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ABSTRACT　Cardiovascular computed tomography angiography (CTA) is a widely used imaging modality in the diagnosis
of cardiovascular disease. Advancements in CT imaging technology have further advanced its applications from high diagnostic
value to minimising radiation exposure to patients. In addition to the standard application of assessing vascular lumen changes,
CTA-derived applications including 3D printed personalised models, 3D visualisations such as virtual endoscopy, virtual reality,
augmented  reality  and  mixed  reality,  as  well  as  CT-derived  hemodynamic  flow  analysis  and  fractional  flow  reserve  (FFRCT)
greatly enhance  the  diagnostic  performance  of  CTA  in  cardiovascular  disease.  The  widespread  application  of  artificial  intelli-
gence in medicine also significantly contributes to the clinical value of CTA in cardiovascular disease. Clinical value of CTA has
extended from the initial diagnosis to identification of vulnerable lesions, and prediction of disease extent, hence improving pa-
tient care and management. In this review article, as an active researcher in cardiovascular imaging for more than 20 years, I will
provide an overview of cardiovascular CTA in cardiovascular disease. It is expected that this review will provide readers with an
update of CTA applications, from the initial lumen assessment to recent developments utilising latest novel imaging and visual-
isation technologies.  It  will  serve as a useful  resource for researchers and clinicians to judiciously use the cardiovascular CT in
clinical practice.

 

C omputed tomography (CT) is a widely
used imaging modality in the clinical pra-
ctice, owing to its widespread availabil-

ity and high diagnostic value. Over the last decades,
CT has undergone rapid developments from the
standard use of 64-slice CT to even fast scanners
with improved spatial and temporal resolution, and
from single energy to dual energy models.[1-35] More
recently, the emergence of photon-counting CT rep-
resents the latest development in CT technology.[36-38]

In routine clinical practice, CT images in 2D axial,
multiplanar reformation, and 3D visualisations are
commonly used to provide diagnostic information
such as assessment of degree of lumen stenosis in
cardiovascular system, identification and analysis
of lesions such as atherosclerotic plaques in the vas-
cular wall, as well as assessment of disease extent.
This meets most of the clinical requirements for dia-
gnostic purpose. However, standard cardiovascu-
lar CT angiography (CTA) may not allow for com-
prehensive assessment of the complexity of the le-

sions due to its limited role in providing functional
assessment of cardiovascular disease. The integra-
tion of advanced technologies such as 3D visualisa-
tions and CT-derived applications into cardiovascu-
lar CT has transformed the diagnosis and treatment
of cardiovascular disease.[39,40] These technologies
include 3D visualisations such as virtual intravascu-
lar endoscopy, virtual reality (VR), augmented real-
ity (AR) and mixed reality (MR), 3D printed patient-
specific models using CT data, CT-derived fraction-
al flow reserve (FFRCT) and hemodynamic analys-
is, and the increasing use of artificial intelligence
(AI), machine learning (ML) and deep learning (DL)
tools in cardiovascular disease.[41-50]

In this review article, I will first provide a brief
summary of CT technological developments, fol-
lowed by detailed overview of cardiovascular CT
applications with use of these advanced technolo-
gies based on my research experience in cardiovas-
cular CT imaging. It is expected that this article
serves as a useful resource for readers or research-
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ers to be aware of the spectrum of cardiovascular
CT applications including the latest developments
in this field, and how the judicious use of cardiovas-
cular CT will revolutionise the current practice by
enhancing diagnostic accuracy, facilitating surgical
planning and optimising interventional or surgical
approaches. 

TECHNOLOGICAL DEVELOPMENTS IN
CARDIOVASCULAR CT

Cardiovascular CT puts a strong demand on the
technological advancements in imaging techniques
mainly due to the fact that cardiac CT requires high
spatial and temporal resolution to ensure acquisi-
tion of CT images with satisfactory quality, even
during the rapid heartbeat. Cardiac CT drives the
developments of CT technologies represented by
the increasing use of CT scanners with fast gantry
rotation speed, such as dual-source CT and dual-en-
ergy CT, which is widely available in many clinical
sites. The most recent model of photon-counting CT
(PCCT) received FDA approval in 2021 and increas-
ing reports showed promising results of this latest
technology in advancing CT applications.[36-38,51,52] In
the area of cardiovascular CT, PCCT has signific-
antly improved the diagnostic performance of CT in
cardiovascular disease and other areas when com-
pared to the standard CT. Table 1 is a summary of
PCCT in cardiovascular applications, while Figures 1
and 2 are examples showing improved visualisa-

tion of calcified coronary plaques and stents with
use of PCCT.[36,37]
 

3D VISUALISATIONS ENHANCING DIA-
GNOSTIC VALUE OF CARDIOVASCU-
LAR CT

In addition to the standard 2D and 3D reconstruc-
tions, advanced 3D visualisations derived from car-
diovascular CT have greatly enhanced the diagnost-
ic value of CT in cardiovascular disease when com-
pared to the standard approaches of lumen assess-
ment. This is manifested in generating various 3D
views which are detailed below with their corres-
ponding clinical applications. 

Virtual Intravascular Endoscopy (VIE) Providing
Unique Intraluminal Views

Virtual endoscopy (VE) was introduced in early 90s
with uniqueness of providing intraluminal views of
the hollow organs and structures.[53-55] The most im-
portant and widely used application of VE is the
virtual colonoscopy which allows for detection of
colonic polyps less invasively when compared to
the reference method of colonoscopy, thus serving
as a screening tool. Virtual colonoscopy or CT colono-
graphy is a widely used technique for screening
colorectal cancer with many reports proving its clin-
ical value.[56-58] Virtual intravascular endoscopy (VIE)
represents another application of VE to provide int-
raluminal visualisations of vascular structures,[41,59]

 

Table 1     Benefits of photon-counting detectors and impact on cardiovascular applications. Reprinted with permission under open ac-
cess from Cademariti et al. [37]

Benefits of Photon-Counting Detectors Potential Cardiovascular Applications

Higher spatial resolution

Stent imaging
Coronary lumen evaluation
Atherosclerotic plaque imaging
Coronary artery calcium scoring
Aortic valve calcification score

Improved iodine signal Coronary lumen evaluation
Stent imaging

Multi-energy acquisition

Coronary lumen evaluation
Atherosclerotic plaque imaging
Dose reduction
Coronary artery calcium scoring
Aortic valve calcification score

Energy binning
Stent imaging
Atherosclerotic plaque imaging
Dose reduction
Myocardial tissue characterization.

Artifact reduction
Coronary lumen evaluation
Stent imaging
Atherosclerotic plaque imaging
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such coronary artery lumen and ostium (Figure 3),
plaques inside the coronary lumen (Figure 4), coron-
ary stents (Figure 5),[60-64] aortic dissection (Figure 6)
and aortic aneurysm (Figure 7),[65-67] and pulmon-
ary embolism (Figures 8-10).[68] VIE has been shown
to provide more accurate assessment of the lumen
stenosis when compared to the standard use of 2D
or 3D reconstructions, [69] present intraluminal
views of aortic dissection, especially details of in-
timal tears and intimal flap of aortic dissection that
are difficult to visualise on 2D views (Figure 11).[69,70]

VIE also demonstrates the extent of thrombus in-

volving arterial branches in pulmonary embolism.[68]

Our previous studies and others have shown the
usefulness of VIE in demonstrating suprarenal stent
struts across the renal and other aortic ostium in pa-
tients with abdominal aortic aneurysm following
treatment by endovascular aortic stent grafting
(Figure 12).[70-86] In patients with calcified coronary
plaques, VIE shows improved diagnostic value than
that from coronary lumen assessment, hence con-

 

Figure  1      An  82-year-old  man  with  coronary  artery  disease.
Visualisation  of  calcified  plaques  and  lumen  diameter  of  the
proximal left anterior descending was improved in the high res-
olution  photon  counting  CT image  ('B' with 0.2  mm slice  thick-
ness)  when  compared  with  the  standard  CT  ('A' with  0.6  mm
slice  thickness).  Arrow  refers  to  the  coronary  lumen.  Reprinted
with permission under open access from Flohr, et al.[36]

 

Figure  2      Cardiac  PCCT  visualisation  of  coronary  stents  and
stented lumen. There are two stents at the level of the proximal
and middle RCA (A) and one stent on the marginal branch of the
left LCx (C); the LAD (B) is normal without any detectable ather-
osclerotic disease.  All  stents  are  perfectly  visualised  in  their  in-
ner struts and also in their inner lumen, which is difficult to visu-
alize  on  standard cardiac  CT.  Reprinted  with  permission  under
open  access  from  Cademartiri, et  al.[37] LAD: left  anterior  des-
cending; LCx: left circumflex; PCCT: photon counting CT; RCA:
right coronary artery.

 

Figure 3    VIE views of normal coronary ostium. (A): Looking at the RCA ostium; (B): close view inside the RCA ostium; (C): looking
at the left coronary ostium; (D): close view of LAD and LCx ostia; (E, F and G): inside views of LAD, LCx and ramus intermedius, re-
spectively. LAD: left anterior descending; LCx: left circumflex; RCA: right coronary artery; VIE: virtual intravascular endoscopy.
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tributing to reducing unnecessary invasive proced-
ures by improving specificity and positive predict-
ive value (Figure 4).[60-64]
 

Coronary Bifurcation Angle Measurements Im-
proving Diagnostic Value

One of the main limitations of cardiac CTA is lack
of accurate assessment of calcified plaques due to
blooming artifacts which significantly affect the
specificity and positive predictive value.[87-90] Use of
coronary bifurcation angle to determine the degree
of coronary artery stenosis is a novel approach to over-
come the limitation of lumen-based assessment
with results proving its improved clinical value.[91-101]

Our research group and others have shown that use
of left coronary bifurcation angle to measure the an-
gulation between left anterior descending (LAD)
and left circumflex (LCx) arteries is more accurate
in the assessment of calcified plaques when com-
pared to the standard lumen assessment.[92,94,99,101] It
is generally agreed that the wider angulation at the

left coronary artery, the higher risk of developing coron-
ary artery disease (CAD) as validated by our and
other studies. Figure 13A is an example of a patient
without having CAD, with measured LAD-LCx be-

 

Figure 4    VIE visualisation of coronary plaques. (A): VIE view
of  calcified  plaque  at  LAD;  (B):  VIE  view  of  calcified  plaque  at
RCA. These  plaques  present  as  a  protruding  sign  in  the  coron-
ary lumen without causing significant stenosis. LAD: left anteri-
or descending;  RCA:  right  coronary  artery;  VIE:  Cvirtual  in-
travascular endoscopy.

 

Figure  5      VIE  visualisation  of  coronary  stents  in  comparison
with CCTA and ICA. (A): A case of true negative results for both
CCTA  and  VIE.  A  45-year-old  female  with  hypertension  and
type 2  diabetes  mellitus  and has a  metallic  stent  (arrow) placed
in  the  left  anterior  descending  artery.  Both  CCTA and VIE  (left
and middle images) showed patency of the stent without in-stent
restenosis, and this was confirmed by ICA (arrow) (right image).
(B): Another case of true positive result for both CCTA and VIE.
A  57-year-old  man  with  hypertension  and  obesity  and  with  a
total calcium score of 1125. A metallic stent was placed in the left
circumflex artery. Both CCTA and VIE (left and middle images)
showed in-stent restenosis at the distal edge of the stent (arrow).
This was confirmed by ICA with 88% stenosis (arrow in right im-
age).  Reprinted with permission under  open access  from Wu et
al.[64] CCTA: coronary computed tomography angiography; ICA:
invasive coronary angiography; VIE: virtual intravascular endo-
scopy.

 

Figure 6    VIE views of aortic dissection. (A): An intimal flap separates the aortic intimal layer into true lumen and false lumen; (B):
VIE view inside the true lumen to demonstrate the three main branches arising from the aortic arch, namely, left subclavian artery, left
common carotid artery and brachiocephalic artery; (C): inside view of the false lumen. VIE: virtual intravascular endoscopy.
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ing 82.2°, while Figure 13B is another example of a
patient with multiple calcified plaques at LAD caus-
ing significant stenosis, and the measured LAD-LCx
angle is 105.9°.

Very little research is done at investigating the re-
lationship between right coronary artery (RCA)
angle and the CAD as most of the current studies
focus on the left coronary artery bifurcation where

usually atherosclerosis forms. We have pioneered
some preliminary research on investigating the cor-
relation between RCA and aorta and our results
proved the association of RCA-aorta angle with
CAD.[102,103] Our recent research through analysis of
250 patients revealed that that a smaller RCA-aorta
angle was associated with CAD development when
compared to the normal group (79.07° ± 24.88° vs.

 

Figure 7    VIE view of an infrarenal abdominal aortic aneurysm. (A): VIE looking towards the aneurysm with celiac axis and SMA os-
tia; (B): inside view of the aortic aneurysm, and (C) with VIE view further down to the aneurysm towards common iliac arteries (ar-
rows). Note that the intraluminal views of aortic wall, especially inside the aneurysm is irregular, most likely due to dilated aneurysm
with thrombus formation which causes irregular wall changes. SMA: superior mesenteric artery; VIE: virtual intravascular endoscopy.

 

Figure 8    Pulmonary embolism involving bilateral pulmonary artery branches. (A): Large thrombus is present in left main pulmon-
ary artery and it extends to right side; (B): orthogonal views show that viewing position is located in pulmonary trunk; (C & D): con-
tinuous extension of thrombus from proximal part of main pulmonary artery to distal segment with lumen narrowing, as well as pro-
truding sign in lumen. LPA: left pulmonary artery. Reprinted with permission under open access from Sun, et al.[68]
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92.08° ± 19.51°, P = 0.001), narrower angle in
smokers than non-smokers 76.63° ± 22.94° vs. 85.25° ±
23.84°, P = 0.016). A narrow RCA-aorta angle was
found to be negatively correlated with body mass
index (r = −0.174, P = 0.010).[103] Figure 14 shows the
RCA-aorta angles in two different patients. More
studies from different population groups are
needed to validate our findings. 

VR/AR/MR Enhancing Standard Image Visual-
isations

Advancements of 3D visualisation technologies
have enhanced the value of standard image visual-
isations in the diagnosis of cardiovascular disease,
and these 3D innovative technologies including VR,
AR and MR have shown great potential from med-

ical education to surgical planning and simulation
of complex or challenging procedures.[42,104-110] VR
provides the user with an immersive 3D virtual en-
vironment usually through a head-mounted device,
while AR enables the user to interact with virtual
models. MR is an advancement of AR allowing
the display of virtual objects on real world settings
(Figures 15 and 16).[110]

Increasing studies show that VR and AR enhance
student’s learning of anatomy and pathology through
displaying complex 3D anatomical structures.[42,111-113]

These tools are playing an important role during
the covid-19 pandemic which restricts the access to
cadavers or specimens for medical education. Moro
et al conducted a systematic review of VR and AR

 

Figure 9    Virtual intravascular endoscopy views of left lower lobar embolism from proximal to distal segments of lobar artery. (A):
VIE view of proximal segment of left lower lobar pulmonary artery with thrombus; (B): VIE view of distal segment of left lower lobar
pulmonary artery with thrombus; (C): Accurate position of thrombus is confirmed with using multiplanar views. VIE: virtual intravas-
cular endoscopy. Reprinted with permission under open access from Sun, et al. [68]
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in medical student’s leaning anatomy and physi-
ology through analysis of 8 studies.[114] When com-
paring VR (4 studies) and AR (5 studies) with tradi-
tional teaching methods, their analysis did not
show significant differences in terms of knowledge
scores (Figure 17). Barteit, et al.[42] analysed 27 stud-
ies about the value of VR, AR and MR in medical

education. Participants in these studies included
medical students and residents. These 3D visualisa-
tion tools were mainly used in surgery training (48%)
and anatomy learning (15%) with analysis of find-
ings showing positive impact on learning anatomy.
These two review articles present evidence-based
support to use VR and AR/MR as viable alternat-
ives to the current teaching methods.

Recent studies from our research group compa-
red the clinical value of VR and MR with 3D prin-
ted physical models and original CTA images in
education and pre-surgical planning of congenital
heart disease (CHD).[115,116] Due to variations of con-
genital heart anomaly, it is always challenging to
understand the complex anatomy and pathology
associated with CHD conditions. When compared
to 3D printed models VR has been ranked as the
preferred visualisation tool by healthcare profes-
sionals.[115] When comparing MR with 3D printed
models in two selected CHD cases (one simple and
one complex conditions), MR was found to be the

 

Figure 10     Virtual intravascular endoscopy views of right posterobasal segmental embolism. Thrombus extends from right lower
lobar artery (A) to posterobasal segmental arteries (B and C). ASA: anteromedial basal segmental artery; PSA: posterobasal segmental
artery. Reprinted with permission under open access from Sun, et al.[68]

 

Figure 11      Irregular  entry tear  on VIE and MPR. (A):  VIE sh-
ows a long irregular entry tear (arrow) on the intimal flap of a Sta-
nford type A dissection viewed from the true lumen. (B): The MPR
cannot show the actual configurations of the tear and flap. MPR:
multiplanar  reformation;  VIE:  virtual  intravascular  endoscopy.
Reprinted with permission under open access from Qi, et al. [70]
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best modality in demonstration of complex CHD le-
sions, enhancing learning cardiac pathology and
depth perception, and facilitating preoperative
planning (Figure 18), while 3D printed models were
rated as the best tool for communication with pa-
tients.[116]
 

3D Printed Patient-specific Models En-

hancing Diagnosis and Assisting Surgic-
al Planning

3D printing has been used widely in the medical
field with increasing evidence proving both educa-
tional and clinical value when compared to the tra-
ditional methods. Patient-specific or personalised
models offer superior advantages over traditional

 

Figure  12      CT  virtual  intravascular  endoscopic  image. (A):  A
patient  with  no  struts  crossing  the  renal  ostium;  (B):  CT virtual
intravascular  endoscopic  image  of  a  patient  with  a  stent  strut
peripherally crossing  the  renal  ostium;  (C):  CT virtual  intravas-
cular  endoscopic  image  of  a  patient  with  a  stent  strut  crossing
the renal ostium in a central position. Reprinted with permission
from England et al. [86]

 

Figure  13      Correlation  of  LAD-LCx  angle  with  CAD. (A):  A
narrow  angle  of  82.2°  was  measured  between  LAD  and  LCx
coronary  arteries  on  2D  axial  image  in  a  patient  without  CAD;
(B): a wide angle of 105.9° was measured between LAD and LCx
coronary  arteries  in  a  patient  with  multiple  calcified  plaques  at
the  LAD  resulting  in  significant  stenosis.  CAD:  coronary  artery
disease; LAD: left anterior descending, LCx: left circumflex.

 

Figure 14     RCA-aorta angles in two different cases. (A):  MPR
images of a narrow (28.1°)  RCA–aorta angle from an individual
with CAD and calcified plaques. (B): A wide (108.9°) RCA–aorta
angle  from  a  normal  case.  CAD:  coronary  artery  disease;  MPR:
multiplanar  reformation;  RCA:  right  coronary  artery.  Reprinted
with  permission  under  the  open  access  from  Geerlings-Batt, et
al.[103]

 

Figure 15     VR completely immersing the user in a virtual 3D
space. (A):  User  is  completely  immersed  in  a  virtual  3D  space
with  use  of  a  head-mounted  display;  (B):  a  real-life  example  of
VR application allowing trainees to perform virtual coronary an-
giograms.  VR:  virtual  reality.  Reprinted  with  permission  from
Jun, et al.[110]
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image visualisations as the physical models allow
the user to have a direct visualisation of anatomy
and pathology, in addition to having tactile experi-
ence. 3D printing technology has advanced rapidly
over the last decades with capability of printing the
models with flexible and multi-colour materials
with high accuracy, even with the capability of 3D
bioprinting organs and tissues.[117-130]

Use of 3D printed models in cardiovascular ana-
tomy and pathology includes a range of applica-
tions from medical education to surgical planning
and simulation of complex cardiovascular proced-
ures, facilitating doctor-patient communication, and
studying optimal CT scanning protocols for minim-
ising radiation exposure.[131-160] Studies have proved
that 3D printed heart and vascular models signific-
antly increased students’ knowledge and under-

standing of cardiovascular anatomy and pathology
when compared to the current teaching tools (using
cadavers, lectures or diagrams).[161-166] Figure 19
shows 3D printed heart and vascular models with
multi-colour in comparison with the cardiac speci-
mens, while Figure 20 is another example of 3D
printed heart valve through using high-resolution
micro-CT scanner with 0.1mm resolution.[167,168]

3D printed patient-specific models are also play-
ing an important role in pre-surgical planning and
simulation of cardiovascular procedures, and stud-
ies conducted at single and multi-centre sites con-
firmed the clinical value of 3D printed models. [164,169-175]

Majority of these reports focus on the application of
3D printed models in assisting with CHD surgeries.
When compared to the current surgical approaches
based on 2D/3D image visualisations, surgical de-
cision was changed or modified in up to 50% of cas-
es with use of 3D printed models as part of the sur-
gical planning (Figure 21). [130,170-172]
 

3D Printed Patient-specific Models As-
sisting Clinical Communication and Op-
timising CT Protocols

3D printed models also serve as a useful tool for
improving communication between doctors and pa-
tients and within clinical colleagues.[169,176-178] The
importance of using 3D printed physical models lies
in its advantages of enhancing patients or parents of
patients’ understanding of disease condition and
this is especially useful when dealing with complex
or challenging scenarios where 3D printed models
assist clinicians to better communicate with pa-

 

Figure 16    AR integrates superimposed virtual elements into a
real-world environment. (A): 3D CT image of a patient’s vascu-
lature could  be  imaged  by  an  operator;  (B):  vascular  calcifica-
tions could be focused to guide the best puncture site and avoid
complications during the procedure; (C): AR superimposes virtu-
al elements into a real-world environment. AR: augmented real-
ity. Reprinted with permission from Jun, et al.[110]

 

Figure 17    Mean difference between groups in knowledge scores (using percentages). (A): Random sequence generation (selection
bias); (B): allocation concealment (selection bias); (C): blinding of participants and personnel (performance bias); (D): blinding of out-
come assessment (detection bias); (E): incomplete outcome data (attrition bias); (F): selective reporting (reporting bias); and (G): other
bias. Green colour indicates low risk of bias; yellow indicates unclear risk of bias; and red colour indicates high risk of bias. Reprinted
with permission from Moro, et al.[114] “Control” indicates traditional teaching methods approaches; “Experimental” indicates augmen-
ted or virtual reality approaches.
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tients. Figure 22 shows that 3D printed models en-
hance communication with patients and colleagues
based on a recent review.[169]

Use of 3D printed models to optimise CT scan-
ning protocols is another new research area show-
ing great promise, although only a few studies are
available in the literature. [152-160] Our research group
and others have developed heart and vascular mod-
els to study cardiovascular CT protocols with the
aim of minimising radiation exposure without com-
promising image quality.[152-158] In particular, we
have developed a type B aortic dissection model with
simulation of endovascular stent grafting proced-
ure for investigation of CTA protocols (Figures 23
and 24).[151,152] Another example of 3D printing ap-
plication in this area is our developed 3D printed
coronary artery models with simulation of calcified
plaques to determine the optimal protocols for visu-

alisation of coronary lumen due to presence of ex-
tensive calcification.[153] Figure 25 shows the 3D
printed coronary models with various diameters
and lengths of calcified plaques inserted into the
main coronary arteries for studying optimal coron-
ary CTA protocols. These early research lays found-
ation to further develop more realistic 3D printed
models with inclusion of anatomical structures such
as skin, muscle layers and other organs surround-
ing the heart and vascular structures. 

CARDIOVASCULAR CTA-DERIVED FLOW
DYNAMICS IN CARDIOVASCULAR DIS-
EASE

Computational fluid dynamics (CFD) emerges as
a rapidly developing tool in biomedical engineer-
ing research with capability of investigating hemo-
dynamic changes in the cardiovascular system. Blo-

 

Figure 18    A screenshot using the HoloLens 2. The user is us-
ing the sphere to cut through the heart models in order to view
the intra-cardiac structures. The sphere can be enlarged or sized
down to change the amount of anatomy to be cut out. Reprinted
with permission under open access from Lau et al.[116]

 

Figure  19      Learning  materials  provided  to  the  study  groups:
phase  1  materials  include  plastinated  cardiac  specimens  (top
row)  and  their  3D  printed  replicas  and  the  coronary  vessels
(bottom row). Reprinted with permission from Mogali et al. [167]

 

Figure 20    A 3D-printed model of the tricuspid valve of a hu-
man  heart  specimen  (HH  223). (A):  A  model  printed  using  a
clear  material  as  viewed  from  the  atrium,  with  leaflets  labeled
and the moderator band marked with a red arrow; (B): a model
printed using multiple colors and materials and rotated to show
the subvalvular  apparatus.  Yellow,  tricuspid  annulus;  transpar-
ent,  mitral  leaflets;  blue,  chordae  tendinea;  pink,  papillary
muscles. Reprinted with permission from Arango et al.[168]

 

Figure  21      Surgical  and  interventional  planning  on  3D-prin-
ted heart models. DORV case, internal vision from the left vent-
ricle  (left).  DORV  (another  case),  external  view  (right).  DORV-
double  outlet  right  ventricle.  Reprinted  with  permission  under
the open access from Gomez-Ciriza et al.[130]
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od flow plays an important role in the initiation and
development of atherosclerosis because inflammat-
ory change usually occurs in the anatomical area
where blood flow is non-uniform and disturbed, thus
affecting the behaviour of endothelial cells. CFD
simulations allow calculation of hemodynamic chan-
ges such as flow velocity, wall pressure and wall
shear stress within the vascular structures, hence
providing further information about biomechanics
of atherosclerosis and other cardiovascular disease
which cannot be acquired from the standard ima-
ging analysis.[179-202] Further, CFD allows for detec-
tion of high-risk plaques and plaque progression
which contributes to improving patient care and re-

ducing major adverse cardiac events.[198-200,203-205]

Since CFD simulations are based on geometric re-
construction of anatomical structures, most of the
applications are derived from CT angiographic im-
ages. One of the pioneering applications performed
in our research group is about investigation of CTA-
derived CFD analysis of coronary plaques in relati-
on to the left coronary bifurcation angles.[180,181,188,190,198-200]

CFD simulations using CTA-generated realistic
models confirmed findings as observed on coronary
CTA images by identifying hemodynamic changes
in the bifurcation region. Our analysis showed that
wall shear stress was significantly increased in the
bifurcation areas with angulation > 80° as opposed
to little or no change in the narrow angulation mod-
els (< 80°). Flow velocity was increased at the post-
stenotic regions as shown in Figures 26 and 27.

Another CFD application lies in the hemodynam-
ic analysis of type B aortic dissection (TBAD) which
draws increasing attention of research in recent
years.[191-197,201] TBAD is a critical disease involving a
tear in the descending aorta which allows blood to
flow between the wall layers and results in a true
lumen and false lumen. To understand blood flow
characteristics in patients with TBAD, CFD simula-
tions, in particular CFD derived from 2D- and 4D-

 

Figure 22    Participants’ responses on how 3D-printed cardiac models improve communication with colleagues and patients/famil-
ies. Reprinted with permission under open access from Illmann, et al.[169]

 

Figure  23      Stent  graft  deployed  in  a  3D-printed  model. (A):
Deployed stent graft visible through model wall;  (B):  axial view
from proximal arch; (C): caudal view down arch vessels. Reprin-
ted with permission under open access from Wu, et al. [152]
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flow MRI have been shown to accurately predict
dissection hemodynamics, and its relationship with

disease progression, such as false lumen thrombos-
is, false lumen growth etc which contribute to guid-
ing patient management and enhancing outcomes
through development of compliance-matching stent
grafts.[194-197] Figures 28 and 29 are examples of CFD
simulations based on CT angiographic images of
hemodynamic changes in TBAD.[191]

Although coronary CTA is a widely used modal-
ity for the diagnostic assessment of coronary artery
disease, it does not provide functional significance
in relation to the degree of coronary stenosis. It is
well known that the degree of coronary stenosis
does not always correlate with the hemodynamic
significance. Fractional flow reserve (FFR) is an es-
tablished reference method for determining lesion-
specific ischemia and serves as a valuable tool to
guide patient treatment.[206-208] However, FFR is an
invasive procedure requiring measurements of
coronary pressure via pressure guidewire during
invasive coronary angiography examinations. This
has limited its widespread use in clinical practice.
Coronary CTA-derived fractional flow reserve
(FFRCT) has been confirmed by many single centre
studies and multi-site clinical trials to improve dia-
gnostic accuracy in the diagnosis of CAD over the
standard coronary CTA alone.[209-219]

The main advantage of FFRCT lies in its superior-
ity of providing combined assessment of coronary
stenosis and hemodynamic significance through
analysis of hemodynamic changes to the coronary

 

Figure  24      Sagittal  reformatted  images  of  CTA  protocols.
When kVp was decreased to 80, image noise increased with the
use of high-pitch protocol values of 2.0 and 2.5. CTA: computed
tomography angiography; kVp: kilovoltage peak. Reprinted with
permission under open access from Wu, et al.[152]

 

Figure 25    Three-dimensional printed patient-specific coronary models based on the simulation of calcified plaques in the coron-
ary arteries. (A): Three-dimensional printed models (n = 6) with simulated calcified plaques in coronary artery branches; (B): measure-
ments of plaque dimensions on 2D maximum-intensity projection images using 0.5 mm slice thickness. Reprinted with permission un-
der open access from Sun, et al.[153]
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artery tree. This is especially manifested in the im-
proved specificity in detecting hemodynamically
significant CAD when compared to coronary CTA
based on human observer assessment, thus leading
to reduction of unnecessary invasive coronary an-
giography procedures.[209-215] Figure 30 is an ex-
ample showing the value of FFRCT to diagnose
coronary stenosis with accuracy validated by invas-
ive FFR.[209] CT perfusion-FFR (CTP-FFR) is another
novel approach by combining CT perfusion with

FFRCT to further enhance the diagnostic value of cor-
onary CTA in CAD as shown in our recent study.[219]

Through analysis of 93 patients with a total of 103
coronary vessels, results of our recent work showed
that CTP-FFR achieved higher performance than
coronary CTA or FFRCT or CTP in CAD (Figures 31
and 32), and CTP-FFR was less affected by calcifica-
tion than the traditional coronary CTA. A combina-
tion of CTP-FFR + CTP + FFRCT achieved the

 

Figure  26      Correlation between  wider  angulation  and  hemo-
dynamic  changes  by  CCTA-derived  CFD  analysis. Left coron-
ary bifurcation angle was measured 105º between the two main
arterial branches, LAD and LCx with significant stenosis (> 70%)
at LCx on CCTA and invasive coronary angiography in a 58-year-
old  man.  (A  and  B):  CFD  analysis  shows  increased  wall  shear
stress and flow velocity at the stenotic site of LCx. (C): CFD ana-
lysis shows decreased wall pressure at the same location. Arrow
refers  to  the  stenotic  region  at  LCx,  while  arrowheads  point  to
the  pre- and  post-stenotic  locations.  CCTA:  coronary  computed
tomography  angiography;  CFD:  computational  fluid  dynamic;
LAD:  left  anterior  descending;  LCx:  left  circumflex.  Reprinted
with  permission  under  the  open  access  from  Sun  and
Chaichana.[190]

 

Figure  27      Correlation  between  narrower  angulation  and
CCTA-derived  CFD  analysis. Left  coronary  bifurcation  angle
was  measured  53º  and  55.7º  between  LAD  and  LCx  on  CCTA
and ICA in a 65-year-old male,  respectively.  Significant stenosis
(> 60%) was noticed at LAD and LCx on CCTA, but no signific-
ant  stenosis  (42%-48%)  was  confirmed  on  ICA  (images  not
shown).  (A-C):  No  significant  change  was  observed  with  wall
shear stress, flow velocity and wall pressure. Arrow refers to the
mild  stenotic  site  of  LAD,  while  arrowheads  point  to  the  pre-
and  post-stenotic  locations.  Reprint  with  permission  under  the
open access  from Sun and Chaichana.[190] CCTA: coronary  com-
puted tomography  angiography;  CFD:  computational  fluid  dy-
namic;  LAD: left  anterior descending; LCx: left  circumflex;  ICA:
invasive coronary angiography.

 

Figure 28    Three-dimensional reconstruction of complicated Stanford type B aortic dissection patients' geometry after SG repair.
The red color showed the region of SG insertion. The SG will be used for illustration purpose only and will not be incorporated for sim-
ulation. Reprinted with permission from Wan Ab Naim et al.[191] SG: stent-graft.
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highest diagnostic value than that from these indi-
vidual examinations.

With incorporation of DL models into FFRCT
measurements, it is becoming more efficient to cal-
culate hemodynamic changes from coronary CTA
images, thus, FFRCT-guided patient management
as a clinical decision-making tool is expected to be-
come a first line modality in the near future.[220,221]

Despite promising results available in the literature,
some limitations will need to be overcome such as
turnaround time of generating results, upfront costs

and need to further improve specificity.[45]
 

AI APPLICATIONS IN CARDIOVASCU-
LAR DISEASE

In recent years, medical AI has achieved signific-
ant progress in clinical specialties with AI tools
showing considerable improvements in accuracy
for clinical diagnosis and prediction of disease out-
comes.[222-231] Applications of AI in cardiovascular
disease are further enhanced with use of ML and

 

Figure 29    Blood flow pattern of 5 patients with CFD analysis of type B aortic dissection. The dashed red line is the FL. The black
circles are locations of re-entry tears and abdominal branches partially supplied by the true lumen and FL. A1, re-entry tear 1; A2, re-
entry tear 2; A3, re-entry tear 3; A4, re-entry tear 4; A5, re-entry tear 5; A6, re-entry tear 6; A7, re-entry tear 7. B1, branch 1; B2, branch 2;
B3, branch 3 that are partially or fully supplied by FL. The results were obtained during peak systole and early diastole. FL: false lu-
men. Reprinted with permission from Wan Ab Naim et al.[191]
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DL algorithms which enable analysis of patterns
and relationships from imaging and non-imaging
data to generate new insight into disease processes
and develop new treatment therapies. There are
many aspects of AI in cardiovascular disease with
great potential to address issues such as timing,
early detection and improved diagnostic accuracy,
and accurate prediction of prognosis with better pa-
tient management.[222-226] ML and DL tools are ap-

plied to cardiac imaging modalities including echo-
cardiography, coronary CT, cardiac MRI and cardi-
ac nuclear medicine imaging to improve diagnosis,
risk prediction and image interpretation.[48,49,232] In
the following sections, I only highlight the applica-
tions of AI/ML/DL in CAD and other cardiova-
scular diseases from our experience, while readers
are referred to some review articles on the compre-
hensive applications of AI in cardiovascular medi-

 

Figure 30    Examples of FFRCT in assessing the hemodynamic significance of coronary lesions at three main coronary arteries (A,
B). Coronary CT angiography shows significant stenoses on the LAD, RCA, and LCx, while FFRCT shows ischemia at RCA and LCx
but not at LAD, as the FFRCT value is more than 0.80. This was confirmed by invasive FFR measurements, as shown in (A(c)) and (B(c,
f)). (a, b) in image (A), (a, b, d, e) in image (B) refer to stenotic lesions of RCA and LAD on coronary CT angiography and invasive FFR
measurements,  respectively,  while  ((A)d,  (B)g)  indicate  FFRCT  measurements  at  these  coronary  arteries.  Reprinted  with  permission
from Norgaard,  et  al.[209] FFRCT: fractional  flow reserve derived from CT;  LAD: left  anterior  descending artery;  LCx:  left  circumflex;
RCA: right coronary artery.
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cine.[48,49,222,223]
 

ML/DL in Coronary Calcium and Coronary Artery
Disease

Coronary calcium scoring (CAC) using coronary
CT is a marker used to predict the risk of future car-
diovascular events and it is commonly performed
on non-contrast CT scans. The clinical value of CAC
is well established, however, there are some obsta-

cles that could limit its widespread applications in
routine clinical practice. First, small clinical sites
may not have resources (specialised software and
technologists) to perform the task of coronary artery
segmentation and quantification of calcium burden.
Second, most of the patients undergoing routine
chest CT scans for non-cardiac situations may have
CAD detected but not routinely reported or quanti-
fied, thus missing the opportunity for early dia-
gnosis or prevention.[233] Further, it is a time-con-
suming task to quantify CAC with involvement of
human observers, thus automation of CAC scoring
and coronary stenosis with use of AI tools has great
potential to address these limitations.

Use of advanced DL models in cardiac CT image
segmentation and analysis has shown high accur-
acy of automated quantification of calcium scores
with excellent correlation with human observers
(manual assessment) in terms of their diagnostic
performance.[224,232,234-236] DL models have been valid-
ated on different datasets (from different CT scan-
ners and ethnic groups) (Figure 33).[232] DL models
also increase workflow of interpreting coronary
CTA images by significantly reducing the time of
image reconstructions and interpretation but with
diagnostic value similar to expert observers.[223,224,232-236]

Another advantage of using DL in CAD is to im-
prove the assessment of calcified plaques by in-
creasing specificity and positive predictive value
(PPV) when compared to the standard coronary
CTA. [225,230,234,] Coronary CTA has low to moderate
diagnostic value in CAD with heavily calcified pla-
ques due to blooming artifacts associated with ex-
tensive calcification in the coronary artery which
leads to high false positive rate. [86-90] Despite differ-

 

Figure  31      Graph  showing  diagnostic  performance  of  CTP-
FFR, CTP, FFR-CT and CCTA. AUC of receiver operating char-
acteristics curve analysis is  shown on per vessel  for CTP-FFR,
CTP,  FFR-CT  and  visual  stenosis  grading  (stenosis  ≥  50%)  at
CCTA. The dotted line represents  the reference line.  AUC: area
under  receiver  operating  characteristics  curve;  CCTA:  coronary
computed tomography angiography; CTP-FFR: computed tomo-
graphy perfusion-derived fractional flow reserve. Reprinted with
permission under open access from Go, et al.[219]

 

Figure 32    Example of a 47-year-old man who presented with atypical chest pain, hypertension and dyslipidemia. (A): CCTA shows
stenosis (arrow) is caused by a mixed plaque of the proximal LAD; (B): invasive coronary angiography shows severe stenosis (arrow)
with ischemia in LAD (FFR = 0.74); (C): stress-CTP shows myocardial blood flow; (D): CTP-FFR demonstrates value of 0.76 in the LAD.
CCTA: coronary computed tomography angiography, CTP: CT perfusion, FFR: fractional flow reserve; LAD: left anterior descending.
Reprinted with permission under open access from Go et al.[219]
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ent approaches have been explored to suppress the
blooming artifacts with improved specificity and
PPV to some extent, use of DL models has been
shown to further enhance coronary CTA perform-
ance in calcified plaques. Figure 34 is an example of
our recent work by applying advanced DL models
to reduce the effect of blooming artifacts caused by
calcified plaques with more accurate assessment of
coronary stenosis. We are currently collecting more
data to further validate the advanced DL models in
the quantitative assessment of calcified plaques. [230]
 

AI Assisting Diagnosis of Pulmonary Hyperten-
sion

Another research work from our group and oth-
ers is the development of a fully automated frame-

work with use of AI to assist the diagnosis of pul-
monary hypertension based on CT pulmonary an-
giography (CTPA) images.[229,237-239] There was good
correlation between AI-based automatic extraction
of anatomical features from CTPA and manual
measurements (Figure 35). The accuracy of the re-
gression model is comparable to the gold standard
to predict pulmonary artery pressure. 

SUMMARY AND FUTURE PERSPECTIVES

Cardiovascular CT has played a pivotal role in
the routine clinical practice and already serves as
the method of choice in the diagnosis of various car-
diovascular diseases. The clinical value of cardi-
ovascular CT has been significantly enhanced with
use of CT-derived 3D visualisations as well as
hemodynamic analysis of functional changes to the
cardiovascular system. This leads to the paradigm
shift in cardiovascular CT applications from dia-
gnosis to prediction with eventual improvement in
patient outcomes. In addition to the standard 2D or
3D CT image visualisations, 3D reconstructions
such as generation of VIE views provide intralu-
minal changes associated with coronary plaques,
aortic dissection, aortic stent wires and pulmonary
embolism. Incorporation of coronary angle meas-
urements into the standard measurement paramet-
ers further improves diagnostic accuracy of coron-
ary CTA when compared to the standard lumen as-
sessment in determining coronary artery disease,
thus overcoming the limitations of coronary CTA in
assessing calcified plaques. VR is also becoming a
useful tool in many applications spanning across
from medical education to surgical planning and
clinical communication within health professionals.
With more research to be conducted on the value of
AR and MR, these 3D visualisation tools will con-
tinue to play an important role in complementing
the traditional visualisations.

3D printed personalised models developed from
CT images add incremental value of cardiovascular
CT since the physical models provide users with
more vivid visualisation of complex cardiovascular
anatomy and pathology, in addition to the value of
serving as a tool for both medical and clinical train-
ing of medical students/graduates, simulation of
challenging cardiovascular procedures. The highly

 

Figure 33    The use of deep learning for plaque segmentation.
(A):  Curved  multiplanar  reformation  coronary  CTA  images
showing  lesions  in  the  proximal-to-mid  LAD  (1)  and  the  mid
LAD (2); (B): deep learning segmentation of calcified plaque (yel-
low)  and  non-calcified  plaque  (red);  (C):  three-dimensionally
rendered  view  of  the  coronary  tree  showing  deep  learning
plaque segmentation in the individual analyzed segments. All le-
sions in  each vessel  were  analyzed by deep learning and meas-
urements summed on a per-patient level. CTA: computed tomo-
graphy angiography;  LAD:  left  anterior  descending  artery.  Re-
printed with permission under open access from Lin, et al.[231]
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accurate 3D printed models are advantageous to
commercial phantoms to optimise CT scanning pro-
tocols because of low cost, representation of patient-
specific anatomical structures. With further reduc-
tion of costs associated with 3D printers and print-
ing materials, 3D printed cardiovascular models
will be accessible to more clinical and research sites.

CT-derived flow dynamic analysis further ad-
vances the diagnostic value of cardiovascular CT by
providing physiological changes associated with le-
sions which cannot be acquired from the standard
lumen assessment. CFD analysis of coronary plaq-
ues or coronary angulation changes offers addition-
al information about identification of vulnerable le-
sions such as high-risk coronary plaques, or predic-
tion of disease outcomes as shown in type B aortic
dissection through analysis of hemodynamic chan-
ges in the aortic lumen, in particular in the false lu-
men. FFRCT is another promising technique pro-
viding both anatomic and physiologic information
of coronary plaques, further enhancing the diagno-
stic value of coronary CTA in coronary artery dis-
ease. FFRCT with aid of AI tools has become more
efficient, and with refinement of AI algorithms it
will be a routinely used onsite diagnostic tool to
guide clinical management of patients with coron-
ary artery disease.

Use of AI has been growing rapidly in the cardi-
ovascular disease with evidence showing its capab-
ility to improve diagnostic accuracy and prediction
of disease outcomes. In the field of cardiovascular
disease, the role of AI is to support but not replace
clinicians, assist clinical decision making but not
make decisions. Therefore, it is important for clini-

 

Figure 34    Multiple calcified plaques at the left anterior descending artery (LAD) in a 72-year-old female. (A): Coronary stenoses
were measured at 80%, 78%, 72%, and 70% corresponding to the original CCTA, Real-ESRGAN-HR, Real-ESRGAN-Average and Real-
ESRGAN-Median images (short arrows), respectively. (B): ICA (short arrow) confirms 75% stenosis. The distal stenoses at LAD due to
calcified plaques were measured at 70%, 50%, and 51% stenosis on original CCTA, Real-ESRGAN-HR, and Real-ESRGAN-Average im-
ages but measured at 45% on Real-ESRGAN-Median images (long arrows in (A)). ICA confirmed the only 37% stenosis (long arrow in
(B)). CCTA: coronary computed tomography angiography; ESRGAN: enhanced super-resolution generative adversarial network; HR:
high resolution; ICA: invasive coronary angiography, Real-ESRGAN: real-enhanced super-resolution generative adversarial network.
Reprinted with permission under open access from Sun and Ng.[230]

 

Figure  35      The performance  of  the  proposed  network  frame-
work. (A,  D):  The  original  images  of  the  heart  and  pulmonary
artery, respectively; (B, E): the segmentation outputs of nnU-Net;
(C, F): the segmentation outputs of the proposed network frame-
work.  Segmented structures include right atrium (yellow),  right
ventricle (green), left atrium (blue), left ventricle (red), main pul-
monary artery (red), right pulmonary artery (green) and left pul-
monary artery (blue). Reprinted with permission under open ac-
cess from Zhang, et al.[229]
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cians to be aware of it so that they know how to
utilise AI judiciously and accurately to perform big
data analysis, and maximize AI applications to de-
liver personalised medicine in cardiovascular dis-
ease. Figure 36 summarises the AI applications in
cardiovascular medicine.[240]
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