
1 University Hospital of Psychiatry, University of Bern, Bern, Switzerland
2 Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
3 Trimbos-instituut and ICASA Foundation, Utrecht, The Netherlands
4 Amsterdam Institute for Addiction research, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
5 The Netherlands Arkin, Amsterdam, The Netherlands
6 Collaborative Antwerp Psychiatry Research Institute (CAPRI, UA), PC Alexian Brothers, Boechout, Belgium
7 Reinier van Arkel groep, ‘s-Hertogenbosch, The Netherlands
8 Servei de Psiquiatria, Hospital Universitari Vall d’Hebron, CIBERSAM, Department of Psychiatry, Universitat Autònoma de Barcelona, Barcelona, Spain
9 Bergen Clinics Foundation, Bergen, Norway
10 Department of Clinical Neuroscience, Division of Psychiatry, Karolinska Institutet, Stockholm, Sweden
11 National Drug and Alcohol Research Centre, UNSW Australia, Sydney, Australia
12 Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary

Laboratoire de psychiatrie Département d'addictologie, Université de Bordeaux, Bordeaux, France

Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA

Columbia University/the New York State Psychiatric Institute, New York, USA

National Drug Research Institute/Curtin University of Technology, Perth, Australia

University of Groningen, University Medical Center Groningen, Dept. Of Psychiatry, Groningen, The Netherlands

As part of the IASP Research Group, further persons are: Eva Karin Løvaas, Kari Lossius, Anneke van Wamel, Geert Bosma, David Hay, Sara Wallhed, Marc Auriacombe, Marion Malivert, Romain Debrabant, Therese Dahl, Miguel Casas, Carlos Roncero, Constanza Daigre, Rutger-Jan van der Gaag, Atul Beniwal, Mátié Kapitány-Fövény, Louisa Degenhardt, Joanne Cassar, Jesse Young, Merete Möller

Department of Psychology, University of Fribourg, Fribourg, Switzerland

Running head: Risk Factors for Borderline in Substance Use Disorder

Keywords: risk factors, substance use disorder, borderline personality disorder, comorbidity

Corresponding author:

Prof. Franz Moggi, PhD, EMBA

University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland

moggi@puk.unibe.ch, Phone: 0041 (31) 930 9111, Fax: 0041 (31) 930 9404

Running head: Risk Factors for Borderline in Substance Use Disorder

Keywords: risk factors, substance use disorder, borderline personality disorder, comorbidity
Abstract

Borderline Personality Disorder (BPD) and Substance Use Disorders (SUD) often co-occur, partly because they share risk factors. In this international multicentre study, risk factors for BPD were examined for SUD patients. In total, 1,205 patients were comprehensively examined by standardized interviews and questionnaires on psychiatric diagnosis and risk factors finding that 1,033 (85.7%) had SUDs without BPD (SUD) and 172 (14.3%) had SUD with BPD (SUD+BPD). SUD+BPD patients were significantly younger, more often females and more often diagnosed with comorbid adult Attention Deficit/Hyperactivity Disorder (ADHD). SUD+BPD patients did not differ from SUD patients on most risk factors typical for SUD such as maternal use of drugs during pregnancy or parents having any SUD. However, SUD+BPD patients did have a higher risk of having experienced emotional and physical abuse, neglect or family violence in childhood compared to SUD patients suggesting that child abuse and family violence are BPD-specific risk factors in patients with SUD.
Introduction

Substance Use Disorders (SUDs) such as alcohol and/or drug use disorders are major public health problems that have serious biological, psychological, and social consequences [1]. Moreover, individuals with SUDs have elevated rates of a host of psychiatric disorders, including various personality disorders (PDs) [2].

Psychiatric disorders among patients with SUDs are well recognized and of great clinical and public health interest. These so-called ‘dual disorder’ patients have more inpatient treatment, and a higher prevalence of suicide, social problems and medical conditions compared with those who have only one psychiatric disorder [3].

There is a strong link between PDs and SUDs, Borderline Personality Disorder (BPD) in particular [4]. BPD is a common mental disorder with severe functional impairment characterized by interpersonal dysfunction, disturbed self-image, emotional instability, and impulsivity. In treatment seeking psychiatric patients, 10% of outpatients and 15-25% of inpatients have BPD [5].

Numerous studies have investigated the comorbidity of BPD and SUDs. Patients with BPD or antisocial PD have the greatest co-occurrence with SUD in both the general population and in clinical settings [4,6,7]. In a large community sample of nearly 35,000 participants, 2.7% had BPD. Almost 80% of those were diagnosed with a lifetime SUD [8]. Cross-sectional clinical studies found that 23-84% of BPD patients (BPD as index group) met criteria for SUDs [9]. Conversely, treatment seeking SUD patients (SUD as index group) have high rates of PD, among those 5-22% with BPD [10]. In a clinical sample, Morgenstern and colleagues found a BPD prevalence of 22.4% for patients with alcohol use disorder [11]. Based on the findings of the last-mentioned two studies, up to one fifth of treatment seeking SUD patients may suffer from a BPD in addition to a SUD.

Risk factors are correlates that at least precede and change the occurrence of a disorder but are not its concomitant or consequence. Risk factors are not necessarily causal but a variable or fixed marker
of a disorder [12]. For example, risk factors for SUD include alcohol use by the mother during pregnancy or a family history of SUD [13-15].

Risk factors for BPD are often explained within a biopsychosocial model; genetic factors as well as adverse childhood events influence biological and psychosocial factors which in turn increase the risk of BPD [5]. Family studies showed an elevated frequency of mood disorders among parents of the BPD patients [4]. SUD and BPD also share certain risk factors. For example, twin studies have shown that unique environmental factors increase the risk for both BPD and SUD [16]. Child sexual, physical and emotional abuse, violence within family, or neglect are risk factors for BPD [17-19] as well as for SUDs [1,13,15,20].

The aim of this large international multicenter study is to examine risk factors such as family history of SUD and mood disorders, child abuse and family violence comparing SUD patients with BPD (SUD+BPD) with patients without BPD comorbidity (SUD). We controlled for age, gender and attention deficit/hyperactivity disorder (ADHD) to estimate the contribution of each risk factor. ADHD is generally associated with an elevated risk of having a psychiatric disorder, including a BPD diagnosis [21]. In a former data analysis of this large SUD treatment seeking patient sample, a higher risk for BPD was found for SUD patients with ADHD compared to patients without ADHD [22].

To our knowledge, this is the first study in a large patient sample investigating the contribution of risk factors of BPD in patients with SUD+BPD compared to SUD patients.

Methods

Design and Procedure

The study was conducted by the International Collaboration on ADHD and Substance Abuse [23] and was part of the International ADHD in Substance use disorder Prevalence (IASP) study. The IASP is an international, multicenter, cross-sectional study consisting of a screening stage for ADHD and a
diagnostic stage with a full assessment of various psychiatric disorders, including BPD and SUD. Ten countries (Australia, Belgium, France, Hungary, Norway, Spain, Sweden, Switzerland, the Netherlands, and the USA) with 47 SUD treatment centers participated in the screening stage. France, Hungary, Norway, Spain, Sweden, Switzerland, and the Netherlands, also participated in the full assessment, which took place within a few weeks after the screening stage. Treatments varied from outpatient to inpatient treatment settings and included treatment facilities for alcohol use disorders, drug use disorders and mixed SUDs. For a detailed description of the background, the study population and the screening results see van de Glind and colleagues [24]. The regional ethics committees of all participating countries and centers approved the IASP study. Written informed consent was obtained from all patients prior to study inclusion. Patients did not receive financial compensation, except for Australia, where patients received 20 Australian Dollars compensation for associated costs.

Patients

Of the 3,558 SUD treatment-seeking patients, 1,205 agreed to participate and completed the full assessment to diagnose psychiatric disorders (drop-out rate is discussed in another publication: [24]. Of these 1,205 patients who were comprehensively assessed, 695 (57.7%) had SUD only, 338 (28.0%) had SUD and psychiatric comorbidities other than BPD (e.g. mood disorders, antisocial PD, or ADHD). In addition 172 (14.3%) had comorbid BPD, including 50 (4.0%) with BPD comorbidity only. Therefore the present study included two sub-samples; 1,205 patients including 1,033 SUD patients with or without comorbidity other than BPD and 172 SUD+BPD with or without other current psychiatric disorders.

Measures

For this study, we used the questionnaires and semi-structured interviews in the full assessment stage of the IASP, all administered by trained clinicians. The borderline module of the Structured
Clinical Interview for DSM-IV personality disorders (SCID II) [25,26] was conducted to assess BPD and the Mini International Neuropsychiatric Interview (M.I.N.I) Plus version 5.0.0 [27] to assess prior and current episodes of SUD, mood disorders (e.g. major depressive disorder, bipolar disorder) and antisocial personality disorder according to the DSM-IV criteria. Risk factors were evaluated with the Conners’ Adult ADHD Diagnostic Interview for DSM-IV (CAADID) Part I [28], a questionnaire that was completed by the patient to assess information on developmental course and risk factors. The important risk factors for BPD and SUD assessed in this study are: mother used alcohol and/or other drugs during pregnancy, diagnosis of alcohol and/or other drug use disorders of mother and/or father, depression and/or bipolar disorders of mother and/or father, child abuse (e.g. sexual abuse, physical abuse, emotional abuse), physical and emotional neglect, and experience of violence within the family. The number of adverse childhood experiences (i.e. sexual abuse, physical abuse, emotional abuse, physical and emotional neglect, and violence) was calculated by summing up these five risk factors.

Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics 20.0 for Windows. All statistical tests were two-sided with a 5% significance level. To compare demographics and number of risk factors independent t-tests and Chi-Square tests were used. The SUD group (index group) was compared with the SUD+BPD group by using hierarchic logistic regression analyses controlling for age, gender, and ADHD.

We additionally calculated the hierarchic logistic regression only with those SUD patients without any other comorbidities than BPD to control for other psychiatric comorbidities than BPD.

Results

Among the overall sample of 1,205 patients, 647 were single, 212 were married, 225 were divorced, and 107 lived with a partner (from 14 patients we had no information about the social status). Social
status did not differ between the two groups but BPD+SUD patients were less often employed than SUD patients. SUD+BPD patients were significantly younger and more likely to be female than SUD patients. Hence, we controlled for age and gender in all other analyses (Table 1). The two groups also differed in the rates of comorbidities: compared to SUD patients, SUD+BPD patients were more likely to meet criteria for ADHD (29.7% vs. 11.3%, $\chi^2 = 42.53$, $p < .001$), depression (39.0% vs. 16.7%, $\chi^2 = 45.59$, $p < .001$) and bipolar disorders (25.9% vs. 3.0%, $\chi^2 = 90.27$, $p < .001$). In contrast, patients with SUD had used alcohol significantly longer (14.4 vs. 10.6 years, $t = 4.05$, $p < .001$) and drank more alcohol per day before entering treatment than patients with SUD+BPD (8.4 vs. 5.4 standard drinks [1 standard drink is 10-12 g pure alcohol], $t = 3.24$, $p < .001$). The primary substance of abuse was alcohol (n = 665; 55.2%), followed by stimulants (n = 180; 14.9%), cannabis (n = 128; 10.6%), opiates (n = 126; 10.5%), and other drugs (n = 106; 8.8%). Compared to SUD patients, the primary substance of abuse in SUD+BPD patients was more likely to be illicit drugs and less likely to be alcohol.

Table 1: Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Total (N = 1205)</th>
<th>SUD (n = 1033)</th>
<th>SUD+BPD (n = 172)</th>
<th>χ^2 / t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (% male)</td>
<td>73.4</td>
<td>76.9</td>
<td>52.9</td>
<td>41.42***</td>
</tr>
<tr>
<td>Age, y (mean, SD)</td>
<td>40.0 (11.2)</td>
<td>40.7 (11.2)</td>
<td>35.6 (9.9)</td>
<td>6.13***</td>
</tr>
<tr>
<td>Social status (%)</td>
<td></td>
<td></td>
<td></td>
<td>5.18</td>
</tr>
<tr>
<td>Single</td>
<td>54.3</td>
<td>53.4</td>
<td>60.1</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>17.8</td>
<td>18.8</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>Divorces</td>
<td>18.9</td>
<td>18.8</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>Living with partner</td>
<td>9.0</td>
<td>9.1</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Employment (%)</td>
<td>30.9</td>
<td>32.3</td>
<td>22.1</td>
<td>6.43*</td>
</tr>
<tr>
<td>Main substance (%)</td>
<td></td>
<td></td>
<td></td>
<td>17.84***</td>
</tr>
<tr>
<td>Alcohol</td>
<td>55.2</td>
<td>57.6</td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td>Drugs</td>
<td>44.8</td>
<td>42.4</td>
<td>59.3</td>
<td></td>
</tr>
</tbody>
</table>

Note: BPD Borderline personality disorder; SUD Substance use disorder; * $p < .05$, *** $p < .001$
Except for “mother used alcohol during pregnancy”, the two groups did not differ in SUD-specific risk factors. However, compared to SUD patients, SUD+BPD patients were significantly more likely to report the common risk factors of having experienced physical abuse, emotional abuse, neglect or family violence in childhood (Table 2). Less than 1% of the mothers of the SUD patients (0.8%) and SUD+BPD patients (0.6%) consumed drugs during pregnancy, so that a statistical analysis is not appropriate. While there was no overall difference between SUD and SUD+BPD patients with regard to the prevalence of child sexual abuse, there was a significant gender difference with more women reporting sexual abuse than men (28.1% vs. 8.0%, $\chi^2 = 77.9$, $p < .001$).
In order to control for possible group differences regarding the presence of comorbid psychiatric disorders other than BPD, a comparison of risk factors between the 695 SUD-only and the 50 SUD+BPD-only patients was performed, again controlling for sex, age, and ADHD. The results were similar to those from the comparison of the broader SUD and SUD+BPD groups: parental history of depression (OR = 1.03, p = .94, CI 0.50-2.14), parental history of bipolar disorder (OR = 0.83, p = .81, CI 0.18-3.80), number of adverse events (OR = 0.78, p = .01; CI 0.67-0.94), child sexual abuse (OR =
RISK FACTORS FOR BORDERLINE IN SUBSTANCE USE DISORDER

1.12, p = .78; CI 0.50-2.49), physical abuse (OR = 2.09, p = .03; CI 1.09-3.99), emotional abuse (OR = 2.71, p = .002; CI 1.44-5.09), neglect (OR = 2.27, p = .02; CI 1.12-4.61), and violence within family (OR = 1.58, p = .18; CI 0.81-3.06). Moreover, the SUD specific risk factors did not differ significantly between the two groups; maternal use of alcohol during pregnancy (OR = 1.96, p = .15; CI 0.79-4.87), parental alcohol use disorder (OR = 1.03, p = .92; CI 0.53-2.02), and parental drug use disorder (OR = 1.14 p = .82; CI 0.39-3.33). None of the mothers of the SUD+BPD patients consumed drugs during pregnancy, therefore a statistical calculation is not possible.

Discussion

This is the first international multicenter study evaluating SUD and BPD risk factors among a large sample of treatment seeking SUD patients with and without comorbid BPD using the same standardized interviews by trained clinicians. In the primary analysis we included patients with other current comorbidities. The potential influence of co-occurring disorders (e.g. mood disorders, antisocial PD) was explicitly excluded in the secondary analysis by restricting the sample to patients with SUD-only and BPD+SUD only. The results of both analyses were very similar, suggesting that they are generalizable to most clinical samples of treatment seeking SUD patients with or without BPD.

The first main finding was that patients with SUD+BPD had higher frequencies of physical and emotional neglect and abuse in childhood and were more likely to have a childhood history of family violence, irrespective of the presence of other psychiatric comorbidity, suggesting that increased childhood adversity is an independent risk factor for BPD in treatment seeking SUD patients. For example, the risk of having experienced physical and emotional neglect was 2.8 times higher among SUD+BPD patients (45%) than for SUD patients (19%). As expected, the two groups did not differ in family history of SUD except that the mothers of the SUD+BPD patients were more likely to drink alcohol during pregnancy than the mothers of the SUD patients, suggesting an impact of alcohol on
the unborn child might be associated with BPD. Alternatively, mothers of the SUD+BPD patients were more likely to drink alcohol during pregnancy because they were more impulsive having problems to abstain from alcohol or at least to control drinking. However, this significance disappeared when the SUD-only group was compared with the BPD+SUD only group. Thus, the impact of maternal alcohol use during pregnancy seemed to be more likely associated with the presence of other psychiatric comorbidities.

Our findings showed that the number of adverse childhood experiences was higher in SUD patients than in SUD+BPD patients. Nevertheless, the number of adverse childhood experiences does not seem to be a measure for the severity and repetition of traumatic events since severe childhood traumatic experiences were more frequent in SUD+BPD patients compared to SUD patients. It is rather a measure of the quantity of the different experiences. Unexpectedly, many SUD patients, either with or without BPD, reported not having been exposed to these risk factors. Other risk factors not assessed in this study such as underlying genetic vulnerability may also contribute to SUD and comorbid disorders.

The second main finding was that there were demographics differences between SUD and SUD+BPD patients. The two groups differed in gender; there were significantly more women with SUD+BPD comorbidity than men. This is consistent with findings from other non-SUD treatment settings showing higher rates of BPD among female patients than among male patients [29,30]. However, epidemiological studies of BPD based on data from a community sample have not found significant differences in gender, suggesting that gender differences in BPD are only true for patients ascertained in treatment settings, but not for those ascertained in the community [8,31,32]. In addition, SUD+BPD patients were younger than patients with SUD-only. This result is consistent with studies reporting that BPD begins in adolescence, peaks in young adulthood and that most patients recover from BPD with time [8,33]. Moreover, patients with BPD may develop SUD at a younger age and develop a more severe SUD, therefore it is possible that they seek treatment at a younger age.
Further, when controlling for comorbidity with ADHD [22] and other comorbidities, the risk factors for BPD in SUD patients remain significant, suggesting that child abuse (except sexual abuse) and family violence are important risk factors for BPD in SUD patients.

When interpreting the findings, the following limitations should be taken into account. First, some of the risk factors assessed may be confounded. Physical abuse, for example, is associated with emotional abuse. Thus, it is difficult to disentangle the risk factors. Moreover, some BPD risk factors are missing in the IASP study (e.g. family history of impulsivity). Second, sensitive information such as adverse childhood experiences may be underreported. However, we have no reason to expect that underreporting would differ between the two groups. Third, we did not consider SUD as a risk factor for BPD or vice versa. For example, early substance use and heavy drinking in adolescence may promote the development of BPD by the negative impact of alcohol on the emotional regulation system. In contrast, twin analyses revealed that, at least in 14-18 year old adolescents, the comorbidity between BPD traits and substance use is rather a consequence of common vulnerability and shared risk factors than due to one disease serving as a cause of the other [34]. Further prospective and longitudinal studies are needed to clarify the causal links between BPD and SUD.

Fourth, while most of the data including the diagnoses were assessed using validated structured and standardized clinical interviews (e.g. SCID II, M.I.N.I. Plus 5.0.0, CAADID Interview), risk factors were self-reported in the questionnaire part of the CAADID and are potentially subject to recall bias. In order to minimize recall bias in future research, longitudinal studies and external assessments are recommended. Moreover, it is important to use a more specific instrument such as the Childhood Trauma Questionaire (CTQ [35]) and to include genetic vulnerability in further studies [34]. Fifth, in our study significantly more patients with SUD+BPD than with SUD also have ADHD. Because there is some overlap between the diagnostic criteria of BPD and ADHD (e.g., impulsivity) it is possible that patients were misdiagnosed with BPD and only had ADHD or vice versa. Finally, we did not have a
BPD-only comparison group in the current study. As such, we were not able to evaluate the unique contribution of BPD specific risk factors.

Conclusions

As expected, there were no differences in the majority of risk factors for SUD between SUD patients with and without comorbid BPD. However, known risk factors for BPD such as child abuse and family violence were considerably more frequent in SUD patients with BPD, suggesting that child abuse and family violence were risk factors for BPD comorbidity among those suffering from SUDs. Thus, clinicians treating patients with both SUD and BPD should be aware of the elevated risk of experienced violence as a child and the need for targeted treatment strategies that consider this victimization.
Acknowledgement

We are grateful to all patients for their participation in this study. This work was supported by:

The Netherlands, Amsterdam: no external funding was obtained. The participating institute, Arkin, paid for the costs involved.

Norway, Bergen Clinics Foundation: Main external funding has been the Regional research council for addiction in West Norway (Regionalt kompetansesenter for rusmiddelforskning i Helse Vest (KORFOR)), funding a 50% position. The remaining resources, with staff and infrastructure, have been from the Bergen Clinics Foundation.

Norway, Fredrikstad: The IASP was funded by the hospital, Sykehuset Østfold HF, not with money, but with 50% of the salary of the participants, then by two sources outside the hospital: The Regional centre of Dual Diagnosis and the social – and Health directory.

Sweden, Stockholm: The study was funded by the Stockholm Centre for Dependency Disorders.

Belgium: Funding of the IASP-project in Belgium: private funding.

Spain, Barcelona: Financial support was received from Plan Nacional sobre Drogas, Ministerio de Sanidad y Política Social (PND 0080/2011), the Agència de Salut Pública de Barcelona and the Departament de Salut, Government of Catalonia, Spain.

Switzerland, Berne/Zurich: The IASP in Switzerland was funded by the Swiss Foundation of Alcohol Research (Grant # 209).

Hungary, Budapest: There was no direct funding, but the following grant was used: The European Union and the European Social Fund have provided financial support to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003.

Australia: The IASP Screening Phase was funded by a strategic funding faculty grant from the Curtin University of Technology, Perth, Western Australia.
USA, Syracuse: no funding was obtained.
References

23 ICASA: http://www.adhdandsubstanceabuse.org, 2014

