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Abstract 

Metropolitan areas around the world are dealing with urgent problems 

brought on by the use of personal vehicles and the environmental harm their 

use causes. Hence, the need for reliable networks of public transport (PT) is 

growing as it is essential for sustainable development. However, the 

management of PT via urban planning policies poses challenges in quantifying 

their effectiveness. Accurate assessment of PT performance is crucial for 

developing optimal solutions and informing future plans for governments, and 

both direct and external effects must be taken into account if the PT network is 

to operate more effectively. This study considers both direct and external 

effects on fundamental PT infrastructure, public transportation services, 

economic benefit, and sustainable development levels in order to enhance the 

performance of PT networks.  

Further, in order to propose the optimal solutions for PT network 

performance under uncertainty, this study develops a novel framework to 

optimise the performance of public transportation under ambiguous 

circumstances at various levels of aspiration. The proposed methodology is 

exemplified and validated using three case studies from Australia—the cities of 

Stonnington, Bayswater, and Cockburn.  

The model framework consists of the following three stages. In the first 

stage, we investigate the PT criteria that can influence PT network performance 

from basic PT infrastructure, service, economic benefit, and sustainable 

development aspects. To identify the indictors of each aspect, previous studies 

about the PT performance measurement systems are reviewed. Furthermore, 

multiple-criteria decision-making methods are compared and discussed. This 

study uses analytic hierarchy process (AHP) model and combines it with 

existing assessment and evaluation index systems. Then we establish a PT 

criteria matrix using an AHP. The developed method is utilised to weight 15 
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sub-criteria and four levels of criteria, and to measure PT network performance 

in the three case study cities.  

The second stage is to propose a multi-aspiration-level goal programming 

(MALGP) approach to optimise the performance of the PT network based on 

the criteria weight and performance results. Improving on the original goal 

programming model, the proposed method includes a criteria aspiration level 

selection process for choosing criteria optimal values. The developed approach 

in this research offers an innovative way to select criteria aspiration levels for 

formulating objective functions to calculate optimal solutions among the three 

cases. 

In the third stage, we analyse the probability of the best solution using 

Monte Carlo simulation to manage uncertainty. We investigate the criteria 

uncertainty level based on existing criteria risk rankings. In this study, it is 

assumed that decision makers have control over each criterion's performance 

and that each criterion's likelihood of occurring is between -5% and +10%. In 

addition, the Monte Carlo simulation process also shows that the criteria's most 

likely values are chosen during the optimisation process. The results of the 

Monte Carlo simulation demonstrate the most sensitive criterion during the 

optimisation process. The criteria impact on the optimisation outputs of all cities 

are also identified. For PT network planners and policymakers, the proposed 

models and results offer useful information and recommendations on how to 

improve public transportation in their cities. 

Finally, the three-stage optimisation under the uncertainty framework is 

proposed to comprehensively optimise the PT network performance. The 

innovative framework can both generate the city PT performance reports and 

optimisation scenario by integrating MCDM, optimisation, and risk management 

methods. The results can be applied in MCDM for proposing PT performance 

optimisation solutions. 
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This thesis provides methodological and practical contributions to the field 

of PT performance optimisation under ambiguous circumstances. To optimise 

the performance of the public transportation network, a MALGP model, a PT 

criteria matrix-AHP model, and the incorporation of Monte Carlo simulation to 

examine the likelihood of optimal solutions are among the methodological 

contributions. The contributions to practical knowledge highlight the elements 

that affect the performance of the public transportation system and suggest the 

best options for the case study regions, while the results of the uncertainty 

analysis can be used to design strategies and plans for improving the 

performance of the public transportation system. The suggested framework 

gives decision makers a guide for allocating resources for improving the 

performance delivery of the public transportation network in accordance with 

governmental requirements. 
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Chapter 1: Introduction 

1.1 Background 

The increasing use of private cars and the resulting environmental damage 

have been shown to be causing a number of urgent problems for metropolitan 

areas around the world (Loukopoulos et al., 2005). In response to these 

problems, utilising public transport (PT) is one important strategy, particularly 

in regard to sustainable development, and the need for effective and efficient 

PT networks is growing (Tumlin, 2012).  

Both developing and developed nations have their own policies and 

strategies for sustainable development, particularly when it comes to promoting 

PT modes (UN-Habitat, 2015). However, UN-Habitat published a document in 

2015 that serves as a roadmap for sustainable development. People are 

encouraged to use PT through a variety of urban planning policies and 

strategies.  

To quantify the effectiveness of strategies and procedures, assessment of  

PT network performance requires accurate identification of the relevant criteria, 

and based on the evaluation, optimal solutions under uncertain conditions can 

be deduced and offered to stakeholders. Current research about providing 

governments with optimisation framework is, however, limited. 

The formulation of a model framework, assessment of PT performance, and 

proposition of effective strategies amidst uncertainty constitute key stages in 

proposing optimal PT network strategies (Cyril et al., 2019; Cartenì et al., 2022). 

Each stage requires methods to enhance the performance of the PT network. 

Prior studies evaluating PT have predominantly focused on singular aspects, 

such as service quality, accessibility, and sustainability (De Ona et al., 2016; 

Fadaei & Cats, 2016; Curtis & Scheurer, 2017; Barabino et al., 2020; Tiznado-

Aitken et al., 2021). While these assessments have been extensively utilised in 
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evaluating urban PT performance, a critical need exists to extend this to 

proposing planning scenarios aimed at optimising PT performance under 

uncertain conditions. Achieving these objectives includes a comprehensive 

discussion of the existing literature, including resolving ambiguities in 

theoretical and methodological issues (Manzo et al., 2015; Cyril et al., 2019). 

A comprehensive quantification and evaluation system to a operate PT 

network effectively is impacted by multiple factors. Daraio et al. (2016) stated 

that stakeholders are interested in both direct effects (level of economic benefit, 

quality, and efficiency of the PT service) as well as external effects (level of 

basic PT infrastructure, and level of sustainable development). Consequently, 

the identification of these criteria and their associated indicators has a wide 

potential to improve the performance evaluation process (Daraio et al., 2016). 

From a multiple-criteria decision-making (MCDM) perspective, identifying 

criteria scores and providing performance reports are the key tasks for PT 

network performance evaluation (Nassereddine & Eskandari, 2017). As one of 

the main techniques for PT performance evaluation, analytical hierarchy 

process (AHP) is a MCDM technique that enables decision makers (DMs) to 

handle complex problems with subjective criteria and multiple conflicts (Saaty, 

1977; Nosal & Solecka, 2014; Ryus, 2015; Daraio et al., 2016). Additionally, the 

model can also weight and score the criteria in conjunction with the determined 

grade level of the criteria (Cyril et al., 2019). 

While MCDM methods have been extensively employed in PT evaluation, 

their utilisation for proposing optimal solutions based on the evaluation results 

remains somewhat constrained. The utilisation of AHP-based criteria 

optimisation via goal programming (GP) facilitates the optimisation of selection 

or evaluation, while accommodating relevant conditions or constraints (Tamiz 

et al., 1998; Lin et al., 2014; Cyril et al., 2019). However, the current GP method 

encounters limitations in resolving the optimisation involving criteria with 
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multiple aspiration levels. Thus, the lack of a multi-aspiration-level selection 

process in the GP method can impact the identification of optimal strategies in 

practical applications. 

Meanwhile, uncertainty frequently precipitates deviations from the initial 

anticipations or plans. A PT network comprises diverse PT modes, such as 

buses and trains. Improving the PT network entails uncertainty and risk, which 

will significantly impact the optimisation results. Schmidt et al. (2017) asserted 

that there are always incomplete or incorrect parameters, inaccurate data, and 

disturbances. Addressing these uncertainties necessitates the employment of 

optimisation algorithms (Schmidt et al., 2017). 

In the pursuit of creating a comprehensive tool to optimise PT performance 

under ambiguous circumstances at various levels of aspiration, several 

important aspects of enhancing PT performance have been overlooked (Cyril 

et al., 2019; Schmidt et al., 2017). This study therefore aims to develop an 

appropriate optimisation framework for the performance of a variety of criteria 

with multiple aspiration levels in uncertain conditions for PT networks.  

1.2 Research questions 

The main research question is how can suitable mathematical models to assess 

and optimise PT network performance under uncertainty be established? 

Four sub-research questions are listed as follows: 

 What criteria need to be considered to evaluate PT network performance? 

 How should the criteria of PT network performance be weighted? 

 How can the performance of the PT network be optimised? 

 How can the performance of the PT network be optimised under 

uncertainty? 
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1.3 Research objectives 

The primary objective of this study is to develop a framework that integrates 

qualitative and quantitative techniques for comprehensive multi-criteria PT 

network performance evaluation and optimisation under uncertainty. In 

particular, the main tasks of this research include: 

 Developing a PT criteria matrix for PT performance assessment at 

various areas of application. 

 Ranking the PT performance by using a developed PT-criteria-matrix 

AHP model. 

 Optimising the PT performance by using an integrated PT-criteria-

matrix-AHP-MALGP model. 

 Optimising the PT network performance under uncertainty by using MCS. 

 Applying the developed evaluation and optimisation model to assess real 

world cases and offer advice and guidelines to relevant DMs. 

1.4 Significance 

The novelty of this thesis is threefold. First, this study develops a novel 

multi-level GP approach that is dependent on AHP and is used with 

PT networks. The second is the goal of developing the optimal strategy to 

improve the performance of PT, with multiple levels of aspiration, using PT 

criteria matrix-AHP (PTCM-AHP) models. Third, this study employs the Monte 

Carlo simulation (MCS) to enhance PT network performance in an uncertain 

environment. 

1.5 Structure of the thesis 

This thesis includes seven chapters, which are organised as follows. 

Chapter 1 provides background for this research, introduces the research 

questions, objectives, and methods, and offers an overview of the thesis. 
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Chapter 2 examines the current literature on the PT evaluation model, the 

MCDM model, the GP model, and the risk management model. Their related 

concepts are also demonstrated. 

Chapter 3 illustrates the AHP model formulation. The PTCM-AHP model is 

developed based on the existing PT evaluation index and indicators. The 

proposed model is then applied to three case study areas in Australia.   

Chapter 4 investigates the formulation of the GP and multi-choice goal 

programming (MCGP) models. We improve on the existing models and then 

initiate a MALGP model. The developed model is used in all three cities and 

recommends the best solutions. 

Chapter 5 studies the criteria’s uncertainty level and establishes model 

inputs for three cities in MCS. For case study areas, sensitivity analysis, feature 

importance, and test accuracy are presented to optimise solutions under 

uncertain conditions. 

Chapter 6 proposes a three-stage optimising process for PT network 

performance under uncertainty, and the process of each stage’s model is 

demonstrated.  

Finally, Chapter 7 summarises the thesis's major work and provides future 

research directions. 
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Chapter 2: Literature Review  

2.1 General overview 

In this chapter, we first evaluate current PT evaluation models to identify 

research gaps. Then we show the preliminary knowledge for this research, 

which includes six MCDM evaluating and weighing methods: AHP, data 

envelopment analysis (DEA), analytic network process (ANP), preference 

ranking organisation method for enrichment evaluations (PROMETHEE), 

technique for order preferences by similarity to ideal solutions (TOPSIS), and 

elimination and choice corresponding to reality (ELECTRE). Following that, we 

review the current literature on GP and MCGP, which are frequently used in 

conjunction with weighting methods to solve multi-criteria optimisation 

problems. Finally, a review of risk management applications in PT networks and 

MCS application areas is provided. 

This chapter is organised as follows: Section 2.2 examines the current PT 

evaluation models. The introduction to MCDM and AHP is followed by an 

overview of the application areas in Section 2.3. Section 2.4 discusses the 

development of GP and MCGP. Section 2.5 reviews the various types of risk 

management tools and MCS, and Section 2.6 concludes this chapter. 

2.2 Various PT evaluation models 

In this section, we examine current PT evaluation and measurement 

systems. A performance measurement is required to improve the performance 

of the PT network. The current indicators used to assess PT performance are 

focused on the quality and network of PT services. In recent research, six 

indicators have been used: buses with high levels of service (BHLS), PT level-

of-service (LOS), PT quality indicators, performance importance matrix, spatial 

network analysis for multimodal urban transport systems (SNAMUTS), and 
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transit service indicators (TSIs). These PT evaluation and measurement 

systems are described in detail in the following subsections. 

2.2.1 Buses with high level of service 

The BHLS connects the quality and capacity of PT services. The model 

addresses the major factors influencing PT operation (Orth et al., 2012). This 

model can calculate the PT level of service score for a given set of PT elements. 

The score can provide a consistent evaluation framework across various levels 

of the evaluated PT network (Orth et al., 2012; Tiznado-Aitken et al., 2021). 

According to Orth et al. (2012), the developed capacity model computes actual 

capacity by reducing theoretical capacity based on operational influences. On-

time performance, headway adherence, travel speed, and standing passenger 

density are indicators that affect transit service capacity and quality (Orth et al., 

2012; Tiznado-Aitken et al., 2021).  

2.2.2 PT level-of-service 

The LOS model examines how various PT operational measures and 

design influence costs associated with fleet operations and passenger travel 

time reduction. According to Fadaei and Cats (2016), its automatic data 

collection model enables detailed performance monitoring and post-

implementation evaluation. Moreover, operation policies and designs may have 

a significant impact on the costs incurred by numerous operators and 

passengers. The effect of such measures on vehicle scheduling and the 

ensuing operating costs is still largely unknown because of the inconsistent 

impact of the average vehicle travel time and its variability. 

2.2.3 PT quality indicators 

The performance of the transportation service is assessed based on the 

quality of its attribute. This index is the most complete and synthetic one. It is 

challenging to pinpoint the qualities of service quality because the indicator may 
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be influenced by travel behaviour or customer preferences and includes 

different passenger perceptions (Dragu et al., 2013). The division of passenger 

transportation methods is also impacted by the standard of services offered, 

which determines a market share for the transport modes examined (Dragu et 

al., 2013; Barabino et al., 2020). The three components of this quality indicator 

are therefore a general description of the PT service, a detailed description of 

service achievement, and the effects on the environment (Dragu et al., 2013; 

Barabino et al., 2020). 

2.2.4 Performance importance matrix 

The PT sector is now competing with the private sector due to rapid 

economic growth and privatisation (Sezhian et al., 2011). As a result, the 

performance importance matrix considers both customer or passenger 

expectations and PT company aspects. For the PT company to continue 

providing high-quality services in the future, these are crucial considerations 

(Sezhian et al., 2011). The use of this technology will enhance important 

aspects of the services offered and boost client satisfaction (Sezhian et al., 

2011). Performance importance matrix is a technology that is being developed 

to include managers' and customers' perspectives. Additionally, the 

performance importance matrix may contribute to higher customer satisfaction. 

2.2.5 Spatial network analysis for multimodal urban transport systems 

According to Curtis and Scheurer (2017), the SNAMUTS is a GIS-based 

tool for assessing the connectivity and centrality of urban PT networks in terms 

of land use and factoring in its market level when choosing multimodal 

transportation. SNAMUTS is dedicated to determining and visualising the 

benefits and drawbacks of the land-use PT system in terms of its capacity and 

effectiveness to link active nodes, network resilience in the face of future 

customer growth, geographic coverage, traveller flexibility to use the network 

for both planned and impromptu trips in metropolitan areas, and the strategic 
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importance of network nodes and roads (Curtis & Scheurer, 2017). Various 

measures and indicators have been adopted based on the viewpoint of 

connectivity and centrality to study these geographic and configuration success 

factors more thoroughly. High centrality levels are geographically close to 

numerous and extensive urban activities. In the context of a transportation 

network, urban activities can be evaluated from a variety of angles depending 

on how they are distributed in urban areas, how they relate to activities, and 

how the movement patterns around edges and nodes are set up. The hierarchy 

of activity centres identified in the strategic planning document, the location and 

service standards of PT routes, and SNAMUTS are used to break down the 

land-use transportation system into a set of route segments and active nodes. 

2.2.6 Transit service indicators 

The TSIs integrates various performance indicators, including availability, 

accessibility, customer care, time, safety and security, comfort, and amenities, 

into a systematic framework. According to De Ona et al. (2016), TSIs 

recognises that the quality of service is a result of the interaction between 

supply and demand and considers temporal and spatial changes in travel 

demand. Design and condition variables affect TSIs. TSIs may be used in 

addition to or in place of current level of service methods (De Ona et al., 2016). 

2.2.7 Summary 

The six measurement systems are frequently used by academics and 

industry professionals to assess PT network performance; however, as shown 

above, each measurement system utilises different criteria to evaluate PT 

performance. The different measurement systems, their evaluation criteria, and 

their methods are shown in Table 1. 

Table 1 

List of measurement systems to evaluate PT 



10 

Measurement 
System 

Evaluation Criteria Method Reference 

P
T

 l
e
v
e

l-
o

f-
s
e

rv
ic

e
 (

L
O

S
) 

Travel speed, acceleration 
and braking, temporal 

spacing between vehicles, 
buffer times, space within 

vehicle, share of 
dedicated rights-of-way, 

type of road, type of 
transit stop, density within 

vehicle, on-time 
performance, headway 

adherence, service 
duration 

Determine the score 
for PT LOS for PT 

elements. The score 
helps the DMs to 
evaluate the PT 

service. 

(Orth et al., 
2012), 

(Tiznado-
Aitken et al., 

2021) 

B
u

s
e

s
 w

it
h
 h

ig
h

 l
e

v
e

l 
o
f 

s
e

rv
ic

e
 (

B
H

L
S

) 

Vehicle running time and 
rest time, reliability, 

demand patterns, total 
vehicle trip time, layover 

and recovery times, 
passenger waiting time, 

passenger in-vehicle time, 
passenger travel time, 

monetary values, operator 
costs 

Analyse the 
influence of a series 

of PT operational 
measures and 

design by assessing 
the impact of 
reliability on 

expenses associated 
with saving 

passenger travel 
time and fleet 

operations 

(Fadaei & 
Cats, 2016) 

P
T

 q
u
a

lit
y
 

in
d

ic
a
to

rs
 Offer of services, 

accessibility, information, 
time, attention given to 
passengers, comfort, 
safety and security, 

effects on the environment 

Evaluate the PT 
service quality and 
sustainable level 

(Dragu et al., 
2013) 

(Barabino et 
al., 2020) 

P
e

rf
o

rm
a

n
c
e
 i
m

p
o

rt
a
n
c
e

 

m
a

tr
ix

 

Bus punctuality, bus 
condition, new fleet 
addition, seating for 

elderly, ticket system, 
service system, bus 

facility, stopping bus at 
correct place, driver 

behaviour, information to 
passengers 

Identify the strong 
and weak areas and 

general PT 
performance 

(Sezhian et 
al., 2011) 
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S
N

A
M

U
T

S
 

Minimum service 
standard, activity nodes, 

travel impediment, 
weekday inter-peak 

Assess the 
connectivity and 

centrality of urban 
PT networks in terms 

of land use and 
include its market 

level in the choice of 
multimodal transport. 

(Curtis & 
Scheurer, 

2017) 
(Curtis & 
Scheurer, 

2019) 

T
ra

n
s
it
 s

e
rv

ic
e

 

q
u

a
lit

y
 Availability, accessibility, 

customer care, time, 
safety and security, 

comfort and amenities 

Evaluate the transit 
system service 

quality 

(De Ona et 
al., 2016) 

Table 1 shows that operations and services are currently a major focus of 

PT evaluation research. However, the lack of a multi-standard framework in the 

research necessitates the consideration of numerous criteria, some subjective 

and competing, when PT networks are evaluated at various application levels. 

In addition, the comprehensive impact of other important factors, including 

development policies, energy and sustainability, and infrastructure and facilities, 

on the growth of urban transportation systems have not been fully considered. 

In conclusion, this section has offered a thorough analysis of the 

approaches currently being used to promote PT and the research being done 

on PT performance evaluation. The limitations of prior research have been 

identified and will be considered and responded to so as to create a matrix of 

PT performance criteria. The existing literature was found to have the following 

limitations: 

 Current research lacks a multi-standard framework for PT network 

evaluation at multiple application levels, and multiple stakeholders are 

not considered. 

 Most studies on PT effectiveness and performance assessment have 

concentrated on operations and services. The comprehensive impact of 
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other important factors (such as development policies, energy and 

sustainability, and infrastructure and facilities) on the growth of urban 

transportation systems have not been thoroughly investigated in 

previous studies. 

 The existing research lacks adequate investigation in determining 

indicators or standards for different application levels. 

This study aims to develop a thorough multi-criteria PT network 

performance evaluation model for various application levels to address these 

limitations. Additionally, the basic PT infrastructure level, PT service level, 

economic benefit level, and sustainable development level will be taken into 

consideration when choosing the evaluation model's criteria. The evaluation 

model's sub-criteria will be chosen based on the indicators and factors that will 

have an impact on the use of PT and will allocate limited resources in 

accordance with the priority of a particular urban PT problem. 

2.3 Multiple-criteria decision-making in PT performance 

The MCDM methods are the comprehensive tool that combine qualitative 

and quantitative aspects to evaluate complex problems and support DMs in 

making conclusive decisions (Khan & Ali, 2020). MCDM tools and applications 

have been used in numerous studies in the past to tackle a variety of area-

specific problems, including, but not limited to, sustainability, material, 

environment, production management, construction and project management, 

energy, quality management, GIS, safety and risk management, technology 

and information management, manufacturing systems, operation research and 

soft computing, strategic management, tourism management, and supply chain 

management (Behzadian et al., 2010; Velasquez & Hester, 2013; Mardani et 

al., 2015; Kheybari et al., 2020). The main purpose of the MCDM tools is to 

rank, select, sort and evaluate alternatives or criteria (Behzadian et al., 2010; 

Mardani et al., 2015; Kheybari et al., 2020). 
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In the area of PT issues, MCDM methodologies are increasingly being used. 

According to Camargo Pérez et al. (2015), 58 different MCDM techniques have 

been used in the context of PT systems between 1982 and 2014, which 

ultimately led to the realisation that MCDM techniques have become a highly 

effective tool for assessing and making decisions pertaining to projects in PT 

systems in recent decades. As a result, MCDM has emerged as a crucial 

decision-making method that authorities, academics, and researchers use to 

assess how satisfied customers are with PT systems (Nassereddine & 

Eskandari, 2017).  

Stochastic frontier analysis (SFA), AHP, and DEA are the three main 

MCDM techniques for evaluating the effectiveness of PT networks (Barnum et 

al., 2007; Holmgren, 2013; Boujelbene & Derbel, 2015). This research does not 

consider SFA in PT network evaluation, since SFA is not a weighting method 

(Hjalmarsson et al., 1996; Holmgren, 2013). Beside AHP and DEA, there are 

also another four MCDM methods for evaluating and weighting PT network 

performance considered: PROMETHEE, TOPSIS, ANP, and ELECTRE (Brans 

& Vincke, 1985; Olson, 2004; Saaty, 2004; Bojković et al., 2010; Greco et al., 

2016; Nassereddine & Eskandari, 2017; Zhang et al., 2018; Lin et al., 2023). 

We arrived at the details of the six MCDM methods listed in Table 2 by referring 

to references related to assessing and weighting PT network performance.  

Table 2 

List of MCDM methods in evaluating and weighting PT network performance 

Reference Specific area Weighting method 

Cyril et al. (2019) 

Assess the PT performance 
in quality, effectiveness, 
efficiency, and economic 

aspects. 

AHP 

Sheth et al. (2007) 

Measure the PT service 
from the users, societal, and 

service providers 
perspectives. 

DEA 

Lin et al. (2023) Measure the transit-oriented ANP 
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development performance 
degree within a zone. 

Nassereddine and 
Eskandari (2017) 

Evaluate the PT service 
quality in different PT 

modes. 
PROMETHEE 

Zhang et al. (2018) 

Evaluate the PT priority 
implementation based on 
overall development level, 
infrastructure construction, 
PT service level, and policy 

support. 

TOPSIS 

Bojković et al. (2010) 

Assess transport 
sustainability at a macro 

level in terms of economic, 
environmental, and social 

aspects. 

ELECTRE 

2.3.1 Analytic hierarchy process model 

As previously mentioned, the AHP model is a technique for MCDM that 

enables DMs to deal with complex problems involving a variety of subjective 

and conflicting criteria (Boujelbene & Derbel, 2015). The AHP breaks down the 

problem into different levels and provides a prioritised framework of choices, 

ranking them from most to least preferred (Jain et al., 2014). Level objectives 

are established using pairwise comparisons, and weights are given to each 

criterion. Pairwise comparisons are used to create the factors at each level, 

which calls for determining the relative weights of two criteria or sub-criteria 

(Jain et al., 2014). Additionally, AHP is the MCDM tool that is most frequently 

used to solve issues with multiple objectives (Pohekar & Ramachandran, 2004). 

The three main AHP processes are as follows (Nassereddine & Eskandari, 

2017): 

 Priority: Either least square analysis or eigenvectors are used to 

calculate the element priority weight at each level. This process will be 

repeated for each hierarchy level until the decision is made using the 

global weight (Saaty, 1994). 

 Issue decomposition: The issue is broken down into elements (the 

elements are grouped at different levels to form a hierarchy chain), and 
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each factor is broken down further into sub-factors until the lowest 

hierarchy level (Sadeghi & Ameli, 2012). 

 Comparison analysis: A pairwise comparison process is used to 

calculate each factor's relative weight at a specific level. The DMs 

produce a numerical value for the importance of each factor using a 

rating scale. 

Furthermore, AHP allows DMs to handle complex issues involving multiple 

conflicts and subjective criteria. In terms of PT, stakeholders are concerned 

with both direct and indirect effects (Daraio et al., 2016), and AHP addresses 

the financial benefit, the quality and effectiveness of the PT service, the 

foundational infrastructure of PT, and the degree of sustainable development. 

Given these areas of application, the AHP model can assist governments in 

more effectively monitoring and enhancing the performance of PT networks.  

Despite its frequent use, AHP has been criticised for inconsistencies 

between criteria and ranking reversal, which can, however, be managed by 

testing consistency during calculations and limiting the number of criteria 

(Konidari & Mavrakis, 2007; Velasquez & Hester, 2013). One other issue 

though is the need for AHP to consider setting criteria before calculation to 

handle interdependence among them (Velasquez & Hester, 2013). 

2.3.2 Data envelopment analysis model  

DEA is often used to evaluate the efficiency of a set of decision-making 

units (DMUs) or alternatives (Farrell, 1957; Charnes et al., 1978; Sheth et al., 

2007). DEA handles multiple inputs and outputs without needing the explicit 

specification of relationships among the performance criteria (Izadikhah et al., 

2021). In addition, the criteria efficiency can be quantified and analysed 

(Velasquez & Hester, 2013; Izadikhah et al., 2021).  
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However, a critical limitation of the DEA model involves its inability to handle 

imprecise data, operating under the assumption of precise knowledge for all 

input and output variables (Velasquez & Hester, 2013; Izadikhah et al., 2021). 

Real-world scenarios often deviate from this assumption, potentially impacting 

result sensitivity based on varying inputs and outputs. Consequently, this 

model's reliance on precise information for all parameters can pose challenges 

in practical applications. 

2.3.3 Analytic network process model 

ANP is a more generalized model of AHP, catering to the interdependency 

among criteria within a hierarchical structure due to criteria interactivity (Saaty, 

2004). In terms of merits, the model establishes a network structure where 

criteria, sub-criteria, and alternatives interact, allowing comprehensive 

communication and feedback among all network elements, and enabling 

interconnection between nodes (clusters) (Saaty, 2004; Kheybari et al., 2020). 

While ANP significantly encompasses relationships, it is not without limitations, 

including the necessity for exhaustive brainstorming sessions in attribute 

identification, the time-intensive nature of data acquisition, the higher 

computational requirements compared to AHP process, and the neglect of 

subjectivity in comparisons (Yellepeddi et al., 2006). 

2.3.4 PROMETHEE model  

PROMETHEE is an outranking technique designed to rank and select 

among conflicting criteria within a finite set of alternative actions (Brans & 

Vincke, 1985). The PROMETHEE model contains several versions, and 

PROMETHEE I and II are often used to weight and rank criteria (Behzadian et 

al., 2010; Nassereddine & Eskandari, 2017). 

The method offers ease of use and does not need to assume proportionality 

among criteria (Velasquez & Hester, 2013). However, it lacks a definitive 
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approach for assigning weights and requires value assignments without 

providing a clear methodology for this purpose (Velasquez & Hester, 2013). 

Hence, the weighting results of criteria may be negative (Nassereddine & 

Eskandari, 2017).  

2.3.5 TOPSIS model  

TOPSIS is a multi-criteria evaluation method for pinpointing an alternative 

closest to the ideal solution and farthest from the negative ideal solution within 

a multi-dimensional computational space (Velasquez & Hester, 2013; Zhang et 

al., 2018). Criteria weights are the inputs of the TOPSIS model (Olson, 2004). 

Its advantages include a straightforward process, user-friendliness, 

programmability, and a consistent number of steps irrespective of attribute 

count (Velasquez & Hester, 2013). However, a drawback emerges from its 

reliance on Euclidean distance, neglecting attribute correlations (Velasquez & 

Hester, 2013). Additionally, challenges arise in attribute weighting and 

maintaining judgment consistency, particularly with an increased number of 

attributes (Olson, 2004; Velasquez & Hester, 2013). 

2.3.6 ELECTRE model 

ELECTRE is an outranking method which is similar to PROMETHEE. 

ELECTRE includes several versions, such as the ELECTRE I for a choice 

problem, the ELECTRE II, III and IV for dealing with ranking, and the ELECTRE 

TRI for a sorting problem (Bojković et al., 2010). The criteria associated weights 

are mostly determined by DMs (Bojković et al., 2010; Greco et al., 2016). The 

advantage of the method is its consideration of vagueness and uncertainty 

during the process (Velasquez & Hester, 2013). However, the model outcome’s 

results can be difficult to explain in simple terms (Velasquez & Hester, 2013). 

Additionally, the outranking method hinders the direct identification of strengths 

and weaknesses within alternatives, consequently impeding the verification of 

both results and impacts (Konidari & Mavrakis, 2007). 
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Table 3 

Summary of MCDM evaluating and weighting methods 

Method Advantages Limitations 

Analytic 
hierarchy 
process 

 User-friendly interface  

 Scalability  

 Flexible hierarchy 
structure adaptable to 
various problem sizes  

 Low data intensity 

 Criteria interdependence 

 Ranking reversal 

 Inconsistency between 
judgment and criteria 

Data 
envelopment 

analysis 

 Handle multiple inputs 
and outputs adeptly 

 Allow analysis and 
quantification of 
efficiency 

 Does not accommodate 
imprecise data 

 Operates under the 
assumption of precise 
knowledge for all inputs 
and outputs 

Analytic 
network 
process 

 Handle 
interdependence 
between criteria 

 Scalability 

 Considers criteria 
network structure 

 Needs extensive 
brainstorming sessions for 
criteria identification 

 Consumes significant time 
in data acquisition 

 ANP involves more 
calculations compared to 
AHP 

 Neglects the subjectivity in 
comparisons 

PROMETHEE 

 User-friendly interface 

 Eliminates the need for 
assuming 
proportionate criteria 

 Lack of a clear method for 
assigning weights 

TOPSIS 

 Simple process 

 User-friendly and 
programmable 

 Consistent number of 
steps regardless of 
attribute number 

 Challenging to maintain 
consistent judgment and 
weight allocation 

ELECTRE 

 Considers uncertainty 
and vagueness 

 Complex to explain results 
in simple terms 

 Outranking obscures direct 
identification of strengths 
and weaknesses 

Table 3 summarises the advantages and limitations of the current PT 

performance MCDM evaluation and weighting methods. PROMETHEE lacks a 

clear criterion weighting method. For TOPSIS and ELECTRE, the weighting 

process does not contain a consistency test. Furthermore, most DEA 
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application in PT consider the efficiency of PT network performance. In addition, 

the evaluation model needs to produce criteria weighting results for the 

optimisation process. Although AHP and ANP can manage to evaluate and 

weight PT network performance criteria, ANP needs to spend more time for 

data acquisition and calculations. ANP is used to handle criteria 

interdependence, compared with AHP. 

In conclusion, this section has provided a detailed consideration of current 

MCDM methods in PT network performance. As mentioned before, the current 

research seeks to attain performance reports and criteria weights for the 

optimisation of the PT process. Consequently, AHP has been chosen to be 

used to assess and balance the PT network performance criteria. 

2.4 PT performance optimisation 

Numerous mathematical models have been applied to optimise PT 

performance in recent literature. To reduce transfer waiting times, a model for 

optimising PT timetables has been created (Wong et al., 2008). Many 

researchers have used this optimisation model with various criteria, while 

modifying the bus line offset (Cevallos & Zhao, 2006; Hadas & Ceder, 2010; 

Petersen et al., 2013). A PT timetable optimisation model was developed 

further by Niu and Zhou (2013) by considering the situation of boarding 

passengers at a crowded station. An optimisation model was put forth by 

Guihaire and Hao (2010) to maximise both the quantity and quality of 

passenger transfer opportunities. A bi-level timetable optimisation model was 

used by Parbo et al. (2014) to optimise the PT schedule from the viewpoints of 

the users. In order to optimise PT routes, Heyken Soares et al. (2019) scaled 

down the network using genetic algorithms (GA). The GA model has also been 

utilised to suggest a zone-based PT route optimisation method (Heyken Soares, 

2021). A Markov-chain-based model to maximise a PT network's effectiveness 

was described by Faizrahnemoon et al. (2015). But each of these PT 
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optimisation models concentrated on a single factor, such as the schedule, the 

PT route, or the effectiveness. There are not many studies that take complete 

PT network performance optimisation into account. 

In the following section, we introduce the concepts of GP and MCGP 

models that we will further develop in this research. 

2.4.1 Goal programming 

GP and AHP are frequently combined to support decision-making, address 

MCDM issues, and find the best solutions, (Larbani & Aouni, 2011; Hamurcu & 

Eren, 2018). The objective function criteria priority of GP is determined using 

the AHP process' outputs, and GP is used to optimise the selection or 

evaluation, incorporating conditions or constraints that need to be dealt with as 

they arise (Tamiz et al., 1998; Lin et al., 2014; Cyril et al., 2019). By choosing 

the criteria aspiration value from a large number of criterion input values, the 

model minimises the objective function (Ignizio, 1983; Tamiz et al., 1998; Cyril 

et al., 2019). AHP results can manage the limitation of GP, which is unable to 

weight the coefficients (Zeleny, 1981; Velasquez & Hester, 2013). Establishing 

the optimal objective value for each objective is the best solution for DMs' multi-

objective problems (Jadidi et al., 2015). According to Zeleny (1981), the 

criticism of GP is that the goal levels setting is too arbitrary. Additionally, the 

goals’ lower and upper levels setting are difficult (Zeleny 1981). However, this 

issue can be managed by considering and determining goals using government 

policies and documentation (Cyril et al., 2019). 

GP and fuzzy GP approaches are two widely used techniques for resolving 

multi-objective issues (Jadidi et al., 2015). When using the GP objective 

function to optimise the scenario, the weights for the criteria can be assigned 

using the AHP (Cyril et al., 2019). Furthermore, the GP model has been 

combined with the weighting approach to enhance PT (Hamurcu & Eren, 2018; 

Cyril et al., 2019). 
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According to Cyril et al. (2019), GP is an optimisation process that 

minimises the objective function by choosing inputs from a range of input values. 

According to Chang (2007) and Larbani and Aouni (2011), GP aids DMs in 

resolving MCDM problems and identifying a range of workable solutions. 

According to Chang (2007) and Larbani and Aouni (2011), the goal of GP is to 

reduce the gap between aspirational levels and actual goal achievement. GP 

can be applied to numerous user-defined criteria priorities as well as many 

criteria goals specified by DMs (Chen & Xu, 2012; Hamurcu & Eren, 2018; Cyril 

et al., 2019).  

Governments often establish a target level or goal for a criterion rather than 

pursuing the optimal solution. By allowing DMs to optimise the performance of 

the criteria, GP aims to suggest a solution that best satisfies their objectives 

(Chen & Xu, 2012). In addition, GP can offer DMs solutions to put into practise. 

The primary benefit of GP is that it gives DMs optimal processes and control 

over their preferences (Jadidi et al., 2015). 

The most recent GP research has been used to optimise budget scenarios, 

choose projects, and choose suppliers (Jadidi et al., 2015). On the optimisation 

of PT performance, few studies have been conducted. In order to choose the 

best rail system project in Istanbul, the AHP and GP models were used 

(Hamurcu et al., 2017; Hamurcu & Eren, 2018). An AHP-GP model was put 

forth by Cyril et al. (2019) with the goal of improving PT performance in terms 

of both operational and user-related factors. It is noteworthy that the study only 

used one aspiration value for the optimisation of the criteria, though. 

Therefore, to address optimisation issues involving multiple aspiration level 

criteria, the researchers improved the GP model and built the MCGP model. 

The details of the MCGP model are described below. 

2.4.2 Multiple choice goal programming 
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To manage the multiple aspiration level criteria issue, MCGP is proposed. 

A model that allows DMs to address multiple goals or aspiration levels per 

criterion is further developed by MCGP, which is based on GP (Chang, 2007; 

Chang, 2008; Chang, 2011; Jadidi et al., 2015). The fundamental idea behind 

MCGP is that criteria should have multiple aspiration levels because each goal 

may have multiple desired target values for each criterion (Hocine et al., 2020). 

During the optimisation process in MCGP modelling, these aspiration levels 

offer numerous options for locating a suitable solution set (Hocine et al., 2020).  

The MCGP approach enables DMs to specify a series of values rather than 

a single scalar target level or select multiple aspiration levels for each criterion 

(Chang, 2007; Ho et al., 2013; Jadidi et al., 2015). Because the DMs can select 

multiple aspiration levels or goals for each criterion, this approach is preferable 

to GP (Ho et al., 2013; Jadidi et al., 2015). 

Multi-criteria problems have previously been resolved using MCGP and the 

criteria weighting method. Ho et al. (2013) proposed the AHP and MCGP 

models to address the housing location selection problem. AHP and MCGP 

were combined by Lin et al. (2014) to help DMs choose the best online IT tools. 

Furthermore, MCGP is utilised to manage the site selection process for 

renewable energy sources (Hocine et al., 2020).  

For each criterion, the majority of studies on improving PT performance 

have taken into account a single level of aspiration; however, in reality these 

criteria frequently involve multiple goals and levels of aspiration. DMs can set 

multiple levels of aspiration or goals for each criterion of the suggested MCGP 

model (Chang, 2007, 2008, 2011). The model addresses the issue of multiple 

aspiration levels, but the aspiration level of the criteria may be required to select 

between various aspiration-level cases in PT performance optimisation. 
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2.5 Risk management 

Few MCDM and GP methods have been integrated in optimising PT 

performance to satisfy DMs' goals and requirements even though MCDM and 

GP methods offer a variety of frameworks (Ngossaha et al., 2017; Cyril et al., 

2019). To solve multicriteria optimisation problems, the AHP and GP approach 

are frequently combined (Cyril et al., 2019). It can be challenging for DMs to 

deliver an optimal solution in some situations because of uncertainty that arises 

during the optimisation process. 

Previous studies have not examined uncertainty pertaining to criteria 

uncertainty. Furthermore, risk and uncertainty are closely related to the 

optimisation of the PT network performance and can have a big impact on the 

results of optimisation. This section describes how risk management is 

implemented in PT networks, including how the risk management tool MCS is 

used. 

2.5.1 Uncertainty and risks in PT networks 

The delivery of optimised results is, in practise, impacted by the uncertainty 

of events. Uncertainty and variation are problematic when trying to optimise PT 

network performance. According to Altieri et al. (2017), PT is a complex system 

whose quality analysis is challenging because it must consider the risks and 

uncertainties associated with human reasoning. Additionally, there are 

numerous risks and uncertainties associated with user demand, operations, 

and traffic conditions that must be considered when PT performance 

improvement is being considered (Cats & Gkioulou, 2017). So, whenever a PT 

optimisation model is developed to replicate a complex system, its output will 

always be uncertain. 

Uncertainty is usually related to risk, which is defined as the influence of 

uncertainty on objectives or criteria (PMI, 2000; Aven, 2016; Hopkin, 2018). 
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Appropriate identification of major sources of risk can eliminate or at least 

reduce the probability of discovering new sources of uncertainty during the 

modelling process (Manzo et al., 2015). Thus, the uncertainty or risk 

identification process of the criteria is needed to deliver the project results. Risk 

management is the tool that provides methods for mitigating project risk. 

Risk management employs both qualitative and quantitative techniques. 

Budzynski et al. (2021) examined PT's response to hazards using a qualitative 

method, risk registers. Similarly, Dalmau (2022) used risk management to 

forecast the likelihood of airspace user rerouting, which will aid the flow 

manager in air traffic flow management. To model the likelihood of project 

objectives, this study employs a quantitative risk management tool. 

In the PT sector, risk management models have already been used to 

model the input and model uncertainty (Fowkes, 1995; De Jong et al., 2007), 

and recent optimisation under uncertainty problems in PT frequently employ 

quantitative risk management methods, which assist DMs in determining the 

probability of the optimal solution (Schmidt et al., 2017; Liang et al., 2019). 

2.5.2 Monte Carlo simulation for managing uncertainty 

Uncertainty cannot be fully investigated due to limited knowledge or the 

randomness of some model components. MCS is a quantitative risk analysis 

method based on a probabilistic model that employs probability distributions to 

model uncertainty (Fishman, 1995; Zito et al., 2011). The results assist the DMs 

in managing risk and uncertainty to complete the project. 

MCS is a risk management tool that is widely used in many fields, including 

medicine and project management. For example, MCS is used in medicine to 

assess the likelihood of viral transmission (Liu et al., 2021). Yang et al. (2020) 

employed MCS to model uncertainty in a project to assess the health of land 

ecosystems. Kannan et al. (2021) used MCS to analyse the sensitivity of 
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VIKOR and grey relational analysis in a sustainable location of solar site 

selection project. MCS is also used to improve the reliability of assessment 

results in a lake eutrophication level evaluation project (Lin et al., 2020). In most 

cases, MCS is used to assess the likelihood of project outcomes. 

MCS is frequently used in cost management to determine the feasibility of 

project costs. After the project feasibility stage, MCS is applied in public and 

private partnership (PPP) projects to optimise capital structure, which balances 

the interests of the public and private sectors (Feng et al., 2017). Similarly, to 

address revenue uncertainty in transportation PPP projects, Liu et al. (2020) 

used MCS in the proposed optimisation model to improve dynamic capital 

structure adjustment, with the research beginning with the PT project to 

optimise the capital structure. 

MCS has attracted the interest of PT researchers in recent years. For 

instance, Manzo et al. (2015) used MCS to analyse uncertainty in a four-stage 

transport model. Conway et al. (2018) utilised MCS to account for variation and 

uncertainty in accessibility metrics when planning PT sketches. Furthermore, 

Pencheva et al. (2021) applied MCS to determine the waiting time of passenger 

vehicles in PT areas. Previous research has concentrated on mitigating the 

impact of PT model inputs and outputs as well as evaluating PT performance. 

Despite the advantages of MCS, a limitation of this model is that it is difficult to 

identify the maximum and minimum values of each input variable, and the 

researchers have to investigate and assess the level of risk associated with 

each input variable (Raychaudhuri, 2008). 

To the best of our knowledge, little research has been conducted on PT 

optimisation under uncertain conditions. To fill the gap, the current research 

aims to develop a new framework for optimising PT network performance in the 

presence of uncertainty. 
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2.6 Conclusion 

This chapter has reviewed current PT measurement systems, as well as 

methodologies and methods for solving MCDM in PT, optimising, and 

managing uncertainty. Previous research has not thoroughly investigated the 

impact of other key factors on the development of urban transportation systems 

(such as development policies, energy/sustainability, and 

infrastructure/facilities). 

MCDM and GP methods provide a variety of frameworks, and a few MCDM 

and GP methods have been integrated in optimising PT performance to meet 

the goals and requirements of DMs. To solve multicriteria optimisation problems, 

the AHP is an MCDM method that is frequently combined with the GP approach. 

The current GP method is incapable of addressing the issue of multiple criteria 

aspiration levels. To solve this problem in practise, a multi-aspiration level GP 

method combined with a criterion weighting method that assigns weights to 

multiple criteria and combines them is required. 

In some cases, DMs fail to deliver an optimal solution due to uncertainty 

that arises during the optimisation process. Previous research has lacked a 

closer look of the uncertainty associated with criteria uncertainty. By performing 

MCS, probabilistic analysis is a commonly used technique for addressing 

evaluation-based issues in project management. MCS is also used in mitigating 

uncertainty related to model inputs and outputs in various application areas. 

Despite its effectiveness in addressing project management issues, little 

research has used MCS to address the problem of optimising PT network 

performance. The current study only looks at one aspect of physical 

performance. In the PT network performance optimisation problems, the 

probability of a scenario (scenario analysis) is thus required. 

This study proposes a three-stage approach for optimising PT network 

performance under uncertain conditions. The models optimise four levels of 
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criteria with uncertainty to achieve the DMs' PT network optimisation goals. The 

primary goal of this study is to determine the level of criteria uncertainty, and a 

sensitivity analysis is performed to guide the optimisation process. MCS results 

can be used to assist DMs in making PT network optimisation decisions, as well 

as to precisely indicate the probability of uncertainty rate when delivering 

criteria outcomes. 
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Chapter 3: Performance Evaluation of PT 

Networks by Using PT Criteria Matrix Analytic 

Hierarchy Process Models  

3.1 General overview 

In this chapter, we develop a transport criteria matrix AHP model for 

monitoring and evaluating the performance of a PT network. To evaluate the 

performance of a PT network, evaluation criteria must first be chosen. This 

study proposes a PT criteria matrix based on existing indicators, which includes 

the basic PT infrastructure level, PT service level, economic benefit level, and 

sustainable development level. Then, a PT criteria matrix AHP model is 

established to evaluate the performance of PT networks. Based on existing 

performance standards, the established model selects appropriate evaluation 

criteria. It is used to investigate the Stonnington, Bayswater, and Cockburn PT 

networks, which represent a variety of land use and transportation policy 

backgrounds. 

This chapter is organised as follows: Section 3.2 introduces the AHP model 

calculation process. In Section 3.3, we develop the PT criteria matrix AHP 

model. Section 3.4 discusses the motivation and characteristics of the three 

case study areas. Section 3.5 identifies the results of using the established 

model to evaluate the PT network performance of the three case study areas, 

and Section 3.6 concludes this chapter. 

3.2 Analytic hierarchy process model formulation 

We demonstrate the AHP model process and each process formulation in 

this section. The AHP model is used in this study to evaluate the performance 

of the PT network and calculate the criteria weights. It has five major processes 
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for dividing the criterion weights. Figure 1 depicts the AHP model computation 

process. The formulations for each process are shown below. 

Figure 1  

AHP model calculation process (Yedla & Shrestha, 2003; Sadeghi & Ameli, 

2012) 

 

1. Comparison of the importance between each pair: 

The value (cig) is assigned to represent the importance (from 1 to 9) for 

attribute (i) and attribute (g); additionally, cig = 1/cgi. Next, a decision matrix is 

created, which is matrix C = (cig). 

2. Normalisation of pairwise comparison matrix: 

The pairwise comparison matrix needs to be normalized using the 

normalised arithmetic averages method (Saaty, 1977). After the normalization, 
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matrix C is transformed into matrix D = (dig). The formula of matrix D is shown 

as follows: 

𝑑𝑖𝑔 =
𝑐𝑖𝑔

∑  𝐶𝑖𝑔
𝑛
𝑖=1

 
(

(1) 

3. Obtaining the weighting vector (w): 

The prioritisation vector (w) is gained by calculating the arithmetic averages 

from the normalized comparison matrix (dig) row. The calculation of vector w is 

calculated as below: 

𝑤 =
∑  𝑑𝑖𝑔

𝑛
𝑔=1

𝑛
 

(

(2) 

4. Calculation of the highest matrix eigenvalue Tmax: 

Next, the highest matrix eigenvalue is calculated. The highest eigenvalue 

Tmax is satisfied by: 

Cw = Tmaxw and Tmax ≈ T = 
∑  𝑇𝑖

𝑛
𝑖=1

𝑛
                           (3) 

5. Calculation of the consistency index (CI) and consistency ratio (CR) for each 

comparison matrix C: 

The researcher tests that the ratings given by the experts are consistent. 

Tmax is the highest eigenvalue of the matrix, n is the number of objects which 

are compared, RI (Table 4) is the random index, and n is the matrix dimension. 

The RI is shown as below: 

Table 4 

Random Index (RI) (Saaty, 1987) 

Matrix Size 1 2 3 4 5 6 7 8 9 

Random 
consistency index 

0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 
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Furthermore, the calculation details of CI and CR for each comparison  

When CR ≤ 10%, the comparisons are considered as internally coherent; 

otherwise, it would be considered that inconsistency was present during the 

comparison process. 

This study uses the AHP model to develop a comprehensive multi-criteria 

PT network performance evaluation model for various application levels. The 

source of the standards and criteria explanation of the PTCM-AHP model are 

demonstrated in the following section. 

3.3 PT criteria matrix AHP model 

As mentioned in Chapter 2, this study selects the criteria and standards of 

the proposed model based on four levels, which are the economic benefit level, 

the quality and efficiency of the PT service level, the basic PT infrastructure 

level, and the sustainable development level. Based on the above 

considerations, the criteria are selected from the Evaluation Index System of 

Public Transportation City Assessment (Ministry of Transport, 2014), the Code 

for Transport Planning on Urban Road GB50220-1995 (Ministry of Construction, 

1995), the Passenger Transport Services for Bus/Trolleybus GB/T22484-2008 

(Ministry of Housing and Urban-Rural Development, 2018), GBT 22484-2016, 

the Passenger Transport Services Specifications for Urban Bus/Trolleybus 

(Ministry of Transport, 2016), and the Urban Road Traffic Management 

Evaluation Index System (2012 edition) (Ministry of Transport, 2012). 

𝐶𝐼 =
 𝑇𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

(

(4) 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

(

(5) 
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Following these criteria, the model divides the criteria into two levels, which 

are (1) the urban level, and (2) the company operation level. In particular, the 

model makes the following definitions: 

(1) Urban level: PT is considered at the urban level to evaluate the urban 

PT management and infrastructure establishment. The detailed expression of 

each criterion is described as follows: 

 The PT network ratio refers to the proportion of the length of the PT network 

to the length of the urban road network, which reflects the service capacity 

and scope of urban PT. 

 The PT coverage ratio reflects the convenience of using the PT system for 

residents. It refers to the ratio of the urban PT service area to the urban land 

area. 

 The harbour-type bus stop setting ratio indicates the capacity of buses and 

the government’s guarantees of bus priority. It considers the number of 

stations with bus stop bays on the expressways, main roads, and secondary 

roads in the city and accounts for the proportion of the total number of stops 

on the expressways, main roads, and secondary roads in the city. 

 The PT priority lane setting ratio shows the proportion of the road length of 

PT priority lanes in relation to the total length of the urban main roads in the 

city. The length of the roads with PT priority lanes refers to the length of the 

centre line of the roads with PT priority lanes in the city. This is an important 

indicator that needs to be monitored to improve the traffic conditions of 

urban PT vehicles, and it reflects the level of a city’s emphasis on PT priority 

policies. 

 The PT land area per capita refers to the ratio of the area of PT roads to the 

total urban population. This represents land use for PT. 

 The PT utiliation rate refers to the degree of coincidence between land used 

for PT and planned land use in the same period. This criterion is expressed 
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as the ratio of the number of jobs in PT to the total number of jobs during 

the same period. It reflects the consistency of PT with the city’s master plan. 

 The green PT vehicle rate is the proportion of green PT vehicles to total PT 

vehicles during the statistical period. Green PT vehicles include subways, 

light rail vehicles, trams, new energy vehicles, trolleybuses, liquid petroleum 

gas vehicles, etc. It reflects the important indicators of energy conservation 

and environmental protection of urban PT systems. 

 The PT energy intensity is the ratio of the total energy consumption of urban 

PT to the volume of passenger transport of urban PT. It reflects the energy 

consumed to complete a unit of passenger turnover. This indicator reflects 

the energy conservation and environmental protection of an urban PT 

system. This indicator has a high correlation with the number and type of 

energy of vehicles employed. 

(2) Company operation level: This level considers PT from the company 

level to evaluate the PT operators. The detailed information for each criterion 

is shown as follows: 

 The PT on-time rate indicates the average of buses’ on-time rates and rail 

transit’s on-time rates. The departure time of a bus is the first departure time 

of the bus. If the actual departure time is less than 2 minutes later than the 

planned departure time, it will be recorded that the departure time is 

punctual. The arrival time at the last station means that the actual arrival 

time at the last station is within the range of being 2 minutes earlier than the 

planned schedule or less than 5 min late, which is recorded as the arrival 

time at the last station. This is recorded as a delay when a rail transit train 

leaves or arrives at the terminal at the departure station greater than or 

equal to 2 minutes later compared to the planned time of the train schedule. 

 The intersection blocking rate during peak hours is an indicator that 

measures the saturation of the entire road network. A periodically blocked 

intersection is frequently blocked for a certain period, such as in the AM and 
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PM peaks (and the blocked intersections are not caused by accidents). This 

is also a basis for checking the effects of traffic management, the 

development of traffic demand management measures, and proposing 

intersection reconstruction planning. 

 The passenger freight rate is the ratio of the cost of PT paid by an ordinary 

passenger per month to the average city salary for that month. This index 

can reflect the rationality and affordability of ticket prices. 

 The PT driving accident rate is the number of accidents per million kms 

travelled by PT vehicles in a year. This is an important criterion to reflect the 

safety performance of the PT system and has a high correlation with the use 

and maintenance of PT vehicles. 

 The coverage rate refers to the rate of total commercial revenue of the last 

year to the total operating expenses of the last year. It shows the users’ 

financial contributions and the economic sustainability of the operators. 

 The bus ownership rate refers to the number of bus stations per 10,000 

people in the statistical period. It reflects the distribution of traffic structure. 

 The intact car rate is the ratio of intact vehicle days to operating vehicle days 

during the statistical period. It shows the maintenance level of PT. 

Figure 2 

PT network performance criteria hierarchy structure 
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As demonstrated above, the creation of the PTCM-AHP model is based on 

these urban and company operation levels of criteria. According to Figure 2, 

the PTCM-AHP model criteria are classified into four levels: PT infrastructure 

level, sustainable development level, PT service level, and economic benefit 

level. Furthermore, Figure 2 displays the PT network performance criteria 

hierarchy structure of the PTCM-AHP model. The model includes four levels of 

criteria, and 15 sub-criteria. 

An overview of the formula for the sub-criteria and level grade for all sub-

criteria can be found in Appendixes A and B. It can be seen from Appendix B 

that level A shows the best performance regarding the criteria, and level E 

means ordinary performance. The process for measuring the city score is 

indicated as follows: 

 First, data for each criterion need to be collected from the relevant planning 

and PT departments. 

 Second, the calculated data are ranked according to established 

performance standards. 
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 Third, the global weight for each sub-criterion is calculated as the weight of 

the criteria (main criteria prioritisation) multiplied by the sub-criteria weight 

(sub-criteria prioritisation). 

 Finally, based on the established PT network performance score levels, the 

PT performance grade for a city can be measured. 

To identify the process of the proposed model, this research applies the 

PTCM-AHP model to three case studies of Australian cities. The details of the 

case study areas are shown in the next section.  

3.4 Case study areas: Stonnington, Bayswater, and Cockburn PT 

Network 

In this section, the evaluation model described in the previous section was 

applied to the three Australian case study areas — (1) the City of Stonnington, 

(2) the City of Bayswater, and (3) the City of Cockburn — to examine the PTCM-

AHP model. 

Before we examine the process of the PTCM-AHP model, we give a brief 

introduction of the case study areas. Stonnington’s location is close to 

Melbourne’s Central Business District (CBD), and Bayswater’s location is 

adjacent to Perth’s CBD. Cockburn is in the southern part of the Perth CBD. 

The population densities of Bayswater, Cockburn, and Stonnington are 19.94 

persons per hectare, 6.98 persons per hectare, and 46.27 persons per hectare, 

respectively. The main designation of these three cities is residential. The 

length of Bayswater’s PT network is approximately 62 km, Cockburn’s is 148 

km, and Stonnington’s is approximately 75 km. The details of three case studies 

are shown in Table 5. 

Table 5  

Details of the three case studies 

City Bayswater Cockburn Stonnington 
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Population density 
19.94 persons per 

hectare 

6.98 persons per 

hectare 

46.27 persons 

per hectare 

Length of PT network 61.9117 km 147.9874 km 74.7598 km 

Predominant purpose of 

case study area 
Residential Residential Residential 

Main type of PT Bus and train Bus and train Bus and train 

Overall, all of the case study areas have a well-established PT network. As 

can be seen from Table 3, the main types of PT in the three cities are buses 

and trains. As the population of the three case study cities continues to grow, 

the government requires an assessment of the existing PT networks. All three 

governments have created new strategies and plans to promote PT, but car 

ownership in Melbourne and Perth continues to increase. This is the main 

motivation for a comparison study of the three cities. The city boundaries of the 

three case study areas are shown in Figure 3. 

Figure 3 

(a) City boundary of Stonnington; (b) city boundary of Bayswater; (c) city 

boundary of Cockburn 

  
 

(a) (b) (c) 

Note. From Metropolitan councils map (https://www.viccouncils.asn.au/find-

your-council/council-map) and PERTH METRO REGION 

(https://library.dpird.wa.gov.au/rd_maps/13/) 

https://www.viccouncils.asn.au/find-your-council/council-map
https://www.viccouncils.asn.au/find-your-council/council-map
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Next, we calculate the score and level of sub-criteria, and determine the 

city PT network performance score of Stonnington, Bayswater, and Cockburn. 

3.5 Findings 

In this section, the proposed PTCM-AHP model is applied to the PT network 

performance of the case study areas in terms of the basic PT infrastructure 

level, PT service level, economic benefit level, and sustainable development 

level. 

Before we evaluate the case study areas PT network performance, we 

define and calculate the weights of the criteria and sub-criteria. The pairwise 

comparison matrix was defined by studying the polices of the local councils and 

state governments in the case study areas. The details of the preference matrix, 

prioritisation, CI, and CR for the four main criteria and 15 sub-criteria are listed 

in Appendix C.  

Table C1 presents the preference matrix of the four main criteria, taking the 

overall weight for the basic PT infrastructure level as 41%, for the PT service 

level as 19%, for the economic benefit level as 11%, and for the sustainable 

development level as 29%. The local weights for the sub-criteria (sub-criteria 

prioritisation) are shown in Tables C2–5. Based on the weights for the criteria 

and sub-criteria, the global weight for each sub-criterion is shown in Table C6. 

Subsequently, the score and rating for each criterion in the case study areas 

can be determined using the original data of the cities. 

Table 6 illustrates the original data and achieved grade of the PT network 

performance for Bayswater, Cockburn, and Stonnington. The results show that 

Stonnington has the highest level in terms of the PT network ratio, PT coverage 

ratio, PT priority lane setting ratio, intersection blocking rate during peak hours, 

and coverage rate. All of the cities achieve level A for the passenger freight rate, 

intact car rate, PT utilisation rate, and green PT vehicle rate. Compared to 
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Stonnington, both Bayswater and Cockburn achieve higher levels for the PT 

on-time rate, PT driving accident rate, PT land area per capita, and PT energy 

intensity. Moreover, all three case study areas only achieve level D for the bus 

ownership rate. Bayswater has the lowest level of PT coverage ratio and 

intersection blocking rate during peak hours. 

Table 6  

Original data and achieved grades for the PT network performance criteria for 

Stonnington, Bayswater, and Cockburn 

Criteria 
Original Data and Achieved Grade 

Bayswater Cockburn Stonnington 

B
a

s
ic

 P
T

 i
n
fr

a
s
tr

u
c
tu

re
 l
e

v
e

l 

PT network 

ratio 
17.64 = Level D 19.21 = Level D 60.78 = Level A 

PT coverage 

ratio 
46.82 = Level C 50.42 = Level B 83.72 = Level A 

Harbour-

type bus 

stop setting 

ratio 

19.04 = Level C 9.2 = Level D 26.71 = Level B 

PT priority 

lane setting 

ratio 

0 = Level E 0.31 = Level E 25.38 = Level A 

P
T

 s
e

rv
ic

e
 l
e

v
e

l 

PT on-time 

rate 
91.03 = Level B 91.03 = Level B 84.68 = Level C 

Intersection 

blocking rate 

during peak 

hours 

21 = Level E 8.1 = Level D 1.5 = Level A 

Passenger 

freight rate 
1.75 = Level A 1.75 = Level A 2.33 = Level A 

PT driving 

accident rate 
2.38 = Level C 2.38 = Level C 4.54 = Level E 
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E
c
o

n
o

m
ic

 b
e

n
e

fi
t 

le
v
e

l Coverage 

rate 
98.8 = Level D 98.8 = Level D 101.5 = Level B 

Bus 

ownership 

rate 

7 = Level D 7 = Level D 7.36 = Level D 

Intact car 

rate 
100 = Level A 100 = Level A 100 = Level A 

S
u

s
ta

in
a

b
le

 d
e

v
e

lo
p

m
e

n
t 

le
v
e

l 

PT land area 

per capita 
20.47 = Level A 26.23 = Level A 9.28 = Level B 

PT utilisation 

rate 
0.8 = Level A 0.8 = Level A 0.78 = Level A 

Green PT 

vehicle rate 
100 = Level A 100 = Level A 100 = Level A 

PT energy 

intensity 
25.45 = Level A 25.45 = Level A 83.59 = Level C 

According to the standard scoring interval (see Appendix B), we divided 

each city’s PT network performance into five levels (see Table 7). We 

calculated the scores for PT performance for all of the criteria and summed the 

performance over all criteria, as indicated in Table 8. The results show that 

Stonnington’s PT network, at 82.45, scores higher than Cockburn and 

Bayswater, while Cockburn’s PT network scores 66.61, which is higher than 

Bayswater’s score of 63.55. The analysis shows us that the area with the best 

practice in terms of PT network performance is Stonnington. 

Table 7  

City PT evaluation result classification standard 

 Level A Level B Level C Level D Level E 

Index value evaluation 

range 
90–100 80–90 70–80 60–70 0–60 

Table 8 
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Comparative analysis of Bayswater, Cockburn, and Stonnington 

Criteria 
Global Weight 

Bayswater Cockburn Stonnington 

B
a

s
ic

 P
T

 i
n
fr

a
s
tr

u
c
tu

re
 

le
v
e

l 

PT network ratio 3.03 3.3 12.98 

PT coverage ratio 10.52 11.56 14.3 

Harbour-type bus stop 

setting ratio 
2.97 1.66 3.5 

PT priority lane setting 

ratio 
0 0.15 7.17 

P
T

 s
e

rv
ic

e
 l
e

v
e

l 

PT on-time rate 5.46 5.46 4.99 

Intersection blocking 

rate during peak hours 
0 2.91 4.26 

Passenger freight rate 5.3 5.3 5.3 

PT driving accident rate 2.01 2.01 0.76 

E
c
o

n
o

m
ic

 

b
e

n
e

fi
t 

le
v
e

l Coverage rate 3.34 3.34 3.86 

Bus ownership rate 1 1 1.06 

Intact car rate 1.9 1.9 1.9 

S
u

s
ta

in
a

b
le

 

d
e

v
e

lo
p

m
e

n
t 
le

v
e

l 

PT land area per capita 7.8 7.8 6.62 

PT utilisation rate 2.99 2.99 3 

Green PT vehicle rate 9 9 9 

PT energy intensity 8.23 8.23 5.5 

 Total 63.55 66.61 82.45 

According to the classification standard, the outcome of the city score in 

Table 8 shows that Stonnington is classified as level B, while Cockburn’s and 

Bayswater’s PT networks’ performances are both rated as level D. 
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The outcomes of the case study areas reveal the criteria that governments 

should consider in future optimization efforts to enhance the PT network 

performance of cities. 

3.6 Conclusion 

In this chapter, we investigated the performance of PT networks at the basic 

PT infrastructure level, PT service level, economic benefit level, and 

sustainable development level. The research established a new AHP-based 

model to provide weights for the criteria and sub-criteria. Based on the existing 

standards for each sub-standard, the new evaluation model gives a score for a 

city’s PT network performance, and the results show the aspects that the 

governments should consider improving in the future. 

Moreover, we collected a series of indicators across three sample cities, 

representing a series of land use and transport policy backgrounds, and these 

indicators can help researchers determine numerous standards, so as to 

potentially inspire any city that wants to improve the future performance of its 

PT network. Results of the model show that all three cities have high levels of 

sustainable development. By providing indicators that can be used to evaluate 

specific PT policy issues, this research has made a significant contribution to 

PT network performance evaluation. The findings of this chapter are as follows: 

 The PT network ratio and PT coverage ratio are the most important criteria 

for the basic PT infrastructure level, whereas for the PT service level, the 

PT on-time rate has the highest weighting. For the economic benefit level, 

the coverage rate is the most important criterion. The green PT vehicle rate 

and PT energy intensity have the highest weighting in the area of 

sustainable development. 

 The results of the three case study areas indicate that both Bayswater and 

Cockburn should consider their PT infrastructure level, PT service level, and 

economic level more closely in their plans and strategies. Stonnington 



43 

should improve its sustainable development level, PT service level, and 

economic benefit level. 
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Chapter 4: Performance Optimisation by Multi-

Aspiration-Level Goal Programming 

4.1 General overview 

In this chapter, we propose an optimisation approach to improve multiple-

criteria aspiration-level PT performance by combining PTCM-AHP models and 

MALGP. The approach uses the PTCM-AHP to calculate the system weights 

of PT network performance criteria. Based on the criteria weight values, the 

approach combines the multi-aspiration goal-level selection process in three 

different ways. The proposed approach was used to optimise PT networks in 

Bayswater, Cockburn, and Stonnington, Australia, to demonstrate the PT 

network performance optimisation process. By controlling the criteria goal value 

interval, this new approach combines decision-making plans and strategies to 

optimise various scenarios.  

The remainder of this chapter is organised as follows: in Section 4.2, the 

mathematical formulations for the GP and MCGP models is explained. Section 

4.3 proposes the multi-aspiration-level GP approach dependent on PTCM-AHP 

models, followed by three examples in Section 4.4. Section 4.5 discusses the 

results of three case study areas and the application of the model. Section 4.6 

presents conclusions. 

4.2 Model formulation 

The PTCM-AHP model's criteria weighting results are used as coefficient 

values in this study to calculate the optimal solution. Section 4.2.1 introduces 

the basic formulation of the GP model before we develop and construct AHP-

dependent MALGP models. Section 4.2.2 also presents the concept and 

formulation of MCGP development. 

4.2.1 Goal programming 
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As we have mentioned in Chapter 2, the GP often combines with the AHP 

model for solving optimisation problems. Thus, we use the PTCM-AHP model 

criteria weighting results as coefficients of the objective function to model PT 

network performance optimisation process (Cyril et al., 2019). Details of the 

objective function and constraints are presented below. 

We define the following notations: 

𝑖: number of goals, 𝑖 = 1, 2, … 𝑛, 

𝑠: number of criteria, 𝑠 = 1, 2, …  𝑒, 

𝑅𝑖: 𝑖th priority, 

𝑥𝑠: 𝑠th criteria, 

𝑏𝑖𝑠: coefficient of the 𝑖th goal and 𝑠th criteria,  

𝑑𝑖: goal value for goal 𝑖,  

𝑝𝑖: positive deviation,  

𝑞𝑖: negative deviation. 

The optimisation problem of the PT network performance can be formulated 

as follows: 

Min ∑ 𝑅𝑖
𝑛
𝑖=1 (𝑝𝑖 + 𝑞𝑖)  

(

(6) 

subject to 

∑ 𝑏𝑖𝑠
𝑒
𝑠=1 𝑥𝑠−𝑝𝑖 + 𝑞𝑖 = 𝑑𝑖, 

(

(7) 

𝑝𝑖, 𝑞𝑖, 𝑥𝑠 ≥ 0,   
(

(8) 
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where 𝑅𝑖 is the rating and value of the 𝑖th decision variable. 

The GP method cannot manage a goal which contains multiple choice 

aspiration level. To solve this problem, Chang (2007) developed the MCGP 

model to manage multiple choice optimal process. The details of the MCGP 

model formulation are presented below. 

4.2.2 Multiple choice goal programming 

The GP optimisation approach relies on choosing a goal at a single 

aspiration level. However, a goal may involve multiple choice aspiration levels 

(Chang, 2007; Ho et al., 2013). According to Chang (2007), the author identifies 

a situation where DMs aim to address a problem with a specific goal achievable 

through multiple aspiration levels, noting that current GP approaches do not 

offer a solution for this scenario. 

The original GP method cannot solve multiple choice aspiration-level 

issues; thus, MCGP was proposed to solve this problem. The details of the 

MCGP model consists of the objective function (6) and the constraints are 

shown as follows: 

∑ 𝑏𝑖𝑠
𝑒
𝑠=1 𝑥𝑠 − 𝑝𝑖 + 𝑞𝑖= ∑ 𝑔𝑖𝑗𝑆𝑖𝑗(𝐵)𝑚

𝑗=1 , 
(

(9) 

𝑆𝑖𝑗(𝐵) ∈ 𝑅𝑖(𝑥),  𝑝𝑖, 𝑞𝑖, 𝑥𝑠 ≥ 0, 
(

(10) 

where 𝑔𝑖𝑗  is the 𝑗 th aspiration level of the 𝑖 th objective, 𝑔𝑖𝑗−1 ≤ 𝑔𝑖𝑗 ≤

𝑔𝑖𝑗+1 , and 𝑆𝑖𝑗(𝐵)  represents a binary serial function attached to multiple 

aspiration levels for each objective and is based on the restriction 𝑅𝑖(𝑥) 

(Chang, 2007; Jadidi et al., 2015). 𝑆𝑖𝑗(𝐵) ensures that each objective selects 

one of the multiple goals (Chang, 2007; Jadidi et al., 2015).  
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In practical scenarios, the criteria used often involve multiple goals and 

levels of aspiration. While the model solves the problem of multiple aspiration 

levels, selecting the appropriate aspiration level for a set of criteria may be 

necessary for optimising PT performance. Therefore, this research proposes 

an AHP-Dependent MALGP model that can effectively choose an appropriate 

aspiration level for a given set of criteria, which may consist of multiple levels. 

The proposed AHP-Dependent MALGP model is explained in detail below. 

4.3 AHP-dependent multi-aspiration-level goal programming 

As we have stated in Chapter 2, AHP is often combined with GP models to 

solve performance optimisation issues. In a real situation, the model has 

multiple choices for each criterion. However, the criteria aspiration level may 

have different aspiration-level cases. The DMs require the model to be able to 

select an aspiration level among different cases. The current MCGP model in 

PT performance optimisation lacks consideration in the selection process of 

different aspiration level cases. Therefore, in this section, we propose an AHP-

Dependent MALGP model to address this issue. In this chapter we use PTCM-

AHP model criteria weighting results as coefficient values from which to 

calculate the criteria optimal solution. The details of the model are as follows. 

The proposed model consists of three steps:  

(1) As mentioned in Sections 3.2 and 3.3, the PT network performance 

criteria weights for the model are obtained from the PTCM-AHP model. 

(2) The formulated constraints consider the upper and lower bounds of the 

criteria by assigning positive and negative deviations in the form of inequalities. 

The model considers three cases for the aspiration level selection criterion. 

(3) The model uses the selected aspiration levels as constraints to establish 

the objective function and calculate the optimal solution. 
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Overall, the proposed model applies the PTCM-AHP model to determine 

the weights of the criteria. The model identifies the weights by studying the local 

council policies of the case study areas. Based on the AHP, the PTCM-AHP 

model considers the basic PT infrastructure, PT services, economic benefits, 

and sustainable development levels. These criteria are further divided into 15 

factors. Details of the 15 sub-criteria can be found in Section 3.3. The 15 

decision variables are the PT network ratio (X1), PT coverage ratio (X2), green 

PT vehicle rate (X3), PT energy intensity (X4), PT priority lane setting ratio (X5), 

PT land area per capita (X6), PT on-time rate (X7), passenger freight rate (X8), 

coverage rate (X9), peak hours intersection blocking rate (X10), harbour-type 

bus stop setting ratio (X11), bus ownership rate (X12), PT utilisation rate (X13), 

PT driving accident rate (X14), and intact car rate (X15). Based on the 

established AHP model, the weights for the criteria are used in the multi-

aspiration-level GP objective function. The weights for each sub-criterion are 

listed in Table C6.  

Figure 4  

Flowchart of AHP-dependent multi-aspiration-level GP model 
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Upon completion of the criteria weights determination process using the 

PTCM-AHP model, the proposed AHP-Dependent MALGP model incorporates 

the aspiration level selection process to optimise the performance of the PT 

network for DMs. This approach minimises the sum of deviations between 

optimal values and goal values. Subsequently, the optimal solutions for the 

case study area can be determined. 

As shown in Figure 4, the flowchart of the AHP-Dependent MALGP model 

contains serval major steps. The details of criteria aspiration-level case 

selection and MALGP formulation establishment process are presented in the 

following subsections.  

4.3.1 Criteria aspiration-level case selection  

Criterion case selection was based on the criterion of aspiration levels and 

the actual value of the case study area. Table B1 presents the level grades for 
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all the sub-criteria. This study utilises Levels 1–5 to represent Levels E–A. The 

aspiration level selection for the cases is listed in Figure 5.  

Figure 5  

Sub-criteria grade level 

 

Case 1:  

If the actual value of the 𝑖th criterion is higher than 𝑑𝑖 ,max, then the actual 

value becomes the 𝑖th criterion aspiration goal value. 

Case 2: 

If the 𝑖th criterion’s actual value is higher than 𝑑𝑖,4 but less than 𝑑𝑖 ,max, the 

𝑖th criterion’s aspiration goal value should be higher than the actual value but 

less than 𝑑𝑖 ,max. 

Case 3: 

If the 𝑖th criterion’s actual value belongs to levels 1, 2, 3, or 4, the aspiration 

level of the 𝑖 th criterion becomes the (𝑖 + 1) th goal level. After the case 

selection process, the formulas for the three cases are as given in the next 

section. 

4.3.2 Establishing multi-aspiration-level goal programming 

This model focuses on the criteria index value interval selection that 

enables the government to control the optimisation process. The proposed 

model formulation also includes Eq. (6)-(8). 
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Let 𝑑𝑖  be the 𝑖 th criterion grade level, 𝑖 = 1, 2 … 5 . The new multi-

aspiration-level GP is described below. 

Case 1: When the goal value is greater than 𝑑𝑖 ,max, 

𝑑𝑖 ≥ 𝑑𝑖 ,max, 
(

(11) 

where the aspiration level of 𝑑𝑖 is the actual value of the criterion. 

Case 2: When the goal value is less than 𝑑𝑖,max but higher than 𝑑𝑖,4, 

𝑑𝑖,4 ≤ 𝑑𝑖 ≤ 𝑑𝑖 ,max, 
(

(12) 

where the constraints of 𝑑𝑖 are selected between the actual value of the 

criterion and 𝑑𝑖 ,max. 

Case 3: When the goal value is less than 𝑑𝑖 ,max but the actual value is less 

than 𝑑𝑖,4, 

𝑑𝑖 ,min ≤ 𝑑𝑖 ≤ 𝑑𝑖 ,max, 
(

(13) 

where the constraints of 𝑑𝑖 are selected from the next level of the criterion 

goal value. For example, if the actual value of 𝑑𝑖 achieves goal 1, then goal 2 

should be the aspiration level for 𝑑𝑖.  

In the next section, we use three cities to illustrate the MALGP process. 

4.4 Illustrative example 

In this section, to explain the process and outcome of the proposed model, 

this research used the PTCM-AHP model-based MALGP model on the three 

case studies. The details of the case study areas can be found in Section 4.3. 

The case studies were used to explain how the multi-aspiration-level GP model 
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is able to optimise PT network performance in three cities in Australia, 

considering basic PT infrastructure, PT services, economic benefits, and 

sustainable development levels. The goal value of the case study areas is to 

choose the selection process of the aspiration level for optimisation based on 

the actual value. 

The formulated constraints were different for each of the three case study 

areas. As detailed in subsection 4.3.1, the constraints of the objective function 

were established according to the selection of the criteria-level grades (for more 

information, refer to Table B1). Subsequently, the objective function for the case 

study area can be formulated.  

This study assumed the conditions for the three case studies in which the 

DMs optimise the performance based on the criteria aspiration level case 

selection. The details of the actual values and goals are listed in Tables 9–11. 

Referring to the goals for case study areas, the formulations are as follows: 

Table 9  

Bayswater’s actual and goal values for decision variables 

Variable Criteria Actual Value Goal Value 

X1 PT network ratio 17.64 50–55 

X2 PT coverage ratio 46.82 50–55 

X3 Green PT vehicle rate 100 100 

X4 PT energy intensity 25.45 0–25.45 

X5 
PT priority lane setting 

ratio 
0 10–15 

X6 PT land area per capita 20.47 20.47 

X7 PT on-time rate 91.03 95–100 

X8 Passenger freight rate 1.75 1.75 

X9 Coverage rate 98.8 100 
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X10 
Peak hours intersection 

blocking rate  
21 8–11 

X11 
Harbour-type bus stop 

setting ratio 
19.04 25–35 

X12 Bus ownership rate 7 18–19 

X13 PT utilisation rate 0.8 0.8–2 

X14 PT driving accident rate 2.38 1.5–2 

X15 Intact car rate 100 100 

Using Table 9, we construct the objective function and constraints for 

Bayswater as follows. 

The objective function for Bayswater: 

Min 14.3𝑝1 + 14.3𝑞1 + 14.3𝑝2 + 14.3𝑞2 + 9𝑝3 + 9𝑞3 + 7.9𝑝4 + 7.9𝑞4 + 6.5𝑝5 +

6.5𝑞5 + 5.5𝑝6 + 5.5𝑞6 + 5.05𝑝7 + 4.6𝑝8 + 4.6𝑞8 + 4.5𝑝9 + 4.5𝑞9 + 4.3𝑝10 +

4.3𝑞10 + 2.25𝑝11 + 2.25𝑞11  

 

Constraints for Bayswater: 

Constraint 1: Improve PT network ratio 

X1 + 𝑝1 = 55 

X1 − 𝑞1 = 50 

 

Constraint 2: Increase PT coverage ratio 

X2 + 𝑝2 = 55 

X2 − 𝑞2 = 50 

 

Constraint 3: Minimise PT energy intensity and increase green PT vehicle 

rate 

X3 + X4 + 𝑝3 = 125.45  
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X3 + X4 − 𝑞3 = 100 

Constraint 4: Maximise PT priority lane setting ratio 

X5 + 𝑝5 = 15 

X5 − 𝑞5 = 10 

 

Constraint 5: Improve PT on-time rate 

X7 + 𝑝5 = 100 

X7 − 𝑞5 = 95 

 

Constraint 6: Improve PT utilisation rate and increase PT land area per 

capita 

X6 + X13 + 𝑝6 = 22.47 

X6 + X13 − 𝑞6 = 21.27 

 

Constraint 7: Optimise financial resources by decreasing passenger freight 

rate and increasing coverage rate 

X8 + X9 + 𝑝7 = 101.75  

Constraint 8: Reduce peak hours intersection blocking rate 

X10 + 𝑝8 = 11 

X10 − 𝑞8 = 8 

 

Constraint 9: Increase harbour-type bus stop setting ratio 

X11 + 𝑝9 = 35 

X11 − 𝑞9 = 25 

 

Constraint 10: Maximise bus ownership rate 
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X12 + 𝑝10 = 19 

X12 − 𝑞10= 18 

 

Constraint 11: Maximise intact car rate and reducing PT driving accident 

rate 

X14 + X15 + 𝑝11 = 102 

X14 + X15 − 𝑞11 = 101.5 

 

Table 10  

Cockburn’s actual and goal values for decision variables 

Variable Criteria Actual Value Goal Value 

X1 PT network ratio 19.21 50–55 

X2 PT coverage ratio 50.42 55–100 

X3 Green PT vehicle rate 100 100 

X4 PT energy intensity 25.45 0–25.45 

X5 
PT priority lane setting 

ratio 
0.31 10–15 

X6 PT land area per capita 26.23 26.23 

X7 PT on-time rate 91.03 95–100 

X8 Passenger freight rate 1.75 1.75 

X9 Coverage rate 98.8 100 

X10 
Peak hours intersection 

blocking rate  
8.1 5–8 

X11 
Harbour-type bus stop 

setting ratio 
9.2 15–25 

X12 Bus ownership rate 7 18–19 

X13 PT utilisation rate 0.8 0.8–2 

X14 PT driving accident rate 2.38 1.5–2 
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X15 Intact car rate 100 100 

Using Table 10, we construct objective function and constraints for 

Cockburn as below. 

The objective function for Cockburn is the same as that of Bayswater. 

Constraints for Cockburn: 

Constraints 1, 3, 4, 5, 7, 10, and 11 are the same as those for Bayswater. 

Constraint 2: Increase PT coverage ratio 

X2 + 𝑝2 = 100 

X2 − 𝑞2 = 55 

 

Constraint 6: Improve PT utilisation rate and increase PT land area per 

capita 

X6 + X13 + 𝑝6 = 28.23 

X6 + X13 − 𝑞6 = 27.03 

 

Constraint 8: Reduce peak hours intersection blocking rate  

X10 + 𝑝8 = 8 

X10 − 𝑞8 = 5 

 

Constraint 9: Increase harbour-type bus stop setting ratio 

X11 + 𝑝9 = 25 

X11 − 𝑞9 = 15 

 

Table 11 

Stonnington’s actual and goal values for decision variables 
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Variable Criteria Actual Value Goal Value 

X1 PT network ratio 60.78 60.78–70 

X2 PT coverage ratio 83.72 83.72 

X3 Green PT vehicle rate 100 100 

X4 PT energy intensity 83.59 30–80 

X5 
PT priority lane setting 

ratio 
25.38 25.38–30 

X6 PT land area per capita 9.28 11–14 

X7 PT on-time rate 84.68 85–95 

X8 Passenger freight rate 2.33 2.33 

X9 Coverage rate 101.5 150–200 

X10 
Peak hours intersection 

blocking rate  
1.5 0–1.5 

X11 
Harbour-type bus stop 

setting ratio 
26.71 35–100 

X12 Bus ownership rate 7.36 18–19 

X13 PT utilisation rate 0.78 0.78–2 

X14 PT driving accident rate 4.54 2.5–3 

X15 Intact car rate 100 100 

Using Table 11, we construct objective function and constraints for 

Stonnington as follows. 

The objective function for Stonnington: 

Min 14.3𝑝1 + 14.3𝑞1 + 9𝑝2 + 9𝑞2 + 7.9𝑝3 + 7.9𝑞3 + 7.8𝑝4 + 7.8𝑞4 + 6.5𝑝5 +

6.5𝑞5 + 5.05𝑝6 + 5.05𝑞6 + 4.6𝑝7 + 4.6𝑞7 + 4.5𝑝8 + 4.5𝑞8 + 4.3𝑝9 + 4.3𝑞9 +

3.2𝑝10 + 3.2𝑞10 + 2.25𝑝11 + 2.25𝑞11  

 

Constraints for Stonnington: 
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Constraint 1: Maximise accessibility by improving PT network and coverage 

ratios 

X1 + X2 + 𝑝1 = 153.72 

X1 + X2 − 𝑞1 = 144.5 

 

Constraint 2: Minimise PT energy intensity and increase green PT vehicle 

rate 

X3 + X4 + 𝑝2 = 180 

X3 + X4 − 𝑞2 = 130 

 

Constraint 3: Maximise PT priority lane setting ratio 

X5 + 𝑝3 = 30 

X5 − 𝑞3 = 25.38 

 

Constraint 4: Increasing PT land area per capita 

X6 + 𝑝4 = 14 

X6 − 𝑞4 = 11 

 

Constraint 5: Improve PT on-time rate 

X7 + 𝑝5 = 95 

X7 − 𝑞5 = 85 

 

Constraint 6: Optimise financial resources by decreasing passenger freight 

rate and increasing coverage rate 

X8 + X9 + 𝑝6 = 202.33 

X8 + X9 − 𝑞6 = 152.33 

 

Constraint 7: Reduce peak hours intersection blocking rate  
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X10 + 𝑝7 = 1.5 

X10 − 𝑞7 = 0 

 

Constraint 8: Increase harbour-type bus stop setting ratio 

X11 + 𝑝8 = 100 

X11 − 𝑞8 = 35 

 

Constraint 9: Maximise bus ownership rate 

X12 + 𝑝9 = 19 

X12 − 𝑞9 = 18 

 

Constraint 10: Improve PT utilisation rate  

X13 + 𝑝10 = 2 

X13 − 𝑞10 = 0.78 

 

Constraint 11: Maximise intact car rate and reducing PT driving accident 

rate 

X14 + X15 + 𝑝11 = 103 

X14 + X15 − 𝑞11 = 102.5 

 

Based on the formulations and constraints listed above for the case study 

areas, the results of the MALGP process are discussed in the next section. 

4.5 Results and discussions 

The optimisation results were obtained using MATLAB to obtain the optimal 

solution for the case study areas, which are shown in Tables D1–D3. These 

scenarios indicate that the criteria performances significantly improved, 

including the PT network ratio, PT coverage ratio, PT energy intensity, PT 

priority lane setting ratio, PT on-time rate having a higher priority than coverage 
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rate, peak hours intersection blocking rate, harbour-type bus stop setting ratio, 

bus ownership rate, and PT driving accident rate.  

The optimal solutions for Bayswater are listed in Table D1. At the basic PT 

infrastructure level, an increase of 183.34, 6.79, and 31.3% in the PT network, 

PT coverage, and harbour-type bus stop setting ratios, respectively, would 

improve the PT network performance for Bayswater. Reducing the peak hours 

intersection blocking rate by 61.9%, decreasing the PT driving accident rate by 

36.97%, and improving the PT on-time rate by 4.36% would improve the PT 

service level in Bayswater. Improving the coverage rate by 1.21% and bus 

ownership rate by 157.14% would optimise Bayswater’s economic benefit level.  

Table D2 shows that increasing the PT network, PT coverage, and harbour-

type bus stop setting ratios by 160.28, 9.08, and 63.04%, respectively, would 

improve Cockburn’s basic PT infrastructure level. In terms of Cockburn’s PT 

service level, increasing the PT on-time rate to 95%, decreasing the peak hours 

intersection blocking rate by 1.23%, and reducing the PT driving accident rate 

to 1.5 times per million kilometres would help to achieve the optimal PT service 

level scenario. Increasing the coverage rate to 100% and bus ownership rate 

to 18 cars per 10,000 people would improve Cockburn’s economic benefit level. 

Both Bayswater and Cockburn’s optimal solutions suggest decreasing the PT 

energy intensity to 0 g standard coal per person-kilometre and improving the 

PT priority lane setting ratio to 10%.  

The optimal solutions for Stonnington are listed in Table D3. In terms of the 

PT infrastructure level, increasing the harbour-type bus stop setting ratio by 

31.03% would improve PT network performance. An increase in the PT on-time 

rate of 0.37% and a reduction of 44.93% in the PT driving accident rate would 

improve Stonnington’s PT service level. The optimal solution was achieved with 

an intersection blocking rate of 0% during peak hours. Increasing the coverage 

rate by 47.78% and bus ownership rate by 144.56% would improve the 
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economic benefit level. A reduction of 64.11% in PT energy intensity and an 

increase of 18.53% in PT land area per capita would improve the optimal value 

for the sustainable development level.  

Tables D1-3 also highlight that PT energy intensity and PT priority lane 

setting ratio are the most sensitive criteria in Bayswater and Cockburn 

optimisation solution. In the case of Stonnington, the criterion showing the 

highest sensitivity is the peak hours intersection blocking rate.  

Overall, all case study areas show that the optimal solutions have a 

significant increase in the harbour-type bus stop setting ratio, and the bus 

ownership rate. The optimisation model results also recommend the DMs to 

propose a management plan to reduce the PT driving accident rate. Additionally, 

plans and strategies are also needed to optimise the most sensitive criteria in 

the case study areas.  

4.6 Conclusion 

In this chapter, we established and formulated a multi-aspiration-level GP 

model for PT network performance optimisation. The proposed model is a 

further development of the GP and MCGP models. The criteria for optimising a 

PT network’s performance often contains multiple aspiration levels. Hence, this 

model considered optimising the PT network performance with criteria with 

multiple aspiration levels. The multi-aspiration-level GP approach involves 

three steps. First, the DM’s criteria preferences are implemented to express 

each criterion weight, which are gained from the PTCM-AHP model. 

Subsequently, the DMs grade the criteria performance based on the level grade 

for all sub-criteria and find each criterion aspiration level for performance 

optimisation. Finally, the multi-aspiration-level GP method is used to optimise 

the city’s PT network performance and provide an optimal solution. 
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Compared to the GP and MCGP approaches, this model combined the 

multi-aspiration goal-level selection process in three different situations to 

create a PTCM-AHP model-based multi-aspiration-level GP approach. The 

three examples illustrated the PT network performance optimisation process. 

The optimal solutions obtained in all case study areas indicate a substantial rise 

in the ratio of harbour-type bus stop settings and bus ownership rates, while the 

optimisation model also suggests the need for a management plan to address 

the issue of PT driving accidents.  
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Chapter 5: Uncertainty Analysis of PT Networks 

Performance Optimisation Using Monte Carlo 

Simulation  

5.1 General overview  

In this chapter, we use MCS to analyse the probability of the optimal 

solution to manage uncertainty. Probabilistic analysis is a commonly used 

technique and addresses evaluation-based issues in project management by 

performing MCS. Based on different application areas, MCS is also used in 

mitigating uncertainty related to the model inputs and outputs. Despite its 

effectiveness in addressing project management concerns, there has been little 

research that has utilised MCS to tackle the problem of optimising PT network 

performance. The current research only considers a single specific aspect of 

PT performance. The probability of the scenario analysis is thus required in the 

PT network performance optimisation problems. 

In some cases, DMs have difficulty to deliver an optimal solution due to 

uncertainty that arises during the optimisation process. Previous research has 

lacked an examination of the uncertainty associated with criteria uncertainty. 

To fill the gap, the models optimise four levels of criteria with uncertainty in 

order to achieve the DMs' PT network optimisation goals. This chapter's main 

task is to determine the level of criteria uncertainty, and a sensitivity analysis is 

performed to guide the optimisation process in three case study areas. MCS 

results can be used to help DMs make decisions about PT network optimisation 

and to precisely indicate the probability of uncertainty rate when delivering 

criteria outcomes. 

The remainder of this chapter is structured as follows: Section 5.2 describes 

the MCS process. The input data for three case study areas are presented in 
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Section 5.3. Section 5.4 discusses the findings of the three case study areas 

as well as the conclusion. Finally, Section 5.5 presents the chapter's conclusion. 

5.2 Monte Carlo simulation process  

In this chapter, we use MCS to model the probability of optimal scenario 

delivery. The MCS is used to determine the likelihood of finding the best 

solution. The proposed method is used to calculate the possibility of an optimal 

solution. MCS performs calculations, allowing for multiple simulations of a 

project. The process is used to quantitatively analyse project risk and identify 

the probability of the best solution by randomly selecting criteria values (Zhou 

et al., 2020; Landau & Binder, 2021). MCS analyses risk and uncertainty using 

probability distribution. The details of the MCS process are shown below. 

5.2.1 Criteria probability distribution identification 

Figure 6 

Triangular distribution 

 

Before we begin simulating the optimisation results, we must first determine 

the probability of the criteria. The types of criteria probability distributions must 

be chosen during the identification process. According to Figure 6, the criteria 

sampling process uses a triangular probability distribution because the 
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minimum, most likely, and maximum values can be estimated. The MALGP 

process outputs are used as the most likely value of criteria in the MCS process. 

Table 12 shows the criteria ratings for the uncertainty level, which can be used 

to calculate the minimum and maximum values of the criteria. The level of 

uncertainty is divided into five categories: very high, high, medium, low, and 

very low.  

Table 12 

Uncertainty level (Oracle, n.d.) 

Uncertainty level Min Most likely Max 

Very high 50% 100% 200% 

High 75% 100% 150% 

Medium 85% 100% 125% 

Low 90% 100% 115% 

Very low 95% 100% 110% 

Thus, the criteria risk and uncertainty level need to be identified. To 

determine the input of criteria, the uncertainty and risk level of the criterion are 

selected based on the risk rating recommendation and existing risk ratings for 

the criteria. The current PT risk assessment shows that the risk level of PT 

driving accident rates is high (Weldon, 2021). Based on existing risk ratings, 

the uncertainty level of the intersection blocking rate during peak hours, 

coverage rate, PT land area per capita, and PT utilisation rate are medium 

(CCOHS, 2022). Other criteria uncertainty levels are very low since the 

optimisation process can be controlled under the government implementation 

plan. After the criteria uncertainty level have been identified, the results are 

utilised in the sampling process. During the criteria sampling, the sampling 

model needs to be selected. The details of the sampling model selection are 

shown in following subsection. 
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5.2.2 Sampling model selection 

MCS uses a random sampling process. Sampling is the process of 

selecting criteria values from the criteria input probability distribution in a model. 

Monte Carlo (MC) sampling and Latin Hypercube sampling (LHS) are the two 

major sampling model used in MCS. LHS is a method that partitions the 

probability distribution by segmenting the cumulative curve into uniform 

intervals and randomly selecting one value from each interval. Consequently, 

LHS can effectively represent the distribution with a low number of samples 

(Manzo et al., 2015). 

MC sampling can recreate the full input distribution by making random 

selections across the entire probability distribution with large iterations 

(Montemanni et al., 2018). With high iteration, the model results are closer to 

the actual situation (Montemanni et al., 2018). Hence, this study uses MCS 

performed by means of MC sampling. After the sampling model is selected, the 

optimisation results of the PT network performance in the case study areas can 

be simulated to model the uncertainty. The details of the case study areas’ 

model input for the criteria are described in Section 5.3. 

5.3 Case study 

As previously stated, the analysis was implemented in three study areas in 

Australia: the City of Bayswater, the City of Cockburn, and the City of 

Stonnington. The details of case study areas can be found in Section 3.4. 

The MCS is conducted to analyse the likelihood of achieving PT network 

performance optimisation goals. The input data for the three case study areas 

are derived from AHP and MALGP outputs. As demonstrated in Section 4.3, 

the PTCM-AHP model calculates the criteria weights that are later utilised in 

MALGP for the optimisation process. The criteria weights are presented in 
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Table C6. The mean value of the criteria for MCS are extracted from the 

MALGP criteria optimising results, and the details can be found in Table D1-3. 

The sources of uncertainty for the optimisation process of PT network 

performance have not been fully investigated. Thus, the degree of uncertainty 

for each criterion is defined based on the existing risk rating, which is discussed 

in Section 5.2.1. This analysis focuses on the uncertainty of the implementation 

criteria of the optimisation results. The risk level of criteria is defined based on 

an existing risk assessment of the uncertainty level. 

According to the risk rating description, the uncertainty level is medium for 

the intersection blocking rate during peak hours, coverage rate, PT land area 

per capita, and PT utilisation rate. Based on existing PT risk assessments, the 

uncertainty level of the PT driving accident rate is high. The criteria mean values 

are each criterion’s optimal value. The remaining criteria have very low 

uncertainty levels. Thus, the minimum and maximum values for the criteria can 

be calculated. 

The type of probability distribution for all criteria sampling is assumed to be 

triangularly distributed since the minimum, most likely, and maximum values 

can be estimated. The list of the model inputs in MCS for the three case study 

areas is shown in Table E1-3. The sampling result is more likely to display the 

distribution accurately with a high number of draws. Thus, the criteria use 5,000 

draws by applying MC sampling.  

Sensitivity analyses on three case study areas are implemented. Each PT 

criteria performance is calculated on 5,000 model runs. To explore the criteria 

model outputs uncertainty, criteria uncertainty is investigated via criteria 

coefficient value, criteria optimising value impact on model output, and the 

criteria probability for reaching the DMs’ optimisation goals. The details of the 

model’s results and sensitivity analyses are shown in the next section. 
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5.4 Results and discussions 

In this section, sensitivity analyses were implemented in the three case 

study areas. The most likely values for the criteria during the optimisation 

process were also determined. This study assumed that the DMs must control 

each criterion’s performance and the criteria probability of being within a range 

of -5%/+10%. The model outcomes were analysed to identify the probability 

and confidence level for achieving the goals. Finally, the results reveal the 

critical sensitive criteria that governments must take into account to manage 

uncertainty for future optimisation plans and strategies of the case study areas. 

Section 5.4.1 identifies the most sensitive criteria and the criteria’s most likely 

value during the optimisation process. Section 5.4.2 shows the most important 

criteria of the MCS model output for the study areas. Section 5.4.3 determines 

the probability of sensitive criteria to achieve the government requirement. 

5.4.1 Sensitivity analysis 

We first examine the likelihood of achieving the optimal solution and identify 

the most sensitive criterion. According to Table F1-3, all cities’ outputs are 

influenced by the on-time rate. Based on the output of the probability distribution 

for the case study areas, three cities have a 50th percentile chance of achieving 

the performance optimisation goals for each criterion. Except for the on-time 

rate, other criteria have at least a 60% likelihood of achieving the optimising 

solution. 

Figure 7 

Bayswater PT network performance criteria coefficient value 
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Figure 8 

Cockburn PT network performance criteria coefficient value 

 

Figure 9 

Stonnington PT performance criteria coefficient value 

 

Figures 7-9 show the coefficient values of the criteria for the three case 

study areas. The y-axis displays the names of the criteria from top to bottom in 
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order of sensitive influence to the criteria. The x-axis indicates the coefficient 

value of the associated criteria. 

According to the results, the most sensitive criterion for all cities is coverage 

rate. This criterion coefficient value is over 0.9 for the three cities. According to 

Tables G1 and G2, Bayswater and Cockburn’s most likely value is 103.33%. 

The two cities’ minimum and maximum values are 85.08% and 124.5%, 

respectively. Table G3 suggests that the most likely value for Stonnington is 

155%. The Stonnington minimum and maximum values are 127.76% and 

186.52%, respectively. To control and minimise the uncertainty of this most 

sensitive criterion optimisation process, the DMs should consider improving the 

PT service commercial revenue and reducing the operating expenses for all 

cities optimisation scenario. 

Figures 7-9 effectively offer an overall interpretation of the model based on 

each criterion. However, the relative importance of the criteria on model output 

has not been discovered. For this reason, Figures 10-12 show the criteria 

optimising inputs’ impact on MCS output in the next subsection. 

5.4.2 Features importance 

Next, we investigate the effect of the criteria optimal value on model output. 

Figures 10-12 show the impact of the three cities’ criteria for optimising the 

value on the model results. The y-axis demonstrates the name of the criteria 

based on importance magnitude from top to bottom. The x-axis indicates the 

criteria impact on the model output. The line colour shows the impact of the 

criteria on the model output, which supports the DMs in analysing the criteria 

impact on the city optimisation solution. 
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Figure 10 

Bayswater criteria optimising value impact on model output

Figure 11  

Cockburn criteria optimising value impact on model output 
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Figure 12  

Stonnington criteria optimising value impact on model output 

 

 

Figures 10-12 show that the coverage rate has the highest impact on the 

model output of the three case study areas. Furthermore, the higher the 

coverage rate value is, the greater the influence on the model output. However, 

this criterion suggests a baseline result when the coverage rate input is low. 

For Bayswater, other criteria, such as the PT on-time rate, the PT network ratio, 

and the PT coverage ratio, also have a high impact on the output (as shown in 

Figure 10). 

Similarly, Figure 11 demonstrates that these three criteria have a high 

influence on the model output for Cockburn. The conclusion of coverage rate 

also applies to these three criteria. 

Finally, Figure 12 suggests that the higher the PT on-time rate requirement 

is, the higher the impact on the model optimisation result for Stonnington. 

Except for the criteria mentioned above, other criteria inputs have a low 

influence on the model optimisation output for the three cities. The results 

shown in the figure also validate the criteria weighting results of the PTCM-AHP 
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model. The PT network ratio and PT coverage ratio, PT on-time rate, and 

coverage rate are the most important variables for the basic PT infrastructure 

level, PT service level, and economic benefit level, respectively (see Table C6). 

Figures 10-12 provide a way to analyse the effect of each criterion on the 

model outputs. However, DMs often have government requirements to control 

the optimisation process. It is necessary to identify the probability of criteria that 

meet the government requirements. 

5.4.3 Test accuracy  

Figure 13 

Bayswater and Cockburn criterion probability distribution for reaching DMs’ 

optimising goal 

 

Finally, we determine the criteria probability distribution in the PT network 

performance optimisation process. The following section identifies the 



74 

probability of the criterion that meets the DMs’ requirements. DMs require the 

criteria probability of being within a range of -5%/+10%. Figures 13-14 show 

the probability of the criteria reaching the requirement for the three cities. The 

y-axis displays the probability of achieving the criterion optimising value. The x-

axis indicates the input value of the associated criteria. 

Since the uncertainty level of most criteria is very low, most criteria have a 

100% probability of meeting the government requirement. For Bayswater and 

Cockburn, there are four criteria uncertainty levels that are higher than very low, 

including coverage rate, intersection blocking rate during peak hours, PT 

utilisation rate, and PT driving accident rate. The details of the criteria 

probability distribution for Bayswater and Cockburn are shown in Figure 13. 

Five criteria for Stonnington have an uncertainty level higher than the ‘very low’ 

level. Figure 14 shows the probability distribution of these five criteria, including 

PT land area per capita, coverage rate, intersection blocking rate during peak 

hours, PT utilisation rate, and PT driving accident rate. 

For Bayswater and Cockburn, Figure 13(a) shows that the coverage rate of 

60.8% reaches the government goal. According to Table C6, this criterion has 

the highest weight in the economic benefit level. Hence, when cities implement 

the optimisation scenario for economic benefit level, DMs are suggested to plan 

ahead, applying a management plan during the optimisation process to mitigate 

the uncertainty. 

Figures 13(b) and 13(c) show that both cities have a probability of 60.8% of 

achieving the requirement for intersection blocking rate during peak hours and 

PT utilisation rate. Table C6 shows that these two criteria have low priority. 

Hence, DMs only need to monitor and control to deliver optimisation scenarios. 

Figure 13(d) shows that the PT driving accident rate has a low probability, 

that is, 36%, of achieving the government requirement. According to Table C6, 

although the priority of this criterion is low, the government still needs a 
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management plan for the optimisation scenario. Since this criterion has a high 

uncertainty level, the delivery of the optimising solution will be influenced. 

Figure 14 

Stonnington criterion probability distribution for reaching the DMs’ optimising 

goal 

 

For Stonnington, Figure 14(a) and Figure 14(b) show that both criteria have 

a probability of 60.8% of fulfilling the government’s requirements. The criterion 

of PT land area per capita is not the highest importance in sustainable 

(c) Intersection blocking rate during 

peak hours probability distribution 

(d) PT utilisation rate probability 

distribution 

(e) PT driving accident rate probability 

distribution 

(b) Coverage rate probability 

distribution 

(a) PT land area per capita 

probability distribution 
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development level, but the weight is higher than the coverage rate. The 

coverage rate is the most important criterion in the economic benefit level for 

which the government needs to apply management plans to optimise PT 

network performance. Hence, DMs are also suggested to implement 

management action to achieve an optimising solution. 

According to Figure 14(c), although Stonnington only has a probability of 

19% of achieving the DMs’ requirement for the criterion of the intersection 

blocking rate during peak hours, the evaluation results show that the actual 

value achieved the highest level, which is level A. Since the criterion 

performance is difficult to further improve and is achieving optimising results, 

the DMs only need to focus on maintaining the current performance and keep 

control of and optimise the criterion performance. 

Figure 14(d) shows that there is a probability of 61.1% of achieving the 

government requirement for the PT utilisation rate. Since the weight of this 

criterion is low, DMs are suggested to monitor and control during the 

optimisation process. 

According to Figure 14(e), the probability of Stonnington’s PT driving 

accident rate is similar to the other two case study areas, which is 35.9%. The 

criterion uncertainty level is high. Thus, in Stonnington it is also suggested to 

implement actions to mitigate the risks during the optimisation process. 

Figures 13-14 are useful for analysing the probability distribution of each 

criterion to fulfill the governments’ requirements. It helps governments allocate 

resources for delivering case study area optimisation solutions. 

5.5 Conclusion 

In this chapter, we investigated the probability distribution and sampling 

type of the model criteria. To mitigate the risk involved in the process of 

optimising PT network performance, we use MCS to analyse the PT network 
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performance optimised solutions under criteria uncertainty. Then, we 

implement MCS to analyse the sensitive criteria, discover the optimal solution 

under criteria uncertainty, and identify the likelihood of criteria optimisation 

based on DMs’ requirements for three case study areas. 

Finally, our research results indicate that the coverage rate is the most 

sensitive criterion for these three cities. Furthermore, a higher coverage rate 

and PT on-time rate requirement will lead to a higher impact on the model 

optimising result for all cities. Last, although the PT driving accident rate has a 

low priority and probability of achieving the DMs’ requirements, this criterion 

has a high level of risk. Governments still need to implement management 

plans to achieve optimised solutions. 
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Chapter 6: A Unified Optimised Framework for 

PT Network Performance Under Uncertainty 

6.1 General overview 

In this chapter, we combine the PTCM-AHP, MALGP, and MCS models into 

a three-stage framework to optimise PT network performance under uncertain 

conditions. PT networks face significant challenges in achieving optimal 

outcomes due to the presence of risk and uncertainty. Despite the importance 

of optimising PT network performance, there has been limited research that 

applies risk management tools to tackle this issue. In response, this research 

presents a three-stage framework to optimise PT network performance under 

uncertain conditions. First, we use the established PT network criteria matrix. 

Second, we propose a MALGP approach to optimise PT network performance 

based on the weight results. To manage uncertainty, we use MCS to analyse 

the probability of the optimal solution. In the previous chapters, we have applied 

the three-stage framework to three case study areas in Australia to validate our 

approach. The results of this research offer significant insights into identifying 

the likelihood of criteria optimisation scenarios, thereby assisting DMs in 

allocating resources for optimising the delivery of PT network performance 

solutions in according with government requirements. 

The rest of this chapter is organised as follows: Section 6.2 introduces the 

model process framework of proposed three-stage optimising PT network 

performance under uncertain process. Then we demonstrate AHP process in 

Section 6.3. The MALGP process are described in Section 6.4. Section 6.5 

identifies the major tasks of MCS, and Section 6.6 conclude this chapter. 

6.2 Model process framework 

In this section, we develop a three-stage framework for optimising PT network 

performance under uncertain conditions based on the model introduced in the 
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previous chapters. Figure 15 depicts a three-stage approach for optimising the 

uncertain PT network performance, which includes an AHP process, a MALGP 

process, and an MCS process. The following sections go over the specifics of 

each stage. 

Figure 15 

The proposed three-stage optimising PT network performance under 

uncertainty  

 

6.3 AHP process 

In the AHP process (stage 1), the PTCM-AHP model of Chapter 3 is applied. 

In this process, there are three major tasks to determine the weight of criteria. 

Furthermore, a city’s PT network performance report is created, which includes 

scores for PT performance across all criteria and a summed performance 

through all criteria. The following subsections go over the specifics of the AHP 

process. 

6.3.1 Decision variable identification and establishment of the PTCM-

AHP model structure 
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The decision variables of the AHP model have been described in Section 

3.3. Additional details of the PT network performance criteria can be found in 

Table A1. The criteria are selected from existing PT evaluation assessments 

and indices (Ministry of Construction, 1995; Ministry of Transport, 2012; 

Ministry of Transport, 2014; Ministry of Transport, 2016; Ministry of Housing 

and Urban‒Rural Development, 2018). These criteria are used to determine the 

PTCM-AHP model structure. 

The PTCM-AHP model is based on four levels: the basic PT infrastructure 

level, the PT service level, the economic benefit level, and the sustainable 

development level. As mentioned in Section 3.3, Figure 2 presents the 

hierarchy of the PT network performance criteria of the PTCM-AHP model. The 

model includes four levels of criteria and 15 sub-criteria. 

 The PT infrastructure level includes the harbour-type bus stop setting ratio, 

PT coverage ratio, PT priority lane setting ratio, and PT network ratio. 

 The PT service level contains four sub-criteria: passenger freight rate, PT 

on-time ratio, PT driving accident rate, and peak hours intersection blocking 

rate. 

 The economic benefit level contains the intact car rate, coverage ratio, and 

bus ownership rate. 

 The level of sustainable development considers the PT utilisation rate, PT 

energy intensity, PT land area per capita, and green PT vehicle rate. 

Once the PTCM-AHP model structure is established, the process of 

determining criteria weights is undertaken to test and calculate the results of 

the weightings. The details of weighting process are shown as follow. 

6.3.2 Criteria weight determination 
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In Section 3.2, we illustrate the process and formulation of the AHP (see 

Eqs. (1)-(5)). The major steps for determining the weights of criteria are 

described below. 

1) Construct the problem in a hierarchical structure and comprise the 

criteria and sub-criteria. 

2) Create the decision matrix and pairwise comparison between criteria and 

sub-criteria, which is between 1 and 9 given by experts. 

3) Normalise the decision matrix. 

4) Calculate the arithmetic mean of normalised decision matrix rows to 

obtain the prioritisation vector. 

5) Calculate and find the highest matrix eigenvalue. 

6) Calculate the criteria weight and verify the CR of the results.  

7) Repeat steps 2-6 until 𝐶𝑅 ≤  10% . When 𝐶𝑅 ≤  10%, the model 

result is deemed internally coherent. 

Hence, we can eventually identify the weight of the PTCM-AHP model 

criteria and sub-criteria, which are used as coefficient values in the MALGP 

process. The case study area performance report is also created to identify the 

city PT network performance score and show each criterion performance score, 

which is calculated based on the case study areas’ criteria actual value. The 

results of the city performance report will be used to determine the criteria 

aspiration level used in the calculation of criteria goal values in the MALGP 

process. 

6.4 Multi-aspiration-level goal programming process 

The MALGP model is created and used to optimise the PT network 

performance in the MALGP process (stage 2). The implementation of MALGP 
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assists DMs in selecting different aspiration levels to solve the PT network 

performance optimisation problem. The model considers the criteria aspiration 

level selection to assist DMs in performance optimisation. The second stage 

consists of three tasks that must be completed in order to calculate the best 

solution for the city. The MALGP process is described in detail below. 

6.4.1 Criteria aspiration level case selection 

As mentioned before, the MALGP model includes the criterion case 

selection process. The aspiration level criterion is selected based on the actual 

value of the criteria. The details of the criteria level grades can be found in Table 

B1. Each criteria divide the performance grade into 5 levels. According to Figure 

15, the process contains the following three cases. 

Case 1: The actual value is the aspiration value for the 𝑖th criterion when 

the 𝑖th criterion actual value is greater than 𝑑𝑖,max. 

Case 2: The aspiration value of criterion 𝑖th is less than 𝑑𝑖,max but greater 

than the actual value when the actual value for criterion 𝑖th is less than 𝑑𝑖,max 

but greater than 𝑑𝑖,4. 

Case 3: The aspiration value of criterion 𝑖th is the (𝑖 + 1)th aspiration level 

when the actual value level for criterion 𝑖th is level 1, 2, 3, or 4. 

Then, the criteria aspiration level case of the model can be identified. In the 

calculation step, the conditions of the objective function formulation are based 

on the criteria aspiration level selection results.  

The details of the optimisation objective function formulation are described 

in the next subsection. 

6.4.2 Objective function formulation 

After the criteria aspiration level case selection process, we establish the 

objective function formulation PT network performance optimisation process. 
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The MALGP model uses criteria weights as coefficients in the model objective 

function (Cyril et al., 2019). The notations and formulation for the MALGP 

objective function are shown in Section 4.3. The goal value for goal 𝑖  is 

selected, which is based on three different criteria aspiration-level cases 

selection processes. The MALGP model formulation also includes Eqs. (6)-(8) 

and (11)-(13). The details of the three cases are shown as follow. 

In the first case, if the constraint of 𝑑𝑖 is the actual value of the criterion, 

then the 𝑑𝑖 is greater than or equal to 𝑑𝑖,max. 

In the second case, if the constraint of 𝑑𝑖 is chosen between the criterion 

actual value and 𝑑𝑖,max, then the 𝑑𝑖 is less than or equal to 𝑑𝑖,max, and greater 

than or equal to 𝑑𝑖,4. 

In the third case, if the criterion actual value is less than 𝑑𝑖,4  and the 

criterion goal value is less than 𝑑𝑖 ,max, then the 𝑑𝑖  is less than or equal to 

𝑑𝑖,max, and greater than or equal to 𝑑𝑖,min. 

After the calculation, we determine the optimal results of the city PT network 

performance. Then, the case study area performance optimal solution report is 

created to identify the city PT network performance optimisation scenario. In 

the last stage, the results of the PT performance optimisation report will be 

utilised in the MCS process. During the optimisation process, the uncertain 

conditions and risks of the criteria are not fully investigated. The criteria optimal 

results are used as input for simulation in the MCS process.    

6.5 MCS process  

The MCS is used in the last step to model the probability of the PT network 

performance, as stated in Chapter 5. It is used in this study to simulate the 

criteria optimal results and analyse the uncertainty and risks related to the 

criteria optimal solution by randomly selecting criteria values. We analyse the 

probability of the optimal solution using MCS results, which include criteria 



84 

sensitive analysis, criteria optimal solution under uncertain condition discovery, 

and the likelihood of optimal criteria results based on DM requirements 

identification. The MCS process details are shown in the following subsections. 

6.5.1 Input probability distributions and uncertainty 

The first step in the MCS process is to identify the probability distribution 

type of the simulation criteria. The underlying characteristics of the criterion, 

which can be either continuous or discrete, influence the choice of probability 

distribution type. Notably, our approach is limited to optimising the performance 

of PT networks under uncertain conditions by taking into account continuous 

probability distributions. Following that, we specify the appropriate continuous 

probability distribution type for each criterion based on its relevant information. 

Furthermore, once the type of criteria probability distribution is chosen, the 

input probability distributions should be assigned to each criterion. The 

parameters for criteria probability distributions are obtained by clarifying 

reasons for criteria minimum, maximum, and most likely values. Once the 

model inputs are defined, the sampling model that will be used to simulate the 

results can be determined. 

6.5.2 Sampling model identification 

After determining the type of criteria probability distribution, we choose a 

random number generator to sample values from the criteria input distribution. 

MCS employs a stochastic sampling process in which criteria values are 

chosen from the model's input probability distribution. There are two methods 

for randomly sampling during the sampling process: Monte Carlo (MC) 

sampling and Latin Hypercube sampling.  

MC sampling, a popular method in MCS, allows for the recreation of the 

entire input distribution via random sampling across the entire probability 

distribution over a large number of iterations. A greater number of iterations 
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results in more accurate model results that are more in line with actual 

conditions. Thus, MCS is used in this study's three-stage framework for 

optimising the PT network under uncertain conditions, which is implemented 

using MC sampling. 

Finally, MCS is used to simulate the probability distribution inputs of the PT 

network performance criteria optimisation solution. After the simulation, a 

sensitivity analysis is performed to identify and analyse the most sensitive 

criteria as well as the criteria with the most likely values during the optimisation 

process. Furthermore, the most important MCS model output criteria for the 

study areas are identified, as is the probability of sensitive criteria meeting the 

government requirement. Following that, DMs can use the sensitivity analysis 

results, criteria weighting results, and performance report to make informed 

decisions about future PT network performance optimisation solutions. 

6.6 Conclusion 

This chapter established a three-stage optimisation model for optimising PT 

network performance under uncertain conditions to mitigate the risk involved in 

the process of optimising PT network performance. First, the PTCM-AHP model 

is developed to determine the weights of the model criteria and to assess the 

PT network performance of the case study areas. The AHP process assesses 

and weights for four levels of PT network performance criteria as well as 15 

sub-criteria. The obtained weights are then used in the second model, the 

MALGP model, to propose PT network performance optimisation solutions for 

the case study areas. The city's performance optimal solution report is 

completed during the MALGP process. Following that, MCS is used to analyse 

the sensitive criteria, discover the optimal solution under criteria uncertainty, 

and identify the likelihood of criteria optimisation based on DMs' requirements 

for the case study areas.  
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Finally, DMs can incorporate the results of the sensitivity analysis, criteria 

weighting outcomes, and performance report into their decision-making 

processes, allowing them to make well-informed decisions for future optimal 

solutions to improve the performance of the PT network. 
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Chapter 7: Summary and Future Research 

7.1 Summary 

In this thesis, we propose a three-stage approach to optimising PT network 

performance in an uncertain process using the PTCM-AHP model-based 

MALGP approach and MCS. To the best of our knowledge, current research 

concentrates solely on one aspect of PT performance optimisation. 

Furthermore, little research has used MCS to address the problem of optimising 

PT network performance under uncertain conditions. We obtain optimal 

solutions to PT network performance optimisation problems by implementing a 

three-stage optimisation framework. The effectiveness of the proposed models 

is evaluated using three case study areas. The main research findings are 

summarised below. 

1. The PTCM-AHP model results for the three case study areas show that all 

cities have a high level of sustainable development. The primary criteria for 

basic PT infrastructure level are the PT network ratio and coverage ratio, 

while the PT on-time rate is the most important for PT service level. 

Furthermore, the coverage rate is critical for the level of economic benefits, 

and the green PT vehicle rate and energy intensity are critical for the level 

of sustainable development. Based on the findings of the case study, 

Bayswater and Cockburn should prioritise PT infrastructure, service, and 

economic benefit levels in their plans and strategies. Meanwhile, 

Stonnington must prioritise sustainable development, PT service, and 

economic benefit. 

2. The optimal solutions derived from the three case studies demonstrate a 

significant increase in the ratio of harbour-type bus stop settings and bus 

ownership rates, indicating the need for a management plan to address the 

issue of PT driving accidents. 
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3. According to the MCS results, the coverage rate is the most sensitive 

criterion in all case study areas, and a higher coverage rate and PT on-time 

rate requirement have a significant impact on the optimisation model results 

for all cities, whereas the PT driving accident rate carries a high level of risk 

despite having a low priority and probability of meeting DMs' requirements. 

7.2 Revisiting the research questions 

The four research questions listed in Chapter 1 are revisited as follows. 

7.2.1 What criteria need to be considered to evaluate PT network 

performance? 

This first question has been answered by reviewing the current PT network 

performance measuring systems. Subsequently, a PT criteria matrix for PT 

performance assessment at various areas of application is developed. The 

criteria are selected from basic PT infrastructure, PT service, economic benefit, 

and sustainable development aspects. 

7.2.2 How should the criteria of PT network performance be weighted? 

This second question has been satisfactorily addresses by developing the 

PTCM-AHP model. Following the development of the PTCM-AHP model, the 

weights of criteria and subcriteria are allocated via the AHP process. The 

criteria weights are identified based on the government and UN-Habitat 

documents.  

7.2.3 How can the performance of the PT network be optimised? 

The third research question has been answered by developing the MALGP 

model to optimise PT network performance. The model enables the DM to 

select subcriteria goal levels from multiple aspiration levels, which are based 

on the AHP process subcriteria weighting and grading results.  
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7.2.4 How can the performance of the PT network be optimised under 

uncertainty? 

MCS is used to answer this last research question. The optimal results are 

the most likely value for each subcriterion. Based on the existing criteria risk 

descriptions, this research identifies the risk levels for the subcriteria. The 

model uses MC sampling to simulate the PT network performance under 

uncertain conditions. The approach explores the sensitivity criteria and 

proposes the optimal solution along with its probability. Based on the weighted 

results, it assists the DMs in allocating the resources to optimise the PT network 

performance. 

7.3 Research contributions 

This thesis contains methodological and practical knowledge contributions 

to the optimisation of PT network performance under uncertain conditions. The 

major contributions are listed below. 

Methodological contributions: 

1. The PTCM-AHP model provides a comprehensive framework for evaluating 

the performance of a city's PT network. The model generates a quantifiable 

performance score by assigning appropriate weights to the criteria at each 

level. This score allows PT planners to gain insights into the current PT 

system's strengths and weaknesses, facilitating evidence-based decision-

making for future improvements. 

2. A novel MALGP model is developed to optimise PT network performance 

using PTCM-AHP model criteria weights. The MALGP model proposes an 

optimisation solution for cities by integrating the criteria weights and the 

government's performance criteria goals. The proposed PT performance 

optimisation model provides an optimal solution that the government can 

effectively implement. The model provides guidelines for optimising PT 
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network performance scenarios by incorporating the DM's plans and 

strategies, taking into account multi-aspiration levels or interval goals, and 

accounting for the relative importance of criteria. This allows DMs to adjust 

and modify the importance of the criteria and the aspiration-level selection 

process, ensuring that the PT network performance is optimised based on 

their specific needs. 

3. This research establishes a solid framework for optimising PT network 

performance in the face of uncertainty. The combination of the PTCM-AHP 

model, the MALGP model, and MCS enables DMs to make informed 

decisions based on criteria weights while optimising the PT network and 

accounting for uncertainty. The findings of this study help to advance PT 

network optimisation methodologies and provide practical advice for 

improving urban transportation systems. DMs gain insights into the relative 

importance of criteria, propose optimal solutions, and assess the probability 

of criteria optimisation in uncertain environments by integrating the PTCM-

AHP model, the MALGP model, and MCS. 

Contributions of practical knowledge to PT network performance 

optimisation under uncertain conditions: 

1. Key factors influencing PT network performance are demonstrated to DMs 

and city planners at the basic PT infrastructure, PT service, economic 

benefit, and sustainable development levels. 

2. The criteria for case study areas that need to be improved are investigated, 

and optimal solutions for cities are proposed. The uncertain analysis results 

aid in the development of PT network performance optimisation plans and 

strategies. 
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7.4 Future research directions 

The primary aim of this thesis is to develop a three-stage model framework 

for optimising PT network performance in uncertain environments. The 

proposed model framework is both practical and efficient in that it allows DMs 

to create PT network performance optimisation plans that are aligned with 

governmental requirements and demands, while also taking the likelihood of 

the proposed plans into account. We also present new models, such as the 

PTCM-AHP and MALGP models. Despite innovations in the three-stage 

optimisation framework design, the models and theories used in this thesis still 

have scope for improvement. Future research should consider overcoming the 

relevant limitations.  

In terms of calculating city performance score, AHP has been used to 

calculate the weighting and score results of criteria in each case study area. 

However, it is time consuming to handle and calculate the city criteria score 

results in the PTCM-AHP process. Thus, the programming of this process can 

potentially be further developed.  

In terms of the optimisation process, similar to the PTCM-AHP process, the 

process of conducting optimal results necessitates collaboration with statistical 

programming software to enhance efficiency. 

The following suggestions for future research directions are given: 

1. The MALGP model can add new requirements and constraints to control the 

PT network performance optimisation, which is based on the DMs' 

requirements and demands. The model criteria and constraints are not 

currently fully investigated. Future work would include more appropriate 

performance optimisation criteria and sub-criteria that align with actual 

requirements in order to tailor the model framework for its application to 

various other cities. 
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2. From a theory aspect, the three-stage model ignores actual risk events and 

risk treatments. The framework can add qualitative risk management 

methods to proposed associate risk treatments. As a result, additional work 

can be done beyond risk analysis to optimise performance. Future research 

should consider risk information obtained from other subject sources. 

3. This research has been applied to a limited number of cities. The model 

framework should be integrated with an intelligent and geospatial model for 

analysing urban planning issues. To model PT network performance and 

optimal solutions for large-scale urban areas, the model framework can be 

combined with deep learning, machine learning, and GeoAI techniques. 
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Appendix A 

Table A1 

Formula for sub-criteria  

Criteria Variables 
Mode of 

Computation 
Unit 

B
a

s
ic

 p
u
b

lic
 t

ra
n

s
p

o
rt

 i
n

fr
a

s
tr

u
c
tu

re
 l
e

v
e

l 

Public 

transport 

network ratio 

A1: Length of public transport network 

B1: Length of urban road network 

(A1/B1) × 

100 
% 

Public 

transport 

coverage 

ratio 

A2: A 300 m radius of urban public 

transportation service area within an 

urban built area (for a circle with a 

radius of 300 m and a center of public 

transportation station, the intersection 

part shall not be counted twice) 

B2: The area of urban built zone 

(A2/B2) × 

100 
% 

Harbour-type 

bus stop 

setting ratio 

A3: The number of bus stops of bay 

type 

B3: Total number of stops 

(A3/B3) × 

100 
% 

Public 

transportatio

n priority lane 

setting ratio 

A4: The road length of the public 

transport priority lane is set on the main 

road of the city. 

B4: Total main road length 

(A4/B4) × 

100 
% 

P
u

b
lic

 t
ra

n
s
p

o
rt

 s
e

rv
ic

e
 l
e

v
e

l 

Public 

transport on-

time rate 

A5: Bus on-time rate 

B5: Rail transport on-time rate 

A5: ((∑(the number of departure on 

time + the number of arrive last station 

on time)/∑the number of schedule 

departure × 2) × 100% 

B5: ((∑(the number of departure on 

time + the number of arrive last station 

on time)/∑the number of schedule 

departure × 2) × 100% 

(A5 + B5)/2 % 
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Intersection 

blocking rate 

during peak 

hours 

A6: Number of periodically severely 

blocked intersections on arterial roads 

in built-up areas 

B6: Total arterial road intersections 

(A6/B6) × 

100 
% 

Passenger 

freight rate 

A7: The cost of public transportation 

paid by passengers per month 

B7: The city’s monthly average salary 

(A7/B7) × 

100 
% 

Public 

transport 

driving 

accident rate 

A8: The total number of public 

transport accidents in one year 

B8: Total mileage of public transport 

vehicles operated in one year 

A8/B8 

Times/milli

on 

kilometers 

E
c
o

n
o

m
ic

 b
e

n
e

fi
t 

le
v
e

l 

Coverage 

rate 

A9: Last year’s total commercial 

revenue 

B9: Last year’s total operating 

expenses 

(A9/B9) × 

100 
% 

Bus 

ownership 

rate 

A10: The number of working buses in 

the statistical period 

B10: The number of urban area 

population in case study city 

A10/B10 
Car/ten 

thousand 

Intact car 

rate 

A11: Intact car day 

B11: Operating vehicle-days 

(A11/B11) × 

100 
% 

S
u

s
ta

in
a

b
le

 

d
e

v
e

lo
p

m
e

n
t 

le
v
e

l 

Public 

transport 

land area per 

capita 

A12: The area of roads served by 

public transport 

B12: Total urban population 

A12/B12 m2/person 
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Public 

transport 

utilisation 

rate 

A13: The number of jobs in public 

transportation 

B13: Total number of positions for the 

same period (the number of jobs in 

public transportation, urban planning 

and land use) 

A13/B13 Null 

Green public 

transport 

vehicle rate 

A14: Number of green public transport 

vehicles 

B14: Total number of public transport 

vehicle 

(A14/B14) × 

100 
% 

Public 

transport 

energy 

intensity 

A15: Total public transport energy 

consumption 

B15: Public transport passenger 

turnover 

A15/B15 

g standard 

coal/perso

n-km 
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Appendix B 

Table B1  

Level grade for all sub-criteria 

 Level Grade Level A Level B Level C Level D 
Level 

E 

Public 

transport 

network ratio 

(unit: %) 

Index value 

interval 
[60, 70] [55, 60) [50, 55) [0, 50) — 

Score 

interval 
[90, 100] [75, 90) [60, 75) [0, 60) — 

Public 

transport 

coverage ratio 

(unit: %) 

Index value 

interval 
≥55 [50, 55) [45, 50) [35, 45) <35 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Harbour-type 

bus stop 

setting ratio 

(unit: %) 

Index value 

interval 
[35, 100) [25, 35) [15, 25) [0, 15) — 

Score 

interval 
[90, 100] [75, 90) [60, 75) [0, 60) — 

Public 

transport 

priority lane 

setting ratio 

(unit: %) 

Index value 

interval 
≥ 25 [20, 25) [15, 20) [10, 15) [0, 10) 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Public 

transport on-

time rate 

(unit: %) 

Index value 

interval 
[95, 100] [85, 95) [70, 85) [0, 70) — 

Score 

interval 
[90, 100] [75, 90) [60, 75) [0, 60) — 

Peak hours 

intersection 

blocking rate 

(unit: %) 

Index value 

interval 
[0, 2] (2, 5] (5, 8] (8, 11] >11 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Passenger 

freight rate 

Index value 

interval 
<3.5 [3.5, 4.5) 

[4.5, 

5.5) 
[5.5, 6.5) ≥6.5 
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(unit: %) Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Public 

transport 

driving 

accident rate 

(unit: times 

/million 

kilometres) 

Index value 

interval 
[0, 1.5] [1.5, 2) [2, 2.5) [2.5, 3) >3 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Coverage rate 

(unit: %) 

Index value 

interval 
>150 (100, 150] = 100 [50, 100) <50 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Bus 

ownership 

rate (unit: 

car/10,000) 

Index value 

interval 
[20, 25] [19, 20) [18, 19) [0, 18) — 

Score 

interval 
[90, 100] [75, 90) [60, 75) [0, 60) — 

Intact car rate 

(unit: %) 

Index value 

interval 
≥ 92 [88, 92) [84, 88) [80, 84) <80 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Public 

transport land 

area per 

capita (unit: 

m2/person) 

Index value 

interval 
≥11 [8, 11) [6, 8) [4, 6) <4 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Public 

transport 

utilisation rate 

(unit: %) 

Index value 

interval 
[0.17, 2) [0.14, 0.17) 

[0.11, 

0.14) 

[0.08, 

0.11) 
<0.08 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Green Public 

transport 

vehicle rate 

(unit: %) 

Index value 

interval 
≥ 95 [95, 92) [88, 92) [85, 88) <85 

Score 

interval 
[90, 100] [80, 90) [70, 80) [60, 70) [0, 60) 

Public 

transport 

Index value 

interval 
[0, 30) [30, 80) 

[80, 

130) 

[130, 

200) 
— 
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energy 

intensity (unit: 

g standard 

coal/person-

km) 

Score 

interval 
[90, 100] [75, 90) [60, 75) [0, 60) — 
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Appendix C 

Table C1 

Preference matrix, prioritisation, CI, and CR for the four main criteria 

 

Basic public 

transport 

infrastructure 

level 

Public 

transport 

service level 

Economic 

benefit level 

Sustainable 

development 

level 

Basic public 

transport 

infrastructure 

level 

1 2 3 2 

Public 

transport 

service level 

1/2 1 2 1/2 

Economic 

benefit level 
1/3 1/2 1 1/3 

Sustainable 

development 

level 

1/2 2 3 1 

Prioritisation 41% 19% 11% 29% 

CI 2.72%    

CR 3.02%    
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Table C2 

Preference matrix, prioritisation, CI, and CR for basic public transport 

infrastructure level 

 

Public 

transport 

network 

ratio 

Public 

transport 

coverage 

ratio 

Harbour-type 

bus stop 

setting ratio 

Public 

transportation 

priority lane 

setting ratio 

Public 

transport 

network ratio 

1 1 3 2 

Public 

transport 

coverage 

ratio 

1 1 3 2 

Harbour-type 

bus stop 

setting ratio 

1/2 1/2 1 1/2 

Public 

transportation 

priority lane 

setting ratio 

1/3 1/3 2 1 

Prioritisation 35% 35% 11% 19% 

CI 0.27%    

CR 0.3%    
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Table C3 

Preference matrix, prioritisation, CI, and CR for public transport service level 

 

Public 

transport 

on-time rate 

Intersection 

blocking 

rate during 

peak hours 

Passenger 

freight rate 

Public 

transport 

driving 

accident rate 

Public 

transport on-

time rate 

1 2 1 2 

Intersection 

blocking rate 

during peak 

hours 

1/2 1 1 2 

Passenger 

freight rate 
1 1 1 2 

Public 

transport 

driving 

accident rate 

1/2 1/2 1/2 1 

Prioritisation 34% 24% 28% 14% 

CI 2.18%    

CR 2.42%    
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Table C4 

Preference matrix, prioritisation, CI, and CR for economic benefit level 

 Coverage rate 
Bus ownership 

rate 
Intact car rate 

Coverage rate 1 1 3 

Bus ownership 

rate 
1 1 2 

Intact car rate 1/3 1/2 1 

Prioritisation 44% 39% 17% 

CI 0.91%   

CR 1.57%   
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Table C5 

Preference matrix, prioritisation, CI, and CR for sustainable development level 

 

Public 

transport 

land area 

per capita 

Public 

transport 

utilisation 

rate 

Green public 

transport 

vehicle rate 

Public 

transport 

energy 

intensity 

Public 

transport land 

area per 

capita 

1 2 1 1 

Public 

transport 

utilisation 

rate 

1/2 1 1/3 1/3 

Green public 

transport 

vehicle rate 

1 3 1 1 

Public 

transport 

energy 

intensity 

1 3 1 1 

Prioritisation 27% 11% 31% 31% 

CI 0.6%    

CR 0.67%    
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Table C6 

City score distribution matrix 

Criteria Local Weight (%) 
Global Weight 

(%) 

Basic public transport infrastructure level: 

41% 
  

Public transport network ratio 35 14.3 

Public transport coverage ratio 35 14.3 

Harbour-type bus stop setting ratio 11 4.5 

Public transportation priority lane setting 

ratio 
19 7.9 

Public transport service level: 19%   

Public transport on-time rate 34 6.5 

Intersection blocking rate during peak hours 24 4.6 

Passenger freight rate 28 5.3 

Public transport driving accident rate 14 2.6 

Economic benefit level: 11%   

Coverage rate 44 4.8 

Bus ownership rate 39 4.3 
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Intact car rate 17 1.9 

Sustainable development level: 29%   

Public transport land area per capita 27 7.8 

Public transport utilisation rate 11 3.2 

Green public transport vehicle rate 31 9 

Public transport energy intensity 31 9 
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Appendix D 

Table D1 

Optimal solution for Bayswater 

Decision 

Variable 
Criteria 

Actual 

Value 

Optimal 

Value 

Increase/Decrease 

Percentage 

X1 
Public transport network 

ratio 
17.64 50 183.34 

X2 
Public transport coverage 

ratio 
46.82 50 6.79 

X3 
Green public transport 

vehicle rate 
100 100 0 

X4 
Public transport energy 

intensity 
25.45 0 - 

X5 
Public transport priority 

lane setting ratio 
0 10 - 

X6 
Public transport land area 

per capita 
20.47 20.47 0 

X7 
Public transport on-time 

rate 
91.03 95 4.36 

X8 Passenger freight rate 1.75 1.75 0 

X9 Coverage rate 98.8 100 1.21 

X10 
Peak hours intersection 

blocking rate  
21 8 −61.9 

X11 
Harbour-type bus stop 

setting ratio 
19.04 25 31.3 

X12 Bus ownership rate 7 18 157.14 

X13 
Public transport utilisation 

rate 
0.8 0.8 0 
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X14 
Public transport driving 

accident rate 
2.38 1.5 −36.97 

X15 Intact car rate 100 100 0 
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Table D2  

Optimal solution for Cockburn 

Decision 

Variable 
Criteria 

Actual 

Value 

Optimal 

Value 

Increase/Decrease 

Percentage 

X1 
Public transport network 

ratio 
19.21 50 160.28 

X2 
Public transport 

coverage ratio 
50.42 55 9.08 

X3 
Green public transport 

vehicle rate 
100 100 0 

X4 
Public transport energy 

intensity 
25.45 0 - 

X5 
Public transport priority 

lane setting ratio 
0.31 10 3125.8 

X6 
Public transport land 

area per capita 
26.23 26.23 0 

X7 
Public transport on-time 

rate 
91.03 95 4.36 

X8 Passenger freight rate 1.75 1.75 0 

X9 Coverage rate 98.8 100 1.21 

X10 
Peak hours intersection 

blocking rate 
8.1 8 −1.23 

X11 
Harbour-type bus stop 

setting ratio 
9.2 15 63.04 

X12 Bus ownership rate 7 18 157.14 

X13 
Public transport 

utilisation rate 
0.8 0.8 0 
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X14 
Public transport driving 

accident rate 
2.38 1.5 −36.97 

X15 Intact car rate 100 100 0 
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Table D3 

Optimal solution for Stonnington 

Decision 

Variable 
Criteria 

Actual 

Value 

Optimal 

Value 

Increase/Decrease 

Percentage 

X1 
Public transport 

network ratio 
60.78 60.78 0 

X2 
Public transport 

coverage ratio 
83.72 83.72 0 

X3 

Green public 

transport vehicle 

rate 

100 100 0 

X4 
Public transport 

energy intensity 
83.59 30 −64.11 

X5 

Public transport 

priority lane setting 

ratio 

25.38 25.38 0 

X6 

Public transport 

land area per 

capita 

9.28 11 18.53 

X7 
Public transport 

on-time rate 
84.68 85 0.37 

X8 
Passenger freight 

rate 
2.33 2.33 0 

X9 Coverage rate 101.5 150 47.78 

X10 

Peak hours 

intersection 

blocking rate 

1.5 0 - 

X11 
Harbour-type bus 

stop setting ratio 
26.71 35 31.03 

X12 
Bus ownership 

rate 
7.36 18 144.56 

X13 Public transport 0.78 0.78 0 
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utilisation rate 

X14 

Public transport 

driving accident 

rate 

4.54 2.5 −44.93 

X15 Intact car rate 100 100 0 
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Appendix E 

Table E1 

Bayswater model inputs 

Variable 
Risk 

level 
Min 

Mean 

value 
Max Shape 

Public transport 

network ratio 
Very low 47.5 50 55 Triangular 

Public transport 

coverage ratio 
Very low 47.5 50 55 Triangular 

Harbour-type bus 

stop setting ratio 
Very low 23.75 25 27.5 Triangular 

Public 

transportation 

priority lane 

setting ratio 

Very low 9.5 10 11 Triangular 

Public transport 

on-time rate 
Very low 90.25 95 100 Triangular 

Intersection 

blocking rate 

during peak 

hours 

 

Medium 
6.8 8 10 Triangular 

Passenger freight 

rate 
  1.75   
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Public transport 

driving accident 

rate 

High 1.125 1.5 2.25 Triangular 

Coverage rate 
 

Medium 
85 100 125 Triangular 

Bus ownership 

rate 
Very low 17.1 18 19.8 Triangular 

Intact car rate   100   

Public transport 

land area per 

capita 

  20.47   

Public transport 

utilisation rate 

 

Medium 
0.68 0.8 1 Triangular 

Green public 

transport vehicle 

rate 

  100   

Public transport 

energy intensity 
Very low 0 0 3 Triangular 
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Table E2 

Cockburn model inputs 

Variable 
Risk 

level 
Min 

Mean 

value 
Max Shape 

Public transport 

network ratio 

Very low 47.5 50 55 Triangular 

Public transport 

coverage ratio 
Very low 47.5 55 55 Triangular 

Harbour-type bus 

stop setting ratio 
Very low 14.25 15 16.5 Triangular 

Public 

transportation 

priority lane 

setting ratio 

Very low 9.5 10 11 Triangular 

Public transport 

on-time rate 
Very low 90.25 95 100 Triangular 

Intersection 

blocking rate 

during peak 

hours 

Medium 6.8 8 10 Triangular 

Passenger freight 

rate 
  1.75   
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Public transport 

driving accident 

rate 

High 1.125 1.5 2.25 Triangular 

Coverage rate Medium 85 100 125 Triangular 

Bus ownership 

rate 
Very low 17.1 18 19.8 Triangular 

Intact car rate   100   

Public transport 

land area per 

capita 

  26.23   

Public transport 

utilisation rate 
Medium 0.68 0.8 1 Triangular 

Green public 

transport vehicle 

rate 

  100   

Public transport 

energy intensity 
Very low 0 0 3 Triangular 
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Table E3 

Stonnington model inputs 

Variable 
Risk 

level 
Min 

Mean 

value 
Max Shape 

Public transport 

network ratio 

Very low 57.74 60.78 66.86 Triangular 

Public transport 

coverage ratio 
  83.72   

Harbour-type bus 

stop setting ratio 
Very low 33.25 35 38.5 Triangular 

Public 

transportation 

priority lane 

setting ratio 

Very low 24.11 25.38 27.92 Triangular 

Public transport 

on-time rate 
Very low 80.75 85 93.5 Triangular 

Intersection 

blocking rate 

during peak 

hours 

Medium 0 0 0.5 Triangular 

Passenger freight 

rate 
  2.33   
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Public transport 

driving accident 

rate 

High 1.87 2.5 3.75 Triangular 

Coverage rate Medium 127.5 150 187.5 Triangular 

Bus ownership 

rate 
Very low 17.1 18 19.8 Triangular 

Intact car rate   100   

Public transport 

land area per 

capita 

Medium 9.35 11 13.75 Triangular 

Public transport 

utilisation rate 
Medium 0.66 0.78 0.97 Triangular 

Green public 

transport vehicle 

rate 

  100   

Public transport 

energy intensity 
Very low 28.5 30 33 Triangular 
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Appendix F 

Table F1 

Bayswater summary statistics for total 
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Table F2 

Cockburn summary statistics for total 
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Table F3 

Stonnington summary statistics 
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Appendix G 

Table G1 

Bayswater MCS model results 

Criteria Most likely value 

Public transport network ratio 50.83 

Public transport coverage ratio 50.83 

Harbour-type bus stop setting ratio 25.33 

Public transportation priority lane setting ratio 10.16 

Public transport on-time rate 95.08 

Intersection blocking rate during peak hours 8.26 

Public transport driving accident rate 1.62 

Coverage rate 103.33 

Bus ownership rate 18.3 

Public transport utilisation rate 0.83 

Public transport energy intensity 1 
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Table G2  

Cockburn MCS model results 

Criteria Most likely value 

Public transport network ratio 50.83 

Public transport coverage ratio 55.91 

Harbour-type bus stop setting ratio 25.33 

Public transportation priority lane setting ratio 10.16 

Public transport on-time rate 95.08 

Intersection blocking rate during peak hours 8.26 

Public transport driving accident rate 1.62 

Coverage rate 103.33 

Bus ownership rate 18.3 

Public transport utilisation rate 0.83 

Public transport energy intensity 1 

 

 

 

 

 

 

 

 

 



139 

Table G3 

Stonnington MCS model results 

Criteria Most likely value 

Public transport network ratio 61.79 

Harbour-type bus stop setting ratio 35.58 

Public transportation priority lane setting ratio 25.8 

Public transport on-time rate 86.41 

Intersection blocking rate during peak hours 0.16 

Public transport driving accident rate 2.7 

Coverage rate 155 

Bus ownership rate 18.3 

Public transport land area per capita 11.36 

Public transport utilisation rate 0.8 

Public transport energy intensity 30.5 
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