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A B S T R A C T   

Vibration displacement of civil structures are crucial information for structural health monitoring (SHM). 
However, the challenges and costs associated with traditional physical sensors make displacement measurement 
difficult. In recent years computer vision (CV) techniques have been employed for measuring vibration 
displacement in civil structures. There has been a growing interest in CV-based three-dimensional (3D) 
displacement measurement, as it provides comprehensive information for structural health assessment. Most 
existing methods use multi-view geometry, requiring multiple cameras for depth measurement. This paper 
proposes a new system for measuring the 3D vibration displacement utilising a single camera. Instead of using 
multi-view geometry, deep neural networks are utilised to learn the depth of scenes from monocular images. 
Compared with the multi-view methods, the proposed 3D measurement system with monocular vision is more 
cost-effective and much more convenient to set up and use in practice, avoiding the complicated calibration and 
object matching between multiple cameras. Experimental tests are conducted in the laboratory to investigate the 
feasibility of the proposed system. Physical displacement sensors are equipped with the testing structure to 
provide the ground truth data. The results demonstrate that the proposed monocular 3D displacement system is 
able to produce reasonable 3D full-field displacement measurement, which makes monocular image based CV 
system a promising approach to achieve 3D displacement measurement, with its obvious advantages in cost and 
convenience compared to the traditional sensor-based or multi view CV-based methods.   

1. Introduction 

In the field of SHM, physical sensors, such as Linear Variable Dif
ferential Transformers (LVDT) and laser displacement sensors (LDS), are 
commonly used to measure the displacement of civil structures. Such 
sensors are very often difficult and costly to install and maintain. 
Furthermore, to install physical displacement sensors, stationary plat
forms are usually required to install them on. However, such fixed 
platforms can be difficult to set up in many in-field measurements. 
Therefore, accelerations are often measured instead, and displacement is 
obtained by double integration of the measured accelerations, which 
inevitably introduces some numerical errors especially when the base
line of the measured acceleration time history is difficult to be defined. 
On the other hand, computer vision (CV) based methods use cameras to 
measure the displacement. Using camera is much simpler than using 

displacement sensors, and the associated cost is often lower than using 
physical sensors. 

Many studies have investigated vision based methods for displace
ment measurement [1-11]. Vision based displacement measurement can 
be divided into in-plane measurement and out-of-plane measurement. 
Camera imaging is a dimension reduction process, which projects 3D 
scenes into 2D images. Fig. 1 shows a monocular imaging system, where 
a point P in the 3D world coordinate system projects to a 2D pixel q in 
the image coordinate system. Assuming that the imaging plane is par
allel to the 2D space spanned by Yw and Xw, the spatial information of 
the 3D point P on Yw and Xw directions can be easily derived from pixel 
q. However, the depth information along the depth direction (Zc or Zw) is 
lost. The in-plane displacement measurements refer to measuring the 
displacement in Yw and Xw directions, while the out-of-plane displace
ment measurements aim to recover the displacement in the depth 
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direction. Measuring the in-plane displacement in both Yw and Xw di
rections is termed as 2D displacement measurement, and measuring 
both the in-plane and out-of-plane displacement in Xw, Yw and Zw is 
termed as 3D displacement measurement. 

In the last two decades, many CV based algorithms have been pro
posed for in-plane displacement measurement and some of them have 
been successfully applied in structural health monitoring [5,12]. 3D 
displacement measurements of structures provide a more comprehen
sive representation of structural performance. For example, bridges are 
critical structures that need regular monitoring for safety and stability. 
Measuring the 3D vibration displacement of bridges allows engineers to 
monitor bridge structural behaviour, detect any excessive movement or 
deformation, and assess the integrity of the structure. Heritage struc
tures require careful monitoring to preserve their integrity. Measuring 
three-dimensional vibration displacement helps in monitoring the 
structural behaviour of these monuments and detecting any signs of 
damage. 

For out-of-plane displacement measurement multi-view geometry 
based methods are usually used in the field of SHM [3,7,11]. Some 
methods affix specific type of markers on the structures as key points to 
enhance the performance of the multi-view 3D displacement measure
ment [7,11]. However, affixing artificial markers on structures is not 
always feasible, for example, putting artificial markers on large-scale 
infrastructure requires significant effort and is not feasible for inacces
sible locations. Hence target-free methods [3,10] are more desirable to 
improve the practicability of vision-based displacement measurement. 
In target-free methods, artificial markers are replaced by key points 
automatically detected by algorithms such as Scale Invariant Feature 
Transform (SIFT) [13], Speeded Up Robust Features (SURF) [14], KAZE 
[15], SuperPoint [16] etc. Multi-view geometry methods reconstruct 3D 
scenes by triangulation [17], which requires the cameras’ relative poses 
and matched key points to be properly estimated. 

A general pipeline of the target-free multi-view geometry based 3D 
displacement measurement system is shown in Fig. 2. The pipeline can 
be separated into two parts: camera calibration and key point matching. 
The camera calibration part focuses on estimating the cameras’ poses, 
and the key point matching part is for spatial and temporal key point 
matching. For camera calibration a planar pattern (e.g., a chessboard 
pattern) shown at different orientations is commonly employed which 
needs to be captured by multiple cameras [18]. Although camera cali
bration has been well studied in computer vision, its complexity is often 
underestimated. While it can often be done easily in a laboratory, this 
operation, can become very difficult, even unfeasible, for many in-field 
SHM applications. When the interested civil structures are located in 
some hard-to-reach places (e.g., rivers, reservoirs), requiring the exis
tence of a chessboard pattern in multiple images is usually very difficult. 
For key point matching, key point detection algorithms are employed 
first to detect distinct pixels in an image as key points. The key point 
matching algorithm are then used to match the detected key points. For 

in-plane displacement measurement, the key points detected in the first 
frame of a video are chronologically tracked in the subsequent frames to 
locate the key points in every frame. The movements of civil structures 
are often slow, hence the change between consecutive frames is usually 
small. The chronological key point tracking can usually achieve a good 
accuracy. For the out-of-plane displacement measurement, the key 
points need to be detected and matched on images taken from different 
angles to reconstruct the depth using triangulation. The multi-view key 
point matching is more challenging than the key point tracking, if the 
key points in multi-view images have large movement. Several advanced 
key point matching methods, such as Superpoint [16] and Superglue 
[19] can be used to detect the matched key points. However, the key 
point matching may fail when the structure is texture-less. Furthermore, 
an extra control system is required to synchronize multi-view cameras. 
The high cost of multi-view camera systems is also a concern in practice. 

Recently, monocular depth estimation (MDE) has attracted signifi
cant research interests and attention in computer vision. MDE is a 
technique that estimates the depth (or depth map) from a single image. 
The value of each pixel in the depth map represents the distance be
tween its 3D object and the camera. With MDE, the out-of-plane 
displacement can be extracted from the depth map. Currently, there 
are generally three types of solutions to the depth estimation problem, 
that is, LiDAR (Light Detection and Ranging), shape-from-X [20,21] and 
deep learning [22-31]. LiDARs have been widely used for depth esti
mation in industry, e.g., for autonomous vehicles for depth estimation 
[32]. The expensive cost and high power consumption of LiDARs 
negatively impact the applications. Moreover, only the sparse depth 
map can be generated by LiDARs. Recovering the depth from a single 
image is an ill-posed problem, since the depth information is lost in the 
3D to 2D projection of camera imaging. It is theoretically impossible to 
establish a mathematical model to back-map a 2D pixel to 3D. Although 
very challenging, pioneers estimated depth maps using depth cues. Such 
methods are named shapes-from-X. Tsai et al. [20] proposed a method to 
detect vanishing lines and the vanishing point, which assisted in the 
construction of a depth map. Tang et al. [21] introduced an approach to 
recover the depth map of a single image by using the principle of camera 
focus. The shape-from-X methods rely on hand-craft features and are 
usually not robust. 

Currently, the state-of-the-art methods for MDE are deep learning 
approaches. They have surpassed traditional methods by a large margin. 
The deep learning based MDE can be divided into three categories ac
cording to different types of depth maps used, namely, metric depth, 
affine-invariant depth and relative depth. Scaling the ground truth depth 
(in engineering unit) with an arbitrary scaling factor can get metric 
depth. Eigen et al. [22] proposed a deep learning based network for 
MDE. It is a coarse-to-fine framework, where the coarse network learned 
the global depth on the entire image to obtain a rough depth map and 
the fine network learned the local features to refine the depth map. The 
training data are obtained from KITTI [33] and NYU [34]. These are 
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Fig. 1. The pinhole camera model of the monocular camera system.  
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high quality metric datasets, since the depth maps are obtained by Li
DARs and calibrated by stereo cameras. A scale-invariant loss in log 
space is designed and applied to compare the prediction with the ground 
truth. In 2018, Fu et al. [23] introduced a deep ordinal regression 
network (DORN) for MDE. Lee et al. [31] proposed a patch-wise atten
tion mechanism to link the relationships among the neighbouring pixels 
in a local area. This network applies separate attention modules to each 
local patch. The separate attention maps are then merged as the output. 
The training dataset and loss function are the same as those used in [22], 
but much more promising results are achieved. Estimating metric depth 
requires high-quality datasets with ground truth, but existing metric 
depth datasets are limited in the diversity of scenes [25]. The commonly 
used metric depth datasets, for example NYU, consist mostly of indoor 
scenes with no human presence. The KITTI dataset involving many road 
scenes is mainly suitable for automatic driving tasks. The Make3D 
dataset [35] consists of mostly outdoor scenes of the Stanford campus. 
Although these datasets are of high quality and used widely for depth 
estimation, it is difficult to generalize the deep learning models trained 
from them. 

To tackle the problem of model generalization, some studies 
collected stereo images from the web to generate diverse datasets. Large 
number of images are available online and they can be effectively used 
to improve the generalization ability of the learnt deep models [25]. 
However, metric depth map is hard to be obtained from online image 
pairs or videos since generally their camera intrinsic matrices are un
known. Disparity maps which refer to the pixel difference between a pair 
of stereo images are therefore used. The disparity is defined as pl − pr =
fb
dG

, where pr and pl represent a pair of the corresponding points in the left 
and right images respectively, dG is the ground truth depth, f is the focal 
length, and b is the baseline (i.e., the distance between the two cameras). 
In practice, the images taken by stereo cameras are sometime adjusted to 
release visual fatigue of viewers. Especially for 3D movies [36], film 
editors usually optimize the 3D footages by manipulating the optical 
centre of each camera, and the above equation becomes pl − pr =

fb
dG

+

(Ol − Or), where Ol and Or are the optical centres of the left and right 
cameras respectively. The disparity maps of such stereo images are 
called affine-invariant depth maps. The generalization of the neural 
network models for affine-invariant depth estimation is better than 
those of the metric depth estimation models, due to the diversity of 
Internet images used for training. Many affine-invariant depth estima
tion methods are developed in recent years [25,26,28,36-38]. Xian et al. 
[25] presented a method that yields a disparity map dataset (ReDWeb) 
from about 40 k stereo images collected from the Flickr website. An 
encoder-decoder neural network was proposed based on ReDWeb, 
which has been adopted in many studies [29,38]. Wang et al. [36] 
proposed a Web Stereo Video Dataset (WSVD), which consists of over 7 k 
stereo videos collected from YouTube and Vimeo. The mean squared 
error (MSE) of the left and right images are calculated to ensure that the 
videos are stereo. Many videos have near-zero baselines, vertical dis
parities, inverted cameras, and other poor stereo characteristics. Flow
Net2.0 [39] was utilised to remove these bad shots. A Normalized 
Multiscale Gradient loss [36] was employed to learn the affine-invariant 
depth. Affine-invariant depth allows MDE models to be trained on 

diverse datasets, which significantly increases the generalization of 
developed MDE models. 

The field of computer vision has been the primary domain where 
MDE (Monocular Depth Estimation) models have been extensively 
developed and utilized. These models have also gained significant 
attention and found a popular application area in the realm of autono
mous driving. They are yet to be employed for displacement measure
ment of civil structures. This paper proposes a novel deep learning based 
monocular vision measurement system to measure the 3D vibration 
displacement responses of civil structures. Different from the multi-view 
geometry based methods, only a single stationary camera is used to 
measure the 3D vibration displacement responses. The proposed mea
surement system is divided into two modules: the in-plane displacement 
measurement module and the out-of-plane displacement measurement 
module. To measure the in-plane displacement, numerous key points are 
detected using Superpoint [16] on the first frame and KLT tracker [40- 
42] is then applied to locate these key points on the subsequent frames. 
The in-plane displacement can be extracted from the movement of these 
key points. The out-of-plane displacement measurement module is 
based on the state-of-the-art monocular depth estimation (MDE) tech
nique [29]. The affine-invariant depth estimation (ADE) neural network 
(NN) model is trained on diverse datasets, which enables the learnt deep 
NN model to have a good generalization capability. SHM requires con
verting the affine-invariant depth into engineering unit, and a metric 
depth recovering (MDR) neural network is used for this purpose. A 
flowchart of the proposed measurement system is shown in Fig. 3. To the 
best of the authors’ knowledge, this is a pioneer study for the 3D vi
bration displacement measurement of civil structures using a monocular 
camera. 

The rest of the paper is organized as follows: In Section 2, the 
methodologies for the proposed monocular vision based 3D vibration 
displacement measurement system are presented in details, focusing on 
the out-of-plane measurement. The performance of the proposed system 
is evaluated by two structural vibration tests. Experimental validations, 
performance comparisons and discussions are presented in Section 3. 
Conclusions are provided in Section 4. 

2. Methodology 

The proposed measurement system receives as input a structural 
vibration video taken by a single stationary camera and outputs the 3D 
displacement (in-plane-displacement and out-of-plane displacement) of 
many automatically detected key points. An example is shown in Fig. 4, 
assuming that a four-frame video is available, with four key points 
moving in the video. To extract the in-plane displacement, frame 0 is 
first fed into the key point detector which detects Point q0 as a key point 
and discards other points. A deep learning based key point detector, 
Superpoint [16], is employed to detect key points on the subsequent 
frames and reject the other points. From frame 0 to frame 1, the key 
point q0 moves to q1. The KLT tracker [41,42] is used to track this 
movement, by generating a descriptor for the appearance features of 
point q0 and find the point in Frame 1 (now Point q1) based on the 
feature descriptor. The KLT tracker then generates a descriptor for key 
point q1 to find it in frame 2 in a similar manner, and repeats the 
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Fig. 2. The general pipeline of multi-view geometry vision-based 3D displacement measurement.  
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describing and searching process until the last frame. In the end, a 
movement trajectory can be plotted for each key point based on its 
location in each frame, which forms the in-plane displacement mea
surement [43]. On the other hand, the out-of-plane displacement 

measurement module employs the MDE deep neural networks to esti
mate the depth maps for all video frames. The depth map has the same 
dimensions as the image frames, with the value representing the dis
tance (depth) from the 3D object to the camera plane at each pixel 

Fig. 3. The pipeline of the proposed monocular 3D displacement measurement system.  

Fig. 4. Connection between the in-plane and out-of-plane displacement measurement modules.  

Fig. 5. ADE network consisted of three parts: an encoder for feature extraction, a decoder for depth map output, and an auxiliary path for inverse affine-invariant 
depth predicting. 
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location. To obtain the out-of-plane displacement, the key points 
extracted and matched in the in-plane displacement measurement 
module are also used as the key points in the out-of-plane displacement 
measurement. The changes in the pixel value of key point q in the depth 
maps at every frame form the out-of-plane displacement of Point q. 

2.1. Affine-invariant depth estimation (ADE) 

The definition of affine-invariant depth is expressed as 

dA = SdiG +Δd, (1) 

where diG is the inverse ground truth depth, S is the scale factor and 
Δd is the shift of affine transformation. For SHM applications, the ground 
truth depth dG with engineering unit (mm) needs to be recovered. ADE is 
a neural network [29] for estimating the affine-invariant depth map for 
each frame. An encoder-decoder structure is applied by the ADE to 
predict a depth map from a single RGB input image. The encoder pro
gressively converts the image to a lower-dimensional latent represen
tation, while the decoder upsamples it back to the input size. To improve 
the performance of the neural network training, an auxiliary path [44] is 
added to predict the inverse affine-invariant depth during training. The 
architecture of the ADE model is shown in Fig. 5. 

Encoder. The image features can be effectively extracted by deep 
convolutional neural networks (CNNs), which ultimately learns the 
underlying mapping between the input and output. Ideally, the extrac
ted feature becomes more and more powerful when the network goes 
deep. However, the network performance is dramatically decreased 
when the depth of the network increases to a certain level, due to 
gradient vanishing or exploding. ResNet [45] is used to tackle the 
problems that block the neural network from going deep. It explicitly 
allows the layers in the original CNN fitting a residual mapping rather 
than the underlying mapping between the input and output, which al
lows to train very deep networks. Owing to these advantages, the 
ResNet101 model pre-trained on ImageNet [46] is used as the encoder 
for feature extraction in the ADE model. 

Decoder. Employing high-level semantic features leads to coarse 
predictions. A decoder that integrates high level features and low level 
edge-sensitive features is used to recover the feature maps to the original 
size. The decoder follows a progressive refinement strategy, which be
gins with an upsampling operation on the last group generated by the 
encoder. An existing study [47] showed that gradients from high-level 
layers can be efficiently propagated to low-level layers through short- 
range and long-range residual connections by residual convolution 
blocks. Feature maps from specific layers of the encoder are transferred 
by a residual convolution block on every fusion module, after a transi
tional 3 × 3 convolution layer is applied to adjust the channel number of 
feature maps. They are then merged with fused feature maps that are 
produced by the last feature fusion module via a summation operation. 
Finally, an upsampling operation is applied to generate feature maps of 
the same resolution as the next input. In the last layer, an adaptive 
output module that consists of two convolution layers and a bilinear 
interpolation layer is stacked to output the depth map. The feature maps 
of the decoder in each layer are directly shared with the auxiliary path to 
output the inverse affine-invariant depth, which jointly optimizes the 
model with the main ADE neural network. The auxiliary path is used in 
training, and discarded during inference. 

Datasets. To train a model with good generalization capability, five 
datasets including Taskonomy [48], 3D Ken Burn [49], DIML [50], 
Holopix50K [37] and HR-WSI [51] are used. The datasets can be divided 
into three categories. The first one is the high-quality data, which are the 
Taskonomy dataset with the metric depths acquired by LiDARs and the 
3D Ken Burn dataset with synthetic metric depths. The DIML dataset 
containing calibrated stereo images (metric depth) is considered the 
medium-quality data. The images in the Holopix50k and HR-WSI data
sets are uncalibrated image pairs, hence are treated as low-quality data 
(with affine-invariant depth). 

Loss function. Four loss functions are utilised to learn the affine- 
invariant depth when training the ADE network. They are image-level 
normalized regression (ILNR) loss [29], pair-wise normal regression 
(PNR) loss [29], ranking loss [26] and multi-scale scale-invariant gradient 
(MSSG) loss [52]. The ILNR loss is used to normalize the depth value in 
various datasets, which makes the depth stay within a certain range. The 
surface normal is an essential geometric feature for depth maps. The PNR 
loss uses surface normal to improve local and global geometric quality of 
depth maps. Ranking loss is used for the binary relation learning. Instead 
of training with fixed point pairs, an online sampling strategy resorting to 
explore the diversity of sampled point pairs [26] is applied in this study. 
Quality depth maps should have smooth gradient changes and big depth 
discontinuities. Image gradient which is usually used for edge detection 
can be used as an effective high-order geometric information to enforce the 
neural network to learn such feature. Thereby, the MSSG loss is used to 
achieve the above goals to enhance the quality of the predicted depth 
maps. According to the different qualities of the five datasets, different loss 
functions are applied. Depth maps in the high-quality datasets show clear 
and accurate planes and edges. For such datasets, the MSSG loss, ranking 
loss, ILNR loss and PNR loss are used. The MSSG loss, PNR loss and ILNR 
loss are used for the medium-quality datasets, in which the PNR loss is only 
used on planar regions since the regions around edges can be noisy. The 
low-quality datasets have unknown scale and shift factors, and the regions 
around edges and planes are noisy. Thus, only the ranking loss is used for 
the low-quality datasets. The ADE neural network is trained using sto
chastic gradient descent (SGD) with a batch size of 40. The initial learning 
rate is 0.02 for all layers, and a learning rate decay of 0.1 is applied. The 
images are evenly loaded from each dataset for each batch following a 
pervious study [28]. Table 1 lists the loss functions for each dataset used in 
this work. 

2.2. Metric depth recovering (MDR) 

The ADE network individually predicts the affine-invariant depth 
map for each frame. The factor S and shift Δd as shown in Eqn. (1) are 
different in different depth maps. Estimating two parameters for every 
depth map is very inefficient and difficult. Civil engineering structures 
usually consist of rigid body components, and the points on the rigid 
body components have fixed relations among them. When the whole 
structure vibrates, the relationship between the rigid points is generally 
fixed. Figure 6 shows an example of rigid structure. Point a and point b 
are a pair of points on a rigid structure. The absolute distance 
r = dGb − dGa between point a and b is usually easy to be obtained by 
laser distance measuring devices. With the known r, when the affine- 
invariant depth can be converted into the metric depth dM = SdG, the 
ground truth depth dG can be recovered into engineering units. 

A neural network MDR is used to predict Δd to convert the affine- 
invariant depth into the metric depth. MDR uses the Point-Voxel 
CNN (PVCNN) [53] network to learn Δd from 3D point clouds. For 
pinhole cameras, the back-projection formula from 2D pixel (u, v) to 3D 
point (x, y, z) is 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x =
u − u0

f
dM

y =
v − v0

f
dM

z = dM

, (2) 

Table 1 
Matching between loss functions and datasets.  

Dataset Loss Function 

Taskonomy [48] MSSG, ranking loss, ILNR, PNR 
3D Ken Burn [49] MSSG, ranking loss, ILNR, PNR 
DIML [50] MSSG, PNR, ILNR 
Holopix50K [37] Ranking loss 
HR-WSI [51] Ranking loss  
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where (u0, v0) are the camera optical centre, f is the focal length, and 
dM is the metric depth which is the inverse of diM. Adding a shift Δd to dM 

will result in shape distortions of the point cloud. The pipeline of MDR 
training and inference is shown in Fig. 7. During training, the ground 
truth of the inverse metric depth is converted into affine-invariant depth 
by adding a ground truth depth shift Δ*

d. The affine-invariant depth 
distorts the ground truth point cloud. MDR receives the distorted point 
cloud and predicts the depth shift Δd. The network is trained with the 
following objective function 

L = min
θ

⃒
⃒M

(
P
(
u0, v0, u, v, f *,Δ*

d, diM
)
, θ

)
− Δ*

d

⃒
⃒ (3) 

where M ( • ) is the MDR network and P ( • ) is the point cloud 
calculation, diM is the ground truth inverse metric depth and f * is the 
ground truth focal length. During inference, the MDR network receives 
the affine-invariant depth predicted by ADE and estimates a depth shift 
Δd for converting the affine-invariant depth into inverse metric depth. 
To train the MDR network, 165,000 depth maps from ScanNet [54], 
Taskonomy and 3D Ken Burns are used. 

2.3. In-plane displacement measurement module 

The movements of key points are used to measure the in-plane dis
placements. Some pixels in images are ordinary or “boring”. They are 
very similar to their neighbours, for instance, the pixels on a whiteboard. 
These pixels are hard to be used on downstream tasks such as point 
tracking, point matching, etc. Key points are some pixels that have a 
significant appearance, for example, the corner points. In the in-plane 
displacement measurement module, SuperPoint [16] is applied to 
detect key points. It is a self-supervised framework for learning key point 
detectors and descriptors, which are suitable for a large number of 
multiple-view geometry problems in computer vision. It achieves an 
excellent performance on many geometric computer vision tasks as well 
as structural displacement measurement tasks [3,43]. The SuperPoint 
neural network applies the Visual Geometry Group (VGG) convolutional 
neural network [55] as the backbone. A non-learned explicit decoder 
based on an Efficient Sub-Pixel Convolutional Neural Network (ESPCN) 
[56] is designed to upsample the feature map for resolution recovery. 
SuperPoint is trained on 80,000 wrapped MS-COCO datasets [57]. All 
training is conducted using PyTorch with mini-batch sizes of 32. Adam 
optimizer [58] is used during training with a default learning rate of 
0.001 [16]. The exponential decay rates for the first and second moment 
estimates are 0.9 and 0.999, respectively. To locate the Superpoints on 
all the frames, the KLT tracker [40-42] is used. The KLT tracker detects 
the location of key points by comparing the neighbour pixels of the key 
points. An outlier-removing algorithm [59] is used to optimize the 
tracked key points. Note the key points detected in this module are also 

used as the key points for the out-of-plane displacement measurement. 

3. Experimental validations 

3.1. Experiment A 

3.1.1. Experimental setup 
This experiment aims to evaluate the performance of the out-of-plane 

displacement measurement module. A cantilever steel beam (1500× 50×

10mm) is installed on a shaker which provides the vibration displacement 
in the depth direction. A SONY PXW-FS 5 4 K XDCAM camera with a Sony 
E PZ 18 − 105 mm F 4 GOSS Len is used for filming, which is facing the Z 
direction of the measured structure, as shown in the Top View in Fig. 8(a). 
The video resolution is 1920 × 1080 and the frame rate is 50fps (frames 
per second). The camera is placed 3.32m away from the structure, which is 
measured by a Bosch GLM 400 Laser Range Finder Distance Measurer. An 
LDS Keyence IL 300 is installed on the back of the structure to measure the 
displacements in the depth direction, which are used as the ground truth. 
A steel block that has known dimension in depth direction is mounted on 
the steel beam as a reference to convert the movement trajectory to the 
engineering unit. The experimental setup is shown in Fig. 8. Sinusoidal 
excitation with an excitation frequency of 2 Hz is applied to generate the 
vibrations in the z-direction. 

3.1.2. Experiment A results 
Ten Superpoint key points are detected for analysis within the area 

surrounding the location where the LDS sensor is installed at the back of 
the specimen. This allows for a direct comparison between our method 
and the ground truth measurements provided by the LDS. In Fig. 9, the 
out-of-plane displacement trajectory of an arbitrarily chosen key point is 
presented against the ground truth, where the ground truth is shown in 
orange, and the one measured by the proposed system is presented in 
blue. Figure 9(a) is the time history from 0 s to 20 s, while Fig. 9(b) is the 
zoomed-in view of the period from 10 s to 12 s. 

The vibration displacement responses measured in the time domain 
are then converted to the frequency domain by Fast Fourier Trans
formation (FFT) to evaluate the performance of the proposed system in 
another view, as shown in Fig. 10. The dominated frequency component 
measured by both the proposed system and LDS is 1.998 Hz. A second 
frequency of 3.996 Hz is observed as shown in Fig. 10(b) by the pro
posed measurement system while a frequency of 3.546 Hz is observed as 
shown in Fig. 10(a) by LDS. It should be noted that the vibration of the 
structure is dominated by the applied sinusoidal excitation at 2 Hz. 
Therefore, both the proposed vision system and the LDS have captured 
the most significant vibration energies at 2 Hz as shown in Fig. 10(a) and 
(b). The frequency component of 3.996 Hz as shown in Fig. 10(b) is the 
second order harmonic frequency of the applied excitation. The 
observed frequency at 3.546 (the analytical natural frequency is 3.63 Hz 
based on finite element analysis with the dimensions and material 
properities of the cantilver beam) in Fig. 10(a) is the fundamental nat
ural frequency of the cantilever beam, though its energy is very small. 
This is also the reason why it could not be identified in Fig. 10(b), since 
the vibration energy is small. To further investigate the frequency 
components of the obtained dynamic responses, the Fourier spectrum is 
converted to a base-10 logarithmic scale, with the one from LDS shown 
in Fig. 10(c) and the one from the proposed system shown in Fig. 10(d). 
It can be observed from Fig. 10(c) that there is a small peak at 3.996 Hz, 
which coorsponds to the second order harmonic frequency component 
in Fig. 10(b). However, it should be noted that in this testing, the ob
tained dynamic displacement responses are dominated by the applied 
sinusoidal excitation at 2HZ. 

Two numerical evaluation parameters, cross-correlation coefficient ρ 
and relative error ∊, are used to evaluate the performance of the pro
posed system on all selected 10 key points to ensure that the out-of-plane 
displacement measurement module has a good performance for all key 
points. ρ and ∊ are defined as: 

r

Camera Plane

Z

Imaging  Plane

X

a

b

Civil Structure

Camera System

Fig. 6. An example of the engineering unit recovered by using the metric 
depth map. 
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ρ =
1

N − 1
∑N

i=1
(
Ai − μA

δA
)(

Bi − μB

δB
) (4)  

∊ =
‖Bi − Ai‖

‖Bi‖
× 100% (5) 

where N is the number of observations in the time history of the 
displacement responses, Bi and Ai denote the ith displacement response 
of the ground truth and that obtained from the proposed system, 
respectively; μA and δA, μB and δB are the mean values and standard 
deviations of A and B, respectively. The numerical evaluation results are 
presented in Table 2. The obtained vibration displacement responses of 
the fifth key point (arbitrarily chosen) are shown in Figs. 9 and 10. It can 
be observed that the proposed out-of-plane displacement measurement 
module works stably on all ten key points, indicating that it could be 
used for full-field displacement measurement. The average cross- 
correlation and relative error of the out-of-plane vibration displace
ment measurement are 0.82 and 55.405%, respectively. This relatively 
large error can be attributed to the accumulated errors over the entire 
measurement duration of 20 s. Although the relative error is quite high, 
the cross-correlation value reaches 0.82. It should be noted that this is a 
pioneer work attempting to measure vibration displacement responses 
in 3D using a single camera, therefore metrics comparison is not avail
able. Considering the significant challenges in measuring vibration 
displacement in the depth direction using a single camera, the accuracy 
achieved by the proposed system is encouraging and promising. 

3.2. Experiment B 

3.2.1. Experimental setup 
In this experiment, 3D vibration tests are conducted on a steel 

cantilever beam (425 × 50 × 5mm) to verify the performance of the 
proposed monocular system for 3D vibration displacement measure
ment. This test evaluates the performances of both the in-plane and out- 
of-plane displacement measurement. 3D vibrations are generated by two 
shakers: Shaker A and Shaker B. Shaker A is a bi-direction shaking table 
that provides excitations in the X (horizontal) and Z (depth) directions. 
Shaker B (APS 400 ELECTRO-SEIS long-stroke shaker) is fixed on shaker 
A for providing Y (vertical) direction excitation. The beam structure is 
fixed on shaker B. The combination of using two shakers generates 3D 
vibrations for the beam structure. The ground truth data of displacement 
responses are measured by four physical displacement sensors. The 
types and measurement directions of the sensors used are shown in 
Table 3. The camera and lens in this experiment are the same as those in 
experiment A. A remote controller is used to turn on and off the filming. 
The recording image resolution is 1920 × 1080 and the frame rate is 
50fps. The camera is placed 1.76m away from the cantilever beam in the 
Z direction. Shaker A is employed to generate sinusoidal excitations with 

an amplitude of 3 mm and a frequency of 3 Hz in both the X and Z di
rections. Shaker B is controlled by adjusting the voltage of the shaker 
controller, which cannot provide the exact value of vibration displace
ment amplitude and frequency. The experimental setup of the shakers 
and cameras for Experiment B is shown in Fig. 11. 

3.2.2. Experiment B results 
The proposed in-plane and out-of-plane displacement measurement 

modules are used to measure the 3D displacements of 30 key points 
detected by SuperPoint. Fig. 12 shows the displacement response of an 
arbitrarily chosen key point measured by the proposed system against 
those measured by the physical sensors in X, Y and Z directions, where 
Fig. 12(a), (c) and (e) show the time history of displacement in the X-Y 
and Z directions from 0 s to 20 s, and (b), (d) and (f) show their 
respective zoom-in view. The results demonstrate that the in-plane 
module obtains very accurate displacement measurement against 
those measured by physical sensors. In depth Z direction, the accuracy of 
the displacement measurement from the out-of-plane module is obvi
ously much lower, however they are still acceptable especially in terms 
of the frequency of the displacement. It can be observed that the 
measured value from the vision system is larger than ground truth in 
some peaks in Z direction. This can be attributed to the inherent nature 
of the neural network which processes each video frame independently. 
As the structure undergoes 3D movement, the captured image varies 
depending on the direction and magnitude of the structure’s movement, 
such as moving towards or away from the camera, or moving right or left 
relative to the camera’s perspective. Each frame presents a unique image 
with different spatial relationships and depth cues, which can affect the 
network’s performance in estimating depth. Another observation is that 
the vision displacement measurement seems to perform better on the 
positive side than the negative side most of the time. A possible expla
nation is that the neural network estimates the depth map based on 
depth cues present in the scene. When the structure moves closer to the 
camera, it tends to occlude more objects in the scene, resulting in a 
decrease in available depth cues. It could become more challenging for 
the network to accurately estimate depth in such scenarios. In contrast, 
when the structure moves away from the camera, it may reveal more 
objects or more structural parts in the scene, providing more distinct 
depth cues for the network to leverage. This can lead to improved per
formance in depth estimation. 

Again, the time domain displacement responses are transformed into 
the frequency domain by FFT. Figure 13 presents the frequency domain 
responses of the 3D displacement measured by the proposed system and 
the physical sensors. 

It can be observed that the vibration frequencies measured in the X 
and Y direction match very well with the data from LVDTs which are 
used as the ground truth. For the Z-direction, the same response fre

Fig. 7. The pipeline of MDR method.  
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quencies of 2.997Hz and 5.994 Hz are also observed in the data from the 
proposed system and the ground truth. From the experimental results, it 
can be observed that the proposed vision system is able to achieve ac
curate measurement for in-plane displacement. The dominant fre
quencies of the out-of-plane displacement are also well measured, 

although the amplitude of the out-of-plane response and the corre
sponding Fourier spectrum amplitude have some differences. 

Similar observation can be made in the log scale, as shown in Fig. 14 . 
The proposed system produces the vibration displacement in both the X 
and Y directions accurately, as shown in Fig. 14(a–d). In the Z direction, 

Fig. 9. Out-of-plane displacement of one arbitrarily chosen key point using the proposed system against the ground truth measured by LDS. (a) Vision vs. LDS in Z 
direction; (b) A zoomed-in view of (a). 

(a) 

(b) 

LDS

LDS

LDS

3D Main View Top View Side View

Shaker

Shaker

Shaker

Steel Beam

Steel Beam

Block

Steel Beam

10mm

Shaker

Steel Beam

LDS Keyence IL300

Steel Block

Camera

Z

X

X
Y

Z

Fig. 8. Setup of Experiment A.  
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the proposed system is able to detect the main features of the vibration 
responses, but with certain discrepancies in the amplitude, as shown in 
Fig. 14(e) and (f). 

To estimate the ability of the proposed system for full-field mea
surement, 30 key points are detected using SuperPoint on the testing 
structure. It is hard to show the displacement trajectories of 30 key 
points in a figure. Instead, the numerical evaluations including relative 
errors and cross-correlation coefficients of all 30 key points are pre
sented in Tables 4 and 5. Figures 12, 13 and 14 show the typical 3D 
displacement of Key point 15 (arbitrarily chosen) whose relative error 
and cross-correlation coefficient are given in the 15th row of Tables 4 
and 5. The displacement responses measured by the corresponding 
physical sensors are used as the ground truth (G in the tables) with a 
relative error of 0.00% and a correlation coefficient of 1.0000. As shown 
in the tables, the proposed system is able to measure the in-plane 

displacement for all 30 key points in very high accuracy, with the 
average cross-correlation coefficients in the X direction as 0.9965 and Y 
direction as 0.9973, and the relative errors within 6%. For the out-of- 
plane displacement measurement, the average cross-correlation of the 
out-of-plane displacement measurement module is 0.8817, and in ten 
key points this metric achieves over 0.9. The average relative error of the 
out-of-plane displacement measurement is 50.09% against the physical 
sensor. These results demonstrate that using a single camera the pro
posed 3D vibration displacement measurement system can give very 
accurate measurements of in-plane vibration displacements. The accu
racy of the measured out-of-plane vibration displacement is not as good 
as the in-plane displacement. The errors are mainly associated with the 
displacement amplitudes while the out-of-plane vibration frequencies 
are accurately measured. These results demonstrate the great potentials 
of the vision-based vibration measurement with only a single camera in 
monitoring the structural responses during extreme events, as well as 
under normal operation conditions. The measured data can be used in 
assessing the structural conditions. 

Fig. 10. FFT spectra of out-of-plane vibration displacements measured by the proposed system and LDS: (a) by LDS ; (b) by the proposed system; (c) in the loga
rithmic scale measured by LDS; (d) in the logarithmic scale measured by the proposed system. 

Table 2 
Cross-correlation coefficients and relative errors of ten key points.  

No. Corr. (ρ) Relative Error. (%) No. Corr. (ρ) Relative Error. (%) 

G  1.0000 0.00 
58.95 
57.53 
60.37 
61.46 
54.12 
49.41 

7  0.8287 57.04 
53.27 
52.10 
49.77 
55.41 
- 
- 

1  0.8189 8  0.8269 
2  0.8198 9  0.8248 
3  0.8049 10  0.8287 
4  0.8020 Ave  0.82003 
5  0.8204 –  – 
6  0.8252 –  –  

Table 3 
The version of the physical displacement sensors.  

Sensor Name Version Measurement Direction 

LVDT 1 HBM Displacement Transducer X 
LVDT 2 HBM Displacement Transducer Y 
LVDT 3 HBM Displacement Transducer Z  
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(a) Test set-up 

(b) Experimental test set-up 

3D Main View

Steel Beam

Shaker A

Shaker B

Shaker A

Shaker B

Shaker B

Shaker A

Top View Side View

LVDT 3

LVDT 1

LVDT 1

LVDT 3

LVDT 2

LVDT 3

LVDT 2

LVDT 1

LVDT 
Shaker A
Shaker B
Steel Beam

LVDT 2

10mm

10mm

Steel Clips

X
Y

Z

Fig. 11. Setup of Experimental test B.  
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Fig. 12. Evaluation of 3D displacement measurements at an arbitrary key point using the proposed vision-based system against physical displacement sensors: (a) 
Vision vs LVDT 1 in X direction; (b) A zoomed-in view of (a); (c) Vision vs LVDT 2 in Y direction; (d) A zoomed-in view of (c); (e) Vision vs LVDT 3 in Z direction; (f) A 
zoomed-in view of (e). 
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  (a)                                                                         (b) 

  (c)                                                                         (d) 

  (e)                                                                         (f) 

Fig. 13. Vibration frequencies obtained from the 3D vibration displacement measurement: (a) X direction by LVDT 1; (b) X direction by the proposed system; (c) Y 
direction by LVDT 2; (d) Y direction by the proposed system; (e) Z direction by LVDT 3; (f) Z direction by the proposed system. 

Y. Shao et al.                                                                                                                                                                                                                                    



Engineering Structures 293 (2023) 116661

13

Fig. 14. Frequency spectrum in the logarithmic scale in 3D: (a) X direction by LVDT 1; (b) X direction by the proposed system; (c) Y direction by LVDT 2; (d) Y 
direction by the proposed system; (e) Z direction by LVDT 3; (f) Z direction by the proposed system. 

Table 4 
Cross-correlation coefficients of 30 key points in X, Y and Z direction.  

No. Corr. (ρ) No. Corr. (ρ) No. Corr. (ρ) 

X Y Z X Y Z X Y Z 

G  1.0000  1.0000  1.0000 11  0.9973  0.9974  0.8667 22  0.9984  0.9976  0.8528 
1  0.9934  0.9973  0.9084 12  0.9965  0.9975  0.8858 23  0.9967  0.9984  0.8784 
2  0.9983  0.9979  0.8969 13  0.9963  0.9979  0.9001 24  0.9974  0.9974  0.9097 
3  0.9934  0.9982  0.9079 14  0.9984  0.9969  0.8834 25  0.9963  0.9983  0.8952 
4  0.9994  0.9938  0.9099 15  0.9975  0.9975  0.8850 26  0.9974  0.9985  0.8300 
5  0.9903  0.9962  0.8972 16  0.9944  0.9984  0.8844 27  0.9983  0.9975  0.8375 
6  0.9938  0.9969  0.8890 17  0.9937  0.9934  0.8810 28  0.9973  0.9934  0.8058 
7  0.9946  0.9973  0.9024 18  0.9982  0.9958  0.9064 29  0.9964  0.9985  0.8189 
8  0.9983  0.9989  0.9051 19  0.9948  0.9984  0.8755 30  0.9988  0.9984  0.9024 
19  0.9974  0.9973  0.8787 20  0.9987  0.9976  0.9036 Ave  0.9965  0.9973  0.8817 
10  0.9984  0.9973  0.8918 21  0.9957  0.9985  0.8620 –  –  –  –  
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4. Conclusions 

This paper proposes a monocular vision based 3D full-field 
displacement measurement system for civil structures. The in-plane 
displacement is measured using the advanced key point detection and 
tracking algorithms, while the advanced deep learning based monocular 
depth estimation technique is applied to measure the out-of-plane 
displacement utilising a single stationary camera. Experimental results 
demonstrate that the proposed monocular vision system can accurately 
measure the in-plane vibration displacement responses. The accuracy of 
the measured out-of-plane vibration displacement is not as good as the 
in-plane displacement, but the correlations between the ground truth 
data are all above 0.8 over the measurement duration of 20 s. The main 
contributions are as below: 

1) The potential of data-driven methods for 3D displacement mea
surement based on monocular vision is demonstrated. Our system 
offers advantages over traditional displacement sensors and multi- 
view geometry-based methods in terms of accessibility and cost- 
effectiveness. This is particularly beneficial in scenarios where 
sensor installation is challenging, and budget constraints exist. It also 
avoids the complicated synchronisation requirement of using mul
tiple cameras.  

2) The second contribution of the proposed method lies in its depth 
independence and the ability to convert the estimated depth to ab
solute depth in engineering units. The proposed method leverages 
deep learning techniques to estimate the depth of objects in images 
by extracting depth cues, such as texture gradients, relative sizes, 
occlusion patterns and so on. These cues are inherently independent 
on the distance between the camera and the object. Additionally, the 
proposed method focuses on estimating the affine-invariant depth 
rather than the absolute depth from the camera to the structure. This 
ensures that the network is not specialized for a specific depth range, 
resulting in robust depth estimation across a wide range of distances. 

The accuracy in the depth direction remains a primary area for 
improvement. The complexity of achieving accuracy in the depth di
rection arises from various factors, including limited training data and 
the absence of prominent depth cues in the scene. We plan to focus our 
future attention on the following two aspects:  

1) It’s essential to expand the dataset related to civil structures or scenes 
of civil structures. Gathering data from diverse structural environ
ments, various lighting conditions, and different types of civil 
structures will enable the measurement system to better adapt to 
real-world scenarios. This comprehensive dataset can cover a wide 
range of structural variations, allowing the system to learn and adjust 
to different depth characteristics, therefore enable more accurate 
measurement of structural displacement in 3D.  

2) The depth estimation neural network depends on the depth cues in 
the input image. Thoughtful camera positioning can enhance the 
presence of these depth cues in the scene, ultimately supporting the 
neural network in accurately estimating depth. However, summari
zing and explaining the depth feature preference of complex neural 
networks can be a challenge. Neural networks operate in high- 
dimensional spaces and learn complex representations through 
multiple layers, making it hard to interpret the specific depth fea
tures learned by the network. Analytical and quantitative study of 
different depth feature preferences and the optimal setup of the 
system will allow for a thorough exploration of the inner workings of 
the depth estimation neural network and provide insights on how to 
enhance its performance. 
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