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Abstract 

Depletion and environmental pollution of fossil fuels have led to the wide-spread installation 

of PV modules at the consumer end, transforming a traditional consumer of electricity into a 

prosumer unit and the aggregation of multiple prosumers into a microgrid. The integration of 

such high PV-penetrated prosumers into the distribution system is not without challenges due 

to the uncertain PV power. A possible remedy is to utilize the buffering actions offered by 

energy storage systems (ESSs) in which the ESSs are strategically placed at suitable locations 

within a power grid, with each ESS serving distinct power buffering purposes, and forming a 

hierarchical storage scheme.  

This investigation examines a hierarchical hybrid ESS (HESS) scheme that 

incorporates both distributed and centralized energy storages. The capacity determination and 

energy management planning of such a hierarchical storage scheme presents significant 

challenges due to the diverse storage characteristics, while the design process can be highly 

computationally intensive.  Therefore, in this thesis, the primary objective is to present a direct 

methodology for determining the capacities and control strategies of centralized and distributed 

hybrid storage scheme. Furthermore, since degradation of the ESS, particularly that in Li-ion 

battery, is a significant concern as it affects the service lifetime of the ESSs, the thesis proposes 

a degradation-conscious battery control for the HESS scheme such that grid constraints are 

sufficiently met concurrently. 

In this work, a preliminary analysis was performed on the non-stationary net power 

emanating from prosumers using the empirical mode decomposition method which identifies 

the dominant perturbing frequency components contained in the net power. These components 

are accurately segregated among different storage technologies, based on the criteria of 

minimum cost–per-effective energy storage capacity among the constituent ESSs in the HESS. 

Thus, the proposed method results in the most economical design. Furthermore, it can be 

readily generalized to include multiple types of energy storage devices in the HESS scheme. 

Determining the capacity of centralized storage or community battery (CB) for a grid-

connected microgrid is the focus of the next study. The CB capacity is determined by making 

full use of the power transfer capability of the existing grid link, with the proposed dynamic 

SOC referencing method that tracks the seasonal pattern of PV generation. As the degradation 

of Li-ion battery due to solid-electrolyte interphase (SEI) film growth is affected by the state 



ix 

 

of charge (SOC) of the battery, this design approach leads to lower SEI film growth or else to 

reduced required battery capacity. 

The study of CB is then extended to prioritize the independency of the microgrid from 

the grid link through the application of a new adaptive CB control strategy while minimizing 

the SEI film growth. The scheme does not require the short-term forecast of PV generation and 

load demand, which inevitably contains errors. Furthermore, the proposed method improves 

the lifetime of the CB by reducing the SEI film growth while the amount of the export-import 

energy via the grid link is much reduced. The proposed scheme thus leads to higher energy 

independency of the microgrid from the external grid system.    
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CHAPTER 1. Introduction 

1.1 Background and Motivation 

As environmental concerns continue to rise due to greenhouse gas emissions, and fossil fuel reserves 

are expected to deplete in the next decades, recent research is increasingly focused on solutions 

involving new sources of energy production. With the emerging energy crisis, it is well-accepted 

that renewable energy is poised to play a pivotal role in electricity generation. Following this 

evolution in Australia, the Australian Energy Market Operator (AEMO) indicated in their recent 

Integrated System Plan (ISP), the current planning objective is to reach energy target with zero 

emission by 2050 [1]. Given the growing interest from both public and commercial sectors, this goal 

may even be attainable sooner than expected. 

Among many other renewable energy technologies such as wind, photovoltaic (PV) has 

advanced sharply in the last decade since the prices of PV modules have rapidly decreased due to 

continuous technical advancement and the ease of installation. Thus, there is a higher tendency of 

increased PV generation on the consumer side, ultimately converting the conventional consumer to 

a prosumer [2]. This has offered the additional advantage of reducing the transmission losses 

encountered in conventional power grid system. In addition, the requirement of the transmission 

network upgrades is not necessary as the generation is distributed. Most remote communities, 

especially those with dispersed geographical locations, can be easily electrified through the 

introduction of distributed generation, avoiding the need for costly extensions of the transmission 

network. 

Unfortunately, a high degree of power fluctuations in PV generation is unavoidable due to 

meteorological changes. These fluctuations can range from sudden cloud cover incidents to gradual 

seasonal changes, impacting PV production considerably. This intermittent nature and low inertia 

of PV inverters may cause severe power system instability issues in voltage, frequency and rotor 

angle stability [3] in the power system. Among the number of remedies to combat such stability 

issues, allocation of reserve generation would be a costly practice. Thus, the alternative solution is 

to use Energy Storage System (ESS) to smooth out PV power fluctuations and improve the 

dispatchability of the renewable generation. In term of such distributed generation scenario, a 

number of interconnected prosumers shall form a small-scale power grid. This setup encompasses 

local and common loads along with centralized or distributed energy storage systems, and with the 
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appropriate communication and control network interconnecting the prosumers. In the literature, the 

small-scale power grid is collectively referred to as a microgrid. Such microgrids can be operated 

both in grid-connected and isolated modes. Recent microgrid projects have been on the rise not only 

worldwide but also in Western Australia. The Onslow microgrid project by Horizon Power, Kalbarri 

microgrid with 5 MWh community battery by Western Power [4], Agnew renewable microgrid in 

Leinster with total installed capacity of 56 MW [5], and White Gum Valley project [6] are some of 

the examples for such recent implementations. Perenjori, Bremer Bay, and Ravensthorpe are among 

the locations where these renewable energy and storage combinations function as microgrids [7].  

As conventional consumers increasingly shift towards becoming prosumers, the future of 

the modern power system will essentially be a network of interconnected microgrids. Within this 

networked power system, the integration of ESS can occur at various levels. The purposes of the 

ESS can vary widely, often reflected by their location of installation within the power system at 

different levels. For instance, ESS can be introduced at the prosumer level, microgrid level or at the 

grid scale. Primary considerations of the prosumer level storages are to resolve the power quality 

issues due to the short-term intermittencies and daily power buffering at the prosumer level [8]. In 

contrast, the microgrid level storages serve different purposes such as peak shaving (energy 

arbitrage), resolving duck curve phenomena, microgrid independency and smoothing grid power 

[9]. Even larger grid-scale storages may be intended to provide grid ancillary services or to meet 

seasonal storage requirements for the entire power grid.  

To serve these diverse purposes, employing a single storage technology would not be a 

viable option. While different storage techniques are applied, these suitable ESS should be selected 

to serve the proposed objective based on the energy density, power density, capital cost and 

degradation characteristics. The question of planning a HESS with different storage technologies 

has been discussed over the years in a large body of reported works. However, planning such a 

scheme can be highly challenging as a comprehensive techno-economical assessment is required to 

compare the ESSs and to decide the capacity of these storages. Often, the reported works on the 

assessment focus on two types of ESS and are based on trial-and-error methods. These methods 

cannot be easily generalized for a scheme which contains a larger number of storage elements. So, 

it is unclear whether the generalisation of these methods is feasible for hierarchical energy storage 

schemes. In addition, there is a continuous argument on the centralization of the storages, as 

prosumer-based storage schemes are difficult to control and coordinate. In such a scenario, many 

studies have shown the economic perspective of centralization of the storage architecture. Some 
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remote microgrids in Western Australia, are often grid-connected through interconnection overhead 

feeder lines of considerable length. For example, the Kalbarri microgrid owned by the Western 

Australian Electricity Utility Corporation is connected to the South-west power grid of the state 

through a 140 km overhead line. The overhead line provides the only electrical link between the 

Kalbarri microgrid and the remaining part of the state utility network. As the PV generation and 

load demand in Kalbarri increases over the years, however, there will come a stage when the line 

needs to be upgraded in order to meet the demand. Upgrading the line can be a costly exercise. An 

alternative option could be to install a community battery within the Kalbarri area to provide the 

necessary power buffering actions in the microgrid while keeping the existing link in service. As 

shall be explained in CHAPTER 6 later in this thesis, there has been considerable attention in the 

last few years considering the installation of such similar community batteries. Notwithstanding this 

development, the planning of such a centralized storage facility to obtain maximum use of existing 

transmission link has yet to be reported in the literature.  

In a contrasting scenario from the one mentioned above, if the centralized battery is 

community-owned and the intention of the instalment is to reduce the grid-link dependency, then 

the objectives of battery operation will change. Thus, the priority should be given to the battery to 

charge with the surplus energy in the microgrid while the stored energy is used to serve the microgrid 

evening peak. Under these two different scenarios, the respective objectives of the community 

battery operation will not be the same. Therefore, the design of community storage should align 

with the intended operating objectives. These two aspects must be thoroughly grasped by system 

planners, both during the capacity determination phase in planning and subsequently during energy 

storage management in real-time operation.  

Moreover, for such a community-scale investment, the service lifetime of the battery would 

be a paramount factor. When the discussion is limited to the Li-ion battery, the degradation 

phenomena termed solid electrolyte interphase film growth, particularly the most dominant form of 

degradation, can significantly shorten the battery lifetime, if the influencing factors such as battery 

SOC and charging/discharging current C-rate are not properly controlled. Even though numerous 

recent studies have produced comprehensive battery cell models to study these degradation effects, 

strategization of the charging and discharging processes while taking onboard the degradation 

effects remains a fairly unexplored research area. This should be more vigorously addressed both in 

planning and controlling of the Li-ion battery management. During the capacity determination stage, 

the planning problem should consider long-term operation, taking into account battery SOC levels 
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in response to seasonal changes to determine seasonality effects on battery degradation. This will 

allow to adjust the storage control parameters seasonally to reduce the storage degradation. 

However, during the intra-day operation of the battery, more detailed storage controlling should be 

integrated into the battery energy management system in order to cater for the uncertainties of the 

weather pattern. An adaptive battery controlling is required to strategically manage storage capacity 

during renewable applications heuristically. Therefore, during microgrid applications battery energy 

management system (EMS) operations should be carefully designed with appropriate instructions 

to ensure the optimized operation of the ESS to reduce degradation while retaining adequate storage 

to withstand uncertainties. Furthermore, the storage operation should be economically feasible and 

sufficiently adaptive to maintain microgrid self-sufficiency. Thus, it would be a worthwhile attempt 

to explore the degradation conscious adaptive control of the community battery in different 

operating modes while incorporating power fluctuations due to load and PV. Based on above, the 

key objectives of the thesis can be summarized as follows. 

1. To propose a method to segregate the power components of different frequencies to each 

constituent storage of prosumer level HESS and then determine the capacities of storages 

accordingly. 

2. To propose a long-term SOC control method which minimizes the degradation of a grid 

connected community Li-ion storages. 

3. To schedule intraday management of the SOC and C-rate of the Li-ion battery to minimize 

degradation and improved self-sufficiency. 

1.2 Major Contributions 

Based on the aforementioned motivation, each subsequent chapter has identified a research gap in 

the existing studies. In striving to fill these identified gaps, this thesis intends to make the following 

key contributions. 

1. Proposition of a direct method to segregate the power component for each constituent 

storage element of HESS based on their economic and dynamic response characteristics. 

Based on the empirical mode decomposition technique, the implicit modes existing in the net power 

of prosumers are extracted. The modes are then segregated into groups to be buffered by the 

constituent ESSs in the HESS. As an alternative to the existing cost-based optimisation methods, a 

new method is proposed which is based on both the dynamic response and economic characteristics 
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of the storage elements. The dynamics characteristics are determined using the equivalent circuit of 

the given storage system so that the proposed method assures that the storage element can 

successfully buffer the allocated power components at the lowest cost/energy storage capacity. The 

proposed method can be readily generalized for a hierarchical storage scheme containing any 

number of constituent storage elements, a design advantage which cannot be replicated using 

existing trial and error approaches due to their heavy computation burden.  

2. Proposing a new method to determine the capacity of community storage for a grid-

connected microgrid using dynamic seasonal SOC referencing leading to a modest SEI film 

growth. 

The SOC of the Li-ion battery utilized as the community storage has to be maintained such that the 

main degradation factor of Li-ion battery SEI growth is minimized. Existing reported works based 

on cycle counting methods or its variants are unsuitable for the renewable applications as the 

relationship between the battery SEI film growth and SOC cannot be readily incorporated in them. 

The proposed SOC control method allows the seasonal SOC reference to vary such that the operating 

SOC is kept at a range where the SEI film growth is minimum.  

3. To develop a degradation-conscious adaptive battery SOC control for the community Li-

ion battery to minimize the SEI growth. 

Since SEI film growth rate is identified as a function of not only of SOC but also that of the C-rate 

of the battery, the charging and discharging strategies of the Central Battery of a community 

microgrid are proposed to minimize the SEI growth during intra-day battery operations. The 

proposed method is sufficiently adaptive to the intra-day variations of the PV and load without 

undergoing the complexities of forecasting. Furthermore, it concurrently minimizes the power 

exchanged with the grid thereby increasing the energy independency of the microgrid. Moreover, it 

also ensures the meeting of the grid line power constraints with respect to the magnitude and ramp 

rate. 

1.3 Organization of the Thesis 

The remainder of the thesis is organized as follows: 

CHAPTER 2 initiates with a literature review related to the thesis. Firstly, the storage types used in 

HESS are examined. The HESS capacity sizing methods reported in the literature are then compared 

in order to identify their drawbacks. The frequency-based sizing methods reported in the literature 
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are closely analysed to identify areas for improvement. Then, the storage degradation modelling and 

aging aware methods used in controlling are discussed with the aim to identify associated 

challenges. Finally, adaptive battery controlling techniques reported in the literature are 

comprehensively examined. 

CHAPTER 3 belowemphasizes the need for an adaptive frequency-based decomposition 

method to analyse the net power variation in which Empirical Mode Decomposition is practiced. 

The oscillating modes of net power of a single prosumer is analysed to identify the dominant modes 

and their respective frequency bands. The results of this chapter pave the way for the subsequent 

chapters in order to determine the capacities of the constituent storages of HESS. 

CHAPTER 4 aims to cover the first main contribution of this thesis. The decomposed 

oscillating modes should be demarcated between the constituent storages of HESS to ensure the 

most cost-effective HESS design. A new method to determine the cut-off frequency between the 

constituent ESSs is proposed to serve this purpose. The method enables the accurate segregation of 

power components between the ESSs, by considering both the dynamics characteristics and 

economics of the constituent storage elements. 

With the aid of the determined cut-off frequency between the constituent storage of HESS, 

CHAPTER 5 employs both the EMD-based analysis and statistical approach to determine the 

storage capacities of the constituent storages of HESS at the prosumer level. CHAPTER 6 and 

CHAPTER 7 primarily focus on this community level storages. CHAPTER 6 considers a grid-

connected microgrid where Li-ion battery is used as a community storage medium. The purpose of 

the battery design is to minimize the capacity by employing the full use of the maximum power 

transfer capacity of the existing grid-link. SEI film growth of the Li-ion battery degradation with 

respect to the SOC is also considered to define a seasonally adjusted SOC referencing method. 

CHAPTER 7 further extends the community battery study when the battery is operated to 

enhance the microgrid independency, while reducing the amount of the grid import/export. The 

intra-day adaptive charging/discharging strategies are designed to align with the 

charging/discharging C-rate effects on the battery SEI film growth while abiding to grid constraints.  

CHAPTER 8 concludes the main findings of the thesis and possible directions for future 

works. 
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CHAPTER 2. Literature Review  

2.1 Introduction 

Within the framework of microgrids, the role of the energy storage systems stands out as a 

critical component fostering stability, reliability and resilience. As microgrids inherently featuring 

the higher renewable penetration, the effective utilization of ESS is paramount for mitigating the 

intermittency, enhancing independence, peak shaving and supporting grid ancillary services. Since 

a single ESS technology cannot effectively provide the wide range of applications, different types 

of storages are coupled in the form of a hybrid energy storage system (HESS). The literature review 

chapter of this thesis begins with a broad overview of different storage schemes encompassed within 

the HESS. Then, the capacity determination techniques practiced in the literature are evaluated, 

considering their advantages and disadvantages. Subsequently, frequency-based capacity 

determination methods are explained while highlighting the advancements of the empirical methods 

compared to the classical approaches. Then, the literature analysis dwells into the battery SOC 

control mechanisms used in the existing studies. Subsequently, then the chapter examines closely 

into the issues pertaining to the degradation of the Li-ion battery and the applications of degradation-

conscious control. Finally, the adaptive SOC control mechanisms in battery energy management 

systems used in renewable applications are extensively discussed. 

This literature review chapter aims to provide significant insights into the research gaps, 

firstly focusing on HESS capacity determination techniques. Then, critical issues in existing 

literature concerning battery SOC control of Li-ion batteries are identified, particularly in 

degradation conscious control. Through a critical analysis of the existing methods, the shortcomings 

of adaptive control methods are demonstrated, and hence indicating the state of the art within the 

thesis domain. The primary research gaps are highlighted within each section, providing vital 

insights for establishing the state-of-the-art framework in subsequent chapters. 

2.2 An Overview of HESS 

2.2.1 Different storage topologies of HESS 

In microgrid-based applications, relying on a single storage technology will not be sufficient 

as the requirement of the storage greatly varies in wide range of applications. The later analysis of 

the net power related to the PV and load variation shows that the net power varies over a wide 
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frequency bandwidth. So, it is highly unlikely that the single type of ESS can effectively respond 

and buffer such different modes of oscillations of a wide variety of frequencies. Therefore, the need 

for HESS as a suitable option for buffering these wide range of oscillating modes is clearly 

identified.  

Variety of storage devices utilized to form the HESS is identified in the literature. Certain 

storage characteristics, such as energy density and power density, differ greatly from one type to 

another, making storage device designed for one application unsuitable for another. Classification 

of these diverse storage techniques can be evaluated using the discharge time as the parameter for 

categorization as shown in Figure A.1 in Appendix A[10].  

According to the discharge characteristics shown in Figure A.1 in Appendix A, a convenient 

way to describe the diversity of ESSs is to categorize them under different time scales ranging from 

the short, medium and long term. Discharging duration of storage is an important characteristic 

which refers to the typical cycling time of the charging/discharging. In here, the typical discharging 

durations of storages can vary from seconds to years. The short-term storages have a nominal 

discharge duration of a few seconds to minutes, in which the supercapacitor and flywheel are 

considered suitable examples for this category. The mid-term storages have a typical discharge 

duration of minutes to hours, whereas most battery technologies generally fall into this group. The 

third category, long-term storage devices, includes fuel cells and flow batteries, with discharging 

duration ranging from a few days to year. 

Another approach of ESS classification found in literature involves distinct curves on 

power-energy plane commonly referred as Ragone plots [11]. One such representation is shown in  

Figure A.2 in Appendix A taken from [12]. According to the figure, SC exhibits the highest power 

density. SMES, Flywheel and Li-ion batteries are other examples of storages with high power 

density, while Li-ion battery offers acceptable energy density. Fuel cells while having lower power 

density compared to Li-ion batteries, exhibit better energy density. Lead acid batteries and 

Vanadium redox batteries (VRB) storages are suitable candidates for applications with lower power 

density applications. PHES is considered to be the lowest on both power and energy densities, 

suiting them for long-term operations like seasonal energy buffering. 

Apart from the power density and energy density, other parameters such as discharging rate 

C-rate, depth of discharge (DOD), cost, and lifetime are more often considered vital characteristics 

in the selection of storage. For example, Li-ion batteries with high discharging C-rates are swiftly 

replacing lead-acid batteries with low discharging rates and discharging depths. A summary of the 
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general characteristics of various ESS technologies are summarized in Table A.1 in Appendix A for 

further comparison. 

2.2.2 Applications of HESS 

Recent review papers related to the HESS applications have clearly highlighted the 

advantages of combining complementary characteristics of ESS in HESS [13]. Improving the 

fluctuations of modern renewables like wind and solar is one such advantage [12]. These suitably 

integrated HESS are intended to alleviate perturbing power with varying amplitudes and 

frequencies, which are addressed through different low- and high-speed responses of the integrated 

storages in HESS. 

The second advantageous characteristic of HESS is the lifespan improvement of storage. 

Frequent cyclic discharging has resulted the battery and fuel cell-related technologies to degrade 

rapidly. Therefore, the second storage device with high cycle life shall be introduced to smoothen 

the battery power profile to extend the battery life span. For example, battery-SC is a relatively 

mature HESS technology which enhances the battery lifetime by 19% as shown in [14]. Power 

quality improvement and stability are the third significant benefit of HESS. Key grid services like 

frequency regulation and harmonic mitigation are also possible with HESS in conventional power 

system [15]. Recent real-world scenarios of HESS implementations are also reported in the 

literature. Few of such well-known applications are the 1.2MW SC/Battery HESS installation in 

North Carolina, United States by Duke energy to handle the peak demand response and the 1MWh 

VR/Li-ion battery HESS developed for Monash University for Solar PV dispatching pilot studies 

[13].  

2.2.3 Capacity determination of storage components of HESS  

The introduction of HESS into the power system is quite noticeable in the literature, considering bot 

its advantages and the recent real-world applications.  When different types of storage devices are 

integrated to form one hybrid energy storage scheme, it is vital to ensure that their characteristics 

complement each other well [16]. Thus, the capacity determination techniques should ensure the 

accurate allocation of capacities of constituent storages of HESS. Advantages and disadvantages of 

the existing capacity determination methods of HESS are extensively discussed in the review paper 

[17]. As found in the literature, the classification of capacity determination techniques for HESS 
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applications can be depicted as shown in Figure 2.1. These techniques are primarily divided into 

three categories: traditional methods, optimization methods, and methods based on software tools.  

 

Figure 2.1. Classification of capacity determination approaches of HESS 

Under the traditional methods of sizing, Ragone plots are used to compare the performance of the 

storages of HESS in energy/ power graphical space. This gives an idea of the operating constraints 

of the different ESS in a HESS. However, to obtain a deeper understanding of the dynamics of the 

storage in real-time operation, this method should be combined with other analytical methods to 

obtain a more exact solution [18]. Analytical methods are commonly used to size the storages based 

on the imbalance power of the generation and loads. Generally, the allocation of the power is 

performed in such a way that high energy density storage supplies low frequency components and 

high-power density storage provides high frequency power. Therefore, this method attends to the 

technical aspects of allocation, ensuring that the segregation of the power components aligns more 

closely with ESS dynamics. As a result, analytical methods excel in addressing the technical aspects 

of the HESS design compared to other methods. Frequency-based decomposition methods are such 

commonly practiced analytical methods [19]. Statistical methods can be readily used in real-world 

applications as the statistical significance of the design can be compared with the cost. However, 

without combining statistical method with an analytical method , the dynamics of the storage cannot 

be well evaluated [20]. Statistical techniques, such as  Monte Carlo method, have been commonly 

reported in literature [21] to determine the capacities of battery and SC in HESS application.   

An iterative method is an algorithm based on recursive process, which gives the end result 

when the optimum system design is attained.  Currently, software like MATLAB integrates these 

traditional optimization algorithms to easily formulate the problem. As recursive calculations are 
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performed, these methods usually demand more computational resources compared to analytical 

methods. Consequently, when applied to systems combining multiple storages, the feasibility of 

iterative methods can become significantly challenging. 

Compared with traditional optimization methods, AI algorithms can solve nonlinear and 

complex problems, and also deal with incomplete data and intermittent problems of solar/wind 

power. However, the inconvenience of this method is considerable due to the lack of transparency 

in solution method. In addition to the methods reported in the literature, commercial software like 

HOMER PRO, Transys are mostly used in the industrial applications. However, these are still not 

designed to formulate the problem while considering the dynamics of the storages. Mostly economic 

aspects are covered in the optimization, while the technical limitations are defined in the constraints 

of the program. For example, a user defined storage control algorithm cannot be designed using the 

HOMER PRO to test its optimal operation. Therefore, the flexibility and applicability of these 

software to the modern microgrid based systems are considerably limited. Comparative advantages 

of the aforementioned HESS sizing methods are summarized in Table 2.1. 

Table 2.1 Summary of advantages and disadvantages of HESS sizing methods reported in the literature. 

Sizing method Advantages  Disadvantages Examples 

Graphical methods 

(Ragone plots) 

Can be defined for any 

type of storage.  

Dynamic performance of the storages 

is not displayed. 

[18] 

Probabilistic method Simple to analyze 

More flexible capacity for 

design requirement can be 

chosen. 

Cannot present dynamics of ESS 

alone 

[20] [21] 

Analytical method Simple and easy to 

understand. 

Rapid and straightforward  

Approximations of the system 

components makes it less 

generalized.  

[22] 

Classical Optimization 

methods (iterative 

methods) 

Easy to formulate the 

problem 

Require high computational 

resources compared to analytical 

method 

[23],[24],[25] 

AI methods Ability to solve nonlinear 

and complex problems. 

 

Inconvenience due to the complex 

processing 

Fuzzy [26] 

GA [27] 

PSO [28] 

Software tools 

(HOMER Pro, 

HYBRID, TRANSYS) 

Easy to use without prior 

knowledge of the system 

components 

Difficulty to apply for a generalized 

storage scheme. 

Some necessary parameters are not 

integrated in the problem formulation 

[29] 
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Based on the key highlights in the aforementioned review studies on the sizing approaches, the 

following critical points can be summarized. 

1. Optimization methods outperform the traditional sizing methods due to their notable advances, 

such as high performance, ability to handle complex scenarios, and support for multi-objective 

functions. However, a common drawback of all optimization methods is their tendency to be 

time-consuming and intricate. It is identified that the AI-based optimization methods are prone 

to fall into local optima as the complexity of the hybrid system increases. 

2. A high volume of papers is reported under the category of the optimization-based storage 

capacity sizing methods. However, one common issue with these types of methods is their 

complexity in solving them in an application with multiple storages in HESS. Thus, the suitability 

of such methods for generalized HESS schemes is highly questionable. In addition, defining the 

storages dynamics is very rarely practiced in these types of capacity determination techniques. 

As mentioned, only the constraints are considered in the optimization process in order to ensure 

the dynamic ability of the storges. 

3. While the statistical methods are suitable for decision making, they should be combined with the 

analytical approach for a better understanding of the system design. Thus, a novel method is 

required where both approaches are combined.  

4. Existing software tools for sizing a HESS are still at the preliminary stages of development, 

which limits their flexibility in defining the multi-objective problem during the planning process 

of HESS for a modern microgrid with high renewable penetration.  

5. Previous studies have highlighted that the input data for the storage capacity determination is 

heavily impacted by insufficient data in both load and PV variations [16]. Calculation time steps 

used in the existing optimization process of one year are limited to hourly. Therefore, the 

accuracy should be improved with smaller time steps particularly when the design consideration 

is to deal with short-term fluctuations. This will obviously increase the calculation burden, where 

optimization algorithms that require higher computation resources would not be a suitable option 

for designing such short-term ESS operation. 

6. The suitability of the hybrid storage systems should be determined after an accurate mapping 

between the net-load demand and storage characteristics. The existing studies mainly focus on 

economic and reliability indicators. The scale of the application, degree of power fluctuations 

and required energy demand are factors to be considered. These factors are not sufficiently 

discussed in the existing techno-economic studies as such in [30]. Important dynamic such as 
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response time delays of storages are missed out from the constraints and objectives. Therefore, 

the optimisation algorithm is only aware of storages as a medium with different cost indexes and 

SOC constraints. However, in reality, storage chemistries are completely different from one to 

another, affecting their performance which was not well-awared by existing sizing optimisation 

methods. 

7. The storage capacity optimisation research on different scale and different configurations 

(centralized and decentralized)  needs to be improved [17] and requires more attention in depth. 

2.2.4 Frequency-based capacity determination of storage components of HESS  

In the literature, it is noted that frequency-domain representation can be employed within analytical 

methods for sizing storage to differentiate the storage devices. This presents a way of reflecting the 

storage response characteristics with respect to the frequency which is an alternative approach to 

the Ragone plots described in existing literature. In this section, these frequency-based capacity 

determination methods are extensively discussed to identify their existing challenges.  

In order to demarcate the storages in the frequency domain, the effective frequency ranges of 

each storage should be determined with respect to a suitable techno-economic parameter. Then the 

cut-off frequency between these storages can be determined which is vital for capacity determination 

in frequency-based approaches. According to the literature, the most commonly reported cut-off 

frequency determination methods are inherited from the trial-and-error approach [19, 31-34]. 

Generally, for all of these studies, cut-off frequency is determined to serve the objective of 

optimizing the total annualized cost of HESS. The common structure of such optimization algorithm 

to determine cut-off frequency is depicted in Figure 2.2. It shows that initially, the net power will 

be decomposed based on an arbitrarily selected cut-off frequency, which will then segregate the net 

power into a high- and low- frequency components. As is often the case, the lower frequency 

component will be used to determine the capacity of a battery while the high frequency component 

is used to determine the energy storage capacity of a comparatively fast responsive storage like SC. 

Both of these power components then be evaluated using the degradation models of the respective 

storages to determine their lifetime. Finally, the annualized capital cost of the hybrid energy storage 

scheme is calculated, and the respective capital cost is estimated. By adjusting the cut-off frequency, 

the total capital cost will be minimized. This optimization-based method, or its variants with other 

associated cost indexes, was commonly used in existing literature to determine the cut-off 

frequency. 
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Figure 2.2. General algorithm used in literature to determine cut-off frequency 

Many examples are reported in the literature which follows the basis of this presented algorithm. In 

[19], Fourier Transform is used for frequency analysis in sizing SC-battery combination to maintain 

the power balance of an isolated system. The objective function considers the expected lifespan cost 

of each storage. Here, the variations of net power resulting from wind fluctuations are divided into 

three components using Fourier analysis and SC is used to buffer fast power fluctuations. Authors 

in [35] proposed SC and Fuel Cell as components of HESS where SC power is determined by a high 
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pass filter. Fuel Cell and grid power are obtained by the rest of the lower frequency fluctuating 

components. In [22], FT is used to decompose the net power variation to realize four different 

fluctuating components namely very short-term, short-term, intraday and outer day components. 

The spectral analysis methods are used to determine the HESS capacity. Research presented in [36] 

also practiced the DFT-based method to separate fast cycling components like intra hour from slow 

cycling intraday components to design HESS. However, in both of the aforementioned works, the 

cut-off frequency is determined without a theoretical basis and introduced as a parameter that can 

be varied based on the cost parameters. Authors in [31] used a DFT-based coordinated dispatch 

strategy to allocate the power between the ESS and diesel generators in the frequency domain. 

Optimal cut-off frequency is determined using economic evaluation and gradient search procedure. 

In [37], DFT based method is used to obtain the frequency of the variations and cut-off frequency 

is numerically optimized to obtain the minimum cost of HESS configuration. In [38], adaptively 

cut-off frequency between the battery and SC is determined in the operation considering their SOC 

levels. However, this allocation does not consider the lifetime operation of the battery in the event 

of handling the higher frequency components of PV variations. Authors of  [33] determine the cut-

off frequency of low pass filter between battery and SC using PSO algorithm to obtain the minimal 

total cost of including battery degradation cost.  In [39], PSO-NM algorithm is used for a feasible 

optimal solution in terms of weight, cost and battery lifetime of HESS employed for vehicular 

applications. Results show that the proposed algorithm outperforms GA and PSO based on 

computational metrics.  

The cut-off frequency determination technique shown in Figure 2.2 does not ensure that the 

allocated frequency components would be sufficiently buffered by respective storages. This is due 

to the fact that the cut-off frequency is determined only based on the economic perspective. 

Therefore, solely economic optimization in determining cut-off frequency is not suitable for a 

planning study of HESS. A different optimization parameter is introduced in [40] specified as 

‘minimum overlap energy’. This parameter explains the undesirable coupling between the storage 

devices in HESS which needs to be minimized at the design stage through an iterative method. Even 

though this provides some theoretical basis for determining the critical frequency, the dynamic 

characteristics of the ESS are not considered here. Thus, all the above iterative methods provide a 

lack of insights into the dynamic characteristics of the ESS in HESS design. In addition, advanced 

iterative process such as in [39], may lead to a heavy computation burden. Also defining an objective 
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function for optimization with different weights can lead to ambiguity which makes these 

approaches less suitable when compared to an analytical approach.  

2.2.5 Research Gap 

Though the cut-off frequency defining methods used in the design stage consider the optimum cost 

of the design, the dynamic response characteristics of individual ESS are mostly ignored. Typically, 

ESS are treated merely as devices with different cost indices in the optimization algorithm. 

Therefore, it is imperative to consider both the dynamic characteristics of ESS and their associated 

capital costs when determining the cut-off frequency. Specifically, the dependence of ESS capacities 

on operating frequency should be taken into account, reflecting the unique dynamic response of each 

storage component to various frequency components. Secondly, the trial-and-error methods 

followed in the literature to determine the cut-off frequencies are computationally intensive. These 

computationally intensive methods are not suitable for a planning problem with a hierarchical 

storage scheme of three or more storage technologies in different locations of the power system. 

Therefore, an analytical and sufficiently generalized method is required to allocate the different 

frequency components of the net power to the constituent storages of the HESS. Moreover, given 

the intermittency of renewable applications, it is crucial to utilize statistical significance during the 

capacity determination design process to ensure the design confidence of the proposed system.  

2.3 Frequency-based Analysis using Empirical Methods 

The complexity of the natural processes of daily observations arises from the composition of 

multiple components which makes the descriptive analysis difficult. For instance, analysis of 

weather-related precipitation charts is challenging due to the components related to the short-term 

interactions such as cyclones, heat-waves as well as more general variations like daily-hourly cycles 

and seasonal changes. This will give rise to the rightful desire to breakdown the complicated process 

into individual components and analyze each segregated component separately. This simplifies and 

enhances the analysis process, leading to a deeper understanding of the insights and improved 

forecast reliability. The analysis can be performed in either the time or the frequency domains. Time 

series analysis, such as that reported in [41] provides very little information on the variability of the 

PV power. First and foremost, this time domain analysis may struggle to capture the rapid changes 

in PV fluctuations as they are more susceptible to the noise of the data. On the other hand, frequency-

based analysis has improved filtering and noise reduction facilitates. Analyzing raw time-series data 
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can be less intuitive to interpret complex variations compared to frequency domain analysis. Thus, 

the probabilistic approach has often been used to analyze the time series data for a long time, due to  

the stochastic nature of the harnessed power [41]. 

2.3.1 Traditional frequency-based signal analyzing methods 

Traditionally, extracting relevant information from the original signal, often termed as “mother 

signal” can be performed by the decomposition and spectral analysis techniques. One such 

traditional method is Fourier Transform (FT) which results in decomposition of the initial process 

into harmonic functions with fixed frequencies and amplitudes. Fourier methods use a series of sines 

and cosines as basic functions to represent the data signal. Thus, the amplitude and frequency of the 

resulting components are constant which means that if the nature of the initial sequence was 

changing over time, such changes will not be reflected in the transformation results. Therefore, the 

transform assumes the stationarity of the initial data. Non-stationary behaviour of dataset refers to 

data points that often have means, variances and covariances that change over time. This indicates 

the presence of trends, cycles, random variations or a combination of the above three. Therefore, 

non-stationary data are unsuitable for predictions, and extracting reliable results necessitates 

transforming them into a set of stationary data. This transformation process often requires the 

utilization of decomposition techniques. 

Other than stationarity, linearity is also required for the Fourier Spectral analysis. Linearity 

is defined to be having mathematical proportionality between inputs and outputs. Nonlinear systems 

often exhibit the disproportionality or complex changes in the output which make them challenging 

to predict and analyze. It is evident that many natural phenomena have the tendency to be nonlinear 

even though they are approximated by linear systems. This is mainly due to the sudden variations 

in the phenomena which is out of the trend that we expect. As an example, the expected variation of 

the solar insolation can be changed due to cloud cover which is an instantaneous result of 

meteorological changes. This will result in the extracted solar PV power to be non-stationary and 

frequently non-linear. 

Therefore, if such a PV power signal is analyzed by assuming the stationarity and linearity, 

false results usually cannot be avoided. For above reasons, Fourier spectral analysis is limited in 

effective use to analyze non-stationary nonlinear data signal. Such attempt is reported in  [42] to 

show how frequency-domain analysis can be used to determine the capacity of HESS. As an 

alternative to the FT analysis of non-stationary signal, a wavelet transform (WT) is recommended. 
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Even the decomposition is similar in a fixed basis of functions as same as FT, unlike the FT this 

basis can be preset, i.e. a wavelet used in transform can be selected. In contrast to the FT, every 

component resulting from the WT has parameters that determine its scale which allows to overcome 

the issue of the non-stationarity of process. The major drawback of the WT is its non-adaptive 

nature. In spite of the drawbacks, WT has been considered as the major non-stationary analysis 

method which has been reported in previous power system analysis. Wavelet transform has been 

used in the design studies of HESS in [43, 44], as the technique is more suitable than the FT in 

analyzing nonlinear signals. The success of the technique depends very much on the selection of 

suitable mother wavelet, but it can be difficult to have such prior knowledge in practice. 

Even though both Fourier and wavelet have widely recognized mathematical techniques to 

analyze complex signals, for practical non-linear non-stationary signals, it is desirable to use a 

decomposition method with an adaptive basis determined by the initial sequence. Aiming such an 

objective, the Empirical Mode Decomposition (EMD) technique was introduced as an alternative 

and powerful nonlinear signal analysis method which will be discussed in greater detail in this 

chapter. The basic characteristics of these three signal analysis methods are summarized in Table 

2.2 according to [45] . 

Table 2.2 Summary of comparison between FT, WT and EMD 

 FT WT EMD 

Basis A priori A priori Adaptive 

Output Energy-Frequency Energy-time-frequency Energy-time-frequency 

(amplitudes of 

components) 

Frequency Convolution, 

Global, 

uncertainty 

Convolution, 

Regional, 

uncertainty 

Differentiation, 

Local, 

Certainty 

Non-linear No No Yes 

Non-stationary No Yes Yes 

Basis of decomposition Theoretical Theoretical Empirical 

 

2.3.2 EMD algorithm and applications 

The concept of EMD and the frequency transform of it named as Hilbert-Huang Transform (HHT) 

has been developed over the years by a wide range of applications in science and engineering since 

Huang, et al. [46] invented EMD. It has been used in a wide variety of fluctuating signals, including 

geophysical data [47] rain fall data [48] cardiovascular systems [49] solar irradiance, global 

temperature data, CO2 concentration data [50], water flow data [51], analysis of remote sensing data 

[52] and shown the strengths in identifying the important insights hidden in complex mother signal. 
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In addition, the applications of the EMD is well established to analyze the historical data sets of in 

the power applications [53], in power quality assessments [54]. Moreover, forecasting methods of 

intermittent renewables are well benefited from the EMD according to the Literature [55]. Recently, 

EMD analysis is used to decompose complex wind data and then to determine the storage capacities 

[56]. 

2.3.3 Theory of EMD algorithm 

EMD is considered to be well-suited to extract information for nonlinear and non-stationary signals 

in which it leads to clearer spectral analysis, more intuitive and physically meaningful results 

compared to that produced by FT and wavelets [57, 58]. The initial process of EMD is to decompose 

the signal into so-called Intrinsic mode function (IMF). The IMF can be linear or nonlinear and can 

be non-stationary. 

IMF is a function that satisfies two conditions: 

1. In the whole dataset, the number of extrema and the number of zero crossings must either 

equal or differ at most by one. 

2. At any point, the mean value of the envelope defined by the local maxima and the envelope 

defined by the local minima is zero. 

The decomposition algorithm utilizes a sifting process, the details of which are described in [46] 

depicted in Figure A.3 in Appendix A. In Brief, at the initial step of the sifting process, the maxima 

and minima of the given signal are located. Then, using a cubic spline or other interpolation method, 

the upper and lower envelopes are obtained. Next, the mean values of these envelopes are evaluated 

and then subtracted from the original signal to obtain the first IMF. The above process is repeated 

on the remainder until the extracted IMF is a monotonic function, which is termed the residue or 

trend. Transformation of these extracted IMFs to the frequencies is the next step. When the signal 

is subjected to non-stationarity where the frequency and amplitudes change over time, the notion of 

more flexible definitions is required for both, particularly for frequency. The concept of the 

instantaneous frequency has been introduced to serve this purpose, as an alternative to the cycle 

frequency in the theorem of HHT [59] . Through the application of Hilbert transform, the so-called 

instantaneous frequencies of the IMFs can be readily obtained [46].  
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2.3.4 Salient features of EMD 

The salient features of the EMD can be summarized below [60]. 

1. Calculation of the instantaneous frequency will not include the unwanted fluctuations 

induced by asymmetric waveforms. According to the definition of IMF, the IMF in each 

cycle, defined by zero crossings involves only one mode of oscillation, no complexities are 

allowed. 

2. An IMF is not restricted to a narrow band signal. It can be both amplitude and frequency 

modulated. In fact, it can be non-stationary. 

3. If a signal has two or more superimposed periodic components that have periods closer than 

a factor of two, the extracted IMF will be the superposition of all the components within that 

dyadic range [61, 62]. 

2.3.5 Drawbacks of EMD and recent development 

The major drawbacks of analyzing data in EMD are identified as the end-point effect and mode 

mixing in the literature. Both of these recognized drawbacks are caused by the uncertainty in 

identification of upper and lower envelopes due to (a)uncertainty in detecting maximum and 

minimum including end points; (b)irregular distribution of local maxima and minima. These 

drawbacks could be minimized by introducing improvements to maxima and minima detection 

algorithm and effective implementation of noise-assisted methods. A major issue of EMD reported 

in previous studies is the mode mixing when a single IMF contains multiple frequency components 

that should be separated into different IMFs. The intermittency of the composite signal exacerbates 

which can make the physical meaning of the IMF unclear. To overcome this inherent issue greatly, 

the noise-assisted EMD variants are introduced by the authors in [63]. Some recent advancements 

to these noise-assisted methods have resulted in introducing new variants of the EMD technique as 

listed below. These recent variants of the EMD transformed the algorithm into very powerful and 

adaptive tool suitable to the analysis in different scenarios [47].  

1. Ensemble empirical mode decomposition (EEMD) [63]/ Complementary Ensemble 

Empirical Mode Decomposition [64, 65]  

2. Compact empirical mode decomposition (CEMD) [1] 

3. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [66] 

4. Sliding window empirical mode decomposition (SWEMD) [67] 

5. Robust empirical mode decomposition (REMD) [68] 
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As  a well-established heuristic method, inbuilt tools for EMD have also been released recently 

in the signal processing toolset of MATLAB [69].  

2.3.6 Research Gap 

In this framework, the successful application of the empirical techniques was quite evident in 

order to obtain an accurate characterization of the non-linear, non-stationary and non-periodic 

signals. Particularly the EMD, when combined with HHT analysis employs a decomposition method 

that enables a comprehensive analysis of composite signals by providing time-varying frequency 

profiles. The HHT-EMD produces a balanced analysis between both empirical and mathematical 

which is often considered as the best match to effectively characterize the complex signal like net 

power resulting from renewable and load power fluctuations. 

However as shown in Section 2.2.4, most of the frequency-based analysis methods used in 

determining the required capacities of the ESS rely heavily on the DFT and WT methods which are 

non-adaptive. In applications that are mostly relevant to renewables, these types of frequency-based 

analysis methods are not suitable as a priori basis is required. In contrast, empirical methods are 

helpful in extracting the dominant modes, particularly in renewable applications. The utilization of 

EMD-HHT based methods in PV applications, as reported in the literature, is largely negligible. 

Hence, there is a need for a concerted effort to incorporate the EMD-HHT based method to analyze 

the modes present in PV applications. 

2.4 Li-ion Battery Degradation  

Li-ion battery technology is the benchmark energy storage technology for various applications in 

power system due to its combined benefits of high energy density, longevity and compactness. These 

features make it the most suitable battery technology showing the best economic and environmental 

performance in recent studies of community level batteries [70]. Nevertheless, different types of 

ageing phenomena continue to degrade the performance of Li-ion battery as the usable capacity of 

it reduces with time and usage. Li-ion battery consists of four main components such as graphite 

anode, cathode made with composites of lithium (commonly used lithium-iron-phosphate, lithium 

nickel-manganese-cobalt oxide), electrolyte and separator. During charging, at the anode, lithium 

ions are absorbed into the graphite layers, a process known as intercalation. Simultaneously, 

electrons are released from the anode and flow through the external circuit to the cathode. At the 

cathode, lithium ions and electrons combine with lithium cobalt oxide, forming a stable compound. 
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During discharging, at the anode, lithium ions leave the graphite layers and move into the electrolyte, 

releasing electrons in the process. These electrons flow through the external circuit, providing 

electric current in the opposite direction. Over time, the chemical process of intercalation and 

deintercalation leads to battery degradation. 

2.4.1 Overview of different Li-ion battery degradation phenomena 

The Li-ion battery degradation phenomena can be divided into two different types based on their 

ageing pattern. 

1. Calendar ageing: This occurs in the cell even when the battery is in an idle state (when 

battery is neither charging nor discharging). Calendar ageing results from ongoing side 

reactions that arise due to the continuous interaction among the internal materials. (Time, 

temperature, and SOC are the factors contributing to calendar ageing) 

2. Cyclic ageing: This describes the ageing from the charging/discharging cycling of the 

battery. (Full equivalent cycles, temperature, C-rate, charge and discharge cut-off voltage, 

Depth of discharge, SOC are the factors contributing to cyclic ageing) 

Figure 2.3 depicts the different types of Li-ion battery degradation phenomena, their relationships 

to the different root causes, and the measurable effects, as mentioned in the [71].  

A wide range of studies in recent literature has explained the diverse degradation phenomena 

observed in batteries, including Solid Electrolyte Interphase (SEI) growth and lithium plating 

predominantly occurring at the anode. Additionally, the cathode material is principally impacted by 

phenomena such as current collector corrosion, structural disordering, particle cracking, and 

transitional metal dissolution [72]. 
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Figure 2.3. Degradation phenomena of the Li-ion battery and its relationship to the measurable effects 

(The figure is the replica of Figure 2 in [71]).  

These processes contribute to the depletion of active lithium-ion inventory, loss of active material, 

and diminished conductivity, consequently leading to capacity degradation and increased resistance 

within the Li-ion battery. Both capacity degradation and rising resistance significantly impair the 

battery's performance over time. The end-of-life (EOL) of battery is defined based on these two 

parameters. One way it reaches EOL is through capacity degradation, resulting in a decrease in open 

circuit voltage below the minimum threshold. Additionally, when resistance increases to the 

maximum allowable level of power fade, the battery is considered to have reached its EOL. 

Among the various degradation phenomena mentioned, SEI growth and Li-plating are 

regarded as the most predominant ageing mechanisms. Li-plating, in particular, tends to dominate 

towards the EOL phase of the battery, whereas SEI growth predominantly affects the battery's 

performance during the majority of its operating period [73]. Consequently, this work focuses its 

discussion on SEI growth as the primary degradation phenomenon during Li-ion battery operation, 

acknowledging that other degradation mechanisms may also influence the battery's lifespan. 

SEI growth occurs when graphite from the anode reacts with the electrolyte and lithium-ion 

at the electrode/electrolyte interface. This results in forming a thin layer of components with a 

permanent chemical bond. This layer consists of unreactive compounds, that prevent further 

intercalation of lithium ions, causing lithium ions to deposit onto the layer instead. This leads to a 
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loss of cycleable lithium-ion inventory, a process that is irreversible. Initially, SEI forms within the 

first few cycles, acting as a conductor for ions while shielding the anode from solvent molecule co-

intercalation and further electrolyte decomposition. Recent studies show that SEI layer of anode 

consists of two layers: a compact inner layer with inorganic products and a porous outer layer with 

organic compounds. It is suggested that the outer layer is more unstable and the diffusion phenomena 

happens in this layer and continues to grow during cycling [74].  

While predominantly forming during the initial charge, the formation of the SEI layer 

continues gradually even after the first cycle until the SEI layer is fully developed. An optimized 

SEI layer is expected to have low electrical conductivity and high resistance to electrolyte diffusion, 

as well as high selectivity and permeability to lithium ions. Once established, the SEI layer inhibits 

further decomposition reactions with salts and solvents by preventing electron passage, thereby 

increasing electronic resistance and stabilizing the surface potential of the graphite within the 

stability range of the electrolyte. However, in practice, the SEI layer gradually thickens over 

successive charge-discharge cycles due to electron exposure to the electrolyte or electrolyte 

diffusion onto the graphite surface. Despite this, the rate of layer thickness growth diminishes 

significantly after the initial cycle. The gradual thickening of the layer results in the consumption of 

lithium ions, solvents, and salts, consequently elevating cell resistance. This continuous growth of 

the SEI layer during the formation cycling process ultimately reduces cell capacity and coulombic 

efficiency. 

Interestingly the growth of the SEI not only happens during cycling. When battery is not in 

use, there will be a potential drop across the electrolyte causing slow movement of lithium ions form 

the electrode to the electrolyte which will cause the lithium-ions to react with the electrolyte to from 

SEI. Therefore, the growth of the SEI also has an effect due to the calendar ageing [75]. Three direct 

factors that have significant effect on the growth of the SEI layer can be summarized as; 

1. SOC of the battery cell 

2. Current of the charging/discharging 

3. Temperature. 

However, previous experimental studies show that cycle life of Li-ion batteries does not 

significantly change with normal operating temperatures [76]. Therefore, if it is assumed that the 

Li-ion battery is installed inside a battery cabinet with the sufficient cooling system under minimum 

temperature deviation, it can be inferred that the temperature effects on the SEI growth are minimal.  
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2.4.2 Overview of Li-ion battery degradation modeling 

Degradation models quantify the ageing effects of the battery concerning operating conditions and 

cell properties. This summary solely focuses on quantifying capacity loss through degradation 

modeling as documented in the literature. Empirical models, semi-empirical models, and physics-

based models are utilized for this quantification. Empirical models fit cell ageing data without 

advanced modeling of the underlying physical e mechanisms [77]. Therefore, the applications of 

these models are only limited to similar types of operation scenarios. Therefore, the suitability of 

these methods for renewable applications, where charging and discharging are intermittent, is 

uncertain. Semi-empirical models rely on data of cell ageing studies. However, for model fitting, 

these models use functions that describe the underlying ageing mechanisms. The superposition 

approach of calendar and cyclic losses will be used to quantify the total capacity loss in this approach 

[75]. For example, battery degradation-aware SOC control has been the topic of discussion in [78] 

whereby the battery degradation is assessed using the traditional rain-flow counting method. In 

renewable energy applications, however, the operations of the battery involve partial charging-

discharging cycles. Therefore, it remains unclear whether the cycle counting method used in [78] 

would be suitable in estimating the degradation level of the battery. In contrast, physicochemical 

models define the cell degradation mechanism through a set of differential equations. They mostly 

focus on individual degradation mechanisms such as SEI growth and particle cracking. Single 

particle model (SPM) and P2D models are the most frequently practiced models for these 

physicochemical models [79]. Due to the detail modeling of the degradation phenomenon, 

physicochemical models are often computationally intensive compared to the empirical and semi-

empirical methods which offer more accurate modelling even during partial charging/discharging 

of the battery [80]. However, this modelling approach has yet to be commonly employed in practical 

ageing-aware applications. 

2.4.3 Ageing-aware operation 

In this section, the focus will be on examining literature pertaining to strategies for operating 

batteries with ageing awareness. Within the literature, various terms are used to describe the process 

of determining charging and discharging strategies, such as energy management, scheduling, 

control, dispatch, or operation. Among these terms, "scheduling" is often employed in most papers, 

encompassing the concepts represented by the other terms. The approaches aimed at integrating 

battery degradation considerations into scheduling are commonly referred to as ageing-aware 
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scheduling methods. These ageing-aware scheduling methods can be divided into two major 

sections: rule-based and optimization-based methods and further classification of these methods in 

the literature can be presented as in Figure 2.4.  

 

Figure 2.4. Classification of the ageing-aware scheduling methods reported in the literature. 

1. Rule-Based methods: - Rule-based methods are relatively less common in battery 

scheduling literature. However, they are specifically targeted at improving technical or 

economic factors through defining a set of rules for operation. For example, as demonstrated 

by authors in [81] show that the 12 % decrease in the levelized cost of electricity can be 

achieved by rule-based and forecasting-based battery control. Nevertheless, due to the 

complexity of the defining rules and lack of mathematical basis for these, the 

implementation of the rule-based methods is less frequent. On the contrary, the computation 

burden far less compared to the optimization methods. Therefore, the complex degradation 

phenomena can be successfully integrated into these rule-based ageing-aware scheduling 

methods.  

2. Optimization-based methods: - The majority of the literature is related to optimization-

based methods which is targeted to minimize/ maximize the desired objective function. In 

these scheduling methods, ageing awareness is occasionally incorporated into the 

constraints, which is a simpler method of representation compared to including them directly 

in the objective function in a more comprehensive approach. For instance, in [82] authors 

introduced limits for the depth of discharge to limit the degradation. Wankmuller et al. 

limited the SOC range to 60% of the original battery capacity and investigated the techno-

economic impact of different limits for the C-rate as part of their analysis [83]. Shi et al. 

limited the usable SOC range to 70% of the original battery capacity [84]. If these factors 
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related to the degradation are included in the objective function, they would typically be 

represented either within an economic function or through the utilization of technical 

parameters. A significantly larger set of publications have used economic optimization. This 

is achieved by either allocating a monetary value considering the degradation cost.  In 

addition, multi-objective approaches allow to include technical parameters in the objective 

function alongside economic parameters for the profit gained in an application. For instance, 

authors have introduced the multi-objective optimization approach where revenue and 

degradation are considered using a weighting factor [85].   

Based on the literature, optimization strategies can be divided into three categories of algorithms: 

exact solution approaches, heuristics and meta-heuristics. The most common methods of algorithms 

are in exact solution approaches. This group includes linear, nonlinear (NLP) [86], mixed integer 

linear programming (MILP) [87], and Dynamic programming(DP) [88] problems that include a 

linear objective function and linear constraints. In [85], an empirical model of battery degradation 

is considered in relation to the SOC of the battery. In addition, the authors used a multi-objective 

optimization using the MILP method to maximize the revenue including the degradation cost in 

objective function. Here, the dataset with a sufficiently lengthy time to identify seasonal effects and 

a higher sampling rate to identify short-term power fluctuations could not be analysed using these 

optimization methods due to the heavy computation burden. 

The second group includes heuristics algorithms such as fuzzy logic and gradient method. 

Compared to exact solution approaches, heuristic methods are fast and complex non-linear 

relationships can be effectively performed. However, they can stick to a local optimum. Thirdly, 

meta-heuristics approaches such as swarm intelligence and neural network methods are considered. 

Hossain et al. and Li et al. applied PSO techniques in the context of microgrid communities and 

bidirectional electric vehicles, respectively [89, 90]. In both studies, degradation was actively 

incorporated into the fitness functions of the optimization method, with the degradation model 

implemented using a rain-flow algorithm to ascertain the energy throughput. Liu et al. utilized an 

electrothermal-ageing model in their optimization problem, which captures the nonlinear electrical, 

thermal, and degradation dynamics of lithium-ion batteries. They solved this problem using the 

NSGA-II algorithm [91]. Their findings revealed that the selected genetic algorithm proves to be a 

feasible choice for determining the optimal operation strategy, enabling the modeling of nonlinear 

processes and the inclusion of constraints within the optimization algorithm. Another study reported 

in [92] incorporates the battery ageing parameters in relation to the SOC and peak power in the 
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battery management system while active and reactive power management of the BESS is performed. 

The effect of the depth of discharge in the life cycle and the peak power constraints on the charging 

power are only concerned in the degradation model. As a result, the study fails to capture the varying 

degrees of degradation that occur with different charging rates. More literature on ageing-aware 

battery control can be found in [93] in which the power allocation for the battery is such that ageing 

is minimized. Similar in approach to many other reported works in this field, the authors have 

utilized the empirical model of battery charging cycles vs depth-of-discharge characteristics for the 

lifetime estimation. due to the high computational burdens required and is an area which remains to 

be explored.  In [94], in the process of smoothing the PV power, the SOC reference value is 

determined based on the PV data of the past week and the so-called net load power reference curve. 

This reference curve is generated from the low-frequency components of the net load power, which 

are determined using a fast Fourier transform of the net load. Unfortunately, the use of the past week 

PV dataset will not be sufficient to detect the seasonal variation patterns in the SOC. A summary of 

the papers related to degradation-conscious SOC control can be presented in the tabular format in 

Table 2.3.  

Table 2.3 Summary of literature related to degradation-conscious SOC control 

Reference Scheduling 

method 

Degradation 

model 

Included 

stress factors 

Optimizing 

parameter 

Remarks 

Fan [93] Rule-based 

control 

Semi-empirical C-rate,SOC  Ageing cost Calendar 

ageing is 

ignored. 

Li [95] DP Semi-empirical SOC, 

temperature 

time 

Economic 

optimisation 

Calendar aging 

is linked to 

economic 

factor 

Maheshwari 

[96] 

MILP Empirical DOD, C-rate Energy 

arbitrage 

Cycle aging 

linked to 

economic 

factor 

Abdulla [97] DP Empirical DOD, C-rate, 

SOC 

Self-

consumption 

Penalty factor 

Cumulative 

degradation 

and cost 

savings based 

on BESS 

Mishra [78] Rule-based 

control 

Semi empirical 

(Arrhenisus 

equation and 

Tafel equation) 

SOC, DOD 

temperature 

Self-

consumption 

and energy 

arbitrage 

Battery life 

performance 

and economic 

benefit 

separately 

analyzed in 

different 
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operating 

modes 

Liu [91] Optimization 

(NSGA-II) 

Semi-empirical SOC, DOD 

temperature 

V2G energy 

transfer 

Penalty factor 

based on the 

EOL is used 

Kazemi [98] Robust-

optimization 

Empirical  DOD Aging cost Bender’s 

Decomposition 

is employed to 

solve the long-

term 

scheduling 

problem, 

nonlinear  

 

2.4.4 Research Gap 

As pointed out in the above literature pertaining to degradation-conscious battery SOC 

control, the following issues are identified as the major drawbacks of the existing studies [73].  

1. The first is the comparatively simple battery degradation models practiced in the existing 

techno-economic assessments with degradation costs that cannot provide sufficiently accurate 

modelling of Li-ion battery degradation. For instance, the prevalent cycle counting models for 

battery degradation assume that the same variation in the SOC at both high and low SOC ranges 

results in equivalent degradation [99]. Most of the reported literature as presented in Table 2.3 

is related to the empirical degradation modelling where the physical phenomena of the 

degradation characteristics are not well understood.  

2. The second is the existing degradation models that are used for ESS operation such as in [95] 

have not considered the limitations of C-rate in charge and discharge that will affect dominant 

ageing mechanisms of Li-ion batteries. This has been recognized as a significant limitation 

stemming from the inadequacy of degradation modeling, as the initial determination of Li-ion 

battery degradation relies on both SOC and C-rate. Even though the reported literature has 

presented some studies with the C-rate, their insights such as differentiation between charging 

and discharging are not covered in these studies.  

3. Study [100], which illustrates the comparison of the different degradation models, shows the 

physics-based degradation models are more accurate under different C-rate and SOC conditions 

in comparison to the empirical battery degradation models. According to the more detailed 

physics-based degradation models, the degradation effects, such as SEI, differ significantly 

between these two scenarios. The first scenario causes more degradation than the second. These 

effects cannot be accurately captured using cycle counting methods. Therefore, the 
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appropriateness of these methods for estimating battery degradation, especially in renewable 

applications where charging and discharging occur in partial cycles, is highly questionable. This 

confirms that the physics-based degradation models closely replicate the battery dynamics in 

renewable applications which are not adequately studied in the recent literature.  

4. The rule-based control methods are less frequently practiced in the literature and these methods 

are quite case intensive. So that the detailed rule-based method is required which can be readily 

generalized to a renewable penetrated power system. Also, the concerns like duck curve 

phenomena are not adequately addressed in these rules of literature. 

5. Another issue incorporated with previous studies is the use of cost optimization-based studies 

which give very limited understanding or insights of the battery dynamics. The major drawback 

of a such method is in the problem formulation, as more simple representation of battery 

dynamics has to be used due to the intensive computation of the optimization algorithm. Thus, 

more accurate physics-based degradation models cannot be commonly practiced in these 

optimization models. Therefore, most of the optimization studies have used simplified forms in 

both degradation model and energy management model and then did not pay detailed attention 

to the operational constraints like grid constraints. For example, authors in [101] have studied 

the scheduling in PV system with battery storage to achieve multiple objectives of minimizing 

battery degradation, and grid congestion, while maximizing self-consumption. However, the 

method for degradation modelling was the less-accurate rain flow cycle counting method for 

cycle life estimation.  

2.5 Li-ion Battery SOC Control 

The SOC of the battery bank is the prime battery parameter used to steer the control actions. The 

EMS of the community storage shall be tasked to control the SOC to realize these objectives 

comprehensively. For example, a study presented in [102] describes an integrated design of battery 

energy storage and its EMS, where the EMS targets to fulfill various techno-economic objectives in 

scheduling and operation. Alongside the primary target of maintaining the power balance between 

the community microgrid and the main grid, other key concerns of EMS operations include the 

following.  

1. Peak shaving [103] and energy arbitrage [70] 

2. Grid ancillary services and system stability concerns [104] 

3. Increase lifetime of storages [105]  
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4. Improve self-sufficiency of the microgrid [106] 

The Li-ion battery SOC control strategies discussed here fall in two subtopics: seasonal SOC 

control, which pertains to long-term SOC management, and intraday SOC control, where adaptive 

SOC control techniques are predominantly utilized.  

2.5.1 Seasonal SOC control  

The seasonal variability of the net load power has been recognized by the authors of [107]. In an 

attempt to estimate the service lifetime of battery bank, the authors of [107] have developed a 

method to relate the depth of discharge of the battery with its life cycle. The authors have concluded 

that the deepest battery discharge occurs during the summer season whereas the deepest charging 

occurs during the spring season. The authors of [108] have also discussed the planning of a microgrid 

in different seasons, with the view to reduce the degradation cost. However, their study does not 

provide insights into the battery degradation when the battery operates over wide dynamic SOC 

ranges. Hence, there is a great need to re-examine the suitability of strategizing SOC control actions 

based on short-term historic PV and load data.  

In particular, these existing works have proposed the reference value for the battery SOC is 

to be restored to pre-set value daily. In studies where the reference value is allowed to vary, such as 

in [94], this has been achieved using the forecasted load and PV powers. The need to provide the 

forecasts does complicate the design of the battery energy management and control system. 

Specifically, most of the cited works have attempted to keep the operating SOC within a 

predetermined SOC range in order to avoid extreme depth-of-discharge battery operating regimes.  

2.5.2 Adaptive SOC control methods 

In this subsection, the adaptive battery SOC control methods reported in the literature are analyzed. 

In reported EMS literature has a common framework for adaptive battery control. Firstly, PV and 

load forecasting algorithms are used to determine the estimated net power variation. Then, the 

predictive control mechanism is proposed, where the battery parameters are predicted according to 

the control algorithm. In most of the reported works, battery degradation model is also integrated to 

estimate the lifetime parameters of the battery. Thirdly, an optimization algorithm is used to ensure 

optimal cost of operation at the stage of scheduling of the battery.    

One such integrated framework for real-time energy management of PV-battery is proposed 

in [109] in order to maximize peak hour savings and solar energy usage. A three-step control scheme 
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is proposed where the first step is the load and PV forecasting. A multi-stage stochastic optimization 

and a rule-based control procedure are then applied by authors. Authors of [107] discuss the optimal 

battery management with lifetime modelling where DOD is considered during the battery dispatch. 

MILP has been used and the cycling counting method is for lifetime estimation. In [110], a stochastic 

optimization model with Monte Carlo simulation is used to capture uncertainty and again MILP 

algorithm is used for solution process. Authors of [111] used day ahead forecasting method to 

control the battery and  the cycle counting method  is used for the degradation model. Cost-based 

optimization is used ensuring to deliver/absorb additional power while preventing reduction in 

expected lifetime of the battery due to overuse. 

In [112], the operational objective involves the determination of the power flow limits to be 

placed on grid power when the microgrid PV generation and load demand are varying. So, in the 

real-time operational scheme for the microgrid proposed in [112], forecasts of the PV generation 

and load demand (typically) a day ahead are required. Based on the forecasts, the battery is to operate 

in accordance with a pre-defined set of rules so as to achieve the given objectives. The forecasting 

algorithms are integrated into the EMS of the storage to control the SOC while the optimization 

methods are used to optimally plan the operation of the battery. 

A self-adaptive SOC control strategy based on a fuzzy logic controller and PSO optimisation 

model is used in [113] to determine the optimal capacity of the battery. A similar fuzzy logic 

controller is employed for the battery management system in [114], which relies on day-ahead 

forecasted renewable generation and estimated battery SOC level. The proposed battery capacity 

determination method guarantees the achievement of the lowest levelized cost of energy (LCOE) 

and the minimum CO2 emissions.  

A related issue is with regard to battery SOC being chosen as the parameter governing the 

control actions because it is then necessary to specify the reference value for the SOC for which the 

control actions are to target at. Accordingly, in an attempt to determine the day-ahead power 

dispatch for a PV-battery energy storage system, the authors in [115] have formulated the control 

problem to be solved using a chance-constrained stochastic optimization technique, in which a 

stochastic model is included to yield the predicted PV power. As witnessed in a recent study [116], 

the primary objective of the battery control strategy is to prevent deep discharges and overcharging 

of the battery cells. To address this, a double closed-loop control strategy has been proposed, 

incorporating operational constraints to facilitate the integration of wind power. This strategy 

automatically adjusts the set-point power to maintain the SOC of the ESS at its initial level. 
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Additionally, the MPC controller, while considering operational constraints, can effectively restrict 

overcharging and deep discharging. The paper claims that the proposed control strategy can improve 

the economic performance of both BESS and the power grid, as well as the smoothing performance 

of PV power. 

In addition to the above shortcomings, the dependency of the studies on the forecasting-

based methods is another shortcoming. Authors in [81] determine a target SOC for the battery and 

then the dispatch happens accordingly. However, this target SOC is determined based on the 

forecasting of PV and load data which contains considerable errors. It is reported that such 

forecasting-based methods offer limited robustness due to the higher error percentages in short-term 

forecasting of stochastic PV and load variations ranging RMSE from 9% to 25%[117]. Therefore, 

the adaptive SOC control methods abruptly failed to perform accurately during the days with 

extremely poor solar insolation of winter and the cloudy days of summer. 

Compared to the aforementioned studies, a comprehensive adaptive battery control study 

with degradation reduction is reported in [118]. Here, authors have attempted degradation modelling 

using the physics-based model and the problem is formulated in order to result in an adaptive method 

to reduce the energy losses, capacity degradation losses and total operating cost using a multi-

objective optimization. Auto-regressive method-based forecasting model is used to facilitate the 

proposed adaptive controller. It has been shown that the proposed adaptive method reduces battery 

degradation by 26% compared to the conventional rule-based and non-adaptive controllers. 

However, the computation time for the proposed method would be around two hours which is 

considerable for a lower sampling rate like half an hour for three month dataset. In addition, as 

mentioned earlier, the accuracy of the methodology is highly depending on the accuracy of the PV 

and load forecasting methods.  

Instead, the authors of [119] have proposed a two-stage dispatch scheme which is based on 

predicted PV power and then dynamically adjusts the battery power flows by taking into 

consideration the time of sunrise in the different seasons.  

 

2.5.3 Research Gap 

Firstly, the seasonal SOC fluctuation is not well understood in the storage management scheme. The 

research found in the literature under this topic to address this seasonal variation of SOC is quite 

insufficient. As the lifetime of the battery bank is greatly impacted by the DOD and SOC of the 

battery bank, clearly it will be prudent to allow the SOC reference value to vary over the seasons. 



 

62 

 

However, beyond maintaining the operating SOC within a predefined range to prevent extreme 

DOD, there is a lack of substantial literature on variable SOC referencing methods during different 

seasons to mitigate degradation. Achieving this would prove advantageous, especially during the 

long-term planning phase of the battery, particularly for larger-sized batteries.  

  Secondly, during the intra-day operation of the batteries, as shown in the literature, most of 

the aforementioned adaptive controlling methods utilized both forecasting and optimization-based 

approaches with degradation modelling also incorporated into the EMS. The common challenge in 

the cited articles is conducting a simulation that integrates both forecasting and optimization over 

an extended time frame with small time steps. This imposes a significant computational burden, 

primarily due to the tedious solution process. Additionally, uncertainties introduced into the control 

system are noteworthy due to inaccuracies of the forecasting algorithm, particularly for short-term 

planning periods such as intra-day or intra-hour. Moreover, the practical implementation of such an 

intricate planning method for a relatively small power distribution network is rather questionable. 

Furthermore, these degradation models typically do not consider the charging/ discharging C-rates 

in detail as the cycling counting methods are mostly practiced. Additionally, these scheduling 

methods fail to understand the differentiation between charging and discharging currents in 

degradation analysis. These, research gaps remain unanswered in the existing literature. 

2.6 Conclusions 

After conducting a thorough review of the literature within each subsection, the following 

conclusions can be made as the primary gaps in existing studies. 

During the HESS capacity determination, the cut-off frequency between constituent storage 

is not directly determined and also the dynamic characteristics of ESS are not considered. Given the 

limitations of optimization-based methods in HESS schemes, a direct analytical approach would 

offer greater generality and result in reduced computation time. A statistical approach can also aid 

in making design decisions. Empirical methods are not adequately practiced in the frequency-based 

net power analysis. This will be advantageous over frequently practiced FFT and wavelet-based 

methods due to their intrinsic nature.  

Seasonal SOC referencing is clearly not practiced in the existing storage planning studies. 

This will be helpful in limiting the storage degradation. Detailed physics-based modelling of the Li-

ion battery is not frequently used in renewable applications in order to accurately estimate the 

dominant degradation phenomena like SEI growth in Li-ion batteries. While optimization studies 
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commonly address economic considerations in aging-aware control, implementing this in real-time 

storage control poses challenges. Although short-term forecasting methods receive significant 

attention in research, their practical implementation for microgrid-level batteries is uncertain. 

Therefore, a robust adaptive storage control system based on rule-based methods is needed to 

mitigate degradation concerns. However, existing degradation-aware control methods lack adequate 

study of C-rate variations in charging and discharging currents.  

 Thus, a detailed discussion of the aforementioned research gaps is required to be covered 

in subsequent chapters. 
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CHAPTER 3. Analysis of Net Power of Prosumer via Empirical 

Mode Decomposition Technique 

Statement of Contribution 

Some of the results in this chapter are being developed for a conference paper entitled 

“Determination of Hybrid Energy Storage System Capacity based on Empirical Mode 

Decomposition for a High PV Penetrated Standalone Microgrid". The coauthors for this paper 

include D. Hettiarachchi, S. Shing Choi, S. Rajakaruna, and A. Ghosh 1 

3.1 Introduction 

As mentioned in the introductory chapter, unsteady PV power has raised the requirement of 

energy storages at suitable locations of the modern power system. However, the planning of such 

storage scheme would not be possible without a careful study of the unsteady variations caused by 

both PV and load power fluctuations. Time domain analysis often present challenges when it 

involves non-linear complex signals and where filtering is required. Due to the drawbacks of time 

domain analysis, the attempt of this chapter is to perform a comprehensive analysis of the net power 

using frequency-based analysis, in particular using the empirical mode decomposition technique. 

Therefore, this chapter highlights the important insights discovered by the EMD analysis of the net 

power, which will be fruitful for the next chapters in designing an appropriate HESS scheme to 

mitigate the power variations and to facilitate energy buffering effectively. 

The chapter has been organized as follows. Section 3.2 gives an introduction to the system 

under study for this thesis. The proposed method to analyse the net PV power is presented in Section 

3.3. Section 3.4 contains the results of the case studies along with a comparison to the existing 

methods. Main findings from the performed analysis are outlined in Section 3.5 for future work in 

following chapters.  

 

 

 

1 Percentage contributions of the relevant co-authors in the publication are given in the attribution statement, 

reviewed and signed by the each co-author. 
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3.2 System Under Study 

3.2.1 The proposed Hierarchical HESS Scheme for modern power system 

This section targets to provide an outline to the system under study in this thesis. It is expected that 

the future distribution systems shall be in the form of grid-connected or isolated entities called 

microgrids with a higher integration of renewable penetration particularly distributed PV. Figure 3.1 

illustrates a typical configuration of a modern power system composed of microgrids, where each 

microgrid is comprised of prosumers, representing individual residential/commercial units. Each 

prosumer is considered to consist of an installed PV array and variable loads with a suitable 

integration of HESS. As shall be shown in a later section of the thesis, the proposed HESS consists 

of two constituent storage devices; one for power conditioning and the other for inter-day energy 

buffering. Additionally, community-level storage units serve different purposes such as night-peak 

shifting and enhancing grid independence. Meanwhile, storages with higher energy capacities are 

designated to work as grid-scaled storages assigned for seasonal storages and grid ancillary services. 

A real-world pilot study example of such a scheme is the White Gum Valley isolated microgrid 

which is under test operation in Western Australia where a centralized 670-kWh battery energy 

storage system has been installed [120]. There are 36 townhouses in this microgrid, and each 

townhouse is equipped with a 5-kW PV generator, an electric vehicle charger and a battery unit. 

More of the details of the research can be found in [121]. 

The capacity determination and energy management planning of such a hierarchical storage 

scheme present significant challenges due to differing characteristics and purposes of each storage 

component. A comprehensive analysis of the net power is the logical first step in the design process 

of the HESS. 

In order to restrain the focus of the study to the design of the HESS scheme, the following 

assumptions are made to establish the boundary of the research. This investigation does not consider 

the reactive power needs of the prosumer/nanogrid and hence, voltage control is outside the scope 

of the present work. Power conversion and line losses are also ignored in order to focus on the power 

fluctuations due to PV array and the load. 

3.2.2 Laboratory platform for data collection 

Since the study is aimed to facilitate the PV power fluctuations starting from shorter time length of 

about seconds to time length of few years, the collection of data for the study is indeed a tedious 
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task by itself. Test data required for this study has been obtained from the test laboratory for 

microgrid which is based at Curtin University premises called Green Electric Energy Park (GEEP). 

This has been equipped with different types of renewable sources (Solar, wind and micro-hydro 

unit), all power electronic interfaces, protection equipment, measurement unit and historical 

database server which has been used to extract historical solar data for this study [122].  Figure 3.2 

shows the PV arrays of GEEP lab facility. The operating weather and power data of three different 

types of solar PV arrays are monitored and stored at about 1 second intervals since the end of 2012. 
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Figure 3.1. The conceptual hierarchical HESS scheme under study for the thesis 
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Figure 3.2 Green Electric Energy Park at Curtin University (Image credits: Prof.Sumedha Rajakaruna, 

Director Green Electric Energy Park) 

Particularly, a teaching unit with Amorphous Si PV array with 6 modules, each rated at 60W 67V 

0.9A is used for the measurements. The laboratory facilitates data sets of PV power (PPV(t)) of 

different time resolution to be obtained.  Two different types of data sets are obtained with different 

time resolutions (Δt) in order to facilitate analysis comprehensively. One is incorporated with one 

second sampling rate for maximum one month time span (Δt=1s and T=3 months) to make sure that 

the time resolution is high enough to capture the short-term fluctuations of PV. On the other hand, 

long term solar input variations like seasonal changes can only be captured if the time frame of the 

total dataset is sufficiently large. Hence another PV power dataset of one-minute sample rate is 

recorded for a continuous three years’ time period (Δt =1 min, T =3 years).  

3.2.3 Data preparation and limitations of the study 

After carefully inspecting the load power data from available sources, it has been found that the 

number of online databases with different data granularities are available [123]. However, due to 

the malfunction of sensory equipment, load usage data for many years with greater sampling rate 

like 1min is not readily available. Therefore, load power data collected from a single residential unit 

over few years with one minute sample rate is used for the study from open source database which 

is available at [124].  
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Given that the source of load power data originated from France [124], the seasonal effects 

to the load power curve are fundamentally different from those observed in the PV data 

collected in Western Australia on the same day. The significant discrepancy between these two 

datasets resulting from seasonality was addressed by shifting the time stamp of the data sources 

to ensure they share the same seasonal patterns. The temperature effects of the different 

location which can effect on the generation and load data are not considered in this study which 

is a major limitation of the study. The next challenge during the data preparation is the loss of 

data due to the practical interruptions like the lab sessions and maintenance of the facility. 

These instances are recognized at the primary data wrangling stage and the suitable 

replacements from the same day of another year are used to replace such missing data to ensure 

the continuity of the dataset with minimal effect. The third challenge is deemed with the 

different sampling rates of the two different datasets. The load data set with the sampling rate 

of 1min is unsuitable to be used with the first data set of PV which is sampled at 1 sec. 

Therefore, the load data is resampled using the MATLAB software with interpolation to obtain 

the data points in between [125]. Finally, the data from different sources of load and source 

need to be correctly proportionated such that the hypothetical design of the PV for the load 

variation matches.  This has been ensured via scaling of load and PV data in order to match an 

average residential prosumer in Australia. Furthermore, when it is necessary, a future case with 

increased PV penetration is also simulated to replicate the expected future trend of zero net energy 

exchange with external generation. 

3.2.4 Nonlinearity of the prosumer net power 

Interesting insights into the power flows inside the prosumer unit of microgrid can be gained by 

examining firstly the imbalance between the generated PV power and the load demand. 

Accordingly, and with reference to Figure 3.1, define the net power flow Pnet(t) as the difference 

between PPV(t) and PLD(t),  

A sample of  PPV(t) and PLD(t) over a selected three day period is depicted in the Figure 3.3 

in order to gain some basic insights of the variations presented.  

As it is depicted in Figure 3.3(a) Day #1 and Day #2 can be identified as sunnier days 

compared to the Day #3 which is a rainy day. Interestingly, the PV profile of Day#1 has two distinct 

 ( ) ( ) ( )net PV LDP t P t P t= −  
(3.1) 
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types of variations. As shown in the enlarged image in Figure 3.3(b), the variations between 07.00-

10.00 hours on Day #1 were predominantly due to the movements of cloud covers whereas that 

between 10.00 to 14.00 hours were dominated by the actions of the single axis tracker of the PV 

array which creates a saw tooth type of variations.  Day #2 appears to have the cloud cover variation 

in the afternoon which makes it a different PV profile to Day #1.  Day #3 appears as a vastly different 

PV profile with multiple peaks due to the high amount of cloud cover. 

Figure 3.3(b) depicts the load profile which reflects the typical daily demand of a residential 

unit on Saturday, Sunday and Monday. This denotes that the lower power usage on the Monday in 

comparison to the weekend. Subsequently, the resulting Pnet(t) shown in Figure 3.3(c) appears as 

net power with non-stationary variations obviosity with no regularity in variations on an hourly or 

even daily basis. The apparent randomness indicated on the Pnet(t) makes the time-domain analysis 

of such a stochastic process a highly challenging task. 

 

 

Figure 3.3 Samples of (a) PV power, (b) Zoomed plot of PV power (b) load power and (c) net power over a 

selected three-day period 
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3.3 Proposed approach to analyse Pnet(t)  

In this section, the proposed approach to analyse Pnet(t) will be briefly discussed, in terms of the 

procedure depicted in Figure 3.4. The outcome of the analysis is to provide statistical measures to 

characterize Pnet(t).  
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Figure 3.4 The proposed approach to analyse net power 

In Figure 3.4, the first step of analysing Pnet(t) is to apply EMD to it. A set of IMFs and residue 

functions are obtained.  Mathematically,  

where n is the number of IMFs, j is the order of the IMF Pj(t) and r(t) is the residue of the 

decomposition. One can then readily determine, by integrating Pj(t) with respect to time, the 

variations in the energy levels ΔEj(t) in Pj(t), with respect to that at an arbitrarily chosen reference 

time t = 0:  

Furthermore, HHT analysis can be performed on Pj(t) to obtain the instantaneous frequency 

fj (t) of Pj(t). Next, it is proposed to use a statistical approach to derive some useful quantitative 

measures of these perturbing quantities. The probability density function (pdf) and cumulative 

density function (cdf) of each Pi(t), and its corresponding ΔEj(t) and fj(t) can be evaluated using 

standard statistical technique such as that described in [23]. These transformation processes produce 

pdf (.) and cdf (.) of the quantity (.), as indicated in Figure 3.4. In addition, the mean value of 

instantaneous frequency, fi,m, of Pi(t) is also an important quantity as it provides a measure of the 

mean period of the oscillations in Pi(t):  
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In order to facilitate a complete analysis of the Pnet(t), it is required to perform the analysis to the 

best available sample rate for sufficiently long period of a few years to capture all modes presented 

in the Pnet(t). Unfortunately considering the computational burden, this couldn’t be effectively 

achieved under limited computer memory and processing resources. Therefore, the case study was 

performed over two different datasets of Pnet(t) with different sampling times and total time length 

(Δt and T). Case study 1 was performed at Δt=1s  T=1 week aiming at capturing the short term power 

fluctuations of PV and load. Unfortunately, the long-term cycles cannot be captured in such a lower 

value of T. Therefore, another analysis of Δt =1min  T=3year was performed in the Case Study 2. 

3.4 Results and Discussion 

3.4.1 Case Study 1 

In this case study, the proposed approach described in Section 3.3 to analyse Pnet(t) is to be 

performed on a 1-week recorded data of Pnet(t), obtained at the sampling rate of 1 s/sample. The 

focus of the analysis is on the high to mid-frequency components of the net power. Based on this 

sample, one can detect frequency components of between 1.65×10-6 to 0.5Hz in Pnet(t).  Following 

the EMD computational procedure described in Section 3.3, the obtained Pj(t), ΔEj(t) and fj(t) are 

depicted on Figure 3.5. There are 12 IMFs and a residue function.    

According to the theory of EMD, lower-order IMFs are of higher frequency than that of 

higher-order IMFs. It is therefore not surprising to observe that the lower-order IMFs oscillate at 

higher frequency than the higher-order IMFs. For example, IMF P4(t) oscillates at higher 

frequency than IMF P9(t). Indeed, as explained in Section 3.3, one can carry out HHT on the IMFs 

to obtain the corresponding fj(t). Figure 3.5 shows that the frequency band of P4(t) is some 500 

times higher than that of P9(t). In Figure 3.5(b), it is observed that the energy variations 

corresponding to the lower order Pj(t), such as ΔE4(t), perturb over a range of ±0.6 kWh over any 

given day in the selected week. On the other hand, ΔEj(t) corresponding to those higher order 

IMFs, for instance ΔE7(t), have shown comparatively larger energy variations of some 2 kWh 

daily. In general, the low-order IMFs tend to have relatively lower oscillating energy content 

compared to the higher-order IMFs, although the magnitudes of these low-order IMFs can be 

significant. The power fluctuations due to these low-order IMFs have to be carefully smoothened, 

 
, ( (t))j m jf mean f=  

(3.4) 
 

 , ,1/j m j mT f=  (3.5)  
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as they can impact negatively the quality of the power supply. This topic shall be discussed in 

greater details in CHAPTER 4. 

 

Figure 3.5 (a) IMF Pj(t) and residue function r(t),  (b) the corresponding energy ΔEj(t) and (c) 

instantaneous frequency fj(t) of Pnet(t) - Case Study 1. 

Although the higher order IMFs are less significant to the power fluctuations in Pnet(t), they 

will be responsible for a large proportion of the perturbing energy exchange between the prosumer 

and the external microgrid system. Figure 3.5(a) shows that while Pj(t) oscillates about the 0 level, 

both its magnitude and period of the oscillations are time-varying. Hence, Pj(t) is both amplitude- 

as well as frequency-modulated. This results in the instantaneous frequency fj (t) of Pj(t) spreading 

over a range, as shown in Figure 3.5(c).  In addition, it can be seen that some IMFs display very 

clear periodical variations. As an example, the IMF P9(t) is shown on Figure 3.5(a) in which the 

daily cycles are clearly displayed. This periodic mode can be attributed to the daily variations of 

the solar irradiance.  
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3.4.2 Case Study 2 

From sampling theorem, it is clear the frequency range and the resolution on fj(t) will 

depend on the sampling rate and the length of the dataset analysed. The 1-sec sampling rate used 

in Case Study 1 is unsuitable for the EMD analysis much beyond the 1-week study periods 

because of the limited memory capacity of the computer used in this investigation. Instead, in this 

Case Study 2, a 3-year dataset of Pnet(t) of 1-min sampling rate has been used. At this sampling 

rate, one would be able to detect frequency components of Pnet(t) of between 10-8 Hz – 0.0083 

Hz. This Case Study is used to demonstrate how interesting insights can be obtained from the 

outcome of the statistical analysis of Pj(t), ΔEj(t) and fj(t), shown as the last step of the procedure 

in Figure 3.4. As an example, Figure 3.6 shows the cdf of P3(t) and P9(t) of the Pnet(t) and their 

corresponding fj(t) and ΔEj(t). The following observations can be made. 

As shown on Figure 3.6(a), even though the magnitudes of P3(t) and P9(t) do not differ 

vastly, Figure 3.6(c) shows that the magnitudes  of the energy perturbations ΔE9(t) in P9(t) are 

much higher than ΔE3(t), the perturbing energy level in P3(t). This is because the higher order 

IMF (i.e. P9(t)) occupies a lower frequency range than that of the lower order IMF (i.e. P3(t)), as 

can be readily seen in the cdf of fj(t) in Figure 3.6(b). The lower frequencies result in longer 

oscillating periods which, following the integrating process in (3.3), leads to larger oscillating 

energy.  

It can therefore be concluded that apart from the power level in Pj(t), the frequency range 

of fj(t) is also an important factor affecting the magnitude of ΔEj(t). The authors of [41] have made 

used of the ramp rate of PPV(t) to design the ESS. In contrast, CHAPTER 5 of  the present work 

shall make use of the information on the frequency range over which the ESS is effective in 

buffering Pnet(t) when determining the type of ESS to be included in the HESS.  
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Figure 3.6. CDF of IMF3 and IMF9 (a) power, (b) frequency and (c) oscillating energy in Case Study 2 

Further insights can be gained by examining more closely the full range of the IMFs of Pnet(t) in 

this example.  Figure 3.7 shows the cdf of fj(t) which clearly indicates regions of overlap in the 

frequency range of one IMF with that of the adjacent Pj(t). The overlaps occur because of the 

inherent mode mixing that occurs in the EMD analysis. Notwithstanding this, fj(t) tends to decrease 

as the order of Pj(t) increases. The mean periods Tj,m, calculated in accordance to (3.5) and as shown 

on Table 3.1, ranges from 17 min to some 888 days. In most instances, Tj,m of a given IMF is observed 

to be about double that of the preceding IMF. This observation is in accord with the EMD theory: 

the mode decomposition process acts like a dyadic filter [126]. On a few occasions, the dyadic 

repetitions are not evident. This is because these IMFs contain very low power contents. For 

example, T14,m  is about 5 times of T13,m. P13(t) represents the two-month oscillating mode whereas 

P14(t) is that of a year. This study appears to suggest that there is no evidence of any modes which 

have the mean period of between 2-month and a year.  
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Figure 3.7 CDF of the instantaneous frequencies from f1(t) to f15(t) 

Table 3.1.  Tj,m  of the IMFs 

IMFj  Tj,m IMFj Tj,m IMFj Tj,m 

IMF1 17mins IMF6 10.5hrs IMF11 17days 

IMF2 39mins IMF7 23.3hrs IMF12 36days 

IMF3 1.3hrs IMF8 1.6days IMF13 69days 

IMF4 2.5hrs IMF9 3.5days IMF14 368days 

IMF5 5.2hrs IMF10 7.8days IMF15 888days 

 

The daily and yearly cyclic modes are expected of solar power. Indeed Table 3.1 shows that IMF 

P7(t) has a mean period Tj,m of approximately one-day while that of IMF P14(t)  is close to one year. 

Figure 3.8 presents the cdf profiles of the oscillating energy contents pertaining to IMF P1(t) - P15(t). 

When comparing the IMFs, the anticipated trend is when the IMF order j increases, the mean period 

would increase which would in turn cause ΔEj to increases. This would result in a shift of its cdf 

profile to the right. However, according to Figure 3.8 this trend has not been observed in IMF P7(t) 

and IMF P14(t). The figure shows that P7(t) and P14(t) have higher oscillating energy contents than 

those of P8(t) and P15(t) respectively. Thus, it reinforces the observation that in terms of energy 

variations, the daily and yearly cyclic modes are the two most significant components in PPV(t). The 

IMF components resulted from the decomposition have shown clear identification of the repetitive 

cycles which are presented in the Pnet(t). For an example, P7(t) has reported the daily cyclic 

component and the P14(t) has reported that of yearly. The pre-eminent of these two components 

would impact the selection of the type and design of HESS, the topic which is to be discussed in the 

next chapter of this thesis. 
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Figure 3.8 CDF of ΔEi(t) for IMF P1(t) – P15(t) in Case study 2. 

3.4.3 Comparative analysis  

In this section, three different comparative studies are performed on the Pnet(t) in order to  build 

further confidence of the proposed algorithm in analysing the  stochastic net power. 

a. Comparison of EMD and EEMD 

Firstly, the need of noise-assisted method particularly in a lower data granularity such as in Case2 

is shown with the comparison of EMD and EEMD. For a close inspection, three higher order IMFs 

obtained from the Case 2 analysis using both EMD and EEMD are compared in Figure 3.9. 

  

Figure 3.9(a) IMF 8-10 generated by EMD (b) IMF 8-10 generated by EEMD 
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The fj(t) curves of the IMF 8,9 and 10 obtained in the Case 2 analysis (only first week is shown here) 

has been compared in Figure 3.9(a) and Figure 3.9(b) using EMD and EEMD respectively. In Figure 

3.9(a), it is well noted that there are considerable overlaps between successive IMFs in EMD 

ensuring that EMD is not able to segregate the IMF such that fj(t)  are well separated due to the 

inherited problem of mode mixing. As a result of the de-mixing ability of EEMD with noise-assisted 

method, the same IMFs are well separated as depicted in Figure 3.9(b). Therefore, it is clear that 

improved results can be gained using EEMD particularly in Case 2 effectively reducing the mode 

mixing. However, the above improved results come at a cost of additional computation resources. 

Therefore, the computation time of the EMD and EEMD with different number of ensembles are 

compared in Table 3.2. According to the table, it is clear that there is a close linear relationship 

between the time of code execution and the number of ensembles. Usually several hundred are 

considered to be enough for acceptable accuracy as noted in [63]. 

Table 3.2. Execution times of the EMD and EEMD 

 Number of ensembles Execution time 

EMD 1 0.315s 

EEMD 10 3.464s 

20 5.54s 

50 11.9s 

100 23.68s 

500 124.73s 

 

b. Comparative analysis of EMD with FT  

As mentioned in the earlier in this chapter, FT is not a suitable option to analyse the nonlinear signal. 

It is necessary to determine whether the level of nonlinearity exhibited in Pnet(t) is such that the 

suitability of using the FT can be called into question. In order to assess this, the proposed EMD 

based analysis method is compared with the FT for the same Pnet(t) variation.  

Using the FT analysis on the same dataset, a few dominant frequencies can be identified. If 

these frequencies were compared with the mean frequencies obtained by EMD- HHT analysis, then 

the results can be depicted as in Figure 3.10. 
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Figure 3.10. Comparison of the extracted frequencies between FT and HHT 

According to Figure 3.10 FT appears to pick only IMF 5,6,7 and the IMF 14 successfully. In the 

HHT analysis, these IMFs are mostly seen as the predominant IMFs. However, the extraction of the 

rest of the frequencies deemed very difficult using FT since their amplitudes are very closely related 

to another frequency with very similar amplitude. In the process of FT, the details of the time-

varying characteristic of the signal are overlooked, which is considered a very important in this 

analysis for identifying the oscillating energy component with respect to time. Although the higher 

frequency IMFs are smaller in energy contents, they have to be incorporated in the design of the 

HESS as these low-order IMFs can impact the power quality of the supply greatly due to short term 

fluctuations. Therefore, the overall performance of the FT analysis falls short of the anticipated 

outcome for a nonlinear analysis. 

c. Comparison with second dataset 

To develop enough confidence of the obtained results, the same EMD is performed on the second 

dataset of three years and statistical comparison is carried on the both datasets to compare them. For 

the statistical comparison between these two datasets, higher order statistic (HOS) is used. HOS 

parameters like variance, skewness and kurtosis are more commonly used parameters to obtain the 

level of dispersion, asymmetry and concertation around the mean of the dataset. For a perfectly 

symmetric distribution about mean, the skewness is zero. The kurtosis of a data with a histogram 

having a sharper peak and longer, fatter tails is greater than that for a distribution having a more 

rounded peak and shorter thinner tails. If those variance, skewness and kurtosis are compared for 

the dataset 1 and dataset 2, the obtained figure can be depicted as in Figure 3.11. According to the 
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figure, it can be observed that the at least first 12 IMFs exhibit a close relationship statistically. IMF 

13, 14, and 15, on the other hand, may be due to insufficient data, are less able to accurately portray 

the seasonal variations as they show slight deviation of their trends. 

 

 

Figure 3.11 Comparison of (a)Variance (b) Skewness and (c)kurtosis of the 15 IMFs in dataset1 and 

dataset 2 analysis 

3.5 Conclusions 

As an opening chapter to the thesis, this chapter conducts a comprehensive analysis of the highly 

non-stationary net power variation. Despite the heavily practiced non-adaptive Fourier and wavelet 

methods, empirical mode decomposition is identified as an adaptive and intuitive technique to 

decompose and analyse such a non-linear variation. It is shown that the perturbing components of 

the net power of a PV-powered prosumer can be accurately identified through EMD analysis. This 

includes both higher frequency components which emphasize power quality concerns arising from 
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PV-load power variations and the lower frequency components associated with oscillating energy. 

The probabilistic distributions of the energy contents of the components indicate that the two most 

prominent components are those pertaining to the daily and yearly modes of variations in the solar 

irradiance. 

 The salient features of the EMD technique are well observed in the analysis of prosumer 

net power guaranteeing the method’s consistent ability to yield reliable results. The method has 

statistically proven to be giving consistent results for different datasets of net power variation. 

Moreover, the inherent limitations of the method can be effectively mitigated through enhanced 

EMD variants, ensuring the necessary accuracy for further analysis in this thesis. 
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CHAPTER 4. Determination of Cost-effective Frequency Band 

and Capacities between Constituent Storages of the Hybrid 

Energy Storage System 

Statement of Contribution 

The work in this chapter is being developed for a publication entitled " A new approach to identify 

the optimum frequency ranges of the constituent storage devices of a hybrid energy storage system 

using the empirical mode decomposition technique," where the coauthors are D. Hettiarachchi, S. 

Shing Choi, S. Rajakaruna, and A. Ghosh 2 [127]. The sections and results of this publication are 

extended in this chapter as they could not be presented in the publication due to the space limitations. 

4.1 Introduction 

As discussed in the previous chapter, non-linearity of the prosumer’s net PV power variation made 

the decomposition of the power components a challenging task. However, the proposed EMD 

method has successfully facilitated the decomposition of the net load power into physically 

meaningful oscillating power components. Each of these oscillating power components denoted as 

IMFs, corresponds to a characteristic curve on the cdf vs frequency plane, resulting in a series of 

curves for a given net power. In a planning of HESS comprised of two or more constituent storages, 

it is crucial to accurately identify these oscillating power components associated with each storage. 

This serves the preliminary step of determining the capacities of each storage of HESS. The purpose 

of this chapter is to extensively discuss the HESS design problem on how to differentiate the various 

frequency components to the distinct constituent storage technologies. 

While the research attention continues to grow on HESS in recent years, determining the 

design parameters of the constituent ESS in the HESS has been a widely discussed topic in the 

literature. However, as later discussed in the literature, the analytical method used to determine the 

effective frequency band of constituent storages remains mostly unknown. In view of aiming this 

 

2 Percentage contributions of the relevant co-authors in the publication are given in the attribution statement, 

reviewed and signed by the each co-author. 
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design problem of HESS, the following key objective is to be achieved in this chapter. Firstly, this 

chapter demonstrates the ESS capacities of all energy storage devices are frequency-dependent. This 

important characteristic is mostly ignored in the previous works. Further analysis of dynamic 

behavior reveals that each type of ESS has its unique cost-frequency band. This will lead to develop 

a methodology to analytically determine the cut-off frequency between the ESS of the HESS. Thus, 

the identified oscillating modes in the fluctuating net power demand of the prosumer in the previous 

chapter can be related to the frequency characteristics of the suitable types of energy storage devices 

to undertake energy buffering economically and effectively.  

This chapter is organized as follows. The development of the proposed method to segregate 

different frequency components between the ESS components is described in Section 4.2. Section 

4.3 contains the application of the proposed method for the other hierarchical storage schemes using 

illustrative examples. Section 4.4 contains the validation of the proposed analytical method that is 

compared with the existing iterative methods found in the literature. Finally, the effect of ageing of 

ESS on the cut-off frequency is demonstrated with respect to the equivalent circuit model of the 

storage. 

4.2 Frequency Plane Representation of ESS Devices 

In order to analytically determine cut-off frequency between constituent storages, a methodology 

should be developed to compare the performance of the ESS in the frequency plane. Therefore, a 

suitable parameter should be selected in order to compare one constituent ESS to the other with 

respect to the operating frequency. The accurately chosen parameter should adequately reflect both 

the economic and dynamic performance characteristics of the ESS. Economic characteristics are 

quite easily understood as the cost per capacity of the storage is well-known. However, the dynamic 

performance in different frequencies can only be understood, if the equivalent circuit model (ECM) 

is known [128]. Using the ECM of the given storage, it may be easier to define a responsive 

frequency range for the storage. This effective frequency range is an excellent measure as it 

represents dynamics of the storage with respect to the frequency. Also, this measure mimics the 

power and energy density of the storage. As an example, the SC is usually responsive to the high 

frequency variations which has the higher power density but lower energy density. In contrast, 

batteries which are usually incapable to respond to the higher frequency variations, have lower 

power density but higher energy density. Therefore, the ECM-based model to determine the 

responsive frequency band can be used to sufficiently replicate the key diverse characteristics of 
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different storages. As will be shown later, according to the ECM of the storage, the effective capacity 

of the storage is a function of the frequency. As the cost is capacity-dependent, then a relationship 

can be developed to relate the frequency and cost of a given storage. In the following sections, the 

development of this relationship between the effective frequency and effective capacity to compare 

the storages will be discussed extensively. 

In this section, the aim is to develop a method with the use of storage ECM to build up a relationship 

between the operating frequency and the effective storage capacity. The initial focus is to study the 

ECM of Li-ion battery storage. 

4.2.1 ECM of ESS 

Although the complete ECM of the Li-on battery is a complex RC circuit, it can be simplified to 

facilitate the analysis. For instance, the comprehensive ECM of Li-ion battery presented in [56] is 

depicted in Figure 4.1. The figure shows that the solid phase cathode (+) and anode (-) electrodes 

are represented by a parallel RC branch (R±
2, C±

2), the overpotential resistance (R±
n), the series 

resistance (R±
1) and the main capacitance (C±

1). In addition, Rf  corresponds to the resistance due to 

the side-reaction induced degradation of the cell and finally, Re relates to the resistance of the 

electrolyte. In the anode, there is an additional current path in which Isr, the side- reaction current 

flows. This current accounts for the interaction between the Li ions and the solvent. Isr will exist 

even when the battery is not in service.  Furthermore, in this model, the voltages across C±
1 represent 

the OCP of each of the electrodes. Hence, the voltage across C+
1 and C-

1 is the open circuit voltage 

of the battery. Note that the OCV is a function of the state of charge of the battery. 
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Figure 4.1. ECM of Li-ion battery given in [56] 
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As explained in [56], the parallel branch of the ECM is used to describe the diffusion process of 

the charges in the respective electrode. The capacitances in the parallel branches do not contribute 

significantly towards the energy storage capacity of the cell. Thus, in so far as the storage capacity 

of the battery is concerned, the parallel RC branches can be omitted. Furthermore, since the main 

focus of this work is on the selection of suitable ESS, the relatively slow degradation process shall 

be ignored at this stage of the study. Accordingly, the much simplified ECM of Li-ion battery 

becomes that of the series RC circuit shown in Figure 4.2 whereby ,
( )

s B
R   and ,

( )
s B

C  can be 

obtained using (4.1) and (4.2). 

 

Figure 4.2.Conversion of series ECM to the parallel branch for ESS 

 The series battery model in Figure 4.2 can be readily converted into its parallel equivalent. The 

parallel equivalent circuit parameters are expressed in term of the series circuit parameters as in 

(4.3) and (4.4). The effective terminal impedance H(ω) of the battery is given in (4.5).  

The amount of charges that can be stored within the battery is that residing in Cp,B(ω). Equation 

(4.4) shows that when the frequency ω increases, Cp,B(ω) decreases. Hence, the capacity for the 

battery to store charges, decreases with an increase in frequency. Amplitude and phase values of the 

impedance can be obtained from the equation (4.5) to (4.7). These are used to obtain the magnitude 

and phase plots for the ECM of the given Li-ion battery, as shown in Figure 4.3(a) and Figure 4.3(b). 

The Li-ion battery used in this example is [129]. 

, 1S B e f n n nR R R R R R R+ − + −= + + + + +   (4.1) 

, 1 1 1 1/ ( )S BC C C C C+ − + −= +   (4.2) 

, , 2 2

, ,

1
( )

p B s B

s B s B

R R
R C




= +
 

  

(4.3) 
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S B

p B
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R C



=

+  
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Figure 4.3 a) Magnitude plot of battery ECM b) Phase plot of battery ECM 

In these plots, interested frequency range is denoted by the fL,k< f< fH,k in which the fL,k =10-6 Hz fH,k 

=0.5 Hz  for the considered net power of the prosumer. From the plot depicted in Figure 4.3(a), 3dB 

frequency of the magnitude plot for battery can be found as fH,B. Considering this conventional 3dB 

point to define the effective bandwidth, the effective frequency range of the Li-ion battery is 

approximately fL,k< f< fH,B  which is the shaded area of Figure 4.3(a) and Figure 4.3(b). According 

to Figure 4.3(b), within this frequency range, battery performs as an ESS device and exhibits 

capacitive behavior, represented by a phase lag close to -90 degrees. 
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Assume the terminal voltage of the battery is at its rated value Vr,B. When the CP,B is in Farads and 

the unit of Vr,B is in Volts, the effective energy storage capacity of the battery ESS in kWh can be 

expressed as EB(ω),   

Clearly as in the case of Cp,B(ω), EB(ω) decreases with an increase in ω.   

Accordingly, the following parameters are assumed for the Li-ion battery considered in this 

study: the Li-ion battery rated at 1.8 Ah and Vr,B =3.7V  taken from [56] could be simplified in 

to the series circuit parameters given by Rs,B=0.024Ω Cs,B = 3400F. Thus the 
3

, 1.23 10H Bf Hz−=   

is obtained from Figure 4.3(a) for the considered Li-ion battery. 

4.2.2 Selection of the ESS for the given application 

Denote ESS1 to indicate the device, such as a battery, and ESS2 to represent the high-frequency 

device, SC. When the interested frequency range is (fL,k –fH,k) for the given application, according to 

the above introduction, The effective frequency range of the ESS1 is (fL,k -fH,ESS1) as shown in Figure 

4.3(b) (as shown in shaded area). If fH,k < fH,ESS1 ,the selected ESS is suitable enough to serve all the 

frequency components of the given application. In contrary, if fH,k > fH,ESS1, similar to the scenario 

shown in Figure 4.3(b), the selected storage is only capable to handle the frequency components of 

the given application in the range fL,k - fH,ESS1. The frequencies higher than the fH,ESS1 cannot be met 

by the ESS1 as the effective capacity is not sufficient enough to perform as a storage component in 

this frequency range. 

Therefore, another storage device is required to provide the support to the first storage to 

cover the whole frequency range of interest. Employing another storage forms a hybrid energy 

storage system. The second storage device denoted by the ESS2 possesses a different storage 

characteristic to the ESS1. Using similar process suggested in Section 3.2.2, its effective operating 

frequency range can be obtained denoted by the (fL,k -fH,ESS2). (i.e. fH,ESS2> fH,ESS1). In such a situation 

as shown in Figure 4.3(b) the second storage should be introduced to cover the frequencies higher 

than the fH,ESS1. Thus the combined effective frequency range of the HESS is now expanded to the 

fL,k -fH,ESS2. If the fH,k < fH,ESS2  this arrangement is sufficient for the given application. If not, the 

process continues similarly for the third device. This has been the general concept of the selection 

of the suitable storage types for the hybrid storage scheme in order to satisfy the requirement of the 
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given application. Therefore, the suitability of the ESS devices of HESS for the given application 

can be analytically compared based on the dynamic characteristics using the proposed concept of 

the effective frequency range. Thus, forming a HESS for given net power discussed in this chapter 

primarily using the Li-ion battery-SC combination. 

In a similar manner as in the construction of battery model, the behavior of supercapacitor 

(SC) can be studied using ECM. Complexity of these models is increased starting from a single RC 

branch to elevate the model accuracy. The most common equivalent circuit types are presented in 

literature are namely ESR and series capacitor model, constant phase element model with two RC 

branches and four RC branches model.  

4.2.3 Simplification of the ECM 

As it is demonstrated for Li-ion battery, simplification of ECM leads to represent the complex ECM 

of the battery storage using an simple series RC circuit for the given frequency range of interest. For 

instance, some RC branches of the comprehensive battery model are omitted in our discussion as 

diffusion characteristics are neglected in short term dynamics. This will guide to obtain the series 

RC equivalent and then the convert it to the equivalent parallel RC branch of the given storage for 

the given application frequency range. However, this might be tiresome practice for some storage 

types as the physical meaning of each component of the ECM should be well known prior to be 

removed from the complex ECM for the particular frequency range. Therefore, an alternative 

method for this simplification is introduced. 

Firstly, using the EMD analysis of the given load curve, the frequency components presented 

in the net load curve can be readily identified and then the frequency range of interest can be 

determined. Considering only this interested frequency range, the complex ECM can be 

approximated such that a very close representation of this model can be achieved by the equivalent 

series RC model.  Figure 4.4 compares such phase vs frequency profile obtained using the 4-branch 

SC ECM given in [130] with that of the equivalent series RC model. It is apparent from the figure 

that the series RC model produces the phase diagram which is in close agreement with that of the 4-

branch SC model over the frequency range of interest in this work, viz: 10-6 < f < 0.5 Hz. Therefore, 

in this study where long-term diffusion effects are not considered, the simple series ECM is used to 

represent the SC. Once the series parameters are obtained similar to battery, effective capacity can 

be obtained for the SC. 
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Figure 4.4. Comparison of phase diagram between the 4-branch SC and equivalent series RC SC model 

4.2.4 ESS Economical Operating Frequency Range 

The kWh storage capacity EESS(ω) vs frequency profiles of the selected battery and SC are given on 

Figure 4.5 with a p.u. base value of 6.67Wh. As expected, the figure shows that the storage capacities 

of both ESS decrease as frequency increases. In the operation of the HESS for the particular 

application, it is necessary to identify the critical frequency in which these devices are segregated. 

This critical frequency defined as cut-off frequency should be determined not only considering the 

dynamics but also the economics of the storages. Thus, each of the storages economical frequency 

ranges can be identified. Therefore, based on the effective storage capacity of the storage, the cost 

per effective kWh capacity of the storage is examined in this work to reflect both the performance 

and economic characteristics of the storage.  

 

Figure 4.5 Effective energy capacity vs frequency profiles of battery and SC 
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4.2.5 Determination of cut-off frequency between the constituent storages of 

HESS 

The variations in the battery and SC effective capacity will impact on the economic usage of the 

ESS. Denote the capital cost of an ESS as CESS.  Therefore, the cost per kWh storage capacity of the 

ESS is CESS/ EESS(ω) at the frequency ω.  From the previous sub-section, it is known that EESS(ω) 

decreases with the increase in ω, therefore the capital cost per kWh storage capacity of the ESS will 

increase with ω. As an illustration, Figure 4.6 shows the CESS/ EESS(ω) vs ω curves of the SC and Li-

ion battery considered earlier. The capital costs are US$10 for the 1.8 Ah 3.7V Li-ion battery and 

US$36 for the 1200F 2.7 V SC. Clearly the decrease in EESS(ω) at elevated frequency makes the 

ESS increasingly expensive, in terms of the cost per kWh storage capacity of the ESS. Notice that 

the two curves cross-over at the frequency, which is assigned the special symbol of ωc,p. In this 

example, ωc,p is 0.0085 Hz. Thus, it can be concluded that in this example, in comparison with the 

SC, the battery will be more economical in providing the energy to buffer those perturbing power 

components which have frequencies below ωc,p. Conversely, the SC will be more cost effective in 

providing the buffering actions for those perturbing power of frequencies above ωc,p. ωc,p can be 

taken to be the cut-off frequency between the SC and battery, in the design of the SC-Li ion battery 

HESS. 

 

Figure 4.6. Comparison of the capital cost per kWh capacity of battery and SC: notice at ωc , the curves 

cross-over 

In this investigation, the HESS is to be used to provide the buffering actions on Pnet(t) of a 

prosumer. In Section 3.3, it is shown that Pnet(t) can be decomposed into its IMFs and the 

associated ranges of the instantaneous frequency fi(t). Figure 4.7 shows the cdf plot of fi(t) 
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obtained from the EMD analysis of Pnet(t) measured over a 3-month period. The figure shows that 

more than 50% of the instantaneous frequencies in P1(t) and P2(t) are above ωc,p. So, in this 

instance, it is considered the SC would be more cost effective in providing the buffering actions 

for P1(t) and P2(t). Conversely, the Li-ion battery would be more cost effective in buffering P3(t) 

and higher order IMFs because the probability of their frequencies at less than ωc,p is more than 

50%. So in this way, the families of the IMFs which can be more cost-effectively buffered by the 

battery and the SC have been readily identified.  

 

Figure 4.7. CDF values for the frequencies from IMF1 to IMF14 (∆t=1sec and  T=3months) 

4.3 Hierarchical HESS Scheme 

4.3.1 Introduction to hierarchical storage scheme 

In a storage scheme presented in Section 3.2, Figure 3.1 explains the storage placement at different 

hierarchies of the power system. In a planning study of such a scheme, which includes multiple 

storages with different characteristics, the exhaustive iterative methods are unsuitable to calculate 

the cut-off frequencies between them. However, the proposed analytical strategy of a single 

prosumer can be readily extended to three or more component ESSs to plan the hierarchical storage 

scheme consists of community-scaled and the grid-scaled storages. Initially, the cut-off frequency 

between those storage can be determined comparing the cost-frequency characteristics. Then, the 

cdf of fi(t) of Pnet(t) described in Figure 4.7 can be used to identify IMFs, which can be most cost-

effectively buffered by each of the respective component ESSs.   

In a conceptual microgrid scheme in achieving the near-zero dependency of the grid, those 

community and grid scale storages play a vital role as storages for monthly and seasonal energy 
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variations. As shown in Section 3.4 these seasonal IMFs consist of higher oscillating energy. Thus, 

it is certain that these storage types should have higher storage capacities and lower cost per kWh 

capacity which make them suitable for such community and grid-scale applications. Therefore, even 

the Li-ion battery and the SC are able to handle the frequency range of the Pnet(t) of single prosumer, 

it is uneconomical to accommodate such a costly storage like Li-ion battery to store these seasonal 

IMFs. Thus, it is worthwhile to consider a storage which has economical frequency range lower than 

that of a Li-ion battery which has a lower capacity cost per kWh to fit in to community and grid 

scaled storages. Therefore, candidate storage should result in another cost-frequency curve left to 

the Li-ion battery which will result in a lower cut-off frequency for battery. This will also allow to 

identify the IMF components related to the Li-ion battery precisely which then can used to determine 

the capacity of the battery.  

Such candidate storage scheme for the lower frequency oscillating components with higher 

energy could be Fuel Cell or Pumped hydro according to Table A.1 in Appendix A. However, the 

operating ranges of these storages in the frequency plane are not exactly known. Therefore, in the 

section, the most matured ESS technology out of these two is the PHES will be illustrated. The 

proposed strategy is used to accurately identify the effective frequency bandwidth of the storage 

first. Then this will enable to determine the lower cut off frequency when they are used with the Li-

ion battery which is shown with an example next. 

4.3.2 Illustrative example for community and grid scale storage technologies using 

Pumped Hydro Energy Storage 

In order to demonstrate the proposed method for the community and grid level storages, the PHES 

is selected for this analysis among the mentioned candidates which includes Fuel Cell and PHES. 

PHES is regarded to be the more matured ESS as community or grid level storage out of these, and 

therefore, it is considered for this illustrative example.  

a. Obtaining the bode plot of Equivalent circuit model (ECM) 

In most of the applications in the literature, the charging and discharging of the PHES are considered 

as a symmetrical operation [131, 132].  The complete integrated ECM of PHES can be depicted as 

in Figure 4.8. The formation of this complete ECM is described in detail in Appendix B with relevant 

to the literature. As mostly practiced in previous analysis, the elasticity of the pipes of can be 

neglected  [131] to simplify this complete ECM to the model presented in Figure 4.9. 
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Figure 4.8. Complete ECM of the discharging circuit of the PHES 
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Figure 4.9. Simplified ECM of discharging circuit of the PHES 

This reduced model is simulated using the PLECS simulator as the frequency response of such a 

complex circuit with variable resistances cannot be analytically simplified easily. It is assumed that 

the both the charging and discharging (pumping and generating) circuits follow the same ECM. 

Analogous to generation in PHES, ECM is simulated using the perturbation at the current source of 

the turbine end measuring the output voltage as shown in Figure 4.10. 

 

Figure 4.10. Simulated ECM of PHES in PLECS 

b. Obtaining the bode plot of ECM of the PHES 

Identifying the interested frequency range is the next step. Since IMFs with seasonal variations also 

need to be captured, at least one year of data should be analysed. To facilitate this, slower sample 
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rate of 1min can be selected to be analysed using the EMD. Thus, it can be determined the interested 

frequency range for the 1min sample rate for one year dataset is 1×10-8Hz-0.0083Hz. Using the 

simulated ECM of Figure 4.10, magnitude plot shown in Figure 4.11 and phase plot shown in Figure 

4.12  can be obtained for the frequency range 1×10-8Hz-0.0083Hz. According to Figure 4.12, it is 

clear that the PHES shows the capacitive behavior in the frequency range 1×10-8Hz-1×10-4Hz. 

Therefore, the effective frequency range of the PHES to work as an ESS is limited to this frequency 

range. 

 

Figure 4.11. Magnitude plot of the frequency response 

 

Figure 4.12. Phase plot of the frequency response 
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c. Obtaining the simple series model parameters 

If the behavior of the ECM can be represented in the interested frequency range using a simplified 

RC model, it is certain that simple series RC is equivalent to the behavior of the ECM in this 

frequency range. These R and C parameters can be estimated graphically as following. 

If the equivalent series parameters are Rs,PHES and Cs,PHES, According to the  magnitude plot 

of series RC circuit model f→∞, |H(s)|dB→20log|Rs,PHES|. As shown in Figure 4.13 (a), when  f→∞, 

|H(s)|dB→y
1
. Then Rs,PHES=10

y1
20. With this estimated Rs,PHES, then value of Cs,PHES has to be 

determined such that phase response of RC equivalent is same as the phase plot of ECM. Therefore 

the Cs,PHES will be empirically decided such that it achieves the least RMSE with the phase plot of 

ECM. According to the above example PHES, 𝑦1 =100, Rs,PHES=105ohms, Cs,PHES=6.5F . 

Comparison of the PHES ECM and the RC equivalent of both magnitude plot and phase plot is 

depicted in Figure 4.13 (a) and (b). 

 

Figure 4.13. (a) Comparison of the ECM magnitude plot and equivalent RC (b) Comparison of the phase 

plots of ECM and equivalent RC 

Following the same methodology performed over battery and SC, these series parameters will be 

converted to parallel parameters named Rp,PHES and Cp,PHES . Then the effective energy component 

of the PHES can be calculated with respect to frequency.  

d. Determining the per kwh cost of PHES 

Cost of battery per kWh is readily available in most the recent literature as 250USD/kWh [133, 134]. 

However the capacity cost per kWh for pumped hydro usually varies across different scales and 

applications [135]. A table provided in  [136] (Appendix C) offers a range of capacity costs for 

different PHES units, resulting in cost per kwh between 10-60USD/kWh.  For this illustrate 

example, a mean value of these costs is taken as 16USD/kWh.  
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e. Determining the cut-off between PHES and Battery 

Normalized effective capacity for PHES was obtained by normalizing the capacities of Li-ion 

battery and PHES as depicted as in Figure 4.14(a). Then, cost per effective capacity is obtained as 

depicted in Figure 4.14(b) for both Li-ion battery and PHES. 

 

Figure 4.14. (a) Normalized effective capacity vs frequency for PHES and Battery (b) Cost per effective 

kWh curves for Battery and PHES 

 From Figure 4.14(b), it could be determined the cut-off frequency between the Li-ion battery and 

PHES denoted by 
,PHES B

  is 
69.96 10−  Hz. The equivalent time of this frequency is around 1.12 

days. Therefore, it is clear that the operation of the PHES is economical compared to the Li-ion 

battery for the frequency components which have higher oscillating time than the 1.12 days. If the 

cost per kWh varies in the range 10-60 USD/kWh the resulting cut-off frequencies as below. 

For 60USD/kWh 6

,
4.8 10

PHES B
 −=   =2.37days 

For 10USD/kWh 5

,
1.2 10

PHES B
 −=  =0.96 days 

Denote the cut-off frequency setting between the battery and SC as 𝜔𝑐|𝐵,𝑆𝐶 . Then for a hierarchical 

HESS scheme with PHES, Battery and SC storages, the economical frequency range for Li-ion 

battery is  ωc|PHES,B<f<ωc|B,SC . 

4.4  Validation of cut-off frequency Determination 

4.4.1 Determination of cut-off frequency using existing method 

In this section, the existing cut-off frequency determination method is compared with the proposed 

method. In [40], an approach to determine cut-off frequency is introduced. Similar to the proposed 

approach, the method reported in this work is also based on EMD analysis, hence it represents the 

most closely comparable case with the proposed method. Authors in the [40] have introduced the 
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cut-off frequency determination strategy using an iterative approach to search for so-called 

minimum overlap energy.  

Once an arbitrary cut-off frequency (fg) is introduced, it may cause to divide the frequency 

range in to two sections which are related to the respective ESS devices, say battery and SC in this 

case. So, the IMFs belong to these two planes can be treated as two groups related to the respective 

devices named as LF IMFs and HF IMFs. As explained in Section 4.2, there are regions of overlaps 

in the cdf of one IMF with those of the neighboring IMFs. Due to this, there can be IMFs where 

their frequencies accommodate in both groups, since cannot be effectively determined as HF or LF 

IMFs.  These IMFs are henceforth named as boundary IMFs. If previous battery-SC example is 

considered, when a boundary IMF is attempted to be smoothened by SC, for a given cut-off 

frequency setting fg, those portions of an IMF which have frequency below fg would be buffered by 

the battery whereas those portions of the same IMF which have frequency above fg  would have to 

be buffered by the SC. Hence it is necessary to proportion the buffering actions contributed by the 

SC and the battery. In order to reduce the ambiguity of the segregation between the battery and SC 

it is targeted to reduce this amount of energy contain in the overlap region. This will minimize the 

amount of energy transfer between the battery and SC. In order to achieve this, the process proposed 

in [40] iterative search of unique value of ⍵c out of fg values such that the overlap energy is 

minimized. Let ⍵c,e denote this cut-off frequency calculated by the existing method. Same Pnet(t) 

with sample time 1sec and total timespan of 3months, is used to calculate Eoverlap for the range of fg. 

The respective graph is shown in Figure 4.15. When minimum of Eoverlap occurs, the value of  fg is 

determined as ⍵c,e  =0.0114Hz. The value obtained from this existing method, i.e., ⍵c,e is slightly 

higher compared to the proposed method value ⍵c,p=0.0085Hz .  

 

Figure 4.15. Eoverlap vs fg and the determination of ⍵c,e 
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4.4.2 Comparison of computation burden 

While it is pleasing to note that the cut-off frequency determined is close to that determined 

earlier, i.e., ⍵c,e  = 0.0085Hz, it must be reported that in the course of searching for the minimum 

overlap energy condition, the computation had been carried out under the MATLAB environment, 

using a computer processor of Intel® Core™ i7-9700T CPU, 2.00 GHz, and 16-GB DDR3 RAM. 

The solution time is some 18.6 min. In contrast, the proposed method will yield the cut-off 

frequency based on the cost-effective frequency ranges of the constituent ESSs within a HESS with 

an execution time of some 0.34s. The proposed approach is direct, definitive and in a closed-form. 

Hence, it does not involve any iterative search.  Furthermore, unlike the minimum overlap energy 

method [40], the proposed approach bears a direct relationship to the physical characteristics of the 

storage devices. 

4.5 Conclusion 

This chapter identifies the primary requirement for planning study of the HESS is to determine the 

cut-off frequency accurately with respect to both economic and dynamic response characteristics of 

the storages. According to existing literature, only optimization algorithms are used to optimize the 

cost-based indicators in such a planning study while very limited studies have focused on the 

segregation of the net power components accurately considering dynamic characteristics. By 

utilizing the ECM of the candidate storage technology, it is identified that the effective capacity of 

each storage is frequency-dependent. Then the capacity cost per kWh-frequency characteristics of 

one storage is compared with that of the constituent storage to determine accurately the cut-off 

frequency between the storages of the HESS. This would ensure the most economical HESS design 

for prosumers. The results of the comparative analysis show the effectiveness of the proposed cut-

off determination technique reaching near optimal value. The proposed method, based on device 

physical characteristics, results in minimum cost per kWh throughout the frequency range of interest 

in a deterministic way. As the proposed approach does not involve iterative search procedure, it 

requires least computation time. Thus, the sufficiently generalized proposed method is well-suited 

for a planning study onto the design of hybrid energy storage scheme consisting of a number of 

different types of ESS.  
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CHAPTER 5. A Statistical Approach to Estimate the Required 

Energy Storage Capacity of Hybrid Energy Storage System 

5.1 Introduction 

Once the Pnet,i(t) variation of a prosumer is analyzed and the cut-off frequencies between the 

constituent energy storage components in the HESS are determined, in the manner as explained in 

CHAPTER 4, the next task is to evaluate the power and energy levels to be buffered by each of the 

constituent storage components. Therefore, this chapter delves into the segregation of the IMFs 

derived from the analysis presented in CHAPTER 3, based on the cut-off frequency determined in 

CHAPTER 4. This will enable the required capacities of the constituent ESS in the HESS to be 

determined. However, the existing capacity determination methods of prosumer level HESS 

incorporate mostly the cost-based optimization approaches as discussed in the literature in Section 

2.2.5. Very few attempts were reported based on direct analytical approach which tends to require 

lower computational burden. Thus, in order to realize the designed levels of uncertainty during the 

renewable applications, it is important to incorporate the analytical method with a suitable statistical 

approach at the capacity determination level. This is the major contribution of this chapter.   

  To facilitate the discussion, the scope of the work considered in this chapter is limited to the 

HESS containing two constituent energy storage components at the premise of a prosumer. As seen 

in CHAPTER 4, the frequency band of an IMF spans over a (limited) range. So, inevitably the 

frequency bands of some IMFs will span over both sides of the cut-off frequency which is identified 

by the technique described in that chapter. These IMFs are termed the boundary IMFs. The 

constituent energy storage components are intended to buffer the IMFs, with the higher frequency 

IMFs buffered by the SC and the lower frequency IMFs dealt with by the battery. However, how to 

demarcate the boundary IMFs to the constituent storage components remains an unanswered 

question. Accordingly, the first objective of this chapter is therefore to describe a computational 

approach which will provide the answer to this question. Then, a statistical analysis is performed on 

the oscillation energy buffered by each of the constituent storage components. This is with the view 

to estimate the required energy capacities of the constituent storage components. In contrast to some 

of the existing optimization-based HESS capacity determination methods, the proposed approach is 

direct and can be readily extended to include HESS schemes containing more than two constituent 
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energy storage components, without imposing substantial increase in the computational burden. 

 

5.2 System Under Study 
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Figure 5.1. A conceptual hierarchical energy storage scheme consisting of the hybrid energy storage 

system within a prosumer and an energy storage system outside of the prosumer 

CHAPTER 4 shows that the net power flow from the ith prosumer (Pnet,i(t)) can be readily 

decomposed into a family of IMFs and the residue function using the EMD technique. The residue 

is a trend function, and therefore, in the long run, this function would indicate either a continuous 

energy surplus or energy deficit situation. Hence no energy storage action is to be taken to deal with 

the residue function. So, in the design of the HESS, attention needs to be directed only to the IMFs 

of Pnet,i(t). 

Figure 5.1 depicts a conceptual hierarchical storage arrangement in which at the prosumer 

level, an HESS is to consist of the constituent storage components ESS1 and ESS2. Referring to the 

HESS example in CHAPTER 4, the prosumer ESS1 and ESS2 are selected as SC and Li-ion battery. 

The cut-off frequency between the battery and SC, denoted as ⍵c, can be determined using the 

approach proposed in CHAPTER 4. A typical example of ⍵c for the battery-SC combination is 
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depicted in Figure 5.2. In this figure, ⍵c is shown superimposed onto a family of cdf curves of the 

instantaneous frequencies of the IMFs. The determination of the cdf has also been explained in  

CHAPTER 4 and the cdf for IMFj shall be denoted herewith as fj.   

In Figure 5.1, another storage device ESS3 is shown located at a higher level of the 

hierarchical energy storage scheme. Although not discussed in the previous chapter, one could apply 

the same approach described there to obtain ⍵L,c, the cut-off frequency between ESS2 (the battery) 

and ESS3.  ⍵L,c will be at a much lower frequency than ⍵c, as indicated in Figure 5.2. With known 

⍵L,c, the approach to be described in the following sections can be equally applicable in the design 

of ESS3. However, since the focus of the present chapter is on the design of the HESS at the 

prosumer level, the design of ESS3 shall be omitted in the present study.    

 

Figure 5.2 CDF of IMFs of Pnet,i (t) and the locations of the cut-off frequencies ωc and ωLc 

5.3 Determination of the Buffering Power in ESS 

The previous section explains the cut-off frequency (ωc) between ESS1 and ESS2 can be determined 

using the method proposed in CHAPTER 4. In Figure 5.3, the cdf curve of the frequencies contained 

in IMFj is shown as fj.  As shown, at the cut-off frequency ωc, the corresponding value of fj is denoted 

as CDFj(⍵c). 

Based on the cdf, one could then readily decide whether IMFj shall be buffered by ESS1 or 

ESS2 in the following way. Select suitable threshold probability values ρh and ρl. Typically, 1> 

ρh>>0.5 and 0< ρl<<0.5. Then if CDFj(⍵c)> ρh, IMFj is to be buffered exclusively by ESS2. On the 

other hand, if CDFj(⍵c)< ρl, IMFj is to be buffered exclusively by ESS1. In this work, ρh=0.95 and 
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ρl=0.05. In this way, the allocation of the task of buffering IMFj to either ESS1 or ESS2 becomes a 

straight-forward decision.  

 

Figure 5.3 Distribution of the frequencies in IMFj: at the cut-off frequency ωc, the CDF has the value 

CDFj(ωc). 

However, the challenge is when the value of CDFj(⍵c) falls within the range ρl <CDFj(⍵c)< 

ρh. In the present work, IMFj which is in this category is called a boundary IMF. The actions required 

for buffering the boundary IMFs would have to be shared by ESS1 and ESS2. And an approach to 

apportion the buffering task to the respective constituent storage components shall now be described. 

5.3.1 Apportion of the buffering task of the boundary IMFs 

The proposed method to apportion the buffering task of the boundary IMFs can be conveniently 

explained using Figure 5.4. Consider the boundary IMF Pj(t) in Figure 5.4(a). The corresponding 

instantaneous frequencies fj(t), obtained through the HHT analysis of Pj(t), is as shown in Figure 

5.4(b). In this figure, the cut-off frequency ωc has been superimposed. It can be readily seen that 

over the intervals a-b, c-d and e-f, fj(t)<ωc. Clearly these low-frequency portions of Pj(t), denoted 

herewith as PLF,j(t), should be be bufferred by ESS2 because the capital cost/storage capacity of 

ESS2 is lower than that of ESS1 at frequency below ωc. Conversely, the remaining portions of Pj(t) 

would have their instantaneous frequencies above the cut-off frequency, i.e., fj(t) > ωc. These high-

frequency portions of Pj(t) denoted as PHF,j(t), shall be buffered by ESS1. This process is also 

straigh-forward and can be readily carried out for all the boundary IMFs.   
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Figure 5.4. Allocation of the buffering actions for boundary IMF (a) Pj(t) (b) instantaneous frequency, (c) 

low- and high-frequency portions of Pj(t).  

As explained in the last paragraph of Section 5.2, there shall be another cut-off frequency ωL,c in the 

hierarchical ESS arrangement of Figure 3.1. One can follow the same procedure as outlined above 

and apportion the power buffering burden between ESS2 and ESS3. So, from the set of the boundary 

IMFs associated with ωL,c, one allocates the high- and low-frequency portions of these IMFs to the 

ESS2 and ESS3 respectively for the power buffering actions.  

In summary, therefore, firstly there shall be those IMFj to be exclusively buffered by ESS1 

and for the convenience of discussion, the index “j” of this set of IMFs shall be given the symbol 

iESS1 to reflect the fact that they are to be buffered exclusively by ESS1.  In addition, ESS1 is to 

buffer the high-frequency portions PHF,j(t) of those boundary IMFj associated with the first cut-off 

frequency ωc, e.g., PHF,j(t) shown on Figure 5.4(c). The index “j” pertaining to these power 

components shall be denoted as iB1 as it is associated with the first boundary.  



 

103 

 

It follows that there shall be those low-frequency portions PLF,j(t) of IMFj associated with 

the first cut-off frequency ωc which shall be buffered by ESS2. The index “j” corresponding to these 

power components shall also be denoted iB1, since it is associated with the first set of the boundary 

IMFs. At even lower frequency, there shall be another set of IMFs which are to be exclusively 

buffered by ESS2 as the cdf of these IMFs satisfy the condition CDFj(⍵c)> ρh. The index of these 

IMFs are denoted as iESS2. Finally, the ESS2 is to buffer those high-frequency portions of those 

boundary IMFs associated with the cut-off frequency ωL,c. The index “j” for these power 

components is denoted as iB2 to indicate that it is associated with the second set of the boundary 

IMFs.  

Let the oscillating power components to be buffered by ESS1 (SC) and ESS2 (Li-ion 

battery) be denoted as PSC(t) and PB(t) respectively. In accordance to the apportion procedure 

described above, PSC(t) and PB(t) shall be determined directly by summating the respective IMFs to 

be exclusively buffered by ESS1 and ESS2, and those high- and low-frequency portions of the 

boundary IMFs. The mathematical expressions of this determination are given in (5.1) and (5.2). 

1 1

,( ) ( ) ( )
ESS B

SC j HF j

j i j i

P t P t P t
= =

= +    (5.1) 

 

1 2 2

, ,( ) ( ) ( ) ( )
B ESS B

B LF j j HF j

j i j i j i

P t P t P t P t
= = =

= + +    
(5.2)  

Having determined PSC(t) and PB(t), attention shall be directed toward the evaluation of the 

perturbing energies associated with the buffering actions of the two ESS.  

 

5.4 A Statistical Analysis of the Stored Energy Level in an ESS 

EMD analysis is a series of sifting process by which the intrinsic oscillating modes, i.e. the IMFs, 

of a given data-set can be identified. Again taking Figure 5.4(a) as an example, over any one of the 

intervals prescribed by three consecutive zero-crossing points of the IMF curve Pj(t), one observes 

that the area encompassing by the positive portion of Pj(t) will not be exactly equal to that of the 

negative portion. The areas correspond to the energy contents Ej(t)  of Pj(t). In term of the buffering 

actions offered by an ESS, the energy pertaining to the positive portion of Pj(t) can be viewed as the 

charging energy going into the ESS. Conversely, the negative area corresponds to the discharging 

energy released by the ESS. In the context of the study, this leads to an interesting observation that 

over a sufficiently long period, Ej(t) can exhibit either a sustained upward or downward drift. An 

example of such an occurrence can be seen in Figure 5.5 in which the energy content of IMF5 is 
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shown over a week. The figure shows that compared to the energy level at the beginning of the 

selected 7 days period, there is a sustained downward drift in the energy level in IMF5. So, if one 

were to use a study window of a week or longer to assess the energy storage capacity needed for an 

ESS to buffer IMF5, the ESS would have to be of exceedingly large capacity.  

In practice, the sustained drift in Ej(t) can be prevented by allowing the transfer of energy 

between the ESSs within an HESS, or between the ESSs and active energy source(s) in the external 

grid system. The aim of the energy transfer mechanism is to restore the stored energy level in the 

ESS to certain pre-specified value at regular interval. So, suitable value has to be found for the 

restoration interval for each of the energy storage components in the HESS. In this work, the 

carefully selected restoration interval is denoted as ts.  

For the SC-battery HESS considered in this work, the cut-off frequency 𝜔𝐶 between the 

battery and the SC is determined to be about 0.0085 Hz, corresponding to a period of about 2 

minutes/cycle. Power fluctuations in Pj(t) at a rate faster than 2 minutes per cycle are to be buffered 

by the SC. Thus, a suitable setting of the restoration interval ts for a SC would have to be longer than 

2 minutes and there shall be sufficient number of cycles in ts. In this work, ts is set as one hour for 

the SC. Following similar reasoning, the restoration interval for Li-ion battery ts is selected to be one 

day in the present investigation. So, in this way, one can examine the perturbing energy within the 

time window of ts and assume that due to the energy transfer to/from external ESS/energy source, 

the amount of the stored energy in the SC or battery shall be restored to the same level as that at the 

beginning of the window.    

 

Figure 5.5. E5(t) showing the obvious downward drift over a week 

The variations of the stored energy in an ESS over the time window ts, denoted as EESS(t) for a given 

ESS, can be expressed as, 
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PESS(t) in (5.3) is either PSC(t) or PB(t) for the case of SC-battery HESS considered in this study.   

PSC(t) and PB(t) are obtained from (5.1) and (5.2) respectively. As an example, Figure 5.6(a) shows 

a generic PESS(t). The respective time profile of EESS(t), evaluated using (5.3), is depicted in Figure 

5.6(b). The positive and negative portions of EESS(t), denoted as EESS
+ and EESS

-, are with reference 

to the stored energy level at the beginning of the ts time period t0. 

 

Figure 5.6 (a) PESS(t) and (b) EESS(t) over one time window of ts 

Repeat the above calculation for a large number of time windows, each of which is of duration ts. It 

is well-known that prosumer net power Pnet,i(t) can be impacted significantly due to seasonal changes 

in the harnessed PV power and load demand. Hence, in the numerical example of Section 5.5, the 

hourly and daily statistics of EESS(t) shall be collated over each of the four seasons. From the collated 

statistics of EESS
+ and EESS

-, generate their respective cdf curves in the usual manner. A typical 

example of the outcome from such an exercise is shown on Figure 5.7. The figure indicates that the 

increase in the amount of the stored energy in the ESS, relative to that at the beginning of the time 

window, will be up to EESS,ρ
+ p.u. and the probability of such an occurrence is ρ. View it in another 

way, there is the probability of ρ the ESS has to store up to EESS,ρ
+ p.u. more energy than that at the 

beginning of the time window. The storing up of energy in the ESS pertains to the charging operation 

of the ESS. Similar reasoning also applies to the discharging operation of the ESS: at the probability 
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level of ρ, the ESS will have to discharge up to EESS,ρ
- p.u. energy, relative to that at the beginning 

of the time window. This suggests that if the ESS has an energy storage swing range of EESS,ρ
+ 

+EESS,ρ
-  p.u., there will be a probability of ρ for the successful buffering of the perturbing power 

PESS(t). 

 

Figure 5.7. CDF of EESS
+  and EESS

-  

5.5 Numerical Examples 

In the following section, several numerical examples shall be included to illustrate the proposed 

approach in analyzing the stored energy levels in the HESS. The data pertaining to the prosumer 

shall be the same as the single prosumer data used in Section 3.4.  

5.5.1 Segregation of IMFs 

With ESS1 and ESS2 selected as SC and Li-ion battery in this example, the segregation of the IMFs 

based on ωc and ωL,c  has resulted in the indices of IMF given in Table 5.1. ωc shall be same as the 

value in  Section 4.2.4 and ωL,c is considered to be value taken from Section 4.3.2.  

Table 5.1. Indices of the segregated IMFs based on the cut-off frequencies of ωc = 0.0085 Hz and ωLc 

=1×105 

iESS1  iB1 iESS2 iB2 iESS3 

1 2, 3 4 - 12 13 14 - 17 

 

5.5.2 Buffering tasks over different seasons 

Daily PSC(t) of four different seasons over selected 24-hours periods can be obtained using (5.1) and 

they are as shown in Figure 5.8(a). The zoomed-in plot for 12 noon – 1 pm of the selected spring 

day is shown in Figure 5.8(b). 
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Figure 5.8: (a) Selected daily PSC(t) in the four seasons, (b) zoomed-in plot from noon to 1 pm of the 

selected spring day.  

From Figure 5.8(a), it is quite evident that during the daylight hours when the solar power 

fluctuations are most pronounced, the energy buffering actions provided by the SC is most 

noticeable. In contrast, the figure shows that during the selected summer day, which has minimal 

cloud covers, the buffering task by the SC in the daytime is significantly diminished compared to 

that in other seasons. Consequently, the energy fluctuations in the SC are relatively minor during an 

average summer day.  
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Figure 5.8(b) illustrates that the SC is to buffer the higher frequency power fluctuations in 

the spring daytime. In contrast, the battery buffering actions have shown a much smoother power 

profile even during the daytime of the same spring day. An example illustrating this is shown in 

Figure 5.9 which shows that the largest power ramp rate in the battery is 1.63kW/min whereas that 

in the SC is 1.02kW/sec .This example also validates that the introduction of the SC has reduced the 

requirement for the Li-ion battery to buffer the more rapid changes in Pnet,i(t). 

 

Figure 5.9: PB(t) for (a) the selected spring day and (b) the zoomed-in plot over the noon – 1 pm period 

5.5.3 Estimate of required energy storage capacity 

The above analysis is based on the daily and hourly power variations only for a selected day in each 

of the four seasons. By extending the above analysis to cover all days in given season, a more 

accurate assessment of EESS
+ and EESS

- can be obtained for the respective season. The outcome of 

such a study is summarised by the cdf curves shown on Figure 5.10 and Figure 5.11 for battery and 

SC respectively. 
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Figure 5.10. CDF of the EB
+ and EB

- for the seasons. 
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Figure 5.11. CDF of the ESC
+ and ESC

- for the seasons. 
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If the overall trend of these four seasons shown in Figure 5.10 is considered, it becomes evident that 

the cdf for the summer season indicates the highest excess of daily surplus of energy: the cdf of EB
+ 

is distinctly higher than that of EB
-. On the other hand, this gap between the two cdf curves becomes 

much narrower in the winter months. This appears to suggest that the allocation of the battery energy 

storage capacity to buffer EB
+ (charging) should be greater than that for EB

-
 (discharging), 

particularly during the summer months. For the winter season, there shall be less of a need to allocate 

more storage capacity for the charging operation of the battery because the cdf curves are much 

closer. 

Consequently, it implies that the (daily) stored energy level at the start of the time window ts for the 

battery needs to be adjusted seasonally. This concept will be explored in detail in CHAPTER 6, thus 

enabling the storage system to have an adequate capacity for charging and discharging the expected 

amount of the energy in the respective season. 

Similarly, the cdfs of ESC
+ and ESC

- have also been calculated for the four seasons as depicted 

in  Figure 5.11. From the cdf curves of Figure 5.10 and Figure 5.11, at the probability level 𝜌 = 0.5, 

one can obtain the expected (mean) values of the required SC and battery charging/discharging 

energy levels for the given season. The results are summarized in Table 5.2.  

Table 5.2. Expected values of EESS, ρ: ρ=0.5 

 

 

 

 

 

As explained in the last paragraph of Section 5.5, an estimate of the energy swing ranges of 

SC and battery can also be obtained from the cdf curves. For this purpose, 𝜌 should be set sufficiently 

large so as to ensure adequate storage capacity is available for each of the constituent ESSs to 

undertake the successful buffering task and at a reasonable level of likelihood. In this work, 𝜌 is set 

at the 0.995 probability level. Thus, the overall swing range of the ESS is EESS,0.995
++ EESS,0.995

-. With 

this 𝜌 setting, the ESS shall have the energy storage capacity sufficient to readily meet the 0.99 

probability level. The required battery and SC capacities, denoted by EB  and ESC, for the four seasons 

are shown in Table 5.3. 

 Summer Autumn Winter Spring 

EB,0.5
+(kWh) 3.521 3.284 1.402 3.112 

EB,0.5
-(kWh) 2.229 0.992 1.121 1.224 

ESC,0.5
+(Wh) 0.028 0.032 0.028 0.035 

ESC,0.5
-(Wh) 0.029 0.030 0.029 0.032 



 

112 

 

 
  

Table 5.3. Required energy swing ranges for ESS over the four seasons 

 

 

 

According to the estimated energy swing range capacities obtained for the seasons, the battery 

ESS requires the highest capacity during the summer season, while the SC reaches its peak energy 

swing range during the autumn season. Note that the energy swing range is on top of the reference 

energy level at t0, the beginning of the time window alluded to earlier. Consequently, in the process 

of determining the appropriate storage capacities, it is essential to take into account the energy 

requirements of both the battery and SC during these specific seasons over an extended period in 

order to guarantee that the designed ESS capacity can effectively meet the energy buffering task. 

More shall be said about this in the next chapter. 

5.6 Conclusions 

In this chapter, the focus is on developing an analytical approach to estimate the required energy 

storage capacity of the HESS for a prosumer. Firstly, after the cut-off frequency is determined using 

the proposed method described in the CHAPTER 4, the IMFs related to each constituent energy 

storage components of the HESS are identified. Boundary IMFs are separately treated for increased 

accuracy. Subsequently, a statistical method is then proposed to estimate the energy swing range 

over the four seasons. This is to ascertain that there is sufficient energy storage capacity for each of 

the constituent storage components in the HESS when the ESSs can undertake the energy buffering 

task successfully at reasonable probability.  

 

 

 

 

 

 

 

 

 

 Summer Autumn Winter Spring 

EB(kWh) 18.82 15.43 15.92 14.14 

ESC(Wh) 10.49 10.99 8.33 10.10 
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CHAPTER 6. Development of Control Strategy for Community 

Battery Energy Storage System in Grid-Connected Microgrid of 

High Photovoltaic Penetration Level 

Statement of Contribution 

The main body of CHAPTER 6 of the thesis is primarily based on the content of the published 

journal article  titled "Development of control strategy for community battery energy storage system 

in grid-connected microgrid of high photovoltaic penetration level," where coauthors are D. 

Hettiarachchi, S. Shing Choi, S. Rajakaruna, and A. Ghosh [137]. 3 Section 5.3 to Section 5.8 of 

theis chapter are exact replica of this journal text and other sections are included to extend the 

content due to space limitation of the journal paper and to maintain the flow of the overeall thesis.     

 

6.1 Introduction 

In view of CHAPTER 5, the capacity determination of the prosumer-level storage can be 

performed with a sufficiently lengthy statistical analysis. However, the planning study of the 

centralized battery is challenging due to the concerns of the grid constraints and the variability of 

the net PV power of the prosumers. Moreover, it is essential to incorporate the assessment of battery 

degradation into the long-term operational planning of the battery. Conducting a comprehensive 

long-term planning analysis can aid in accurately assessing the required battery capacity to ensure 

it remains sufficient for the typical yearly planning period.  

The focus of this chapter is to describe the development of a control strategy for a 

community battery (CB) in a grid-connected microgrid which has a significant level of embedded 

photovoltaic generation. This will also be helpful to determine the required capacity of the 

community battery. In order to minimize the capacity of the community battery, the power transfer 

capacity of the interconnection link between the microgrid and the external grid system is utilized 

to safe maximum levels. Through Empirical Mode Decomposition analysis of the net power flows 

 

3 Percentage contributions of the relevant co-authors in the publication are given in the attribution statement, 

reviewed and signed by the each co-author. 
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of the microgrid, the daily and seasonal modes of the net power oscillations are identified as the two 

dominant low-frequency components. Whence a rule-based operational strategy is developed to 

control the power flows of the community battery via a novel dynamic referencing scheme for the 

state-of-charge of the battery bank. The battery control scheme counteracts the dominant daily and 

seasonal modes of oscillations of the net power. The numerical calculations performed for a case 

study shows that the proposed scheme leads to an approximately 16% decrease in the required 

battery capacity for particular growth rate of solid-electrolyte interphase film in the battery bank. 

The scheme does not require the forecasting of the net power, and thus, it has an increased degree 

of robustness when the community battery undertakes the power buffering task. 

Firstly, a new rule-based operational strategy has been developed, which takes into account 

the limits imposed on the magnitude as well as the rate of change of the power flows in the 

interconnection link. Unlike previous works, however, the developed strategy is to make full use of 

the power transfer capability offered by the link, and consequently, the energy storage capacity of 

the CB required to buffer the perturbing power flows on the link can be kept to a modest level. On 

the other hand, the developed rule-based strategy is sufficiently general to be applicable in 

developing control actions for the CB to alleviate the duck power phenomenon. Unlike [109] and 

[113], the proposed control strategy does not require any optimization study process.  

Secondly, a new control strategy has been developed to regulate the battery SOC reference value 

to counteract the two dominant modes in the net power of the microgrid. The two dominant modes, 

identified through the application of the Empirical Mode Decomposition technique, are pertaining 

to the daily and seasonal oscillating modes in the net power. The battery power flows are controlled 

in such a way that the SOC of the battery will be at a pre-specified SOC reference level at the end 

of a defined SOC restoration period daily. Furthermore, by allowing the SOC reference value to 

vary over the long term, this additional degree of design freedom is then taken advantage of to ensure 

improved utilization of the energy storage capacity of the battery bank. Moreover, based on a 

detailed statistical analysis of the resulting SOC profile, it is shown that the developed SOC control 

scheme has resulted in a reduction in the expected rate of SEI film growth in the battery cells.  

Thirdly, the proposed control strategy does not require the forecasting of the microgrid load demand 

and PV power. This is because the proposed strategy is not intended to produce the short-term day-

ahead power dispatch plan for the microgrid. Without the need for forecasts, the proposed scheme 

is much simpler to implement than those shown in the cited works such as [112]. The strategy 

assumes the seasonal variations of net power remain statistically similar to that in the historical data 
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analysed. It is encouraging to report that this assumption is shown to be valid in the numerical 

examples examined thus far in this work.  

Accordingly, this chapter is organized as follows. Section 6.2 presents the findings obtained in 

CHAPTER 4 pertaining to the Empirical Mode Decomposition analysis of the net power of 

microgrid, which contains a high-level of PV penetration. The problem formulation is then 

presented, with particular reference to the situation of interconnection to remote microgrids such as 

that presented in Western Australia. The new rule-based operational strategy governing the power 

flows in the interconnection link, and the centralized battery bank is then developed in Section 6.3. 

Through a detailed analysis of the SOC profile of the CB over the long-term and the SEI-SOC 

characteristics of the Li-ion battery, a new SOC dynamic referencing scheme for the CB is presented 

in Section 6.4. Illustrative examples are included in Section 6.5 to demonstrate the efficacy of the 

proposed planning process for the CB. The main findings and areas for future work are included in 

Section 6.6. 

6.2 Preliminaries 

As explained in the introduction of CHAPTER 1, the installation of roof-top PV panels at the 

premises of electricity consumers has been increasing at a rapid rate in recent years. However, the 

perturbing and uncertain power flows emanating from such PV-powered prosumers can bring 

serious challenges, e.g., the appearance of the duck curve in the daily load profile of power systems 

which have high penetration levels of the PV generation. The use of CB energy storage systems 

within the load areas has been reported extensively in the literature, as a means to perform certain 

power flows regulating functions so as to enhance the reliability and security of the power systems. 

In this section, the main findings from the analysis of the net power flows emanating from 

a PV-powered prosumer shall be described. This is followed by an examination of a grid-connected 

microgrid in which the prosumers and a CB are the constituent elements.   

6.2.1 Prior Work on the Buffering of the Net Power in Prosumers 

Without any loss of generality, Figure 6.1 shows a generation-transmission network 

interconnected to a number of microgrids. In turn, each microgrid is to encompass a number of 

prosumers, each with its load demand and a PV generator. Note that only the real power flows will 

be considered in this study. The issue of reactive power and voltage control for such a microgrid has 

been extensively studied (see e.g. [138]) and would not be considered herewith. The prosumers i, i 
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= 1,…, n, could be residential, commercial, or industrial and would therefore exhibit their own load 

demand (PLD,i(t)) characteristics. Also, the PV output power (PPV,i(t)) would be weather- and season-

dependent. In previous Section 5.3, the focus then is on buffering of the unsteady and uncertain net 

power (PNet,i(t)) from prosumer i through the actions of an hybrid energy storage system (HESS). 

The HESS is to consist of an aggregation of Li-ion battery and SC. One major attention of Section 

5.3 is on the design of the HESS, particularly with regard to the segregation of the buffering actions 

between the battery and SC. This is achieved by the careful selection of the cut-off frequency (fc), 

by taking into consideration the frequency response characteristics of the battery and SC. fc is then 

determined on the basis of minimizing the cost per effective energy storage capacity of the HESS.  

 

 

Figure 6.1. A conceptual microgrid equipped with a community battery energy storage system to buffer 

the power flows between the PV-powered prosumers and the external grid interconnection 

Furthermore, the design methodology proposed in Section 3.3 is based on the decomposition 

of PNet,i(t) using the Empirical Mode Decomposition (EMD) technique wherein a family of Implicit 

Mode Functions (IMF of order j is denoted as cj(t) herewith) and a residue function (r(t)) are 

obtained. The instantaneous frequency (fj(t)) of each of the oscillating cj(t) spans over a frequency 

band, with the lower order cj(t) occupying the higher frequency band while r(t) governs the trend of 

PNet,i(t). Figure 6.2 shows a sample of the outcome of the EMD analysis on PNet,i(t) of a PV-powered 

prosumer. It shows that although the magnitudes of the selected cj(t) are comparable, the magnitudes 

of the oscillating energies Ej(t) contained in c10(t)  and c14(t)  are several orders higher than that in 

the lowest order IMF, cj(t). In this example, c10(t) and c14(t) correspond to the daily and seasonal 

modes of oscillations in PNet,i (t). These modes can be readily attributed to the daily and seasonal 
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variation patterns in the load demand PLD,i(t) and in the harnessed solar power PPV,i(t). Hence, this 

example illustrates the generally valid observation that the two dominant modes in PNet,i(t) 

correspond to the daily and seasonal modes of variations. In terms of the minimum cost per effective 

energy storage design criteria proposed in Section 4.2.5, SC is used to buffer high frequency IMFs 

above the cut-off frequency fc while the Li-ion battery would be utilized to buffer those remaining 

low-frequency IMFs. 

 
Figure 6.2 A sample set of results of EMD analysis of PNet,i(t): IMF cj(t) and energy Ej(t) for j = 1, 10 and 14.  

6.3 Problem Formulation  

Instead of the prosumers, the focus of the present work is at the microgrid level. Figure 6.1 

shows that each prosumer is to be connected to an SC energy storage element instead of a battery-

SC HESS considered in Section 4.2.5. In accordance with the finding of Section 4.2.5, SC would be 

more economical in buffering the higher frequencies cj(t) than the Li-ion battery. In the present 

work, a Li-ion battery bank would be installed at the point of common coupling (denoted as PCC in 

Figure 6.1) between the microgrid and the external grid system. This battery bank is the centralized 

or community battery (CB) alluded to earlier. The SC is to buffer the higher-frequency IMFs of 

PNet,i(t), while the CB serves to buffer the lower-frequency IMFs and helps to regulate the power 

flows on the interconnected electrical link to the grid system. There is a strong economic advantage 

in adopting this centralized battery storage arrangement within the microgrid: due to the expected 

diversity between PNet,i(t) among the prosumers, and if each of the prosumers in the microgrid is to 

be equipped with its own battery energy storage system as in the HESS considered in Section 4.2.5, 

then the total storage capacity of the batteries within the microgrid would be higher than that of the 

CB, if the objective of using the centralized and decentralized battery schemes is to achieve the same 

level of buffering actions seen on the electrical link to the external grid. Indeed, the use of centralized 

battery storage in microgrids has received much research interest in recent years, see, e.g., [139-
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141] and a    grid-connected microgrids, each equipped with CB, has been on trial operations in 

Western Australia [4, 6, 142].  

Accordingly, and in the context of the conceptual microgrid shown on Figure 6.1, the PV and 

load demand of the ith prosumer in the microgrid will result in the net power flows PNet,i(t), viz.,  

, , ,( ) ( ) ( )Net i PV i LD iP t P t P t= −  (6.1)  

Adopting a similar approach as in Section 5.3, PNet,i(t) is then decomposed into its IMFs cj(t) 

and the power flows PSC,i (t) in the SC is controlled to buffer those cj(t) which have frequencies 

above the cut-off frequency fc. Hence, as shown in Figure 6.1, the remaining power flows PLF,i (t) 

emanating from the ith prosumer and flowing into the PCC would compose only of the lower 

frequency cj(t) of PNet,i(t).  PLF,i(t) is given by   

, , ,( ) ( ) ( )LF i Net i SC iP t P t P t= −  (6.2)  

Figure 6.3 shows a typical profile of PLF,i(t) and PSC,i(t) over 2 consecutive days in summer. The 

figure illustrates the impacts of weather and the daily load demand on PLF,i(t): the comparatively 

higher level of PLF,i(t) in the late morning and afternoon hours on Day 1, compared to that in Day 2, 

is because Day 1 is a sunnier day compared to Day 2. On the other hand, the profiles of PLF,i(t) in 

the evening hours of the two days differ significantly. This is because Day 1 is a weekday (Friday) 

whereas Day 2 is in a week-end (Saturday). This figure serves to illustrate the fact that PNet,i(t), and 

in turn PLF,i(t) and PSC,i(t), are governed by the weather and demand patterns. PNet,i(t) is beyond the 

control of the grid operator. Hence the challenge is to develop a suitable control strategy for the 

microgrid in the light of the seemingly uncertain and perturbing PNet,i(t). In Figure 6.3, high-

frequency buffering actions of the SC can be observed to be more prominent when there were cloud 

covers, and over the sunrise and sunset periods.  

The sum of PLF,i(t) from all the prosumers in the microgrid yields the total low-frequency 

power flows  PLT(t) into the PCC: 

,

1

( ) ( )
n

LT LF i

i

P t P t
=

=  (6.3) 

Let PCB(t) and PG(t) denote the power flows in the CB and in the interconnection link 

between the grid and the microgrid respectively. With the assumed positive directions of power 

flows shown in Figure 6.1 for PLT(t), PCB(t) and PG(t), PCB(t) is given by 

( ) ( ) ( )CB LT GP t P t P t= −  (6.4) 

Equation (6.4) clearly indicates that PCB(t) would be impacted by the power flows PG(t). Hence, 

the design of power flows control actions for the microgrid has to reflect the desired outcome for 
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the stakeholders as follows.  

 
Figure 6.3 PLF,i (t) and PSC,i (t) over two consecutive days in summer  

Consider the common scenario when the microgrid and the interconnected system are under 

the purview of the same entity, for example, in the case of the Kalbarri microgrid in Western 

Australia [4]. This microgrid, owned by the electricity utility corporation under the state 

government, is in a remote part of the state, and the interconnection link consists of a 140-km 

overhead feeder line. The line provides the only electrical link between the Kalbarri microgrid and 

the remaining part of the state utility network. As the PV generation and load demand in Kalbarri 

increase over the years, however, there will come a stage when the line needs to be upgraded in 

order to meet the demand. Upgrading the line can be a costly exercise. An alternative option could 

be to install a CB within the Kalbarri area to provide the necessary power buffering actions in the 

microgrid while keeping the existing link in service. The focus of the present work is to develop a 

methodology to analyse this option whereby in meeting the condition (6.4), and priority is to be given 

in utilizing the power transfer capacity of the existing link to the fullest extent. In this way, it is 

anticipated that the required energy storage capacity of the CB can be kept to a modest level in order 

to reduce the capital cost of the CB. Short-term dispatch planning for the microgrid is not the prime 

consideration, unlike that considered in, e.g., [103, 115]. Therefore, it is under such a scenario that 

the operational rules governing PCB(t) will be derived in the next section. As shall be illustrated in a 

latter section, in fact, the developed rules are sufficiently general to be applicable in alleviating the 

duck power phenomenon alluded to in Section 6.2.     

A less common scenario in Western Australia is when the microgrid and the link come under 

the ownership of different entities, although one has to bear in mind the deepening of the 

deregulation of the electricity market could accelerate the development of such a commercial 

arrangement. Under the separate ownership scenario, it may be attractive for the microgrid 

stakeholders to invest in larger-capacity PV and CB in the microgrid, so that the microgrid can 
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become more independent of the grid. The link is to provide backup support when, for instance, 

there is a prolonged period of low level of PV generation. This less likely ownership scenario would 

be omitted in the present work, however. 

6.4 Operational Strategy   

In this study, it is assumed that PG(t) is not directly controllable by the grid/microgrid operator. 

With the microgrid power flows regulated using the CB, it is envisaged that remote generation 

curtailment is not required in the microgrid. With the view to minimizing the capacity of the CB, it 

is assumed that the grid link is to have higher power transfer priority over the CB.  In this section, a 

new rule-based operational strategy is developed to determine PG(t) and PCB(t). 

6.4.1 Development of a Rule-based Operational Strategy for the CB  

Consider again the microgrid shown on Figure 6.1. The power flows PG (t) on the grid link 

would be subject to the general constraints as follows: 

max, max,n p

G G GP P P−   ; max, max,, 0n p

G GP P   (6.5) 

maxG
G

dP
P

dt
  (6.6) 

PG
max,p and PG

max,n are the maximum allowable power flows in the positive and negative 

directions on the link, and 𝑃̇G
max is the maximum acceptable power ramp rate applicable on the link. 

These constraints are imposed on PG (t) to reflect the desired outcome on PG(t): for example in [143], 

the ramp rate limit 𝑃̇G
max is set to be 10% of the microgrid PV generating capacity per minute. The 

constraints are imposed to ensure the microgrid operates within the power transfer capability of the 

link, or to ensure PG (t) complies with specific grid code requirements such as to alleviate the severity 

of the duck curve. This latter requirement shall be discussed further in the next subsection.  

Based on the constraints (6.5)-(6.6), the following rule-based control strategy governing PG 

(t) and PCB(t) can be established under the possible scenarios shown in Table 6.1. An explanation of 

the developed strategy is facilitated by making reference to Figure 6.4. 
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Figure 6.4. Sample curves of PLT (t), PG (t) and PCB (t) 

Figure 6.4 shows a sample plot of PLT (t), the applicable power limit PG
max,p 

  and power ramp 

rate limits ±𝑃̇G
max. As illustrated in the figure, before “a”, since the grid link has higher priority over 

the CB in terms of power flows control, therefore the target is to divert all of PLT (t) power flows to 

the link, i.e., PG(t) = PLT(t), because PG(t) satisfies both constraint conditions (6.5) and (6.6). This 

would be the strategy (1a) shown in Table 6.1 wherein PCB(t) = 0.  

Upon reaching “a”, however, it is observed that while 0 < PLT (t) < PG
max,p , |dPLT/dt| >𝑃̇G

max 

, it would not be acceptable to continue to let PG(t)  track PLT (t) as this would violate constraint (6.6). 

PG(t) is therefore to increase at the maximum power ramp rate allowable on the link, i.e., in the 

manner as depicted under scenario (2a) in Table 6.1. PCB(t) is controlled to make up the difference 

between PLT(t)  and PG(t), in accordance with (6.4). It is important to note that the control strategy 

listed in the 4th column of Table 6.1 under scenario (2a) is the only way to strategize PCB(t) in order 

to ensure that the amount of buffering energy provided by the CB is at the minimum.   

Between “a” and “b”, as |dPLT/dt| continues to exceed 𝑃̇G
max, PG(t) would continue to increase 

at the maximum ramp rate. At the instance “b” however, it is seen that |dPLT/dt| < 𝑃̇G
max. Although 

PLT (t) is still less than PG
max,p, it is not acceptable to set PG(t) =  PLT(t) at this instance because to do 

so, it would result in a sudden jump in PG(t) and constraint (6.6) would be violated. So, the prudent 

strategy is to continue to increase PG(t) at the maximum ramp rate. This is the rule (1b) in Table 6.1. 

PG(t) would soon intercept PLT(t) at “c”. At this point, PLT (t) < PG
max,p but as |dPLT/dt| > 𝑃̇G

max, and 

dPLT/dt is negative, it is scenario (2b), and strategy (2b) in the 4th column of Table 6.1 applies to 

control PCB(t). PG(t) would decrease at the maximum ramp rate until PG(t) intercepts PLT (t) at “d”. 

Wherein condition (1a) is satisfied and accordingly, strategy (1a) applies. From point “e” to point 

“f”, since PLT (t) < PG
max,p and |dPLT/dt| < 𝑃̇G

max, condition (1a) applies and therefore, PG (t)  is to 

track PLT (t)  because none of the constraints (6.5) and (6.6) is violated. No buffering power is required 
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from the CB. 

By similar reasoning, readers would be able to readily verify the remaining trajectories of PCB(t) 

and PG(t) shown on Figure 6.4. For example, 

• at “f”, condition (3a) applies and accordingly, strategy (3a) is applicable to PCB(t). And PG(t) 

is set to the maximum i.e., PG
max,p .  

• condition (4) occurs at “k” and strategy (4c) is applicable to PCB(t). 

Table 6.1. A summary of the target PG(t) and control strategies on PCB(t) under the various possible 

scenarios of PLT (t)   

Scenario ( )LTP t  
LTdP

dt

  Target PG(t)  Control strategy on PCB(t)   

1 
 

 max, max,( )n p

G LT GP P t P−     

 

maxLT
G

dP
P

dt
  1a) If maxG

G

dP
P

dt


, then 

( ) ( )G LTP t P t=  

1b) If maxG
G

dP
P

dt


and 0GdP

dt
 , 

then
max( ) ( )G G GP t P t t P t= − +   

1c)  If maxG
G

dP
P

dt
 and 0GdP

dt
 , 

then max( ) ( )G G GP t P t t P t= − −   

1a) ( ) 0CBP t =  

 

 

 

1b) 
max( ) ( ) ( )CB LT G GP t P t P t t P t= − − −   

1c) 
max( ) ( ) ( )CB LT G GP t P t P t t P t= − − +   

2 max, max,( )n p

G LT GP P t P−    

 

maxLT
G

dP
P

dt
  2a)  If  ,

0
L TdP

dt


 , then 

max( ) ( )G G GP t P t t P t= − +   

2b)  If ,
0

L TdP

dt


, then,

max( ) ( )G G GP t P t t P t= − −   

2a) 
max( ) ( ) ( )CB LT G GP t P t P t t P t= − − −   

 
2b) max( ) ( ) ( )CB LT G GP t P t P t t P t= − − +   

3 
 

max,( ) n

LT GP t P − or 

max,( ) p

LT GP t P  

 

maxLT
G

dP
P

dt
  

3a)  If ( ) 0LTP t  ,  then

max,( ) p

G GP t P=  

3b)  If ( ) 0LTP t  ,  then

max,( ) n

G GP t P= −  

3a) max,( ) ( ) p

CB LT GP t P t P= −  

 

 
3b) max,( ) ( ) n

CB LT GP t P t P= +  

4 max,( ) n

LT GP t P − or 

max,( ) p

LT GP t P  

 

maxLT
G

dP
P

dt
  

4a)  If ( ) 0LTP t  , then 

max( ) ( )G G GP t P t t P t= − +    

until max,( ) p

G GP t P=   

4b)  If ( ) 0LTP t  , then

max( ) ( 1)G G GP t P t P t= − −   until 

max,( ) n

G GP t P= −  

4c)  If ( ) 0LTP t  , then 

max,( ) p

G GP t P=  

 If ( ) 0LTP t  ,  max,( ) n

G GP t P= −  

4a)  
max( ) ( ) ( )CB LT G GP t P t P t t P t= − − −   

 

4b) 
max( ) ( ) ( )CB LT G GP t P t P t t P t= − − +   

 

 

4c) If ( ) 0LTP t  , then

max,( ) ( ) p

CB LT GP t P t P= −  

   If ( ) 0LTP t  , then

max,( ) ( ) n

CB LT GP t P t P= +  

Once PCB (t) has been determined based on these strategies, PG(t) can be readily obtained to satisfy 

(6.4). 

In applying the strategies, it must be emphasized again that the intention is to utilize fully 

the allowable power transfer capability of the grid link in buffering the perturbing PLT (t). The 
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capability is expressed in the form of constraints (6.5) and (6.6). At the same time, the CB is to 

provide the buffering power PCB(t) required to meet the power flows condition (6.4). In this way, 

the required energy storage capacity on the CB would be kept to a minimum. This problem 

formulation is sufficiently general as to provide a possible means to alleviate the issue of the “duck-

power”, as shall be discussed next.   

6.4.2 Application of the Rule-based Operational Strategy to Alleviate the Duck 

Curve Phenomenon  

Figure 6.5 shows the outcome of the application of the proposed rule-based control strategy to a 

microgrid over three summer days. Detailed information on this particular microgrid is given in 

Section 6.6. The total rating of the PV power generation in the studied microgrid is approximately 

74% of that of the maximum load demand in the microgrid. As the main interest of this investigation 

is pertaining to grid-connected microgrids, hence the PV generator ratings and load demand 

parameters have been deliberately selected so that even with the CB, the microgrid cannot be 

expected to be completely independent of the external grid system. There shall be power exchanges 

between the microgrid and the external grid system on a daily as well as on a seasonal basis. So, 

subject to the assumed power transfer constraints PG
max,p and PG

max,n of 0.5 p.u. and 0.2 p.u., 

respectively, on the interconnection link, the figure shows that over the summer days, the microgrid 

is exporting surplus power over the day-time period and is importing power over the evening-early 

morning period. It shows the rapid ramping up and down of PLT (t) are to occur approximately over 

the 6 am – 8 am and 5 pm – 7 pm periods, respectively. This, in turn, means that the conventional 

generators in the grid system would have to ramp down and then subsequently ramp up their 

generation within the 2-hour periods in order to meet the generation-demand balance. Depending 

on the types of conventional generators in service at the time, this can pose a serious challenge to 

grid operations in terms of generator unit commitments and dispatch planning of the grid network. 

As explained in Section 6.1, such difficulty due to the so-called “duck curve phenomenon” [144] 

has become very prominent and is of great concern to grid operators. One common way to obviate 

such difficulty is to limit the amount of the export power from PV-powered microgrids over the day-

time period through the lowering of the buy-back tariff rate for the exported power from the 

microgrid. In this case, it may become more attractive economically for the prosumers to store the 

surplus energy in the CB during the daytime hours and use the stored energy to meet at least part of 

the evening peak in the microgrid.  
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Figure 6.5 PLT (t), PG (t)  and PCB (t)  for three days in summer. Power flows are expressed on a 10 MW 

base.   

It is toward exploring this possible way of alleviating the “duck curve phenomenon” that the 

present work will    find ready application. This is to be achieved through the judicious setting of 

the power limits PG
max,p and PG

max,n, as follows. From Figure 6.5, it becomes obvious that by lowering 

of the set value of PG
max,p, it will cause a decrease in the amount of energy exported to the external 

grid system during the summer daytime hours. Instead, the energy will be diverted and stored in the 

CB. Conversely, the lowering of the value of PG
max,n   will also reduce the amount of energy imported 

from the grid during the evening-early morning period. The reduction in the imported energy will 

be made up by the corresponding increase in the energy discharged from the CB. It is through such 

a load-levelling mechanism that the duck curve phenomenon will be alleviated.  

In view of the seasonal differences in PPV (t), PLD (t) and hence Pnet (t), one could extend the 

adjustments in the setting of PG
max,p and PG

max,n to cover the different seasons. In Section 6.6, some 

numerical examples shall be included to illustrate such a possibility. 

6.5 Control Strategy for the SOC of the Centralized Battery 

As alluded to in Section 6.2.1, the EMD analysis of Pnet,i(t) shows the two most significant 

implicit modes are those due to the daily and seasonal variations in PPV,i(t) and PLD,i(t). In this 

section and consistent with the observed dominant modes, a CB control scheme shall be developed 

in which the SOC of the CB will be adjusted on a daily and seasonal basis. The purpose of the 

control scheme is to eliminate the persistent drift in the SOC of the CB, a phenomenon which shall 

be described shortly. And it ensures an improved utilization of the energy storage capacity of the 

CB over the seasons. Furthermore, it will be shown that the proposed SOC control scheme will 
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reduce the rate of the irreversible SEI film growth, a known major contributor to battery cell 

degradation in the CB.  

6.5.1 Persistent Drift in SOC 

 In the above discussion pertaining to the alleviation of the “duck power phenomenon”, it is in the 

daily PLT (t) of the microgrid which is referred to. As alluded to in the previous section, however, 

PLT(t) does vary from one day to the next. In Figure 6.5 for example, the amount of the surplus 

energy harnessed in the day-time of Day #1 and stored in the CB corresponds to the area prescribed 

by the positive portion of the PCB(t) curve of that day. This pertains to the charging of the CB. 

Conversely, the amount of the energy extracted from the CB over the day corresponds to the area 

prescribed by the negative portion of the PCB(t) curve of that day, and the CB discharges in these 

instances. Clearly, the total amounts of the charging and discharging energies are unlikely to be 

equal in any given day. Hence, the amount of the energy stored in the CB at the end of the day would 

differ from that at the beginning of the day. In Figure 6.5, it is seen that the amounts of the charging 

energy is higher than that of the discharging energy in each of the three summer days: so, there is a 

persistent increase in the amount of energy stored in the CB at the end of one summer day to the 

next. This phenomenon is reflected in Figure 6.5 in the form of a persistent and upward drift in the 

SOC of the CB. This is obviously an untenable situation because the energy storage capacity of the 

CB would have to be un-acceptably large, if the CB is to accommodate the increase in the stored 

energy over the whole summer season. Similar reasoning will also lead to the conclusion that there 

would be a persistent decrease in the amount of the stored energy in the CB at the end of one winter 

day to the next, which is again an untenable situation. 

The persistent drift in the SOC can be prevented by taking the appropriate control actions 

on the CB. In Section 6.2.1, it has been established that one of the two significant IMFs observed in 

PNet,i(t) corresponds to the daily mode. With this in mind, it is therefore proposed that corrective 

actions be taken to restore the SOC of the CB on a daily basis.  

The selection of the most suitable time window during which the daily corrective action on 

the SOC is to occur shall be discussed next. This SOC restoration strategy shall form one part of a 

new approach in the design of the CB control scheme, to be described in the subsequent sub-sections. 

6.5.2 Daily SOC Correction  

In the previous sub-section, it is proposed that corrective action be taken on a daily basis to prevent 
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the persistent drift in the SOC of the CB. Changes in the weather and the variations in load demand 

over the daytime mean that PLT (t) would vary, and often at high ramp rates at times of sun-rise and 

sun-set. The perturbing PLT (t), also often of large magnitudes and/or of high ramp rates, is also 

observed over the evening peak demand period. Therefore, the daytime and evening peak demand 

hours are not suitable periods for which to carry out the corrective actions on the SOC. This is 

because the corrective actions will require the generation of an additional power flows component 

in the CB, and the highly perturbing PLT (t) over these periods can only make it more challenging in 

determining the precise amount of this power flows component. In contrast, after midnight and 

continuously into the early morning hours, PLT (t) tends to be relatively steady and of much lower 

magnitude compared to that in the remaining part of the day. This observation is expected because 

of the absence of PPV,j (t) and the usually low level of load demand in the early morning hours. 

Indeed, this observation has been verified to be valid in the numerical examples used in this work. 

Therefore, the power flows component required to correct the persistent drift in the SOC of the CB 

can be determined with greater accuracy and confidence over this period. Henceforth, the time 

interval in which the corrective action is to be effected is termed the “SOC restoration period” and 

it shall be in the early morning period of each day. The SOC restoration period is to begin at T1 and 

is to terminate at T2 and typically, T1 and T2 are set as mid-night and 6 am respectively, of each day.  

An important assumption made in designing the daily SOC correction strategy is that the external 

grid system has a sufficiently large energy storage capacity to accommodate the simultaneous 

importing/exporting of energy from all the grid-connected microgrids over the SOC correction 

period. This grid-level storage can be in the form of a pumped-hydroelectric system which is well-

suited for the longer-term seasonal energy storage application. As the present focus is on the energy 

storage requirement of microgrids, such large-scale grid-level storage is outside the scope of this 

work.   

The control scheme to effect the daily SOC corrective action shall now be developed. The 

corrective action is in the form of an additional power component Pres(t) in the CB, over the interval 

(T1 , T2). Pres(t) is to be added to PCB(t) which is determined based on the rule-based operational 

strategy described in Section 6.4.1. Therefore, the total power flows in the CB, denoted as PCB,T(t), 

is   

, ( ) ( ) ( )CB T CB resP t P t P t= +  (6.7) 

Pres(t) is determined via (6.8) whereby Er,CB denotes the rated energy storage capacity of the CB. 

Within the SOC restoration period T1 < t < T2 and as expressed in (6.8), Pres(t) is the power flows 
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component required to restore the SOC of the CB to the pre-determined reference value SOCr  at T2. 

More shall be said about the setting of SOCr in the next sub-section. Also, within this period, the 

SOC of the CB at time t, denoted as SOC(t), can be computed via (6.9) using PCB,T(t) determined 

from  (6.7) and the monitored and therefore known SOC value at T1, SOC(T1).  

,

2

( ( ))
( )

( )

r CB r

res

E SOC SOC t
P t

T t

 −
=

−
 

(6.8) 

1

,

1

,

( )

( ) ( )

t

CB T

t T

r CB

P t dt

SOC t SOC T
E

=
= +


 (6.9) 

Finally, the resulting power flows in the interconnection link to the grid, PG,T (t), with the daily 

SOC restoration action effected, is  

, ( ) ( ) ( )G T G resP t P t P t= −      (6.10) 

Again PG (t) is obtained based on the rule-based strategy contained in Table 6.1.  

An example of the outcome following the successive daily SOC restoration scheme is shown in 

Figure 6.6. The same microgrid used to produce the results of Figure 6.5 was again assumed here. 

It can be seen that the persistent drift in the SOC has been eliminated. The figure also confirms that 

over the SOC restoration period, PLT (t) tends to be consistently of low level and it changes much 

less rapidly, compared to that seen over the daytime and evening peak demand periods. 

Consequently, it is observed that Pres(t) is fairly constant and starting at time T1, the SOC is restored 

to reach the pre-determined reference value SOCr  at T2 in an almost linear manner. For a SOC 

restoration period of 6 hours in this example, the maximum C-rate experienced by the CB in the 

form of the restoration power component Pres(t) is only 1/6 or 0.17. Since PCB(t) is also likely to be 

of low level over the SOC restoration period, one can therefore expect the total power loading 

PCB,T(t) on the CB, evaluated via (6.7), would be low over the SOC restoration period. This is a 

desirable outcome as the low C-rate loading on the CB is helpful in ensuring longer battery cell 

service life.  Of course, PCB,T(t)) and PG,T (t) shall be subjected to the respective constraints of battery 

power rating (Pr,CB)  and grid link power limits PG
max,p/ PG

max,n. 
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Figure 6.6. A sample of Pres (t), PLT (t), PG,T (t), PCB,T(t) and SOC(t) following the application of the daily SOC 

restoration strategy 

6.5.3 Dynamic Referencing Scheme of SOCr   

An augmentation to the daily SOC restoration discussed in the previous subsection pertains to the 

second prominent mode, that of seasonal variations in PNet,i(t) alluded to in Section 6.2. The 

simulation study, carried out to obtain Figure 6.6, was extended to cover a 2-year operation (2014-

2015) of the microgrid, and it produces the SOC profile of the CB shown on Figure 6.7(a). In this 

study, the reference value of the SOC for the CB (SOCr) had been arbitrarily fixed at 0.5: i.e., the 

daily SOC restoration strategy will ensure the SOC of the CB will be restored to 0.5 at T2 in each 

day of the two years. This is in line with the practice of restoring the CB SOC to a constant value 

daily, as reported in recent works [116] and [110]. The slow varying seasonal mode in SOC(t) is 

apparent in Figure 6.7(a), and the SOC appears to complete a full cycle in a year. Indeed, EMD 

analysis is performed on the SOC(t) and the IMF corresponding to this much slower dominant mode 

has been superimposed onto the SOC curve in Figure 6.7(a). In this microgrid example, the load 

demand is observed to be the highest in winter, whereas the harnessed PPV,i (t) is at the highest levels 

in summer. So, due to the abundant sunshine and longer daylight hours in the summer months, the 

amount of harnessed solar energy exceeds that consumed by the prosumers on most of the summer 

days. This has resulted in the CB being forced to operate above the SOC reference value SOCr in 

almost all summer hours. Conversely, the relatively lower amount of PPV,i (t) over a typical winter 

day is insufficient to meet the demand of the prosumer on that day. This has resulted in the CB being 
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forced to operate with its SOC at below the SOCr level in most instances over the winter months. 

The amount of the harnessed solar energy and the energy consumed by the prosumer each day is 

somewhat more balanced over the spring and autumn months: as a result, the SOC is more evenly 

spread about SOCr over these two transition seasons. This explains the SOC(t) profile shown on 

Figure 6.7(a) and the IMF tracks the slow seasonal variation mode.   

Most importantly, the above example highlights a distinct shortcoming of the daily SOC 

restoration scheme such as that proposed in [116] and [110], in which the SOCr is fixed to the same 

value regardless of the seasons. In such a fixed-SOCr scheme and as shown in Figure 6.7(a), the CB 

is forced to operate predominantly in the high SOC regime in the summer months, while in winter, 

the CB is to operate in almost all instances at a lower SOC level. This has resulted in an undesirably 

wide SOC swing and uneven distribution of the SOC over the long term. As the CB energy storage 

capacity has to be sufficiently large to accommodate the wide range of SOC excursions over the 

years, it can lead to the need for an unnecessarily large-capacity, and therefore expensive, CB.   

 

Figure 6.7 Profiles of the SOC(t) under daily SOC restoration: (a) fixed-SOCr ; (b) sinusoidal dynamic 

referencing of SOCr(t) 

A dynamic referencing scheme for the SOC will now be proposed, with the view to achieving a 

more equitable distribution in the SOC(t) range required to support the power buffering actions. The 

central point of this scheme is to deliberately adjust SOCr(t) in such a manner as to counter the 

seasonal mode, i.e., the proposed dynamic referencing scheme requires the SOCr(t) to be set 
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deliberately at relatively lower values in summer in comparison to that in winter. This will result in 

the lowering of the SOC profile over the summer and the subsequent rising of the SOC profile over 

the winter months, relative to that under the fixed-SOCr scheme. The shifting of the SOC profiles 

would be less pronounced over the spring and autumn transition seasons. In Figure 6.8, the dominant 

seasonal mode of SOC(t) denoted as SOCs(t), is drawn for both 2014-2015 and for 2016-2017. The 

sinusoidal form of the SOCs(t) variations over the 4 years is clearly apparent. An EMD analysis has 

also been carried out on PPV(t) recorded over 2014-2015 and the dominant seasonal mode is included 

in Figure 6.7. The dominant seasonal IMF mode SOCs(t) can be mathematically approximated by a 

sinusoidal function as: 

( ) Sin( )sSOC t t  = +     (6.11) 

Then, the SOC reference signal SOCr(t) needs to be set as a sinusoidal function in anti-phase to 

SOCs(t), as: 

( ) ( )r sSOC t m SOC t = −  +  (6.12) 

In (6.12), the modulation factor m is to be adjusted to limit the resulting SOC variations over the 

study period to the maximum acceptable level of depth of discharge of the battery. The dc-shift 

value μ is selected to ensure the minimum SOC level during the study period is at the desired 

minimum SOC value of the battery, SOCmin. This curve-fitting process will cause the resulting 

SOC(t) profile over the two years to be more evenly distributed and the excursions in SOC(t) are 

over a narrower range. An example of SOCr(t) obtained under such dynamic referencing scheme is 

shown on Figure 6.7(b): it shows the sinusoidal SOCr(t) is in direct anti-phase to the dominant 

seasonal IMF shown on Figure 6.7(a).  

In order to enhance the accuracy of the dynamic referencing scheme, SOCr(t) can be updated 

(say) every 6 months, to accommodate the impact of other environmental changes to SOCr(t).  
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Figure 6.8 Dominant seasonal mode SOCs(t) for 2014-2015, 2016-2017, that of PPV(t) in 2014-2015 and the 

fitted dynamic SOC reference on the for 2014-2015 SOCs(t) 

In the present work, the extra degree of design freedom offered by the dynamic referencing of 

SOCr(t) shall be taken advantage of to produce the following desirable outcomes: a more effective 

utilization of the energy storage capacity of the CB and a reduction in the rate of the battery cell 

degradation. These positive outcomes shall be analysed in greater detail in the next two Sub-

sections.   

6.5.4 A Statistical Analysis of the Impact of SOCr Setting on CB Energy Storage 

Capacity 

The profiles of the SOC(t) following the daily SOC restoration appear to be rather random. This is 

hardly surprising since the load demand and the harnessed PV power are stochastic in nature. 

Mathematically, the probability density function (pdf) of SOC(t) is one convenient way to describe 

quantitatively the spread of such a stochastic variable. An example of the pdfs of the SOC(t) profiles 

shown on Figure 6.8 are displayed on Figure 6.9. The PDFs are obtained by analysing the historical 

data of PLT(t) over two years, sampled at 1-min interval. The results are based on the fixed-SOC 

referencing and the dynamic referencing approaches. Consider firstly the pdf of the SOC obtained 

under the fixed-SOCr scheme. The pdf can be readily evaluated to yield the mean and standard 

deviation of the SOC(t) as 0.53 and 9.96×10-2 respectively. Also, the CB operates at a higher SOC 

level than SOCr for about 65% of the time in the two years, i.e., the CB tends to operate under the 

higher SOC regime than in the lower SOC regime. This is reflected by the longer “tail” in the pdf 

curve over the range SOC(t) > 0.53, the mean value.  
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Figure 6.9(a) also shows the corresponding pdf when the dynamic referencing scheme is 

applied to SOCr(t), with SOCr(t)  set in the manner shown in Figure 6.9(b). The mean and standard 

deviation of the SOC(t) under this dynamic referencing strategy are 0.45 and 9.27×10-2 respectively. 

The lower standard deviation value indicates the spread in the SOC(t) is now narrower, and the 

lower mean value indicates the CB operates at lower SOC range than that under the fixed-SOCr 

strategy over the two years.    

Next, it is well-known that deep discharge of battery cells can lead to permanent damage to 

the cells while operating the cells at a high SOC level over an extended period can also be 

detrimental to battery health [145]. Thus, for example, operating a Li-FePO4 CB at SOC levels 

below 0.2 or higher than 0.9 should be avoided. Accordingly, in the present work, let SOCmin denotes 

the SOC level below which the CB is deemed to be operating in the undesirably deep-discharge 

state. And the corresponding probability of the Li-ion CB operating at or below the SOCmin level is 

denoted by the symbol γ herewith. So in developing the control strategy for the CB, the aim is to 

ensure γ shall be less than a (small) pre-specified value, e.g., 0.005, to reflect a negligible risk of the 

CB entering the undesirable deep discharge operating regime. Also, a confidence level is pre-

specified, and the maximum SOC level (SOCmax) the CB shall reach this confidence level can be 

determined from the Pr(SOC) vs SOC pdf curve: the confidence level is equal to the area under the 

pdf curve integrated over the SOC range SOCmin ≤ SOC ≤ SOCmax. The developed strategy would be 

deemed satisfactory when, for example, SOCmax ≤ 0.9. In the present work, the specified confidence 

level is 0.99. 

 

Figure 6.9 (a) Probability density functions of the SOC under the fixed-SOCr and dynamic referencing of 

SOCr schemes. Also shown is the rate of SEI film growth vs SOC characteristic curve for LiFePO4 battery; 

(b) Probability density functions of the rate of SEI film growth under the fixed-SOCr and dynamic 

referencing of SOCr schemes  

So, with respect to Figure 6.9 (a), the probability of the cells operating up to SOCmin of 0.2 has 

been evaluated to be 0.004 under either the fixed-SOCr or the dynamic referencing SOCr(t) schemes. 



 

133 

 

Since the probability of the cells operating in the deep discharge state is below the pre-specified 

value of 0.005, both schemes are considered acceptable in terms of the risks of the cells operating 

in the deep discharge state. Also, from the respective pdf curves and at the specified 0.99 confidence 

level, it is seen that the SOCmax will reach the values of 0.88 and 0.75 under the fixed-SOCr and the 

dynamic referencing SOCr(t) schemes respectively. Since SOCmax in both schemes is less than 0.9, 

it is considered the strategies are satisfactory in this regard.  

However, if the CB under the dynamic referencing SOCr scheme were to operate up to the 

SOC level of 0.88, the same level as under the fixed-SOCr scheme, then it can be seen from the 

respective pdf curve in Figure 6.9(b) that the confidence level will be almost 1. This means that the 

CB will be able to buffer the perturbing PLT (t) successfully in almost all instances over the two 

years. Or view it in another way: to achieve the same confidence level of the successful buffering 

task under the dynamic referencing strategy for SOCr, one would require a CB of lower energy 

storage capacity than that needed under the fixed-SOCr scheme.    

A numerical example shall be included in Section 6.6 to illustrate the impact of SOCr setting on 

the required CB energy storage capacity.   

6.5.5 Impact of Fixed and Dynamic Referencing of SOCr on the Rate of SEI Film 

Growth 

Among the various factors affecting the degradation of Li-ion battery cells, the occurrence of the 

SEI film growth is considered to be the most dominant. It causes the loss of the cyclable Li ions 

which then reduces the effective storage capacity of the battery cells [72]. In addition, the SEI film 

growth results in an increase in the internal resistance of the cells. The development of the SEI layer 

is irreversible. From previous extensive research works [129, 146], it has been well established that 

there is a clear relationship between the rate of SEI film growth and the SOC of the cells. Although 

the CB operating temperature can also impact the SEI growth rate, it is most likely the CB shall be 

housed in a building in which the temperature shall be well-controlled. Hence, the impact of 

temperature variations on the SEI growth rate shall be neglected in this study. The relationship 

between the SEI growth rate and SOC can be expressed in term of the δSEI(SOC) vs SOC curve, such 

as that shown in  Figure 6.9 (a) for a LiFePO4 battery cell. δSEI(SOC) denotes the rate of change in 

the thickness δSEI of the SEI film. Although δSEI does increase with the SOC of the cell, it can be 

readily seen from Figure 6.9 (a) that within the mid-SOC range, typically between 0.2 – 0.65, the 

rate of the film growth δSEI(SOC) tends to be more modest compared to that at the higher SOC level. 
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Therefore, CB operating in the mid-SOC range would incur a slower increase in the SEI film than 

that when the CB operates at high SOC levels.  

Figure 6.9 (a) shows that for a given SOCi, one can readily obtain the corresponding rate of 

SEI film growth δSEI(SOCi). Furthermore, the probability Pr(SOCi) of the CB that operates at the 

level of SOCi can also be read directly from the pdf curve of the SOC. In this way, the pdfs of δSEI 

(SOCi), denoted as Pr(δSEI(SOCi)), can be constructed for the fixed-SOCr and dynamic referencing 

SOCr schemes. The pdf curves are shown on battery Figure 6.9 (a). With known Pr(δSEI(SOCi)) and 

δSEI (SOCi), one can readily calculate the expected rate of growth of the SEI film over the long term. 

The expected rate of growth of the SEI film, denoted as E[δSEI], is given by,  

,max
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SEI SEI

SEI SEI

SEI SEI SEI iE Pr SOC

 
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  
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(6.13) 

Since Pr( δSEI (SOCi)) at the SOC level of SOCi is precisely Pr(SOCi), one can rewrite (6.13) as 

follows. 
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SOC SOC
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=

=

=   
(6.14) 

In (6.14), E[δSEI] is calculated over the full range of the SOC over which the CB is to operate 

in, at the pre-specified confidence level. This SOC range corresponds to the full range of δSEI (SOC) 

over which the CB is to operate in at the same confidence level. Using (6.14), one can readily show 

the extent by which the proposed dynamic referencing scheme can have another advantage over the 

fixed-SOCr scheme: application of the dynamic referencing of SOCr(t) can result in reducing the 

rate of the film growth. This is achieved by ensuring the CB is to operate in more instances over the 

mid-SOC range where the rate of the SEI film growth is much lower than that at high SOC levels. 

Numerical examples shall also be included in Section 6.6 to illustrate this desirable outcome of using 

the dynamic referencing of SOCr scheme.  

6.5.6 A Summary of the Proposed Microgrid Rule-based Operational and CB 

SOC Control Scheme  

The aforementioned rule-based operational and SOC control strategy for the grid-connected 

microgrid can now be amalgamated to produce the block diagram shown in Figure 6.10. It shows 

that the CB control strategy consists of three parts: Real-time rule-based control, daily SOC 

correction and seasonal SOC restoration according to the dynamic referencing of SOCr(t).   
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The control strategy begins with the output of the EMD analysis of Pnet,i(t) of prosumer i and 

from which the low-frequency component (PLF,i (t)) of PNet,i (t), the power component of interest in 

the present work, shall be obtained. In “a”, PLF,i (t) from all the prosumers in the microgrid is 

summated to produce the total low-frequency power flows PLT(t) emanating from the microgrid. 

Whence, in “b”, the power flows on the grid-interconnection PG(t) and in the CB PCB(t) shall be 

determined using the rules contained in Table 6.1.  

The CB control scheme governing the control of the SOC of the CB follows. Firstly, in “c”, 

PCB(t), determined in “b”, is added to the SOC restoration power Pres (t) to form the total power 

flows in the CB, PCB,T(t). Noting that Pres(t) only comes into effect over the restoration period (T1, 

T2) of each day, a time-dependent logic switch has been included in “d” to reflect this function. 

Following the determination of PCB,T(t), SOC(t) is calculated using (6.9), and its value is 

compared with the SOC reference signal SOCr(t) shown in “f”. SOCr(t) is in turn generated from the 

processes shown in “e”. The SOC reference signal SOCr(t) is there to counter the slow but dominant 

seasonal mode generated from the EMD analysis of the historical data of SOC(t). So, in “e’, SOCr(t) 

is generated using a sufficiently lengthy historical data of PPV,i(t) and PLD,i (t) in the following way. 

Firstly in “e”, apply the EMD method, and the same processes of “a” and “b” blocks described 

earlier and together with (6.9), obtain SOC(t) under the fixed-SOC referencing scheme. Through the 

EMD analysis, the dominant seasonal mode of SOC(t) is obtained. Via the curve fitting process 

described in Section 6.5.3, obtain (6.12) and whence SOCr(t) is determined. The difference between 

SOC(t) and its reference SOCr(t) is then used to calculate Pres (t) via (6.8). Subsequently Pres (t) is 

added to PCB(t) at “c”. This completes the SOC control procedure for the CB: the SOC is 

manipulated on a daily basis to prevent the persistent drift in the SOC alluded to in Section 6.5.1, 

and the application of the dynamic referencing scheme is to adjust SOCr(t) to counter the seasonal 

mode, to obtain the desirable outcomes explained in Section 6.5.3. 

Unlike existing schemes pertaining to the control of grid-connected microgrid for the 

purpose of load shifting or in alleviating the impacts of the duck power phenomena, the proposed 

scheme does not require the forecasting of PLT(t). The need to forecast PLT(t), often on day-ahead 

basis, increases the computational burden and add complexity to the resulting control scheme. 

Instead of forecast, the present approach only needs to update of the dynamic referencing signal 

SOCr(t). The updating can be done off-line, as and when it is required, since the seasonal mode is 

slow-varying. For example, SOCr(t) can be refreshed at regular 6-monthly interval, using updated 

historical PLT(t). Furthermore, the proposed scheme does not result in overshoots or undershoots due 
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to the feed-forward control and the power switching used in the proposed control strategy. Due to 

the elimination of high frequency transients by the prosumer house-based SC and the control limits 

applied on the rate of change of grid power, the proposed control system is deemed not to cause any 

instability. The proposed scheme involves relatively simple control actions and is therefore deemed 

to be more robust in comparison with existing schemes proposed in [147].  

 
Figure 6.10 Procedure to obtain the SOC control strategy for the community battery 

6.6 Illustrative Examples 

The application of the proposed rule-based operational strategy on the grid-connected microgrid, 

the daily restoration and dynamic referencing of the SOC of the CB shall be illustrated via numerical 

examples. For the purpose of illustration, it is sufficient to consider a fictitious microgrid servicing 

three aggregated groups of residential, commercial and industrial prosumers. The electricity usage 

pattern for the three groups of prosumers shall be that given in [148], [149, 150] and [151, 152] 

respectively, and the respective power ratings of the groups are 7.2 MW, 5 MW and 1.2 MW, 

yielding the total rating of the loads in the microgrid as 13.4 MW. Also, the total ratings of the roof-

top PV generators in the microgrid of the three prosumer groups are 4.8 MW, 4 MW and 1.2 MW 

respectively, giving the total PV rating in the microgrid as 10 MW. The harnessed solar power by 

the PV generators was obtained by scaling up the PV power measured at the authors’ laboratory 

[122]. The laboratory allows the measured PPV (t) to be downloaded at suitable sampling rates. From 

the re-constructed PPV,i(t) and PLD,i (t), the simulation platform with the different types of prosumers 

is set up in the MATLAB environment where data of PPV,i(t) and PLD,i(t), i = 1, 2 and 3, are fed to 

readily obtain PNet,i(t) of each prosumers. Following the application of the EMD analysis of PNet,i(t), 
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the low-frequency components of PNet,i(t) can be extracted to produce PLF,i(t). Summation of PLF,i(t) 

yields PLT (t). The statistics analysis is also performed using the MATLAB simulation package. The 

problem formulation described in Section 6.3 is sufficiently general as to be applicable for the study 

of the following scenarios. 

6.6.1 Base Case 

The microgrid is assumed as connected to the grid system through an overhead line with a power 

rating of 5 MW. Furthermore, under the grid code, the maximum ramp rate (expressed in MW/min) 

on the line is 10% of the total PV generator capacity of the microgrid. Accordingly, PG
max,p = 5 MW, 

-PG
max,n  = - 5 MW and 𝑃̇G

max = 1 MW/min. In [116] and [110], the practice of CB control is to 

restore the SOC of the CB daily to a fixed reference value. This existing approach of SOC 

management shall be included in this investigation and is denoted as the Base Case study. The 

outcome of this case study shall be used for comparison with that obtained based on the proposed 

approach described in the earlier sections. By applying the rule-based operational strategy described 

in Section 6.3 on PLT (t), the power flows PG (t) and PCB (t) were obtained. Whence SOC(t) of the 

CB can be obtained by following the procedure shown on . In fact, the pdf curve of the SOC(t) over 

a 2-year period is that shown on  Figure 6.8(a) under the fixed-SOCr  strategy whereby the reference 

value SOCr had been arbitrarily set as 0.5. The corresponding cdf curve had been generated from 

the pdf curve and it is as shown on Figure 6.10.  In this case study, the same practice as in Section 

6.5.4 is adopted, i.e., SOCmin of 0.2 and the confidence level of 0.99. From the zoomed-in plot of 

the cdf curve, it can be seen that γ, the probability of SOC(t) is within the range 0 < SOC(t) < SOCmin, 

is 0.0043 and is below the set-threshold value 0.005. Hence the risk of the CB operating under the 

deep discharge state is considered acceptable. At the 0.99 confidence level, the zoomed-in plot of 

the cdf curve shows that at the cdf value of 0.99+0.0043 or 0.9943, the CB reaches the SOC value 

of 0.8538, i.e., SOCmax = 0.8538: the probability of the CB operating within the range 0.2 ≤ SOC(t) 

≤ 0.8538 is 0.99. This set of results was obtained when the energy storage capacity Er,CB  of the CB 

was set at 31 MWh. 

Next, based on the corresponding pdf of the rate of SEI film growth shown on  Figure 6.8(b) and 

by applying (6.14), it was determined that the expected rate of SEI film growth, E[δSEI], is 0.1377 

µΩ/m2/sec. The column under the “Base Case” in Table 6.2 summarizes the set of results explained 

above.  
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6.6.2 Impact of the Dynamic Referencing of  SOCr on the Rate of SEI Film Growth 

The dynamic referencing of SOCr(t) can be effected in the manner as explained in Section 6.5.3. 

So, with PG
max,p and  -PG

max,n  kept at the same levels as in the Base Case, the intention of Study 2 is 

to assess the impact of the dynamic referencing of SOCr(t) on the rate of the SEI film growth in the 

CB. The outcome of the study is summarized under the column “Study 2” in Table 6.2 whereby 

SOCr(t) is automatically adjusted to track the seasonal dynamic referencing curve shown on Figure 

6.6(b). From the pdf obtained from the resulting SOC(t) of the CB, the respective cdf curve for this 

case was also generated and it is included on Figure 6.10. From this figure, it is seen that compared 

to the Base Case, the dynamic referencing strategy has resulted in a lower mean value of the SOC 

and the left-shifting of the cdf curve also signifies that the CB is now operating over a SOC(t) range 

where the rate of the SEI film growth is more modest.  

 

Figure 6.11 CDF of the Li-ion battery SOC based on the fixed-SOCr (Base Case) and dynamic referencing 

strategies of SOCr  (Case Study 2).  

Table 6.2. Summary of the results obtained under the Base Case and other case studies:  

 Base Case 
(Fixed 

SOCr) 

Study 2 
(Dynamic 

SOCr)* 

Study 3 Study 4 Study 5 Study 6 Study 7 

PV generator rating 10 MW 10 MW 10 MW 10 MW 10 MW 11 MW 11 MW 

Settings for PG
max,p and PG

max,n 5 MW 
fixed 

5 MW 
fixed 

Variable 
(Table 6.3)  

Variable 
(Table 6.3) 

Variable 
(Table 6.3) 

Variable 
(Table 

6.3) 

Variable 
(Table 

6.3) 

SOC reference SOCr 0.5 (Fixed) Dynamic 0.5 (Fixed) Dynamic Dynamic Dynamic Dynamic 

𝛄 0.0043 0.0015 0.0043 0.0029 0.0047 0.0031 0.0042 

SOCmax   0.8538 0.7346 0.8782 0.7592 0.8292 0.8754 0.9050 

CB Rated Capacity (MWh) 31 31 31 31 26 32 30 

Expected rate of growth of 

SEI(µΩ/m2/sec) 

0.1377 0.1169 0.1181 0.1129 0.1166  0.1140 0.1168  

Expected rate of SEI film growth 

relative to that of the Base Case 

- 0.84 0.85 0.82 0.85 0.83 0.85 

*The term “Dynamic” denotes SOCr is automatically adjusted to track the seasonal dynamic referencing curve SOCr(t) shown on Figure 6.7 (b)  
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As a result, the dynamic referencing scheme has produced a much reduced expected rate of SEI 

film growth at 0.1169 µΩ∕m2/sec. This is some 16% reduction in the rate of film growth as compared 

to that obtained in the Base Case for the same CB rated storage capacity of 31 MWh. Also, at the 

same 0.99 confidence level as in the Base Case, SOCmax is seen to reduce to 0.7346, as indicated in 

Table 6.2. The reduction in the rate of SEI film growth is an encouraging development as a 

consequence of applying the seasonal dynamic referencing scheme: the CB can be envisaged to 

sustain for longer service life.    

6.6.3 Impact of the Flexible Setting of PG
max,p and -PG

max,n  in Alleviating Duck-power 

Phenomenon 

The impact of the settings of PG
max,p and -PG

max,n on the CB will now be illustrated. As explained 

in Section 6.3, one could institute a more flexible adjustment in PG
max,p and -PG

max,n  in accordance 

with the seasons in order to achieve certain grid export/import objectives. For the same fictitious 

microgrid with the 5 MW capacity limit applicable on the overhead line, it is assumed as necessary 

to alleviate the duck-power phenomenon alluded to in Section 6.2. This objective can be achieved 

by discharging more of the stored energy in the CB to meet (at least partially) the evening peak 

demand in summer. So in Study 3, a lowering of the value of -PG
max,n from - 5 MW to (say) -2 MW 

was attempted in the summer months. Furthermore, since the harnessed PPV (t) would be expected 

to be lower in the daytime in winter than that in summer, it is desired to direct more of the harnessed 

PPV(t) to the CB during the winter daylight hours. Accordingly, it is proposed to lower PG
max,p from 

5 MW to 3 MW over the winter months. By similar reasoning, PG
max,p and -PG

max,n  were adjusted to 

some intermediate values for the transition seasons of spring and autumn in this study. The final 

adjusted PG
max,p and -PG

max,n  for the seasons are summarized in Table 6.3. The detailed plots of the 

various power flows, seasonal dynamic referencing curve for SOCr(t) and the pdf curve of SOC(t) 

corresponding to Study 3 are as shown in  Figure 6.5, Figure 6.6(a) and Figure 6.8 respectively.  

Since SOCr has been fixed at 0.5 in the Base Case, so the impact of the flexible setting of PG
max,p 

and -PG
max,n  can be made by comparing the results of the Base Case with that of this study.  

Table 6.3. PG
max,p and -PG

max,n settings for the seasons in Studies 3-7 

 Summer Autumn Winter Spring 

PG
max,p(MW) 5 4.8 3 4.5  

-PG
max,n(MW) -2 -4 - 5 - 4 

 



 

140 

 

 Based on the outcome of the simulation, the expected rate of SEI film growth, E[δSEI], was 

determined to be 0.1181 µΩ∕m2/sec. Compared to the Base Case, this is an almost 15% reduction in 

the rate of the SEI film growth. Further evaluation has shown that, compared to the Base Case, the 

flexible setting of PG
max,p and -PG

max,n  has resulted in an annual reduction of some 176 MWh in the 

grid exported energy and some 225 MWh in grid imported energy. This means that a higher amount 

of the stored energy obtained from harnessed PPV(t) in the microgrid has been used to meet the 

microgrid evening peak demand. In turn, it shows that there is an increased level of independency 

of the microgrid from the interconnection. Thus, this study serves to illustrate that the duck power 

phenomenon can be alleviated through this approach of judicious adjustments of PG
max,p and -PG

max,n 

over the seasons.  

From the results of Section 6.5.5, it is known that the rate of the SEI film growth can be reduced 

by using the dynamic SOC referencing of SOCr(t). So, Study 4 was carried out by combining the 

strategy of varying PG
max,p and -PG

max,n  settings in the manner shown in Table 6.3  and the dynamic 

referencing of SOCr(t), as was done in Study 2. The detailed plots of the various seasonal dynamic 

referencing curve for SOCr(t) and the pdf curve of SOC(t) corresponding to the Study 4 are shown 

Figure 6.6(b) and  Figure 6.8 respectively.  The expected rate of SEI film growth E[δSEI] is seen to 

reduce further to 0.1129 µΩ∕m2/sec, which is some 18% less than that obtained in the Base Case.  

6.6.4 Impact of Dynamic Referencing of SOCr(t) and Flexible Seasonal Setting of 

PG
max,p and -PG

max,n  on Required CB Capacity 

In view of the above encouraging developments, the next attempt was to explore the possibility 

of reducing the energy storage rating of the CB required to undertake the power buffering task. With 

the same seasonal settings of PG
max,p and -PG

max,n  and the seasonal dynamic referencing of SOCr(t)  

as in Study 4, the column under Study 5 of Table 6.2 shows that a reduction of the energy storage 

rating of the CB to 26 MWh has resulted in the expected rate of SEI film growth to 0.1166 

µΩ∕m2/sec. This storage capacity is needed to meet the same confidence level of 0.99, and it yields 

SOCmax of 0.8292. As indicated in Figure 6.7(b), the proposed dynamic SOC referencing method 

has led to the narrowing of the SOC swing range and in Study 5, the CB of lower storage capacity 

of 26 MWh can still be able to provide the buffering actions with the same confidence level as in 

Study 4.  Comparing the outcomes of study 3 and study 5, it can be concluded that with the 

seasonally adjusted  PG
max,p and -PG

max,n, some 16% reduction in the required CB rated capacity is 

possible when the proposed dynamic referencing of SOCr(t) is applied, instead of adopting the fixed-
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SOCr strategy described in [116] and [110], and still be able to achieve similar expected rate of SEI 

film growth. 

Hence, Studies 3-5 serve to demonstrate that there is considerable advantage in adopting flexible 

setting of PG
max,p and PG

max,n in accordance to the seasons, in terms of slowing down the SEI film 

growth through the dynamic referencing of SOCr, and the possibility to arrive at a more modest CB 

energy storage capacity design.       

6.6.5 Sensitivity studies  

The purpose of Studies 6 and 7 in Table 6.2 is to assess the sensitivity of the CB design to increases 

in PV generation. For this purpose, the total PV generation rating in the microgrid is increased by 

10%, without any corresponding increase in the rating of the loads. Study 6 shows that if the CB 

storage capacity is increased to 32 MWh, the expected rate of SEI film growth is 0.1140 µΩ∕m2/sec, 

a level which is below that of Study 5. To arrive at a similar rate of SEI film growth as in Study 5, 

the CB storage capacity can be reduced to 30 MWh, as shown in Study 7. Therefore, it is observed 

that the 10% increase in the PV generator-rated capacity requires some 15% percentage increase in 

the rated CB storage capacity, in order to produce the same rate of SEI film growth.  

All the studies in Table 6.2 were carried out using the recorded data of PPV(t), scaled from the 

harnessed PV power measured in the authors’ laboratory in 2014-2015. An additional sensitivity 

study had also been carried out based on PPV(t)  recorded in 2016-2017. The intent of this study is 

to assess the sensitivity of the designed CB to differences in the PPV(t) data-set.  The results of this 

additional study can be compared to that of Study 5, in the form of the cdf of the SOC of the CB for 

the two different 2-year periods. Although the detailed results have not been included in this 

manuscript due to space consideration, it can be reported that the cdf of the SOC of the CB for 2016-

2017 is almost identical to that of 2014-2015. Therefore it can be concluded that the designed CB 

operating under the proposed control strategies will be able to provide the same confidence level in 

the successful buffering of the power flows at the PCC between the microgrid and the external grid 

connection.  

6.7  Conclusions  

A new SOC control scheme for centralized battery in a microgrid of high PV penetration level has 

been developed in this chapter. The intention is to reduce the rate of the SEI film growth in the Li-

ion battery cells while avoiding deep discharge and therefore, to enhance the service lifetime of the 
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battery bank. The proposed seasonal dynamic referencing of the SOCr(t) scheme, based on the 

identified predominant daily and seasonal implicit modes of oscillations, has been shown to be 

effective in reducing the rate of the SEI film growth, thus alleviating a major contributor to the 

degradation of the battery cells. Moreover, the proposed scheme has been able to reduce by a 

considerable percentage the required storage capacity of CB compared to the fixed-SOCr referencing 

scheme contained in many existing CB control schemes. Furthermore, by allowing the flexible 

setting of PG
max,p and -PG

max,n  in accordance with the seasons, more effective utilization of the CB 

energy storage capability is shown to be readily achievable. As the focus of this work is not on the 

short-term dispatch planning of the microgrid, the proposed rule-based operational strategy does not 

require forecasts of the PV generation and load demand. Hence the proposed control scheme is 

comparatively simpler and more robust. Numerical examples show that with the proposed rule-

based approach, the grid power import/export can be controlled such that the proposed CB control 

scheme can assist in achieving a higher level of independency in term of meeting the energy demand 

of the microgrid, and it can alleviate potential problems such as the duck power phenomenon 

observed in the daily operation of the microgrid.  

Notwithstanding the above encouraging outcomes, further work is needed to investigate the 

inclusion of other potential cell degradation factors e.g., the impacts of the magnitudes of 

charging/discharging currents on the service lifetime of the CB.  
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CHAPTER 7. Development of a Degradation-Conscious Adaptive 

Control Strategy for the Intra-Day Operation of Community 

Battery 

7.1  Introduction 

In the previous chapter, the study was when the buffering action of the existing grid link is prioritized 

over that of the CB. The aim is to fully utilize the power flow capacity of the grid link, and the CB 

is to supplement the link in buffering the fluctuating PLT(t). In this way, the required capacity of the 

CB can be reduced. The significant increase in solar installations in recent years, encourages to re-

examine the role of the grid link. Indeed, to reduce transmission losses and to exclude the 

requirement of costly upgrades of transmission lines to remote communities, the modern microgrid 

with distributed generation has become increasingly independent from the existing conventional 

power system, i.e., in making the microgrid less dependent on the grid link when meeting the 

electricity demand of the prosumers in the microgrids [153]. In view of the above, the focus of this 

chapter is to re-examine the role of the CB, and to develop the appropriate control strategy. The 

chapter assumes the primary role of CB is to buffer PLT(t) while the grid link is to supplement the 

actions of the CB in the intra-day operations of the microgrid. 

Furthermore, the previous planning study has considered the SEI growth of Li-ion battery 

only with respect to the SOC of the CB. The magnitudes of the charging/discharging current are 

assumed to be relatively low and hence, the impact of the battery currents on the SEI growth has 

been neglected. In this chapter, the effect of the C-rate of the CB shall be included in defining the 

charging and discharging strategies for more precise evaluation of the SEI growth. Using this 

comprehensive ageing model, it is aimed to operate CB to attain lowest SEI growth.  
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7.2 Preliminaries 

7.2.1 Seasonal Variations of Net Power of Microgrid 

 

Figure 7.1. A Schematic Diagram of Grid-connected Microgrid 

As explained in CHAPTER 4 to 6 and re-introduced in the schematic diagram Figure 7.1, the net 

power flows Pnet,i(t) from the ith prosumer in the microgrid is a highly stochastic quantity due to the 

perturbing PPV,i(t) and PLD,i(t). It is also clear from these chapters that the highest levels of the 

perturbing energy in Pnet,i(t) reside in the lower frequency components, i.e., in the higher order IMFs, 

of Pnet,i(t). Also, it was shown that the high- and low- frequency perturbations in Pnet,i(t) can be more 

economically buffered by the SC and electrochemical battery respectively. The cut-off frequency 

segregating the low- and high-frequency bands is of the order of 10-2 Hz.  

As the focus is on the intra-day power flows control of the microgrid, it is these lower 

frequency power perturbations in Pnet,i(t) which are of interest in this chapter. The low frequency 

perturbing power flows from the ith prosumer is denoted as PLF,i(t) and the summation of all PLF,i(t) 

in the microgrid produces the net power flows PLT(t) shown in Figure 7.1.  

PLT(t) is the addition of two power flows components: that in the grid link (PG(t)) and that 

in the CB (PCB(t)).  As explained in the Introduction, the primary aim of the present study is to 

successfully buffer PLT(t) by placing higher priority on PCB(t), while PG(t) is to provide the 

supplementary buffering actions. Through this prioritization of the CB buffering actions over that 
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of the grid link, the objective is to reduce the amount of grid daily import/export power flows 

through the grid link, and thus realize a higher level of grid-independency of the microgrid, in 

comparison to the strategy developed in the previous chapter. 

Figure 7.2 shows a typical daily profile of PLT(t) over the four seasons. According to the 

figure, there is no readily identifiable trend of PLT(t) across four seasons. Over the daylight hours, 

PLT(t) is considerably smoother in the summer day compared to that in the transitional seasons of 

spring and autumn. In the literature [154] , it has been reported that there is a tendency to have more 

cloud movements during spring and autumn and hence, PPV,i(t) would be accounted with more non-

deterministic variations over these transitional seasons. These relatively fast variations in PPV,i(t) are 

reflected in PLT(t) in the daytime hours over the four seasons, as evidenced in Figure 7.2. This 

observation is in line with the outcome of the statistical analysis of the seasonal PLT(t) contained in 

CHAPTER 5. As given in Section 5.4, there are considerably lower levels of power perturbations 

in summer, as compared to the other seasons.  

 

Figure 7.2. A sample of daily profile of PLT(t) in four seasons 

In addition, the time duration of positive PLT(t) varies across different seasons. During 

summer, this is 6.30am-6.00pm while during the winter this is 9.30am to 3.30pm. Positive PLT(t) 

can only start a short while after the sunrise and it can only end a short while before the sunset, 
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depending on the relative magnitudes of the PV generation and the prosumer loads at the time. 

Hence, the 6.30 am and 6 pm time tags correspond to the approximate instances of the sun-rise and 

sun-set hours of the particular summer day. Similar reasoning applies to the other seasons. Since the 

sun-set and sun-rise hours are readily available a day ahead, it will be shown in latter sections that 

this information shall be made use of when designing the adaptive CB control strategy. 

Another noteworthy observation from Figure 7.2 is daily positive and negative areas of PLT(t) 

are unequal during four seasons. In summer, there is a surplus of energy, whereas in winter, there is 

an expected deficit of energy. It therefore signifies that the microgrid is a net energy exporter for 

this summer day. Conversely, it can be readily seen that in the particular winter day shown in Figure 

7.2, the microgrid is a net energy importer for the day.  

In the absence of the CB, if this variable PLT(t) of the microgrid is fed to the grid which will 

raise certain control issues for the system operator. Particularly during summer, daytime grid export 

would be problematic raising the duck power issue. Even during the autumn and spring, as can be 

seen from Figure 7.2 the highly fluctuating daytime PLT(t) would not be acceptable to serve grid 

ramp rate constraints. In addition to these grid requirements, from the perspective of the microgrid 

it is economically viable to store this daytime surplus energy of PLT(t) as much as possible to serve 

the night time energy including peak demand. This makes the microgrid more independent from the 

main grid. Therefore, real time control of the PCB(t) to meet such successful buffering of PLT(t) is 

required. If the forecasting is to be used for this task as in [81] and [118], it will add unavoidable 

complexity to the control and energy management of the CB. 

In view of the above considerations there may be strategic as well as economic advantages to 

store as much as possible the surplus daytime energy in the CB and use the stored energy to meet 

part, or all, of the electrical energy needs in the microgrid during the night/early morning interval, 

including that of the evening peak demand. This will result in the microgrid being made less 

dependent on the grid link. Towards meeting this objective, proposing a simple adaptive control of 

the PCB(t) is to be developed in this chapter. This will further enable to meet successful buffing of 

stochastic and uncertain PLT(t) while respecting grid constraints while resulting in a modest SEI 

growth of CB. 

7.2.2 Li-ion battery degradation due to SEI growth 

Different types of ageing phenomena continue to degrade the performance of Li-ion battery as the 

usable capacity reduces with time and usage. As discussed in the literature, among the wide range 



 

147 

 

of degradation phenomena, it is considered the SEI growth and Li-plating are the most dominant 

aging mechanisms. Li-plating is mostly dominant towards the end of life of the battery while SEI 

growth dominates the rest of the methods during most of the operating period of the Li-ion battery 

[73]. Therefore, in this work, discussion is limited to the SEI growth as the predominant degradation 

phenomenon during Li-ion battery operation, bearing in mind that other degradation factors can also 

affect to the lifetime of the battery. 

In CHAPTER 6, the rate of the SEI film growth (δ) has been considered as being impacted by 

the SOC of the battery cells. In the present investigation, this relationship has been extended to 

include the impact of the cell current on the rate of SEI film growth as well. The relationship between 

the SEI growth vs SOC and cell current is shown in Figure 7.3 for LiFePO4 cathode chemistry. This 

is developed based on the literature that detailed in [155]. The detailed mathematical expressions 

pertaining to the relationship are given in Appendix D. Similar surface plots have also been observed 

in [146] and [156], thus assuring that the general trends of the curve would be similar even the 

parameters of the considered Li-ion battery vary for the other chemistries like LiNiCoMnO2 [157]. 

 

Figure 7.3. Surface plot of SEI film growth rate verses cell current and SOC for Li-ion battery of LiFePO4 

cathode chemistry 

The surface plot of Figure 7.3, indicates that the positive direction of the current corresponds to the 

charging current of CB. The depicted surface plot generally demonstrates a convex relationship 

between the SEI growth rate and the SOC particularly in the SOC range from 0.5 to 1 suggesting 

that the higher SOC ranges are associated with higher SEI growth rates. The salient features of above 
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surface plot can further be described using the series of plots shown in Figure 7.4 and Figure 7.5 at 

various charging and discharging C-rates, respectively. In Figure 7.4, the direction of the arrow 

indicates the increase in the charging current while the zero-charging current denotes the state in 

which the battery is in the resting stage. As the charging current increases, the SEI layer grows faster 

with higher growth rate. This behaviour is very significant particularly in the higher SOC range. In 

contrast, during the operation in the lower SOC range, the effects of the charging current magnitude 

(C-rate) on the SEI growth becomes rather less significant as SEI growth curves are quite close to 

each other in Figure 7.4. Notably, even with zero charging current, the corresponding non-zero δ 

indicates that even in the resting state, the SEI film layer continues to grow. This occurs because the 

neutral lithium (i.e. lithium ion with an electron) in the electrode reacts with the electrolyte at the 

electrode-electrolyte interface, and this leads to the presence of the side-reactions current. 

 

Figure 7.4. SEI film growth rate vs SOC of Li-ion battery cell under various charging C-rates 
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Figure 7.5. SEI film growth rate vs SOC of Li-ion battery cell under various discharging C-rate 

Interestingly, in contrast to the increase in charging current, as shown in Figure 7.5 during 

discharging operation, when the discharge current C-rate increases, δ becomes lower. In other 

words, discharging with higher C-rate decelerates the SEI film growth. This observation in the 

asymmetry in the charging and discharging operations is in accord with the results reported in the 

recent experimental study [74]. Further explanation of this asymmetrical behaviour is given in [158]. 

The higher charging currents increase the potential of the negative electrode. This elevated negative 

potential facilitates the Li-ion intercalation which will then increases the interaction with electrolyte 

leading to increasing the SEI growth. However, during discharging, the potential of the negative 

electrode decreases as lithium ions move from the negative electrode to the positive electrode. The 

loss of Li-ion inventory in negative electrode leads to decelerate the formation of SEI growth. This 

asymmetry in SEI growth between charging and discharging currents can be useful to define the 

appropriate charging/discharging strategies of the CB to minimise the degradation effect. In 

summary of the above discussion of SEI growth of Li-ion battery, the following key points are the 

highlighted. 

1. During CB charging operation, the rate of the SEI film growth increases with the charging 

current C-rate;  

2. During CB discharging operation, the rate of the SEI film growth rate decreases with the 

increase in the discharging current C-rate. 

A more detailed analysis of this charging/discharging approach shall be presented in Section 7.3.2 

based on these observations.  
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7.3 Analysis  

The last section has highlighted the several distinct characteristics of PLT(t) over the seasons and the 

highly nonlinear relationship between the rate of the SEI film growth in the Li-ion CB with that of 

the SOC and magnitudes of the CB current. The focus of this section is to analyse in greater detail 

these phenomena.  

7.3.1 Energy contents in PLT(t)  

Consider the daily profile of PLT(t) shown in Figure 7.6. Since PV generation is the only source of 

power generation within the microgrid, PLT(t) can be positive only during sunrise (TSR) and sunset 

(TSS). During this period too, PLT(t) can be negative whenever, the total generation falls below the 

total consumption, ignoring the minor of high frequency components. The first instance the PLT(t) 

becomes positive during the daytime is a short time after TSS. Similarly, the last instance PLT(t) is 

positive during the daytime is another short time before TSS. In developing the adaptive charging 

control strategy, these small-time differences are ignored. Hence TSR is taken as the time PLT(t) 

becomes positive for the first time in the day and TSS is taken as the time PLT(t) becomes positive for 

the last time in the day. The motivation behind the assumption is TSR and TSS are readily known a 

priori. Therefore, without any forecasting the times can be readily calculated using known equations. 

Also shown in the figure are T1 and T2 which govern, as in CHAPTER 6, the starting and 

end time of the SOC restoration period for the CB. Also, from CHAPTER 6, it has been concluded 

that a suitable SOC restoration period for the CB is generally from close to midnight to TSR of the 

next day. This is because over this period, variations in PLT(t) tend to be small and therefore, there 

is more certainty the restoration actions can be more accurately calculated. So, T1 and T2 are treated 

as settable design parameters in the present study. To be able to do so will allow an extra degree of 

freedom when strategizing the CB operations. For convenience, in the rest of this study, the interval 

between TSR to TSS is denoted as the daytime, and that between TSS and T1 is denoted as nighttime.  
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Figure 7.6. Demarcation of CB daily operating regimes into the daytime, nighttime and SOC restoration 

periods 

As presented in CHAPTER 6, the “duck power” phenomenon is one of the most critical operating 

conditions for the grid system as the daytime oversupply of excess PV power to the grid causes 

system stability issues. Therefore, one possible way to alleviate the duck power would be to divert 

as much as possible the surplus power from the microgrid to the CB. The stored energy in the CB 

can in turn be used to meet the demand in the night-time hours. Thus, in this manner, it also decreases 

the level of dependency of the microgrid on the grid link. To achieve the energy independency for 

the microgrid, it would be most desirable to have sufficient stored energy in the CB to support the 

microgrid power demand in the evening hours between T1 and T2. 

Since the objective is on developing control strategy for the intra-day operation of the CB, 

the following analysis is therefore on the daily behavior of the microgrid. Consider once again the 

daily PLT(t) depicted in Figure 7.6. The shaded area prescribed by the positive portion of the PLT(t) 

curve, detected approximately between TSR and TSS, corresponds to the total amount of the surplus 

energy originated from the microgrid. This surplus energy is denoted as ΔE+ in the figure. 

Conversely, the amount of the deficit energy (denoted by shaded area ΔE- in the figure) has to be 

provided by the grid and/or from the CB, in order to meet the energy demand of the microgrid from 

TSS to T2. So, the CB will be discharging to supply some of its stored energy over the interval TSS 

and T2. The daily historical PLT(t) can be integrated with respect to time t0 obtain a set of the daily 

ΔE+ and ΔE-. A statistical approach is used to quantify the variations in the daily ΔE+ and ΔE-. So, 

the daily ΔE+ and ΔE- for a given seasonal and their cdfs can be readily generated as illustrated in 
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Figure 7.7(a) which is the cdf of such for summer season. The figure presents the numerical values 

of ΔE+ and ΔE- are expressed in p.u., on the base of the energy rating of the CB.    

 

Figure 7.7 Cumulative density functions of the daily ΔE+ and ΔE- for (a) the summer and (b) the winter 

seasons   

Based on the cdf curve of the daily ΔE- in Figure 7.7(a),one can determine the probability of the 

daily ΔE- to be at or below the level of ΔE-,γ  p.u. in a summer day as γ. Correspondingly, based on 

the cdf curve of the daily ΔE+, one can also conclude that the probability of the daily ΔE+ to be at 

or below the level of ΔE-,γ  p.u. in a summer day as λ. This in turn means that the probability of the 

daily ΔE+ to be more than ΔE-,γ  p.u. is 1- λ. In Figure 7.7(a), the cdf curve of the daily ΔE- is 

positioned to the left of the cdf curve of the daily ΔE+ which leads to the following interesting 

observation. For example, the probability of the daily ΔE-,γ to be less than or equal to 0.51 p.u. is 

0.99, i.e., γ = 0.99, reading from the cdf curve of the daily ΔE-. From the cdf curve of ΔE+, the 

probability of the daily ΔE+ equal and up to the level of 0.51 p.u. is λ = 0.035, i.e., the probability 

of ΔE+ exceeding the 0.51 p.u. level is 1 – 0.035 or 0.965. Therefore, since γ and 1- λ are close to 1, 

it can be concluded that it is with almost certainty one can expect that in a summer day, the amount 

of the daily surplus energy ΔE+ shall be equal to or more than that of the deficit energy ΔE-. This 

shows that the microgrid is easily self-sustained with its stored daytime energy in the CB during 

summer. Indeed, the further the cdf curve of ΔE- is to the left of that of ΔE+, the higher it would be 

to achieve the intra-day independency. 

Unfortunately, this level of energy independency in summer cannot be valid for all other 

seasons. Converse to the previous example, Figure 7.7(b) shows the cdf of the daily ΔE+ and ΔE- 

for a winter season wherein it is seen that the cdf curve for ΔE+ is now appearing to the left of that 

of ΔE-. To achieve γ of 0.99, ΔE-,γ is approximately 1.05 p.u. This in turn leads to λ of almost 1, i.e., 

the probability of the microgrid having sufficient surplus energy to meet the deficit energy daily is 

close to 0 in winter. Another scenario with an earlier SOC restoration (i.e. T1 starts two hours before 
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midnight) gives the curve ΔE’- in the Figure 7.7(b). This new alternation of the time T1 results in a 

left shifted curve ΔE’- compared to the previous one giving a value of ΔE’-,γ which is much lower 

than the ΔE-,γ. This indicates that this alternation of the SOC restoration would be much more 

desirable during the winter season where the daytime stored energy is less. 

Although details are not included in this chapter, similar analysis for the transitional seasons 

of spring and autumn had been carried out. For the same probability level γ of 0.99, the 

corresponding probability of having sufficient surplus energy to meet the deficit energy daily are 

0.67 and 0.42 in spring and autumn, respectively.  

Even though the above outcome is well expected across different seasons, the seasonal 

analysis provides a qualitative analysis of the impact of the seasons in terms of energy independency 

of the microgrid. Also, it indicated that the control parameters of the CB should vary across different 

seasons. During the summer, even the microgrid independency can be easily obtained as shown 

above, the primary target of the control of the CB should be to reduce the SEI film growth rate. Thus 

the charging/discharging strategies during daytime and nighttime should be aligned with this 

objective. This will be the attention of the next section. 

7.3.2 Constant current charging on SEI film growth – ideal case 

Firstly, to simplify the discussion, consider an ideal situation whereby power flows constraints 

imposed on the grid link are ignored. Also, the commonly-adopted constant current charging 

strategy is assumed in this case due to the valid reasons related to battery degradation for using such 

charging method in the literature [155].  

With reference to Figure 7.6 , it was earlier mentioned that the sunrise hour TSR and sunset 

hour TSS are known quantities. As the CB is intended to be charged at a constant C-rate, the SOC of 

the CB would increase linearly with time. From CHAPTER 6, the dynamic referencing scheme sets 

a reference value of the SOC, denoted as SOCr, and at the end of the SOC restoration period. 

Therefore, the SOC of the CB will reach SOCr at TSR. Hence, the SOC(TSR) would be known. The 

exact value of the SOC at TSS would depend on the charging C-rate. As the discharging of the CB 

persists after TSS, it will be prudent to set the target value for the SOC at TSS to as high a value as 

possible. This will also allow the maximum allowable amount of the daily surplus energy ΔE+ 

diverted to the CB. In this way, the issue of the duck power phenomena can be mitigated to a certain 

degree and also degree of the independency of the microgrid from the grid system can be maximized. 
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However, Figure 7.3 shows that the rate of the SEI film growth would increase with the 

SOC. Hence, it is necessary to impose an upper limit on the target value for the SOC at TSS, denoted 

as SOCmax. Also, it is well-known that in order to avoid deep-discharge a lower limit on the SOC 

should be set up, denoted as SOCmin. 

Accordingly, the battery terminal voltage is assumed as constant. Let Er be the rated energy 

storage capacity of the CB. Thus, in order to reach the battery target SOC limit of SOCmax at TSS, the 

required constant charging current I1, or correspondingly, the constant charging power PCB,1, shall 

be applied from TSR to TSS, where PCB,1 is given as 

PCB,1 = (SOCmax – SOC(TSR)) x Er/ (TSR – TSS) (7.1) 

In the subsequent discussion, this strategy is denoted as Strategy 1.  

Therefore, under Strategy 1, CB is intended to charge with this target power PCB,1. I1 is the minimum 

charging current which will guarantee SOC(TSS) = SOCmax. In Figure 7.6, PCB,1
 has been indicated 

and as expected, the constant charging power (i.e., the constant charging current I1) has resulted in 

the SOC of the CB increases at a linear manner. As this is an ideal case, it is assumed that the PV 

generation during summer despite interruptions like clouds, rain, etc., is adequate to maintain this 

minimum charging current. More practical scenario incorporating those weather interruptions will 

be subsequently discussed in latter sections based upon this ideal case. In this example, SOCmax is 

set as 0.8 and this SOC target value is reached at TSS. 

Theoretically, there are infinite number of constant current strategies which can be used to 

achieve the same objective. One could apply a higher constant charging current than I1 from the start 

of the daytime hour TSR and once the SOC reaches the target value of SOCmax, the charging process 

is stopped, and the battery is placed in the rest state until TSS. This alternative charging strategy, 

labelled as Strategy 2, is shown as PCB,2 in Figure 7.6. The profiles of Strategy 2 charging current is 

denoted as I2 in Figure 7.8 where that of Strategy 1 (i.e., I1) is also shown. With Strategy 2, the SOC 

of the CB is reached at τ, following which the charging process is stopped. Clearly over the interval 

before the charging process is stopped, I2 > I1.  

In Section 7.2.2, it has been concluded that the rate of the SEI film growth increases with 

the magnitude of the charging current. However, since Strategy 2 keeps the battery cell at rest, where 

the side-reactions still exist, it is not directly obvious the impact to the SEI film growth using those 

two strategies. A detailed analysis of the two charging strategies is required in order to analyse this 

further. 
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Figure 7.8 Charging current profiles of Strategies 1 and 2 

Figure 7.3 shows that the functional relationships between the rate of the SEI film growth δ, the 

SOC and the battery charging current C-rate are highly non-linear. Over the daytime hours, the 

charging operation is to achieve a change in the SOC, denoted as ∆SOC, and over a time interval T. 

In the context of the present investigation, ∆SOC = SOCmax – SOC(TSR) and T= TSS – TSR. The 

analysis to follow is based on the linear approximation of the non-linear functions, as shown on 

Figure 7.9(a) and Figure 7.9(b) whereby:  

dδ/dSOC |I1 = n1,  n1  = (δ3 – δ1)/ ∆SOC (7.2 (a)) 

               dδ/dSOC |I2 = n2,    n2  = (δ4 – δ2)/ ∆SOC   (7.2 (b)) 

dδ/dI  = k,   k > 0  (7.2 (c)) 

Equations (7.2 (a)) and (7.2 (a)) govern the relationship between δ and SOC at the constant charging 

current levels (C-rates) I1 and I2, the currents under Strategy 1 and Strategy 2 alluded to in earlier 

section whereby I1 < I2. I1 is the minimum current level under Strategy 1 which will ensure that 

SOC(TSS) reaches the charging SOC target level of SOCmax. See Figure 7.9(a).  

The initial values of δ at the start of the charging processes are denoted as δ1 and δ2 

respectively, and n1 and n2 denote the gradients of the δ vs SOC linear curves at the respective 

currents. From Figure 7.3, it is obvious that n1 and n2 are positive. So, with the linear approximation, 

as the SOC increases, δ is seen to increase linearly with the SOC but since I1 < I2 and from the 

observation made in Section 7.2.2, therefore n1 < n2. Accordingly, when the SOC under each of the 

two charging processes reaches the target level of SOCmax, δ will have increased to the values of δ3 

and δ4 respectively, as shown in Figure 7.9(a). 



 

156 

 

 

 

Figure 7.9 linearized approximation of (a) δ vs SOC curves and (b) δ vs SOC curves at constant current 

Expressed in mathematical form, at sun-rise, SOC = SOC(TSR) and based on (7.2 (a)), 

δ1 = δ0 + kI1 (7.3) 

δ2 = δ0 + kI2 (7.4) 

When the SOC reaches SOCmax, under Strategy 1 and based on (7.2 (a)), 

δ3 = δ0 + kI1 + n1∆SOC (7.5) 

and under Strategy 2 and based on (7.2 (a)), 

δ4 = δ0 + kI2 + n2∆SOC  (7.6) 

In (7.3)-(7.6), δ0 represents the rate of the SEI film growth at zero charging current.  

 Denote 

Δδ1 = δ3 - δ1 = n1∆SOC  (7.7) 
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Δδ2 = δ4 – δ2 = n2∆SOC (7.8) 

The increase in the thickness of the SEI film, denoted as ζ in this analysis, corresponds to the area 

under the δ vs time curves shown on Figure 7.9(b). Thus, under the two constant charging current 

strategies,  

ζ1 = δ1T + Δδ1T/2 (7.9) 

ζ2 = δ2 τ2 + Δδ2 τ2/2 + δ0(T- τ2)   (7.10) 

The terms δ1T and δ2 τ2 + δ0(T- τ2) on the RHS of (7.9) and (7.10) correspond to the increases in the 

thicknesses of the SEI film when dδ/dSOC = 0, i.e., when δ is independent of the state of the SOC. 

It can be readily shown that δ1T = δ2 τ2 + δ0(T- τ2). Taking the difference between ζ 2 and ζ1, 

ζ 2 – ζ1 = Δδ2 τ2/2 - Δδ1T/2  (7.11) 

Substituting (7.7), (7.8) into (7.11) and noting that ∆SOC = I1T = I2 τ2, one can show that 

  ζ 2 – ζ1 = (ΔSOC)2 [n2 /I2 – n1 /I1] /2 (7.12) 

Hence, for ζ 2 > ζ1, the condition is n2 /I2 > n1 /I1 or  

  n2 /n1 > I2/I1 (7.13) 

Equation (7.13) indicates that the increase in the thickness of the SEI film will be larger under 

Strategy 2 than that under Strategy 1 if the gradient of the δ vs SOC curve increases at a higher rate 

than the corresponding increase of the charging current level. Since I1 corresponds to the minimum 

constant charging current strategy, n1 < n2 will be satisfied which means that according to (7.13)  ζ 2 

>ζ1  is always satisfied. Therefore, it can be concluded that the minimum constant charging current 

strategy will lead to the minimum amount of the SEI film growth. Numerical examples shall be 

included in Section 7.6 to validate this conclusion. The above analysis has provided a firm 

theoretical base on which one can develop the appropriate charging strategy wherein the degradation 

of CB due to the SEI film growth can be minimized. This is focused on the next section. 

7.4 Development of an Adaptive Intra-day Control Strategy for CB 

There is now sufficient information needed for the development of an adaptive intra-day control 

strategy for the CB during the daytime, night-time and the SOC restoration periods. Grid constraints 

are ignored first to facilitate the development. 
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7.4.1 Adaptive battery SOC control ignoring – no grid constraints 

a. Daytime 

As explained in Section 7.3.1, PLT(t) can be positive or negative during the daytime hours. As a 

remedy to the duck power phenomena, the power export to the grid from the microgrid in the 

daytime hours should be reduced as much as possible. In another words, the energy contents ΔE+ in 

the positive portion of PLT(t) should be used to charge the CB to the maximum acceptable level. The 

stored energy in the CB can in turn be used to meet the night-time electricity need, especially the 

evening-peak demand of the microgrid. In this way, the objective of the intra-day peak-lopping is 

realized. As has been shown in Section 7.3.2, the charging of the CB should be done at the minimum 

current level in order to foster the lowest rate of SEI film growth. The corresponding minimum 

charging power level is governed by (7.1) which will guarantee the SOC of the CB will reach the 

pre-specified value of SOCmax at TSS. 

The negative PLT(t) during daytime on the other hand encourages the import from the grid 

and thereby effectively reduces the duck curve problem. Therefore, in ideal conditions, no CB 

discharging is expected during daytime. At sunrise, SOC(TSR) = SOCr where SOCr is determined 

from the dynamic referencing scheme described in CHAPTER 6. As the CB is being charged for 

TSR to TSS, the SOC of the CB increases. In line with the aim to maximize the energy-independency 

of the microgrid alluded to earlier, SOC(TSS) is set to be the maximum allowable SOC level (SOCmax) 

as the charging does not occur after TSS. Hence, to reach the targeted operating state of SOCmax at 

TSS, and since the SOC can be readily measured at regular time intervals, one can generalize (7.1) 

and derive the following reference charging power (PCB,ref(t)) at any given time 𝑡 as 

max
,

( )
( )CB ref r

ss

SOC SOC t
P t E

T t

−
= 

−
, PLT(t) > 0, TSR < t < TSS     

(7.14(a)) 

PCB, ref (t) = 0,    PLT(t) ≤ 0, TSR < t < TSS                (7.14(b)) 

In (7.14(a)), Er is the rated energy storage capacity of the CB. Accordingly, PCB, ref (t) can be regularly 

updated based on (7.14(a)) and the CB is to be charged with the reference value of PCB, ref (t). While 

the CB is set to absorb this target power, the grid should maintain the balance of power given by; 

( ) ( ) ( )G LT CBP t P t P t= − , when PLT(t)  > PCB, ref (t) (7.15(a)) 

However, there can be instances that PLT(t) is less than PCB, ref (t). When this occurs, all of PLT(t) 

shall be directed to the CB:  

PCB(t) = PLT(t),   when PLT(t) < PCB,ref(t)    (7.15(b)) 
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In the latter case, the CB shall be charged at a level lower than the reference power PCB,ref(t). At this 

charging power level, the SOC will be below SOCmax at TSS. So, in order to compensate for the 

shortfall, a new PCB,ref(t) shall be generated at the regular interval and is updated. In this way, 

PCB,ref(t) is adaptive to the changing PLT(t).  

At the end of the charging period at t = TSS, PCB(t) is to ramp down at a rate complying with the 

power ramp rate constraint of the grid link. The power ramp rate constraints are discussed in Section 

7.4.2.  

b.  Night-time 

According to the observation reported in Section 7.2.2, during discharging, it is advisable to use the 

maximum discharging current during discharging to limit the SEI growth. Therefore, CB will be 

discharged following PLT(t) during nighttime. As the night peak is most likely to occur early in the 

evening, this event should be covered by the CB.  

Therefore, after TSS and before the start time of the SOC restoration period T1, the CB shall 

discharge at the level of PLT(t) viz. 

          PCB(t) = PLT(t),   TSS < t < T1 and SOC > SOCmin  (7.16(a)) 

            PG(t) = 0   (7.16 (b)) 

The discharging strategy (7.16(a)) is valid when the SOC of the CB is above the pre-specified 

minimum limit SOCmin. In the event the SOC has reached SOCmin before T1, the CB is to stop 

discharging. The CB is switched to the SOC restoration period.  

As this discharging operation happens with less than 0.5C discharging current rates, it is 

expected that the effects of the other discharging mechanism due to higher C-rates, do not affect to 

the current study. Moreover, the proposed strategy assumes the Time of the Day Tariff (TOD) 

allowing CB to discharge during the evening peak in which the unit cost is maximum and then 

restoring the CB SOC during the off-peak time where unit cost is minimum. In this way, the 

proposed strategy is also deemed to be economical for the microgrid users. 

c. SOC restoration Period 

The CB operation during this time period is the same as that we proposed in CHAPTER 6. At the 

end of 𝑇2, grid power would be able to restore the SOC of the CB to the reference SOC specified by 

SOCr, which is generated by the dynamic reference scheme described in that chapter. 



 

160 

 

7.4.2 Adaptive intra-day CB control strategy considering grid constraints  

The aforementioned adaptive battery control strategy is to control the CB power flow for very ideal 

conditions where the grid constraints are not yet considered. However, in a more realistic operation 

of the CB, grid constraints must be taken into account. To simplify the understanding, first, these 

constraints are separately studied and later combined in this section with the adaptive SOC control 

described in Section 7.4.1 to form the integrated CB control strategy.  

a.  Inclusion of grid link power constraint 

If the grid export power constraint is PG

max,p
, when PG(t)>PG

max,p
 during the above buffering, then it 

is required to set PG(t)=PG
max,p

. One such scenario is illustrated in Figure 7.10. During the time 6<t<8 

it is clear that the 𝑃𝐶𝐵(𝑡)  follows the target PCB,ref(t) which varies fairly constantly as PG(t)<PG
max,p

. 

However, at the time around t=9.4hrs as shown in the Figure 7.10, PLT(t)-PCB,ref(t) >PG
max,p

 where it 

is required to limit PG(t) such that PG(t)=PG
max,p

. By setting 𝑃𝐺(𝑡) to this constraint, the 𝑃𝐶𝐵(𝑡) is 

forced to buffer the PLT(t)-PG
max,p

 . 

PG(t) = PG
max,p

     when PG(t) > PG
max,p

 (7.17) 

            PCB(t) = PLT(t) – PG
max,p

  

As shown in the zoomed plot, the resulting PCB(t) would be higher than the target power PCB,ref(t) 

when this happens. Therefore, the next instance target power PCB,ref(t+1) will be slightly lower than 

the PCB,ref(t). As a result of this, PCB,ref(t) steadily decreases as shown on the zoomed plot from 0.129 

at 9hrs to 0.116 at 11hrs. As can be seen from the SOC curve of the first graph, it also losses its 

linearity when these instances occur. Since this is a sunny day, during most of the instances after 

time t=9.4hrs, it often violates the PG
max,p

 therefore the PCB(t)>PCB,ref(t). So that PCB,ref(t) gets lower 

as time progresses. Due to this additional energy flows to the CB, SOC gets close to the SOCmax 

around t=17 hrs. Form this example, it is evident that the reference power is responsive to the 

magnitude constraint of the grid export. Therefore, it can be concluded that the proposed method is 

adaptive enough to abided to such grid magnitude constraint.  

During the night-time, TSS < t < T1, according to (7.16(a)) PG(t) = 0 and so, grid link power 

constraint is not applicable. Finally, during the SOC restoration period T1 < t < TSR, by similar 

reasoning, one can readily show that (7.17) is applicable although there is the possibility of grid link 

importing power from the microgrid during this period. Accordingly, an added control condition is   
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PG(t) = PG
max,n

  when PG(t) < PG
max,n

 (7.18) 

where PG
max,n

 denotes the grid link import power limit. 

This example serves to show that the adaptive intra-day CB control strategy is responsive to 

the grid link power constraint. More examples are included in Section 7.5 to further illustrate other 

pertinent features of the proposed strategy.  

 

Figure 7.10 PLT (t), PCB,ref (t), PCB (t), PG (t) and SOC(t) of the CB during daytime and a zoomed-in plot: 

proposed charging strategy is applied under the presence of grid link power magnitude constraint  

b. Inclusion of grid link power ramp rate constraint 

The adaptive intra-day control strategy described above for the CB operation is further studied in 

the scenario whereby the grid link ramp rate constraint is considered. To facilitate the discussion,  

Figure 7.11  shows a sample plot of PLT(t) and the applicable power ramp rate limit 𝑃̇G
max,PCB,ref(t).  

is continuously updated by the (7.14(a)). It is clear that from point a to b, 0 < PLT(t) < PCB,ref(t) and 

since the CB has higher priority over grid link over the charging period, since the CB has higher 



 

162 

 

priority over grid, all the PLT(t) is diverted to charge the CB. This operation is summarized as 

Scenario 1 in Table 7.1. 

For the interval “b” to “c”, as PLT(t)>PCB,ref(t) ,the CB is charged at the reference power level 

and so, PCB(t)=PCB,ref(t). PG(t) is obtained via (7.15(a)). Also, it is seen that the power ramp rate 

dPG(t)/dt < 𝑃̇G
max. This is Scenario 2 in Table 7.1. For the interval “c” to “d”, if 𝑃𝐶𝐵(𝑡) is set to track 

PCB,ref(t), then the anticipated power flows in the grid link PB(t), i.e. , PLT(t)=PCB(t), is seen to exhibit 

a ramp rate higher than 𝑃̇G
max. This is Scenario 3 of Table 7.1: |d(PLT –PCB)/dt| > 𝑃̇G

max. Therefore, 

the power flows PG(t) is modified in the manner as shown in the 5th column of the table under this 

scenario whereby PG(t) is ramp down at the maximum allowable value 𝑃̇G
max. As a result, that shall 

be a subsequent increase in PCB,ref(t).  From d to e and e to f the same scenario 1 and scenario 2 will 

be repeated respectively. When the CB acts to maintain the 𝑃̇G
max constraint by lowering its charging 

during the time c to d, this makes its target charging power at the next instance to rise up. This is 

visible as a slow inclination of the PCB,ref(t) from time c to d. Again, from d to e, as PCB(t) is unable 

to meet PCB,ref(t) with given PLT(t), the PCB,ref(t) continues to rise and then be constant during e to f. 

 

Figure 7.11. Sample of PLT(t), PG(t), PCB(t) and PCB,ref (t): the proposed adaptive intra-day control strategy is 

applied under grid link power ramp rate constraint  

 

Table 7.1 A summary of rules incorporated in the proposed adaptive intra-day control strategy for the 

CB: grid link power and ramp rate constraints are complied with 

Scenario PLT(t)   ( )LT CBd P P

dt

−   Control strategy on PCB(t)   Target PG(t)  

 

1 
 

 

,0 ( ) ( )LT CB refP t P t    

 

max( )LT CB
G

d P P
P

dt

−
  ( ) ( )CB LTP t P t=  

 

( ) 0GP t =  

 
 

2 
,( ) ( )LT CB refP t P t  

 
max( )LT CB

G

d P P
P

dt

−
  ,( ) ( )CB CB refP t P t=  

 
,( ) ( ) ( )G LT CB refP t P t P t= −  
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3 
 

,( ) ( )LT CB refP t P t  

 
max( )LT CB

G

d P P
P

dt

−
  3a)    If  ,

0
L TdP

dt


 then 

max( ) ( ) ( )CB LT G GP t P t P t t P t= − − −   

 

3b)    If  ,
0

L TdP

dt


 then 

max( ) ( ) ( )CB LT G GP t P t P t t P t= − − +   

 

3a) 
max( ) ( )G G GP t P t t P t= − +   

3b)  
max( ) ( )G G GP t P t t P t= − −   

4 
,( ) ( )LT CB refP t P t  

max( )LT CB
G

d P P
P

dt

−
  4a)    If  ,

0
L TdP

dt


 then 

max( ) ( ) ( )CB LT G GP t P t P t t P t= − − −   

 

4b)   If  ,
0

L TdP

dt


 then 

max( ) ( ) ( )CB LT G GP t P t P t t P t= − − +   

 

4a) 
max( ) ( )G G GP t P t t P t= − +   

4b)  
max( ) ( )G G GP t P t t P t= − −   

 

7.5 Illustrative Examples and Discussion 

In this section, the results obtained from an extensive series of simulation studies are presented. The 

aim is to use the results to illustrate the application of the developed adaptive intra-day control 

strategy for the CB. 

7.5.1 SEI film growth during CB charging operations: no grid constraints applied 

Based on the preliminary study of the SEI growth rate, the adaptive charging strategy was introduced 

in the previous section. The proposed approach aims to charge the battery with the lowest possible 

charging current to minimize the SEI growth. However, a counter-argument may arise as the time 

required to complete the charging operation is higher in the lower charging current approach. Hence, 

it is not straightforward to say that lower charging current to complete constant SOC changing 

results in lower SEI growth.  Therefore, in this sub-section, the attempt is to compare the charging 

operation with different magnitudes of current profiles to further understand its effect on the SEI 

growth. 

  For these validation studies, PLT(t) shown on Figure 7.6 was used and the profiles of the 

charging currents ICB1, ICB2 and ICB3 are considered as shown on Figure 7.12(a). No grid constraints 

are considered in these studies. The ICB1 in Figure 7.12(a) refers to the strategy of applying the 

minimum constant charging current starting at TSR. ICB1 corresponds to the case of charging the CB 

to track the constant reference charging power level PCB,ref(t) given by (7.1) from TSR to TSS, a 

duration of 12 hours. This charging strategy will allow the SOC of the CB to increase from SOCSR 

= 0.3 to the target maximum SOC level of SOCmax = 0.8 at TSS. Thus, ICB1 is pertaining to C-rate of 
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C/24 (i.e. (0.8-0.3) C/12). Assuming every battery cell of 1.8Ah capacity is equivalent, the charging 

current of the battery cell is 0.075A.  The constant charging current of the ICB2  profile is twice that 

of  ICB1 and the constant charging current of the ICB3 profile is three times that of ICB1 .The comparison 

of these different charging currents yields the results of SOC and SEI growth shown in and Figure 

7.12(b) and Figure 7.12(c) respectively. 

 

Figure 7.12 a) Profiles of the assumed charging currents (b) SOC of the CB, (c) SEI film resistance of the 

CB 

According to Figure 7.12(b), the SOC profile associated with charging current ICB1 reaches 

the target SOC at TSS, which in this case is 1800 hrs. With twice the current, charging current ICB2 
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can reach the target SOC in around 1200 hours. For the ICB3 charging profile, the target SOC is 

achieved around 1000 hrs. The area under the three curves in Figure 7.12(b) is the same because the 

energy required to reach SOCmax from the SOCSR is the same. However, the triple current of ICB1 ie. 

ICB3, will not result in exactly one-third of charging time due to the ramp of the current at TSS. This 

is because in the initial hour or so of the charging process, PLT(t) is too low to provide the full 

charging current ICB3 of C/8. So, ICB3 is shown to ramp up before it reaches the final constant level 

of C/8 at around 0700 hours. Hence SOCmax is only reached at about 1027 hours in this case.  

Another notable observation that can be derived from profiles pertains to the gradients seen 

in Figure 7.12(c), which represents the SEI growth rate. Upon reaching 08.30hrs, from the Figure 

7.12(c),both SEI 2 and SEI 3 curves display an increasing positive gradient, with SEI 3 showing an 

even steeper gradient. This is in line with the observation made in surface plot on Figure 7.3, which 

reveals that the higher C-rate and higher SOC levels lead to high SEI growth rate. Hence, SEI 3 

curve corresponding to a comparatively higher C-rate and higher SOC leads to steeper gradient in 

SEI thickness growth. However, after reaching target SOC around 10.15am, the ICB3 becomes zero 

as charging ceases. Due to zero current and constant SOC, SEI growth rate then becomes constant. 

Therefore, SEI 3 curve in Figure 7.12(c) displays as a straight line after 10.15am. Similarly, ICB2 

reaches the target SOC at 1200 hours. Thus, after 1200hrs both profile 2 and 3 have same zero 

current and same target SOC which lead to same SEI growth rate. This is clearly noticeable in Figure 

7.12(c) after 1200 hrs, where both profiles SEI 2 and SEI 3 exhibit same gradient parallel lines.  

Meanwhile, SEI 1 shown in Figure 7.12(c) continues to charge the CB at a lower charging 

current while slowly increasing SOC, resulting in a slower SEI growth rate. The corresponding SEI 

thickness given by SEI 1 in Figure 7.12(c) deviates significantly from the other two SEI thickness 

curves after 1200 hrs. This is due to the lower gradient of SEI 1 curve, which is influenced by the 

lower SOC levels leading to reduced SEI growth rate. While SOC1 reaches the target SOC at set 

time Tss, it results in the lowest SEI growth compared to other two profiles. 

However, due to the non-linearity of the relationship between the SEI growth rate and SOC 

vs I according to the surface plot on Figure 7.3, one may speculate a different scenario to the above. 

Due to the higher charging current the charging time taken to raise the SOC between constant SOC 

range would decrease. The decrease in the time taken for charging can develop lower SEI growth 

which is detrimental effect to the above effect. Therefore, an additional current profile, with slightly 

higher current ICB1, denoted by ICB4 as shown in Figure 7.12(a) is also considered. SEI growth results 

of SEI 4 on the zoomed plot of Figure 7.12(c) ensures that the slightly higher current result in slightly 



 

166 

 

higher SEI thickness compared to that of ICB1. On the contrary, it should be noted that even lower 

current than ICB1 would result in even less SEI growth. However, this would not achieve the desired 

SOC at Tss. Thus, it can be concluded that the proposed approach follows the minimal charging 

current required to charge the battery to reach SOC to target SOC at sunset. Therefore, this is the 

optimal charging current to yield minimal SEI growth in this ideal situation with no grid constraints 

applied. Thus, this example has demonstrated that the minimum constant charging current required 

to charge the CB to reach the targeted SOC level at sunset will yield the lowest SEI film growth. 

7.5.2 SEI film growth during discharge operation in the night-time: no grid 

constraints applied 

Again, to confirm the 2nd outcome of Section 7.2.2 related to discharging of the CB, two different 

discharging profiles during the nighttime shall be compared in terms of their SEI growth rates. To 

facilitate this comparison, a sample PLT(t) curve during nighttime obtained from Figure 7.6 is used 

as shown in Figure 7.13(a). The discharging profile shown in Figure 7.13(b) with ICB5 is related to 

the 0.075 A discharging C-rate which is similar to the charging C-rate of ICB1. In comparison, the 

𝐼𝐶𝐵6 is pertaining to the proposed discharging strategy whereas PCB(t)= PLT(t) during nighttime. 

According to Figure 7.13(c), the two different discharging currents resulting in two SOC 

profiles will lead to  different SOC at the midnight. As explained in Section 7.2.2 higher discharging 

current and lower SOC levels lead to lower SEI growth. Similarly, ICB6 and SOC6 represent the 

higher discharging current and lower SOC levels, which contribute to lower SEI growth. Thus, the 

SEI thickness of the discharging current ICB6 is less than that of the ICB5, as shown in Figure 7.13(d).   

Figure 7.13(d) shows the increase in the SEI film growth over the evening period under the 

two discharging cases. A comparison of the two SEI film growth profiles confirms that the 

observation made in Section 7.2.2: that higher discharge current (ICB6) has indeed resulted in the 

lower SEI film growth. In fact, in this example, ICB6 has resulted in some 15% lower SEI growth 

than the case with ICB5 over a 6-hour period.  

This example shows that if there is sufficient stored energy in the CB, it will be desirable to 

allow the CB to discharge and meet all the evening peak demand, as a means of peak-lopping 

strategy. The strategy has the added advantage in that it leads to lower level of the SEI film growth, 

in comparison to that resulted under a lower discharge current level. 
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Figure 7.13 Night-time CB discharge operation: profiles of the (a) assumed PLT(t), (b) assumed discharge 

currents ICB5 and ICB6, (c) the corresponding SOC and (d) SEI film thicknesses  
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7.5.3 Illustrative examples on the proposed adaptive intra-day control strategies 

In this sub section, the main aim is to demonstrate the effectiveness of the proposed method in 

different seasons including the extreme weather events. The proposed strategy was implemented on 

MATLAB R2022a platform, and the simulation study was carried out based on the parametric 

settings shown in Table 7.2. The reference value SOCr for the SOC in the respective season is that 

determined from the dynamic referencing scheme described in CHAPTER 6, and SOCr is the SOC 

value seen at TSR. The target value of the SOC at TSS, i.e., SOCmax, is assumed to be 0.8 in all the 

cases discussed in this section, except for one case. Accordingly, the rules developed in Sections a 

are applied in the simulation studies.   

Table 7.2. Parametric values used for the simulation of CB operations for the different seasons  

 Summer Autumn Winter Spring 

SOCmax=SOCSS   (1) 0.8  (2) 0.5 0.8 0.8 0.8 

SOCmin 0.24 0.24 0.24 0.24 

SOCr = SOCSR 0.3 0.47 0.55 0.4 

PG
max,p 0.5 0.3 0.1 0.45 

PG
max,n -0.2 -0.4 -0.5 -0.4 

𝑃𝐺̇ 1MW/min 

 

a. Summer 

Figure 7.14 depicts the simulation result for a two-day time period for the summer season where the 

SOCr is set to 0.3 and SOCmax is set to 0.8. TSR and TSS estimation were set to 0600 and 1800 for this 

summer case respectively. Even though these estimated times are not so accurate in this case, they 

have been in place to showcase the worst case of not having accurate TSR and TSS estimations. Also, 

the grid link power flows constraint is activated more often in Day #1 than in Day #2, particularly 

after about 0900 hours. Due to the PG
max,p constraint, the additional energy flows into the battery 

during the day time of day #1. As a result, after 0900 hours in Day #1, the proposed adaptive intra-

day CB control scheme is seen to respond with much active downward adjustment in PCB,ref(t). This 

is in order to ensure the SOC reaches the target value of SOCmax at TSS. However, in Day #2 since 

the daily surplus energy ΔE+ is comparatively lower and PG
max,p constraint is activated less often 

than in Day #1, PCB,ref (t) remains almost constant at approximately 0.125p.u. The figure shows that 

the proposed method successfully achieves the target SOC in both days.  As depicted, during day 
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#1 which is sunny day of these two, target SOC is achieved bit earlier compared to the day #2 as 

expected.  

 

Figure 7.14 Application of the proposed adaptive intra-day CB SOC control strategy: summer and 

SOCmax  = 0.8 

The discharging of the CB follows the same principle described in Section 7.5.2, i.e., the discharge 

power of the CB is set to track PLT(t) in the nighttime until T1, after which the SOC restoration period 

commences. The restoration strategy is that described in CHAPTER 6. It can be readily seen from 

Figure 7.14 that with the proposed CB discharge and SOC restoration strategy, the SOC is 

maintained within the allowable SOC range, while none of the grid power flows and ramp rate 

constraints is violated.  In summary, one can observe from Figure 7.14 that the proposed adaptive 

intra-day CB control strategy is able to accommodate the grid constraints most satisfactorily for the 

summer days. Meanwhile successful peak shaving is also achieved, and the CB is able to operate 

within the stipulated SOC range, even under considerable wide variations in the daily PLT(t).  

The Figure 7.15 repeats the same simulation in which the target SOC setting SOCmax is 

arbitrarily set as 0.5. However, results show that this target SOC is achieved in the day #1 even 

before the noon.  This scenario may then force to violate the PG
max,p constraint as the battery charging 

has to be stopped after reaching target SOC. As an alternative this scenario, if charging continues, 

the battery will have a higher SOC than the target SOC. This is, of course, not a desirable outcome. 

The violation of the grid code is somewhat less severe on Day #2. Nevertheless, this example clearly 

demonstrates the unsatisfactory state of operation of the power system is due to the fact that SOCmax 

has been set at too low a value for the summer days. 



 

170 

 

 

Figure 7.15 Application of the proposed adaptive intra-day CB control strategy: summer and SOCmax  = 0.5  

b. Autumn  

During the autumn season SOCmax is set to 0.8. As shown in Figure 7.16, at the beginning of the daytime, 

SOC is set to the 0.47 which is the daily SOC restoration for the particular day in autumn. TSR and TSS 

are considered as 0700 and 1700 during these days of autumn for this example. Adaptive PCB,ref(t) is  

rapidly increasing as it approaches TSS. At TSS , it can only reach to a SOC=0.62 as the day #1 is one of 

the worst days of the autumn season in terms of insolation. This stored energy is adequate to serve the 

night peak of the day #1 until 2300hrs as CB reaches the set lower limit SOCmin of 0.24. From this 

situation onwards, grid will import the power to serve PLT(t) until the restoration starts. Grid restoration 

happens from T1 to T2 to raise SOC level to the 0.47 value. 

Similarly, Day #2 allows the SOC to reach a higher value of 0.78 at TSS, and before the charging 

process has to stop because PLT(t) becomes negative. Even with the SOC level below the target level 

of 0.8, there is sufficient stored energy in the CB for the CB to support the night-time demand until 

mid-night before the grid link needs to come in to assist the SOC restoration process, and the SOC 

is still above the 0.24 minimum SOC limit setting.  
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Figure 7.16 Application of the proposed adaptive CB SOC control strategy: autumn and SOCmax  = 0.8 

c. Winter 

Winter presents an even more challenging situation as shown in Figure 7.17 to test the proposed 

method. At the beginning of the daytime SOC is set to the 0.55 which is the daily SOC restoration 

for winter season. SOCmax is set to 0.8 as in the other seasons. TSR and TSS are considered as 0700 and 

1700 during these days of winter for this example. Adaptive PCB,ref (t) is rapidly increasing as time gets 

closer to the TSS. At TSS, SOC can only reach 0.58 as the day #1 is one of the worst insolation days 

of the winter season. This stored energy is only adequate to serve the night peak of the day #1 until 

around 2030hrs. At this time, battery SOC reaches close to its minimum SOC level. Then, the grid 

will import the power to handle until restoration starts. As from the previous analysis of SOCss, it is 

suggested to start the grid restoration during the winter season much earlier to midnight. In this 

simulation, start of the restoration happens at 2200hrs. Grid restoration happens from TSS to TSS to 

raise SOC level to the 0.55 value. 

Day #2 is another worst day of the winter which has an extremely high night time power 

demand. During the daytime SOC reaches up to 0.62 SOC level. Then battery discharges by 

delivering peak load until 8.30pm, at which time SOCmin is reached. Then CB stops its discharging 

allowing grid to take initiative in supplying the load power. However, the power demand exceeds 

the grid import limit which forces CB to involve in discharging until it reaches the SOCmin. In fact, 

few instances occur that SOC falls less than the SOCmin, which has happened due to extreme 

conditions of higher night loads and lower daytime surplus power. Therefore, it demonstrates that 

SOCmin needs to be set with a certain tolerance margin to allow for extreme weather occurrences. 
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Figure 7.17 Application of the proposed adaptive CB SOC control strategy: winter and SOCmax  = 0.8 

d. Spring 

For the completeness , similar study  has been performed for spring as well, as illustrated in  Figure 

7.18. The results show a similar trend to that of summer described in section 6.6.3.1.The imbalance 

in ΔE+ and ΔE- becomes lesser in spring compares to that in winter. This can be deduced from the 

results shown on Figure 7.18. Although the target SOCmax is not reached in either of the two days, 

there is still sufficient stored energy in the CB for it to support the night-time load while maintaining 

the SOC level above SOCmin.  

According to the dynamic simulation study shown above for the four seasons, the proposed 

adaptive intra-day CB control strategy appears to be able to maintain the SOC of the CB within 

stipulated range. Even under adverse weather conditions, the CB operating under the proposed 

strategy has managed to buffer PLT(t) while adhering to the grid codes. Adaptive reference power 

leads to control the SOC and C-rate in order to reduce the SEI growth with response to the changes 

in different PV and load power conditions. Even during the extreme weather events of the year, the 

proposed method has managed to buffer the battery, adhering to the grid constraints resulting in very 

minimal SOC limit violations. It is demonstrated that the adjustable settings such as the SOCmax  

could be used to improve the performance of the proposed method in terms of several factors such 

as lowering SEI growth and alleviating duck curve phenomena. The effects of adjustable settings 

could be analysed statistically using probabilistic analysis ensuring the stochastic optimal planning 

of the proposed method. 
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Figure 7.18 Application of the proposed adaptive CB SOC control strategy: spring and SOCmax  = 0.8  

7.5.4 Performance of CB Operating under Conventional and Proposed Adaptive Control 

Strategies 

In this section, the performance of the CB operating under two conventional and proposed adaptive 

CB control strategies is compared. The two conventional strategies are denoted as Strategies 1 and 

2 in this investigation.   

a. Strategy 1 

Strategy 1 has been introduced in [81] to maximize the self-consumption of PV power. The battery 

is charged here using the maximum available surplus power until it reaches its maximum SOC. 

When CB reaches its maximum SOC, the charging process must be stopped, forcing the grid to 

absorb all excess PV power. As a result, in this approach, there could be instances that grid power 

exceeds PG
max,p and 𝑃̇G

max limits, particularly after battery reaches its maximum SOC. This is 

demonstrated in Figure 7.19 which displays the results of the simulation study based on Strategy 1. 

As shown, the CB is charged to its maximum SOC using the maximum available surplus PLT(t). 

Then charging stops at around 0915 hours, and all the PLT(t) is then exported to the grid until 1830 

hours. The grid power constraint has been violated, almost to the end of this period.   
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Figure 7.19 PLT (t), PCB (t), PG (t) and SOC (t) obtained using Strategy 1: summer 

b. Strategy 2 

This strategy adopts the conventional battery control approach whereby constant charging and 

discharging powers are used in the intra-day operations of the CB. Detailed discussion of the general 

constant charging/discharging approach is also presented in [81]. Translating this approach for the 

CB considered in the present work, the constant charging power is applied in order for the SOC of 

the CB to reach the pre-specified maximum SOC level at TSS. During nighttime, the CB shall 

discharge at a certain pre-set constant power level if PLT(t) is less than this pre-set level. Otherwise, 

the discharge power flows is controlled to be equal to PLT(t). Unlike the adaptive intra-day CB 

control strategy proposed in the present work, there is no continuous adjustments in the 

charging/discharging power level in respond to the changing PLT(t). Again this method does not 

consider the PG
max,p and 𝑃̇G

max limits. The main aim of this method is to minimize the effect of the 

C-rate fluctuations on battery degradation.  

Example curve for this strategy is displayed in Figure 7.20. It can be seen that battery is 

charged and then discharged with the constant power, resulting in a linear variation in SOC as 

expected.  It should be noted that in carrying out the simulation studies for Strategies 1 and 2, the 

SOC restoration strategy becomes effective between T1 and TSR. In the examples shown on Figure 

7.19 and Figure 7.20, SOCr = 0.3. 
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Figure 7.20 PLT (t), PCB (t), PG (t) and SOC (t) obtained using Strategy 2: summer 

c. Strategy 3 

Strategy 3 denotes the proposed adaptive charging approach as shown in Figure 7.6. Here the 

seasonal SOC reference is followed, and the proposed adaptive power reference is utilized. The grid 

export and import constraints are also applicable in this method. 

The outcomes of applying the three aforementioned strategies can be compared in greater 

detailed in term of the resulting SEI film growth, the amount of energy import/export on the grid 

link and the extent of the grid link constraint violation.  

6.6.3.1 Comparison of SEI film growth 

From the simulation studies performed under each of the three strategies described earlier. The 

respective SOC and the charging/discharging powers lead to a SEI thickness that can be determined 

using the expressions shown in Appendix D. This increase in the thickness of the SEI film (δ) of the 

Li-ion CB battery is compared across the three strategies over the course of 90 days in summer. As 

shown in Figure 7.21, the proposed adaptive intra-day CB control strategy has resulted in some 24% 

lower increase in the SEI film thickness when compared with those based on the two conventional 

CB control strategies. The lower level in the SEI film growth indicates less degradation of the battery 

cells and therefore, one can expect a longer service lifetime when applying the adaptive intra-day 

CB control strategy to the CB. Even though it is not shown here due to the repetition of results, the 

other seasons also show a similar trend of encouraging results. 
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Figure 7.21 Resulting increase in SEI film thickness in the Li-ion battery when applying Strategies 1, 2 and 

3 over a summer season  

6.6.4.2 Comparison of the amounts of export/import energy on grid link 

As Strategy 1 is designed to promote self-consumption, it is not surprising to note that there will 

have the lowest amount of energy export to the grid using this strategy among the three strategies 

considered. As shown in Figure 7.22, some 8-9% lower amount of the additional energy export 

using Strategy 2 and Strategy 3 can be seen in this example.  

 

Figure 7.22 Comparison of exported energy to grid using the three methods: summer  

Next, the import energy for each of the three strategies is computed and a comparison of the 

imported energies is shown on Figure 7.23. It can be seen that the amount of the imported energy 

from the grid using the proposed strategy is slightly lower than that obtained under Strategy 1. This 

outcome appears to suggest that in term of energy-independency of the microgrid from the grid link, 

the proposed strategy performs as well as Strategy 1. Most encouragingly, the proposed adaptive 
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control strategy has resulted in some 60% reduction in the import energy when compared to that 

using Strategy 2. This set of results certainly shows that the proposed adaptive control strategy has 

indeed resulted in great improvement in term of energy-independence in comparison to the 

commonly used Strategy 2, i.e., that based on constant charging/discharging currents.   

 

Figure 7.23 Comparison of imported energy from grid based on the three methods: summer 

6.6.4.3 Comparison of the grid link constraint violations 

In order to understand the frequency of grid constraint violations across these three methods, this 

test is performed over one year time period of analysis. First, the instances of grid maximum power 

limit violations are considered and then probability of these occurrences are calculated. The 

probability of strategy 1 of not meeting the grid requirements is 0.18 while in strategy 2 this is 0.08. 

The proposed method (strategy 3) adhered to grid requirements at all times as it follows the rule-

based control continuously.  

According to the above comparison under three factors between existing methods and 

proposed method, following important remarks can be made. It can be concluded that the proposed 

method has shown improved performance of battery lifetime causing for lesser SEI growth in each 

season. Even though the strategy1 shows the best performance in terms of the grid export energy, 

this comes under more often violations of the grid export constraints. It is certain that these grid 

code violations are only acceptable to certain limits. They usually account for grid code breaching 

penalty costs which is an economically undesirable outcome for the microgrid. In contrast, the 

proposed method has greatly abided to those grid constraints while resulting in acceptable grid 

export/ import energy while accounting for the lowest SEI growth of the Li-ion battery.  
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7.6 Conclusions 

A new degradation-conscious adaptive intra-day control scheme for centralized battery in a 

microgrid with high PV penetration has been developed. The primary objective is to operate the 

microgrid as independent as possible while the SEI growth rate is maintained at an optimal level.  

 The proposed adaptive power referencing method is sufficiently adaptive to the grid magnitude and 

ramp rate constraints. In addition, the proposed method is proven to be effective during the different 

seasons. As the proposed method does not require forecasting methods, it can avoid the 

computational complexities. Furthermore, it assures improved performance in SEI growth 

reduction, grid independency and maintaining grid power constraints. 

Despite these encouraging outcomes, there is scope to improve further on the strategy. As 

shown in the comparison with the existing methods, adjustable settings of the proposed method 

could be fine-tuned in order to obtain the optimal outcomes of CB operation. This could only be 

investigated considering the economic factors such as grid tariff, battery costs, grid penalties for 

code violations etc. Only an aggregated cost due to all the related factors can then be utilized for an 

overall economic evaluation of the system. Further work is required to develop such economic 

evaluation where the aggregated cost could be minimalized using the adjustable settings.  
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CHAPTER 8. Conclusions and Recommendations 

8.1 Impact of Research Findings to Industry 

The theoretical concept outlined in this thesis can be applied to real-world situations, given that 

specific concerns not extensively covered within the thesis, are adequately addressed. Thus, it will 

be fruitful to establish a connection between the outcomes of the study and the practical needs of 

the industry to apply the proposed research work for the real-world applications. In order to bridge 

the gap between the proposed approach and real-world implementation, this section identifies the 

challenges and offers solutions for such issues. Figure 8.1 depicts the hierarchy of operations that 

are covered in this thesis for a real-world planning problem of HESS for microgrid.  

 

 

Figure 8.1 Hierarchy of operations discussed in the microgrid planning problem discussed in the thesis 

(a) Usually, a planning problem starts with the analysis of the historical data of PV and load 

variation of the given site. In CHAPTER 3, the distributed generation data and load data are 

used to analyse the net power variation of the prosumers. This will help to identify the different 

loading and generation characteristics of the given application. For an example, the microgrid 
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in Kalbarri is operating as a self-sufficient unit during non-tourist seasons, whereas during 

tourist seasons, the increase load demand is met through the grid intervention. These net load 

variations should be considered at the planning stage of the ESS extensively. In a real-world 

scenario, the main challenging task would be dealing with heavy volumes of data from different 

sources for many years. For an example, the White Gum Valley project discussed in [121] 

incorporates heavy volumes of data from the dataloggers from prosumers for designing 

individual storage and shared storage. Employing EMD proves beneficial in handling such 

heavy data loads achieving the desired levels of accuracy. Intrinsic nature of the algorithm would 

be helpful to realize the dominant modes presented in the load and generation profiles without 

prior knowledge.  

(b) After a proper analysis of the data, the required constituent ESS can be determined. In Section 

4.2, the selection of the HESS according to the appropriate application is described. This will 

ensure that the selected ESS technology is techno-economically feasible for the given 

application. It is important to note that in some storage techniques, ECM can be complex for 

some non-battery storage techniques. For instance, renewable projects utilizing Fuel Cells and 

electrolyzers are becoming increasingly prevalent in the industry nowadays [159]. However, 

simplifying the ECM would not be as direct as in the case for batteries in such instances. This 

may require additional understanding about the components of the ECM to simplify the network 

or empirical fitting method may need to be employed. In addition, other practical factors, such 

as site availability, geographical location, maintenance, maturity of technology and material 

availability should also be taken into consideration when selecting the appropriate ESS.  

(c) In order to determine the required storage capacity, as shown in the frequency-based attempts, 

the cut-off frequency should be determined first. In Section 4.2.5, the cut-off frequency 

determination between the selected ESS technologies is discussed. This will be helpful for the 

next stage of the HESS capacity determination. Various combinations of Energy Storage 

Systems (ESS) are commonly utilized in modern microgrids. Additionally, system planners are 

investigating different storage configurations, including distributed and centralized hierarchy, 

in microgrid studies [12]. Therefore, planning such a scheme using existing optimization-based 

methods would require significant resources. In contrast, the proposed method offers a much-

generalized and direct way to the solution avoiding repetitive trial and error calculations. Several 

example ESS configurations are provided to assist system planners in understanding the 

implementation of the proposed method to various storage combinations. 
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(d) Next, it is essential to ascertain the necessary capacity of the storage systems, taking into account 

the uncertainty of renewable generation and load variation. As in CHAPTER 5, HESS capacity 

of a prosumer can be determined based on the determined cut-off frequency and statistical 

analysis of the data. Usually, system planners should be able to assess the designed system by 

evaluating the loss of load probability through risk assessment, aiming to minimize this 

probability while maintaining an acceptable design cost. The proposed statistical analysis 

facilitates the determined capacity that can be validated as adequate during different seasonal 

variations. 

(e) However, in a hierarchy where a community storage is involved, the storage planning problem 

should be considered with respect to the power flows of the other prosumer types and grid power 

flow constraints. These power flow constraints are very commonly practiced due to the thermal 

heating limitations of the long transmission lines connecting the rural communities in Australia 

[7]. To respect these power flow constraints, a rule-based design methodology with a long-term 

ESS management is discussed in CHAPTER 6.  The proposed method seasonally adjusts the 

SOC reference of the storage with respect to PV and load data of the site location. Thus, the 

setting for SOC reference clearly reflects the seasonal variations of both PV and load 

characteristics. This might be helpful in situations like the Kalbarri microgrid where load 

patterns change according to tourist seasons. The proposed method also acknowledges the long-

term degradation characteristics of the ESS. Thus, the determined ESS capacity has considered 

the degradation modelling of the battery. In addition, the duck curve phenomenon is a major 

concern in the electricity market where AEMO implements different pricing approaches to 

mitigate the effects of it [160]. The proposed rule-based approach effectively address this issue 

resulting as maximum self-sufficiency of the microgrid using effective management of 

community storage capacity.  

(f) Using the above determined seasonal SOC reference, it is important to determine the control 

strategy for intraday operation. This has been the discussed topic in CHAPTER 7. Operational 

planning of microgrids with storages is a widely discussed topic these days [161]. For the online 

control of scheme of batteries at distribution level, it is not practical to use controllers with 

complex optimization and short-term forecasting. In contrast to this, the proposed rule-based 

adaptive method supports direct approach with minimum computation. The consideration of the 

control takes into account the uncertainty of the PV, load, degradation asymmetry during 

charging and discharging currents, degradation effects due to SOC variation of the battery and 
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self-consumption of the microgrid. To address additional degradation factors, the model must 

be further enhanced, especially regarding installations where temperature fluctuations 

significantly affect storage performance across different seasons. Consequently, storage 

management must also incorporate temperature effects into the degradation modeling process. 

The proposed method should be economically optimized to be able to be applied in the real-

world scenario using the cost indexes. It is important to note that these economic aspects are not 

covered in this thesis.  

In addition to the charging and discharging strategies mentioned in the microgrid based 

community storage, it is important to note that the proposed degradation conscious charging control 

method can be incorporated to any of battery management scheme to minimize the SEI growth of 

the Li-ion battery.  

If the proposed methodology is going to be installed in the real time control of the storages, this 

would encounter challenges and additional costs of installation. The major concern is the filter 

design for the different constituent components to generate power reference. Also, during the real 

time control, the communication is required between the multi agent based coordinated control of 

the microgrid while the delays of this communication should be further considered in the control of 

the microgrid particularly with the fast-acting storage devices. Also, the stability concerns such 

voltage stability should be studied at the feeders. Reactive power support of inverter-based 

controllers should further be studied at the stage of power system planning. 

 

8.2 Assumptions and Limitations 

The following concerns are identified as assumptions and limitations of the proposed methodology, 

and the mitigation techniques are also discussed in brief. 

1. The first main point of the concern is during the analysis of net power using proposed EMD 

method in CHAPTER 3, where inherent issues such as mode mixing may be encountered. 

Nonetheless, it has been observed that advanced EMD techniques like EEMD might offer a 

solution to this issue, at the cost of additional computation resources. As a result of mode mixing, 

there will be an ambiguity in demarcation of some IMFs named as boundary IMFs here. This 

can be addressed using the additional step in the calculation introduced as apportion of boundary 

IMFs as introduced in CHAPTER 4.  

2. During the proposed method in capacity determination, it is required to convert the ECM of the 

proposed storage technology to equivalent parallel RC representation in CHAPTER 4. However, 
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some storage mechanism would need to be carefully considered as RC elements hold distinct 

interpretations [131]. Thus, the simplification of the model would pose difficulty for certain 

storage technologies like Fuel Cell. In such situations, instead of mathematical simplification, 

simplified RC parameters for the interested frequency range can be calculated using empirical 

curve-fitting technique.  

3. In addition to the gaps mentioned in steps related to real-world application, the most important 

assumptions in this thesis are related to the line losses that are neglected in the calculations. 

Charging and discharging efficiencies of the storages are also neglected. Charging and 

discharging efficiencies of the Li-ion batteries are typically around 0.95-0.97 [162]. Therefore, 

the calculation instances of the charging and discharging power in the expressions of (eq (6.8)-

(6.9)) should be included with these efficiency factors for the completeness of the proposed 

method. 

4. Due to the simplicity and unavailability of the data for the long term, only three different load 

profiles are considered in the microgrid considered. In real world scenario, the data should be 

available for different consumers for sufficiently long of at least 4-5 years. Processing this data 

would be challenging task. However, as the optimization is avoided, the computing efficacy is 

improved compared to other methods. Furthermore, when designing community-level storage, 

the complexity of data management is reduced, as data loggers are positioned at the aggregator 

level of the PCC within the microgrid. Therefore, this is unlikely to be a significant issue in such 

community storage design practices. 

5. In the research outlined in CHAPTER 6, it is assumed that the seasonal reference will exhibit 

similar behavior in subsequent years. This is a common assumption made by long-term system 

planners. However, considering environmental concerns, future trends in solar insolation levels 

can be factored in to refine the proposed method. 

6. The proposed methods of seasonal SOC referencing, and the intraday operation are only 

applicable to microgrids dominated by PV sources. This level of benefits cannot be guaranteed 

when the microgrid is dominated by other types of renewables such as wind. 

7. In real-time control of such systems, it is presumed that the primary control parameter, SOC can 

be precisely estimated from battery parameters. This control scheme necessitates an accurate 

SOC measurement unit, which incurs associated costs. However, many battery management 

systems nowadays include such measurement units, so it is reasonable to assume that these costs 

would also apply to similar other methods. 
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8. A practical EMS for isolated microgrid should consider the operational constraints of reactive 

power balance, unbalanced system configuration and loading, and voltage dependent loads, 

protection criteria and required short-circuit ratio levels of voltage stability. These aspects are 

not covered in this discussion as the study is limited to the active power balance of the system. 

A fruitful future study should cover these topics prior to the implementation of the proposed 

method.  

8.3 Conclusions 

This thesis has extensively investigated the designing and control of energy storage systems at both 

the prosumer and community levels within a grid-connected microgrid, with a particular focus on 

the application of Li-ion battery in the schemes and taking into consideration the degradation of the 

battery cells due to the SEI film growth.  

In the context of a grid-connected microgrid, CHAPTER 3 provides the preliminary analysis 

on the net power flows emanating from a prosumer. The unsteadiness in the net power is due to the 

time-varying and uncertain harnessed power from the PV generation and load demand fluctuations 

of the prosumer makes it unsuitable to analyse using the classical FT and wavelet-based methods. 

The objective is to assess the applicability of EMD-based analysis in decomposing various 

oscillating frequency components of the net power. In contrast to the classical methods, the adaptive 

EMD method has proven its effectiveness in extracting all the relevant frequency components in the 

form of the implicit mode functions (IMFs). The examination of power magnitudes of the IMFs has 

shown that high-frequency IMFs, despite their relatively low energy content, can play an important 

role in impacting power quality in the network. Thus, it is essential to have a highly responsive 

energy storage system to effectively buffer these high-frequency IMFs. The statistical analysis of 

the oscillation energy contained in the IMFs has identified that the dominating IMF components are 

those pertaining to the daily and seasonal fluctuations. 

In view of the above, CHAPTER 4 proposes a new method to determine the cut-off 

frequency between the constituent ESSs of a HESS installed in a prosumer. The method takes into 

account both the frequency response characteristics and the capital cost of the ESSs. The cost per 

effective capacity of each of the ESSs is examined, expressed as a function of frequency. The 

optimum operating frequency range of the ESS corresponds to that which has the lowest cost per 

unit of energy storage capacity among the constituent ESSs. The cut-off frequency demarcates the 

optimum frequency ranges between the ESSs.  
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In CHAPTER 5, a statistical approach to estimate the required energy storage capacity of 

the HESS is discussed. Firstly, based on the method to determine the cut-off frequency described in 

CHAPTER 4, IMFs related to each constituent ESS of the HESS are identified. Boundary IMFs are 

separately treated to improve the accuracy of the determination. Subsequently, a statistical method 

is then proposed to estimate the energy variation for which the ESS would handle. The energy 

fluctuation is shown to vary over the seasons. A sufficient energy storage capacity is warranted 

using the statistics over different seasons for each of the constituent ESSs so that the ESSs can 

undertake the energy buffering task successfully and at reasonable probability level.  

Building on the outcomes of the investigation obtained in the preceding chapters, attention 

is then directed toward the design of centralized battery-based ESS. CHAPTER 6 examines the 

scenario whereby the centralized battery (CB) shall be operated to make full use of the power 

capacity of the grid link. So, the capacity of the CB can be minimized while flexible grid 

import/export can be achieved. A rule-based operational strategy is proposed which does not require 

the forecasting of the PV and load demand. The proposed scheme of seasonal dynamic referencing 

of the SOC of the CB reduces the rate of the SEI film growth in the CB, the SEI film growth being 

the dominating degradation factor impacting the service lifetime of Li-ion battery. Moreover, the 

proposed scheme is able to reduce the required capacity by a considerable margin, compared to the 

fixed-SOC referencing scheme used in many existing CB control methods. Also, numerical 

examples show that with the proposed rule-based approach, the grid power import/export can be 

controlled such that the proposed CB control scheme can assist in achieving a higher level of 

independency of the microgrid in terms of alleviating the duck power phenomenon observed in the 

daily operation of the microgrid.  

The attention of CHAPTER 7 is to consider the alternate scenario when the CB is placed to 

minimize the intra-day grid import/export, and thus improve the independency of the microgrid from 

the grid link. In addition, the effect of asymmetry in charging and discharging C-rate on the SEI 

growth rate is taken advantage of in the design of new charging and discharging strategies for the 

intra-day operation of the CB. Numerical examples have shown significantly lower SEI film growth 

when the proposed strategy is implemented, while the import/export constraints imposed on the grid 

link are not violated. Finally, the proposed CB control method is adaptive to seasonal changes in the 

PV power and load variations, and to do so without the need of forecasting. 
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8.4 Recommendations for Future Work 

Notwithstanding the progress made thus far, the following studies are suggested for further 

investigations. 

1. The inclusion of a grid-scaled ESS by expanding the system under study to grid level can be 

fruitful. In such a study, there is a need to coordinate the actions of the different ESS at different 

power levels. The evaluation of the economics of the storage scheme has to include the aging of 

the ESS. Some of the findings from CHAPTER 6 and 7 in this thesis could become very useful 

in the evaluation of Li-ion CB.  

2. There are a number of other degradation factors such as that due to thermal effect that should be 

included into the ESS degradation analysis. The effect of SOC and the C-rate has been considered 

in the present study pertaining to the SEI film growth rate in Li-ion battery, however, other 

degradation factors such as Li-plating can be studied to more accurately determine the lifetime 

of the battery. 

3. Optimization of the adaptive control of the community battery by considering economic factors. 

Though the operational strategies are adequately considered when developing the rules, the rules 

could be optimized by considering their economic impact on several factors. The factors can 

include the cost of grid export/import energy, annual degradation cost and penalty cost due to the 

violation of grid code. These costs are to be directly considered in developing an optimization-

based method for the adaptive control scheme. 

4. The stability analysis of the adaptive control scheme. 

Prior to developing a real-time controller for the degradation-aware adaptive control scheme 

proposed in CHAPTER 6 and 7, an in-depth stability analysis of such scheme can be fruitful. 

This is to ensure the proposed scheme is robust and resilient operating under an increasingly 

uncertain and volatile grid environment. 
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Appendix A  

 

Figure A.1. An overview of classification of storage technologies based on the responsive time 

characteristics [10] 

 

Figure A.2. Overview of classification of storage technologies([12]) 
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Table A.1 Table of the characteristics of the different ESS technologies (taken from the review paper [13]) 
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Figure A.3. Algorithm flow of sifting process of the EMD 
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Appendix B  

a. ECM of SC 

The simplest representation of the supercapacitor involves an equivalent series resistor (ESR) 

connected with capacitor of the SCs as presented in [163] . This is further improved by integrating 

a parallel resistor to the model in [164]. The primary aim of these RC branches is to simulate the 

time response of the supercapacitor during both charging and discharging processes. In addition, 

many such models include leakage resistance as the self-discharging component [165]. 

Subsequently, the complexity of the model is increased by introducing multiple RC branches to 

establish a close match to the measured characteristics of SC [126]. First RC branch is related to 

fastest charging/discharging process while subsequent branches represent progressively slower 

charging/discharging processes as their indices increase. Recently a more complex 4-branch SC 

model has been reported in [130] introducing four diffusion time constants.  
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Figure B.1  ECM of Li-ion battery given in [130] 

The parameters for the four branches model are as follows: 

 

b. ECM of PHES 

Detailed modelling of the equivalent circuits of the PHES is presented and the values for the 

PHES are taken from the reference [166]. 

 

 

 

 

 

 

 

R1=0.33×10-3, R2=0.0124, R3=1.3173, R4=45.91, Rp=6323  

C1=1035, C2=129.8, C3=25.76, C4=69.84  
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Table B.1  Parameters of PHES modelling 

 

 

 

 

 

Symbol Description Value 

Water Hammer   

ℎ Water head  

𝑎 Wave speed  

𝐴 Area of the pipe  

𝐷 Internal diameter of the pipe  

𝜆 Loss coefficient  

𝑄 Volumetric discharge per second  

/ D  Relative roughness of the pipe 0.0000049  [167] 

  Dynamic viscosity of water 8.9 × 10−4[167] 

  Velocity of the water flow  

𝜌 Density of water 1000kgm-3 

Gallery   

𝑅𝐺 Equivalent resistance of gallery  

𝐿𝐺 Equivalent inductance of gallery  

𝑙𝐺  Length of gallery 70m 

𝐷𝐺  Internal diameter of gallery 0.3m 

Penstock   

𝑅𝑝 Equivalent resistance of turbine  

𝐿𝑝 Equivalent inductance of turbine  

𝐷𝑝 Internal diameter of penstock 0.3m[166] 

𝑙𝑝 Length of penstock 70m[166] 

Surge Tank   

𝐴𝑠𝑡 Cross area of the surge tank 38.48m2   [167] 

𝐾𝑑 Loss coefficient of surge tank 1.5 [166] 

𝐶𝑠𝑡 Equivalent capacitance of surge tank  

Valve   

𝑅𝑣 Equivalent resistance of valve  

𝐾𝑣 Loss coefficient of valve 1 [166] 

Turbine   

𝑅𝑡 Equivalent resistance of turbine  

𝐿𝑡 Equivalent inductance of turbine  

𝑙𝑒𝑞𝑢 Equivalent length of turbine case 30m 

𝐴𝑒𝑞𝑢 Equivalent area of turbine case 0.3m 

ℎ𝑙𝑜𝑠𝑠 Head loss of the turbine 10% of total head 

Reservoir   

ℎ𝑠 

 

Static head of upper reservoir 63m 

ℎ𝑟𝑒𝑠 

 

Water height of the upper reservoir 7m 

res
V  

Volume of the upper reservoir water 4000m3 

𝐴𝑟 

 

Area of the reservoir 571.42m2 

𝑉ℎ 

 

potential gain due to the height of the 
upper reservoir 

 

𝐸0 Evaporation in mm day-1  

𝑇 Air temperature in C 25oC 

𝐼𝑠 Solar radiance in Wm-2 600W 

𝑧 Local altitude 63m 

𝑢 Local wind speed 6ms-1 

𝑅ℎ Relative humidity 52% 
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1. Main components of the PHES 

Prior to developing of the complete ECM of the PHES, the main components need to be separately 

studied in order to denote the characteristics using appropriate equivalent electrical circuit 

parameters. The generalized main components of the PHES could be identified as in Figure B.2.  

 

Figure B.2. Main components of the generalized PHES 

2. ECM of the Water Hammer 

As mentioned in the [168], the behavior of the water hammer of  ∆𝑥 could be mathematically 

explained using the following set of partial differential equations. 

Continuous Equation: - 

 

(B.1) 

Momentum Equation: - 

 

(B.2) 

Similarly, the study of electrical wave propagation in conductors leads to the establishment of the 

set of equations expressed as follows, referred to as the telegraphist’s equation: [169] 

 

(B.3) 

Valve 

Reservoir 
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Considering the analogy between the hydraulic and electrical systems, the equations of the (B.1), 

(B.2) and (B.3) can be rewritten considering the lineic hydraulic resistance 𝑅′, a lineic hydraulic 

inductance 𝐿′and a lineic hydraulic capacitance  𝐶′as in (B.4).   𝑅′ represents the head losses through 

the pipe, while  𝐿′ is associated with the inertia of fluid, and the  𝐶′ relates to the storage effect 

caused by pressure increase due to both compressibility of the fluid and due to pipe wall deflection. 

 

(B.4) 

As a result of the aforementioned equivalence the elastic pipe could be represented as in Figure 

B.3. 

 

Figure B.3. Complete ECM of the Elastic pipe 

Equivalent electrical parameters of the circuit shown on would be as follows. 

𝑅 = 𝑅′. 𝑙. 𝑝. 𝑔   (B.5) 

𝐿 = 𝐿′. 𝑙. 𝑝. 𝑔   (B.6) 

𝐶 = 𝐶′. 𝑙/(𝑝. 𝑔)   (B.7) 

The more important parameter in the (B.4) is the friction factor (𝜆) which can be approximated by 

the (B.8) that shows the relationship between friction factor (𝜆), Reynolds number (Re), and the 

relative roughness of the pipe (  /D). Reynolds number can be calculated using the (B.10) where   

dynamic viscosity of the fluid and v is the velocity of the water flow which can be calculated by 

(B.9). 
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Following the same analogy, the ECM for the surge tank, valve and the turbine can be electrically 

modeled as below. 

3. ECM of the surge tank 

 

Figure B.4 ECM of the surge tank 

4. ECM of the Valve 

 

Figure B.5 ECM of valve 

5. ECM of the Turbine 

 

Figure B.6 ECM of turbine 
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6. ECM of the Reservoir 

ECM for the reservoir is adopted from the reference [170] which are described by the (B.11)-(B.14). 

𝐶𝑟𝑒𝑠 represents the storing capacity of the reservoir which is determined by the (B.11). Voltage source 

𝑉ℎ represents the equivalent potential increase due to the height of the water level. 

 

Figure B.7 ECM parameters of reservoir 

Cres=Ar/(p.g)  (B.11) 

Vh=hs.p.g  (B.12) 

Revp=hres.p.g/Q
evp

  (B.13) 

Q
evp

=8.64×10-7ArE0  

E0=(0.015+0.00042T+10-6z).[0.8Is-40+2.5Fu(T-Td)]  

𝐹 = 1 − 8.7 × 10−5𝑧  

 

 

(B.14) 
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Appendix C  

PHES costs 

Table C.1 Table of PHES capacities and associated capital costs [136] 

 

Appendix D  

SOC /I vs SEI growth of Li-ion Battery 

Prior to establishing the relationship, SOC and current (I) are considered as the known parameters 

of the Li-ion battery. The remaining known parameters of the Li-ion battery are displayed in Table 

D.1 which are obtained from the studies in [56, 124]. Using the equations from (D.1)-(D.10), 

resistance growth rate and the rate of the capacity loss of the Li-ion battery can be quantified due 

to the SEI growth in relation to the SOC and current(I) [171].  

Table D.1. Parameters of degradation model of Li-ion battery 

Parameter Unit Value 

Maximum concertation in solid 

phase 𝐶𝑠,𝑛,𝑚𝑎𝑥  
 30555 

Concertation of Lithium-ion in 

the electrolyte 𝐶𝑒 
 1200 

Electrode plate area 𝐴𝑛  0.358 

Specific surface are 𝑎𝑛  7.236*1e5 

Reaction rate constant 𝑘𝑛  5.031*1e-11 

Length of the electrode 𝐿𝑛  8.8*1e-5 

𝑅  8.314 

𝑇  298.15 

𝐹  96487 

Side reaction potential 𝑈𝑠,𝑟𝑒𝑓  V 0.4 

SEI molar mass 𝑀𝑝  0.162 

SEI layer density 𝜌𝑝  
 

1690 

Conductivity of the SEI 𝜅𝑝    17.5*1e-5 

Charge transfer coefficient 𝛼𝑛  0.5 
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1. Surface SOC  of the negative electrode is the ratio between the surface 

concentration(𝐶𝑠,𝑛,𝑠𝑢𝑟𝑓) and maximum concentration(𝐶𝑠,𝑛,𝑚𝑎𝑥) . 

 

Since the 𝐶𝑠,𝑛,𝑚𝑎𝑥 is known parameter, knowing the SOC , 𝐶𝑠,𝑛,𝑠𝑢𝑟𝑓 could be determined. 

2. The main reaction exchange current density can be found by following, where 𝐶𝑒 is the 

concertation of Lithium-ion in the electrolyte. 

 

3. Current density can be determined when the current is known, 

4. Solving butler and volmer equation, the main reaction over potential of the negative 

electrode ( )can be found 

5. Side reaction over potential can be found by 

Where Side reaction potential (𝑈𝑠,𝑟𝑒𝑓) is known as given in table and 𝑈𝑠,𝑟𝑒𝑓 is the

 equilibrium potential of negative electrode which is a function of SOC. 

Where Un=0.722+0.1387×x+0.029×power(x,0.5)-0.0172×power(x,-1)+0.0019×power(x,-

1.5)+0.2808×exp(0.9-15×x)-0.7984×exp(0.4465×x-0.4108) for x=SOC   

 

6. Side reaction current density can be found by Tafel equation, 

7. 
𝜕𝛿𝑓𝑖𝑙𝑚(𝑡)

𝜕𝑡
 is the SEI film growth rate which can be found by, 

 

8. 𝑅𝑓𝑖𝑙𝑚(𝑡) represents the SEI resistance which is assumed to grow in proportion to its 

thickness, 

9. Capacity fade rate due to the side reaction can be determined by, 

𝑆𝑂𝐶 = 𝐶𝑠,𝑛,𝑠𝑢𝑟𝑓/𝐶𝑠,𝑛,𝑚𝑎𝑥 (D.1) 

𝑖𝑜,𝑛(𝑡) = 𝛼𝑛𝑘𝑛(𝐶𝑠,𝑛,𝑚𝑎𝑥 − 𝐶𝑠,𝑛,𝑠𝑢𝑟𝑓)
𝛼𝑎

(𝐶𝑠,𝑛,𝑠𝑢𝑟𝑓)
𝛼𝑐(𝐶𝑒)𝛼𝑎 (D.2)  

𝑗𝑛 = 𝐼/(𝐴𝑛𝐿𝑛) 

 

(D.3)  

 

(D.4)   

    

𝜂𝑠(𝑡) = 𝜂𝑛(𝑡) + 𝑈𝑛,𝑟𝑒𝑓 − 𝑈𝑠,𝑟𝑒𝑓 (D.5)  

  

𝑗𝑠𝑖𝑑𝑒(𝑡) = −𝑖𝑜𝑎𝑛exp (
𝛼𝐹

𝑅𝑇
𝜂𝑠(𝑡)) 

 

 

(D.6)  

 

 

  (D.7) 

 

(D.8) 
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10. Capacity fade rate in Ah/sec can be expressed as  

 

 

Figure D.1 Different  SEI growth rate vs SOC/I surface plots in the  literature  [129] [156] 

 

 

(D.9) 

  
𝜕𝑄𝑙𝑜𝑠𝑠(𝑡)

𝜕𝑡
=

−𝑗𝑠𝑖𝑑𝑒(𝑡) × 𝐴𝑛 × 𝐿𝑛

3600
 

(D.10) 
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