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Abstract: Bridge damage detection is crucial for ensuring the safety and integrity of the 
bridge structure. Traditional methods for damage detection often rely on manual inspections 
or sensor-based measurements, which can be time-consuming and costly. In recent years, 
computer vision techniques have shown promise in bridge displacement measurement and 
damage detection. The objective of this study is to extract reliable features from displacement 
measured with computer vision-based method that are sensitive to structural condition 
change while robust to the variation of operational condition. In particular, this research paper 
presents a novel approach for bridge damage detection using an indicator defined based on 
the transverse influence ratio (DTIR) from computer vision-based displacement 
measurements. The proposed method utilizes computer vision algorithms to extract bridge 
girder displacement responses under moving load. The DTIR indicator, defined as the 
vehicle-induced bridge quasi-static displacement ratio between two adjacent girders, is 
extracted as the damage-sensitive feature. Theoretical derivation proves that DTIR indicator 
is only related to the structural condition and the transverse position of a vehicle over the 
deck, while independent of the variation of vehicle weight and speed. To validate the 
effectiveness of the proposed method, a series of drive-by experiments were performed on a 
multi-girder beam bridge with different structural conditions. The results demonstrated the 
capability of the proposed approach in accurately detecting the occurrence and possible 
location of structural damage. Furthermore, the paper discusses the advantages and 
limitations of the DTIR indicator for bridge damage detection, as well as how to generalize 
the proposed method to bridges with more than two traffic lanes. In conclusion, the proposed 
method offers a promising solution for low cost, easy deployable and scalable health 
monitoring solution for bridges under operating conditions. 
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1. Introduction 

Civil structures surely deteriorate under normal operating conditions owing to fatigue and 
corrosion, and may suffer various levels of damage under extreme conditions, such as 
earthquake, typhoon, wave and accidental impact. The accumulation of structural 
deterioration will adversely affect the serviceability, integrity, reliability and shorten the 
service life of civil engineering structures. Structural health monitoring (SHM) and condition 
assessment are crucial for ensuring safety, reducing life-cycle maintenance costs and 
preserving the service life of existing infrastructure [1–3]. Given the limited budget allocated 
to infrastructure maintenance, it is desirable to develop cost-effective, easy deployable and 
scalable SHM techniques that are applicable to a larger population of infrastructures under 
normal operation conditions to avoid or minimize interruption of structural functions [4–6].  

In the last decades, computer vision-based SHM techniques have been extensively 
developed and applied in the structural local level surface crack detection [7], bolt loose 
detection [8] and displacement responses measurements. The measured displacement 
responses can be further used in global level structural system identification [9], bridge 
vibration serviceability evaluation [10], model updating [11] and damage detection [12]. The 
displacement response under traffic load is usually selected as a critical parameter for 
evaluating bridge performance. However, conventional contact-type displacement sensors 
such as the linear variable differential transducer (LVDT) require a stationary reference point, 
which is often difficult to find in the field. Furthermore, the measurement range of traditional 
displacement sensor is relatively short, which limit its application to large-span bridge 
structures. Thanks to the rapid advances in computer vision, the camera-based noncontact 
vision sensing has emerged as a promising alternative to conventional contact sensors for 
structural dynamic displacement and strain distribution measurement. Significant advantages 
of the vision sensor include its low cost, ease of setup and operation, and flexibility to extract 
displacements of any points on the structure from a single video measurement. Therefore, the 
scope of this work falls in extracting reliable damage sensitive features from displacement 
responses of bridge structure under traffic load. Although the research community has 
recently made significant progress in estimating the 2D and 3D pixel or sub-pixel level 
structural displacement responses using computer vision-based techniques, how to convert 
the massively available data extracted by computer vision-based methods into more 
actionable information that can aid the high lever decision-making is still an open area of 
research [13]. To achieve the goal of effective and accurate SHM and condition assessment, 
extracting reliable damage sensitive feature from computer vision-based displacement data 
is highly demanded. In this regard, structural modal parameters, i.e. natural frequency, mode 
shape and damping ratio have long been used as damage features. In conventional vibration 
test, the spatial resolution of the obtained mode shape is limited by the number of vibration 
sensors deployed along the structure. Furthermore, the attached sensors may vary the 
structural mass matrix and bias the identified mode shape when the structure is lightweight. 
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On the contrary, the video camera is contactless and simultaneously obtains multi-points or 
even full-field displacement mode shape [14–16]. The modal parameters identified from 
vision-based technique can be further used to update finite element (FE) model by comparing 
the analytical and experimental modal information [17].  

For bridge structures subjected to traffic load, the dynamic displacement responses 
mainly consist of a low-frequency quasi-static component and a relatively high-frequency 
modal vibration component. In theory, the displacement can be reconstructed from 
acceleration responses via double integration. Therefore, the transfer function between 
acceleration and displacement in the frequency domain is 퐹퐹푇(푢,ω) 퐹퐹푇(푎,ω)⁄ = −1/ω�, 
where ω represents circular frequency. The transfer function indicates that the high-frequency 
displacement component is weak, and the quasi-static component in the low-frequency 
region mainly dominates the energy of bridge displacement responses. This property makes 
it difficult to obtain the bridge parameters of high modes from displacement responses of a 
bridge under moving load. However, they can be conveniently identified from acceleration 
responses. As a result, most of the vision-based bridge modal identification methods are 
conducted in a controlled laboratory environment with artificially generated external 
excitation, while little research has been found on in-situ bridges subjected to normal 
operational load. Even in such cases, only the low-order mode shape can be identified. 
Instead, it is appropriate to extract reliable features from the bridge quasi-static displacement 
component for model updating and damage detection. In this regard, the bridge displacement 
influence line is a desirable quasi-static feature that has a strict relationship with the structural 
flexibility matrix and can thus serve as a damage-sensitive feature [18]. In Reference [19], 
the computer vision technique is employed to simultaneously identify the vehicle location 
information and bridge displacement responses. Experiment and field verification results 
prove that the bridge displacement influence line can be identified from the information 
obtained from a video camera. In Reference [11], the computer vision-based displacement 
identification, along with the vehicle axle load, is used to identify the bridge influence line at 
different target positions. The identified influence line is further used to update the FE model. 
In Reference [9,20], the bridge displacement influence surface is identified using computer 
vision-based techniques. A damage indicator is developed from the bridge displacement 
influence surface to detect the presence and location of bridge structural damage.  

Existing research works have demonstrated that the bridge displacement influence 
line/surface identified from computer vision techniques are promising in bridge model 
updating and damage detection. However, it is noted that the corresponding vehicle axle load, 
along with the vehicle location information, should be known in advance. This limitation 
restricts the practical use of vision-based influence line/surface as a damage-sensitive feature 
for bridge condition assessment in a few cases. Typically, the vehicle location on the bridge 
can be obtained from traffic survey cameras installed above the bridge deck. The vehicle axle 
load is usually measured by the weigh-in-motion (WIM) system, which significantly 
increases the overall structural health monitoring (SHM) implementation costs. To address 
the aforementioned limitation of the displacement influence line-based damage detection 
method, this paper aims to develop a cost-effective, easily deployable, and scalable bridge 
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SHM approach using vision-based measurements. Specifically, a reliable damage-sensitive 
feature will be extracted from bridge displacement measured with the computer vision-based 
method in a fully data-driven manner, eliminating the need for any information regarding the 
traffic conditions.  

The remainder of this paper is organized as follows. Section 2 introduces the theoretical 
basis of the displacement transverse influence ratio (DTIR). Section 3 provides the 
procedures of the proposed method, including computer vision-based bridge displacement 
identification, quasi-static displacement component extraction, peak value detection, and 
DTIR indicator estimation. Section 4 presents the details of the experimental setup, damage 
scenarios, and damage detection results. Finally, the conclusion is provided in Section 5. 

2. Theoretical derivation of DTIR 

This section will revisit the concept of the bridge influence surface, which provides the 
theoretical basis for the proposed damage feature extraction method. The two-dimensional 
bridge influence surface is an extension of the well-known one-dimensional influence line. 
Specifically, the influence surface at a certain measurement location on the bridge is defined 
as the response function of the unit load with respect to any location on the structure. An 
illustration of the moving vehicle load applied on the bridge deck and the corresponding 
bridge influence surface concept is presented in Figure 1. 
 

Figure 1. (a) Moving vehicle load applied on bridge deck, (b) illustration of bridge 
influence surface.  

Under the linear-elastic assumption, the influence surface can be employed to calculate 
the quasi-static displacement responses of the bridge at the measurement location (푥̅�, 푦��)	on 
a bridge girder induced by a set of moving wheel loads {푃�, 푃�, … , 푃�}  

	푢(푥̅�, 푦��) =� ∅��� ∙ 휂�̅�,���(푥�, 푦�) ∙ 	푃�(푥�, 푦�)
�

���
	 (1) 

where ∅���  denotes the dynamic amplification factor due to the bridge-vehicle 
interaction effect. In this study, a low-pass filter will be applied to the vision-based 
displacement to discard the dynamic part of the raw data while preserving the static response. 
Therefore, the bridge-vehicle interaction effect can be neglected. 푃� 	denotes the i-th wheels 
load applied at location (푥�, 푦�) . 휂�̅�,���(푥�, 푦�)  is the displacement influence surface 

(a) (b) 
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coefficient under vehicle loading. It is noted that 휂�̅�,���(푥�, 푦�) is a function of structural 
condition and load location (푥� , 푦�), while independent of the wheels load weight. Under the 
linear-elastic assumption, the influence surface 휂�̅�,���(푥�, 푦�) can be approximated by the 
product of longitudinal influence line and transverse influence line, namely 

	휂�̅�,���(푥�, 푦�) = 휂�̅�(푥�) ∙ 	휂���(푦�)	 (2) 

Equation (1) can be simplified by replacing the set of moving wheels loads 
{푃�, 푃�, … , 푃�}  with an equivalent concentrated load 푃�  applied at the vehicle centroid 
(푥� , 푦�).  

	푢(푥̅�, 푦��) = 휂�̅�(푥�) ∙ 	휂���(푦�) ∙ 푃�(푥� , 푦�)	 (3) 

The bridge influence line/surface can be identified from Equation (2) when the vehicle 
loading information and bridge displacement responses at a certain location are available [21]. 
Thanks to the rapid advances in computer vision, it is now possible to conveniently identify 
in-situ bridge displacement responses subjected to traffic load at a low cost [22,23]. However, 
in practical SHM implementation, the vehicle load 푃�  along with the vehicle trajectory 
information are usually expensive to measure and difficult to synchronize with bridge 
displacement responses. Therefore, when only the bridge displacement response is available, it 
is desirable to develop a data-driven damage sensitive feature independent of the vehicle load. 
Inspired by the authors' previous work on normalizing traffic-induced bridge cable force [24], 
this study attempts to normalize the effects of vehicle loading by introducing displacement 
responses of two points at the same longitudinal and different transverse locations.  

Similar to Equation (2), the quasi-static displacement responses at bridge location 
(푥̅�, 푦��) subjected to the same vehicle load can be written as 

	푢(푥̅�, 푦��) = 휂�̅�(푥�) ∙ 	휂���(푦�) ∙ 푃�(푥� , 푦�)	 (4) 

It should be noted that the longitudinal location 푥� varies with time as the vehicle passes 
the bridge. However, the longitudinal influence line coefficient 휂�̅�(푥�)  appearing in 
Equation (3) and Equation (4) remains the same since the relative longitudinal distance 
between the two displacement measurement points and the vehicle is identical. The DTIR 
indicator between the two measurement points (푥̅�, 푦��) and (푥̅�, 푦��) can be calculated as  

	퐷푇퐼푅	���,��� =
푢(푥̅�, 푦��)
	푢(푥̅�, 푦��)

=
휂�̅�(푥�) ∙ 	 휂���(푦�) ∙ 푃�(푥� , 푦�)
	휂�̅�(푥�) ∙ 	휂���(푦�) ∙ 푃�(푥� , 푦�)	

=
휂���(푦�)
	휂���(푦�)	

 (5) 

It is seen from Equation (5) that the transverse displacement influence ratio is related to 
the structural condition and the vehicle location 푦� in transverse direction over the bridge 
deck, while independent of the weight and the longitudinal location of vehicle. For a bridge 
structure carries single traffic lane, the equivalent concentrated vehicle transverse location 푦� 
corresponding to each vehicle trip will be approximately equal, thus, 퐷푇퐼푅	���,��� defined in 
Equation (5) can directly server as damage feature. For a bridge structure carries multi-traffic 
lane, the equivalent concentrated vehicle transverse location 푦� will be different when the 
vehicle presents on different traffic lane. Consequently, 퐷푇퐼푅	���,���  corresponding to a 
population of vehicle trips will statistically form a multi-cluster feature space. The number 
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of clusters in the feature space will be the same to the number of traffic lane. The proposed 
method is data-driven, without a finite element (FE) model; therefore, it's difficult to 
quantitatively suggest a universal threshold of 퐷푇퐼푅	that is applicable to different bridges. 
However, from long-term SHM perspectives, the mean value and 95% confidence interval 
of 퐷푇퐼푅	can be periodically checked for changes. In field application, if the 퐷푇퐼푅	of a 
specific girder consistently lies outside the 95% interval, the bridge owner can organize a 
field inspection for this girder. A more detailed analysis of the variation of DTIR with 
changes in structural condition will be provided in Section 4.  

As mentioned before, the bridge influence line/surface is a function of the structural 
flexibility matrix, which changes when structural damage occurs. Considering that the 
vehicle generally remains within the lane lines, except for very few lane changes, the 
transverse displacement influence ratio can statistically serve as a robust damage-sensitive 
feature. In Equation (5), the displacement responses used to calculate the transverse 
displacement influence ratio are taken at the point in time when the peak value of 
displacement occurs. When the vehicle is approaching or leaving the bridge, the target 
displacement measurement points far away from the load has small displacement response. 
Consequently, the transverse displacement influence ratio estimated from vision-based 
displacement measurement at lower values is not reliable, especially when the camera is 
placed at a long distance from the target. 

3. Estimation of DTIR indicator using computer vision 

3.1. Computer vision-based bridge displacement measurements 

The rapid advances in cameras and computer vision algorithms enable the accurate 
measurement of bridge displacement, offering several advantages over traditional sensors, 
including: i) unlike conventional contact-type displacement sensors, vision sensors do not 
require physical access to the structures; ii) the measurement range of traditional non-contact-
type laser displacement sensors is relatively short, limiting their application to large-span 
bridge structures. However, cameras equipped with lenses can be set up at distances of dozens 
or even hundreds of meters from the structures. 

In this study, a displacement tracking method based on the SIFT (Scale-Invariant Feature 
Transform) keypoint detector and the Fast Library for Approximate Nearest Neighbors 
(FLANN) based matcher was used to measure vehicle-induced bridge vertical displacement. 
Hereafter, this displacement tracking method is referred to as the SIFT-FLANN-based method, 
which has been included in the OpenCV library. It has been reported that the SIFT-FLANN-
based method can estimate the displacement with desirable accuracy and efficiency [25]. The 
main steps of the computer vision-based displacement identification are given below: 

Step 1: source video pre-processing and scale factor determination. In practical 
applications, the camera axis and lens may not be perpendicular to the motion plane of the 
measurement target. To address this issue, a homography transformation is adopted to establish 
a mapping between the image plane and the target plane. The homography transformation 
matrix H can be estimated with a minimum of 4 pairs of points on both planes [26]. The 
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homography transformation is a practical method for camera calibration and scale factor 
determination, suitable for in-plane motion and lenses without distortion [19]. Then, the scale 
factor between the actual dimension in physical units (e.g., mm) and the image dimension in 
pixels is calculated from the first frame.  

Step 2: features detection and description in the ROI of the first frame. In the first 
frame, an ROI of the target structure with distinct corners and textures that stand out from 
the surrounding background is selected. Each feature point extracted from the SIFT algorithm 
consists of a feature detector and a descriptor. The feature detector stores the location and 
orientation of the feature point, while the descriptor contains information about the gradient 
magnitude and orientation within the region surrounding the keypoint.  

Step 3: features matching and tracking in all subsequent frames. The feature points 
extracted from the subsequent frames are matched with the feature points in the first frame 
based on the similarity of the descriptors.  

Step 4: Displacement conversion and post-processing. The displacement identification 
results are converted from subpixel values to physical displacements using the scale factor 
determined in Step 1. Interpolation is used to replace the very few NaN values for 
better  resolution.  

3.2. Quasi-static displacement component extraction 

Bridge displacement response 푢(푡)  induced by moving load consists of quasi-static 
component 푢�(푡) and dynamic component 푢�(푡), as shown in Figure 2.  

                                                  푢(푡) = 푢�(푡) + 푢�(푡)                                                   (6) 

 

Figure 2. Decomposition of bridge displacement responses under moving load.  
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As mentioned in Section 2, the proposed DTIR indicator is extracted from the quasi-
static component. In this study, a lowpass filter is adopted to separate the low-frequency 
quasi-static displacement from the high-frequency dynamic component and measurement 
noise. The selection of an appropriate lowpass filter cut-off frequency depends on the 
characteristics of the original signal, and in this case, it is set to half of the bridge's 
fundamental frequency. It is important to note that there are other methods commonly used 
for signal decomposition, such as singular spectrum analysis, empirical mode decomposition, 
and variational mode decomposition.  

3.3. Peak value detection 

As shown in Equation (5), the vehicle-induced bridge displacement amplitude is the key to 
estimating the proposed DTIR indicator. The displacement responses of each girder 
simultaneously increase and reach their peak values when the vehicle crosses over the 
displacement measurement location. The transverse displacement influence ratio between 
any two girders can be estimated by calculating the peak value ratio of the selected girder 
pair. For a single vehicle trip measurement, it is easy to manually determine the peak in the 
displacement responses under traffic load. However, in long-term health monitoring, it is 
necessary to automatically extract all the peaks of each girder from the displacement 
measurement over a period of time. 

The threshold such as the minimum peak value and the minimum peak distance can be 
used to assist extractions. The minimum peak value is used to remove the local peaks that 
were induced by ignorable small car or measurement noise. The minimum peak distance can 
be specified to ignore smaller peaks that may occur in close proximity to a large local peak. 
Figure 3 illustrates the mid-span deflection of four girders bridge corresponding to two round 
trips. As shown in Figure 5, the bridge has two traffic lanes. In each round trip, vehicle departs 
from the left approach span via Lane two and returns via Lane one. When the vehicle presents 
on Lane two, the vehicle load is mainly undertaken by girder 3 and girder 4, and thus the 
deflection of these two girders is higher than that of girder 1 and girder 2. As illustrated in 
Figure 3, all the real vehicle-induced displacement peaks are higher than 1mm, and the 
horizontal distance between any two adjacent peaks is longer than 15 s. Therefore, the 
minimum peak value and the minimum peak distance can be set to 1mm and 15 s, 
respectively. It is noted that the peak values detection can be conveniently conducted using 
the Python and MATLAB signal processing toolbox. In Figure 3, for example, 푝푒푎푘���  
represents the i-th peak identified from the displacement response of girder 1 subjected to a 
trip of moving load.  
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Figure 3. Peak value detection of bridge displacement responses under moving load.  

3.4. Damage detection based on DTIR indicator 

The displacement peak values of a multi-girder beam bridge subjected to operational 
conditions forms up the following dataset D: 

푫 =

⎣
⎢
⎢
⎡
풑풆풂풌��
풑풆풂풌��

⋮
풑풆풂풌��⎦
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⎥
⎤
=
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⎢
⎢
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푝푒푎푘��� 푝푒푎푘��� ⋯ 푝푒푎푘���

⋮ ⋮ ⋱ ⋮
푝푒푎푘��� 푝푒푎푘��� ⋯ 푝푒푎푘���

	

⎦
⎥
⎥
⎥
⎤
																										 (7) 

For a four-girder beam bridge that has undergone n trips of moving vehicle load tests, 
the dimension of matrix D is 4 × n. Each column of matrix D can be used to estimate the 
DTIR as defined in Section 2. Consequently, the DTIR indicator between every two adjacent 
girders can be expressed as follows: 

푫푻푰푹 = �
푫푻푰푹��,��
푫푻푰푹��,��
푫푻푰푹��,��

� = �
퐷푇퐼푅��,��� 퐷푇퐼푅��,��� ⋯ 퐷푇퐼푅��,���

퐷푇퐼푅��,��� 퐷푇퐼푅��,��� ⋯ 퐷푇퐼푅��,���

퐷푇퐼푅��,��� 퐷푇퐼푅��,��� ⋯ 퐷푇퐼푅��,���
�          (8) 

The dimension of 푫푻푰푹 matrix is 3 × n, in which, the element is estimated from the peak 

value ratio of adjacent girder pair. For example, 퐷푇퐼푅��,��� =
�������

������
� . It should be noted that 

the peak value ratio 퐷푇퐼푅��,��� , 퐷푇퐼푅��,���  and 퐷푇퐼푅��,���  can also be obtained; however, 
they are not included in this study. This is because the load distribution pattern between two 
adjacent girders will change significantly when the connection stiffness between the adjacent 
girders is altered. Therefore, the damage indicator 퐷푇퐼푅��,��� , 퐷푇퐼푅��,���  and 퐷푇퐼푅��,���  will 
be more sensitive to structural damage (transverse connection stiffness reduction) than 
퐷푇퐼푅��,��� , 퐷푇퐼푅��,���  and 퐷푇퐼푅��,��� .  

The overall framework of the proposed bridge damage detection using measured bridge 
displacement is illustrated in Figure 4. The system utilizes a video camera to measure the 
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vertical displacement responses of the bridge under vehicle load. The camera can be set up 
at a distance from the bridge for short-term measurements or fixed on the bridge pier for 
long-term measurements. For short-span bridges, the video of a specific bridge cross-section 
can be selected as the Region of Interest (ROI) to measure the vertical displacement at 
different transverse locations on the deck. For long-span bridges, multiple synchronized 
cameras with zoom lenses can be used, with each camera targeting one transverse location to 
enhance image resolution. 

The main contributions and novelties of this study lie in the following aspects: i) a 
reliable damage sensitive feature is directly extracted from the measured bridge displacement 
in a fully data-driven manner and does not require any information regarding the traffic 
conditions; ii) theoretical derivations have proven that the proposed damage feature is 
sensitive to structural local damage while being robust to variations in vehicle weight 
and  speed. 

 

Figure 4. Framework of the computer vision-based bridge health monitoring system. 

4. Experiment study 

4.1. Experimental setup and instrumentation 

A series of drive-by experiments was performed on a multi-girder beam bridge, as depicted 
in Figure 5. The bridge is supported by steel bars at both ends and has a span length of 4 
meters. To account for the approaching stage, a length of 0.6 meters is considered on both 
the left and right sides of the main span. To increase the deadweight of the bridge and 
consequently lower the fundamental frequency to approximately 5 Hz, three 5 kg mass blocks 
were attached at specific locations along the span. The chosen locations were at L/4 (one-
fourth of the span length), L/2 (half of the span length), and 3L/4 (three-fourths of the span 
length), respectively. 
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Figure 5. Schematic of the instrument layout.  

Figure 6 presents the layout of sensors, the bottom view, and the cross section of the 
representative section of the bridge model. In particular, the bridge consists of four 
aluminium Tee-section girder G1~G4 with a width and height of 100 mm and 50 mm, 
respectively. The width of multi-girder beam bridge is 400 mm. As shown in Figure 6, 
transverse connection C1~C9 were considered at L/4, L/2 and 3L/4 span to establish the 
transverse connection between girders. Two laser displacement sensors were installed to 
measure the vertical displacement at the L/2 and 3L/4 spans. Six single-axis accelerometers 
were placed on the bottom of the bridge along the longitudinal direction. As shown in the 
top-left of Figure 5, two vehicle models with widths of 358 mm (vehicle A) and 150 mm 
(vehicle B) were utilized to simulate single and double traffic lane scenarios. In practical 
applications, the vehicle speed and vehicle weight may vary, and they could affect the 
performance of damage detection methods. Therefore, variations in vehicle speed and weight 
are considered to evaluate the robustness of the proposed damage feature. For vehicle A, 
three vehicle weights were considered, including unloaded (6.12 kg), add 5 kg (11.12 kg), 
and add 10 kg (16.12 kg). For each vehicle weight, three levels of vehicle speeds were 
considered via the remote control. The vehicle speeds corresponding to slow, medium, and 
fast modes are approximately 0.217 m/s, 0.355 m/s, and 0.505 m/s, respectively. According 
to the non-dimensional speed parameter 훾 = �

�	×	����
, these three vehicle speeds are 

respectively equivalent to a full-scale vehicle speed of 14 km/h, 23 km/h, and 33 km/h for a 
bridge with a span of 100 m and a fundamental frequency of 푓��= 4 Hz. In this equation, v 
and L represent the vehicle speed and bridge span, respectively. The weight of vehicle B in 
the unloaded state is 2.63 kg. Two vehicle weights, including an additional 5 kg (7.63 kg) 
and an additional 10 kg (12.63 kg), were considered. The speed of vehicle B is approximately 
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0.38 m/s. The number of round trips corresponding to different combinations of structural 
condition, vehicle model, vehicle weight, and speed is listed in Table 1. Overall, 976 trips of 
drive-by data were recorded. A smartphone camera with tripod is placed underneath the 
bridge and target to the midspan of the bridge girder. In the experimental setup, the camera 
is approximately perpendicular to the target plane. The video is recorded with a resolution of 
1920 × 1080 and a sampling rate of 60 fps, without distortion. In this test, the bridge motion 
under the moving load is predominantly vertical displacement. The changes in view and 
distance between the camera and the target are negligible during the vibration. Therefore, the 
homography transformation mentioned in Section 3.1 is suitable for obtaining the scale factor.  

 

Figure 6. Overview of test structure. 

4.2. Damage scenarios 

Three structural conditions were considered, including the healthy state (damage scenario 0), 
the removal of transverse connection C6 as shown in Figure 7 (damage scenario 1), and the 
removal of transverse connections C3&C6 (damage scenario 2). Considering damage 
occurring at the transverse connections of a multi-girder beam bridge is common and of 
practical significance. For example, it was reported that there was a substantial loss of 
transverse bending stiffness in the adjacent box-beam connection of a precast prestressed 
concrete box-beam bridge after nearly 25 years of service life [27]. It was also reported that 
the transverse connection stiffness of a multiple-girder bridge had degraded greatly after 
operating for 19 years [28]. Reference [29] also highlighted that field investigation shows 
that severe damage to the transverse connectivity component occurred during its service life, 
which will result in deterioration of the bridge's mechanical performance. In this study, modal 
analysis was conducted using the bridge acceleration responses when the vehicle left the 
bridge. The bridge's fundamental frequencies corresponding to the three different structural 
conditions were found to be 5.56593 Hz, 5.51775 Hz, and 5.51545 Hz, respectively. The 
relative changes in the fundamental frequencies corresponding to damage scenario 1 and 
scenario 2 were 0.865% and 0.907%, respectively. This result suggests that the removal of 
transverse connections only causes minor local damage, resulting in a relatively small 
reduction in the overall stiffness of the bridge. 
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Figure 7. Plan view and cross sections of the bridge model. 

Table 1. List of drive-by test scenarios. 
Description Damage scenario 0 Damage scenario 1 Damage scenario 2 

Vehicle model Vehicle mass Vehicle speed Health  Remove C6 Remove C3&C6 

Vehicle A: 

 single lane 

Unloaded 

slow 

medium 

fast 

10 trips 8 trips 30 trips 

40 trips 40 trips 42 trips 

36 trips 20 trips 40 trips 

Add 5 kg 

slow 12 trips 10 trips 36 trips 

medium 46 trips 40 trips 42 trips 

fast 40 trips 40 trips 42 trips 

Add 10 kg 

slow 14 trips 10 trips 30 trips 

medium 40 trips 40 trips 34 trips 

fast 40 trips 40 trips 40 trips 

Vehicle B: 
double lane 

Add 5 kg - 20 trips 18 trips 20 trips 

Add 10 kg - 18 trips 18 trips 20 trips 

4.3. Estimation of DTIR 

This section follows the procedures outlined in Section 3 for estimating the transverse 
influence ratio of displacement from the experimental structure. The first step involves 
identifying the displacement responses of the four girders using the SIFT-FLANN-based 
method. Figure 8 illustrates the results of this process. It can be observed from Figure 8(a) 
that feature points on the vertical web of the girders were detected. Figure 8(b) demonstrates 
that the feature points were successfully matched with minimal mismatches occurring outside 
the vertical web regions of the girders. 
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Figure 8. (a) Feature points detected from SIFT and (b) feature points matched from 
FLANN algorithm. 

 

Figure 9. Comparison of displacement measurement from computer vision-based 
method and laser displacement sensor.  

To assess the accuracy of the computer vision-based displacement identification method, 
a video captured from Vehicle A (unloaded and fast speed mode) while passing over the 
healthy bridge serves as an example for the evaluation. Figure 9 presents a comparison 
between the displacements identified from a laser displacement sensor and those identified 
using the SIFT-FLANN-based method. The bottom panel of Figure 9 consists of two 
subfigures showing a zoomed-in view of the displacement at two small time windows. The 
correlation coefficient between the two time histories is 0.9969, indicating a strong 
relationship. Additionally, the Root-mean-square error between the two sets of data is 0.0586, 

(a) 

(b) 
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signifying a small deviation. The displacement responses obtained from the video align well 
with the measurements obtained by the laser displacement sensor. This outcome validates the 
accuracy of the vision-based displacement measurement method and confirms the 
correctness of the scale factor determination method employed. 

It is noted that the maximum displacement presented in Figure 9 is about 2 mm, which 
corresponds to 1/2000 of the bridge's main span. This deflection-span ratio is in line with that 
of a real bridge subjected to operational traffic load. 

The time domain displacement presented in Figure 9 is transformed into the frequency 
domain (as shown in Figure 10) using fast Fourier transform. Overall, the amplitude of the 
frequency spectrum shows a decreasing trend. It can be observed in Figure 10 that the 
amplitude of the quasi-static component is two orders of magnitude higher than that of the 
bridge's fundamental frequency. In particular, the amplitude of the quasi-static component at 
0 Hz is 0.657699, whereas at the bridge’s fundamental frequency of 5.5 Hz the amplitude is 
0.00548. This indicates that the bridge displacement response under a moving load is 
dominated by the quasi-static component. This observation confirms that the damage 
indicator DTIR derived from the bridge's quasi-static displacement is more reliable than those 
defined from the modal parameters from the displacement response. 

 

Figure 10. Frequency spectrum of bridge mid-span displacement under the moving load.  

Now that the bridge displacement of four girders corresponding to the drive-by test scenarios 
have been measured from the computer vision-based method, the damage feature 퐷푇퐼푅 defined 
in Equation (8) can be estimated by following the procedure detailed in Section 3.  

In order to assess the suitability of computer vision-based displacement identification 
methods for long-term SHM applications, it is essential to evaluate their video processing 
efficiency. In this study, a 10-minute video with a frame rate of 60 fps was employed to test 
the processing efficiency of the SIFT-FLANN-based method. The average processing frames 
per second (fps) for different sizes of square ROIs were analyzed and presented in Figure 11. 
The ROIs considered in the evaluation were 100 pixels × 100 pixels, 200 pixels × 200 pixels, 
300 pixels × 300 pixels, and 400 pixels × 400 pixels, respectively. The result shows that the 
video can be processed at 60 fps (near real time) with ROI of 100 pixels × 100 pixels and 
above 30 fps with ROI of 200 pixels × 200 pixels. It is noted that a frame rate of 30 fps and 
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a ROI of 200 pixels × 200 pixels is sufficient to capture the quasi-static displacement 
component of civil engineering structure subjected to normal operational condition. 
Therefore, the displacement tracking method employed in this study is suitable for long term 
bridge SHM. It is noted that the computations are performed on a desktop with an AMD 
Ryzen 7 5800U with Radeon Graphics and 16 GB RAM.  

 

Figure 11. The average processing frames per second (fps) for different sizes of 
square  ROIs. 

4.4. Damage detection results 

As shown in Figure 12, two vehicle models, namely vehicle A and vehicle B, were used to 
simulate the bridge with single and double traffic lane configurations. In particular, the 
moving vehicle tests conducted by vehicle A and vehicle B consisted of 862 trips and 114 
trips, respectively. The damage detection results for vehicle A and vehicle B are presented in 
Section 4.4.1 and Section 4.4.2, respectively. In the case of the double traffic lane 
configuration, vehicle model B will depart from the left approach span via Lane two and 
return via Lane one.  

 

Figure 12. Side view of (a) single and (b) double traffic lane configuration.  

4.4.1 Single traffic lane configuration 

As illustrated in Figure 12(a), the vehicle wheel load is directly applied to girder 1 and girder 
4, and then transferred to girder 2 and girder 3 via the transverse connection block between 
the girders. The DTIR indicator between any two adjacent girder pairs, along with their 95% 
confidence intervals, is presented in Figure 13. In the healthy state, the mean values of the 
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DTIR indicator corresponding to girder pair 1-2, girder pair 2-3, and girder pair 3-4 are 
0.9939, 1.0325, and 0.9376, respectively. According to the definition, a DTIR indicator close 
to 1 means that the vehicle load is evenly distributed among the four girders. A shift in the 
DTIR indicator was observed in all three adjacent girder pairs with the introduction of 
structural damage. For damage scenario 1, the mean values of the DTIR indicator 
corresponding to girder pair 1-2, girder pair 2-3, and girder pair 3-4 changed by 3.52%, 
2.31%, and 6.30%, respectively. For damage scenario 2, the mean values of the DTIR 
indicator corresponding to girder pair 1-2, girder pair 2-3, and girder pair 3-4 changed by 
10.05%, 5.45%, and 21.50%, respectively. In both damage scenarios, the maximum change 
in the DTIR indicator was observed in girder pair 3-4. In the test implementation, the removal 
of transverse connection C6 (damage scenario 1) and C3&C6 (damage scenario 2) introduces 
two levels of transverse stiffness reduction between girder 3 and girder 4, which agrees well 
with the identification results. The damage occurring between girder pair 3-4 affects the load 
force transmission path and thus introduces loading redistribution among the other 
girder  pairs. 

 

 

Figure 13. Damage identification result of single traffic lane configuration.  

In field applications, vehicle information such as vehicle speed and weight is often 
unknown and subject to variation. Therefore, it is necessary to evaluate the robustness of the 
proposed method to these factors. To this end, the identification results of damage scenario 
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2 corresponding to 9 different combinations of vehicle speed and vehicle weight were sorted 
out and presented in Figure 14. It is observed that the variation of vehicle weight and speed 
has limited effects on the proposed DTIR indicator, and the three structural conditions can 
be well distinguished for each combination of vehicle state. 

 

 

Figure 14. Violin plot of DTIR indicator corresponding to different vehicle load and 
vehicle speed.  

4.4.2 Double traffic lane configuration 

As illustrated in Figure 12(b), the wheel load of vehicle B is directly applied to either girders 
1 and 2 or girders 3 and 4, and then transferred to the other two girders via the transverse 
connection block between the girders. In contrast to the results of the single traffic lane 
configuration presented in Figure 13, the damage identification result of the double traffic 
lane configuration, shown in Figure 15, forms two clusters. This fact can be explained by the 
theoretical derivation of the DTIR indicator defined in Equation (5). It can be observed from 
Equation (5) that the transverse displacement influence ratio is related to the structural 
condition and the vehicle's transverse location, while it is independent of the weight and the 
longitudinal location of the vehicle. For the double traffic lane configuration, there will be 
two vehicle transverse locations (the central line of each traffic lane) by concentrating the 
vehicle wheel load to the center of gravity. Consequently, for a bridge bearing m traffic lanes, 
the DTIR indicator forms m clusters. 

As a vehicle crosses over the bridge, the girders directly under the wheels receive the 
most load, while the other girders farther away from the loaded lane receive less load. Taking 
the top subfigure of Figure 15 as an example, the cluster of DTIR indicators greater than 1 is 
formed from the data when the vehicle is moving on traffic lane one, while the cluster of 
DTIR indicators smaller than 1 is formed from the data when the vehicle is moving on traffic 



Smart Constr.  Article 

 19

lane two. It is evident that the upper cluster of DTIR indicators between girder 3 and girder 
4 significantly shifted upward with the introduction of structural damage. In particular, the 
mean value of the upper cluster of DTIR indicators corresponding to girder pair 3-4 changed 
by 30.23% (damage scenario 1) and 89.60% (damage scenario 2). The damage identification 
results also indicate that the structural damage is most likely to have occurred between girders 
3 and 4. 

 

 

Figure 15. Damage identification result of double traffic lane configuration.  

4.5. Discussion 

The results provided evidence that the proposed damage feature, extracted from the computer 
vision-based bridge displacement responses, consistently achieved successful detection and 
localization of damage, even in the presence of varying vehicle weights and speeds. 
Compared to existing displacement influence line-based damage detection methods, the 
proposed method is fully data-driven and does not rely on traffic information. The study 
results demonstrated that the damage feature, extracted from the computer vision-based 
bridge displacement responses, consistently yielded successful outcomes in both detecting 
and localizing structural damage. The proposed damage feature is sensitive to local structural 
damage while remaining robust against variations in vehicle weight and speed. In comparison 
to existing displacement influence line-based damage detection methods, the proposed 
method is fully data-driven and does not require any information regarding traffic conditions. 
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The proposed damage feature, DTIR, can be integrated with other more advanced 
displacement measurement methods to evaluate the bridge condition under operational 
conditions. Consequently, this study presents a cost-effective, easily deployable, and scalable 
approach for structural health monitoring of bridges. However, it is important to note that the 
findings presented in this paper are based on laboratory test results conducted on a scaled 
bridge. As a result, there are still certain gaps that need to be addressed in order to extend the 
proposed approach to practical applications. To further enhance the applicability of the 
method, the following discussions and suggestions are provided for filling these gaps: 
(1) In the experimental test, only one vehicle is on the bridge. According to Reference [30], 

about 300 out of 5000 vehicles per day on the cable-stayed bridge meet this requirement. 
Therefore, the proposed method is applicable from a long-term SHM perspective. 
However, in practical situations, the traffic pattern is much more complex. Hence, 
suitable signal pre-processing techniques should be adopted to sort out the data when only 
one vehicle is present on the bridge [30]. Alternatively, a traffic monitoring camera can 
be installed to identify the traffic flow. Despite the need for an additional camera to 
collect traffic information, the proposed method still outperforms the displacement 
influence line-based damage detection method. This is because reconstructing the bridge 
displacement influence line requires knowledge of the vehicle axle load. Consequently, 
additional weight-in-motion technology should be deployed to gather this information. 

(2) The structural damage considered in this study is the reduction of transverse connection 
stiffness, which is a common type of damage in multi-girder beam bridges. The 
applicability of the proposed method to other types of structural damage, such as girder 
bending stiffness reduction as well as different bridge types, should be further studied. 

(3) In this study, videos corresponding to nearly a thousand trips of moving vehicle tests were 
recorded and analyzed, which is sufficient to demonstrate the accuracy and efficiency of 
the introduced computer vision-based displacement identification method, as well as the 
feasibility of the proposed damage detection method. However, the videos are stored 
locally and processed offline. In long-term structural health monitoring applications, it is 
more practical to develop a vision sensor node to process the video stream in real-time. 

(4) In the experimental study, the bridge is tested with both single and double traffic lane 
configurations. To generalize the proposed method to bridges with more than two traffic 
lanes, a Gaussian mixture model (GMM) can be adopted to cluster the defined DTIR 
indicator. The number of clusters would be equal to the number of traffic lanes. Then, the 
fitted parameters of the GMM, such as the mean value and standard deviation of each 
cluster, can be employed as the damage index. To confirm this, GMM models with cluster 
numbers 1 and 2 were adopted to fit the DTIR indicator estimated from single and double 
traffic lanes, respectively. The fitting results are presented in Figures 16–17. It is observed 
that the DTIR indicator corresponding to single traffic lane and double traffic lanes can 
be well-fitted by the GMM models with cluster numbers 1 and 2. The DTIR indicator 
estimated from Girder pair 3-4 shows the most obvious shift. 

(5) In practical field applications, cameras are often far away from the structure, requiring 
long focal lengths to capture high-resolution images. However, this reduces the field of 
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view, potentially prevents simultaneously capturing the adjacent beams. One possible 
solution to measure multi-point displacement responses is to develop a full-field 
displacement measurement method by roving the camera along the bridge at different 
locations. The images from multiple cameras or a single camera at different locations can 
be used to obtain the full -field displacement measurement for modal identification and 
condition monitoring of the whole structure [15]. 
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Figure 16. Fitted GMM model of single traffic lane configuration.  
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Figure 17. Fitted GMM model of double traffic lanes configuration.  

5. Conclusions 

This paper presents a novel approach for bridge damage detection, which relies on the ratio 
of vehicle-induced displacement obtained from two adjacent girders. The proposed method 
employs computer vision-based displacement measurement techniques to accurately measure 
the displacements. The main conclusions are remarked as follows: 
(1) The damage indicator, DTIR, is theoretically defined following the bridge influence 

line/surface theory. Theoretical derivation proves that DTIR indicator is only related to 
the structural condition and the transverse position of a vehicle over the deck, while 
independent of the variation of vehicle weight and speed. 

(2) The DTIR-based bridge damage detection framework is systematically proposed. The 
DTIR indicator can be precisely estimated from computer vision-based displacement 
measurement and related practical signal processing methods, including quasi-static 
displacement component extraction, peak value detection. The accuracy and efficiency 
of the employed computer vision-based displacement tracking algorithm is 
carefully  evaluated.  

(3) Comprehensive experimental studies verified that the developed DTIR indicator can 
successfully identify the reduction of structural transverse stiffness between girders under 
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different vehicle speed and weight. In particular, the introduced two structural damage 
scenarios just caused 0.865% and 0.907% change to bridge fundamental frequency. The 
DTIR damage indicator corresponding to these two damage scenarios changed more than 
6% and 21%, respectively. This result suggests that the minor local damage that 
introduced relatively small reduction in the overall stiffness of the bridge is possible to 
be identified by using the proposed method. 
The limitation of extending the proposed method to practical applications is identified. 

Furthermore, future study directions are suggested to maximize the potential of the proposed 
method to long-term SHM application.  
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