below the ocean floor. Details 
of the locality and its geological history are pro-
vided by Dijkstra et al. (2010). Typical outcrops 
are a few square meters in size and comprise 
partially serpentinized layers of dunite and harz-
burgite (e.g., Fig. 1C). Sample MQ17-16 (section 
C3L-033: 57F 494673 mE 3958499 mN relative 
to the WGS84 datum) is a heterogeneously ser-
pentinized harzburgite from an outcrop that also 
hosts dunite channels (Figs. 1C and 1D).

METHODS
Detailed methods are provided in the Supple-

mental Material1. Five thin sections from each *k .evans@curtin .edu .au

1Supplemental Material. Methods and petrographic description. Please visit https://doi .org /10 .1130 /GEOL.S.22304566 to access the supplemental material, and 
contact editing@geosociety .org with any questions.
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sample were characterized by reflected and 
transmitted light microscopy. PGM grains were 
identified using an automated mapping routine 
on a TESCAN TIMA scanning electron micro-
scope (SEM). Bulk rock concentrations of plati-
num group elements (PGEs) were analyzed by 
the Ni-sulfide fire assay–isotope dilution induc-
tively coupled plasma mass spectrometry (ICP-
MS) method of Park et al. (2012), and Re and Os 
isotope ratios were measured by isotope dilution 
thermal ionization mass spectrometry (TIMS) 
using a TritonTM multicollector instrument. 
Needle-shaped specimens, a few micrometers 
long, were prepared in a TESCAN Lyra3 Ga+ 

focused ion beam SEM (FIB-SEM) following 
Rickard et al. (2020). APT data were collected 
on a Cameca LEAP 4000X HR and ranged and 
reconstructed in three dimensions using Cam-
eca’s APSuite 6 proprietary software.

RESULTS
Serpentinized olivine and orthopyroxene 

form islands within a texturally complex serpen-
tine matrix (Fig. S1 in the Supplemental Mate-
rial). Serpentine textures are consistent with 
the presence of lizardite after olivine, chryso-
tile within veins, and an absence of antigorite. 
Early and late trace sulfides include heazle-

woodite, pentlandite, and cobaltian pentlandite. 
Awaruite occurs within magnetite-bearing ser-
pentine veins and associated with a composite 
heazlewoodite-magnetite grain that overprints 
late tremolite. Further petrographic details are 
provided in the Supplemental Material.

Automated mapping revealed inclusions of 
laurite (RuS2) and a Cu–Pt alloy phase within 
a composite heazlewoodite–pentlandite–cobal-
tian pentlandite–magnetite grain, 20 × 30 µm in 
size, that is located on the margin of an altered 
orthopyroxene grain within the serpentine matrix 
(Fig. 2A). This grain comprises irregular to angu-
lar sulfide sub-grains patchily enriched in Co, 
Cu, and Ni within a boxwork of magnetite or iron 
oxides. The PGMs include a semi-circular Cu–Pt 
alloy grain, 5 µm across, on the margin of heazle-
woodite and an idioblastic laurite inclusion, 2 µm 
across, within the same grain (Fig. 2A).

Bulk-rock PGE patterns are relatively flat 
and are enriched relative to primitive mantle, 
except for Re and Au (Table S1 in the Supple-
mental Material; Fig. 2B). The 187Re/188Os ratio 
is 0.012, the 187Os/188Os ratio is 0.12569, the Re-
depletion model age (TRD) is ca. 537 Ma, and 
the model age for separation from a chondritic 
mantle reservoir (TMA) is ca. 552 Ma (Table S2).

Five atom-probe needles were extracted: 
three from the alloy phase, and two from laurite 
(Fig. 2A). During APT analysis, alloy needles 
ran for as long as 20 h and produced as much as 
100 million atoms. The laurite specimens frac-
tured during initial setup of the atom probe anal-
ysis and only preliminary data were acquired. 
However, these data are sufficient to show that 
Os, Ir, and Ru are hosted by laurite (Fig. S2).

The alloy needles are heterogeneous and com-
plex (Fig. 3). The matrix of the alloy comprises 
mainly Cu and Pt (Cu + Pt = 94.3 at%) with Fe, 
Ni, and Pd (Cu + Pt + Fe + Pd + Ni = 99.3 
at%; Table S3). Curved planar interfaces defined 
by the segregation of Cd and Pd form a three-
dimensional network of grain boundaries within 
the alloy (i, Fig. 3). Pd is also locally enriched 
at the center of sub-grains (ii, Fig. 3), and Pd is 
not associated with other HSEs.

Along some parts of the grain-boundary 
interfaces, enrichments of Pt, Rh, Fe, and Ni 
define irregular, variably elongate, 50–200-nm-
long sub-grains with variable aspect ratios that 
extend along the grain boundary network and are 
interpreted as separate phases (iii, Fig. 3). These 
sub-grains show some evidence of zoning, with 
Fe (red surface in Fig. 3 delineates 7 at% Fe) con-
centrated toward the center of the sub-grains, and 
Ni (green) and Rh (lavender) enriched toward 
their margins (Fig. 3). Copper (not shown) is 
relatively homogeneously distributed within the 
alloy. In contrast, Pt (not shown) occurs through-
out the matrix but is more concentrated within 
the Fe- and Ni-rich sub-grains (Table S3).

Volumes, a few tens of nanometers in size, 
are enriched in OH3 (pink, iv, Fig.  3). The 

A B

C D

Figure 1. (A) Regional bathymetric map showing Macquarie Island, Australia. Hjort, Macquarie, 
McDougall refer to different sections of the plate boundary. (B) Geological map of northern 
and central parts of Macquarie Island showing Boot Hill sample locality. ANARE—Australian 
National Antarctic Research Expeditions station. (C) Harzburgite outcrop with dunite channel 
sampled to acquire sample MQ17-16. (D). Sample MQ17-16.
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 morphology of these volumes indicates rapid 
evaporation and is consistent with features pro-
duced by fluid inclusions (Dubosq et al., 2020; 
Reddy et al., 2020). These inclusions lie on the 
Cd-enriched networks that connect the Fe-, Ni-, 
and Pt-enriched sub-grains.

DISCUSSION
Host Rock Characteristics

The PGE patterns, 187Re/188Os ratio, 
187Os/188Os ratio, and anhydrous mineral assem-
blage are consistent with the descriptions of 
peridotites from the same locality by Dijkstra 
et al. (2010), who used major, trace, rare earth, 
and HSE element patterns to infer that the highly 

depleted peridotites were modified by melt-rock 
reaction during the Miocene.

Textural Constraints
The nanometer-scale heterogeneity of the 

alloy is not diagnostic of its origin; nanometric 
to micrometric base-metal sulfides and PGMs 
described by Luguet and Pearson (2019) show 
complexity and heterogeneity in 187Os/188Os and 
187Re/188Os values that are attributed to differ-
ences between residual and metasomatic grains 
and Re-Os fractionation related to transport, 
precipitation, and melt-rock reaction within the 
mantle lithosphere. However, the inclusion of 
the PGMs within heazlewoodite, which forms 
by  desulfidation during early  serpentinization, 

indicates that they formed prior to late 
serpentinization.

Complex Pt- and Cu-bearing secondary 
alloys form during serpentinization (Augé et al., 
1999; Cabri et al., 2022). Porous tomamaeite 
(Cu3Pt), interpreted to have formed during ser-
pentinization, forms an inclusion within a native 
Os grain from alluvial river sediments of the 
southern Urals, Russia (Sharygin and Mikhaiov, 
2022). The porosity of the tomamaeite indicates 
a secondary origin, in contrast to the non-porous 
Cu–Pt grain from sample MQ17-16 (Figs. 2A 
and 3). Tulameenite (Pt2CuFe) is a Pt-Cu-Fe 
mineral formed by serpentinization (Cabri and 
Genkin, 1991), but its composition does not 
match that of the bulk alloy, the matrix, or the 
sub-grains of sample MQ17-16 (Table S3).

Laurite can form by melt-rock reaction 
within the mantle or during hydrothermal alter-
ation, including serpentinization (Ahmed and 
Bevan, 1981; Foustoukos et al., 2015). Laurite 
grains formed under hydrothermal conditions 
are typically subhedral to anhedral, zoned, 
and tens of micrometers in size (Zaccarini 
and Garuti, 2020), contrasting with the small, 
unzoned, euhedral grain within sample MQ17-
16, which is more consistent with formation 
within the mantle.

Phase Diagram Constraints and Network 
Formation

Cu–Pt alloys undergo phase transitions as 
temperature decreases from ∼650 to 350 °C 
(Abe et  al., 2006; Matsumoto et  al., 1996; 
Fig. 4A). The observed Cu:Pt ratios (e.g., iii, 
Fig. 3) are consistent with cooling-driven sub-
grain formation from an originally homoge-
neous grain that formed above the temperature 
of serpentine stability (>650 °C) (Fig. 4A). Iron 
and Ni are compatible with Pt, and this may 
have contributed to the formation of the Fe-, 
Ni-, and Pt-rich sub-grains. The binary phase 

A B Figure 2. (A) Altered hea-
zlewoodite grain showing 
alloy and laurite inclu-
sions discussed in text 
and locations of needles 
sampled for atom probe 
tomography. Labels refer 
to needle ID. (B). Platinum 
group element + Re + Au 
concentrations for Boot 
Hill peridotites normal-
ized to primitive mantle 
(PM) (McDonough and 
Sun, 1995). al—alloy; 
hz—heazlewoodite; lr—
laurite; mt—magnetite; 
ol—olivine; srp—serpen-
tine; SS—Salters and 
Stracke (2004); DM—
d e p l e t e d  m a n t l e ; 
D10—Dijkstra et al. (2010).

Figure 3. Reconstruction of atom probe data for needle M20 showing distributions of elements 
discussed in text. Dot size varies to optimize clarity, and Cu and Pt atoms are not shown for 
same reason. Labels i to v indicate features mentioned in text.
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diagram does not account for the effects of the 
∼5% of the alloy that is not Cu or Pt. Minor and 
trace elements may migrate onto internal grain 
boundaries with decreasing temperature and 
extent of solid solution (e.g., Tacchetto et al., 
2021); this process may have contributed to 
formation of the Pd-rich network and Fe- and 
Pt-rich sub-grains.

Modification by Serpentinization
The OH3 clusters, which are interpreted 

as fluid inclusions, provide strong support for 
grain formation or modification in the presence 
of aqueous fluid, and the presence of lizardite 
and chrysotile are consistent with serpentiniza-
tion below the temperature of antigorite stability 
(<300 °C; Evans, 2004). The relationship of the 
OH3 clusters to the Pd- and Cd-rich networks is 

consistent with entrapment of secondary fluid 
inclusions on sub-grain boundaries in a water-
bearing environment. Pd is unusual amongst the 
PGEs in that it is mobile during hydrothermal 
alteration (Becker and Dale, 2016; Cabri et al., 
2022) and can form complexes with Cl, consis-
tent with addition of externally derived Pd. How-
ever, the sub-grain interiors are also enriched in 
Pd, so some of the Pd on the networks may have 
migrated onto the grain boundaries from the sub-
grain interiors. Further work is necessary to con-
strain the contributions of the two sources and 
the origin of the Cd, which are unclear.

Environment of Formation
The geodynamic setting and some textural 

evidence are consistent with either a mantle or 
a serpentinization-related origin for the PGMs. 

However, the phase diagram and morphology of 
the PGMs are more consistent with formation at 
>650 °C prior to serpentinization, followed by 
exsolution, sub-grain formation, and formation 
of the trace element–enriched networks within 
the alloy grain during re-equilibration with 
decreasing temperature. Fluid inclusions unam-
biguously record modification within a hydrous 
environment. Integrating these observations, we 
infer that the laurite and Cu–Pt alloy formed 
within the mantle prior to serpentinization but 
were modified during serpentinization to form 
the fluid inclusions, sub-grain structure, and the 
Pd- and Cd-enriched networks. The enclosing 
heazlewoodite would have protected the PGMs 
from later alteration.

Implications for the Re-Os System and the 
Distribution of HSEs

The consequences of PGM modification 
for HSEs and the Re-Os system depend on the 
length scales of HSE transport and equilibration. 
The expected number of PGM grains per thin 
section and the average separation were calcu-
lated as a function of grain and bulk rock PGE 
contents and PGM grain diameter (Figs. 4B and 
4C; see the Supplemental Material for details). 
The number and size of PGM grains in sample 
MQ17-16 is consistent with predictions based 
on bulk rock values, indicating that transport on 
length scales longer than that of the hand speci-
men is not required to explain the PGM mineral 
distribution (Fig. 4B). If the PGMs formed dur-
ing serpentinization, then transport of HSEs is 
implied because the size of the grains requires 
collection of HSEs from a rock volume with a 
radius much larger (∼2000 µm; Fig. 4C) than 
the distance between the alloy and laurite grains 
(a few micrometers). However, if, as seems more 
likely, the PGMs formed prior to serpentiniza-
tion, then HSE mobility during serpentinization 
is not required to explain the bulk rock data. 
Nevertheless, intra-grain HSE mobility during 
serpentinization is recorded by redistribution 
of HSEs within the alloy grain (Fig. 3). If this 
mobility extends beyond the grain boundary, 
then serpentinization may decouple whole-rock 
and grain-scale HSE and isotopic ratios.

In summary, previously unseen complexity 
within serpentinite-hosted alloy grains revealed 
by APT records a multi-stage history extending 
from high-temperature mantle processes to low-
temperature serpentinization. This and the mass 
balance calculations imply intra-grain microm-
eter-scale HSE mobility during serpentinization 
and decoupling between whole-rock and grain 
scale HSE distributions, with implications for 
the formation and alteration of PGMs in high- 
and low-temperature environments.
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Figure 4. (A) Cu–Pt phase 
diagram after Abe at al. 
(2006) showing forma-
tion of Pt-rich (pink) and 
Pt-poor (green) regions 
from precursor A1 grain. 
A1: disordered face cen-
tered cubic phase; L11, 
L12: ordered phase. (B) 
Number of grains per 
thin section versus grain 
diameter. Values in paren-
theses are mass fraction 
of platinum group ele-
ments (PGEs) in platinum 
group minerals (PGMs) 
(0.1, 0.5, or 1) and bulk 
rock PGE content (1 or 20 
ppb), respectively. (C) Cal-
culated distance between 
PGM grains as a function 
of grain diameter. Values 
in brackets as for B. Hori-
zontal and gray bars show 
best estimates for sample 
MQ17-16.
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