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Background: Coronary chronic total occlusion (CTO) increases the risk of developing major adverse 
cardiovascular events (MACE) and cardiogenic shock. Coronary computed tomography angiography (CCTA) 
is a safe, noninvasive method to diagnose CTO lesions. With the development of artificial intelligence (AI), 
AI has been broadly applied in cardiovascular images, but AI-based detection of CTO lesions from CCTA 
images is difficult. We aim to evaluate the performance of AI in detecting the CTO lesions of coronary 
arteries based on CCTA images. 
Methods: We retrospectively and consecutively enrolled patients with 50% stenosis, 50–99% stenosis, 
and CTO lesions who received CCTA scans between June 2021 and June 2022 in Beijing Anzhen Hospital. 
Four-fifths of them were randomly assigned to the training dataset, while the rest (1/5) were randomly 
assigned to the testing dataset. Performance of the AI-assisted CCTA (CCTA-AI) in detecting the CTO 
lesions was evaluated through sensitivity, specificity, positive predictive value, negative predictive value, 
accuracy, and receiver operating characteristic analysis. With invasive coronary angiography as the reference, 
the diagnostic performance of AI method and manual method was compared.
Results: A total of 537 patients with 1,569 stenotic lesions (including 672 lesions with <50% stenosis,  
493 lesions with 50–99% stenosis, and 404 CTO lesions) were enrolled in our study. CCTA-AI saved 75% of 
the time in post-processing and interpreting the CCTA images when compared to the manual method (116±15 
vs. 472±45 seconds). In the testing dataset, the accuracy of CCTA-AI in detecting CTO lesions was 86.2% 
(79.0%, 90.3%), with the area under the curve of 0.874. No significant difference was found in detecting 
CTO lesions between AI and manual methods (P=0.53).
Conclusions: AI can automatically detect CTO lesions based on CCTA images, with high diagnostic 
accuracy and efficiency.
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Introduction

Background

Coronary chronic total occlusion (CTO) refers to a total 
occlusion of a coronary artery over a period of 3 months, 
as evidenced by angiography or clinical examination (1).  
Around patients with coronary artery disease 30% of 
them will develop CTO, which increases the risk of 
developing major adverse cardiovascular events (MACE) 
and cardiogenic shock (2,3). To achieve success with 
percutaneous coronary intervention (PCI) for CTO lesions, 
a high level of technical skill is required as well as extensive 
planning (1). Performing a pre-procedure assessment of 
both the lesion characteristics and the anatomy of the CTO 
is critical to improving the procedure’s success and the 
prognosis of the patient (4).

Rationale and knowledge gap

Coronary computed tomography angiography (CCTA) 
is a safe, noninvasive method to diagnose CTO lesions 
(5,6). It enables visualization of fine morphological 
features and anatomical details of CTO lesions, including 
proximal stump morphology, the length of lesion, the 
extent of calcification, and the tortuosity of vessel (7) 
which are important for grading CTO before PCI (8). A 
preprocedural CCTA guided-CTO procedure resulted in 
a higher success rate with numerically fewer immediate 
periprocedural complications (6). 

However, the manual procedure of detecting and 
evaluating CTO lesions using CCTA not only requires 
complicated three-dimensional post-processing, which is 
time-consuming and laborious but also highly relies on 
the experience of radiologists, which is prone to subjective 
variability errors. It is therefore important to develop a 
method for detecting and assessing CTO lesions that is 
more efficient and objective.

With the development of artificial intelligence (AI), great 
changes have occurred in cardiovascular imaging. Owing 
to its superior performance in medical image analysis, AI 
has been broadly applied in cardiovascular image quality 
optimization (9), structure segmentation (10,11), lesion 
feature extraction (12), risk stratification (13), aided 
diagnosis (14,15), guidance of treatment decision (16) and 
prognosis assessment (17). Moreover, AI has also been used 
to automatically assess collateral physiology in CTO using 
angiography and automatically segment and reconstruct for 
CT of CTO (18,19). 

However, the reduction in the contrast medium at the 
occlusion site or the distal vessel is prone to cause vessel 
segmentation errors, following which, the vessel segments 
were disconnected, and those before and after occlusion 
were difficult to be demonstrated in reconstructed images. 
AI-based detection of CTO lesions from CCTA images is 
difficult, and few studies have assessed its performance in 
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this area.

Objective

In this study, we aimed to develop a new AI model to 
automatically detect CTO lesions based on CCTA images, 
compared with the manual diagnosis of CTO lesions, 
with invasive coronary angiography (ICA) as the reference 
standard. We present this article in accordance with the 
STARD reporting checklist (available at https://cdt.
amegroups.com/article/view/10.21037/cdt-23-407/rc).

Methods

Study population

To reduce patient selection bias, we retrospectively and 
consecutively reviewed patients with suspected coronary 
atherosclerosis disease (CAD) who underwent CCTA 
examinations from June 2021 and June 2022 in Beijing 
Anzhen Hospital. The patients were finally included 
according to the inclusion and exclusion criteria of our 
study. They were randomly assigned to the training dataset 
and the testing dataset at a rate of 4:1 (Figure 1). The 
explanation of allocation of the training set and the test 
set, and determination of the sample size was shown in 
Appendix 1.

The exclusion criteria are as follows: (I) without ICA 
examination or more than 3 months between ICA and 
CCTA; (II) history of revascularization; (III) history of acute 
myocardial infarction (AMI) before CCTA or ICA within  
3 months; (IV) poor CCTA image quality. 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the institutional ethics board of Beijing Anzhen 
Hospital in China (No. 2021164X) and informed consent 
was obtained from all the patients.

CCTA scanning protocols and analysis

All patients were scanned using a dual-source computed 
tomography (CT) scanner (Somatom Definition Flash, 
Siemens Healthineers, Forchheim, Germany) and a 
256-slice CT scanner (Revolution CT, GE Healthcare, 
Milwaukee, WI, USA) within 3 months before ICA. We 
used retrospectively echocardiographic gating for all scans. 
The acquisition was triggered by a bolus tracking technique 
and the region of interest was placed in the ascending 
aorta. During CT scan, 0.8 mL/kg of contrast (Iohexol 350, 
GE Ltd., Boston, MA, USA) was injected at a flow rate 
of 4.0–5.0 mL/s followed by a 30 mL saline flush. Details 
of the scan parameters are as follows: (I) dual-source CT 
scanner: rotation time 0.28 seconds, pixel matrix 512×512, 

Suspected CAD patients underwent CCTA 
examinations from June 2021 and June 2022

(n=4,251)

Development and test of AI in detecting CTO lesions based on CCTA images

Suspected CAD patients underwent CCTA and 
ICA within 3 months

(n=537)

The training dataset
429 patients with 1,255 atherosclerotic 

lesions, including 309 CTO lesions

The testing dataset
108 patients with 314 atherosclerotic 

lesions, including 95 CTO lesions

Exclusion:
•	Without ICA examination or the time interval of 

ICA and CCTA scan was >3 months (n=2,180)
•	The history of revascularization (n=1,257)
•	The history of acute myocardial infarction (AMI) 

before CCTA or ICA within 3 months (n=56)
•	Poor CCTA image quality (n=221)

Figure 1 Flowchart of the study population enrollment. CAD, coronary atherosclerosis disease; CCTA, coronary computed tomography 
angiography; ICA, invasive coronary angiography; CTO, chronic total occlusion; AI, artificial intelligence.

https://cdt.amegroups.com/article/view/10.21037/cdt-23-407/rc
https://cdt.amegroups.com/article/view/10.21037/cdt-23-407/rc
https://cdn.amegroups.cn/static/public/CDT-23-407-Supplementary.pdf
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collimation 2×64×0.6 mm, tube voltage 100 or 120 kV, with 
automatically selected tube current. The slice thickness 
was 0.6 mm with a reconstruction increment of 0.4 mm; 
(II) 256-slice CT scanner: rotation time 0.28 seconds, pixel 
matrix 512×512, collimation 256×0.625 mm, tube voltage 
100 or 120 kV, and the Smart mA was applied. The slice 
thickness was 0.625 mm with a reconstruction increment 
of 0.4 mm. Radiation dose estimates for CCTA were 
calculated using recommended conversion factors, k =0.014 
mSvd·mGy−1·cm−1 (20).

Two experienced radiologists (both with >5-year 
experience in cardiovascular image analysis) analyzed the 
CCTA images using a commercial workstation (Vitrea fx3.0, 
Canon Corporation, Tokyo, Japan). They independently 
reconstructed and detected the lesions with ≥50% stenosis 
(including CTO lesions) and were blinded to the results 
of the ICA. Quantitative assessment of coronary stenosis 
was performed according to the Society of Cardiovascular 
Computed Tomography (SCCT) guidance (21). This study 
included coronary arteries with diameter of 1.5 mm or 
more. The coronary lesions with ≥50% stenosis (including 
CTO lesions) was considered positive (22,23). Image 
analysis time was recorded from loading the images to the 
diagnosis of all target lesions.

Deep learning (DL) model for coronary CTO lesions 
segmentation and detection

To achieve myocardial and coronary artery segmentation 
and target lesion identification, convolutional neural 
network (CNN) was used, which include feed-forward 
neuronal networks and contain neurons with learnable 
weights and biases (24). The proposed DL framework 
consisted of three models: (I) a two-stage 3D U-Net-
based myocardium segmentation network to determine 
the coordinates of the heart contour and segment the 
myocardium fine structure; (II) a modified 3D U-Net 
for coronary segmentation, which includes encoding and 
decoding parts, and a connected growth prediction model 
(CGPM) to eliminate vascular segmentation errors and then 
avoid partial or missing vascular segments of CTO lesions 
effectively; and (III) a vessel-connect algorithm to identify 
the missing segments of the vessels and connect them with 
main branches, which in turn localizes and displays the 
region of CTO lesions (Figure 2). Detailed steps regarding 
our AI model development are shown in Appendix 2.

Statistical analysis

Statistical analysis was performed using SPSS version 
23 (SPSS, Chicago, IL, USA). Continuous variables are 
presented as mean ± standard deviation if they are normally 
distributed, or as median and IQR if they are not. Using 
the probability-probability plot, a normal distribution was 
assessed. Categorical variables are expressed as the number 
and percentage. Using independent t-tests and Mann-
Whitney U tests, we compared differences in continuous 
and dichotomous demographic information between 
the training dataset and the testing dataset. Diagnostic 
performance of the AI was evaluated through sensitivity, 
specificity, positive predictive value (PPV), negative 
predictive value (NPV), and accuracy. McNemar’s test and 
receiver operating characteristic (ROC) analysis was also 
used to evaluate the accuracy of AI method and manual 
method with ICA as the reference in detecting coronary 
CTO lesions and lesions with 50–99% stenosis. The area 
under the curve (AUC) =0.50 was considered a valueless 
diagnostic indicator, 0.50< AUC ≤0.7 was low diagnostic 
accuracy, 0.7< AUC ≤0.9 was moderate, and 0.9< AUC 
≤1.0 was good. Intra-class correlation coefficient (ICC) 
test was used to evaluate the intra-observer and inter-
observer consistency, using a two-way random model 
and the absolute agreement definition. ICC value ≥0.75 
indicates good reliability; 0.4≤ ICC <0.75 indicates medium 
reliability; <0.40 indicates poor reliability. Two-tailed 
P<0.05 was considered to have a significant difference.

Results

The demographics of the patients

Detailed demographics for the training and the testing 
dataset are shown in Table 1. A total of 537 patients with 
1,569 ICA-confirmed atherosclerotic lesions (including 
672 lesions with <50% stenosis, 493 lesions with 50–99% 
stenosis, and 404 CTO lesions) were finally included. In 
the training dataset, there were 429 patients with 1,255 
atherosclerotic lesions (including 550 lesions with <50% 
stenosis, 396 lesions with 50–99% stenosis, and 309 CTO 
lesions). In the testing dataset, there were 108 patients 
with 314 atherosclerotic lesions (including 122 lesions 
with <50% stenosis, 97 lesions with 50–99% stenosis, and 
95 CTO lesions). There was no notable difference in the 
demographic characteristics of the patients included in the 

https://cdn.amegroups.cn/static/public/CDT-23-407-Supplementary.pdf
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Figure 2 Overview of the proposed AI algorithm in detecting CTO lesions. The proposed deep learning framework consisted of three 
models: (A) a two-stage 3D U-net-based myocardium segmentation network (red contour: contour of heart); (B) a modified 3D U-Net for 
coronary segmentation; (C) a vessel-connect algorithm to identify the missing segments of the vessels and connect them with main branches 
(blue boxes: CTO lesions). (D) Flowchart of the proposed AI algorithm in detecting CTO lesions. CCTA, coronary computed tomography 
angiography; CGPM, connected growth prediction model; CTO, chronic total occlusion; AI, artificial intelligence.
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Table 1 Patient’s demographics characteristics

Characteristics Training dataset (N=429) Testing dataset (N=108) P value

Male 351 (81.8) 93 (86.1) 0.29

Age (years) 59.9±9.7 59.4±10.9 0.16

BMI (kg/m2) 26.1±3.6 26.0±3.5 0.59

Coronary risk factors

Hypertension 273 (63.6) 61 (56.5) 0.17

Hyperlipidemia 272 (63.4) 68 (63.0) 0.90

Diabetes mellitus 143 (33.3) 37 (34.3) 0.86

Smoking 227 (52.9) 58 (53.7) 0.90

Drinking 75 (17.5) 24 (22.2) 0.26

Values are mean ± standard deviation or n (%). BMI, body mass index.

training and testing datasets. The mean effective radiation 
dose of the CT exam was 3.2±2.2 mSv.

Efficiency of AI in locating and detecting coronary CTO 
lesions and lesions with 50–99% stenosis 

Compared to the traditional manual post-processing and 
diagnostic method (CCTA-manual, 472±45 seconds), the 
average time of our AI-assisted post-processing method 
in CCTA (CCTA-AI) for each patient was dramatically 
reduced to 116±15 seconds and reduced time by 75%, and 
the report was also automatically generated.

Accuracy of AI in locating and detecting coronary CTO 
lesions and lesions with 50–99% stenosis 

Table 2 shows the diagnostic performance of CCTA-AI and 
CCTA-manual in identifying CTO lesions and lesions with 
50–99% stenosis. The example of the lesion detection of 
the CCTA-AI method was shown in Figure 3.

With ICA as the reference method in locating and 
detecting CTO lesions, the sensitivity, specificity, PPV, 
NPV, and accuracy of CCTA-AI in the training dataset 
were 90.3% (86.3%, 93.3%), 98.1% (95.1%, 99.2%), 98.2% 
(95.2%, 99.4%), 89.2% (84.8%, 92.5%), 93.8% (91.4%, 
95.5%), and 80.0% (70.3%, 87.2%), 96.4% (86.8%, 
99.3%), 97.4% (90.2%, 99.5%), 74.3% (62.6%, 83.5%), 
86.2% (79.0%, 90.3%) in the testing dataset. No significant 
difference was found in detecting CTO lesions between AI 
and manual method (P=0.12 and 0.53). The ROC analysis 

showed good and moderate accuracy of CCTA-AI in the 
training dataset and the testing dataset (AUC =0.942 and 
0.874) (Figure 4).

In locating and detecting lesions with 50–99% stenosis, 
the sensitivity, specificity, PPV, NPV, and accuracy of 
CCTA-AI in the training dataset were 92.7% (88.7%, 
95.5%), 97.7% (95.2%, 99.0%), 97.1% (93.8%, 98.7%), 
94.7% (91.1%, 96.6%), 95.5% (93.5%, 97.0%), and 87.7% 
(75.7%, 94.5%), 97.9% (91.9%, 99.6%), 96.1% (85.7%, 
99.3%), 93.0% (85.6, 96.9%), 94.1% (89.0%, 97.0%) in 
the testing dataset. No significant difference was found in 
detecting lesions with 50–99% stenosis between AI and 
manual methods (P=0.82 and 0.75). The ROC analysis also 
showed good accuracy of CCTA-AI in the training dataset 
and the testing dataset (AUC =0.953 and 0.928) (Figure 4). 
However, the proposed AI method in differentiating the 
ICA confirmed subtotal occlusion (STO) (95%≤ stenosis 
<100%), which is a “functional” total occlusion or a slow 
contrast penetration through the occluded segment, and 
CTO lesions (100%) was found to be poor, with the 
sensitivity, specificity, PPV, NPV and accuracy of CCTA-
AI in the training dataset (STO n=117) was 53.0% (43.6%, 
62.2%), 79.6% (74.6%, 83.9%), 49.6% (40.6%, 58.6%), 
81.7% (76.8%, 85.8%), 72.3% (67.0%, 75.9%), and 45.2% 
(27.8%, 63.7%), 75.8% (65.7%, 83.7%), 37.8% (22.9%, 
55.2%), 80.9% (70.9%, 88.2%), 68.3% (61.8%, 78.2%) in 
the testing dataset (STO n=31) (Table 3). 

Both intra-observer and inter-observer agreements were 
good (ICC =0.933 for observer A, ICC =0.905 for observer B, 
and ICC =0.891 for inter-observer agreement, all P<0.05).
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Table 2 Diagnostic performance of CCTA-AI and CCTA-manual in detecting CTO lesions and lesions with 50–99% stenosis

Variables

Training dataset Testing dataset

CTO lesions
Lesions with 50–99% 

stenosis
CTO lesions

Lesions with 50–99% 
stenosis

CCTA-AI CCTA-manual CCTA-AI CCTA-manual CCTA-AI CCTA-manual CCTA-AI CCTA-manual

Number of lesions 309 309 396 396 95 95 97 97

Sensitivity (95% CI) (%) 90.3  
(86.3, 93.3)

86.7  
(82.3, 90.2)

92.7  
(88.7, 95.5)

92.4  
(88.2, 95.2)

80.0  
(70.3, 87.2)

83.2  
(73.8, 89.9)

87.7  
(75.7, 94.5)

91.2  
(80.0, 96.7)

Specificity (95% CI) (%) 98.1  
(95.1, 99.2)

97.6  
(94.6, 99.0)

97.7  
(95.2, 99.0)

98.0  
(95.6, 99.2)

96.4  
(86.8, 99.3)

96.5  
(86.8, 99.4)

97.9  
(91.9, 99.6)

96.7  
(90.4, 99.2)

Positive predictive value 
(95% CI) (%)

98.2  
(95.2, 99.4)

97.8  
(95.1, 99.1)

97.1  
(93.8, 98.7)

95.8  
(93.3, 97.9)

97.4  
(90.2, 99.5)

97.5  
(90.5, 99.5)

96.1  
(85.7, 99.3)

94.5  
(83.9, 98.6)

Negative predictive 
value (95% CI) (%)

89.2  
(84.8, 92.5)

85.7  
(81.0, 89.4)

94.7  
(91.1, 96.6)

95.3  
(91.8, 97.3)

74.3  
(62.6, 83.5)

67.9  
(63.7, 81.2)

93.0  
(85.6, 96.9)

94.8  
(87.8, 98.1)

Accuracy (95% CI) (%) 93.8  
(91.4, 95.5)

91.6  
(89.0, 93.7)

95.5  
(93.5, 97.0)

95.5  
(93.4, 97.1)

86.2  
(79.0, 90.3)

88.2  
(82.0, 92.5)

94.1  
(89.0, 97.0)

94.7  
(89.8, 97.5)

P value 0.12 0.82 0.53 0.75

CCTA, coronary computed tomography angiography; AI, artificial intelligence; CTO, chronic total occlusion; CI, confidence interval.

Figure 3 Example of the lesion detection of the proposed AI-assisted CCTA method. A chronic total occlusion lesion in the proximal 
segment of LCX was automatedly detected, and the reports are generated automatically. WW, window width; WL, window level; LAD, left 
anterior descending artery; D1, first diagonal branch; LCX, left circumflex artery; OM1, first obtuse margin branch; RI, ramus intermedius; 
RCA, right coronary artery; R-PDA, right posterior descending artery; LM, left main coronary artery; pCx, proximal segment of the LCX; 
mLAD, middle segment of the LAD; pRCA, proximal segment of the RCA; mRCA, middle segment of the RCA; dRCA, distal segment of 
the RCA; AI, artificial intelligence; CCTA, coronary computed tomography angiography.
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Discussion

Key findings

In our study, we proposed a new AI model to facilitate 
automated segmentation and detection of CTO lesions, 
which is more efficient than traditional manual image 
reconstruction and diagnosis (reduces 75% of time to 
reconstruct and interpret images). With ICA as the 
reference method, the accuracy of CCTA-AI in the 

detection of CTO lesions and lesions with 50–99% stenosis 
is good, and no significant difference is revealed between 
the AI method and the manual method.

Comparison with similar researches and explanations of 
findings

DL has been shown to be a promising tool in image 
segmentation and recognition (25,26). AI applies CNN 

ROC analysis of CCTA-AI and CCTA-manual in detecting
CTO lesions in the training dataset

ROC analysis of CCTA-AI and CCTA-manual in detecting
CTO lesions in the testing dataset

ROC analysis of CCTA-AI and CCTA-manual in detecting
lesions with 50–99% stenosis in the training dataset

ROC analysis of CCTA-AI and CCTA-manual in detecting
lesions with 50–99% stenosis in the testing dataset
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Figure 4 ROC analysis of CCTA-AI and CCTA-manual in detecting CTO lesions and lesions with 50–99% stenosis. (A) ROC analysis 
of CCTA-AI and CCTA-manual in detecting CTO lesions in the training dataset; (B) ROC analysis of CCTA-AI and CCTA-manual in 
detecting lesions with 50–99% stenosis in the training dataset; (C) ROC analysis of CCTA-AI and CCTA-manual in detecting CTO lesions 
in the testing dataset; (D) ROC analysis of CCTA-AI and CCTA-manual in detecting lesions with 50–99% stenosis in the testing dataset. 
ROC, receiver operating characteristic; CCTA, coronary computed tomography angiography; AI, artificial intelligence; CTO, chronic total 
occlusion; AUC, area under the curve.
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Table 3 Diagnostic performance of CCTA-AI and CCTA-manual in detecting STO lesions

Variables
Training dataset Testing dataset

CCTA-AI CCTA-manual CCTA-AI CCTA-manual

Number of lesions 117 117 31 31

Sensitivity (95% CI) (%) 53.0 (43.6, 62.2) 64.1 (54.7, 72.6) 45.2 (27.8, 63.7) 61.3 (42.3, 77.6)

Specificity (95% CI) (%) 79.6 (74.6, 83.9) 85.8 (81.2, 89.4) 75.8 (65.7, 83.7) 84.2 (75.0, 90.6)

Positive predictive value (95% CI) (%) 49.6 (40.6, 58.6) 63.0 (53.6, 71.6) 37.8 (22.9, 55.2) 55.9 (38.1, 72.4)

Negative predictive value (95% CI) (%) 81.7 (76.8, 85.8) 86.3 (81.8, 89.9) 80.9 (70.9, 88.2) 87.0 (77.9, 92.8)

Accuracy (95% CI) (%) 72.3 (67.0, 75.9) 79.8 (71.5, 85.2) 68.3 (61.8, 78.2) 78.6 (68.3, 84.4)

P value 0.66 0.78

CCTA, coronary computed tomography angiography; AI, artificial intelligence; STO, subtotal occlusion; CI, confidence interval.

to achieve vessel extraction, automatically identifying 
main vessels and branches and generating high-quality 
reconstructed images, which fulfilled the requirement for 
clinical routine diagnosis and thus has been widely used 
in the evaluation of CAD. To detect coronary arterial 
lesions with stenosis, Kang et al. (27) proposed a structured 
learning technique, with good sensitivity, specificity, and 
accuracy achieved. Promising results were demonstrated in 
the automated detection of obstructive and nonobstructive 
lesions from CCTA. A multi-center, international study 
(CLARIFY study) additionally validated the capability of 
AI-assisted analysis in swiftly and precisely assessing vessel 
shape and narrowing (14). Some studies have also confirmed 
that DL algorithms exhibited excellent diagnostic 
accuracy in coronary atherosclerotic conditions, while also 
considerably decreasing the duration of post-processing and 
interpretation of CCTA images (15,19). 

However, the reduction in the contrast medium at the 
occlusion site or the distal vessel is prone to cause vessel 
segmentation errors, following which, the vessel segments 
were disconnected, and those before and after occlusion 
were difficult to be demonstrated in reconstructed images, 
which brings challenges in the automatic location and 
detection for CTO lesions. Only a few research papers on 
AI in the segmentation and reconstruction of CTO lesions 
were published (19), resulting in decreased time required 
for postprocessing CTO quantification and demonstrating 
strong correlation and agreement in the anatomical 
evaluation of occlusion characteristics. However, no 
previous reports have investigated the performance of AI in 

detecting CTO lesions, and additional research is necessary 
to develop a completely automated algorithm for the 
segmentation, reconstruction, and identification of CTOs.

To solve the problem of automatically detecting the 
CTO lesions of the coronary arteries, we developed a 
new DL algorithm to enable automated extraction of the 
centerlines of coronary arteries and locate the CTO lesions 
by completing the missing segments. Based on myocardial 
segmentation and coronary segmentation results, we labeled 
each branch of the centerline and identified the missing 
segments of the vessels, which in turn located and displayed 
the CTO lesions and increased the ability of CTO lesions 
detection. Consequently, AI was confirmed to be a simple, 
reliable, and efficient tool to detect CTO lesions.

With the ICA as the reference standard, we found 
that the proposed AI model demonstrates commendable 
diagnostic capabilities not only in detecting CTO lesions 
but also coronary arteries lesions with 50–99% stenosis. 
Furthermore, our proposed AI method saved 75% of time 
in post-processing and interpreting the CCTA images when 
compared to the traditional manual method. The diagnostic 
accuracy of the CCTA-AI method in detecting CTO lesions 
(86.2% in the testing dataset) and lesions with 50–99% 
was good (94.1% in the testing dataset). The ROC analysis 
showed moderate accuracy and good accuracy of CCTA-
AI in CTO lesions and lesions with 50–99% stenosis (AUC 
=0.874 and 0.928 in the testing dataset, respectively). No 
significant difference was found in detecting CTO lesions 
between AI and manual methods (P<0.05), but in some 
conditions such as the presence of larger vascular branches 
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Figure 5 Example of the AI misrecognition of CTO lesion in a patient with a large vascular branch in close proximity to the occluded 
segment. (A) AI recognition errors occurred in LAD; (B) correct recognition of CTO lesion in LAD after manual adjustment. CCTA, 
coronary computed tomography angiography; LAD, left anterior descending artery; D1, first diagonal branch; D2, second diagonal branch; 
LCX, left circumflex artery; RI, ramus intermedius; RCA, right coronary artery; R-PDA, right posterior descending artery; R-PLB, right 
posterior lateral branch; WW, window width; WL, window level; LM, left main coronary artery; pLAD, proximal segment of the LAD; 
mLAD, middle segment of the LAD; dLAD, distal segment of the LAD; AI, artificial intelligence; CTO, chronic total occlusion.

in close proximity to the occluded segment (Figure 5) 
or heavy calcification (peripheral calcification: maximal 
encircling ≥180° and cross-sectional area ≥50%) may result 
in AI recognition errors, which needs to be cautious.

Besides, the effectiveness of the proposed AI approach 
in distinguishing between ICA-confirmed STO and CTO 
lesions was subpar, and the diagnostic accuracy was reduced 
to about 70.0%. In anatomical imaging tests, both CTO and 
STO lesions exhibit a complete interruption of the contrast-
enhanced arterial lumen, while functional imaging tests 
indicate myocardial ischemia. There is still a challenge in 
noninvasively discriminating CTO from STO lesions (28).  
Further studies are needed to improve the ability of AI in 

the automatic segmentation and detection of CTO lesions.

Limitations

Despite the advantages of CCTA-AI in detecting CTO 
lesions, this study has some limitations. First, the sample 
size was small as this study was based on a single-
center experience. In the following study, we will aim to 
enroll multicenter data to further test and improve the 
performance of AI in detecting CTO lesions. Second, 
we did not differentiate the early and late stages of CTO 
lesions, which might cause some misidentifications, such as 
a high density of non-calcified components in occlusions 
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of later stages compared to those in the earlier stages. The 
presence of microvessels in the late stage of the occlusions 
exhibits an increase in vascular density, making it easier to 
detect (29), which was a valid concern. Finally, we excluded 
patients with stented lesions or after coronary artery bypass 
grafting surgery. Furthermore, no analysis was carried out 
in bypass grafts as only the assessment of native vessels was 
included.

Conclusions

AI can automatically detect CTO lesions based on CCTA 
images, with good diagnostic accuracy and efficiency. 
AI is becoming an automatic vascular segmentation and 
analysis tool with promising possibilities and applications. 
Our algorithm necessitates additional improvement, and a 
greater number of external validations are imperative for its 
clinical implementation. 
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Appendix 1

The explanation about the allocation of the training set 
and the testing set and determination of the sample size

This study was a diagnostic test, and the sample size was 
calculated using the area under the receiver operating 
characteristic (ROC) curve. The smallest area under the 
ROC curve was set as 0.90 according to the purpose of 
the study. Then, the type I error α was set as 0.05, and the 
type II error β was set as 0.1. The ratio of positive [chronic 
total occlusion (CTO) lesions] to negative (non-CTO 
lesions) was approximately 1:3. The results of MedCalc 
(version 18.11.3, MedCalc Software bvba, Ostend, Belgium) 
showed that the sample size required for clinical test was 
19 patients, including 5 patients with CTO lesions and  
14 patients with non-CTO lesions. 

In order to ensure the robustness of the diagnostic model, 
we need to increase the amount of data in the training set as 
much as possible. So we randomly assigned the patients to 
the training dataset and the testing dataset at a rate of 4:1. 
According to the proportion of 4:1 (training set:testing set), 
the minimum required sample size of the training set was  
76 patients, of whom 19 with CTO lesions and 57 with 
non-CTO lesions.

The artificial intelligence (AI) model requires a higher 
sample size than the conventional prediction model, 
and it is difficult to develop a robust model with only 95 
patients. Therefore, to improve the robustness of our AI 
model, a total of 537 patients with 1,569 ICA-confirmed 
atherosclerotic lesions (including 672 lesions with <50% 
stenosis, 493 lesions with 50–99% stenosis, and 404 CTO 
lesions) were enrolled in this study.

Appendix 2

Convolutional neural network (CNN) was used to achieve 
myocardial and coronary artery segmentation and target 
lesion identification, which are feed-forward neuronal 
networks, and contain neurons with learnable weights 
and biases (24).The proposed deep learning framework, 
which consists of three models: (I) a two-stage 3D U-Net-
based myocardium segmentation network to determine 
the coordinates of the heart contour and segment the 
myocardium fine structure; (II) a modified 3D U-Net 
for coronary segmentation, which includes encoding and 
decoding parts, and a connected growth prediction model 
(CGPM) to eliminate vascular segmentation errors and then 
avoid partial or missing vascular segments of CTO lesions 

effectively; and (III) a vessel-connect algorithm to identify 
the missing segments of the vessels and connect them with 
main branches, which in turn localizes and displays the 
region of CTO lesions (see main text Figure 2).

Detailed steps regarding our AI model development 
are shown as follows: for myocardial segmentation, an 
automatic segmentation framework was developed, which 
mainly consisted of two 3D U-Net networks, as shown in 
Figure 2B. The first 3D U-Net is used to determine the 
coordinates of the heart contour, while the other is used 
for the segmentation of the myocardium fine structure. For 
coronary segmentation, a modified 3D U-Net was used, 
which includes encoding and decoding parts, as shown in 
Figure 2C. The encoding part included four layers of down-
sampling, and the decoding part included four layers of the 
up-sampling. Next, we added the bottleneck connection 
between down-sampling and up-sampling layers to maintain 
the multi-scale information in down-sampling process (30).  
After the 3D U-Net, a CGPM was used to eliminate 
vascular segmentation errors and then avoid partial or 
missing vascular segments effectively. 

Due to the reduction in the contrast medium at the 
occlusion site or the distal vessel is prone to cause vessel 
segmentation errors, following which, the vessel segments 
were disconnected, and those before and after occlusion 
were difficult to be demonstrated in curved planar 
reconstruction (CPR) images. Therefore, we developed a 
new algorithm, combined with the imaging characteristics, 
to modify the extraction of the centerline and improve the 
detection of CTO lesions, as shown in Figure 2D.

The model utilized a novel algorithm, which enables 
automated extraction of the centerlines, to locate the 
CTO lesions by completing the missing segments. Based 
on previous myocardial segmentation and coronary 
segmentation results, the anatomical correlation between 
the centerline and myocardium location to distinct vessel 
branches was utilized. Subsequently, each branch of the 
centerline was labeled, and missing segments of the vessels 
were identified and connected with main branches, which in 
turn displayed and detected the CTO lesions. Details are as 
follows:

(I)	 On the coronary segmentation, the domain 
connected to the aorta was selected, the two largest 
connected domains on the coronary segmentation 
corresponding to the left and right branches of the 
coronary artery were identified, and the centerline 
of the vascular tree was extracted (31,32). The 
minimum distance between the nearest point 

Supplementary
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of the left and right branches to the aorta and 
myocardium (left atrium, left ventricle, right 
atrium, and right ventricle) was termed as right 
coronary artery (RCA) and left main coronary 
artery (LM), respectively. According to the 
minimum distance between the bifurcation on the 
centerline of LM and myocardium and distinct 
left anterior descending artery (LAD) and left 
circumflex artery (LCX), the partial points on the 
centerline corresponding to the three main vessels 
were determined. 

(II)	 The centerline was also extracted for the free 
connected domain that was not connected to 
the aorta in the coronary segmentation results. 
According to the positional correlation between 
the points on the centerline and the myocardium 
(left atrium, left ventricle, right atrium, and 
right ventricle), it was determined whether the 
free connected domain was the main vessel or 
its branch [posterior descending artery (PDA), 
diagonal branch (D), obtuse marginal (OM), ramus 
intermedius (RI), right posterior lateral branch 
(R-PLB)].

(III)	 If the centerline of connecting domain in step 2 
was the main vessel, then based on the centerline in 
step 1, the nearest two points on the centerline of 
the free connected domain and the corresponding 
major branch in (II) are selected as the starting 
point and the ending point, respectively. Then, the 

path connecting the free connected domains to the 
three main vessels were computed by the minimum 
path algorithm.

(IV)	 According to the waypoint and centerline in step 
3, the missing segments in the occlusion site lost 
in previous coronary segmentation results was 
complemented.

(V)	 Based on the results of the complemented coronary 
artery, the centerlines of the main vessels and their 
branches could be extracted such that the missing 
segments caused by CTO could also be detected on 
the straightened multiplanar reconstruction (MPR) 
and CPR. 
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