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Abstract

Information checking, such as Computer-Aided Design (CAD) drawing compli-

ance checking, remains a considerable task that amounts to a significant workload

from domain specialists. While modern programmatic methods have simplified

this process, manual input specifications that are required in the process still

represent a time-consuming and error-prone step. The present research in this

thesis tackles this challenge by focusing on the development and refinement of

advanced deep learning algorithms, primarily in the Natural Language Processing

(NLP) sphere, as an innovative and time-saving solution. Although the study’s

context revolves around information drawing compliance, the principal aims of

this thesis have implications for the advancement of the underlying deep learning

methodologies that are applicable across a variety of fields.

One of the key objectives of this thesis is to improve the efficiency and robustness

of NLP techniques, allowing algorithms to automatically interpret and extract

crucial data from documents written in human languages. To achieve this, var-

ious machine learning techniques were studied, developed, and tested, such as

Graph Convolutional Networks (GCNs), Term Frequency-Inverse Document Fre-

quency (TF-IDF) measures, and pre-trained language models like Bidirectional

Encoder Representations from Transformers (BERT). The algorithms were not

only evaluated for their ability to process text but were also stress-tested under

conditions of varying complexities and scales to evaluate their broad applicability

and scalability.

The present research introduces a novel concept, termed Document-Relational
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GCNs. Unlike traditional GCNs, which only operate at word-document and word-

word levels, the proposed method detailed in this thesis incorporates document-

document relations as features, adding complexity and richness to the adjacency

matrix graph used for text classification. This model uses cumulative TF-IDF

scores to generate these document-document relations and has been rigorously

evaluated using five benchmark databases.

Another significant scientific contribution from this thesis is the introduction of

GraphNorm in Heterogeneous Linguistics Graph (HLG) models. The technique

employs dynamic normalization layers for each Graph Neural Network (GNN)

module in the HLG model. This novel approach optimizes the learning process

by retaining more reliable node information and mitigating the noise, thus mak-

ing the model more resilient to graph modifications.

The research also introduces innovative position encoding strategies within a

multi-granularity contextualized model, thereby advancing the process of Document-

Level Event Role Filler Extraction. Utilizing Global Vectors for word representa-

tion (GloVe) and BERT embeddings along with sinusoidal and relative position

encodings, the research achieves a richer, more contextualized representation of

words, which is crucial for tasks like event extraction.

Evaluation of all proposed methods used multiple datasets and metrics, including

accuracy and F1 scores. Findings indicate significant improvements in text clas-

sification tasks, model training efficiency, and resilience against noisy data and

graph modifications. This research has wide-ranging implications, including the

automation of labour-intensive tasks across diverse fields, which opens the door

for future breakthroughs in machine learning and Artificial Intelligence (AI).
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Chapter 1

Introduction

Information checking like engineering design drawings compliance checking is a

considerable task that amounts to a significant workload carried out by specialists.

To save time and to improve productivity, program-based information compliance

checking systems have been introduced. However, these checking systems still

require personnel to provide input specifications manually, which is both time-

consuming and error-prone [72]. To solve this issue, this thesis focuses on research

to develop and refine deep learning algorithms that can be utilized for compliance

checking tasks. The main aim of this thesis is to enhance the efficiency and

robustness of NLP techniques powered by these deep learning methods to suit a

specified task. A key objective is to advance the capability of these algorithms to

automatically interpret and extract vital information from complex documents

written in human language. While information compliance checking serves as

a contextual example, the primary goal here is not the application itself, but

the advancement of the underlying deep learning methods. The research in this

thesis will also include the formulation of novel testing methodologies to verify

the performance and robustness of the enhanced algorithms developed, thereby

ensuring their broad applicability and scalability across various complex tasks

and domains. Overall, this research will result in advancements in the field of

deep learning, with potentially wide-ranging implications for the automation and
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improvement of labour-intensive tasks in numerous fields. The study stands to

redefine understanding of what is achievable with deep learning, and forging a

path through which future breakthroughs in machine learning and AI can be

made.

1.1 Background

A well-designed compliance information must comply with a series of specific

criteria. Users, such as compliance information checkers, typically function by

inspecting specific design properties or data to ensure these meet road design

criteria. Krish [59] developed a generative design method for multiple criteria

compliance information design. However, consistency in the quality and criteria

to validate design drawings is very difficult to maintain from person-to-person

because of each designer’s own experiences, habits and level of professional ex-

perience. Thus, checking criteria of designed information, which is also called

compliance checking, is essential [93].

It is becoming increasingly difficult for related people to inspect road informa-

tion criteria manually. According to Belsky and colleagues [6], the analysis and

parsing of compliance text are both far more difficult and time consuming to

carry out after such information are completed. In addition, road information

criteria checking is even more complex than general information criteria checking

because road design requires its bespoke criteria in order to meet local condi-

tions and safety standards. Moreover, different countries and cities have different

criteria and national standards to abide by. Amin and Amador [3] developed

a road pavement criteria-based system in Canada, while Jamroz and colleagues

[48] introduced a tool for road infrastructures safety design criteria in Poland.

It has been reported that the critical analysis of information and their checking

is a waste of a lot of time, depending on the designer’s expertise and size of the

designed file for checking [29]. This explains, at least, partially, why there is great

challenge for a criteria checking person or body to complete all checks manually.
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Based on the above challenges, it is necessary to develop a computer program-

based tool, which can serve as an automated solution to check against criteria.

Such information checker should ensure that a specific design property or data

element meets road design criteria. According to Goguelin and coworkers [32], a

suitable tool for drawing design can help designers comply with their design cri-

teria in an effective and efficient way. Although the use of systems like AutoCAD

(Autodesk, San Rafael, CA, USA) has the advantage of APIs to access entities

and data in information files as an automated, user-programmable tool to check

the design criteria of road information more easily, it remains difficult to make the

computer program understand Road design criteria documents and files. Typi-

cally, road design criteria are written in human languages, such as English. Thus,

understanding human language becomes a key challenge to develop an automated

road information compliance checking system.

NLP could be a method to apply in order to solve this challenge. According to

Cambria and White [14], NLP provides a theoretical basis for computer systems

to understand human languages, and the development of NLP is described to

have arisen from three stages, from 1950 to 2100, which are the Syntactics, Se-

mantics and Pragmatics stages. Now it is in the stage semantics.

In the Semantics stage, there are 3 types of NLP which are Endogenous NLP,

Taxonomic NLP and Noetic NLP [14]. Endogenous NLP uses a machine learning

method to process language in documents which only rely on the inner knowledge

of the documents. It focuses on the meaning of an individual word or sentence.

Research by Daubler and colleagues [26] is an example of using endogenous NLP,

a method that is straightforward, effective and that can save time and personnel

[77]. For applications using road design compliance documents, only the knowl-

edge itself needs to be realized, and not external knowledge, thus Endogenous

NLP could be useful for carrying out criteria extraction in such documents.

Creating a document checking system for this task is not trivial. It requires

deep domain knowledge, expertise in NLP, and a well-defined data pipeline for
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training, testing, and deploying the model. Additionally, it’s also important to

continuously monitor and update the model as new standards or criteria, or

both, are introduced in the road design industry. Despite these challenges, the

payoff of an automated tool for compliance information checking is highly sig-

nificant, reducing manual labour, time and potential errors in the design process

from manual checking. My PhD research has led to significant advancements

in deep learning algorithms, specifically tailored for complex text classification

and information extraction tasks. These innovations offer profound implications

for domains requiring precise information extraction and classification, including

compliance checking. This thesis showcases the development of novel methodolo-

gies that substantially enhance the capabilities of NLP techniques. Although the

potential applications of this research span a wide array, the essence of this work

is to demonstrate how these deep learning advancements can be pivotal in au-

tomating and improving compliance checking processes across various industries.

The primary challenge addressed in the study will be the development of more

robust, efficient, and interpretable deep learning algorithms. Innovative tech-

niques will be explored to improve various aspects of deep learning models, such

as training efficiency, generalization capabilities, robustness to different data dis-

tributions, and interpretability of the models. My research will also delve into

novel architectures and learning techniques and push the boundaries of what is

currently achievable with deep learning.

My research is centred on enhancing deep learning algorithms to impact various

sectors significantly. It aims to refine these algorithms for broader applicabil-

ity, offering advanced solutions for intricate challenges faced across different text

tasks. This study will provide insight into any field where deep learning is used,

so as to lead to more efficient, robust, and interpretable models that can han-

dle complex tasks with increased accuracy and speed. To succeed, the research

requires a robust data pipeline for training, testing, and improving the deep learn-

ing models. This can involve designing new benchmarking methods to accurately
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measure the performance of the developed algorithms. Positioned at the cutting

edge of deep learning research, my study introduces innovative methodologies

to transform how deep learning algorithms are understood and utilized, offering

novel approaches to complex problem-solving in real-world contexts.

1.2 Study Framework

Understanding document content is crucial to this thesis. A computer-aided

method is important to recognise and understand related document, extract key

words and sentences, and transfer processed information to downstream purposes.

Zhang and El-Gohary [138] introduced an automated information transformation

method of an NLP for regulatory compliance checking in the construction do-

main. The flow of automated compliance information checking is shown in fig.

1.1. My study focuses on advancing deep learning methodologies in the context

Figure 1.1: Approach for Automated Rule Extraction [138]

of Text Classification and Information Extraction, two crucial tasks in the au-

tomation of document content understanding.

In the field of Text Classification, GCNs will be further researched, a contem-

porary approach that has garnered significant attention in the field of Artificial

Machine Intelligence (AMI) and NLP. The potential of GCNs to build more so-

phisticated accompanying graph structures than traditional neural networks for
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feature engineering is acknowledged in the field. In particular, this study seeks to

push the current boundaries by adding cumulative TF-IDF document-document

relations as features in the graph. The aim is to create complex and rich relation-

based adjacent matrix graphs as features to achieve superior accuracy in text

classification, thus optimizing the use of GCNs in this context. In parallel, this

study will also examine the capabilities of pre-trained language models such as

BERT, known for their ability to capture complex linguistic information in large

text corpora. However, there are limitations in handling complex semantic re-

lationships as well as noisy or incomplete data. Thus, GraphNorm will be in-

troduced and evaluated, which is an innovative method aimed at enhancing the

performance of HLG models. By employing dynamic normalization layers for

each GNN module in the HLG model, GraphNorm is designed to increase model

accuracy and minimize memory consumption during the training process.

In the area of Information Extraction, this study recognizes the significant po-

tential of Document-Level Event Role Filler Extraction. Specifically, innovative

position encoding strategies are explored within a multi-granularity contextual-

ized model. By integrating sinusoidal and relative position encodings at different

levels of granularity in the model’s architecture, this study will attempt to cap-

ture the contextual interdependencies and the internal hierarchical structure in

text more effectively. This approach is expected to provide a richer, more con-

textualized representation of words, essential for tasks like event extraction.

1.3 Thesis Structure

My research will explore and enhance state-of-the-art deep learning techniques

and their applications to Text Classification and Information Extraction in the

following chapters:

In Chapter 2, foundational groundwork is established for this study. This in-

cludes introducing key concepts and terminologies, such as Deep Learning and

NLP, which form the backbone of the research. This sets the stage for a deeper
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understanding of the later sections where the novel methods will be tested to

enhance Text Classification and Information Extraction.

In Chapter 3, the application of GCNs [55] is examined for text classification,

highlighting their ability to create complex and rich relation-based adjacent ma-

trix graphs as features for training, and propose an innovative method to optimize

this process. Also, a novel document-relational GCNs model that incorporates

cumulative TF-IDF document-document relations as features, is presented. By

doing this, the aim is to enhance the accuracy of text classification in an attempt

to redefine the standard methods of using GCNs in this context.

In Chapter 4, attention is turned to the use of pre-trained language models such

as BERT [27] for capturing complex linguistic information. Despite the power of

these models, these often struggle to handle complex semantic relationships and

noisy or incomplete data. In response to this, the integration of GraphNorm, a

new method designed to improve the performance of HLG models [69], is pro-

posed. By introducing dynamic normalization layers for each GNN module in

the HLG model, the goal is to increase model accuracy, enhance word and sen-

tence representation learning during training, and to handle complex semantic

relationships more effectively.

Chapter 5 focuses on the extraction of information from document-level events.

We propose a method of integrating novel position encoding strategies within a

multi-granularity contextualized model for improved Document-Level Event Role

Filler Extraction [30]. Our approach captures contextual interdependencies and

internal hierarchical structures in the text, providing a richer, more contextual-

ized representation of words, crucial for tasks such as event extraction.

In summary, the aim of this thesis is to explore, innovate and enhance current

deep learning techniques for Text Classification and Information Extraction. Our

research contributes to the broader goal of evolving the capabilities of automated

document content understanding systems, thereby opening new avenues in the

field of Natural Language Processing.

7





Chapter 2

Background

In this chapter, some NLP-based concepts and algorithms will be introduced.

These algorithms are essential basic components of the models developed and

described within this thesis.

2.1 NLP

NLP is a specialized area within AI and linguistics, dedicated to the process-

ing and utilization of human natural language. This field encompasses diverse

elements and procedures, including cognition, comprehension, and language gen-

eration [95]. The process of natural language cognition and understanding in-

volves converting input language into symbols and relationships, which are then

processed according to the intended purpose [83]. On the other hand, a natural

language generation system transforms computer data into human-like language.

Thus, NLP plays a crucial role in enabling computers to comprehend and generate

natural language, facilitating applications such as information retrieval, sentiment

classification and language translation [56]. In the scope of this research, NLP

serves as the foundational technology for automating the extraction and interpre-

tation of complex documents, in the context of information compliance checking.

This area of research has achieved state-of-the-art progress in NLP by focusing on
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development of deep learning algorithms to enhance its efficiency and robustness

for compliance checking.

2.2 NLP Information Checking

The advent of NLP has ushered in transformative changes in the realm of in-

formation checking, particularly in domains where accuracy and efficiency are

paramount. Recent advancements in deep learning have significantly expanded

the capabilities of NLP applications, making it possible to automate and enhance

the compliance checking of complex documents, such as legal contracts, regula-

tory filings, and engineering drawings, with unprecedented precision and speed

[63, 39].

The significance of NLP in automating information checking cannot be over-

stated. Traditional methods, which relied heavily on manual review by domain

experts, were not only time-consuming but also prone to errors due to human

fatigue and oversight [91]. The integration of NLP has fundamentally changed

this landscape. For instance, the potential of machine learning models is demon-

strated to automate the verification of legal documents against regulatory stan-

dards, showcasing a significant reduction in processing time and error rate com-

pared to traditional methods [143]. Similarly, NLP techniques are applied to the

compliance checking of engineering designs, illustrating how deep learning models

can effectively interpret and validate CAD drawings against established criteria

[103].

Despite these advancements, the application of NLP in information checking

faces several challenges. One of the primary limitations is the handling of context

and semantic complexity in human language [1]. While models like [7] and GPT

[127] have made substantial strides in understanding context, their application in

specialized domains such as legal or technical document analysis still encounters

difficulties due to the unique vocabulary and stylistic nuances of such texts. For

example, there are challenges of extracting and interpreting technical standards
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from engineering documents, where the model’s performance was hindered by the

specialized language and the intricate relationships between different document

sections [76].

Moreover, the issue of data scarcity and the need for domain-specific training

sets is a notable obstacle. Deep learning models require vast amounts of annotated

data to learn effectively, yet, in many specialized fields, such data is scarce or

proprietary, limiting the development and training of models. Research on using

NLP for financial compliance checking [99] elucidated this challenge, pointing out

the need for more robust methods of data augmentation and transfer learning to

mitigate the lack of domain-specific datasets.

In light of these challenges, this thesis seeks to explore innovative approaches

to enhance the effectiveness and robustness of NLP techniques for information

checking tasks. Specifically, it aims to develop methodologies that improve the

context-awareness and domain adaptability of NLP models. By focusing on the

development of deep learning algorithms that can better handle the semantic

complexity of specialized texts and leveraging novel techniques for data augmen-

tation, this research endeavours to bridge the gap between the current capabilities

of NLP applications and the demanding requirements of information checking in

specialized domains.

This pursuit is not only crucial for advancing the state of NLP research but

also holds significant practical implications. By enhancing the accuracy and effi-

ciency of automated information checking systems, the proposed research stands

to offer substantial benefits across various industries, from reducing operational

costs and time frames to improving compliance and reducing the risk of errors.

2.3 TF-IDF

TF-IDF is a statistical method employed to evaluate the importance of a word

within a document set or corpus [53]. The significance of a word is directly pro-

portional to its frequency within a specific document but inversely proportional to
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its occurrence across the entire corpus. Search engines commonly utilize various

forms of TF-IDF weighting as a measure to assess the relevance of a document

to a user’s query.

The core concept of TF-IDF is illustrated in the following scenario: if a word

or phrase appears frequently in a single article (high Term Frequency) but infre-

quently in others, it is considered to possess substantial category discrimination,

making it suitable for classification purposes.

Breaking down the components of TF-IDF:

• Term Frequency (TF): This represents the frequency of a word in a docu-

ment divided by the total number of words in that document. The rationale

is that the more often a term appears in a document, the more significant

it is.

• Inverse Document Frequency (IDF): This gauges the importance of a word

by considering how many documents contain that word. If a word is preva-

lent across all documents, it is less distinctive and, therefore, less important.

IDF is calculated as the logarithm of the total number of documents divided

by the number of documents containing the term.

Thus, the equation of TF-IDF is represented by equation (2.1)

TFi,j =
Ni,j∑

k∈j
Nk,j

IDFi = log
|D|

|j : ti ∈ dj|+ 1

TFIDFi,j = TFi,j × IDFi

(2.1)

where TFi,j represents the frequency of the term (word) i in the document j,

and IDFi corresponds to the logarithmic value of the total number of documents

divided by the number of documents containing the word i.

While TF-IDF offers simplicity, speed in computation, and ease of understanding,

it has drawbacks. It may fall short in comprehensively measuring the importance
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of a word in an article, especially when there is a lack of important words [101].

Additionally, TF-IDF struggles with the issue of synonyms. To address the con-

textual structure of words, the use of vectors may be necessary.

2.4 Word Embeddings

In NLP, words, which form sentences, are the most fine-grained component of

natural languages. Of course, sentences form paragraphs, chapters, and docu-

ments. Therefore, to deal with NLP problems, it is important to focus on words

first. Developing a way to make computers read words is a significant challenge.

Reading a word like an image is a complex task as a word can have a plethora of

meanings and information. For this task, vectorisation is a key method to solve

meanings of different words, while word embedding is a transformation method

that converts incomputable and unstructured words into computable and struc-

tured vectors.

Word embeddings are vectorized descriptions of words designed to encapsulate

their semantic significance [86]. These embeddings are generated using algorithms

like Word2Vec [86], GloVe [96], FastText [10] and BERT [27]. Unlike traditional

one-hot encoding, which represents each word as a unique high-dimensional vec-

tor, word embeddings map words into a lower-dimensional, continuous vector

space. Words that appear in similar contexts have vectors that are close to

each other in this space. Word embeddings find extensive application in diverse

NLP tasks, including but not limited to named entity extraction [61], sentiment

classification [61], language translation [112], recommendation systems [23] and

question-answering systems [100]. They have become a foundational component

in the field of NLP.
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2.4.1 Bag-of-words Model

Bag-of-words model, a straightforward yet widely utilized information represen-

tation in NLP and information extraction, simplifies the expression of sentences

or entire documents. In this model, the representation involves a collection of

words, disregarding both grammar and the sequential arrangement of the words

[35]. Each word’s occurrence within the document is autonomous and does not

rely on the presence of other words. TF-IDF, as mentioned above, is a popular

and sophisticated example of the bag-of-words models. Other methods, such as

one-hot encoding, are also classical examples of Bag-of-words model.

Despite its popularity, the Bag-of-words model has clear drawbacks. Specifi-

cally, as the document’s vocabulary expands, the number of words utilized in

each sentence remains limited, typically a dozen or so at most. This results in

sparse matrices for each sentence, potentially straining memory and computing

resources. Furthermore, since the model treats words individually, it overlooks

the sequence and relationships between words in a sentence. Consequently, there

are instances where the representation of sentence meaning may lack accuracy

[95].

Another example of Bag-of-words model is n-gram [15, 87]. An n-gram refers to a

consecutive sequence of n words extracted from voice or text in an NLP dataset.

The term ’n-gram’ is derived from the word ’gram’, which is often used in linguis-

tics to denote a unit or particle. In the context of text processing, these ’items’

are typically words, but they can also be characters or other sub-words units.

Also, N-grams represent sequences of words by grouping contiguous sets of n

words together. The idea behind n-grams is to capture local linguistic structures

or patterns. The value of n determines how many words are grouped together in

each sequence. Though words sequence is added to sentences, the n-gram lacks

long-term dependence and can only model a limited length of words. As the

sentence length increases, the parameter space grows exponentially. The n-gram

model data is sparse and it has poor generalization ability.

14



2.4.2 Pre-trained Word Vectors

A language model produces word vectors through the training of the Neural

Network Language Model (NNLM), with the word vectors serving as an unin-

tended outcome of the model. The fundamental idea behind the NNLM involves

predicting words occurring in a given context, essentially learning co-occurrence

statistics through this contextual prediction. [51]

Pre-trained word vectors are essentially word embeddings that have been previ-

ously trained on a large dataset, often encompassing a broad range of vocabular-

ies and context. These vectors serve as a form of “knowledge base” that can be

plugged into various NLP models to enhance their performance. Because they

are trained on extensive data, NNLMs encapsulate rich semantic and syntactic

information about words, capturing various relationships such as similarity, op-

position, and many more nuanced aspects of meaning.

The primary advantage of using pre-trained word vectors is that they can sig-

nificantly reduce the amount of time and computational resources required for

developing NLP models. Training word embeddings from scratch can be com-

putationally expensive, intensive and time-consuming. Utilizing pre-trained em-

beddings can overcome these challenges so as to move directly to subsequent

applications such as sentiment classification and named entity extraction.

The generation of these pre-trained vectors often involves training a neural network-

based language model on a large corpus. Algorithms like Word2Vec, GloVe,

FastText, and more recently, transformer-based methods like BERT and Gen-

erative Pre-training Transformer (GPT), are commonly used for this purpose.

During this training, the model learns to predict a word based on its context (or

vice versa), effectively learning the co-occurrence statistics between words. Once

trained, the weight matrices in these models serve as the word vectors.

These pre-trained word vectors can often be fine-tuned further on a specific task

or dataset to make them more suited to the problem being solved, thereby achiev-

ing even greater performance outcomes. Overall, pre-trained word vectors have
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been a significant catalyst in the rapid development and deployment of efficient

and effective NLP applications.

2.4.2.1 CBOW Model

CBOW model is a neural network approach for generating word embeddings,

commonly used in the Word2Vec algorithm. With CBOW, the objective is to

forecast a target word by considering the surrounding context words. This process

entails encoding these words, calculating the average of the vectors representing

the context words, and subsequently utilizing this average as input for a neural

network. The network then tries to predict the target word. The model is trained

iteratively on a large corpus, adjusting its internal weights based on prediction

errors to improve the quality of the word embeddings. CBOW is computationally

efficient and is widely used in various NLP tasks, although its averaging approach

can sometimes lose nuanced word relationships [89].

2.4.2.2 Skip-gram Model

Skip-gram model [90] utilizes similar method as CBOW which uses context to

infer a word. However, rather than predicting the current word from its context,

Skip-gram endeavours to classify the current word to the fullest extent by lever-

aging another word in the same sentence. Specifically, Skip-gram employs each

current word as input for a log-linear classifier, incorporating successive projec-

tion layers to predict a set number of words occurring both before and after the

current word. It has been observed that enhancing the range enhances the quality

of the resulting word embeddings, albeit at the cost of increased computational

complexity. Given that words farther away from the current word typically ex-

hibit lower correlation, Skip-gram mitigates this by assigning less weight to words

at a greater distance, achieved through reduced sampling from these distant words

in the training examples. Figure 2.1.
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Figure 2.1: CBOW and Skip-gram Models [89]

2.4.2.3 Word2vec

In the development of a sophisticated word embedding technique, Word2vec [86]

utilizes a series of interconnected models. These models are two-layer and shallow

neural networks specifically crafted to reconstruct the linguistic context of words.

The process involves training on a substantial text corpus and subsequently con-

structing a vector space, typically comprising hundreds of dimensions, where each

distinct word in the corpus is associated with a corresponding vector in this space.

Word2vec has the flexibility to utilize either of two model architectures (CBOW

and Skip-gram) for generating distributed representations of all words within a

trained corpus. In both architectures, the Word2vec utilizes context sliding dual

windows of words and considers both given words while traversing the entire

corpus. The order of context words does not affect predictions. In the CBOW

model, it anticipates the current word based on a context window of surrounding

words, whereas the skip-gram architecture, as previously discussed, employs the

current word to forecast surrounding windows of context words. Skip-gram mod-
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els assign greater significance to nearby context words compared to those farther

away. CBOW demonstrates efficiency in the training process, while skip-gram

proves more effective for less common words.

Word2vec provides a simple and relatively low dimension solution for tasks in-

volving the presentation of millions of words. As presented in Figure 2.2, similar

words generate similar vectors in the dimensional space. Given a large enough

dataset, Word2Vec is trained from a large dataset and can then go on to make

robust estimates about the meaning to a word through a vector based on their

context occurrences. These estimates yield words are related to other words from

vector expression in the corpus. For instance, the word vectors for ’boy’ and ’girl’

exhibit a high degree of similarity. Through vectorization of word embeddings,

one can identify close approximations of word similarities. Illustrated in Figure

2.2, the high-dimensional embedding vector of ’boy,’ the embedding vector of

’man,’ and the embedding vector of ’woman’ all result in vectors that closely

align with the embedding vector of ’girl.’ Thus, it is common to express a word

in a corpus using a unique vector. And simple increase in dimensions of vectors

can generate rich features for every word in a corpus.

2.4.2.4 GloVe

GloVe is an unsupervised machine learning algorithm for generating word embed-

dings [96]. It has gained prominence for its ability to capture intricate relation-

ships between words purely based on their co-occurrence statistics. Unlike other

well-known word embedding algorithms such as Word2Vec, GloVe operates on

an aggregated global word-word co-occurrence matrix, exploiting both the global

statistical and local semantic information of a text corpus. The core idea is to

make sense of how frequently each pair of words appears together, thereby en-

capsulating a broad array of semantic and syntactic relationships.

The initial stage in GloVe involves building the matrix that represents the co-

occurrence of words. For every word in the corpus vocabulary, the algorithm
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Figure 2.2: Words Vectors in a Dimensional Space

tracks how frequently it co-occurs with every other word within a defined win-

dow size. This creates a matrix where the rows and columns represent target

words and context words respectively. The value of each matrix cell represents

how often these two words (target word and context word) are close to each other

in the corpus. This co-occurrence matrix serves as the basis for creating embed-

dings.

Once the co-occurrence matrix is built, GloVe employs matrix factorization tech-

niques to derive the lower-dimensional word vectors. The objective of the algo-

rithm is to discover optimal word vectors that effectively represent co-occurrence

probabilities. It achieves this by minimizing an objective function that measures

the disparity between logarithm of co-occurrence counts and dot product of word

vectors. A distinct advantage here is computational efficiency. Matrix factoriza-

tion methods are well-established and can be optimized for performance, allowing

GloVe to scale well with the size of the dataset.

GloVe’s unique point is its ability to amalgamate the benefits of both global sta-
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tistical methods and local context window methods. The global statistical aspect

allows it to capture relationships over the entire corpus, making the embeddings

more robust. On the other hand, the local window feature allows it to capture

various semantic and syntactic nuances, like plurals, synonyms, or antonyms, thus

creating a richer embedding space.

2.4.3 Pre-trained Language Model - BERT

In previous section, models that featured pre-trained word vectors were intro-

duced to express words which can simply do downstream NLP tasks. However, a

word’s pre-trained vector is a static vector which has disadvantages that make it

difficult to optimize algorithms for a specific task, and this approach is typically

difficult to use to solve polysemous word problems. Thus, a dynamic language

model is needed to apply to NLP tasks. Generally, dynamic models can learn

not only previous knowledge such as pre-trained corpus but also now knowledge

from higher-level information from downstream tasks. BERT is an example of

such a dynamic model, and will be introduced in this section. BERT [27] stands

as a pre-trained language representation model that distinguishes itself by mov-

ing away from conventional straightforward NLP models or integration of two

NLP models for pre-training. Instead, it asserts itself as a novel masked language

model capable of generating profound bidirectional language representations.

2.4.3.1 Transformer

The Transformer [119] is a neural network architecture commonly employed for

tasks in natural language processing. Diverging from its forerunners, namely

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN),

it enables enhanced parallelization, resulting in expedited training times. The

Transformer consists of an Encoder-Decoder structure, each made of multiple

identical layers. A notable attribute is its ’attention mechanism’, which make

the model pay attention to distinct segmentations of the input words for output
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generation. This architecture excels at handling long-distance dependencies and is

highly scalable, forming the foundation for models like GPT and BERT. BERT

comprises a series of Bidirectional Transformer components. The Transformer

model utilizes the attention mechanism to accelerate the training process. It is a

deep learning model built entirely on the self-attention mechanism, designed for

efficient parallel computing. The inherent complexity of the model contributes

to its superior accuracy and performance compared to the previously prevalent

RNN neural network. The Transformer structure is as Figure 2.3.

The internal details of Transformer are concealed through a black box func-

tion, revealing only its inputs and outputs. Moreover, the Transformer archi-

tecture can be stacked to create a more extensive neural network. BERT can

likewise be conceptualized as the stacking of Transformer encoders.

2.4.3.2 BERT

Figure 2.4 introduces different pre-trained BERT models to apply to different

downstream tasks of NLP. The input for BERT consists of representations cor-

responding to each token. In the Figure 2.3, there are token and token represen-

tation blocks. with the purpose of addressing specific downstream classification

tasks, a designated classification token (CLS) is inserted at the start of each input

text. The output of the last Transformer layer linked to this classification token

is employed to consolidate the representation information for the entire text.

Given that BERT is a pre-trained model adaptable to various NLP tasks, the

input text should accommodate either a single sentence (for tasks like text senti-

ment classification and sequence labeling) or more than two sentences (for tasks

such as text summarization, natural language inference, and question answering).

The model possesses the capability to discern the sentence boundaries, achieved

by inserting segmentation tokens ([SEP]) after each sentence in the sequence

tokens. Additionally, a learnable segment token is added to each token represen-

tation to indicate whether it belongs to the first sentence or the second sentence.
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The output of a BERT model is proportional to the number of input tokens. The

classification token (CLS), denoted as C, mirrors the output of the final Trans-

former layer and incorporates information from other tokens within the same

layer. For certain tasks like question answering and sequence labeling, the input

is forwarded to an extra output layer for prediction. In sentence-level tasks such

as natural language inference and sentiment classification, the classification to-

ken C is fed into an additional output layer, clarifying the insertion of a specific

classification token before each token sequence.

2.4.3.3 Strengths and Innovations

The primary strength of BERT lies in its pre-training on a large corpus of text,

which enables the model to develop a rich understanding of language syntax

and semantics before being fine-tuned for specific tasks. This pre-training as-

pect has allowed for significant improvements in NLP applications with limited

domain-specific training data, by transferring the general language understanding

developed during pre-training to specific tasks [27, 76].

Moreover, the adaptability of BERT to a wide range of domains and languages fur-

ther underscores its versatility. Its architecture facilitates fine-tuning for specific

tasks without substantial modifications, making it a powerful tool for domain-

specific applications, including legal document analysis.

2.4.3.4 Limitations and Challenges

Despite their strengths, pre-trained models like BERT also present challenges.

One significant limitation is their requirement for substantial computational re-

sources for training and fine-tuning, which can be a barrier for researchers and

practitioners without access to high-performance computing facilities. Addition-

ally, while BERT excels at understanding context within the text, it sometimes

struggles with highly specialized or technical language outside of its training

corpus, limiting its effectiveness in certain domain-specific applications without
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further adaptation or domain-specific pre-training [7, 64].

2.4.3.5 Application in Information Checking

The capabilities of BERT and similar models hold significant potential for enhanc-

ing information checking processes. By understanding context and semantics at

a deep level, these models can automate the extraction, classification, and veri-

fication of information from complex documents with a high degree of accuracy.

For instance, in the domain of legal document verification, BERT’s ability to dis-

cern subtle differences in language can be leveraged to identify non-compliance

with regulatory standards or to verify the accuracy of information presented in

contracts [16].

2.5 GCNs

The abbreviation GCNs refers to Graph Convolutional Networks, a category of

neural networks explicitly crafted to process graphs as input data. Unlike con-

ventional neural networks like CNN [54], which are well-suited for grid-like data

format like pictures, and RNN, designed for sequential data like time series or

text, GCNs are specifically tailored for data that can be represented in the form

of graphs.

Graphs collectively represent a very flexible and expressive data structure that

can model a wide variety of real-world phenomena, including social networks,

molecular structures, transportation systems, and much more. Every node in

the diagram symbolizes an entity, and each connection signifies a relationship be-

tween these entities. Nodes and connections may possess specific attributes and

features.

GCNs research is primarily focused on data with Euclidean domains. A distinc-

tive characteristic of Euclidean domain data is their regular spatial structures,

such as the regular squares in images or the one-dimensional sequences in audio
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data. This regularity allows features to be represented by one-dimensional or

two-dimensional matrices, making GCNs more efficient for processing.

When aiming to represent a node, a convenient and effective approach is to con-

sider its surrounding nodes, including neighbors and their neighbors. In the

context of graph node representation, the fundamental concept is that each node

continuously adjusts its state influenced by its neighbors and distant points un-

til a final equilibrium is achieved. The strength of influence from neighbors is

directly proportional to the closeness of their relationship. There are multiple

forms of GCNs, the form used in this thesis will be introduced.

Hl+1 = r(ÃHlWl)

Ã = D−1/2AD−1/2

Dii =
∑

jAij

r(x) = max(0, x)

(2.2)

Where H is an input layer. A is an adjacent matrix. Wl is the l-th layer weight

matrix. r(.) is an activation function which is ReLU. This concept is grounded

in the understanding that a node’s characteristics are interconnected with those

of all its neighbouring nodes. The multiplication of the adjacency matrix A by

the feature matrix H is akin to aggregating the features of a node’s neighbouring

nodes. Such multi-layer hidden layer superposition can utilize the information

of multi-layer neighbors. Self-degree matrix D is introduced to solve the self-

propagation problem.

2.6 Normalization

Normalization methods in deep learning aim to make the training of neural net-

works more stable and efficient by ensuring that the input features or activations

have consistent statistical properties. The normalization offers a host of advan-

tages that collectively contribute to more effective and efficient model training.
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These methods accelerate the convergence rate, enable higher learning rates, mit-

igate issues such as vanishing and exploding gradients, and reduce sensitivity to

weight initialization [47]. Additionally, they provide a mild form of regularization

that improves generalization to unseen data, simplify hyperparameter tuning, and

make it easier to train complex, deep architectures. Overall, normalization serves

to stabilize, speed up, and enhance the performance of neural network training

[4].

2.6.1 Batch Normalization

Batch Normalization [47] is designed to tackle the issue of internal covariate shift,

wherein the distribution of inputs for each layer undergoes changes throughout the

training process. This makes the training process slow and unstable. BatchNorm

normalizes the activations of each layer (or alternatively, the inputs to each layer)

by making them zero-mean and unit-variance. BatchNorm is widely used in CNN

and also applicable in fully connected layers. However, it’s less effective in RNN.

A batch bof size m:

µb =
1

m

m∑
i=1

xi

σ2
b =

1

m

m∑
i=1

(xi − µb)
2

x̂i =
xi − µb√
σ2
b + ε

yi = γx̂i + β

(2.3)

where µb and σ2
b are mean and variance of the batch. γ and β are learnable

parameters, and ε is a small constant to prevent division by zero. x̂i is the

normalized result. yi is the final normalization result after dynamic scale and

shift.
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2.6.2 Layer Normalization

Layer Normalization is designed to be effective regardless of the mini-batch size.

It normalizes the sum of the activations in a single layer for each individual

example. Layer Normalization is particularly useful for sequence models like

RNN and Long Short-Term Memory (LSTM), where batch sizes can be dynamic.

For each feature vector x across all dimensions:

µ = mean(x)

σ2 = variance(x)

x̂ =
x− µ√
σ2 + ε

yi = γx̂+ β

(2.4)

2.6.3 Instance Normalization

Instance Normalization is mostly used in style transfer and generative models.

It normalizes each individual instance in each feature channel independently.

Instance Normalization is mainly used in tasks that involve image generation,

such as style transfer [78] and Generative Adversarial Networks [24]. For each

instance in each feature channel:

µ = mean(x)

σ2 = variance(x)

x̂ =
x− µ√
σ2 + ε

(2.5)

2.7 Event Role Filler Extraction

Event Role Filler Extraction is a specific task within NLP that focuses on rec-

ognizing and categorizing entities or phrases in text that play particular roles

in events [103]. This involves recognizing the event itself and understanding the

roles of various components (or ’fillers’) in the context of that event. This task
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is essential for many NLP applications, including but not limited to:

• Information Extraction: Populating databases with structured information

from unstructured text.

• Text Summarization: Understanding the key events in a document to pro-

duce a condensed version.

• Question Answering: Answering queries about who did what, when, and

where.

• Knowledge Graph Population: Adding factual information to knowledge

graphs based on text.

Event Role Filler Extraction usually involves multiple sub-tasks like Named En-

tity Recognition (NER) and Relationship Extraction. Advanced machine learning

models like CRF, RNN, and Transformers may be employed for this task.

2.7.1 Sequence Tagging

Sequence tagging is an NLP task in which each token, such as a word or sub-

word, in a sequence is tagged with a label. Common examples of sequence tagging

include Part-of-Speech (POS) tagging, NER and Event Role Filler Extraction. In

Event Role Filler Extraction, the goal is to label each token in the sequence based

on its role in the event described by the sentence or paragraph.

2.7.2 BiLSTM-CRF Model

A BiLSTM-CRF model combines BiLSTM networks with a CRF for sequence

tagging tasks.

BiLSTM networks are an extension of traditional RNN that can capture long-

range dependencies in the text and take into account both past and future context.

This is achieved by having two LSTM layers run in parallel: One processes the

sequence from left to right, while the other processes it from right to left. The
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outputs of both LSTMs are then typically concatenated, capturing information

from both directions for each token.

CRF is a probabilistic graphical model that is often used for labeling or parsing

of sequential data. In the context of sequence tagging, a CRF layer can take

the sequence of word embeddings, which are often enriched by BiLSTM, as input

and calculate the most probable labels for each token in the sequence, consider-

ing not just the individual classification scores but also the transitions between

consecutive labels.

2.8 Challenges and Gaps in Information Check-

ing

The evolution of NLP and deep learning technologies has significantly impacted

the field of information checking, yet there remain substantial challenges and gaps

that current methodologies struggle to overcome. This thesis proposes the devel-

opment of advanced techniques to address these issues, focusing on the following

key areas:

Current deep learning models, while powerful, often suffer from a lack of in-

terpretability, efficiency issues, and robustness in handling diverse and complex

datasets. The complexity of construction drawing reviews presents a substan-

tial challenge that requires more sophisticated models for accurate compliance

checking [103]. This thesis aims to address these limitations by enhancing the

robustness and efficiency of deep learning algorithms, making them more suitable

for practical applications in information checking.

The automation of document content understanding necessitates effective text

classification and information extraction techniques. However, the semantic com-

plexity of documents and the scarcity of domain-specific training data limit the

effectiveness of current models. By advancing deep learning methodologies, this

research seeks to improve the accuracy and applicability of these models in real-
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world information checking tasks.

The extraction of event roles at the document level is crucial for understanding

complex document structures and contents [121]. Existing methods, however,

often fail to capture the full context of events, leading to inaccuracies in in-

formation extraction [99]. This research recognizes the significant potential of

improving document-level event role filler extraction techniques to enhance the

precision and depth of information analysis.

2.8.1 Justification for Research Focus

The identified challenges and gaps in the literature underscore the necessity of

this thesis’s focus. The limitations of current deep learning and NLP models in

terms of efficiency, robustness, interpretability, and domain adaptability directly

impact their effectiveness in information checking tasks. By addressing these

issues, this research aims to significantly advance the field of NLP and deep

learning, contributing to the development of more sophisticated and practical

tools for automated information checking.
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Figure 2.3: Transformer Structure [119]

30



Figure 2.4: Pre-training and Fine-tuning Procedures for BERT [27]
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Chapter 3

Document-Relational Graph

Convolutional Networks

GCNs have received a lot of attention in the field of AMI and NLP research

since these can build more sophisticated accompanying graph structures than

traditional neural networks that perform feature engineering. In this approach, a

graph is used as a feature in a neural network because it is easy to find relations

among nodes. In text classification applications, GCNs can create complex and

rich relation-based adjacent matrix graphs as features to be trained. The existing

methods, on the other hand, only generate adjacent matrix graphs in GCNs at the

word-document and word-word levels as features which lack the exploitation of

document-document relationships. In this chapter, a document-relational GCNs

method is proposed to achieve an outperformance in accuracy in text classifica-

tion by adding cumulative TF-IDF document-document relations as features. Our

approach aims to enrich the relational features between documents and improve

text classification performance. Additionally, a hyperparameter tuning experi-

ment is conducted to find the optimal configuration for the GCNs model. We

compare the performance of the method against existing text GCNs models and

synonym-augmented data sets across five benchmark text classification datasets.

Experimental results in this chapter show that the proposed method achieves
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superior classification accuracy in four out of five datasets. Our findings suggest

that the incorporation of document-document relationships serves as an effective

strategy for improving text classification models.

3.1 Introduction

Text classification represents one of the most important tasks in deep learning

problems which can automatically categorize or label text documents into prede-

fined classes or topics. This task is crucial in various NLP applications such as

sentiment classification [52], semantic segmentation [146], rule text based recom-

mendation [128] and news classification [66]. Many researchers have attempted to

solve text classification problems in different text ranges, including at document

[133] and sentence levels [18].

To achieve better classification performance, significant efforts have been made

to accelerate the process of model development from machine learning methods

[20], [109] to deep learning methods [54], [146], [73]. And the development of

deep learning computing efficiency [130], [37] techniques have been assisting in

reducing the running time of deep learning methods. Compared to other methods

for text classification, deep learning methods have achieved better effective and

efficient performance owing to the rapid development of computer hardware and

deep learning research.

Topic classification is an important text classification application that uses

machine learning [65, 97, 124], and deep learning [5, 49, 136] methods. For ex-

ample, in road construction documents, a text classification program needs to be

developed to categorize the regulatory compliance language. Document inspec-

tion for road construction regulatory compliance begins with text classification,

as previously described [105, 138]. As different forms of code compliance docu-

ments have varied roles in terms of topics, topic classification is an appropriate

solution for code compliance text classification.

News classification is one of the most popular and widely used applications in
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the field of topic classifications. Every minute of the day, there are countless news

releases that individuals cannot keep up with them. However, it is possible to

classify news in a manner that allows humans to comprehend it more quickly and

correctly. On Facebook and Twitter, for example, a plethora of news is constantly

disseminated. Ostensibly, news should be classified into their own categories [106].

As a result, citizens and social media companies should contribute to structuring

news data. To comprehend data using the Internet structural approach, Trieu and

colleagues [115] developed a word vector technique for news classification based

on Twitter data. Furthermore, false news accounts for a significant proportion

of online news releases as well. Recently, fake news classification has improved,

which can help consumers detect false news [8, 11, 31]. In addition to authentic

news reports, news classification can assist healthcare companies in extracting

relevant data from social media news [82]. Therefore, news classification is worth

investigating to improve its performance effectively and efficiently.

In recent years, graph networks have received considerable interest in deep

learning research [129], and the use of graph networks for text classification has

produced excellent performance results [9, 126, 74]. Because many applications

build huge amounts of data in a structured fashion, graphs have the benefit

of storing rich relations between nodes [144]. This type of structural data can

then be used as features in a deep learning model to obtain robust results for

a realistic relation. The development of deep learning networks has assisted

the development of GCNs, such as CNN [60, 13]. To obtain better citation

classification performance in an effective and efficient manner, Kipf and Welling

[55] developed a GCNs model that can build relations of objects throughout

the entire dataset. The GCNs model was then used to classify documents by

Yao and colleagues [134], who achieved improved performance in five distinct

benchmark datasets, including a news dataset. However, in their GCNs model,

they only generated the feature graph using document-word relations. Tang and

colleagues [114] constructed a text classification integration model based on GCNs

35



and achieved competitive results. A document-document link was added into the

feature graph to seek an improved result for text classification.

Until recently, there have been only a few techniques that could be used to

enhance graph features. Meta-path is one such technique, as it is a type of text

classification characteristic that can be used to create document relations. Wang

and colleagues [122] utilized a meta-path approach to build linkages between doc-

uments, and a machine learning classifier produced superior classification results

in two topic-based datasets. The meta-path approach was used by Ding and col-

leagues [28] and was applied to enrich the knowledge graph for the entire dataset.

Moreover, a knowledge graph establishes relationships between documents in a

dataset through entities and their interactions represented within the graph [132].

These entities correspond to concepts, objects, or events within the documents,

and their relationships are the links that connect them, providing a structured

understanding of how documents are related. This process enables more effi-

cient information retrieval, recommendation systems, and data integration, as

the graph structure facilitates the discovery of hidden connections and insights

among the dataset’s documents. In summary, it can be concluded that the link

relation between the generated documents in the dataset has better performance

on topic sensitive documents. Therefore, text classification effect can be improved

from the perspective of feature engineering to enhance the knowledge network in

the entire dataset. In conclusion, the link relations between the documents pro-

duced in the dataset performs better on the topic sensitive documents to enhance

the text classification.

An effective way to enhance the performance of text classification is to build

further on feature engineering. Input data forms the basis of feature engineering

to achieve good performance, and almost all models require data to drive [79, 80].

There are two feature engineering methods for searching relations inside a dataset,

such as graph networks [129, 9, 126, 74] and increasing the size of one dataset,

such as data augmentation [57, 22]. Zhang and colleagues [139] found an effective
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way to perform data augmentation which simply replaced words or phrases in the

dataset by their synonymous ones.

We propose to add document-document link weights to the data graph to

improve text classification performance, inspired by the notion of adding visual

information to features through meta-paths in terms of feature engineering. Also,

the method will be compared with text graph networks and synonym data aug-

mentation. The contributions of this study are as follows:

• We introduce a novel approach to text classification by adding document-

document link weights to the data graph to improve its performance. This

is achieved through cumulative TF-IDF values for document-document re-

lations.

• The study explores the tuning of appropriate hyperparameters in the document-

relational GCNs model to achieve better text classification results.

The remaining parts of this chapter are organised as follows. Previous GCNs

models are presented in Section 2. The proposed cumulative TF-IDF document-

relational GCNs model is established in Section 3, while Section 4 provides details

of results from experiments, as well as their analyses. Finally, the conclusions of

this study and the prospects for future work are presented in Section 5.

3.2 Related Work

In this section, previous works on document classification will be described briefly

for both graph generation and GCNs model construction.

3.2.1 Motivation and Detailed Analysis

3.2.1.1 Motivation Behind Document-Relational GCNs

The advent of GCNs marked a significant leap in leveraging graph structures for

deep learning applications, particularly in text classification tasks. Traditional
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neural networks, while effective in various scenarios, often struggle to encapsu-

late the complex, relational information inherent in textual data. Prior models

primarily focused on word-document and word-word relationships, overlooking

the rich insights that could be gleaned from document-document interactions.

This oversight forms the crux of our motivation: to harness these under explored

relationships and enrich the feature set available for text classification, thereby

addressing a notable gap in current methodologies [55, 33].

3.2.1.2 Challenges Addressed

Existing methods reveal a notable limitation in capturing the full spectrum of

relationships within textual data. For instance, the word-document and word-

word adjacency matrices, while powerful, provide a limited view, neglecting the

potential contextual depth offered by document-document relationships [62]. This

limitation not only constrains the model’s understanding of the corpus but also

impacts its ability to accurately classify texts in more nuanced or closely related

categories.

3.2.2 Graph Generation

Yao and colleagues [134] constructed a large heterogeneous graph for an entire

dataset. The total number of nodes in the corpus was equal to the number of doc-

uments and unique words. Thus, the dimensions of the graph adjacent matrix was

defined as (documents+ uniquewords)× (documents+ uniquewords). Further-

more, in the graph, there were two types of edge relations namely document-word

and word-word. TF-IDF was applied to determine the values of document-word

edges. The TF-IDF algorithm is in equation (2.1)

Word-word relations are represented by another sort of edge relation rep-

resentation. To deal with these, traditional approaches have been utilized to

count word occurrences in a confined context region, which is known as word

co-occurrence statistics [41, 104, 142]. The word-word link weight value in the
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constructed graph is calculated using the point-wise mutual information (PMI)

method, which is based on the word co-occurrence concept. To track and calcu-

late the frequencies of single and double words co-occurrences, a convolutional

window (a fixed length with 20 words) is used. The PMI may be computed using

the following formula:

PMI(i, j) = log
p(i, j)

p(i)p(j)

p(i, j) =
#W (i, j)

#W

p(i) =
#W (i)

#W

(3.1)

where W (i) counts the number of slide windows that contain word i, W (i, j)

counts the number of slide windows that contain words i and j, and #W is the

total number of windows sliding past all the documents. A greater PMI value

implies a higher correlation between the two words, whereas a lower value suggests

a lower correlation between two words. In the graph, only positive PMI values

are utilized to indicate the edge of the word-word relation. The negative PMI

value is set to zero, indicating that there is no edge in the node pair.

3.2.3 GCNs Model

The document graph in the previous subsection was used as a feature in the

GCNs model for further training and testing. Kipf and Welling [55] developed

a GCNs model expressed by a multilayer neural network that directly operated

on graphs as features. Let G = (N,E) denote the document graph, where N

and E are the nodes and edges, respectively. The number of nodes is the sum

of the number of documents and unique vocabulary terms. Adjacent matrix A is

used to represent the graph. Then, the adjacent matrix A must be normalised as

Ã = D−0.5AD−0.5, where D is the degree matrix of A and Dii =
∑

j Aij. There

is a feature matrix X followed by a normalised adjacent matrix Ã. In the GCNs

model for text classification, the feature matrix is usually set to be an identity

matrix as X = I, so X is not shown in the future equations. The normalised
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adjacent matrix Ã is a feature of the model. The forward propagation equations

for the text classification version are as follows:

L1 = r(ÃW0)

Lj+1 = r(ÃLjWj)

Ã = D−1/2AD−1/2

Dii =
∑

jAij

r(x) = max(0, x)

(3.2)

where L is the hidden or result layer matrix, j is the layer number, Ã is the

normalised adjacent matrix of the graph, and r(x) is an activation function of

the neural network, called ReLU.

3.3 Proposed Method

In this section, cumulative TF-IDF edges method is developed to connect document-

document nodes, which differs from the graph that simply uses word-document

relations. We generate document relations by adding the multiplication of TF-

IDF values of the same words.

A
′

ij = log(A(rowi) · A(columnj)) (3.3)

where i, j are document indices, A(rowi) is the row vector for document i, and

A(columnj) is the column vector for document j. The multiplication of document

vectors i and j shows that the TF-IDF values of two documents with the same

vocabulary are multiplied and added together. Then the edges that are greater

than or equal to 3 are saved because only a large value of document-document

relation has a positive effect on text classification performance. Other edge rela-

tions of the graph, such as word-word and document-word relations, are identical

to those in [134]. Thus, the total adjacent matrix can be defined as follows:
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A
′

ij =



log(A(rowi) · A(columnj)) i, j are documents

PMI(i, j) i, j are words

TF− IDFi,j i is document, j is word

1 i = j

0 otherwise

Document-document, word-document, and word-word relational values comprise

adjacency matrix A
′
ij. The document-document relation is obtained from the

equation (3.3). The word-document relation is the TF-IDF value from the equa-

tion (2.1). The word-word relation is PMI value from the equation (3.1). The

adjacent matrix A
′
ij has a square shape. The document and vocabulary together

constitute the size of the adjacency matrix. The details of how to construct the

neighbouring matrix of the graph are shown in Pseudo Code 1.

The adjacent matrix of graph A
′
ij is then sent to the GCNs model in the next

step. Previous studies ([68], [55], [134]) showed that a GCNs model with two

layers performs better than that with one layer, whereas a GCNs model with

more than two layers does not perform better than that with two layers. Thus,

a two-layer GCNs model is applied to train and test the text classification model

in this study. Let

Z = softmax(Ã · r(ÃW0)W1),

softmax(xi) =
exp(xi)∑
i exp(xi)

Ã = D−1/2A
′
D−1/2

Dii =
∑

jA
′

ij

(3.4)

where Ã is the same as represented in (3.2), W0 and W1 are two weight matrices

to learn, and softmax(·) is a probability normalization function that can convert

the resultant vector elements into a probability distribution. For each vector, the

number of elements is the number of document classes that must be classified.
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Pseudo Code 1: Build an adjacent matrix of the graph

windows← empty list;
window−size← 20;
for doc in documents do

windows.add (every 20 words);
for word in doc do

TF [doc, word]← number of the word in the doc;
IDF [doc, word]←
log(document number/documents with the word);
adj[doc, word]← TF [doc, word] ∗ IDF [doc, word];

end for

end for
word−window−freq ← empty list;
for window in windows do

for word in window do
word−window−freq[word]← word−window−freq[word] + 1;

end for

end for
word−pair−count← empty list;
for window in windows do

for wordPair in window do
word−pair−count[wordPair]← word−pair−count[wordPair] + 1;

end for

end for
num−window ← number of windows;
for key in word−pair−count do

i← first word in key;
j ← second word in key;
count← word−pair−count[key];
word−freq−i← word−window−freq[i];
word−freq−j ← word−window−freq[j];
pmi← log((count/numwindow)/(wordfreqi ∗
wordfreqj/(numwindow ∗ numwindow)));
adj[i, j]← pmi;

end for
for each word-doc relation in adj do

adj[doc, doc]←
adj[doc-words row vector] � adj[words-doc column vector];

end for
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Thus, the total of all elements in a vector after the softmax computation is 1,

and the highest value position represents the text classification class. Then, the

cross-entropy loss function is applied to calculate the error distance between the

model forward propagation result Z and the target label:

Loss = −
∑
d∈Yd

C∑
c=1

Ydc logZdc (3.5)

where Yd is the label document index, and C is the number of document class

dimensions of the outcome feature. Ydc is a vector label and Zdc is a vector result.

They represent the target label and predicted result of a document, respectively.

The loss function has two weights that must be learned. The GCNs model does

forward propagation and calculates the loss function each time. The derivatives

of two weights (W0 and W1) are then determined. To reduce loss value, the W0

and W1 are updated in the opposite direction as the derivatives. The optimal

weights (W0 and W1) are discovered, and it can now approach the best document

classification prediction using the present model and inputs.

3.4 Experiment

In this section, for text classification accuracy, the updated document-document

GCNs will be compared to the original text GCNs and augmented data with text

GCNs. Synonym data augmentation [139] is used to enlarge the five datasets

which is double the size of each dataset. Furthermore, accuracy of the model

is verified by filtering alternative maximum values of document-document graph

weights in adjacent matrix of the graph. In the updated document GCNs model,

the performance for different numbers of hidden layer dimensions is evaluated.
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3.4.1 Datasets

The selection of the five benchmark datasets, 20ng, R8, R52, Ohsumed and MR,

for this study is grounded in their diversity, scale, and the unique challenges

they present in text classification. This variety ensures that the performance

and robustness of our proposed Document-Relational GCNs technique can be

thoroughly evaluated across different contexts and types of textual data, thus

providing a comprehensive understanding of its applicability and effectiveness.

• 20ng. Dataset of 20 newsgroup records and 20 different types of news.

There are a total of 18846 documents and 42757 vocabulary items. 11314

documents are used for training and 7532 for testing.

• R8 and R52. Two subsets of Reuters data. There are 8 and 20 classes

in each, respectively. R8 is equipped with 5485 train documents, 2189 test

documents, and 7688 vocabulary items. R52 has 6532 train documents,

2568 test documents, and 8892 vocabulary items in its database.

• Ohsumed [38]. Derives from the ”MEDLINE10” medical database, which

contains titles and abstracts from 270 medical journal articles published

between 1987 and 1992. Diseases are divided into 23 categories.

• MR. Dataset of movie reviews with only two sentiment classes. There are

10662 documents in total, with half of them being positive reviews and the

other half being negative reviews.

The details of the datasets are summarised in Table 3.1. The number of

training nodes is the sum of the number of true training documents and the

number of valid training documents. The training documents are divided into

two categories: actual training and validation. 90% of training documents are for

actual training, while 10% are for validation.

44



Table 3.1: Datasets Summary

Dataset 20ng R8 R52 Ohsumed MR

# Actual train 10183 4937 5879 3022 6398

# Valid 1131 548 653 335 710

# Words 42757 7688 8892 14157 18764

# Test 7532 2189 2568 4043 3554

# Total 61603 15362 17992 21557 29426

# Classes 20 8 52 23 2

3.4.2 Experiment Parameters

The PyTorch library is one of the most widely used deep learning frameworks.

Both GCNs models (document-relational GCNs and original text GCNs model)

are run on the PyTorch deep learning framework. In the training model, the

weights for both models are updated using the Adam optimizer [25]. As previously

stated, the drop out rate is 0.5, and the GCNs model has two layers.

3.4.3 Hidden Layers

Yao and colleagues [134] chose 200 hidden layer dimensions of the GCNs model

in their experiment. According to experiment, it is difficult to obtain good test

performance with as few as 200 hidden layer dimensions. Consequently, a number

of hidden layer dimensions are investigated, as shown in Fig. 3.1. When 1200 and

1500 hidden layers are applied in the document-relational GCNs model, better

test accuracy results are achieved.

3.4.4 Justification for Comparative Techniques

To streamline the justification for the inclusion of Document-Relational Graph

Convolutional Networks (Doc-Relational GCNs), Text Graph Convolutional Net-

works (Text GCNs), and Synonym-Augmented GCNs in the comparative study,

we focus on the unique contribution and rationale behind each approach within
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(a) 20ng (b) R8

(c) R52 (d) Ohsumed

(e) MR

Figure 3.1: Relations Between the Number of Hidden Layers and Test Accuracy

Table 3.2: Comparison of test accuracy among document-relational GCNs, text
GCNs and synonym augmented text GCNs

Dataset
Doc-Relational

GCNs
Text GCNs [134] Synonym aug GCNs

20ng 86.8% 85.81% 85.7%

R8 96.96% 96.8% 96.3%

R52 93.19% 92.47% 93.2%

Ohsumed 65.9% 66.99% 68.0%

MR 76.57% 76.18% 73.8%

the context of text classification.

The foundational premise of our comparative study lies in exploring the multi-
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faceted nature of graph-based models in text classification, specifically through

the lens of document-document relationships (Doc-Relational GCNs), global word-

document relations (Text GCNs), and synonym-enhanced semantic networks

(Synonym-Augmented GCNs). Each technique addresses distinct aspects of the

text classification challenge.

Doc-Relational GCNs are motivated by the potential of leveraging under explored

document-document relationships, aiming to enrich text classification models

with deeper contextual insights and thematic connections between documents.

This approach seeks to overcome the limitations of models that focus solely on

word-document interactions, providing a more holistic understanding of the cor-

pus.

Text GCNs, capitalize on the integration of global word co-occurrence and word-

document relationships. Their strength lies in harnessing both local and global

textual contexts, offering a comprehensive semantic representation that enhances

classification accuracy.

Synonym-Augmented GCNs extend the graph model by incorporating synonyms,

aiming to tackle the challenges of vocabulary diversity and polysemy. This

method enriches the semantic representation within the graph, potentially leading

to more nuanced understanding and classification of texts.

3.4.5 Experiment Results

The test accuracy comparison for the document-relational GCNs and the origi-

nal model without document-document relation edges is presented in Table 3.2.

Our new model is even more accurate than the original GCNs model, which per-

formed impressively in the previous experiment [134]. In four out of five datasets,

the document-relational GCNs model improves 0.2%-1% accuracy to text GCNs.

For the 20ng dataset, the model exhibits a noticeable performance improvement

(1%) in terms of test accuracy compared to other datasets. Because of the new

document-document relation in the graph, it performs better for the 20ng dataset
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than the others. The synonym augmented GCNs performs better in the R52 and

Ohsumed datasets. TF-IDF stores important words that can represent document

topics and contains information about document-document relations. It also in-

creases the weight of topic words in documents on the same subject. Because the

same news category belongs to the same topic, 20ng is both a news and topic

classification dataset. In a hyperparameter experiment with hidden layers, over-

all, there is a tendency towards increasing accuracy with an increasing number of

hidden layers in the document-relational GCNs model. The most accurate results

are obtained with the number of hidden layers ranging from 1200 to 1500 in the

four datasets. We hardly obtain good results in both test accuracy and expected

hidden layers for the Ohsumed dataset because using words link to stand for

document is not sensitive to medical abstract documents. Overall, the cumula-

tive TF-IDF document-document relation in the GCNs model can achieve much

higher test accuracy in most datasets related to topic document classification,

and a specific figure of the hidden layer hyperparameter can be used for model

parameter tuning.

3.4.6 In-depth Analysis

The proposal to integrate document-document relationships into GCNs stems

from an analytical observation: texts within the same or related categories often

share thematic or semantic similarities that are not fully captured through direct

word-level interactions. By constructing a cumulative TF-IDF weighted graph

that highlights these document-document relationships, our approach seeks to

introduce a new dimension of relational understanding. This methodological

innovation allows the model to perceive the dataset as an interconnected web of

documents, where the strength of each connection enriches the model’s feature

set, leading to more nuanced classifications.
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3.5 Conclusion

We have introduced a new document-relational GCNs in this study, which pro-

vides a cumulative TF-IDF document-document relation for text classification.

By testing its performance on five benchmark datasets, it is discovered that

with document-document relation edges in the adjacent matrix, the document-

relational GCNs model could improve the overall accuracy comparing to the

original text GCNs and the synonym augmented GCNs. Synonym augmented

GCNs had higher accuracy in the medical dataset. In addition, different num-

bers of hidden layers are experimented to determine the optimal parameters of

the model. We could observe that excessive hidden layers did not help the origi-

nal text GCNs and data-augmented GCNs had higher accuracy. However, in the

document-relational GCNs model, a large number of hidden layers had a better

ability to store text and graph features, which helped text classification. Our

future research plan is to determine the best percentage of document-document

edges to use when filtering useful or important document relation features. We

will also use a more sophisticated algorithm to calculate document-document re-

lations, as well as to filter document-word or word-word relations to simplify the

graph.
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Chapter 4

A GraphNorm module in

Heterogeneous Linguistics Graph

Model

Pre-trained language models, such as BERT, have revolutionized the field of NLP,

providing powerful tools capable of capturing complex linguistic information in

large text datasets. However, these models, though incredibly effective, often

require substantial computational resources and struggle with handling complex

semantic relationships and noisy or incomplete data. Graph-based approaches,

such as HLG models, provide an alternative strategy for tackling these challenges.

HLG models utilize graph structures to represent linguistic relationships within

and across different linguistic levels, like characters, words, and sentences, which

can capture hierarchical and complex semantic information more effectively. How-

ever, these models can be sensitive to graph modifications and noisy data points,

which could distort the learned representations and lead to performance degra-

dation. We introduce a GraphNorm module, an innovative method aimed at

enhancing the performance of HLG model. The primary objective of Graph-

Norm is to increase model accuracy and minimize memory consumption during

the training process. Our approach employs dynamic normalization layers for
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each GNN module in the HLG model, facilitating the retention of reliable node

information from the graph while mitigating noise. By regulating the influence

of outliers and noisy data points, GraphNorm increases the model’s resilience to

graph modifications, supporting its ability to handle different scenarios. Our re-

sults demonstrate that GraphNorm improves the stability and performance of the

HLG model, demonstrating potential for a wide range of applications involving

five benchmark datasets.

4.1 Introduction

Deep learning is recognized as one of the most successful types of neural networks,

and is referred to as a “deep” method because of numerous hidden layers that

give the network great depth. Classic deep learning models have been drawing

a great attention and revolutionizing such as CNN [54], RNN [126], and auto

encoders [120]. Also, the development of deep learning and big data has been

boosting computer hardware development, which, subsequently, has enabled large

amounts of training data to be made available and made linguistic feature ex-

traction from Euclidean space data a possibility [129].

The deep learning method has numerous applications on Euclidean space data,

such as image, video and speech data. CNN is one of the classic examples that

applies the model in Euclidean space data. Primarily, CNN trained images data

effectively since images data is invariant of their structure, can be considered as

rectangular grid-like and it is continuous in every pixel [12].

However, there are also many applications or databases that store non-Euclidean

space data such as graph data and stream data. Significant efforts have been

made by researchers to take advantage of neural network deep learning to solve

problems of non-Euclidean space data such as social networks [137] and knowl-

edge graphs [34]. A characteristic of non-Euclidean data is that data arrangement

is not continuous and relatively random. Specifically for a given data point, it is

difficult to define its neighbour nodes. Also, the number of neighbour nodes of
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different nodes is different [94]. Thus, it is difficult for CNN to define the same

convolution operation on this type of data as on data such as images. Moreover,

the arrangement of nodes in each sample data may be different, such as molecular

screening [42], which is obviously an application of graph data. Also, while the

number of atoms connected in different molecular structures may be different, it

is difficult to define the Euclidean distance. Therefore, this type of data can no

longer be regarded as a sample point in the Euclidean sample space. Researchers

are actively finding ways to learn non-Euclidean data in modern neural networks.

GNN can perform the types of operations to learn non-Euclidean data. GNN is

an embedding algorithm in the sense that it generates a single node embedding

by transferring, transforming, and aggregating feature information of nodes on

the entire graph. Inspired by CNN, Graph Convolutional Networks have been

developing rapidly. An image can be seen as a special case of a graph, where

pixels are connected by neighbouring pixels. A feature which is reminiscent of

2D convolution is that graph convolution can be performed by weighted averag-

ing of node neighbourhood information [129]. However, the GCNs’ training is

full-batch, which is difficult to expand to a large-scale network, and the conver-

gence is relatively slow. Thus, cluster-GCNs [19] have been developed which are

capable of reducing memory requirements and computation time. To solve the

parsing error problem, a graph ensemble method has been introduced [44]. Before

sending data embeddings into the graph neural network, multiple syntax analy-

sers are utilized to analyze the input, so that multiple graphs can be generated,

and multiple graphs can be combined to obtain a graph structure with a smaller

graph diameter. The graph is processed so that the model no longer depends on

a specific syntactic classifier which increases the robustness of the model.

In recent years, pre-trained language model methods represented by BERT [27]

have been widely used in various NLP tasks. A typical pre-trained language

model application method can be attributed to a two-stage model comprising

pre-training and fine-tuning. First unsupervised and self-supervised pre-training
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on a large-scale unlabelled corpus is carried out, and then it migrates to specific

downstream tasks through supervised training. For Chinese natural language pro-

cessing, researchers have proposed various pre-trained language models for Chi-

nese language characteristics, such as ERNIE [111] and Glyce [85], which make

use of Chinese word segmentation and Chinese characters to improve the effect of

pre-training tasks. Li and colleagues [70] proposed a Multi-source Word-Aligned

(MWA) model based on the motivation of integrating Chinese word segmentation

into the pre-training language model, trying to integrate vocabulary-level features

into the native pre-training language model. Unlike other focus and pre-training

work, MWA carried out the integration of external information in the stage of

fine-tuning. MWA uses more tokenizers to get better results, however, word seg-

mentation noise increases as more tokenizers are introduced.

Based on a MWA model motivation, an enhanced module and adapter have been

introduced for HLG [69]. HLG shows a certain deionising effect when in use

with multiple tokenizers to achieve greater accuracy and a faster training pro-

cess. However, due to the fact that HLG is a graph ensemble method which

generates multiple graph operations in the model based on different syntactic

classifiers [2], an identical method of normalization in the model is insufficient

for the learning process of that large model. As such, a GraphNorm method is

proposed to integrate in the HLG model for an improved learning effect. More-

over, some chopping and simplified methods are used to optimize the structure

of the model. The presentation of this chapter is as follows. It begins with an

introduction to GraphNorm, an innovative normalization method designed to im-

prove the performance of HLG models. Application of this method is aimed at

enhancing model accuracy during the training process. Particularly, GraphNorm

adds dynamic normalization layers to each GNN module in the HLG model. This

approach retains reliable node information from the graph and mitigates noise,

increasing the model’s resilience to graph modifications.

The research in this chapter shows that GraphNorm has the potential to general-
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ize well across a variety of datasets. It achieves superior accuracy in benchmark

datasets, and this suggests that GraphNorm could be beneficial for a wide range

of NLP applications.

4.2 Related Work

This section will introduce HLG model and GraphNorm module.

4.2.1 HLG model

HLG [69] is a Chinese linguistics structure heterogeneous graph model which is

inspired by MWA and multi-graph ensemble method. MWA assigns each char-

acter in the same word a unified attention weight after aggregation through the

mixed pooling [135] strategy; on the other hand, in order to reduce the errors

caused by different tokenizers, multiple tokenizers are used, and the results of all

tokenization strategies are merged.

Developers of MWA propose the use of more tokenizers to achieve better results.

However, the addition of more token information without an upper limit cannot

continuously bring about performance improvements because such an approach

will bring more word segmentation error information, which presents as noise.

What HLG can achieve in this context is to make the correct word segmentation

structure have greater influence in the model and, as such, let the influence of

wrong word segmentation information in the model be ignored as much as possi-

ble.

In the HLG model, a Multi-Step Information Propagation (MSIP) is applied to

learn linguistic knowledge. Also, MSIP can integrate Chinese word segmenta-

tion information to the pre-trained model. According to the developer of HLG ,

there are three major operations in the MSIP structure which are summarization,

concretization and skip connection. Figure 4.1 shows the information-learning

operations within the MSIP structure.
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Figure 4.1: MSIP Learning Operations [69]

Coloured circles represent character, word or sentence representations. Green,

orange and gray lines describe summarization, concretization and skip connection

respectively.

The summarization operation is to gain words and sentences representations.

There are two steps, one is from character level to word level, and the other is

from word level to sentence level. Given the graph G, the representative character

level input matrix is Hc. The summarisation operation equation is as follow:

Hw = r(Âc2wHcW c2w)

Hs = r(Âw2sHwWw2s)
(4.1)

where Hw and Hs are input or hidden layers in the information learning oper-

ations, W c2w and Ww2s are weight parameters that need to be learned by the

model.

Concretization is a reverse operation of summarization which can obtain de-
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tailed information from the high level information representations, such as par-

tition information from sentences to words and finally to characters. In order to

operate reverse operation. Âs2w and Âw2c can be obtained by following equations:

Âs2w = Norm((A
w2s

)T )

Âw2c = Norm((A
c2w

)T )
(4.2)

where A
w2s

and A
c2w

are predefined relations matrices for word to sentence and

character to word respectively. Then concretization equations are as below:

H
w′

= r(Âs2wHsW s2w)

H
c′

= r(Âw2cHw′
Ww2c)

(4.3)

where Hw′
and Hc′ are hidden layers in the information learning operations, W s2w

and Ww2c are weight parameters that need to be learned by the model.

Skip connection is a supplementary method to solve problems of concretization

because, typically, it is difficult to obtain low level representations from a high

level, such as getting representation from sentences level to word level. Thus,

skip connection operations are added within summarization and concretization

to obtain low level representations. The equations are as follow:

Hw′
= H

w′

+ r(HwWw)

Hc′ = H
c′

+ r(HcW c)
(4.4)

where Ww and W c are weight parameters matrices. r is an activation function

like ReLU . Hc′ is the output matrix of MSIP which is the learned knowledge of

the graph.
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4.2.2 Graph Norm

Generic GNN structure with normalization layers can be represented as follow:

Hn = r(Norm(W nHn−1Ã)) (4.5)

where r is an activation function. W n is current layer weight matrix. Hn−1 is

last layer graph information. Ã is adjacent matrix after normalization treatment.

There are multiple normalization method that can be utilized in GNN such as

LayerNorm [4], BatchNorm [47] and InstanceNorm [117].

LayerNorm has a robust effect on Recurrent Neural Networks. However, Batch-

Norm is effective at CNN and GCNs. Generally, before training, it is necessary

to normalize the data to make the distribution consistent, but in the training

process of a deep neural network, it is usually trained with each batch sent to the

network, so that each batch has a different distribution. In addition, in order to

solve the internal covariate shift problem inherent to this, the definition of this

problem was proposed along with the batch normalization. During the train-

ing process, the data distribution will change, which will bring difficulties to the

learning of the next layer of network. Therefore, applying batch normalization

forcibly pulls the data back to the normal distribution with a mean value of 0

and a variance of 1, so that the data distribution is not only consistent, but the

gradient also disappears. In addition, an internal covariate shift and covariate

shift are two separate issues. The former pertains to a shift inside the network,

and the latter relates to a shift for input data.

BatchNorm focuses on normalizing each batch to ensure that the data distribu-

tion is consistent, because the results in the discriminant model depend on the

overall distribution of the data. However, in text features stylization, the gen-

erated result mainly depends on a certain text instance, therefore normalizing

the whole batch is not suitable for text. InstanceNorm can speed up model con-

vergence and maintain independence between each text features instance which
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focuses on height and width of matrices. The equation is as follow:

ytijk =
xtijk − µti√
σ2
ti + ε

µti =
1

HW

W∑
l=1

H∑
m=1

xtilm

σ2
ti =

1

HW

W∑
l=1

H∑
m=1

(xtilm −muti)2

(4.6)

where µ is the range of mean, σ is standard deviation.

Although InstanceNorm has a beneficial effect on GNN, to simply normalize

the values of each feature dimension in the graph does not consistently lead to

improvements. For regular graphs, inducing the standard shift by subtracting the

mean may cause loss of information on the graph structure. In graphical data,

statistics after mean aggregation can sometimes contain structure information.

Eliminating the mean can reduces the expressiveness of the neural network. The

issue may not happen in the image domain. The average statistics of image

data contains global information such as brightness. Removing such information

from the image will not change the semantics of the objects therein, and thus do

not hurt classification performance. Guided by this insight, the author modified

the current normalization method with a learnable parameter to automatically

control how much the mean to preserve in the shift operation which combined

with the graph-wise normalization. The GraphNorm equation is as follow:

yij = γj ·
xij − αjµj√

σ2
j + ε

+ βj (4.7)

where α is learnable weight matrix to control mean in normalization operation.
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4.3 Proposed Method

In this section a GraphNorm method will be proposed to facilitate HLG model

to obtain an improved outcome.

The GraphNorm technique is introduced as an innovative normalization method

aimed at enhancing the performance of HLG models, especially in the context of

NLP tasks. This technique addresses the challenges associated with graph-based

learning, particularly when dealing with noisy, incomplete, or complex semantic

relationships within data. The motivation behind GraphNorm and a detailed

analysis of its workings are discussed below, with references to relevant literature

to provide a comprehensive understanding of its significance and application.

GraphNorm can improve the stability and robustness of GNNs to alleviate noise

and disturbance in the training process. Also, GraphNorm reduces the impact

of outliers or noisy data points by preventing them from dominating graph rep-

resentations. This makes the GNN more resilient to graph modifications and

enhances its ability to handle real-world scenarios with imperfect or incomplete

data. To retain dependable node information from the graph and eliminate noise

from HLG in dynamic level, dynamic normalization layers are introduced for each

GNN module in the HLG model. Figure 4.2 shows the structure of a typical HLG

model with dynamic normalizations.

4.3.1 Motivation

The proliferation of graph-based models, notably GNN, has opened new avenues

in handling data that inherently forms non-Euclidean structures, such as social

networks, molecular structures, and linguistic relationships [129]. However, these

models often grapple with the erratic nature of graph data, which may include

noisy information or irregular graph structures. This variability can significantly

impact the learning process, leading to unstable training and suboptimal model

performance.

60



In the realm of NLP, where the objective is to capture and utilize complex lin-

guistic relationships, these challenges are accentuated. Traditional pre-trained

language models like BERT have shown remarkable success in capturing linguis-

tic information in text datasets. Yet, they are computationally intensive and may

not effectively handle the nuanced semantic relationships and the non-uniformity

present in natural languages [27].

The introduction of HLG models represents a strategic move to leverage graph

structures for encapsulating linguistic relationships across different levels (charac-

ters, words, sentences) more effectively. However, the sensitivity of these models

to graph modifications and the presence of noisy data points necessitate a ro-

bust normalization technique that can stabilize the learning process and enhance

model performance [125].

Figure 4.2: Dynamic Graph Norms for HLG model

The GraphNorm method is added after every GNN module to increase model

robustness. Firstly, the input nodes feature Hc which will go through a GNN
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module. Then the output hidden layer will be normalized by the GraphNorm

module. Thus, output is the word representations Hw. The equation is as follow:

Hc2w = Âc2wHcW c2w

Hc2w norm = γ · H
c2w − α · µ√
σ2 + ε

+ β

Hw = r(Hc2w norm)

(4.8)

where Âc2w is the adjacent matrix after normalization. Hc is the character rep-

resentation. W c2w is the learnable weight matrix in this module. µ is the mean

of current scope. σ is standard deviation. γ is overall coefficient weights of the

normalization. β is bias weights of the normalization. α is mean scale weights

in the normalization. α, β and γ are learnable parameters in the normalization

module. They can control how much mean and overall information they should

keep in the normalization. r is an activation function ReLU .

Then, similarly, the output word representation matrix Hw will go through the

next summarisation module as follow:

Hw2s = Âw2sHwWw2s

Hw2s norm = γ · H
w2s − α · µ√
σ2 + ε

+ β

Hs = r(Hw2s norm)

(4.9)

where Hw is the word representation matrix in last module. Hs is the sentence

representation matrix which is output in this module. This is a successive module

after character to word module. Thus, the normalization module is same as the

last.

After obtaining these sentence representations, the model will then have a reverse

operation from sentence representations to character representations. The first

reverse operation is from sentence representations to word representations. The
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equations are as follow:

H
w

= Âs2wHsW s2w

H
s2w norm

= γ · H
w − αjµ√
σ2 + ε

+ β

H
w′

= r(H
s2w norm

)

Hw′
= H

w′

+ r(HwWw)

(4.10)

This is a reverse operation module. Word representations H
w′

are obtained from

the sentence representations Hs. Also, the skip connection operation is added

with the word representation in the previous front operation result. Thus, a final

word representation Hw′
is obtained after the skip connection operation.Then the

same operation to obtain character representations is as follow:

H
c

= Âw2cHw′
Ww2c

H
w2c norm

= γ · H
c − αjµ√
σ2 + ε

+ β

H
c′

= r(H
w2c norm

)

Hc′ = H
c′

+ r(HcW c)

(4.11)

The final step module is to operate from word representations Hw′
to character

representationsHc′ .The details of how to do GraphNorm in HLG model are shown

in Pseudo Code 2.

4.4 Experiments

Our proposed GraphNorm method through HLG has several advantages com-

pared to existing HLG models. GraphNorm leverages the graph structure of the

HLG to capture and encode intricate linguistic relationships within Chinese text.

By considering the dependencies and connections between linguistic units, such

as characters, words and sentences. GraphNorm enhances the ability of the model
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Pseudo Code 2: Implement GraphNorm in HLG in a batch of data

graphs← a batch graphs;
tensors← the batch tensors;
feats← empty;
nodeslist← empty;
for graph in graphs do

nodes← number of nodes in graph;
feat← select first number of lines of tensors;
nodeslist.add(nodes);
feats.add(feat);

end for
featDimention← number of a feat vector;
nodesNumber ← sum of nodesList;
batchSize← length of batchList;
indexList← nodesNumber by featDimention empty matrix;
meanList← empty;
for nodes in nodesList do

featureV ector ← select feats based on nodes index in indexList;
sumFeatureV ector ← sum of featureVector;
meanFeatureV ector ←
sumFeatureVector / number of featureVector;
meanList.add(meanFeatureV ector);

end for
subtract← feats - meanList * meanWeight;
stdList← empty;
for nodes in nodesList do

featureV ector ← select feats based on nodes index in indexList;
sumFeatureV ector ← sum of featureVector;
stdFeatureV ector ← sqrt(subtract2 + 1 ∗ 10−6);
stdList.add(stdFeatureV ector);

end for
normedFeature← subtract/(std * stdWeight) + biasWeight;
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to understand the contextual and semantic information presenting in the text.

Chinese text often contains noise, ambiguity, and inherent linguistic challenges

[17]. GraphNorm helps pretrained models handle these issues by leveraging the

graph structure. By considering multiple paths and alternative routes within the

graph, GraphNorm enables the models to navigate through ambiguous contexts

and make more robust predictions, mitigating the impact of noise and ambiguity

in Chinese text.

4.4.1 Datasets

A detailed justification for each chosen dataset (ChnSenti, Weibo, THUCNews,

LCQMC, XNLI) was provided, emphasizing their diversity, relevance, and the

unique challenges they present for text classification. This diversity ensures a

comprehensive evaluation of GraphNorm’s effectiveness across different contexts

and linguistic challenges.

• ChnSenti is a comprehensive and widely-used resource for sentiment anal-

ysis in Chinese hotel review text. There are more than 11,546 hotel reviews

in the data including 5,786 positive reviews and more than 5,760 negative

reviews. The dataset is separated to a 9146 train set, and 1200 validation

and test sets. Sentiment, opinion and comment tendency analysis can be

carried out using this review dataset.

• Weibo dataset is a comprehensive collection of social media posts from

the popular Chinese microblogging platform, Weibo. It comprises diverse

user-generated posts which has 100,000 train sets, 9,988 evaluation sets and

10,000 test sets. The dataset offers a valuable resource for researchers, data

scientists, and social media analysts interested in studying and understand

online behaviors, trends, and sentiments within the Chinese social media

landscape.

• THUCNews [110] dataset consists of a large collection Chinese news ar-
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Table 4.1: Datasets Summary

Dataset ChnSenti Weibo THUCNews LCQMC XNLI

# Train 9,146 100,000 50000 238,765 392,702

# Valid 1,200 9,988 5,000 8,801 2,490

# Test 1,200 10,000 10,000 12,499 5,010

# Total 11,564 119,988 65,000 260,065 400,202

# Classes 2 2 10 2 3

ticles. The dataset aims to provide a diverse range of text samples that

represent different domains and subjects. There are 50,000 train sets, 5,000

evaluation sets and 10,000 test sets. 10 topics are selected in THUCNews

dataset which include real estate, technology, finance, games, entertain-

ment, fashion, politics, household, education and sports.

• LCQMC [75]. dataset provides a valuable resource for researchers and

developers working in the field of NLP, specifically in the domain of question

matching and semantic textual similarity in the Chinese language. There

are 238,765 train sets, 8,801 evaluation sets and 12,499 test sets.

• XNLI. [21] dataset provides a rich and diverse collection of sentence pairs in

multiple languages, and offers an excellent benchmark for developing and

evaluating cross-lingual NLP models. In the experiments set out in this

thesis, only the Chinese components to the XNLI dataset were utilized,

which comprised 392,702 train sets, 2,490 evaluation sets and 5,010 test

sets.

The datasets summary are as below:

4.4.2 Word Segmentation

The datasets are preprocessed by representation with the Chinese BERT dic-

tionary index for every character. Sentences are segmented to words by using
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Chinese word segmentation (CWS) tools, as explained below. CWS tools are

invaluable resources for segmenting Chinese text into individual words or lexical

units. With their linguistic rules, statistical models, and machine learning al-

gorithms, these tools enable accurate and efficient analysis of Chinese language

data. To compare model performance with HLG, three word segmentation tools

are utilized, which are THULAC [71], NLPIR [145] and pyhanlp [36] in the data

processing of the five datasets.

4.4.3 Environment and Parameters

The model was run in a desktop computer with 16GB random access memory

(RAM) and 6G video memory. Python 3.9 is utilized for the programming lan-

guage. Pytorch 2.0 is used as a framework that provides a flexible and efficient

platform for building and training deep learning models.

During the training process, it is essential to fine-tune parameters in the model.

Indeed, several parameters, such as learning rate and batch size, need to be fine

tuned to optimize the model’s performance. Here learning rate of the model is

fine-tuned to be 3.5 ∗ 10−5 to enable the GraphNorm module to learn appro-

priately. Also, setting an appropriate learning rate is essential for finding the

optimal weight values that minimize the loss function. However, using a fixed

learning rate throughout training may lead to suboptimal results, such as slow

convergence, overshooting, or getting trapped in local minima. To ballance BERT

weights, model weights and GraphNorm weights, CosineAnnealingLR method has

been added to dynamically adjust the learning rate over time.

4.4.4 Justification for Comparative Techniques

The selection of comparative techniques (GraphNorm HLG vs. HLG) was ex-

plained by highlighting the importance of benchmarking the proposed Graph-

Norm enhancement against the baseline HLG model. This comparison aims to

demonstrate the incremental improvements offered by GraphNorm in handling

67



Table 4.2: Comparison test accuracy among GraphNorm HLG and HLG

Dataset
GraphNorm

HLG
HLG

ChnSenti 95.42% 95.0%

Weibo 96.97% 96.34%

THUCNews 94.54% 94.45%

LCQMC 88.31% 88.85%

XNLI 67.78% 66.85%

hierarchical linguistic graph structures for NLP tasks.

4.4.5 Experiment Results

The performance of deep learning models is evaluated by its accuracy, defined as

a measure of the proportion of correct predictions made by the model compared

to the total number of predictions. A higher accuracy indicates that the model

is capable of capturing and understanding the underlying patterns in the data

effectively. The accuracies in five bench-mark datasets in GraphNorm-HLG model

are presented in Table 4.2:

The experiment compares GraphNorm HLG and HLG models on the above

five datasets. The results indicate that the GraphNorm HLG model generally

outperforms the HLG model in terms of test accuracy, demonstrating its effec-

tiveness in various NLP applications.

Overall, the results suggest that the GraphNorm HLG method generally out-

performs the traditional HLG method. In 4 out of the 5 datasets, ChnSenti,

Weibo, THUCNews, and XNLI, the GraphNorm-HLG method demonstrates im-

proved accuracy. On the ChnSenti dataset, the GraphNorm-HLG model has

an accuracy of 95.42%, which is marginally better than the accuracy of the HLG

model, at 95.0%. This indicates that for this specific dataset, the incorporation of

GraphNorm techniques into the HLG model provides a marginal improvement.

The Weibo dataset results further corroborate the relative effectiveness of the

68



GraphNorm-HLG model. Here, the accuracy rises to 96.97%, outperforming the

accuracy of the HLG model at 96.34%. This underlines the potential robustness

of the GraphNorm-HLG model across different datasets, implying a certain level

of generalization. On the THUCNews dataset, the accuracy for both models

are near-equal, with GraphNorm-HLG scoring a 94.54% accuracy, slightly higher

than HLG model, at 94.45%. While the difference may not appear substantial,

this result once again is in favour of GraphNorm-HLG over HLG. In the case

of the LCQMC dataset, the HLG model performs better, with an accuracy of

88.85% compared to the GraphNorm-HLG’s 88.31%. This result is a notable

deviation, and suggests that the GraphNorm technique applied to HLG may not

always lead to improved performance. There may be dataset-specific factors that

cause this deviation. Finally, on the XNLI dataset, the GraphNorm-HLG model

67.78% accuracy is superior to HLG, at 66.85%. Despite the lower overall scores

on this dataset, the results suggest that the GraphNorm-HLG model is overall

more accurate in 4 out of 5 datasets.

Development set accuracy is a measure of a model’s performance that can pre-

dict the correct output given a set of inputs. A high development set accuracy

means the model is effective at making correct predictions on that particular

set of data. Figure 4.3 shows accuracies of development sets in different epochs

during training process for the five datasets. Based on the provided data which

details the performance of GraphNorm-HLG and HLG models across five differ-

ent datasets, the GraphNorm-HLG model tends to outperform the HLG model

in majority of cases across these datasets and runs. The performance of the HLG

and GraphNorm-HLG models can vary across different run epochs and develop-

ment sets. Yet, while GraphNorm-HLG appears to be superior to HLG in the

development accuracy at the end of epochs, this study finds that there are rare

but notable situations in which the HLG model has superior accuracy.
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(a) ChnSenti (b) Weibo

(c) THUCNews (d) LCQMC

(e) XNLI

Figure 4.3: Development Sets Accuracy in Epochs

4.5 Conclusion

This research chapter has introduced a novel method of layer normalization, uti-

lizing GraphNorm, with the goal to address the improvement of accuracy in HLG

models. GraphNorm’s experimental application here has resulted in marked im-

provements in the performance of the HLG model across a wide range of bench-

mark datasets, thus affirming this approach to improve its efficiency and robust-

ness.

GraphNorm has been found to preserve graph-level representations and en-

capsulates hierarchical information, effectively solving the prevalent problems as-

sociated with standard layer normalization techniques. Among these issues are
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increased memory usage and reduced performance in larger graph structures. Em-

pirical evaluations further exemplify GraphNorm’s superiority over batch normal-

ization and layer normalization concerning memory usage, computational speed,

and the quality of the results, advocating for its wider adoption in NLP. A note-

worthy point is the consistent performance of GraphNorm during development

runs. The model demonstrated robustness and stability, delivering steady per-

formance improvements over iterations. This consistency in development runs

underlines the utility of GraphNorm in diverse real-world scenarios, even when

dealing with significant variations in graph structures.

Looking ahead, GraphNorm’s versatility has also been demonstrated and

seamless integration with various graph networks can be experimented in the

future works. Although the primary focus of GraphNorm is currently on HLG

models, data in this chapter highlights its potential application in other graph-

based models. Thus, the future application of GraphNorm to drive improvements

in model performance across a multitude of applications is promising, with poten-

tial applications developed to benefit different sectors such as finance, healthcare,

technology, and social media. The opportunity to optimize GraphNorm for more

efficient computational time and memory usage, to evaluate its performance with

larger, more complex datasets, and to explore its impact on different facets of

NLP tasks are attractive directions for future research.

Through the findings and potential future directions outlined here, the over-

arching aim is to push the boundaries of graph-based NLP models, specifically

HLG models. It is anticipated that the insights derived from this research will

spur on further developments and wider application of GraphNorm and similar

normalization techniques in the future.
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Chapter 5

Expanding the Capabilities of

Document-Level Event Role

Filler Extraction with Innovative

Position Encoding Methods in

Multi-Granularity

Contextualized Models

The research in this chapter presents an innovative solution for Document-Level

Event Role Filler Extraction, achieved by introducing novel position encoding

strategies within a multi-granularity contextualized model. A notable innovation

of this work lies in the integration of sinusoidal and relative position encod-

ings at different levels of granularity in the model’s architecture. These novel

encoding methods add substantial value by capturing the contextual interdepen-

dencies and the internal hierarchical structure within text. Through the unique

combination of GloVe word embeddings, context-aware BERT embeddings and

these advanced position encodings, a richer, more contextualized representation of
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words is achieved. Utilizing the strengths of BiLSTM-CRF models, this chapter

shows that such an approach effectively encapsulates both sequential and contex-

tual aspects of the text, crucial for tasks like event extraction. The experiments

demonstrate superior performance of this method compared to existing bench-

mark datasets. As such, the work in this chapter demonstrates the potential of

incorporating innovative position encoding strategies within a multi-granularity

framework.

5.1 Introduction

Event role filler extraction, also referred to as event extraction, is a task in NLP

that involves detecting instances of pre-defined types of events in a given text

and identifying the entities or arguments that are associated with these events

in particular roles [113]. For instance, given an event type of attack, potential

roles might include attacker, target, time and location. Traditional approaches

have focused on sentence-level event extraction, however, with the ever-increasing

complexity and volume of real-world data, there is currently a significant need for

document-level event role filler extraction to effectively manage and process this

growing body of data. Moreover, document-level extraction provides greater ex-

tensive context and is helpful to better understand complex event dynamics [131]

and is an approach that can understand and interpret events as interconnected

entities distributed in text, rather than isolated events within a single sentence.

Despite these advantages in its use, there are challenges and problems in the de-

velopment of event role filler extraction. Notably, natural language is inherently

ambiguous which means that many words have multiple meanings based on their

context. This ambiguity makes it challenging to determine the correct interpre-

tation of a sentence or document [83]. Recognizing entities within the document

is a critical first step in event role filler extraction, and any errors at this stage

can propagate through the process. Some named entities might not be properly

recognized due to the diversity and ambiguity of natural language [92]. Another
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challenge of event role filler extraction is dependency parsing and semantic role

labeling. It is essential to correctly identify the semantic roles of different entities

in the text which can be complicated by language ambiguity, complex sentence

structures, and long-range dependencies [140].

To solve such challenges of event role filler extraction, researchers have been striv-

ing to develop sophisticated deep learning models. RNN [61] and transformers

[119], have demonstrated their superior performance in named entity recognition

tasks. They capture contextual information effectively which leads to more accu-

rate entity recognition. Moreover, transformer-based models, such as BERT [27]

and GPT [98], have shown great promise in handling language ambiguity. These

models can capture context effectively and provide meaningful representations to

better understand the semantic roles of the words in the text.

To handle the event role filler extraction effectively, a combined BiLSTM-CRF

model has been proposed [46] [108]. The BiLSTM can learn context-rich repre-

sentations of the words in a document that incorporate information from both

preceding and succeeding words. The CRF can then use these representations

to predict the most likely sequence of labels that identify the event role fillers.

Moreover, the CRF layer in the BiLSTM-CRF model takes the whole output se-

quence into account when making predictions, as opposed to making independent

decisions for each token. This helps the model to produce coherent labels for the

sequence, considering the dependencies between adjacent labels. This is critical in

Event Role Filler Extraction, where the labels of the words often depend on each

other. Therefore, the BiLSTM-CRF model for document-level event role filler

extraction demonstrates the effectiveness of hierarchical BiLSTM-CRF models in

handling the challenges of document-level event role filler extraction.

Based on the BiLSTM-CRF model, to capture dependencies on all levels of text,

a multi-granularity contextual encoding method [30] has been developed. This

approach captures context at different granularities such as word-level, sentence-

level, paragraph-level and document-level, which provides a comprehensive un-
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derstanding of the events. Though the multi-granularity contextual encoding tries

to handle long-Range dependencies by considering the entire document context,

the deficiency of positional information in the model might not handle long-range

dependencies that occur when role fillers and events are mentioned far apart in

the text.

Position encoding involves adding additional information to the input embed-

dings that the model can use to distinguish the position of each word in the

sequence. In the design of BiLSTM-CRF models, positional information is im-

plicitly captured through the sequence order in which inputs are fed into the

model. However, adding explicit positional encoding could provide additional

benefits, especially in complex tasks such as event role filler extraction. In the

original Transformer model [119], this was achieved through absolute position

encodings generated by sinusoidal functions. These functions output unique val-

ues for each position, providing a distinctive signature that the model can use to

identify word order which can be beneficial for handling long-range dependencies

in text. Moreover, a more sophisticated relative positioning method has been in-

troduced to enhance the model’s ability to handle long-range dependencies. This

concept is particularly useful for tasks that need to consider the directionality or

order of the sequence, such as text generation, machine translation, and event

role filler extraction. Relative position encoding can enhance the model’s ability

to understand the semantics of a sequence based on the positional relationships

among the tokens.

Positional embeddings help models understand the order of tokens within a se-

quence, and understand the relationships between different parts of a sentence or

document, which can be important in tasks that involve understanding complex

event [67]. Also, positional embeddings can improve the model’s ability to handle

long sequences [141]. This is particularly relevant in document-level tasks, where

the model needs to process long documents and understand the relationships be-

tween entities and events that might be located far away from each other.
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To enhance better event role filler extraction effectiveness, this thesis chapter

proposes to add sinusoidal positioning and relative positioning methods to the

multi-granularity contextual encoding. The contributions are as follows:

Firstly, two positional encoding strategies are applied, namely sinusoidal and rel-

ative positional encodings, for the first time in the domain of Document-Level

Event Role Filler Extraction. This innovative application of encoding methods

enhances the understanding of the contextual interdependencies and the hierar-

chical structure in a given text.

Secondly, a combination of GloVe word embeddings, BERT embeddings and the

new positional encodings is introduced, which results in a richer, more contex-

tualized representation of words. This enhanced representation is particularly

crucial for tasks like event extraction.

Thirdly, the proposed model in this chapter, which harnesses the strengths of

BiLSTM-CRF models and new positional encoding strategies, is found to dis-

play superior performance on event role filler extraction tasks. This superiority

is demonstrated through experimental results using the MUC-4 dataset, where

the model outperforms existing benchmarks.

Furthermore, the relative position encoding approach adopted in this work shows

high performance across multiple event role categories. This indicates the broad

applicability and generalization of the model to various tasks and scenarios.

Our analysis of the results provides valuable insights into which position encoding

strategy works best for specific tasks and event role categories. These insights

offer guidelines for future task-specific model adaptation and offer new avenues

for further research.

5.2 Related Work

In the following, previous work on three major model parts, namely sequence tag-

ging [81], BiLSTM-CRF models [46] and multi-granularity reader [30] for Event
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Role Filler Extraction, is briefly introduced.

5.2.1 Sequence Tagging

Sequence Tagging can be defined as an NLP technique through which comput-

ers or models can understand text as a sequence of word-tag information. A

text comprises words, and each word has a specific meaning to be understood

by computers. Thus, each word in the sentence or sequence is tagged by a spe-

cific meaning label. This ’word-tag’ information method represents input that

enables the model to understand text in a sophisticated way. Normally, the tag

definition is a dataset-specific. To solve this problem of document-level event role

extraction, one important task is to transform a document into paired token-tag

sequences [118]. A common token-tag format is the BIO (Beginning, Inside, Out-

side) format, and examples of paired token-tag sequences are shown in Fig. 5.1.

The B tag indicates that a word is the beginning of a words group or chunk.

When the words group has more than one word, the next word must be an I tag.

There are multiple I tags to label until the words group ends.

Figure 5.1: BIO Token-tag Sequences

5.2.2 BiLSTM-CRF models

A set of sophisticated BiLSTM-CRF models is utilized to extract entities or tags

within the sentence level [46]. BiLSTM recognises word tags of sentences which

can find relations between a word and a tag [123]. While CRF can be used to
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find relations among tags in a sentence [116]. Thus, the combination of BiLSTM

and CRF models are proven high accuracy of NER.

5.2.2.1 BiLSTM

To memorise long term feature of datasets, RNN has been utilized to predict

current output [88]. However, the effect of RNN on the semantic information

capture of long sentences is very limited. RNN often confronts computational is-

sues, such as gradient vanishing and exploding, which cannot run modern models

effectively [102]. A more efficient LSTM model [40] are utilized to solve the issues

of word-sequence tagging.

LSTM can learn the semantic information of a sentence, but it assumes that the

semantic information of each word is only related to the semantic information

of the previous word in the sentence, and has nothing to do with the meaning

of the subsequent word [45]. This assumption may not be satisfied in the actual

scenario, so BiLSTM is introduced to solve the problem. The model takes word

embedding as input and learns the semantic information of the sentence from the

forward direction and the reverse backward direction respectively. The results

are spliced using concatenation operation, such that the semantic information

learned by BiLSTM satisfies that the word depends on both the meaning of the

word before the sentence and the meaning of the word after the sentence. The

BiLSTM model graph is shown on Fig. 5.2

Figure 5.2: BiLSTM Model
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5.2.2.2 BiLSTM-CRF

CRF is conditional random field, which is a discriminative undirected graphical

model. Given observation sequence. The CRF network is connected after the

LSTM. The LSTM can effectively use the semantic features of the input words,

and the CRF layer can effectively use the sentence-level annotation information.

At the same time, the state transition matrix of the CRF layer is added to the pa-

rameters to be trained, so that the model can effectively use the constituent label

information of the preceding and following words to predict the label information

of the current word. Although the effect of LSTM itself has been sufficient to

meet certain requirements, using a CRF network can predict tag-tag relations in

a sentence accurately. For instance, using BIO standard labeling, the prediction

of LSTM may still predict I, the intermediate state, to the beginning of the sen-

tence, which actually does not exist in the situation. This problem can be solved

by sentence-level CRF prediction. The BiLSTM-CRF model is shown on Fig. 5.3

Figure 5.3: BiLSTM-CRF Model

There are three layers for BiLSTM-crf models. The models three layers are

shown on Fig. 5.4

Embedding Layer At the embedding layer, each token xi is in the input se-
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quence as a concatenation of its word embedding and contextual token represen-

tation. Also, 100-dimensional GloVe pre-trained word vectors are used for word

embedding, using BERT-base to generate contextual representations and then

connect the two. Equation is in (5.1)

xei = E(xi)

xb1, xb2, ..., xbm = BERT (x1, x2, ..., xm)

xi = concat(xei, xbm)

(5.1)

BiLSTM Layer A three-layer BiLSTM encoder is used in equation (5.1) to

enable models capture features in sequence tags.

p1, p2, ..., pm = BiLSTM(x1, x2, ..., xm) (5.2)

CRF Layer Passing pi matrix through a linear layer, then getting P of size mx

label space size, where Pi,j is the score of the ith label j tokens in the sequence.

For label sequence y = y1, ..., ym, the score for sequence label pairs is in equation

(5.3):

score(X, y) =
m∑
i=0

Ayi,yi+1
+

m∑
i=0

Pi,yi (5.3)

5.2.3 Multi-Granularity Reader

A multi-granularity reader leverages the different granularities of text information

for improved understanding and prediction in models. The typical approach is to

create multiple readers or encoders focusing on different levels of granularity in

the text which including word-level, sentence-level, paragraph-level and document

level readers. The structure of multi-granularity reader is on Fig. 5.5.
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Figure 5.4: Three Layers of BiLSTM-CRF Models

5.2.3.1 Embedding Layer

As the above BiLSTM-CRF model mentioned, the embedding layer combines

GloVe and contextualized embeddings from BERT. GloVe embeddings are based

on word co-occurrence statistics and thus capture general semantic and syntac-

tic properties of words, yet are context-insensitive. On the other hand, BERT

embeddings are context-sensitive and are capable of capturing the nuances of

word usage based on the specific context in a sentence. The sentence-level and

paragraph-level word embedding representations are as below:

sentencei = x̃11, x̃
1
2, ..., x̃

1
l1

paragraphi = x̂11, x̂
1
2, ..., x̂

k
lk

(5.4)

5.2.3.2 BiLSTM Layer

Sentence-level BiLSTM processes each sentence of a document as a separate se-

quence. This method can capture the contextual information within each sen-

tence, such as the dependencies between words and the overall semantic meaning

82



Figure 5.5: Multi-Granularity Reader [30]

of the sentence.

p̃11, p̃
1
2, ..., p̃

1
l1

= BiLSTMsentence(x̃
1
1, x̃

1
2, ..., x̃

1
l1

)

p̃21, p̃
2
2, ..., p̃

2
l2

= BiLSTMsentence(x̃
2
1, x̃

2
2, ..., x̃

2
l2

)

...

p̃k1, p̃
k
2, ..., p̃

k
lk

= BiLSTMsentence(x̃
k
1, x̃

k
2, ..., x̃

k
lk

)

(5.5)

And paragraph-level BiLSTM, on the other hand, processes each paragraph as

a sequence. By considering more text at a time, this model can capture more

context and better understand the relationships between sentences.

p̂11, ..., p̂
1
l1
, ..., p̂k1, ..., p̂

k
lk

= BiLSTMparagraph = x̂11, ..., x̂
1
l1
, ..., x̂k1, ..., x̂

k
lk

(5.6)

5.2.3.3 Fusion Layer

Fusion involves combining the contextual representations obtained from last lay-

ers which are Sentence-Level BiLSTM and Paragraph-Level BiLSTM outputs.

This can be achieved in various ways including concatenation, element-wise addi-

tion, or weighted fusion operations. Weighted fusion uses attention mechanisms
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to weigh the importance of different components of these representations before

they are combined. This step uses model learnable weights to decide how much

information should be propagated to next layers. The equation is as follow:

gji = sigmoid(W1p̃
j
i +W2p̂

j
i + b)

pji = gji · p̃
j
i + (1− gji ) · p̂

j
i

(5.7)

5.2.4 Position Encoding

Positional information can be added to models using various methods, each with

its own strengths and weaknesses. The common approaches are as follows. The

first approach is known as Absolute Position Encoding. This method involves

adding a unique identifier to each position in the sequence, usually in the form

of a vector. These vectors can be learned, which is certain implementations of

Transformer models, or fixed. One common form of fixed absolute position en-

coding is Sinusoidal Encoding [119] which generates positional encodings using

a combination of sine and cosine functions, allowing the model to extrapolate to

sequence lengths beyond those seen in training.

Another method is Relative Position Encoding which, in contrast to absolute po-

sition encoding, focuses on the relative positions between tokens in a sequence,

rather than their absolute positions. This approach can be more robust to vari-

ations in sequence length and could potentially capture more meaningful rela-

tionships between tokens, particularly in tasks where the relative order is more

important than the absolute order [107].

5.3 Proposed Method

Adding positional information to a Multi-Granularity Contextualized Encoding

method involves encoding the position of words, sentences and paragraphs within

the document and incorporating these positional encodings into the model for the

training, evaluation and testing.
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5.3.1 Motivation and Analysis

Document-Level Event Role Filler Extraction is a complex task in natural lan-

guage processing (NLP) that involves identifying and categorizing entities or

phrases that play specific roles within events described across entire documents.

Traditional models, including pre-trained language models like BERT, while pow-

erful, face significant challenges in this domain. They often struggle with captur-

ing the nuanced semantic relationships that span across large text segments and

dealing with the noisy or incomplete data typical in real-world documents [43].

Additionally, the inherently hierarchical structure of documents, from characters

to sentences and beyond, presents a further layer of complexity that requires an

innovative approach to effectively model and understand [50].

To address these challenges, this research introduces novel position encoding

strategies within a multi-granularity contextualized model. By integrating both

sinusoidal and relative position encodings, the model significantly enhances its

ability to capture the contextual interdependencies and the intricate hierarchical

structures within texts. This approach allows for a more nuanced understanding

of the spatial and sequential relationships between textual elements, crucial for

accurately extracting event role fillers [119].

Sinusoidal position encoding, inspired by the Transformer architecture [27], pro-

vides a continuous representation that can effectively model the sequence of words

or tokens within a document. This method is particularly beneficial for modelling

long-range dependencies, a common challenge in document-level tasks.

Relative position encoding, on the other hand, focuses on the relative distances

between tokens, offering a dynamic way to understand the context and rela-

tionships between words regardless of their absolute position in the text. This

method is crucial for tasks like event extraction, where the relevance of a token

to an event may depend more on its relation to other key tokens than its specific

location within the document.
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5.3.2 Sinusoidal Position Encoding

The first step is to compute positional encodings that absolute and relative po-

sitional encoding methods are chosen from. Transformer [119] model raises an

absolute positioning called the sinusoidal position method which incorporates sine

and cosine functions with varying frequencies to encode the position of each token

in the input sequence. The equations are as below:

Pos enc(pos, 2i) = sin
( pos

100002i/dmodel

)
Pos enc(pos, 2i+ 1) = cos

( pos

100002i/dmodel

) (5.8)

where pos represents the position of the token, ranging from 0 to the length of

the input sequence minus 1. 2i and 2i + 1 denote the even and odd dimensions

respectively in the positional encoding matrix. dmodel represents the dimension-

ality of the model, which is typically the same as the embedding dimension used

for the input tokens.

The sinusoidal position encoding equations follow a pattern where the frequencies

of the sine and cosine functions decrease exponentially as the dimension index i

increases. The scaling factor 10000 ensures that the frequencies vary appropri-

ately across different dimensions. The choice of this factor is based on heuristics

and empirical observations to achieve a reasonable range of frequencies.

5.3.3 Relative Position Encoding

Sinusoidal position encodings are absolute, which means the encoding is unique

to the position of a token in a sequence and does not change relative to other

tokens. Instead of giving each token a static position encoding, relative position

encoding provides a dynamic encoding based on the token’s position relative to

other tokens in the sequence. This means the encoding changes depending on

where the token is in the sequence and how it is positioned relative to other
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tokens.

rel pos embij = E(j − i+ max len)

rel pos emb finals = repeat

(∑
j

rel pos embij, batch size

)

outputs = xs + repeat

(∑
j

rel pos embij, batch size

)

E(p) = Wp

(5.9)

where i and j represent indices within a sequence, and E represents the embed-

ding function defined by the trainable weights of the relative position encoding

module. Max len is a predefined constant to handle negative positions. The

operation j − i+max len ensures that all relative positions are non-negative.

Repeat represents the operation of summing the embeddings along the sequence

length dimension and repeating the operation for each sequence s in the batch.

This results in a tensor of the same size as the input tensor, (batch size, seq len, d model).

Then, adding the relative position embeddings to the original sequence embed-

dings. xs represents the original sequence embeddings, and the result is a tensor

where relative position information is incorporated into the original sequence em-

beddings.

5.3.4 Word embedding

Word embeddings are a powerful tool for converting discrete words into con-

tinuous vector representations that capture their semantic meanings. However,

by themselves, word embeddings don’t carry any information about the order

of words in a sequence, which is crucial for many natural language processing

tasks. We propose positional word embedding in three parts including GloVe,

Contextualized embeddings and position encoding.
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5.3.4.1 GloVe Embedding

GloVe is a powerful word representation technique that provides dense vector

representations for words that capture different aspects of their meanings based

on their co-occurrence patterns in a given corpus [96]. Typically, pre-trained

GloVe embeddings are available in dimensions such as 50, 100, 200, or 300. For

the model utilized in this thesis, pre-trained embeddings in 100 dimensions are

applied.

GloVei = G(i) (5.10)

5.3.4.2 Contextualized Embeddings

GloVe generates a single static embedding for each word regardless of the context.

BERT [27] provides dynamic context-dependent embeddings which means that

the BERT representations for a word can change depending on the sentence in

which the word is used. This characteristic presents as a significant advantage

when dealing with homonymous words, that is words which are spelled the same

but have different meanings, and polysemous words that with multiple meanings.

To compare with the previous study, average of all twelve layers representations

are selected to freeze the weight . The equation is as follows:

BERTi = BERT (i) (5.11)

5.3.4.3 Embedding Combination

Figure 5.6: Word Embedding is GloVe and BERT Concatenation plus Positional
Encoding
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To combine GloVe, BERT, and positional encoding into a single word em-

bedding, GloVe and BERT embeddings are concatenated first. Then positional

encoding is added to the last concatenation result. The equation is as follow:

Ei = concat(G(i) +BERT (i)) + pos embedding(i) (5.12)

5.4 Experiment

We test the performance of the positional information in multi-granularity con-

textualized encoding model regarding event role filler extraction using MUC-4 [84]

which is benchmarked to event extraction applications. Three aspects, namely

are relative encoding, static encoding and traditional multi-granularity model,

are compared in experiment.

5.4.1 Environment and Parameters

The results from a previously reported multi-granularity model [30] were quite

encouraging. The novel multi-granularity reader, which dynamically blends both

sentence and paragraph level context, performed better than both the traditional

non-end-to-end systems and the base k-sentence readers. Thus, the configuration

of the system in the experiment was set the same as the multi-granularity model.

The model was implemented on a machine with the following specifications: 6G

graphical memory card GPU and 32 RAM computer. The system runs on a

Windows 10 operating system. And all programming was done in Python 3.9.

The deep learning portion of the system was built using PyTorch framework. We

then proceeded to use the fine tuned sentence-level and paragraph-level reader

as the multi-granularity modules. For word embedding, concatenation of 100 di-

mensional GloVe and 768 dimensional BERT pre-trained embeddings are utilized.

This leverages the semantic richness of GloVe and the contextual understanding

provided by BERT. In addition to this, positional encoding information is added
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to the 868 dimensional embeddings for a word.

5.4.2 Dataset

The dataset used in this experiment is known as MUC-4 and arose from a se-

ries of conferences over several years entitled Message Understanding Conference

(MUC). These conferences were held to discuss and evaluate the performance of

different types of natural language processing systems. The MUC-4 dataset pro-

vides a basis for extracting structured information from unstructured text data.

Specifically, the MUC-4 dataset is used for tasks related to event extraction and

revolves around a terrorism domain and involves a collection of texts that need

to be processed to identify key information, such as the perpetrator of an attack,

the type of attack, the location, the time, and the result.

The dataset itself consists of a set of news articles in English that describe vari-

ous terrorist activities. There are 1,700 documents which are divided into 1,300

training set, 300 development set and 300 test set to train, evaluate and test the

model’s performance.

5.4.3 Justification of Datasets Used

Complex Event Structures: The datasets may have been selected due to their

complex event structures, which include various roles like perpetrators, targets,

and victims, challenging the models to accurately identify and classify nuanced

relationships and entities within text.

Real-world Relevance: The datasets probably have high real-world relevance, con-

taining events that are significant for security, social, or economic analysis. This

relevance ensures that the improvements in model performance have practical

implications for information retrieval, surveillance, or decision-making.

Benchmarking Purposes: These datasets might serve as benchmarks in the field

of event extraction, allowing for a direct comparison with previous works. Using

well-established datasets ensures that the results are meaningful and comparable
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across different studies.

5.4.4 Evaluation Methods

Precision, Recall, and F1 score are common evaluation metrics used in infor-

mation retrieval and deep learning tasks to measure the quality of a model’s

predictions [58]. A brief description of each of these metrics is as follows.

Precision measures how many of the items that a model identified were actu-

ally relevant. It is calculated as the number of true positives, which are items

correctly identified as relevant, divided by the sum of true positives and false

positives,which are items incorrectly identified as relevant. A higher precision

score indicates that when the model identifies something as relevant which is

likely to be correct. Precision is crucial when it’s important for the extracted

event role fillers to be as accurate as possible. A high precision indicates that the

model returns more relevant results than irrelevant ones. This can be particu-

larly important if false positives (incorrectly identified fillers) could have negative

consequences.

Recall measures how many of the truly relevant items were identified by the

model. It is calculated as the number of true positives divided by the sum of

true positives and false negatives which are relevant items that the model failed

to identify. A higher recall score means the model is good at catching all the

relevant cases. Recall is important when it’s crucial to extract as many relevant

event role fillers as possible. A high recall indicates that the model is good at

capturing all potentially relevant fillers. This may be key if missing a relevant

role filler could have detrimental effects.

The third metric discussed here, known as F1 score, is the harmonic mean of pre-

cision and recall, and it provides a single measure that balances the two. Because

it considers both precision and recall, the F1 score can be a better measure than

either metric alone, particularly in situations where the distribution of positives

and negatives is uneven. An F1 score reaches its best value at 1 and worst at 0.
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Head Noun Match and Exact Match are two major ways to measure the perfor-

mance of event role filler extraction tasks. Head Noun Match means a correct

extraction is counted if the head noun of the extracted phrase matches with the

head noun of the target phrase. For example, if the target is ’the new table’ and

the extracted phrase is ’new table’, then it is considered a correct extraction,

because the head noun ’table’ matches in both phrases. Exact Match means a

correct extraction is counted only if the extracted phrase exactly matches with

the target phrase. Using the same example, ’the new table’ would only be consid-

ered a correct extraction if the extracted phrase was also exactly ’the new table’.

This is a stricter measure than the head noun match, as it requires the complete

phrase to be correct, not just the head noun.

5.4.5 Techniques Used in Comparison

Multi-Granularity (MG): This approach is likely chosen for its ability to capture

information at different levels of detail, from individual words to entire phrases

or sentences. This is particularly useful for event extraction, where the signifi-

cance of an entity or action can depend on its context within a larger narrative

structure.

Sinusoidal Position Multi-Granularity (Sin Pos MG): The inclusion of sinusoidal

position embeddings addresses the limitation of static embeddings by incorporat-

ing information about the relative or absolute position of words in the text. This

technique is particularly relevant for event extraction, where the order of words

can change the meaning of an event or its participants’ roles.

Relative Position Multi-Granularity (Rel Pos MG): This method extends the idea

of positional information by focusing on the relative positions of words to each

other, which is crucial for understanding complex event structures where the re-

lationship between entities and actions is not merely linear but hierarchical or

networked.

These techniques are chosen because they represent innovative approaches to
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addressing the challenges of event extraction, such as the need to understand

context, capture relationships between entities, and deal with the variability of

natural language. By comparing these methods, the study aims to highlight the

importance of positional and granularity considerations in improving the perfor-

mance of event extraction systems.

5.4.6 Experiment Result

The metrics used for evaluation are Precision, Recall, and F1 score, with the re-

sults reported separately for Head Noun Match and Exact Match. The MACRO

average accuracy results are in table 5.1 Adding Sinusoidal Position Encoding to

Head Noun Match Exact Match
Precision Recall F1 Precision Recall F1

Multi-Granularity (MG) 56.44 62.77 59.44 52.03 56.81 54.32
Sinusoidal Position MG 54.18 67.45 60.09 49.46 62.96 55.40
Relative Position MG 61.26 60.06 60.65 56.49 56.81 56.74

Table 5.1: Performance Comparison between Multi-Granularity and Positional
Multi-Granularity Methods.

the MG model slightly decreases precision but significantly improves recall, indi-

cating that the model is able to capture more relevant instances at the expense

of incorrectly identifying some irrelevant instances. The F1 score, which balances

precision and recall, shows a slight improvement for Head Noun Match, but a

small decrease for Exact Match. This suggests that Sinusoidal Position Encoding

may be more beneficial when Head Noun Match are acceptable.

The Relative Position MG encoding shows a significant improvement in preci-

sion over both the base MG and Sinusoidal Position MG models, with a small

decrease in recall for the Head Noun Match and almost no change in recall for

Exact Match. This implies that the model is better at accurately identifying rel-

evant instances, but may miss some instances. The F1 scores for both the Head

Noun Match and Exact Match are higher than for the other two models, suggest-

ing that the Relative Position MG model provides the best overall performance
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among the three.

In summary, the use of position encoding methods, specifically Relative Posi-

tion Encoding, has shown to improve the performance of the base MG model.

These findings suggest that incorporating positional information can enhance the

extraction accuracy in tasks such as event role filler extraction. However, the

optimal choice of position encoding may depend on the specific task and the im-

portance placed on precision versus recall.

Each event role categories results are in table 5.2. The F1 score, which pro-

PerpInd PerpOrg Target Victim Weapon
P R F1 P R F1 P R F1 P R F1 P R F1

MG 53.08 52.23 52.65 50.99 67.88 58.23 60.38 64.10 62.18 49.34 62.05 54.97 68.42 67.57 67.99
Sin Pos MG 58.20 50.68 54.18 57.55 59.52 58.52 60.31 75.86 67.20 44.85 75.79 56.35 50.00 75.41 60.13
Rel Pos MG 64.77 43.24 51.86 50.37 65.48 56.94 64.66 58.62 61.49 53.28 67.37 59.50 73.21 65.57 69.18

Table 5.2: Event Role Performance Comparison for Multi-Granularity (MG), the
Sinusoidal Position Multi-Granularity (Sin Pos MG) and the Relative Position
Multi-Granularity (Rel Pos MG).

vides a balanced measure of a model’s precision and recall, is particularly crucial

in the context of information extraction tasks like MUC-4 Event Role Filler Ex-

traction. A higher F1 score indicates a more balanced and accurate model, which

correctly identifies more true positives while minimizing both false positives and

false negatives.

In the Table 5.2, it is clear that the Relative Position Multi-Granularity (Rel

Pos MG) model typically performs well across multiple event role categories -

Perpetrator Individual (PerpInd), Perpetrator Organization (PerpOrg), Victim,

and Weapon - consistently achieving the highest or competitive F1 scores.

Although for the Perpetrator Individual (PerpInd) category, the Multi-Granularity

(MG) model exhibits the highest F1 score, the Relative Position MG model sur-

passes both the MG and the Sinusoidal Position MG models in the Perpetrator

Organization (PerpOrg) and Victim categories in terms of F1 score. This suggests

that relative position information can significantly enhance the model’s perfor-

mance, particularly in correctly identifying organizations and individuals involved
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in the event.

Interestingly, in the Target category, the Sinusoidal Position MG model achieves

the highest F1 score, indicating that in this specific category, considering absolute

position information can be beneficial. However, for the Weapon category, the

Relative Position MG model returns to providing the highest F1 score, empha-

sizing the importance of relative positioning in such scenarios.

In conclusion, despite some exceptions, the Relative Position MG model tends to

have overall bast performance, achieving higher or highly competitive F1 scores

across different event role categories. This emphasizes that considering relative

position information can substantially enhance the extraction of event role fillers

which indicates that the Relative Position MG model is an effective approach for

tasks like MUC-4 Event Role Filler Extraction.

Each event role results analysis suggests that different models excel in different

aspects. Depending on the specific needs of a task-whether it is more important

to minimize false positives (higher precision), minimize false negatives (higher

recall), or balance the two (higher F1)-one may choose to use the MG, Sinusoidal

Position MG, or Relative Position MG model. However, the Relative Position

MG model shows the most consistent performance across different roles, indicat-

ing that considering the relative positions of tokens could be beneficial for the

task of event role filler extraction.

5.5 Analysis

The following provides a discussion of the benefits of Sinusoidal and Relative

Position encodings that are relevant to the experiments within this chapter.

• Sinusoidal Position Encoding for each position is a combination of sine

and cosine functions of different frequencies. Specifically, each dimension

of the positional encoding corresponds to a sine or cosine of a different fre-

quency, which allows the model to potentially learn to attend to relative
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positions based on these frequencies. The use of a combination of sine and

cosine functions creates a unique and continuous mapping for each position,

which enables the model to easily learn relative positional relationships. Ad-

ditionally, because the sine and cosine functions are periodic, this encoding

method can create meaningful relationships between distant positions.

• Relative Position Encoding focuses on the relationships between po-

sitions. This can be thought of as creating a ’difference vector’ between

every pair of positions, which directly models the concept of ’distance’ be-

tween words in a sequence. This method is particularly powerful because

it transforms the problem with inference of absolute positions that can be

arbitrarily far apart, and difficult for the model to generalize to reason

about relative distances which are more bounded and easier for the model

to understand. Relative position encoding emphasizes the distance or dif-

ference between positions. For instance, instead of considering a word as

being the 10th word in a sentence (absolute position), one could consider

it as being 2 words after the 8th word, 1 word before the 11th word, and

so on. This approach is especially useful in natural language understanding

tasks because the semantic relationship between words often depends more

on their relative positions than their absolute positions. For example, in

the sentence ’The cat chased the mouse,’ the relationship between ’cat’ and

’chased’ is the same regardless of whether ’cat’ is the second word in the

sentence or the tenth word in a longer sentence.

Traditional multi-granularity encoding models utilize BERT embeddings that in-

cludes position information, which are added to the word embeddings to provide

the model with some notion of the position of the words in a sequence. However,

the BERT model’s position embeddings are learned, and the model is limited to

a fixed sequence length that is determined at training time.

Adding Sinusoidal Position and Relative Position encodings can offer advantages

over this learned position encoding for several reasons:
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• Flexibility: Unlike the learned position embeddings in BERT, sinusoidal

and relative position encoding can handle sequences of any length. This can

be beneficial in tasks where the input sequences can vary greatly in length.

• Different positional perspectives: The position of a word in a sentence

can influence its meaning, and different tasks may require different kinds of

positional information. The learned position embeddings in BERT provide

a ’global’ position perspective, but they may not be as effective at captur-

ing ’local’ positional relationships between nearby words. Sinusoidal and

relative position encodings can provide additional or alternative positional

perspectives that can be beneficial in certain tasks.

• Expanded Representational Capacity: Relative position encoding has

a larger and more flexible representational capacity. If n is the sequence

length, the absolute position encoding has n unique embeddings, whereas

the relative position encoding has n2 unique embeddings, one for each pair-

wise combination of positions in the sequence. This allows RPE to capture

a broader range of positional relationships, which may be why it often out-

performs absolute position encoding methods on certain tasks.

5.6 Conclusion

In this study, the addition of relative position encoding in a multi-granularity

model for Document-Level Event Role Filler Extraction has been investigated.

The main findings suggest that incorporating relative positional information in

the model significantly improves performance over using absolute position encod-

ings or no explicit position encoding. The improvements appear to have arisen

from the expanded representational capacity of relative position encoding that is

applied here, which can capture a broader range of positional relationships.

In comparison to the standard Multi-Granularity approach and Sinusoidal Posi-

tion MG, the Relative Position MG consistently showed a superior or comparable
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performance across various event roles, particularly in the F1 score which com-

bines precision and recall. This indicates that the model is more balanced and

effective at identifying role fillers in both common and edge-case scenarios.

While the model with relative position encoding demonstrated strong perfor-

mance, there are still areas for improvement. For example, this model did not

consistently outperform in every category, indicating there may be other factors

influencing the performance.

For future work, it will be beneficial to explore how different types of position

encoding approaches could be combined or adapted to further improve model

performance. More complex or task-specific position encoding strategies could

yield additional improvements.

Furthermore, it would be interesting to investigate the impact of positional encod-

ing in other natural language processing tasks, particularly ones that rely heavily

on the relative positions of elements in a sequence. Such tasks could potentially

benefit even more from the expanded representational capacity of relative posi-

tion encoding.

Moreover, there could be potential to enhance the model’s performance by in-

corporating other forms of contextual information, such as semantic relationships

between elements in a sequence or larger-scale document structure. Arguably, this

can be especially beneficial for tasks dealing with longer texts or more complex

event structures.
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Chapter 6

Conclusion

This thesis has made foundational contributions to the field of text classification

and information extraction through innovative deep learning algorithms, which

can be utilized to improve NLP applications such as information compliance

checking systems. The research in this thesis has focused on enhancing the ef-

ficiency and robustness of NLP techniques powered by deep learning methods.

Novel methodologies and approaches in the fields of text classification, informa-

tion extraction, and document-level event role filler extraction have been applied.

6.1 Overview of The Previous Methods

The first method (described in Chapter 3) is centred around text classification,

where the goal in those studies was to improve the accuracy of compliance in-

formation checking using GCNs. Traditional neural networks struggle with cap-

turing the complex relations within a document, which are crucial for accurate

information compliance checking. To overcome this limitation, the proposed ap-

proach involved a document-relational GCNs that incorporated cumulative TF-

IDF document-document relations as features. This was to allow for the creation

of complex and rich relation-based adjacent matrix graphs, leading to superior

accuracy in text classification for compliance documents.
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The second method focused on information extraction, specifically in the con-

text of heterogeneous linguistic graphs. Pre-trained language models such as

BERT are powerful in capturing complex linguistic information, but they face

challenges in handling semantic relationships and noisy data. To address this,

the novel GraphNorm method was introduced as an approach to fine information

extraction from such models. GraphNorm employs dynamic normalization layers

for each GNN module in the HLG model, which improves accuracy and reduces

memory consumption during the training process. In experiments described in

Chapter 4, by regulating the influence of outliers and noisy data points, the ap-

plication of GraphNorm enhanced the training model’s resilience to graph modi-

fications, and resulted in more effective in handling real-world scenarios.

The third method revolved around document-level event role filler extraction,

which requires capturing contextual interdependencies and internal hierarchical

structure in text. To achieve this, novel position encoding strategies were pro-

posed within a multi-granularity contextualized model. By integrating sinusoidal

and relative position encodings at different levels of granularity, a richer and more

contextualized representation of words were obtained. The approach, described

in Chapter 5, combined GloVe word embeddings with context-aware BERT em-

beddings, and this effectively captured sequential and contextual aspects of text

in a dataset, MUC-4, so as to improve the accuracy of event extraction tasks.

Overall, these three approaches described in this thesis contributes to the ad-

vancement of information compliance checking by enhancing the efficiency and

accuracy of NLP techniques. By incorporating innovative approaches in text clas-

sification, information extraction, and document-level event role filler extraction,

this research opens up new possibilities for improving productivity, accuracy, and

automation in information checking tasks. The following sections describe how

the methods introduced in this thesis provide valuable insights, and how tech-

niques that can be applied in other domains and industries, leading to further

advancements in machine learning and AI.
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6.2 Significance of the thesis

The thesis makes significant contributions to the field of information compliance

checking through the development and refinement of deep learning algorithms, as

discussed in the three major points as below.

6.2.1 Text Classification on GCNs

Novel Methodology: This study has introduced a novel methodology in the

context of GCNs, termed document-relational GCNs. It departs from traditional

methods in that it created adjacent matrix graphs in GCNs at the word-document

and word-word levels, and added a new dimension of document-document rela-

tions into the learning.

Utilization of Cumulative TF-IDF. This thesis has leveraged cumulative TF-

IDF to generate document-document relations, and the results showed that this

approach added complexity and richness to the adjacency matrix graph used for

text classification. This addition resulted in better results in text classification

tasks.

Performance Evaluation on Multiple Datasets. The research on this topic

within the thesis evaluated the performance of the new model using five popular

benchmark databases. This comprehensive evaluation strengthened the validity

of the model and offered a robust comparison against current methods.

Investigation of Optimal Model Parameters. This thesis explored the op-

timal parameters for the document-relational GCNs model and discovered that

by increasing the number of hidden layers, specifically between 1200 and 1500,

the test accuracy of the model was improved.

Improvement in Accuracy. The proposed model demonstrated improved ac-

curacy over the original text GCNs and the synonym augmented GCNs in four

out of five datasets. This indicated that the inclusion of document-document

relations as a feature could indeed enhance the text classification performance.
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6.2.2 Text Classification on HLG

GraphNorm in HLG: This work introduced GraphNorm, an innovative nor-

malization method to improve the performance of HLG models. Application of

this method was aimed to enhance model accuracy during the training process.

Dynamic Normalization Layers: GraphNorm added dynamic normalization

layers to each GNN module in the HLG model. This approach retained reliable

node information from the graph and mitigated noise, and increased the model’s

resilience to graph modifications.

Generalization Potential: The research showed that GraphNorm has the po-

tential to generalize across a variety of datasets, and achieved superior accuracy

in 4 out of 5 benchmark datasets, and this altogether suggests that it could be

beneficial for a wide range of NLP applications.

6.2.3 Information Extraction

The introduction of novel position encoding strategies within a multi-granularity

contextualized model significantly advanced the extraction of event role fillers in

information compliance checking. By integrating sinusoidal and relative position

encodings at different levels of granularity, the method captures the contextual in-

terdependencies and internal hierarchical structure in text more effectively. This

contribution results in a richer, more contextualized representation of words, cru-

cial for accurate event extraction. The research expands the understanding of

position encoding techniques and their application in document-level event anal-

ysis, with implications for improving information extraction in various domains.

Collectively, these three contributions described in this thesis push the boundaries

of deep learning in the context of information compliance checking. The research

has introduced innovative methodologies that improved the efficiency, accuracy,

and automation of labour-intensive tasks in information checking fields. By ad-

dressing the challenges associated with text classification, information extraction,

and document-level event analysis, the thesis offers valuable insights and tech-
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niques that can be applied in other industries and domains. The contributions

made in this research have the potential to revolutionize information checking

workflows and pave the way for future breakthroughs in machine learning and

artificial intelligence.

6.3 Future Researches

The thesis opens up several avenues for future research in the field of information

compliance checking and deep learning. Some potential areas of exploration are

discussed below:

Document Relational Investigation: Filtering of useful or important doc-

ument relation features, the development of sophisticated algorithms for calcu-

lating document-document relations, and the simplification of the graph could

further improve the model. This foresight helps direct further research in this

area.

Enhanced Graph Neural Networks: Further advancements can be made in

the design and implementation of GCNs for information compliance checking.

Future research can focus on exploring more sophisticated graph structures and

techniques for feature engineering. This includes investigating different graph

architectures, exploring attention mechanisms in GCNs, and leveraging other

graph-based deep learning models, such as graph attention networks or graph

transformers. Additionally, the integration of domain-specific knowledge and ex-

pert rules into GCNs can be explored to further improve their performance in

compliance checking tasks.

Multi-Modal Learning: Compliance information often contain multiple types

of information, including textual descriptions, graphical elements, and spatial re-

lationships. Future research can investigate the integration of multi-modal learn-

ing techniques to leverage these different modalities for more comprehensive and

accurate compliance checking. This can involve combining text-based deep learn-

ing models with image-based models, such as CNN, and exploring methods to
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fuse information from multiple modalities effectively.

Active Learning and Data Augmentation: information compliance checking

typically requires a large amount of labelled data for training deep learning mod-

els. Future research can explore methods for active learning, where the model

actively selects the most informative data samples to be labelled, reducing the

annotation effort. Additionally, data augmentation techniques specifically tai-

lored for information can be developed to generate synthetic data and increase

the diversity of the training set. This can help improve the robustness and gen-

eralization of the models in real-world scenarios.

Explainability and Interpretability: Deep learning models are often consid-

ered as black boxes, making it challenging to understand their decision-making

processes. Future research can focus on developing methods for interpreting and

explaining the decisions made by compliance documents checking models. This

can involve techniques such as attention visualization, feature attribution, and

rule extraction, which can provide insights into how the models analyze and in-

terpret documents to make compliance judgments.

With regards to the GraphNorm-HLG experiments carried out in this thesis

(Chapter 4), future work could focus on evaluating GraphNorm-HLG using larger,

more complex datasets than the five benchmark datasets used. Also, datasets spe-

cific to different domains, such as medical, financial and legal texts, could also be

used so as to assess GraphNorm-HLG performs in a variety of other real-world

situations.

Another point of future research is to optimize GraphNorm for Memory Usage

and Speed . While GraphNorm improves accuracy and reduces memory con-

sumption, there is likely further optimization that can make it more efficient in

terms of computational time and memory usage. Future work could also investi-

gate how GraphNorm influences various aspects of NLP tasks, such as semantic

understanding, entity recognition, and sentiment analysis, among others.

Studies that focussed on positional encoding in this thesis involved the application
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of two strategies, sinusoidal and relative positional encodings, for the first time

in the domain of Document-Level Event Role Filler Extraction. This innovative

application of encoding methods enhances the understanding of the contextual

interdependencies and the hierarchical structure in a given text. Also, a com-

bination of GloVe word embeddings, BERT embeddings and the new positional

encodings were applied, and this resulted in richer, more contextualized repre-

sentation of words from datasets. This work shows that enhanced representation

is particularly crucial for tasks like event extraction. Furthermore, the proposed

method, which harnessed the strengths of BiLSTM-CRF models and the new

positional encoding strategies, yielded superior performance on event role filler

extraction tasks. This superiority was demonstrated through experimental results

using the MUC-4 dataset, where the model outperformed existing benchmarks.

Our relative position encoding approach showed high performance across multiple

event role categories. This is indicative of the broad applicability and general-

ization of the model to various tasks and scenarios. Our analysis of the results

provides valuable insights into which position encoding strategy works best for

specific tasks and event role categories. These insights offer guidelines for future

task-specific model adaptation.

By addressing these future research directions, the field of information compliance

checking can continue to benefit from the advancements in deep learning, leading

to more accurate, efficient, and automated approaches for ensuring compliance

checking domains.
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