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A B S T R A C T   

Humans working in modern work systems are increasingly required to supervise task automation. We examined 
whether manual aircraft conflict detection skill predicted participants’ ability to respond to conflict detection 
automation failures in simulated air traffic control. In a conflict discrimination task (to assess manual skill), 
participants determined whether pairs of aircraft were in conflict or not by judging their relative-arrival time at 
common intersection points. Then in a simulated air traffic control task, participants supervised automation 
which either partially or fully detected and resolved conflicts on their behalf. Automation supervision required 
participants to detect when automation may have failed and effectively intervene. When automation failed, 
participants who had better manual conflict detection skill were faster and more accurate to intervene. However, 
a substantial proportion of variance in failure intervention was not explained by manual conflict detection skill, 
potentially reflecting that future research should consider other cognitive skills underlying automation 
supervision.   

1. Introduction 

Automation is changing how humans manage work by assisting task 
completion (Bhaskara et al., 2021; Rieth and Hagemann, 2022; Vagia 
et al., 2016). Many modern work systems provide automated assistance 
– from surgeons receiving assistance during medical procedures, to pi-
lots largely flying aircraft through inputs to automated flight deck sys-
tems. High-risk operations such as those in mining and oil and gas are 
also increasingly automated (Loughney and Wang, 2018). Automation 
can make work safer and more efficient when implemented appropri-
ately because it can typically perform pre-determined steps more effi-
ciently and with less variability than humans (Endsley, 2017). 
Automated systems function effectively in routine situations but can 
potentially be erroneous in situations outside those anticipated by de-
velopers. Under these circumstances, automation can become ‘brittle’ 
and risks failure (Woods and Cook, 2012). 

Humans are therefore required to supervise automated systems in 
case they need to intervene to resolve failures of automation. Automa-
tion supervision refers to operators noticing that automation may have 
failed, deciding that it has, and then intervening effectively. This is 

assumed to primarily involve the cognitive skills that would be required 
to manually perform the automated task. However, the sub-process of 
monitoring for automation failure differs from manual performance 
because operators are largely removed from active situational control, 
while still being required to remain vigilant. Unfortunately, humans are 
“magnificently disqualified for this particular form of sustained atten-
tive response” (Hancock, 2013, p.98). Supervising automation is chal-
lenging because it becomes increasingly difficult to remain vigilant over 
time (vigilance decrement; Mackworth, 1948; Warm et al., 2008). 
Although certain work procedures can offset the impact of this (e.g., 
Crew Resource Management in piloting; Flin et al., 2002), with 
increasing automation, there is an increased potential for operators to 
notice fewer automation failures as a function of time on task, compared 
to performing the task manually (Molloy and Parasuraman, 1996). This 
issue is compounded when automation failures are rare (Bowden et al., 
2023; Taleb, 2005). Examining human-automation teaming is critical 
given that automation supervision is an increasing job requirement in 
modern work environments, such as in military surveillance, airport 
baggage inspection, medical screening, remote (uninhabited) vehicle 
management, and air traffic control (ATC). 
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To adapt to the increasing requirements for human-automation 
teaming in modern work, organisations may need to re-evaluate their 
personnel assessment, selection, and training processes. An assumption 
likely underlying current organisational processes is that manual task 
skill (ability to perform a task manually/without automation) and 
automation supervision performance when automation completes the 
same task should be relatively highly related. For instance, we might 
assume that our ability to drive a car relates to our ability to detect and 
correct the erroneous performance of an autonomous vehicle. However, 
to our knowledge, this assumption has not yet been empirically 
examined. 

Practically, it is important to know the extent to which manual task 
skill predicts the quality of automation supervision, and thus the extent 
to which organisations need to consider selecting operators based on 
other cognitive traits and skills related to superior automation supervi-
sion. Continuing our driving example, given the finite resources likely to 
be available to train operators of future autonomous vehicles, there will 
be a trade-off between training operators to effectively monitor auto-
mation for failure and training them to drive manually. Organisations 
will likely be tempted to spend more resources on what they believe 
(either correctly or incorrectly) predicts automation supervision as this 
will be the operator’s task the majority of the time, at the expense of 
training for manual skills, which may be perceived as only being 
required in the rare instances when automation fails. However, such an 
approach could backfire if manual task skill itself is predictive of auto-
mation supervision performance. 

Manual task skill should certainly be related to performance following 
detection of an automation failure, when returning to manual task 
performance (return to manual; RTM). In many settings, human inter-
vention to an automation failure is the last line of defence before 
disaster. For instance, the pilots of Air France flight 447 were required to 
RTM after a blocked sensor caused the autopilot to turn off mid-flight. A 
major contributing factor in the accident (crash) was that the two pilots 
who were sharing first officer responsibilities when the autopilot 
switched off were inexperienced in manually handling the aircraft (BEA, 
2012). Thus, although pilots spend most of their time supervising highly 
reliable autopilot systems, their manual flying skills are likely critical 
after automation failures are detected. However, the initial detection of 
automation failure, a necessary condition for successful automation 
failure intervention, may depend on cognitive processes additional to 
manual task skill (e.g., vigilance performance, prospective memory, 
etc.). 

The current study examined the extent to which manual task skill 
predicted automation supervision in a medium-fidelity ATC task. ATC is 
a complex, safety-critical, work environment where automation is being 
increasingly used to handle traffic load and reduce operator workload 
(e.g., Airservices Australia, 2018; FAA, 2020), making it a prototypical 
task to address our research question. Controllers complete multiple 
tasks, including monitoring and communicating with aircraft enter-
ing/exiting their sector, scheduling take-offs/landings, and diverting 
aircraft around weather. However, their key responsibility is to ensure 
minimum separation between aircraft. While automation can assist, it is 
ultimately the operators’ responsibility to ensure that automated con-
flict avoidance systems perform appropriately. 

In the current study, aircraft were in conflict if they would simulta-
neously violate 5 nautical miles (nm) lateral and 1000 ft vertical sepa-
ration standards. When aircraft are cruising (i.e., not ascending/ 
descending), manual conflict detection requires individuals to assess the 
relative position and speed of converging aircraft pairs that share a 
common altitude, in order to judge their relative-arrival time at common 
intersection (Loft et al., 2009; Neal and Kwantes, 2009; Rantanen and 
Nunes, 2005; Vukovic et al., 2013; 2014). We asssesed manual conflict 
detection skill using a conflict discrimination task (CDT). Participants 
were presented successive pairs of converging aircraft (cruising at the 
same altitude) with varying future minimum lateral separation based on 
their relative position and speed. Participants were required to make a 

lateral-relative-arrival-time judgement to determine if each presented 
aircraft pair would conflict or not at their closest point of approach. 

Participants’ performance on the CDT was then used to predict their 
automation supervision performance in a medium-fidelity ATC task. In 
the ATC task, participants were responsible for handling a sector with 
multiple aircraft that required acceptance and handoff from the sector, 
as well as maintaining minimum separation standards between multiple 
aircraft with the assistance of either high or low degree automation. 
Degree of automation (DOA) is a metric that ranks the level of auto-
mated assistance, where higher DOA indicates more automated support 
(Parasuraman et al., 2000; Sheridan and Verplank, 1978). In both the 
high and low DOA conditions, automation reliably detected 24 conflicts 
(80%), and participants were required to intervene to six automation 
failures. Automation supervision performance was operationalized as 
the accuracy and speed of intervening to prevent the aircraft conflicts 
that automation missed (failure intervention). 

In the low DOA condition, automation highlighted potential conflicts 
(converging aircraft at the same altitude) and participants were required 
to manually determine if highlighted aircraft pairs would conflict. In the 
high DOA condition, the automation detected conflicts and intervened 
without participant input. To effectively supervise low or high degree 
conflict detection automation, participants needed to make relative- 
arrival time judgements on converging aircraft pairs flying at the same 
altitude that they deemed automation may have not highlighted (low 
DOA) or failed to detect/resolve (high DOA). 

In summary, the current study examined the extent to which manual 
CDT task performance (i.e., the ability to discriminate conflicts from 
non-conflicts) predicted automation supervision (i.e., more accurate 
and/or faster failure intervention) when either low or high degree 
conflict detection automation was provided. In a recent meta-analysis by 
Onnasch et al. (2014), automation supervision (i.e., failure intervention) 
was shown to be better when using low compared to high DOA across 
various task domains. Due to this difference in automation supervision 
across DOAs, it was also of interest whether CDT skill and DOA would 
interact such that CDT skill would be a stronger predictor of automation 
supervision under low compared to high DOA. 

2. Methods 

2.1. Participants 

Undergraduate students from The University of Western Australia (N 
= 204) participated in exchange for course credit or AUD$40 (60% fe-
male, Mage = 21.4 yrs; SDage = 7.1, range = 17–63) and an additional 
performance-based incentive of AU$5-$20. This research complied with 
the American Psychological Association Code of Ethics and was 
approved by The University of Western Australia Human Research 
Ethics Office. 

2.2. Equipment and tasks 

2.2.1. Manual conflict discrimination task 
CDT trials were presented as a dark grey screen with a centred light 

grey circle representing an air traffic sector. Two black lines ran across 
the display from edge to edge, representing flight paths. These flight 
paths randomly rotated around the screen for each trial, but always 
bisected at a 90-degree angle. When a trial started, participants were 
shown two aircraft, one on each flight path. Aircraft were represented by 
a circle icon with an attached projection line indicating where that 
aircraft would be in 1 min. Each aircraft icon had an attached data block 
containing the aircraft callsign (e.g., PZV599), type (e.g., B737), cur-
rent/cleared altitude (e.g., 370 > 370 indicates flying at 37,000 ft, 
cleared to fly at 37,000 ft), and speed (e.g., 43 indicates 430kn). Ex-
amples of CDT trials are presented in Fig. 1. 

Participants were presented with aircraft pairs with systematically 
varied minimum separation distances, and were asked to determine if 
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each aircraft pair were in conflict or not. All aircraft pairs were cruising 
(at the same altitude) so only future lateral separation required assess-
ment. On each trial, participants watched a pair of aircraft move along 
their respective flight paths. After 3.5s, the screen proceeded from the 
aircraft display to a subsequent message asking participants to: “Please 
indicate whether these aircraft are in conflict. Press f for conflict or j for 
non-conflict” (response keys counterbalanced). To determine if the pair 
would conflict, participants were required to judge if aircraft would 
violate lateral separation standards of 5 nm in the future based on their 
current relative position and speed. If participants responded incor-
rectly, a feedback screen advising them of the error was displayed. 
Participants then saw a grey screen with an instruction to press the 
spacebar when they were ready to proceed to the next trial. 

We used the Method of Constant Stimuli (MOCS), a procedure 
commonly used in psychophysics for determining sensory thresholds 
(Gescheider, 1985). Trial difficulty varied through the degree of lateral 
minimum separation (DOMS) between aircraft, that is, the lateral dis-
tance between aircraft at their closest point of passing. DOMS ranged 
from 0.45 to 9.55 nm in increments of 0.35 nm (26 DOMS in total). 
Aircraft with a DOMS less than 4.9 nm would conflict, while those with a 
DOMS more than 5.1 nm would not. At more extreme DOMS values (i.e., 
further from 5 nm), it was easier to discriminate conflicts from 
non-conflicts. For example, at the smallest DOMS it was relatively easy 
to discern that aircraft would conflict, as aircraft in these trials would 
significantly overlap at their closest point of approach (Fig. 1A). At the 
largest DOMS, it was relatively obvious that aircraft would not conflict, 
as aircraft in these trials would have the largest distances between them 
at their closest point of approach (Fig. 1B). More difficult trials were 
those with DOMS closest to 5 nm, at which distance it was more 
ambiguous whether the aircraft would conflict (Fig. 1C and D). Partic-
ipants completed 20 trials for each DOMS (520 trials in total, with 260 
conflict and 260 non-conflict trials). 

2.2.2. Air traffic control task 
The medium fidelity ATC task (Fothergill et al., 2009) was presented 

on two 22-inch monitors and participants used a computer keyboard and 
mouse. While the ATC display and aircraft interaction features con-
tained realistic elements, participant tasks represented a simplification 
of the real work of an air traffic controller. For example, participants 
made no radio communications and had limited aircraft controls avail-
able to them, such as not being able to re-route aircraft or change their 
speed. There were also a relatively low number of aircraft under 
participant control and minimal variability in air traffic volume. 

The right-hand monitor (Fig. 2) contained flight progress strips and 
an event log, designed based on Masalonis et al. (1997). Flight strips 
contained the callsign, altitude, and route information for each aircraft. 
The event log displayed actions performed by the participant or the 
automation. It was updated as participants accepted and handed off 
aircraft, or when either participants or the high DOA resolved conflicts. 
Each event in the log described the involved aircraft, action taken, and 
time. 

The left-hand monitor contained a sector map with an inner 
controlled sector (light grey) surrounded by an uncontrolled airspace 
(Fig. 3). Aircraft entered the map and travelled unidirectionally along 
flight paths before exiting. Aircraft were represented by circle icons, 
with a data block and an attached projection line, indicating where 
aircraft would be in 20s. Aircraft remained at the same speed and alti-
tude, unless instructed to ascend to avoid a conflict by either the 
participant or the high DOA. Participants controlled a median of eight 
aircraft at any one time. 

Participants accepted aircraft into and handed-off aircraft out of the 
controlled sector. Aircraft flashed blue when 20s from entering the 
controlled sector to indicate the need for acceptance. Participants 
accepted aircraft by pressing the ‘A’ key and clicking on the aircraft. 
Accepted aircraft turned green to indicate they were under participant 
control. Aircraft flashed orange for hand-off when 20s away from exiting 
the sector. Participants handed-off aircraft by pressing the ‘H’ key and 

Fig. 1. CDT trials. Blue circles with attached data blocks represent aircraft approaching common intersections along the black flight paths. White dots show projected 
aircraft location in 1 min. A countdown timer was in the top left corner (i.e., 3s left). The yellow scale on the left-hand side of the trial represented 5NM and the y-axis 
represented 10 nM. Panel A presents an easy conflict trial (1.5 nm DOMS). Panel B presents an easy non-conflict trial (9.2 nm DOMS). Panel C presents a more 
difficult conflict trial (4.65 nm DOMS). Panel D presents a more difficult non-conflict trial (5.7 nm DOMS). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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clicking on the aircraft. Handed-off aircraft turned black to indicate that 
they were no longer under participant control. Participants were noti-
fied of missed acceptances and hand-offs by an auditory alert. 

Minimum separation standards remained the same as in the CDT. To 
detect conflicts, participants projected the future lateral separation of 
aircraft cruising at the same altitude and on intersecting flightpaths to 
judge whether lateral separation would be violated. To intervene, par-
ticipants clicked on both relevant aircraft and confirmed their selection 
via a pop-up dialogue box. If the pair were in conflict, one aircraft would 
begin to ascend 1000 ft to avoid the conflict and a notification would be 
added to the event log. If a conflict was missed and minimum separation 
was lost, then the aircraft involved turned yellow until separation was 
re-established (and they returned to green). If participants attempted to 
intervene to aircraft that were not in conflict, the aircraft did not change 
altitude. Auditory alerts informed participants of conflict misses and 
false alarms. Participants were presented 30 conflicts in total (10 per 
scenario) and 18 ‘near-misses’, where pairs flew at the same altitude but 
were ~10s away from being classified as a conflict. Intervening to near- 
misses was classified as a near-miss false-alarm. Participants detected 
potential aircraft conflicts with assistance from high or low DOA (a 
between-subjects manipulation), as described below. 

2.2.3. Low degree of automation 
Low DOA (Fig. 3, upper) highlighted (either purple or red) any pair 

of aircraft flying at the same flight level and on converging flight paths, 
which resulted in highlighting both conflicts and near-misses. Partici-
pants were thus instructed that highlighting did not guarantee a conflict 
and that they were to decide the conflict status of the highlighted pair. 
Participants were also required to intervene to prevent conflicts missed 
(i.e., not highlighted) by automation. The automation failed to detect 
(highlight) six conflicts, two per scenario. Participants were thus 
required to manually intervene to resolve the conflicts that the auto-
mation missed (i.e., failed to highlight). 

2.2.4. High degree of automation 
High DOA (Fig. 3, lower) detected and resolved conflicts upon entry 

of the second aircraft in the pair to the controlled sector. Participants 
were notified of automated conflict resolution actions with a time-
stamped event in the event log detailing the aircraft involved in the 
conflict and the action taken (Fig. 2). The high DOA failed to resolve the 
same six conflicts as the low DOA failed to highlight. Participants were 
thus required to intervene to resolve the conflicts that the automation 
missed (i.e., failed to change altitude). 

2.3. Operator state measures 

Participants completed in-task questions regarding their perceived 
workload, fatigue, trust in automation, and task engagement every 3- 
min. Additionally, participants completed multi-item measures of the 
constructs after completing each scenario. These measures were 
designed to answer auxiliary research questions and are not further 
examined here. 

2.4. Procedure 

Participants were briefed on the experiment and provided consent, 
before being instructed on the CDT. They then completed 40 CDT 
practice trials (approximately 5-min). They then completed 520 CDT 
experimental trials (approximately 55-min). Participants then had the 
opportunity for a 5 to 10-min break. 

For the ATC simulation task, participants first completed a 25-min 
audio-visual training on the ATC tasks. They then completed a 30-min 
manual practice scenario. While participants were provided with con-
flict detection automation in all the experimental scenarios, the practice 
ATC scenario required manual conflict detection to ensure participants 
in the low DOA condition could make conflict status decisions on 
highlighted aircraft in the experimental scenarios, and to ensure par-
ticipants in both DOA conditions could intervene to automation failures 
in the experimental scenarios. Following this practice scenario, partici-
pants completed a 5-min audio-visual training introducing either high or 
low DOA (condition specific), before they completed three 30-min 
experimental ATC scenarios with either high or low DOA automation. 
Participants answered questionnaires at the end of each scenario and 
were given the chance to have a short break (2-5-min) between 
scenarios. 

2.5. Data analyses 

2.5.1. CDT performance metrics 
Psychometric functions relate physical stimuli to perception/sensory 

thresholds by presenting stimuli of different magnitudes and asking 
participants to rate the stimuli in a two-alternative forced-choice format 
(e.g., conflict/non-conflict). 

We examined participant response probabilities, specifically, the 
probability of responding “conflict” at each DOMS, by fitting a Cumu-
lative Gaussian distribution to each participant’s data. Fig. 4 shows an 
example of this function fit to the average of all participant data. 

Fig. 2. Flight strips (left) and event log (right) presented on the right-hand monitor. The flight strips displayed aircraft callsigns, altitude, and route information. 
Waypoints along the flightpath were displayed on the strips and changed from grey to white as aircraft flew past them. The event log displayed actions as they were 
performed by the participant or the automation, as well as the time and involved aircraft. 
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Fitting the function to each participant’s data generated a function 
for each participant given by the equation: 

p(conflict response)= 0.5 ×

(

1+ erf
(

μ − DOMS
̅̅̅
σ

√

))

(1)  

In this equation, erf refers to the error function. Two parameters were 
extracted from fitting this function. Sigma (σ) reflects the slope of the 
function, with larger values indicating a shallower slope (Fig. 5A). 
Lower sigma scores reflect participants who were better at discrimi-
nating smaller DOMS differences when determining aircraft conflict 
status. Sigma was used as our main CDT performance metric and pre-
dictor of automation failure intervention in the simulated ATC task. For 
multiple regression analyses, CDT sigma was mean-centred around the 
sample average. 

For completeness, we also analysed CDT mu (μ). Mu reflects the 
DOMS at which a participant was equally likely to respond ‘conflict’ or 
‘non-conflict’ (p(conflict) = 0.5). Participants with mu > 5 were more 
likely to respond ‘conflict’ to presented aircraft pairs, while those with 

mu < 5 were more likely to respond ‘non-conflict’ (Fig. 5B). Changes in 
mu reflect a shift of the function along the x-axis without a change in 
slope. We first determined whether direction of mu mattered (e.g., 
conflict versus non-conflict bias), and found no effect of bias direction on 
failure intervention accuracy or response time outcomes. We therefore 
converted mu to response bias, by taking the absolute value centred at 5. 
Thus, smaller response bias values represent participants who were well 
calibrated to the 50:50 conflict/non-conflict CDT task base presentation 
rate. In contrast, larger response bias values indicate either a tendency to 
classify aircraft pairs as in conflict, or a tendency to classify aircraft as 
not in conflict. For multiple regression analyses, CDT bias was also 
mean-centred. 

2.5.2. Automation supervision: failure intervention 
Failure intervention accuracy and response time were recorded. We 

defined failure intervention hit rate as the proportion of conflicts 
correctly detected by the participant when the automation failed. Fail-
ure intervention false alarm rate was the proportion of the near-miss 

Fig. 3. Sector map of the airspace (labels added to figure for clarity, not presented in-task). Aircraft requiring acceptance (A) and hand-off (H). The box at the top 
right displays the scenario run-time (red when paused, black when running), and indicates whether the conflict detection automation was active. The top panel shows 
the low DOA highlighting aircraft pairs at the same altitude. The bottom panel shows the same example with high DOA, where aircraft were not highlighted and 
conflicts were automatically resolved. The low DOA (upper panel) highlighted all aircraft flying on intersecting flight paths at the same flight level, which includes 
both conflicts (C1 & C2), and near-misses (NM1 & NM2). The high DOA (lower panel) automatically resolved conflicts (C1 & C2) by allocating one aircraft in the 
conflict pair to a new altitude (C1 has ascended to 38,000 feet). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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aircraft pairs that participants incorrectly identified as conflicting. 
Overall failure intervention accuracy was calculated by subtracting the 
failure intervention false alarm rate from the failure intervention hit rate 
(hit – false alarm rate). This quantified the degree to which participants 
could discriminate between instances of automation successfully 
detecting a conflict from instances of automation missing a conflict. For 
completeness, the hit and false alarm data were also analysed separately. 
Failure intervention response time was the time taken to correctly 
resolve conflicts missed by automation. 

3. Results 

Nine participants’ data was excluded due to extremely poor CDT task 
performance resulting in a poor fit of the Gaussian function to their data 
(R2 < 0.80). Two additional participants were excluded for not inter-
vening to any automation failure (11 participants excluded in total, 93% 
of the sample retained). The Gaussian function fit the remaining data 
adequately (low DOA: x = 0.93, sd = 0.05; high DOA: x = 0.94, sd =
0.03). Descriptive statistics are provided in Table 1. Welch’s t-tests were 
run to account for unequal sample sizes between conditions following 
data cleaning, and effect sizes are given using Cohen’s d, with weak, 
moderate, and strong effect sizes 0.10, 0.30, and 0.50, respectively 
(Cohen, 1992). 

The hit-false alarm rate data indicated that participants were 
significantly more accurate in their decision to intervene when auto-

mation failed in the high compared to the low DOA condition, X diff =

0.14, t(184.74) = 3.44, p < 0.001; d = 0.49. Failure intervention hit rate 
did not differ significantly between high and low DOA conditions, X diff 
= 0.04, t(187.92) = 1.32, p = 0.19. Rather, participants made more 
failure intervention false alarms in the low compared to high DOA 
condition, X diff = 0.10, t(187.20) = 3.81, p < 0.001; d = 0.55. However, 
participants were faster to correctly intervene when provided low 
compared to high DOA, X diff = 10.6s, t(190) = 3.81, p < 0.01; d = 0.40. 

To determine whether CDT skill was related to automation failure 
intervention, we ran multiple linear regression analyses with CDT sigma 
and CDT response bias as predictors regressed on the dependent vari-
ables of failure intervention hit-false alarm rate, failure intervention hit 
rate, failure intervention false alarm rate, and failure intervention 
response time. The interaction between CDT skill and DOA condition 
was also assessed to determine if manual CDT skill was more closely 
related to automation failure intervention in the low compared to high 
DOA condition. Where the effect of CDT was significant, we conducted 
follow-up bivariate regressions to determine the strength of the rela-
tionship between CDT skill and the dependent variable of interest. 
Correlations are presented in Table 2. 

3.1. CDT performance: sigma 

Lower sigma scores reflected participants better at discriminating 
aircraft conflict status during the CDT task. High DOA was coded as 
0 and low DOA was coded as 1, with negative beta weights representing 
the change in the dependent variable when moving from high DOA to 
low. The main automation failure intervention variable of interest was 
the hit-false alarm rate. CDT sigma, DOA, and their interaction 
accounted for 23.7% of the variance in the failure intervention hit-false 
alarm rate, F(3,189) = 19.59, p < 0.001. Participants who could better 
discriminate aircraft conflict status in the CDT task were more accurate 

Fig. 4. A Cumulative Gaussian function (red line) fit to the average of all 
participant data. Black circles indicate the average probability of all partici-
pants at each DOMS. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 5. A) The sigma parameter. The black line represents a participant who was better able to discriminate conflicts from non-conflicts (smaller sigma = steeper 
slope), compared to the red line who was poorer at discrimination (larger sigma = shallower slope). B) The mu parameter. The black line represents an unbiased 
participant (i.e. neither conflict nor non-conflict biased when responding). The blue line represents a conflict-biased participant (i.e. more like to consider aircraft 
pairs to be conflicts), while the red line represents a non-conflict-biased participant (i.e. considers aircraft pairs to be more likely non-conflicts). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Descriptive statistics for manual (conflict discrimination task; CDT) and failure 
intervention by condition (low and high DOA).  

Variables Low DOA High DOA 

Mean SD Range Mean SD Range 

Hit-False Alarm 
Rate 

0.51 0.31 0.33–1.00 0.65 0.25 0.06–1.00 

Hit Rate 0.78 0.21 0.17–1.00 0.82 0.18 0.17–1.00 
False Alarm Rate 0.28 0.20 0.00–0.94 0.17 0.16 0.00–0.72 
RT (s) 90.4 27.5 16.7–168.9 101.0 25.3 29.3–151.9 
CDT Sigma 2.56 0.92 1.48–7.93 2.51 0.78 1.18–4.97 
CDT Response 

Bias 
0.42 0.31 0.002–1.30 0.48 0.48 0.02–2.58 

Note. RT = Response Time. CDT = Conflict Discrimination Task. 
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in their decision to intervene when automation failed (B = − 0.12, SE =
0.03, p < 0.001). DOA also predicted failure intervention hit-false alarm 
rate such that participants in the high DOA condition were more accu-
rate in their decision to intervene when automation failed (B = − 0.13, 
SE = 0.04, p < 0.001). There was no interaction between CDT sigma and 
DOA, (B = − 0.04, SE = 0.04, p = 0.38). The bivariate regression indi-
cated that CDT sigma accounted for 18.2% of the variance in the failure 
intervention hit-false alarm rate F(1,191) = 42.51, p < 0.001. 

CDT sigma, DOA, and their interaction accounted for 10.8% of the 
variance in the failure intervention hit rate, F(3,189) = 7.65, p < 0.001. 
Participants who were better at discriminating conflicts from non- 
conflicts in the CDT task had a higher failure intervention hit rate (B 
= − 0.05, SE = 0.02, p < 0.05). DOA did not predict failure intervention 
hit rate (B = − 0.03, SE = 0.03, p = 0.21). There was no interaction 
between CDT sigma and DOA, (B = − 0.03, SE = 0.03, p = 0.33). The 
bivariate regression indicated that CDT sigma accounted for 9.65% of 
the variance in the failure intervention hit rate F(1,191) = 20.39, p <
0.001. 

CDT sigma, DOA, and their interaction accounted for 17.0% of the 
variance in the failure intervention false alarm rate, F(3,189) = 12.80, p 
< 0.001. Participants who were better at discriminating conflicts from 
non-conflicts in the CDT made fewer failure intervention false alarms, 
(B = 0.07, SE = 0.02, p < 0.01). Participants in the low DOA condition 
made more failure intervention false alarms than those in the high DOA 
condition (B = 0.10, SE = 0.03, p < 0.001). There was no interaction 
between CDT sigma and DOA, (B = 0.007, SE = 0.03, p = 0.83). The 
bivariate regression indicated that CDT sigma accounted for 10.3% of 
the variance in the failure intervention false alarm rate, F(1,191) =
21.95, p < 0.001. 

CDT sigma, DOA, and their interaction accounted for 4.94% of the 
variance in failure intervention response time, F(3,189) = 3.27, p <
0.05. CDT sigma did not predict failure intervention response time (B =
3.24, SE = 3.46, p = 0.35). Participants in the high DOA condition were 
slower to respond to automation failures (B = − 10.80, SE = 3.81, p <
0.01. There was no interaction between CDT sigma and DOA, (B =
− 0.08, SE = 4.54, p = 0.99). 

3.2. CDT performance: response bias 

Lower response bias indicated a participant better calibrated to the 
50:50 conflict/non-conflict CDT task base presentation rate. CDT 
response bias, DOA, and their interaction accounted for 8.00% of the 
variance in the failure intervention hit-false alarm rate, F(3,189) = 5.31, 
p < 0.01. CDT response bias significantly predicted failure intervention 
hit-false alarm rate, such that more biased participants had lower failure 
intervention accuracy (B = − 0.12, SE = 0.06, p < 0.05). DOA signifi-
cantly predicted the failure intervention hit-false alarm rate, such that 
low DOA was associated with lower failure intervention accuracy (B =
− 0.14, SE = 0.04 p < 0.05). There was no interaction between CDT 
response bias and DOA, (B = 0.12, SE = 0.11, p = 0.28). The bivariate 
regression indicated that CDT response bias only accounted for 0.97% of 
the variance in the failure intervention hit-false alarm rate, F(1,191) =
1.87, p = 0.17. 

CDT response bias, DOA, and their interaction did not significantly 
predict failure intervention hit rate, R2 = 0.02, F(3,189) = 1.33, p =
0.26. 

CDT response bias, DOA, and their interaction accounted for 8.30% 
of the variance in the failure intervention false alarm rate, F(3,189) =
5.70, p < 0.001. DOA significantly predicted the failure intervention 
false alarm rate, such that low DOA was associated with more failure 
intervention false alarms (B = 0.10, SE = 0.03, p < 0.001). Neither CDT 
response bias (B = 0.06, SE = 0.04, p = 0.13), nor the interaction be-
tween CDT response bias and DOA (B = − 0.03, SE = 0.07, p = 0.71) 
significantly predicted the failure intervention false alarm rate. 

CDT response bias, DOA, and their interaction accounted for 6.82% 
of the variance in failure intervention response time, F(3,189) = 4.61, p 
< 0.01. More biased CDT participants were slower to correctly inter-
vene, (B = 13.55, SE = 5.62, p < 0.05). Participants in the high DOA 
condition were slower to intervene (B = − 10.27, SE = 3.79, p < 0.01). 
There was no interaction between CDT response bias and DOA, (B =
− 16.00, SE = 10.42, p = 0.13). The bivariate regression indicated that 
CDT response bias accounted for 2.18% of the variance in failure 
intervention response time, F(1,191) = 4.26, p < 0.05. 

4. Discussion 

In modern work environments such as ATC, automation is essential 
for efficiency and safety. However, the human supervision of automa-
tion provides a critical last line of defence between automation failure 
and complete system failure. Our aim was to examine the extent to 
which manual task skill predicted automation supervision. Participants 
who were better able to discriminate conflicts from non-conflicts on the 
CDT were more accurate in their decision to intervene when automation 
failed in the ATC task, indicating superior automation supervision. That 
is, those participants with better manual conflict detection skill had a 
higher automation failure intervention hit-false alarm rate. This 
observed relationship likely reflects the fact that the cognitive process 
involved in making aircraft relative-arrival judgments (Loft et al., 2009; 
Neal and Kwantes, 2009; Rantanen and Nunes, 2005) were required for 
both the CDT task and for the effective supervision of conflict detection 
automation. It is likely that individuals estimated the relative 
arrival-times of certain selectively attended aircraft pairs in order to 
detect whether automation may have failed to highlight an aircraft pair 
(low DOA) or had failed to intervene (high DOA). This provides 
empirical support for the assumption that automation supervision can 
be reliant on the cognitive skills required to manually perform tasks 
currently being automated. 

We additionally measured CDT response bias, which reflects whether 
participants were biased toward classifying aircraft pairs as conflict or 
non-conflicts, with less bias indicating better calibration to CDT 
conflict/non-conflict base presentation rate (i.e., 50:50). More biased 
participants were found to be less accurate in their decision to intervene 
when automation failed in the ATC task, but this effect was not signif-
icant when examining hit rate or false alarm rates separately. A positive 
association between CDT response bias and failure intervention 
response time indicated that participants who were more biased were 

Table 2 
Correlation matrix for manual (manual conflict discrimination task; CDT) and automated task performance measures by condition (low and high DOA).   

Low DOA HIGH DOA 

1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 5. 6. 

1. Hit-False Alarm Rate –      –      
2. Hit Rate 0.77 –     0.74 –     
3. False Alarm Rate ¡0.73 − 0.13 –    ¡0.68 − 0.06 –    
4. RT ¡0.40 ¡0.27 − 0.08 –   − 0.10 ¡0.27 0.15 –   
5. CDT Sigma ¡0.47 ¡0.37 0.34 0.11 –  ¡0.37 ¡0.23 0.31 0.10 –  
6. CDT Response Bias 0.05 − 0.01 >-0.001 0.04 0.0007 – − 0.21 0.34 − 0.23 0.10 0.54 - 

Note. RT = Response Time. CDT = Conflict Discrimination Task. Significant values are bolded (two-tailed, α = 0.05). 
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slower to intervene to automation failures in the ATC task. 
In line with previous research and the Onnasch et al. (2014) 

meta-analysis, participants were faster to correctly intervene to auto-
mation failures when assisted by low compared to high DOA. However, 
in contrast to Onnasch et al. participants were more accurate in their 
decision to intervene when automation failed in the high compared to 
the low DOA condition. That is, DOA significantly predicted the failure 
intervention hit-false alarm rate, and this was driven by an increased 
false alarm rate when using low DOA. However, we found no effect of 
DOA on the association between CDT skill and automation supervision 
performance. This finding suggests that manual conflict detection skill 
similarly predicted automation supervision across DOA. Future research 
should examine whether manual skill can predict automation supervi-
sion across other DOAs and/or other whether there are other potential 
moderators such as automation design features or environmental con-
ditions (Karpinsky et al., 2018). 

Although manual conflict detection skill was associated with more 
accurate decisions to intervene when automation failed in the ATC task, 
substantial variability in failure intervention remained unaccounted for. 
Future research should also examine other potential underlying cogni-
tive mechanisms that may predict automation supervision. In particular, 
supervising conflict detection automation also requires individuals to 
visually search for aircraft pairs that share a common altitude and are 
heading towards a common intersection (Galster et al., 2001; Gronlund 
et al., 1998; Remington et al., 2000), whereas the CDT task, for the 
purpose of experimental control, presented aircraft pairs in isolation and 
thus had no such visual search requirement. Additionally, given 
competing demands on attention in simulated ATC (e.g., aircraft 
acceptance and hand-off requirements), effective automation supervi-
sion may have required individuals to defer task actions (e.g., defer the 
checking of the relative-arrival time of a particular aircraft pair) and 
thus requiring them to remember to come back and complete that action 
(i.e., prospective memory; Loft, 2014; Loft et al., 2019). Lastly, perfor-
mance on vigilance tasks (requiring sustained attention to detect and 
respond to a stimuli) might predict automation supervision in simulated 
ATC (Helton and Wen, 2023). 

As noted earlier, the current study is limited in that it used a medium- 
fidelity ATC task (e.g., no radio communications, limited aircraft con-
trols, relatively low aircraft volume). In addition, as we tested novice 
participants, future research should examine the applicability of the 
current outcomes to expert controllers who are undoubtedly more 
experienced, competent, and motivated to detect automation failures 
(Jamieson and Skraaning, 2020). This extension would also require the 
use of a higher fidelity ATC task. Related to this, we operationalized 
automation supervision performance as the degree to which participants 
could discriminate between instances of automation successfully 
detecting a conflict from instances of automation missing a conflict, 
whereas in real ATC missed conflicts are far more concerning than 
making false alarms (see Loft et al., 2009). These points notwith-
standing, the current study presents an initial examination of the rela-
tionship between manual task performance and automation failure 
detection using a medium fidelity simulation relatively representative of 
current ATC automation designs (International Civil Aviation Organi-
zation: Asia and Pacific Office, 2022; Skybrary, 2024). 

In conclusion, the current findings indicate a significant degree of 
overlap in the cognitive processes (i.e., relative-arrival time judgment) 
underlying manual task skill and automation supervision within the 
context of this medium-fidelity ATC simulation. Should these findings be 
replicated in higher fidelity studies using experts, this would suggest 
that practically, manual task skill is potentially relevant for organisa-
tions when selecting future operators to work in automated work envi-
ronments. However, as a reasonably large amount of variance in 
automation failure intervention was left unexplained, future research 
should also examine other cognitive traits and skills potentially related 
to automation supervision such as visual search performance, atten-
tional management, and prospective memory. 
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