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Abstract
CubeSats hold promise for various applications, but their viability in demand-
ing missions such as future low Earth orbiting position, navigation, and timing 
(LEO-PNT) systems hinges on higher orbital accuracy and reliable attitude infor-
mation. To address these challenges, we present an array-aided combined precise 
orbit and attitude determination model with an optimal solution. In the estima-
tion process, multi- and affine-constrained models are used to precisely deter-
mine the attitude, and then, highly precise observations for an antenna array are 
reconstructed based on fixed ambiguities and a decorrelation step. Validations 
confirm the significance of integer ambiguities in the model, highlighting the 
cost-effectiveness of this model compared with star trackers for attitude deter-
mination. The reconstructed observations outperform the original observations, 
leading to improved orbital components, with the three-dimensional root mean 
square (RMS) equal to 4.1 cm. The observation residuals are smoother, with an 
RMS of 6 mm, half of that obtained via a single antenna. The developed models 
offer great potential for CubeSats, advancing their orbit and attitude determina-
tion capabilities.
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1  INTRODUCTION 

Small low Earth orbiting (LEO) satellites, particularly CubeSats, are becoming 
increasingly favored among industry and research institutes, primarily because 
of their relatively low-cost components, simpler design and building procedures, 
and the possibility of mass production and launching. Precise orbit determination 
(POD) of CubeSats is generally performed using two well-known methods: kine-
matic and reduced-dynamic POD (Allahvirdi-Zadeh, Wang, & El-Mowafy, 2022). 
POD is mainly affected by the performance of onboard sensors, the number of 
observations from the global navigation satellite system (GNSS), and deficiencies 
in the applied dynamic models. When considering real-time or onboard POD for 
CubeSats, it is also crucial to account for other factors, including the availabil-
ity of observations, precise corrections, and limitations in onboard power and 
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processing units. Several studies have investigated the impact of such factors 
on POD. For example, Wang et al. (2020) explored the influence of observation 
interruptions on POD caused by limited onboard power in small satellites. The 
authors reached an orbital accuracy of several centimeters in the post-processing 
mode. Hauschild & Montenbruck (2021) demonstrated significant improve-
ment in onboard POD accuracy by incorporating additional GNSSs such as 
Galileo and BeiDou-3 alongside Global Positioning System (GPS) observations, 
utilizing GNSS broadcast ephemeris. Allahvirdi-Zadeh et al. (2021) highlighted 
the availability of precise corrections via space links through the Australian 
Satellite-Based Augmentation System and the Japanese Quasi-Zenith Satellite 
System, which improve the accuracy of onboard POD from several decimeters in 
the case of using broadcast ephemeris to several centimeters, primarily depend-
ing on the quality of the utilized space links. This approach holds promise for 
future applications requiring real-time precise orbital components. Palomo et al. 
(2019) extended the concept of autonomous onboard POD by designing a low-cost 
receiver for CubeSats based on software-defined radio (SDR) and an integrated 
field programmable gate array. Allahvirdi-Zadeh et al. (2022) proposed a practical 
weighting function to handle onboard GNSS observations collected by CubeSats 
to improve the performance of CubeSat POD in the validation steps. They also 
investigated the concept of utilizing precise inter-satellite ranges in onboard POD 
for a CubeSat constellation. The authors achieved improvements of 1–3 dm in 
the orbital accuracy of the deputy CubeSat compared with nominal onboard POD 
(Allahvirdi-Zadeh & El-Mowafy, 2022b). Such a level of accuracy for CubeSat 
POD has also been confirmed by Arnold et al. (2023).

The aforementioned studies have demonstrated that CubeSats have the capa-
bility to deliver highly accurate orbital information, with accuracies primarily 
ranging from a few centimeters for post-processing mode using extensive dynamic 
models to several decimeters for onboard POD. These orbital accuracies are essen-
tial for a wide range of applications. However, there remains a question regard-
ing their suitability for applications that demand even higher levels of accuracy, 
such as emerging LEO position, navigation, and timing (PNT) systems (Li et al., 
2019; Jiang et al., 2021; El-Mowafy et al., 2022). In addition to accurate orbital 
information, key requirements for successful PNT from CubeSats include stable, 
reliable onboard clocks, strong navigation signals with high integrity, the presence 
of inter-satellite links, compensation for atmospheric delays, and integration with 
other GNSSs.

Numerous studies are being conducted on the viability of utilizing LEO satellites 
for PNT, either as a standalone navigation system or as an augmentation to an exist-
ing GNSS. However, both scenarios present the challenge of deploying a constel-
lation comprising numerous large, intricate, and costly LEO satellites. Meanwhile, 
the utilization of low-cost CubeSats is theoretically feasible and could offer a more 
economical solution. Nonetheless, one crucial requirement for CubeSats is the 
maintenance of highly precise orbits. To this end, this study aims to provide a new 
method for improving the orbital accuracy of CubeSats.

In addition to POD, precisely determining satellite attitude is another essential 
requirement for both LEO-PNT systems (Allahvirdi-Zadeh, El-Mowafy, & Wang, 
2024; Allahvirdi-Zadeh, El-Mowafy, Mcclusky et al., 2024) and specific point-
ing operations, such as aligning solar panels with the sun, orienting a downlink 
antenna toward ground stations, or directing sensors toward specific objects. 
Attitude information also plays a crucial role in various stages of POD, such as in 
estimating the phase wind-up effect, applying antenna sensor offsets, and model-
ing phase center offsets and variations. 
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A satellite’s attitude is determined and controlled by the attitude determination 
and control system (ADCS), which is part of the satellite’s bus component. The 
ADCS is based on determining the angular rotations (roll, pitch, and yaw angles) 
with respect to the satellite reference frame (SRF) or their equivalent quaternions. 
The actuators control the rotation of attitude angles to produce the torques neces-
sary to rotate the satellite to the desired attitude state. A simple structure of such a 
closed-loop ADCS is shown in Figure 1.

Various sensors within the ADCS can measure a CubeSat’s attitude, including 
sun sensors, magnetometers, and star trackers. Sun sensors use the sun’s direc-
tion with respect to the SRF to provide attitude information. However, these sen-
sors only work in sunlight, reducing their applicability when the satellite crosses 
a shadow region. In contrast, magnetometers measure the direction and strength 
of the Earth’s magnetic field and compare this information with a high-fidelity 
model of the Earth’s field to determine the attitude. However, magnetometers pro-
vide lower accuracy than other sensors. Star trackers determine attitude by captur-
ing available stars and comparing them with accurate maps of the brightest stars 
stored in the satellite’s memory. Similar to sun sensors, star trackers can only pro-
vide attitude information in two dimensions. Therefore, more than one sensor is 
required to obtain three-dimensional (3D) attitude information. Table 1 provides 
the specifications of highly accurate attitude determination sensors currently avail-
able for CubeSats. Equipping CubeSats with highly accurate star trackers can be 
expensive, especially in the case of launching a constellation such as Spire (https://
spire.com). Consequently, CubeSat providers often combine relatively inexpensive 
sensors such as magnetometers and sun sensors in the ADCS to perform attitude 
determination, sacrificing final accuracy. 

An alternative method for attitude determination involves equipping a satel-
lite with more than one GNSS antenna and applying a differential technique to 
eliminate common errors and determine the satellite’s attitude. According to per-
sonal communication with CubeSat developers, the cost of a patch GNSS antenna 
for a CubeSat is less than 1500 USD. This antenna is approximately 2×2 cm2 and 
weighs less than 40 g. Considering these specifications, an array of 3–4 antennas 
would be a more cost-effective option than the available sensors listed in Table 1. 
Furthermore, this array would also meet the dimension and weight restrictions of 
most CubeSats. 

FIGURE 1 Closed-loop ADCS

https://spire.com
https://spire.com


ALLAHVIRDI-ZADEH and EL-MOWAFY    

The concept of array-based attitude determination was developed more than 
three decades ago for the RADCAL mission (Cohen, Lightsey et al., 1994) and 
has been applied in various space missions (Cohen, Parkinson et al., 1994; 
Freesland et al., 1996; Unwin et al., 2002; Gomez, 2005; Hauschild et al., 2020; 
Jin et al., 2022). The concept was further extended to fully exploit the antenna 
geometry and integer ambiguities, resulting in the development of the constrained 
and multi-constrained least-squares ambiguity decorrelation adjustment meth-
ods (C-LAMBDA and MC-LAMBDA) (Teunissen, 2007, 2008, 2010). This solution 
has been evaluated for attitude determination of ground, maritime, and aeronau-
tics platforms (Giorgi et al., 2011; Giorgi, Teunissen, & Gourlay, 2012; Giorgi, 
Teunissen, Verhagen, & Buist, 2012; Nadarajah et al., 2012; Nadarajah et al., 2013; 
Nadarajah & Teunissen, 2014; Nadarajah et al., 2014; Nadarajah et al., 2016). In 
our previous research, we conducted an evaluation of array-based attitude deter-
mination methods specifically designed for CubeSats and achieved a precision of 
0.06°–0.13° for the fixed attitude angles (Allahvirdi-Zadeh & El-Mowafy, 2022a). 
In this contribution, our objective extends to developing an optimal solution for 
both orbit and attitude determination.

Teunissen developed the concept of array-aided precise point positioning 
(A-PPP) (Teunissen, 2012b) to exploit the aforementioned constraints and to 
improve the combined PPP and attitude determination problem. The concept 
of A-PPP and attitude determination has also been extended to the joint relative 
positioning and attitude determination model (Wu et al., 2020). In this study, we 
exploit the array-aided positioning and multi-constrained attitude determination 
concepts to develop a combined model. This model enhances the accuracy of esti-
mated orbits and facilitates precise attitude determination for CubeSats equipped 
with limited power and low-quality sensors. This approach is particularly valuable 
for real-time applications, including LEO-PNT systems, where simultaneous and 
accurate determination of both attitude and orbit is essential. In the following 
sections, and given the absence of an actual antenna array onboard a CubeSat, 
we conduct an extensive reduced-dynamic POD for an operational CubeSat. 
Subsequently, we utilize these highly accurate orbits to simulate an antenna array 
comprising four antennas for a 12U CubeSat. Through comprehensive testing sce-
narios, we validate the efficacy of the proposed model.

2  COMBINED ARRAY-AIDED PRECISE ORBIT AND 
ATTITUDE DETERMINATION MODEL

In this section, a combined array-aided model for precise orbit and attitude deter-
mination is developed. The sizes of the main matrices defined here are given in 
Table A-1 in the Appendix. The sizes of the remaining matrices can be computed 
via linear algebra.

TABLE 1
Specifications of ADCS Sensors for CubeSats (Source: https://www.cubesatshop.com/) 

Name Sensor Type Accuracy (1σ) Power (W) Weight (g) Cost (USD)

Sagitta Star tracker 2 arc seconds <1.4 275 ~45000

Twinkle Star tracker 15 arc seconds <0.6 40 ~45000

NSS Magnetometer 1° <0.7 85 ~15000

NSS Sun sensor <0.5°–0.1° <0.013 5–35 ~12000

https://www.cubesatshop.com/
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Let us begin by forming a vectorial representation of the inter-satellite 
single-differenced (SD) code and phase observations P p pr r
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GNSS observation model is then expressed as follows:

 E y Az G b dr r r r r� � � � �  (2)
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which can be replaced by denoting the baseline vector as b12  and defining 
x t x t b1 2 12( ) ( )� �  as follows:
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B b b a� �� ���12 1 1, , ,( )  we derive the following multivariate formulation of the 
model for determining the attitude of the CubeSat:

 E Y AZ GB� � � �  (9)

There are two critical points to consider in this model:

1. Because of the small size of CubeSats (typically 10×10×10 cm3 per unit), the 
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the attitude matrix R  as B RB= 0 .  This attitude matrix is used to transform 
the SRF to the ECEF frame and can be expressed by using rotation angles or 
quaternions. 

To further strengthen the model and fully exploit the known geometry of the 
baselines, the two following constraints are applied:
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which, in turn, enable precise orbit and attitude determination for CubeSats. 
The second constraint provides increased reliability in the estimation by 
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unconstrained model.
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In A-POAD, two distinct models for the orbit and attitude determination of 
CubeSats are combined; each can be solved independently. However, as explained 
below, correlations exist between observations in the combined model, which 
should be taken into account. Otherwise, the optimality of the solution will 
be reduced.

The observation set in the A-POAD model is reached from the SD observations 
by using the following equation (Li & Teunissen, 2014):
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To obtain a rigorous solution for the A-POAD model, the observations are 
decorrelated via the invertible decorrelating transformation defined by Teunissen 
(2012b) as follows:
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Finally, we obtain the following decorrelated A-POAD model:
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where the decorrelated observations are derived from y y Y D Q Dr a r a
T� � � �� �

�
1 1

1
 

D Q ca r−1 1 and the combined weighted least-squares solution of all antenna posi-
tions is b b B D Q D D Q cr a r a

T
a r� � � �

�
�( ) .1 1

1
1 1  The covariance matrix of the observa-

tions in Equation (14) is a block-diagonal matrix, confirming that the observations 
of the A-POAD model are now decorrelated. For a proof of the covariance matrix 
calculation, see the work by Teunissen (2012b) and Li & Teunissen (2014).

We can now obtain a robust solution, which is achieved by dividing the A-POAD 
model into two distinct components: 1) array-aided precise orbit determination 
(A-POD) and 2) array-aided precise attitude determination (A-PAD). These two 
components can be solved independently, allowing us to effectively leverage the 
entire covariance matrix of the observations in the A-POD component. According 
to Teunissen (2012b), it has been proven that the decorrelated observations y  have 
smaller variances than the original observations. The new variance is proportional 
to the number of antennae in the array as var var( ) ( ).y ya r= 1  This theoretical 
insight also validates the improvement of POD achieved by using the array-aided 
concept. 

The first component of our solution is the A-POD model, defined as follows: 
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We can have two solutions for this A-POD model:

1. A-POD solution without integer ambiguities: In this scenario, the focus is 
solely on reconstructing the A-POD observations using Y .  When the antenna 
configuration is symmetrical, the A-POD model provides observations 
of the center of gravity of the antenna array. It is worth noting again that 
these observations have improved accuracy compared with the primary POD 
observations, as discussed above. This improved accuracy is particularly 
valuable for CubeSats equipped with commercial off-the-shelf (COTS) sensors 
and GNSS receivers, which generally exhibit higher noise levels than the 
advanced ADCSs employed in larger LEO satellites. The impact of these noise 
sources on POD outputs was investigated in our earlier work (Allahvirdi-
Zadeh, Awange et al., 2022).

2. A-POD solution with integer ambiguities: In this case, we initially utilize 
observations Y to reconstruct the A-POD observations. Subsequently, we 
employ Z to address the integer ambiguities within the following A-POD 
observations:

 y y AZ D Q D D Q ca r a
T

a r� � � �� �
�

�1 1
1

1 1  (16)

 y  indicates the observations with fixed integer ambiguities, highlighting the 
effectiveness and benefit of our A-POD model. It is important to emphasize 
that the integer ambiguities are the output of the A-PAD model, which is 
defined and discussed in detail below.

The second component of our solution is the following multi-constrained 
A-PAD model:
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The solution for this model is obtained in two steps. First, we solve the 
least-squares normal equation to obtain the unconstrained float estimations for 
ambiguities Ẑ  and attitude ˆ :R
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Second, we solve the following minimization problem while considering the 
aforementioned constraints:

 

( ) ( )

( ) ( ) ( ) ( )
( )

2

3 2

31 1 ˆ ˆ

22
0 0

ˆ ˆ  min

ˆ ˆmin min

m
Y

qf m a
Z R

QZ
R O

zQ QR OZ

F Z

vec Y AZ GRB vec Y AZ GRB

vec Z Z vec R R

×

×

×− × −

∈

∈

∈∈

− − = − − +

 − + − 
 

Z

Z


 

 (19)

In this minimization problem, we first estimate the attitude matrix ˆ ,ZR  which is 
conditioned on the estimation of the ambiguities, as follows:
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Equation (19) shows that the estimation of the fixed ambiguity solution 
involves minimizing the objective function F(Z) while conditioning the atti-
tude matrix estimation ( )ˆ .Zvec R  This inclusion of a nonlinear constraint in the 
A-PAD model makes the search space for the integer ambiguities non-ellipsoidal 
and complex. To address this challenge, constrained searching methods such as 
search-and-expand and search-and-shrink algorithms are defined to bound the 
minimization objective function and the designated searching space (Giorgi et al., 
2008; Giorgi, 2017). For instance, in the search-and-expand method, a lower 
bound is defined for the minimization objective function, and a search space for 
that lower bound is considered. The integer search is performed: if any candidates 
are found, the minimization objective function is evaluated for the candidates, 
and the candidate that returns the smallest value is the integer minimizer. If there 
are no candidates in this search space, the lower bound is expanded in another 
round. The fixed attitude matrix is estimated by substituting the integer ambigu-
ities in Equation (20) with ( )ˆ ,Zvec R   which leads to a mixed ambiguity–attitude 
minimization problem.

Because of the complexity of the search space in the multi-constrained A-PAD 
model for populated arrays with more than three antennae, a set of linear con-
straints was implemented, leading to the application of the affine-constrained con-
cept (Teunissen, 2012a), which can be modeled as follows:

 E vec Y AZ GB BS� �� � � � �, 0  (21)

This affine definition comes from the orthonormal matrix parametrization, 
which allows us to use the basis matrix (S) of the null space of B and update our 
A-PAD model with the equivalent implicit form of B RB= 0  as BS = 0.  By doing 
this, we ignore the quadratic constraints and consider only the linear constraints. 
This replacement ensures a high probability of success for integer ambiguity resolu-
tion. The procedure of the affine-constrained A-PAD model is similar to that of the 
multi-constrained model. However, by defining the projector P S S PS S PS

T T� �( ) ,1  
we can write the ambiguity objective function for the affine-constrained model as 
follows: 
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Z B Z
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×∈

= − +  (22)

In contrast to the objective function in Equation (19), the above objective func-
tion provides an ellipsoidal search space with lower complexity and less compu-
tational burden. Thus, the affine-constrained A-PAD model is more efficient for 
CubeSats with limited power and processing resources.

To apply this approach in real-time mode and make it suitable for onboard 
processing, A-POD and A-PAD modules were implemented in the LeoPod soft-
ware (Allahvirdizadeh, 2022). Figure 2 presents a flow diagram summarizing the 
proposed module for the ADCS based on our models. The observations obtained 
from the array are utilized to estimate the attitude angles and integer ambiguities 
within the A-PAD module. This estimation process can be conducted using either 
a multi-constrained or affine-constrained approach. Subsequently, these observa-
tions are decorrelated to improve their accuracy, and then, the fixed integer ambi-
guities are taken into account to reconstruct the A-POD observations. Finally, the 
POD procedure can be initiated, utilizing the reconstructed A-POD observations. 
During this process, the estimated attitude angles are employed as required, facili-
tating an accurate determination of the CubeSat’s precise orbit. Data quality control 
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is performed by applying statistical testing using the detection, identification, and 
adaptation method inside the filter (Teunissen, 2006). 

By integrating the A-PAD and A-POD modules, our approach leverages the ben-
efits of both precise attitude and precise orbit determination, resulting in improved 
accuracy and performance. To validate the A-POD and A-PAD algorithms, an 
antenna array is required. However, to our knowledge, no CubeSat is currently 
equipped with more than one GNSS antenna. Therefore, a simulated antenna array 
for a CubeSat using actual onboard observations is used in our tests to demonstrate 
the proposed method.

3  TESTING

3.1  Test Description 

In this section, we present a simulation of an antenna array, illustrated in 
Figure 3. The size of the array and the proximity of the antennae within it are 
critical design factors, primarily dictated by the constraints of the CubeSat struc-
ture. The close proximity of the antennae (less than half of the signal wavelength) 
introduces mutual coupling and pattern distortion effects, which can impact sig-
nal correlation and the effectiveness of conventional signal processing and models 
designed for independent or uncorrelated signals. Meanwhile, pattern distortion 
can potentially cause frequency shifts that compromise proper functionality 
within the designated frequency band. To mitigate such effects, it is crucial to con-
sider an appropriate distance between the antennae during the array design phase. 

FIGURE 2 Flow diagram of A-POD and A-PAD modules implemented in the LeoPod 
software
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The optimal distance between antenna elements in an array is more than half the 
wavelength of the designated frequencies, which, for our case in which GPS L1 is 
the higher frequency used, is roughly 10 cm.

The left CubeSat depicted in Figure 3 is a three-unit (3U) Spire CubeSat that 
we selected for the testing. The size of the top panel is 10×10 cm², where placing 
the array on this panel would not be feasible because of the mutual coupling and 
pattern distortions it would introduce. Alternatives such as placing antennae on 
the side panels could be explored to avoid these effects; however, this approach 
presents challenges regarding the number of satellites tracked by the receiver, 
which requires further investigation. Additionally, there are template constraints 
for each satellite based on its mission and the capacity of the bus and payloads, 
which are beyond the scope of this paper. 

To address these considerations, we assumed that the 3U CubeSat is expanded 
to a 12U CubeSat and simulated an array of four antennae on the top panel of this 
CubeSat, as depicted in Figure 3. Antenna #1 serves as the main POD antenna, 
whereas the remaining antennae are simulated based on their coordinates in the 
SRF, as explained in the next section.

It is worth mentioning that the near-field environment, including other available 
sensors, may further amplify the aforementioned effects. In addition to constraints 
on the size of the array and the distances between antennae, this complexity neces-
sitates pre-flight tests and in-flight calibration of both absolute and relative antenna 
phase patterns (Montenbruck, 2017).

FIGURE 3 Layout of the simulated antenna array
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Table 2 provides the coordinates of the simulated antennae in the SRF. The SRF’s 
orientation for the Spire CubeSats is defined as follows (personal communication 
with the Spire team):

• The Z-axis points towards the zenith direction.
• The Y-axis points towards the negative orbit normal.
• The X-axis is approximately aligned with the velocity direction but orthogonal 

to the Y-axis.

These axes are joined at the center of mass (CoM) of the CubeSat, as shown in 
Figure 3. 

3.2  Observation Simulation 

To generate observations for the simulated antennae connected to one 
receiver, we utilized actual GNSS observations acquired by the main POD 
antenna. The observations correspond to data collected on 1 January 2022 for 
the CubeSat with the specifications given in Table 3. These observations were 
processed using reduced-dynamic POD, employing the specifications outlined in 
Table 4. The processing was performed using Bernese processing software v5.4 
(Dach et al., 2015). 

The CubeSat’s POD procedure and output orbit have been evaluated by 
Allahvirdi-Zadeh, Wang, & El-Mowafy (2022) through various validation methods. 
The reduced-dynamic orbit, denoted as r POD0, ,  and the attitude matrix from the 
onboard ADCS of the CubeSats R0� �  are used to generate a user motion format 
(.umt) to feed the SimGEN simulation software, assumed as the true trajectory of 
the CubeSat (Spirent, 2022). The precise coordinates of GNSS satellites in the ECEF 
frame rIGS

s� �,  as well as clock corrections dtIGS
s� �  of these satellites in ranges, are 

utilized from final products from the International GNSS Service (Johnston et al., 
2017). To account for ionospheric delays ir f

s
,� �  for each frequency, the following 

spacecraft ionospheric model implemented in SimGEN is employed:

 i TEC

f e e
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.

.
�

�

� � �� �
82 1

0 0762 2sin sin
 (23)

where TEC  is the total electron content and e  denotes the elevation angle of the 
GNSS satellite. This simulation includes noise levels similar to those considered for 
the reduced-dynamic POD for the raw observations, given in Table 4. These com-
bined noises and multipath errors are denoted as εp  and ��  for code and phase 

TABLE 2
Coordinates of the Center of the Simulated Antennae in the SRF

Antenna #1 #2 #3 #4

Coordinates (cm) [0, 0, –16.31] [0, 10, –16.31] [–10, 10, –16.31] [–10, 0, –16.31]

TABLE 3
CubeSat Specifications Employed in This Study

ID Name COSPAR ID Altitude Orbit Type

099 LEMUR-2- 
JOHANLORAN

2019-018G 505 km Sun-synchronous orbit (local 
time of descending node 09:30)
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observations, respectively. Because the A-POAD model is based on forming differ-
enced observations, the receiver clock offsets are ignored in the simulation. These 
specifications enable us to simulate 1-Hz observations for the designed antenna 
array as follows:
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where ri  indicates the SRF coordinates of each antenna provided in Table 2, trans-
formed from the inertial frame into the ECEF frame via the T  matrix. In this study, 
we focused solely on GPS observations, as there are currently no data for a CubeSat 
equipped with a multi-GNSS receiver. However, future investigations will include 
multi-GNSS data.

To assess the accuracy and effectiveness of our developed method, we designed 
and conducted several tests. A comprehensive discussion of these validation tests 
will be presented in the next section.

3.3  Testing Approach

To validate the A-POD and A-PAD models, we begin by testing the developed 
attitude model using single- and dual-frequency GPS observations. This test show-
cases the model’s suitability for CubeSats, regardless of the receiver type with 
which they are equipped. To assess the complexity of the array geometry, we eval-
uate both multi-constrained and affine-constrained models, considering arrays of 

TABLE 4
POD Processing Models and Parameters

Item Description

Dynamic models 
and Stochastic 
accelerations

Gravity field: Earth Gravitational Model (EGM 2008)  
(Pavlis et al., 2008)

Tidal corrections: FES2014b (Lyard et al., 2021)

Relativity: International Earth Rotation and Reference Systems Service 
(IERS 2010) (Petit & Luzum, 2010)

Planet ephemeris: Jet Propulsion Laboratory (JPL DE421) 
(Standish, 1998)

Velocity changes (pulses) and piecewise constant accelerations

Observation model

Observation model: Ionospheric-free linear combination of 1-Hz 
GPS code (C1, C2) and phase (L1, L2); Stochastic model: SNR-based 
weighting model (Allahvirdi-Zadeh, El-Mowafy, & Wang, 2022)

Eclipsed observations: Removed using the shadow model 
(Allahverdi-Zadeh et al., 2016)

Code and phase standard deviation: 0.1 m and 1 mm (Zenith, L1)

Satellite attitude information: Obtained as quaternions

Antenna phase center offset:  [0.0021, 0.0011, –0.0223] m for L1  
[0.0033, 0.0034, –0.0125] m for L2

Antenna phase center variation pattern: Residual approach 
(Allahvirdi-Zadeh, 2021)

Phase ambiguities: Fixed by applying observable-specific signal biases 
(Schaer et al., 2021)
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3 or 4 antennae. Next, we use the A-POD observations in a POD module to evaluate 
the A-POD model and illustrate the applicability of our model for CubeSats.

3.4  Testing Results

In the initial test, we utilize simulated GPS observations obtained from an 
antenna array to estimate attitude angles. The estimation is performed twice, first 
with dual-frequency and then with single-frequency observations. The latter is 
important for CubeSats, as they often face power constraints that may restrict them 
to single-frequency observations. The primary objective of this test is to examine the 
effects of this constraint on data collection and its impact on the overall analysis.

Figure 4 illustrates the roll and pitch angles while ambiguities are resolved as 
float and fixed values via the A-PAD model for 24 h of 1-Hz GPS observations. These 
solutions are called “float” and “fixed” attitude angles, respectively. The left and 
right columns of the figure depict the dual-frequency and single-frequency cases, 
respectively. It is evident from the figure that ambiguity resolution has a notable 
impact on the estimated roll and pitch angles. Utilizing the antenna array in the 
A-PAD model not only enhances the precision of the estimated rotation angles but 

FIGURE 4 Roll and pitch attitude angles estimated from dual-frequency (left column) 
and single-frequency (right column) observations for MC A-PAD (top row) and AC A-PAD 
(bottom row)
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also renders the estimations more precise compared with magnetometers and sun 
sensors. The Spire CubeSat is equipped with a combination of these sensors in the 
ADCS (Spire, 2023), and their outputs are shown in the figure to visually confirm 
the accuracy of the A-PAD model with the antenna array. Additionally, this array 
configuration is more cost-effective, further emphasizing its advantage over alter-
native sensor options (see Table 1). Figure 4 consists of two rows, where the top row 
corresponds to the application of the multi-constrained (MC A-PAD) model, and 
the bottom row represents the affine-constrained (AC A-PAD) model. In the MC 
A-PAD case, the array utilizes antennae 1, 2, and 3, whereas the AC A-PAD model 
employs the entire array. The inclusion of an additional antenna and the consider-
ation of the relevant constraint in the AC A-PAD model result in improved attitude 
angle estimates, regardless of whether single- or dual-frequency observations are 
used. This enhancement is the primary advantage of the AC A-PAD attitude model.

Given that the antennae are positioned on the top panel perpendicular to the 
Z-axis of the SRF, fixing ambiguities is not expected to have a substantial impact on 
the estimated yaw angle unless the CubeSat undergoes rotation around its Z-axis. 
This specific scenario is illustrated in Figure 5 for one of the testing cases, i.e., MC 
A-PAD with dual-frequency observations. The outcomes of the other tests exhibit 
similar patterns, further supporting the notion that fixing ambiguities primarily 
affects the roll and pitch angles. This result arises because the baselines rotate 
around the Z-axis simultaneously. Exploring alternative antenna configurations, 
such as configurations in which one antenna is placed on the side panels or bot-
tom of the CubeSat, may help ascertain the impact of fixed ambiguity on the yaw 
angle. Such exploration is limited by the structural constraints of CubeSats and 
the potential for signal blockage from GNSS satellites and will be considered in a 
future study. 

As mentioned earlier, the attitude angles in this CubeSat are a combination of 
magnetometer and sun sensor outputs. However, the low precision of these kinds 
of sensors, as indicated in Table 1 and evident from Figures 4 and 5, prevents them 
from being considered the best reference, in contrast to star trackers. Considering 
this limitation, we will apply the estimated attitude angles from the A-PAD model 
in the final POD test. A successful POD output implicitly validates the accuracy of 
the estimated attitude angles.

FIGURE 5 Yaw attitude angle, with magnified results shown for a duration of approximately 
20 min on the right
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The final step involves evaluating the A-POD model. The reconstructed observa-
tions from Equation (16) are processed in a kinematic POD, as illustrated in Figure 2. 
A comparison between these orbits and the reference reduced-dynamic orbit from 
the Bernese software verifies that our A-POD model significantly enhances the 
accuracy of all orbital components (3D root mean square [RMS] = 4.1 cm), surpass-
ing the results obtained when utilizing a single antenna (3D RMS = 11.8 cm) with 
quaternions. Table 5 provides a summary of the RMS values for the discrepancies 
between the orbit from the A-POD model and the reference orbit. It is important 
to highlight that this test also serves as an evaluation of the impact of the attitude 
matrix used in the estimated orbits. This evaluation involves applying the transfor-
mation in various parts of the POD process, including the consideration of antenna 
sensor offsets. By conducting this evaluation, we can gain insights into the perfor-
mance and accuracy of the attitude matrix in POD. Future investigations will also 
explore the application of the attitude matrix in a wider range of operational situa-
tions, such as pointing operations and formation flying maneuvers.

The final stage of evaluation involves conducting an observation residual anal-
ysis. As depicted in Figure 6, the residuals of all observations in the A-POD model 
show significantly smoother behavior compared with conventional POD with a 
single antenna. The RMS value of the residuals for the A-POD model is 6 mm, 
which is approximately half the value obtained from conventional POD using one 
antenna. This substantial RMS reduction confirms the superior performance and 

TABLE 5
RMS Values of the Differences Between Estimated Orbits and the Reference Orbit

Observations X (m) Y (m) Z (m) 3D

One antenna 0.069 0.051 0.081 0.118

A-POD with FOUR antennae 0.022 0.016 0.031 0.041

FIGURE 6 Observation residuals from conventional POD with one antenna (top) and 
A-POD with a full array (bottom); UTC: coordinated universal time
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optimality of the proposed A-POD model in comparison to typical POD process-
ing. Importantly, the outcomes of the A-POD model remain consistent, regardless 
of whether an MC or AC A-PAD approach is utilized in deriving the observations 
outlined in Equation (16). 

It is worth noting that the performance of the developed model will be affected 
if frequent signal interruptions and initializations occur, as the A-POAD concept 
relies on the kinematic POD approach, where disruptions in the collection of GNSS 
data have the potential to trigger a recalculation reset. Naturally, the GNSS obser-
vation noise and quality will affect any positioning method.

4  CONCLUSION

CubeSats offer promising prospects for various applications. However, their con-
sideration for LEO-PNT systems necessitates higher orbital accuracy and reliable 
attitude determination. Current COTS sensors may not be suitable for achieving 
these requirements because of the low-cost requirements of CubeSat missions.

In this study, we have developed a combined A-POAD model specifically designed 
for CubeSats. The correlation between observations within the combined model is 
addressed through the use of DD observations and the estimation of fixed ambi-
guities of the array, facilitated by the A-PAD model. The estimation process can 
be conducted using the developed multi-constrained or affine-constrained models. 
The performance of these models has been evaluated through both single- and 
dual-frequency observations.

The accuracy of the solution with determined integer ambiguities in the A-PAD 
model has been confirmed visually and in the POD validation. This finding high-
lights the advantage of the A-PAD model for CubeSats, as employing an array for 
attitude determination is significantly more cost-effective than using expensive, 
precise star trackers while still providing accurate attitude angles.

The results presented herein demonstrate that the A-POD observations offer 
improved accuracy compared with original observations. The orbital components 
derived from the POD process using these observations show enhanced accuracy 
compared with the use of original observations alone. Furthermore, the estimated 
observation residuals display a smoother pattern, and the RMS is reduced by a 
factor of almost 2 compared with that obtained from observations using only one 
antenna. These findings confirm the efficiency and effectiveness of the A-POD 
model and implicitly validate the output of the A-PAD model.

The estimated attitude and orbit based on the developed A-PAD and A-POD con-
cepts hold potential for CubeSats in missions that demand highly precise orbit and 
attitude determination, such as LEO-PNT systems. The developed method is also 
applicable to formation flying scenarios, wherein a collection of small satellites 
operate in proximity. In such scenarios, determining the attitude and orbit of the 
entire platform is essential.
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APPENDIX

For an array of a antennae connecting to one receiver, where each antenna 
collects code and phase observations from m satellites on the same f frequen-
cies, the sizes of the main matrices and vectors defined in this paper are given in 
Table A-1. 
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TABLE A-1
Notation and Sizes of Main Vectors and Matrices

Symbol size comment

pr f, m �� ��1 1
SD code observations of antenna r, 

frequency f

ϕr f, m �� ��1 1
SD phase observations of antenna 1, 

frequency f

Pr f m �� ��1 1 SD code observations of antenna r

Φr f m �� ��1 1 SD phase observations of antenna r

yr 2 1 1f m �� �� All SD observations of antenna r

yP12
f m �� ��1 1 DD code observations of antennae 1 and 2

yΦ12
f m �� ��1 1 DD phase observations of antennae 1 and 2

Y 2 1 1f m a�� �� �� � All DD observations of the array

vec y Yr ,�� �� 2 1 1f m a�� � � Observation set of the A-POAD model

vec Yr� � 2 1 1f m a�� � � All SD observations in vec form

gr
s 3 1× Unit-direction vector to satellite s

G Gr= 2 1 3f m �� �� Geometry component of the design matrix

A 2 1 1f m f m�� �� �� � Ambiguity component of the design matrix

Qp m m×
Covariance matrix of undifferenced code 

observations

Qφ m m×
Covariance matrix of undifferenced phase 

observations

QyP12
m m�� �� �� �1 1 Covariance matrix of DD code observations

QyΦ12
m m�� �� �� �1 1 Covariance matrix of DD phase observations

Qr a a×
Covariance matrix of the array (array 

precision)

Qf f f× Contribution of frequencies

Qvec y Yr ,�
��

�
��

2 1 2 1f m a f m a�� � � �� � Covariance matrix of the A-POAD model

QY 2 1 1 2 1 1f m a f m a�� � �� �� �� � �� � Covariance matrix of DD observations

zr f m �� ��1 1 All SD observations of antenna r

Z f m a�� �� �� �1 1 All DD observations of the array

B 3 1� �� �a
All baselines (considering one antenna as 

reference) 

∇ m m�� ��1 2 DD operator

Di
T i i�� ��1 Differencing matrix

ei 1× i Row vector with elements equal to 1

Ii i i× Identity matrix

c1 i �� ��1 1
Column vector in which the first element 

equals 1 and the remainder equal 0
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