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ABSTRACT 

 

Due to climate change, increase in extreme rainfall has become a common feature in 

most tropical regions. Consequently, in recent years Sri Lanka has seen several 

extreme weather events whose subsequent hazards have caused significant damage to 

human lives, the economy, and the environment. This has a detrimental impact on a 

developing country like Sri Lanka. Hence, a detailed investigation of extreme rainfall 

in Sri Lanka is useful for understanding climate change dynamics and improving 

preparedness and early warning systems for natural disasters.  Due to the complex 

interaction between climate change and geographical conditions, river flow variables 

vary significantly across the island, frequently resulting in extreme weather and 

associated hazards like floods. There is a recurring pattern of ongoing flood hazards in 

Sri Lankan River basins which have resulted in significant economic losses and 

interruptions to human life. Given these considerations, three main objectives are to 

be addressed in this research. 

 

i. Analysis of spatial and temporal extreme rainfall variations over Sri Lanka. 

ii. Identification of rainfall and water-level fluctuations and their relationships in 

the Kelani River Basin. 

iii. Assessment of flood risk due to extreme rainfall in the Lower Kelani River 

Basin. 

 

To achieve the first objective, the study calculated nine distinct extreme rainfall indices 

(R10mm, R20mm, R995p, R99p, RX5day, RX1day, PRCPTOT, CWD, and SDII) 

using daily rainfall data obtained from 19 meteorological stations spread across Sri 

Lanka from 1991 to 2020. Mann-Kendall (MK), sequential Mann-Kendall (SqMK), 

Sen’s slope estimator, and Innovative Trend Analysis (ITA) were used to determine 

temporal variations of extreme rainfall, while the inverse distance weighted (IDW) 

interpolation method was used to identify the spatial variations of these extreme 

rainfall indices. 

 

According to the analysis, most meteorological stations (68%) showed discernibly 

increasing trends (95% confidence level) in extreme rainfall. These increasing trends 

were largely centred in the dry and intermediate zones of the northern and eastern parts 
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of the island. Conversely, a notably decreasing trend was observed at some of the 

stations in the wet zone in the southwest part of Sri Lanka (95% confidence level). 

Moreover, the PRCPTOT index has shown considerably less annual total precipitation 

in the northern and eastern regions than in the southern region. The SDII index, on the 

other hand, had its largest accumulation in the east coast region. The same region has 

lower values for PRCPTOT and CWD indices, revealing low rainfall but with high 

intensity. Furthermore, the study found an increase in the intensity and frequency of 

very heavy rainfall events across the island. As a whole, the results indicated that the 

wet zone was getting drier and the intermediate and dry zones were getting wetter in 

the period considered. The consequential increase in extreme rainfall events increases 

the likelihood of the floods and landslides that adversely affect agricultural and 

transportation activities throughout the country.  

 

The Kelani River Basin (KRB), situated in the wet zone of the country, experiences 

regular flooding. The basin is highly populated and urbanized than other basins in Sri 

Lanka, and it flows through the commercial capital of the country, the city of Colombo. 

Thus, changes in the KRB directly affects many people. To fulfil the second objective, 

daily rainfall data from 10 meteorological stations were obtained from the Department 

of Meteorology, while water-level data were obtained from the Irrigation Department 

for Hanwella and Nagalagam Street hydrology stations. The mean-based adjustment 

technique was used to homogenise hydro-meteorological data. The modified Mann-

Kendall (MMK) test, Sen’s slope, Pearson's correlation coefficient tests, and lag 

correlation were used to examine the data. To identify extreme rainfall over the basin, 

the extreme rainfall indices PRCPTOT, SDII, R99p, R95p, CWD, RX5day, and 

RX1day were calculated. The results showed that, during the study period, there was 

a significant increasing trend in the annual total rainfall over the KRB. At the same 

time, a significant decreasing trend in water level was observed at Hanwella 

Hydrology Station, while a significant increasing trend appeared at N’Street Station. 

 

The results indicate that over the study period a decreasing trend in rainfall was 

observed at approximately 40% of the meteorological stations analysed, including at 

all meteorological stations in the upper KRB (except for Maliboda). In particular, 70% 

of the stations showed the highest decreasing trend in rainfall during the Southwest 

Monsoon (SWM) period, the highest of the four seasons. Contrary to this, the 
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Northeast Monsoon (NEM) produced the highest increasing trend in stations (70%). 

When considering extreme rainfall over the basin, it is evident that the intensity has 

reduced, but the frequency and duration have increased. There is a moderately positive 

correlation between water level and rainfall in the basin, which indicates that there are 

some other factors that affect the water level. When considering the monthly 

correlation of rainfall and water level, the months of May, June, July, and November 

have the highest correlations. The lag correlation for 10 lags shows an increase in lags 

in the first zero to four lags and then a gradual decrease. This can be used to describe 

the synchronicity of rainfall and water level in flood events, and the results are 

essential for establishing a sustainable water use plan for the KRB. 

 

The increase in extreme rainfall events over the Kelani River Basin (KRB) has led to 

an increasing number of severe flooding threats in the lower part of the basin. Thus, in 

the third objective, this study aimed to analyse flood risk in the Lower Kelani River 

Basin (LKRB). This objective consists of two parts. 

 

The first part of this objective is a detailed analysis of flood risk with the help of the 

Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Method (MCDM) 

method. As the risk is a combination of hazards and vulnerabilities, the study set 

hazards and vulnerabilities as criteria for the AHP process. Under these two criteria, 

thirteen factors were analysed and flood hazard and flood vulnerability maps for the 

LKRB were prepared prior to prepare the flood risk map. The eastern side of the LKRB 

is identified on the risk map as a low-risk area due to its high elevation and slope, 

drainage density, and vegetation. The urbanised, highly populated areas with poor 

drainage density on the western side are considered high-risk areas for flood 

susceptibility. Most of the land area (40.26%) is categorised as having a moderate risk 

of flooding and 16.43% is at high to very high risk for flood susceptibility. The spatial 

extents and levels of risks were systematically identified based on the maps produced. 

Applying risk information will assist the authorities in developing prompt flood 

management strategies and detecting highly affected areas in which to implement 

appropriate mitigation strategies. This model can also be applied to any other 

geographical area to detect flood risk by inputting the necessary data and information. 

In the second part, this study proposed a new integrated model for flood hazard 

assessment. The study used nine flood hazard criteria for this proposed model. This 
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model integrates the Analytical Hierarchy Process (a decision-making model), 

Frequency Ratio Analysis (a statistical model), and Height Above Nearest Drainage 

Model (HAND - a flood inundation model). The model has been validated with the 

help of the Area Under Curve (AUC) method. The AUC value for the model is 0.807, 

denoting this as a very good model for flood hazard assessment. This proposed 

methodology can be used to assess flood hazards in any part of the world with different 

criteria, as it provides a detailed flood risk zonation map for users. According to this 

new methodology-based flood zonation map for the LKR, 16.4% of the total land is 

under the risk and high-risk category for flood hazard. 

 

Finally, the findings of this study give valuable insights into the shifting trends of 

extreme rainfall, water levels, and flood threats in Sri Lanka, particularly in the Kelani 

River Basin. The conclusions extend to disaster preparedness and mitigation activities, 

assisting scientists and policymakers to understand and effectively handle the current 

situation. 
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1. INTRODUCTION 

 

1.1 Background  

 

Precipitation is one of nature's most precious resources, with many implications for 

the sustainability of humans and the environment. Over time and space, the response 

of human activities to changes in rainfall distribution and other climatic factors is not 

consistent (Department of Meteorology, 2019). Accordingly, rainfall significantly 

influences economic, ritual, and cultural activities, especially in developing countries 

in the tropics, where nearly half the global population lives (NASA, 1999). However, 

it is unfortunately possible that severe and prolonged rainfall may lead to negative 

consequences like flooding, with adverse impacts on society and the environment.  

 

Folland et al. (2001) found that rainfall fluctuations around the globe have occurred 

over different time scales than other significant long-term trends. Hence, a 

comprehensive understanding of precipitation patterns is essential to determine the 

dynamic nature of interactions between humans and the environment. Investigations 

of rainfall patterns thus have an extensive history. As articulated by Turkes (1996), 

there are many studies of the spatiotemporal complexities of rainfall patterns at both 

micro- and macro-levels worldwide. These studies have been devoted to determining 

the many factors involved in changes in rainfall (Adler et al., 2018; Kumar et al., 2010; 

Nisansala et al., 2020; Pinault, 2012). For instance, a study conducted by Sun et al. 

(2018) analysed global precipitation trends and found that regions at lower altitudes 

demonstrated slightly more pronounced variations of extreme precipitation events than 

those at higher altitudes. In addition, an extensive study conducted by Guagliardi et al. 

(2016) examined the patterns of seasonal and annual rainfall across Europe and the 

Mediterranean region, and found that there is a negative trend of annual rainfall in the 

Mediterranean basin. Conversely, a positive trend of precipitation has been observed 

in northern Europe. Nevertheless, as rainfall patterns change with climate change, 

continuing studies of precipitation are still necessary to unravel the complicated 

variations of global patterns of precipitation.  

 

Precipitation is a vital component of the hydrological cycle and the primary way that 

atmospheric water returns to the Earth's surface. The hydrological cycle has been 
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significantly altered by global climate change, leading to increased flooding potential 

in different regions of the world (Arnell & Gosling, 2013). As temperatures rise to 

unprecedented levels (IPCC, 2021), the hydrological cycle is being distinctly affected, 

leading to increasing rainfall and evaporation levels (WMO, 2013). Accordingly, 

changes in spatiotemporal rainfall patterns affecting overall magnitudes and seasonal 

distributions have already been observed due to this hydro-cycle change (Feng et al., 

2013). Moreover, Nouaceur and Murărescu (2016) predicted that many areas would 

become wetter due to the recurrence of extreme events and the intensification of 

overall rainfall caused by climate change. South Asia, including Sri Lanka, has become 

a global hotspot for climate change (Dissanayaka & Rajapakse, 2019). Hence, above-

average extreme rainfall events have increased in recent decades (Sheikh et al., 2015). 

Shahid (2011) observed evidence of a significant increase in annual and pre-

monsoonal rainfall in Bangladesh. Nanditha et al. (2023) discussed extreme rainfall-

related flood hazards, which badly hit Pakistan's southern province in 2022. As 

Samantaray and Gouda (2023) show, India is also experiencing an increased trend of 

heavy rainfall events.  

 

South Asia is home to more than 2 billion people (Worldometer, 2023). Any changes 

in climate can severely affect the roughly 1 billion of them who depend on agriculture 

(ACIAR, 2023). This underlines the vital role that rainfall plays in the South Asian 

climate. The South Asian Monsoon system (SAM) brings most precipitation from May 

to September (Indian summer monsoon) to the region. Spatiotemporal distribution of 

rainfall in the South Asian region depends on a number of factors, such as climate, 

topography, and orography. In winter, occasional precipitation is produced by westerly 

systems originating in the Arabian Sea and Mediterranean region (Krishnan et al., 

2019; Lang & Barros, 2004). Atmospheric teleconnection systems – such as El Niño-

Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Madden Julian 

Oscillation (MJO) – may also influence the SAM (Halpert & Ropelewski, 1992; Saji 

et al., 1999). 

 

Sri Lanka, a small tropical island in the Indian Ocean, has a distinctive climate with 

unique orography. Amidst many climatic variables, rainfall measurements and patterns 

are crucial for informing the social and economic decisions of the nation (Suppiah & 

Yoshino, 1984). For instance, Zubair et al. (2007) indicated that changes in 
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precipitation patterns have a significant influence on agricultural productivity and food 

security, as well as substantial implications for the subsistence livelihoods of 

communities in Sri Lanka. The inter-annual variation of rainfall across the island is 

governed by the SAM, and analysis of rainfall patterns gives insights into the complex 

behaviour of the SAM. Accordingly, much research is carried out to analyse rainfall 

behaviour (Madduma Bandara & Wickramagamage, 2004; Nisansala et al., 2020; 

Thevakaran et al., 2019). Extreme rainfall and drought events have recently been 

reported in Sri Lanka due to the overall effects of climate change. The impact of these 

rainfall changes across the country is substantial, significantly affecting the 

environment and many aspects of human life. However, only a few studies have 

considered extreme rainfall events (Abeysekera et al., 2015; Jayawardena et al., 2018; 

Sheikh et al., 2015; Stolbova et al., 2014). These studies considered a few rainfall 

stations or specific rainfall seasons to identify the extreme rainfall pattern. For 

example, the study by Abeysekera et al. (2015) analysed extreme rainfall anomalies, 

but only for the Dry zone of Sri Lanka. Therefore, this study aims to fill this void. 

 

Studying river flow variability provides valuable background to understanding the 

interaction between a region's hydrological processes, climate patterns, and 

environmental systems (Döll & Schmied, 2012; Jain & Singh, 2018). There is 

significant spatial variation in the discharges of local and regional rivers, due to their 

complex interaction with climate and other geographical variables (Arnell & Gosling, 

2013; Frans et al., 2013). However, the results of modelling indicate that changes in 

discharges into the world's rivers will continue to be driven by climate change and land 

use and land cover (LULC) (Tao et al., 2014). The average annual flows in nearly half 

of the world's major river basins are projected to decline, while flows are expected to 

increase in over 35% of these basins by the mid-21st century (Arnell & Gosling, 2013). 

Furthermore, Santini and di Paola (2015) have explained that extreme water discharge 

will decrease in 60% of the major river basins in the northern hemisphere by the end 

of the 21st century. Accordingly, Jain and Singh (2018) argue that studying river flow 

variability is paramount for assessing freshwater climate change risks (Jain & Singh, 

2018). Hence, many studies have been conducted to assess how climate change 

impacts river flow variability across the globe. For instance, the study by Hariadi et al. 

(2023) analysed extreme rainfall and river flow variability in Myanmar, revealing that 

northern Myanmar will experience longer dry spells in future. In contrast, its east coast 
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will experience more extreme rainfall conditions, which will lead to lower river flows 

across Myanmar. The study by Rameshwaran et al. (2021) demonstrated that river 

flow variability across West Africa, particularly in the Sahelian region, will increase 

due to climate change. Martins et al. (2016) studied the impact of rainfall and land 

cover on river flow changes in the Ivai River Basin of Brazil. They found that river 

flows change mainly due to land cover changes. Furthermore, the paper of  Manawadu 

and Wijeratne (2021) showed that human activities are major contributors to the 

complex patterns of river flow variability.  

 

In the Sri Lankan context, the scholarly work of Imbulana et al. (2018), Ampitiyawatta 

and Guo (2009), Khaniya et al. (2019), Panditharathne et al. (2022), and Alahacoon 

and Edirisinghe (2021) assessed the complex interactions between rainfall and river 

flow variability in the nation’s different watersheds. As the fourth largest watershed 

on the island, the Kelani River Basin (KRB) covers a significant portion of the 

country's western and central hill regions (Jayasekara et al., 2020). Socioeconomically, 

the basin is much more important than other basins on the island, as it surrounds critical 

urban and industrial centres like Colombo, Sri Lanka’s commercial centre and capital 

city (Manawadu & Wijeratne, 2021). The KRB is home to more than 20% of the Sri 

Lankan population (Mahagamage & Manage, 2018). High population density exerts 

enormous pressure on the basin's water resources, sanitation processes, and 

infrastructure development (Manawadu & Wijeratne, 2021; Samarasinghe et al., 

2022). Randil et al. (2022) stressed that the basin is vulnerable to annual flooding. 

Therefore, plenty of studies have been carried out in the KRB to analyse floods (De 

Silva et al., 2012; Samarasinghe et al., 2022; Wijetunge & Neluwala, 2023), human 

activities (Manawadu & Wijeratne, 2021; Wijeratne & Li, 2022), rainfall (Dissanayaka 

& Rajapakse, 2019; Perera et al., 2022), and so on. However, given the changing 

climatic conditions, it is clear that there is a compelling need to examine the link 

between rainfall and water level dynamics in the KRB. Jayasekara et al. (2020) 

discussed in depth the relationship between rainfall and stream flow variability in the 

KRB between 1983 and 2013. They found that rainfall variation is significantly 

attributable to catchment streamflow. Further, most studies (Dissanayaka & 

Rajapakse, 2018; Jayasekara et al., 2020; Samarasinghe et al., 2022) revealed that, the 

average rainfall over the basin is decreasing in past decades. However, the climate and 

the environment are changing day by day. The study by Samarasinghe et al. (2022) 
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explained that increased flood intensities and land use changes in the KRB had 

significantly contributed to the severity of flooding. Hence, it should be confirmed that 

the rainfall over the KRB has changed over the past decades. 

 

Flooding is one of the most severe, widespread, and destructive types of natural 

disaster, affecting about 250 million people worldwide annually, with estimated 

annual economic losses of more than USD 40 billion (OECD, 2016). According to the 

Emergency Event Database (EM-DAT) 2023 report, flood was the most common 

natural disaster in 2022 (176 events worldwide). For instance, flooding in Pakistan has 

caused an estimated USD 15 billion in direct damage, killed more than 1,700 people, 

and displaced 8 million, which will cause economic hardship for a long time (United 

Nations Office for Disaster Risk Reduction and World Meteorological Organizatio, 

2023). In August 2018, the southern Indian state of Kerala faced catastrophic floods 

caused by heavy rainfall, resulting in economic losses exceeding USD 3 billion and 

the deaths of more than 440 people (Mishra et al., 2018). In August 2019, Kerala again 

faced a similar situation, which left more than 1.5 million people homeless and 244 

dead (The Guardian, 2019). Similarly, in 2013 in India and Nepal, 6,648 people died 

in floods caused by heavy rains. Kundzewicz et al. (2014) pointed out that in 2012, 

Madagascar, Niger, and Nigeria on the African continent, China, India, North and 

South Korea, Bangladesh, and the Philippines on the Asian continent, and Argentina 

and the United States in the Americas encountered killer flood events due to heavy 

rainfall. The evidence indicates that extreme rainfall-related flood is one of the most 

costly and dangerous natural hazards.  

 

The intensity and duration of rainfall events have caused a number of recent major 

floods across Sri Lanka. For example, in May 2016 flooding in the Lower Kelani River 

Basin (LKRB) had an adverse impact on livelihoods, property, and the surrounding 

environment. During that event, the Kelani River catchment area was subject to 350 

mm of rain on three consecutive days (15 – 17 May 2016). Over 4,000 houses were 

damaged, with 340,000 people injured and 104 fatalities. The economic damage to 

homes was estimated at around USD 310 million (Ministry of National Policies and 

Economic Affairs, 2016). Again in 2017, the southern part of the island received 600 

mm of rainfall within two days, resulting in significant floods and landslides (Disaster 

Information Management System in Sri Lanka, 2017). These floods spread over 15 
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districts, affecting almost 717,622 people (Disaster Information Management System 

in Sri Lanka, 2017). Severe rainfall again caused flooding in the northern and eastern 

parts on the island in December 2019, affecting more than 65,316 people (International 

Federation of Red Cross and Red Crescent Societies, 2020).  

 

Managing human well-being and the surrounding environment in flood-prone areas is 

essential for authorities relate with disaster management. Managing human wellbeing 

and the surrounding environment in flood-prone areas is essential for authorities like 

disaster management. Consequently, assessment of flood hazards and vulnerability is 

one of the most important aspects of flood management and mitigation (Nasiri et al., 

2016). Numerous studies worldwide (Brouwer et al., 2007; Gordon Tami & Moses, 

2015; Kelly & Kuleshov, 2022) have reinforced the importance of hazard and 

vulnerability assessment for flood-risk management. When assessing flood risk, many 

studies combine decision-making models and statistical models. The most prominent 

integration method uses the Analytical Hierarchy Process (AHP)-based Multi-Criteria 

Decision Making (MCDM) tool and a bivariate statistical technique called FR for flood 

susceptibility mapping (Tariq et al., 2022; Waqas et al., 2021; Yilmaz, 2022). For 

instance, the study by Ali et al. (2019) applied integrated AHP and FR method to map 

flood-vulnerable and at-risk areas in the Sundarbans region, India. This integrated 

model was 81.42% accurate in predicting flood hazards in the region. The study 

revealed that this combined method was very useful and accurate for flood mitigation 

strategies, rather than depending on a one assessment method. Also, flood inundation 

mapping is one of the essential components of flood risk mapping. Among the flood 

inundation mapping methods, Height Above Nearest Drainage (HAND) model is often 

used one of the best methods (Godbout et al., 2019; Speckhann et al., 2018). This 

model is used to generate the inundation map, which shows the variance in elevation 

between a pixel and the pixel in the drainage network to which it drains (Nobre et al., 

2011). At present many studies use the HAND model for flood inundation mapping 

coupled with other models (Aristizabal et al., 2023; Chaudhuri et al., 2021; Fang et al., 

2023). For instance, the study by Komolafe et al. (2020) for the first time combined 

the AHP and HAND models for flood susceptibility mapping in the Ogun River Basin, 

Nigeria. The study revealed that this integrated model provided a more accurate 

background for flood zoning maps. Hence, the integration of AHP, FR and HAND 
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(AFH) method would provide a more accurate and detailed path for flood hazard 

mapping, but still, no research has been conducted to combine these three methods. 

In the Sri Lankan context, flood risk and vulnerability have been analysed by various 

researchers (Dissanayake et al., 2018; Samarasinghe et al., 2010; Sivakumar, 2015). 

Nevertheless, only a few studies have used AHP-based MCDM for flood risk 

assessment in Sri Lanka (Perera, 2021; Wijesinghe et al., 2023). Also, there are no FR-

based flood risk assessments have been carried out for the country yet. As mentioned 

earlier, floods in the LKRB cause severe damage to humans and the surrounding 

environment. The government of Sri Lanka then has to spend massive sums of money 

on rehabilitation. However, only one study (Perera, 2021) was found that used AHP-

based flood risk assessment for the LKRB. Perera’s study used six physical factors to 

assess flood risk in the basin. Nevertheless, both physical and social factors should be 

considered for better flood risk assessment. Also, there should be a method to generate 

a detailed map of flood risk in the basin. Therefore, the use of the integrated AFH 

method would be beneficial for flood hazard assessment in the LKRB. Accordingly, 

this study attempted to assess the flood risk of LKRB in two ways. These two methods 

are the detailed AHP-based flood risk assessment and the proposed integrated AFH 

method for flood susceptibility mapping. 

 

The specific research questions covered in this thesis are: 

1. What were the spatial and temporal patterns of extreme rainfall in Sri Lanka 

from 1991 to 2020? 

2. Are current fluctuations in rainfall in the KRB continuing to affect streamflow 

patterns, or are there significant changes in this relationship?  

3. Which areas in the LKRB can be classified as being at risk of flooding, as a 

result of extreme rainfall? 
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1.2 Objective of the study 

 

This research aims to assess extreme rainfall variation and its relation to flood hazards 

in Sri Lanka. Based on this aim and the research questions formulated above, this study 

addressed the objectives below. 

 

1. Analysis of spatial and temporal extreme rainfall variations over Sri Lanka 

This objective was achieved by analysing in situ daily rainfall data from 1991 to 2020. 

Using the extreme rainfall indices, it was possible to identify extreme rainfall events 

throughout the country. This objective discussed the monotonic extreme rainfall 

variation according to extreme rainfall indices. Such studies provide background to 

address the social, economic, and environmental challenges associated with extreme 

rainfall events. 

 

2. Identification of rainfall and water level fluctuations and their relationships in 

the Kelani River Basin 

In situ daily rainfall and water-level data in the KRB were used for this objective for 

the same period from 1991 to 2020. This is expected to improve the understanding of 

how these two variables vary over time. It is essential to determine the relationship 

between rainfall and water levels in rivers as this is linked with complex impacts on 

different sectors and aspects of society and water resource management in a river 

basin. 

 

3. Assessing flood risk due to extreme rainfall in the Lower Kelani River basin 

This objective has explained how the MCDM method can be applied to flood risk 

assessment in the LKRB. Further, this study has introduced, a new integrated AFH 

method for flood risk assessment in the LKRB. In order to ensure environmental 

protection and the safety of lives and property, flood-risk assessments are essential 

tools. These assessments can reveal possible impacts and vulnerabilities in order to 

develop preventive measures that will better protect living conditions in communities 

faced with flood hazard risks, as well as informing good policy choices.  
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1.3 Significance of the Study 

 

This research significantly deviates from other studies in the following ways.  

 Investigations of precipitation patterns in Sri Lanka have provided valuable 

information for understanding the behavioural complexity of the SAM and its 

atmospheric teleconnections. As the country is one of the tropical hotspots of 

climate change, it is necessary to investigate extreme climate events on the 

island. However, the existing research relating to extreme rainfall events on the 

island has had a limited scope. More comprehensive spatiotemporal studies are 

needed to address this gap.  

 

 This study is the first attempt to distinguish monotonic trends of extreme 

rainfall and subsequently map them across the entire island of Sri Lanka. It 

represents the first step in using such methodologies to analyse extreme rainfall 

patterns in Sri Lanka. A thorough understanding of extreme rainfall patterns is 

essential because of the inherent risk of hazards like flooding and landslides in 

the Sri Lankan context. Hence, the findings of this research are beneficial for 

future researchers and policymakers to understand extreme rainfall in Sri 

Lanka.   

 

 Sri Lanka is an agriculture-dominated country, so water is essential for 

sustainable development. However, streamflows are influenced by changes 

caused by climate change. Therefore, there should be more studies of river flow 

changes in the river basins of the country. The KRB is the most highly 

populated river basin in the country and any changes in river flow and rainfall 

variability greatly affect its population. Limited studies have been carried out 

to identify the relationship between rainfall and water levels in the KRB, and 

most focus on periods more than a decade ago. Therefore, this study has 

identified variations in the relationship between rainfall and water levels in the 

KRB in recent years in detail.    

 

 This study is the first to combine, a decision-making tool, a statistical model, 

and a flood inundation model (AFH method) for flood susceptibility mapping 
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in a river basin. This novel method provides potential background for 

generating detailed flood susceptibility map. 

 

 When considering the LKRB, AHP-based MCDM flood risk assessments have 

been minimal and considered only a few physical factors. Accordingly, this 

study is the first to consider both physical and social criteria, with many factors. 

Hence, this study significantly deviates from previous studies and has 

illustrated a much more detailed flood-risk map.  

 

 In order to identify areas vulnerable to flood hazards, Sri Lanka has not carried 

out any extensive mapping of the country, and relocations have been on a 

reactive and ad hoc basis. Accordingly, this study will prepare flood-risk maps 

based on ARH method and AHP method in the LKRB, which will serve as 

baseline maps for flood management in the LKRB basin. 

 

 

1. 4 Thesis outline 

 

This thesis has six chapters.  

Chapter 1: The Introduction chapter describes some background information on 

extreme rainfall due to climate change and the consequent flood hazards, and then 

outlines the aims and objectives of the study, and its significance.  

 

Chapter 2: The Literature Review summarises and analyses the theories related to the 

objectives and previous research. Further, it highlights any gaps in the research to date. 

 

Chapter 3: The Methodology chapter briefly introduces the geographical setting of the 

three study areas (Sri Lanka, the KRB, and the LKRB) and the data and methods used.  

 

Chapter 4: The Results chapter presents the results according to each objective. The 

Objective 1 results have illustrated the spatial and temporal patterns of extreme rainfall 

indices. Trends of extreme rainfall indices are also presented in this chapter. For 

Objective 2, the relationship between rainfall and water levels in the KRB is presented. 
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Objective 3 results have informed the preparation of maps defining flood hazards, 

flood vulnerability, and flood risks.  

 

Chapter 5: The Discussion chapter discusses the results comprehensively in 

preparation for the conclusions and recommendations of the study. 

 

Chapter 6: This chapter provides conclusions and recommendations for future 

works.     
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2 LITERATURE REVIEW 

 

2.1 The influence of climate change on extreme rainfall 

In the context of global warming, there will likely be changes in the water cycle which 

have a profound impact on humans and ecosystems worldwide (Padrón et al., 2020). 

Trenberth (2005) reported that atmospheric water-holding capacity increases by 6-7% 

with every 1 °C of warming. The WMO (2013) has reported increased extreme rainfall 

events in many parts of the world. The Intergovernmental Panel on Climate Change 

(IPCC, 2012) has also stated that the frequency, intensity, and duration of extreme 

rainfall have increased both spatially and temporally due to anthropogenic climate 

change. However, these changes in extreme precipitation are not geographically 

uniform and they vary from region to region due to the interaction of different drivers 

(Figure 2.1) (Tabari et al., 2019). The rate at which extreme precipitation increases 

with land surface temperature is not linear (Tabari, 2020). Furthermore, the effect of 

extreme precipitation in existing wet regions can be intensified by increased 

atmospheric moisture convergence. In dry areas, evaporation may counteract the 

increased precipitation (Held & Soden, 2006).  

 

 

Figure 2.1 Projections of regional changes of extreme rainfall for different levels 

of global warming (GWL). The maps of extreme rainfall changes show 

the percentage change in the amount of rain falling on the wettest day 

of a year (Rx1day, relative to 1995–2014), averaged across each 

region when the respective GWL is reached. (Source: IPCC, 2021). 
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Goswami and Ramesh (2008) show that extreme rainfall events have become a severe 

threat to many populated and urbanised areas in recent times. According to IPCC's 

Fifth Assessment Report (2014), during the second half of the twentieth century many 

regions of the world showed an increasing number of heavy precipitation events 

concurrently with decreasing total precipitation amounts. As a result, extreme rainfall 

events were accompanied by floods and droughts, posing significant health, social, 

economic, and environmental consequences for millions of people and ecosystems 

worldwide (Bhatti et al., 2020). This demonstrates how climate change and the 

associated increases in heavy rainfall events cause serious adverse impacts, including 

on crucial sectors like water, energy, and food worldwide. Hence, comprehensive 

knowledge of the spatiotemporal patterns of extreme rainfall events has become 

essential in understanding the relationship between human activities and 

environmental change. 

Many studies (Asadieh & Krakauer, 2015; Fu et al., 2013; Khadgarai et al., 2021), 

based on various precipitation data, have found a relationship between climate change 

and extreme rainfall patterns at global, regional, and local scales. For example, 

Asadieh and Krakauer (2015) used precipitation data from the Hadley Centre global 

land-based gridded climate extremes dataset (HadEX2) for 11,600 stations across the 

world, covering the period from 1901 to 2010. Their revealed that extreme rainfall has 

increased since 1901, with significant changes in tropical equatorial areas, and that 

annual maximum daily precipitation has increased globally by an average of 5.73 mm 

during the period.  

Significantly, Southern and Southeastern Asia (Dissanayaka & Rajapakse, 2019), 

where agriculture dominates economies, have become climate change hotspots. As a 

result, the intensity and frequency of extreme climate events have increased in South 

Asia, including Sri Lanka (Sivakumar & Stefanski, 2011). In general, a rise in the 

frequency and magnitude of rainfall causes severe flooding, landslides, and debris 

flows across most parts of Asia (IPCC, 2007). These increases in temperature and 

extreme rainfall caused by climate change will speed up in the future. They have 

already reduced water availability and reduced high-quality groundwater, and 

subsequently increased water demand (Pachauri et al., 2014). Therefore, many studies 

have been conducted to identify extreme rainfall patterns in the Asian region. For 

instance, the study by Khadgarai et al. (2021) identifies extreme rainfall across 



14 
 

 
 

monsoonal Asia. They used the Asian Precipitation Highly Resolved Observation Data 

Integration Towards Evaluation of Extreme Events (APHRODITE-2) gridded rainfall 

program to calculate extreme rainfall indices. They found positive trends in heavy 

rainfall days in central India, the monsoonal region of China, the equatorial nations, 

and some parts of Japan and the Philippines (Figure 2.2). Fu et al. (2013) studied the 

temporal variation of extreme rainfall events over China for the period 1961–2009. 

They used daily precipitation data for 599 meteorological stations distributed across 

the country. Using the Extreme Precipitation Index (EPI), they found a decreasing 

trend in extreme rainfall in northeast China, north China, and the Yellow River Basin. 

On the other hand, the Yangtze River Basin, southeast Coast, south China, Inner 

Mongolia, northwest China, and Tibetan plateau experienced an increasing trend. 

 

 

 

 

Figure 2.2 Spatial distribution of mean annual rainfall (1998–2015) over 

monsoonal Asia (Source: Khadgarai et al., 2021) 
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Extreme climate indices are widely used to analyse extreme rainfall events. The study 

by Alexander et al. (2006) of temperature and rainfall reveals a general increase in 

precipitation indices (Annual precipitation total (PRCPTOT), simple daily intensity 

index (SDII), very wet days (R95p), and consecutive wet days (CWD)) worldwide. 

However, rainfall patterns show less spatial coherence and minimal statistical 

significance compared with temperature changes. Sheikh et al. (2015) studied trends 

in extreme daily rainfall and temperature in the South Asian region using extreme 

climate indices. The study revealed that spatially coherent changes in extreme 

precipitation are visible only on a relatively small scale. However, most extreme 

precipitation indices they used for the study showed an increase in the region. The 

study by Basher et al. (2018) used extreme climate indices to analyse extreme rainfall 

in northeast Bangladesh. They revealed a decreasing trend in extreme rainfall between 

1984 and 2016 during both pre-monsoon and monsoon periods. Similarly, there are 

several studies (Brown et al., 2010; Sun et al., 2017) that have used extreme climate 

indices to analyze trends in precipitation across the world. 

The above chapters summarise a fraction of the knowledge that has been gained in 

massive climate change researches. In addition, the progressive evolution of climate 

models and projections has emerged as a key element in scientific research on climate 

dynamics, which highlights their crucial role in enhancing our understanding of 

meteorological phenomena. 

 

2.2 Advancements in climate modelling and projections 

Climate models are essential tools for understanding and projecting future climate 

scenarios, guiding policy decisions, and developing climate adaptation and mitigation 

strategies. Over the past few years, significant improvements in climate modelling 

techniques have enhanced our ability to replicate Earth's complex climate system with 

greater accuracy and precision. Given that this study focuses on the examination of 

extreme rainfall patterns, special attention has been paid to identifying advancements 

in climate modelling and projections. 
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a) High-resolution modelling 

Through high-resolution climate models with improved spatial and temporal 

resolution, scientists now have the opportunity to obtain more detailed information on 

climate systems. These models incorporate detailed representations of atmospheric 

circulation, ocean currents, land surface processes, and biogeochemical cycles, 

allowing for more accurate simulations of regional climate variability and extreme 

weather events (Giorgi et al., 2021), such as changes in precipitation patterns, 

temperature extremes, and sea level rise. 

b) Improved representation of feedback mechanisms 

Feedback mechanisms in the Earth's climate system are processes that either amplify 

or mitigate the consequences of climate change. Recent advancements in climate 

modelling have contributed to the identification of improved representations of 

feedback mechanisms within the Earth system. For instance, climate models now 

integrate sophisticated parameterizations of cloud processes, aerosol interactions, and 

carbon cycle dynamics, which have enhanced our understanding of how feedback 

influences or dampens climate change (Collins et al., 2013). The improved 

representation of feedback mechanisms facilitates the refinement of climate sensitivity 

projections, thereby enabling a more thorough analysis of the likelihood of rapid 

climate changes.  

(c) Integration of Earth system components 

The latest generation of climate models integrates various components of the Earth 

system, including the atmosphere, hydrosphere, land surface, and biosphere. By 

simulating interactions between these components, scientists can explore the complex 

dynamics of climate change, including responses within the physical climate system 

and ecosystems (Flato et al., 2013). The integration of Earth’s system components 

makes it possible to assess the impacts of climate change on ecosystems, agriculture, 

water resources, and human societies in a holistic manner.  

(d) Ensemble modelling techniques 

Ensemble modelling techniques are increasingly being used for the quantification of 

uncertainties in climate forecasts. By running multiple simulations with variations in 

model parameters or initial conditions, researchers can generate probabilistic forecasts 
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that account for the inherent uncertainty in climate modelling (Taylor et al., 2012). By 

providing estimates of future climate scenarios through probabilistic models, these 

approaches make it easier for policymakers to understand the potential risks and 

uncertainties associated with climate change.  

Accordingly, these advancements in climate modelling and projections have profound 

implications for our understanding of future climate scenarios and associated risks. 

 

2.3 Rainfall over Sri Lanka 

As an agriculture-based South Asian country, rainfall is an essential factor in human 

activities in Sri Lanka (Sirinanda, 1983). Although the country is a relatively small 

(65,610 km2) island, its weather patterns deviate significantly from place to place due 

to the orography. Therefore, comprehensive knowledge of spatiotemporal rainfall 

patterns provides valuable insights into the unique climate of the country. Hence, many 

studies have discussed Sri Lanka’s distinctive rainfall variations from different 

perspectives and provided more up-to-date information Madduma Bandara & 

Wickramagamage, 2004; Nisansala et al., 2019; Sirinanda, 1983; Thambyahpillay, 

1965. For instance, the study by Nisansala et al. (2019) revealed that the western, 

central, and northwestern parts of the country showed a decreasing trend in rainfall, 

while the north, east, and northeastern parts showed an increasing trend. 

In its unique location, atmospheric circulation over the country is governed by the 

Inter-Tropical Convergence Zone (ITCZ) and the trade winds (Peries, 2004). The 

South Asian region has two monsoonal  showers due to the annual movement of ITCZ 

from boreal summer (200 N) to boreal winter (200 S) De Silva & Hornberger, 2019 

(Figure 2.3). Accordingly, the climate of Sri Lanka can be divided into four main 

seasons, depending upon the influence of causative factors: First Inter Monsoon (IM 

1 – from March to April); South West Monsoon (SWM – from May to September); 

Second Inter Monsoon (IM2 – from October to November); and North East Monsoon 

(NEM – from December to February) (Sirinanda, 1983). When SWM and NEM are 

acting, there is a trend of increased flood and landslide incidences associated with 

heavy rainfall. Thus, Zubair et al. (2007) argued that analysing rainfall patterns over 

Sri Lanka would give valuable insight into the vast Asian monsoon system. However, 

changes in monsoonal strength are the main reason for changes in precipitation 
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intensity in Sri Lanka. Likewise, Shelton and Pushpawela (2022) revealed a weakening 

of the SWM and a strengthening of the NEM over the island, leading to changes in 

rainfall. 

  

 

Apart from ITCZ, rainfall anomalies across South Asia are intensely influenced by 

atmospheric teleconnections, which have a noticeable impact on the intensity of 

precipitation events and the initiation of drought conditions. Accordingly, the study by 

Halpert and Ropelewski (1992) noted that the El-Niño Southern Oscillation (ENSO) 

strongly affects the rainfall and temperature patterns of the surrounding Indian Ocean 

countries. Further, Ashok et al. (2001) showed that the Indian Ocean Dipole (IOD) 

plays a significant role as a modulator between Indian summer monsoon rainfall and 

ENSO. For instance, when IOD is positive, it produces extreme rainfall and flooding 

in East Africa as well as drought conditions in Indonesia (Saji et al., 1999). As 

explained by Jones et al. (2004), Madden-Julian Oscillation (MJO) significantly 

influences extreme rainfall in tropical regions. Along with that, in the Sri Lankan 

context, Suppiah (1996), Zubair et al. (2007), Burt and Weerasinghe (2014), 

Jayawardena et al. (2017), and De Silva and Hornberger (2019) explained the influence 

of the ENSO, IOD, and MJO on rainfall over the country. For example, Jayawardena 

et al. (2017) revealed that there is a significant impact of the MJO, causing heavy 

Figure 2.3 Annual movement of ITCZ (SAM). Sri Lanka is situated in the middle of 

the ITCZ movement path. (Source: Brewer et al., 2015) 

Sri Lanka Sri Lanka 
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rainfalls during SWM and IM2. The studies of Zubair et al. (2003) and Malmgren et 

al. (2003) found that in El-Niño years IM2, and in La-Niña years SWM, cause heavy 

rainfall over Sri Lanka.  

However, climate change is influencing the SAM. The SAM greatly impacts global 

atmospheric circulation and its future behavioural patterns will significantly affect the 

world (Yadav, 2022). Ayantika et al. (2021) discovered that absorption of shortwave 

radiation above the atmospheric boundary over the Asian area causes a shortfall in 

surface radiation and stabilises the lower troposphere, leading to weaker monsoonal 

winds, reduced evaporation over the Indian Ocean, as well as decreased moisture 

convergence across South and Southeast Asia, due to climate change. Ashfaq et al. 

(2009) explained suppression of the South Asian Summer Monsoon due to climate 

change, which may decrease summer rainfall in South Asian countries. However,  

Yadav (2022) noted that ENSO and IOD, combined with the SAM, bring extreme 

rainfall over the South Asian region during active and breaks spells of monsoon 

(months with high rainfall and low rainfall during the SAM), which have been 

prominent in recent years. Figure 2.4 depicts the average annual rainfall of Sri Lanka, 

whose orography affects the spatial distribution of rainfall, as explained in section 3.1.  
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When considering recent rainfall trends in Sri Lanka, Alahacoon and Edirisinghe 

(2021) and Amarasinghe (2020) reported the overall increasing trend, which might be 

related to climate-change-related extreme rainfall events. Even though there is plenty 

of work on Sri Lankan rainfall patterns, in recent years only a few studies have 

analysed extreme rainfall events over the country. Jayawardena et al. (2018) used 

extreme precipitation indices derived from daily rainfall data and showed an overall 

increase in extreme rainfall across the island. Hapuarachchi and Premalal (2021) 

studied extreme rainfall events from 1970 to 2019 in Sri Lanka, using percentile-based 

analysis (90th and 95th percentiles) to project emission scenarios until 2100 and their 

Representative Concentration Pathways (RCP). They found a significantly increasing 

trend in heavy and very heavy rainfall across the country. However, these two studies 

Figure 2.4 Average annual rainfall of Sri Lanka  

(Source: Department of Meteorology, Sri Lanka) 
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did not investigate monotonic trends and the magnitudes of extreme rainfall events. 

The study by Abeysekera et al. (2015) examined rainfall anomalies, but was limited to 

Sri Lanka’s Dry Zone. Thevakaran et al. (2019) studied trends in extreme rainfall data 

for the 1961–2010 period. They mainly calculate numbers of dry days, numbers of dry 

spells, and 95th percentile indices from daily rainfall data for 13 meteorological 

stations. The Mann Kendall (MK) test was used to determine the trends of those 

climate indices. This study revealed a decreasing number of wet days during the SWM 

period, the summer half of the year, caused by climate change. Due to the limited 

number of recent studies of extreme rainfall over Sri Lanka, it is necessary to conduct 

more comprehensive studies analysing location and time aspects in order to address 

the existing research gap. These studies will serve as a foundation for tackling the 

social, economic, and environmental obstacles linked to extreme rainfall occurrences. 

 

2.4 Rainfall and river flow variability 

 

Water plays a fundamental role in human existence, occupying a distinct position as 

one of the primary elements of life. Consequently, civilisations emerged around rivers 

in ancient times, influenced by this crucial resource. Despite the availability of diverse 

technical approaches to securing water for consumption, major urban centres and 

densely populated regions worldwide continue to be predominantly situated alongside 

rivers. The global climate is changing and the impact of this on river flow changes is 

unavoidable (Palmer et al., 2008). At present, most of the major rivers in the world do 

not show the same magnitudes of fluctuation in their water flows as they did in the 

past (Palmer et al., 2008). Climate change connects extreme rainfall events and sea 

level rise and influences the flow variability of rivers, while some river basins are also 

under water stress due to increasing population. Due to many parameters, including 

precipitation, temperature, and solar radiation, the relationship between climate and 

water is complicated and varies greatly from region to region (Oti et al., 2020). 

Changing any of these variables can increase or decrease runoff, precipitation, and 

evaporation rates, thus altering the water cycle.  

 

In general, studies have found that changing patterns of streamflows were influenced 

by changes in rainfall caused by climate change (Azari et al., 2016; Chauluka et al., 
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2021; Xu et al., 2022). The study by Azari et al. (2016) showed how climate change 

impacted streamflow and sediment yield in the Gorganroud River Basin in the north 

of Iran. They used the Soil and Water Assessment Tool (SWAT) hydrological model 

to simulate streamflow and sediment yield, and the SUFI-2 algorithm from the SWAT-

CUP program was used for parameter optimisation. This study projected increases in 

annual streamflows of 5.8%, 2.8%, and 9.5%, and in sediment yields of 47.7% and 

44.5%, in the 2040–2069 period compared with now. Chauluka et al. (2021) assessed 

the long-term variability of rainfall and streamflow in the Thuchila River, southern 

Malawi, from 1985 to 2016. They used Mann Kendall (MK), Sen's slope, and Person's 

correlation coefficient tests to analyse rainfall and streamflow data. This study 

revealed that extreme weather events influence streamflow. Another study by Xu et al. 

(2022), on the Caojiang River Basin in China, discussed climate change and human 

influences on streamflow variation.   

 

There are some studies of rainfall over river basins in Sri Lanka. Rainfall analysis for 

the Mahaweli River Basin in the Dry Zone of Sri Lanka shows an increase in annual 

rainfall (Imbulana et al., 2018). There is a decreasing trend in annual rainfall over the 

Kalu Ganga Basin in the Wet Zone (Ampitiyawatta & Guo, 2009). A study of the Uma 

Oya Basin found that there is no significant negative rainfall trend over the catchment 

(Khaniya et al., 2019). With changing rainfall variations, river flow variations keep 

changing. However, only a few studies have been conducted to identify the 

relationship between rainfall and streamflows across the island. The study by 

Panditharathne et al. (2022) confirmed a strong positive correlation between rainfall 

and the streamflows of the Nilwala River Basin. By analysing Climate Hazards Group 

Infra-Red Precipitation (CHIRPS) data, Alahacoon and Edirisinghe (2021) predicted 

that during the NEM season there would be flood risks in the southern and western 

provinces of Sri Lanka, but drought conditions on the eastern side. However, as an 

agriculture-based developing country, any change in rainfall and river flow variability 

greatly affects development. Therefore, there should be more comprehensive studies 

examining the relationship between rainfall and river flow variability on the island. 

 

The KRB is the fourth-largest river basin in Sri Lanka (Jayasekara et al., 2020). The 

Kelani River rises in the central hills, flows through highly populated and urbanised 

areas, and drains into the Indian Ocean near the commercial capital of Colombo. 
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Hence, the KRB is highly influenced by anthropogenic factors like unplanned 

construction on riverbanks, destruction of natural drainage systems, pollution of water, 

and so on (Manawadu & Wijeratne, 2021; Samarasinghe et al., 2022). The basin is 

vulnerable to annual flooding (Randil et al., 2022). The study by Manawadu and 

Wijeratne (2021) outlined the impact of anthropogenic drivers on urban flooding in 

the LKRB, finding that human activities cause major flooding every two to three years, 

affecting around 200,000 people. Their study revealed that a significant decline in 

green cover and the conversion of paddies and marshlands into home gardens had 

worsened the effects of flooding. However, only the study by Jayasekara et al. (2020) 

has thoroughly discussed the relationship between rainfall and streamflow in the KRB 

from 1983 to 2013. Their study discussed trends in streamflows of the Kelani River 

and their association with rainfall. They used the Innovative Trend Analysis (ITA) 

method, the MK test with Sen’s slope estimator, and Spearman’s rho correlation 

coefficient to assess the rainfall and river flow data. They found that variation in 

streamflow is significantly attributable to catchment rainfall. They also reported that 

annual, NEM, and IM1 data show increasing trends in rainfall at most rain gauge 

stations. After that period, no such detailed study has been carried out to identify the 

relationship between rainfall and water levels at decadal, annual, seasonal, and 

monthly scales. Further, the study of Dissanayaka and Rajapakse (2018), examined 

about extreme rainfall impacts on streamflow variability in the KRB. During the study, 

the researchers collected daily rainfall data from seven rainfall gauging stations from 

1970 to 2015. Also, daily streamflow data from the Hanwella gauging station have 

been collected between 1985 and 2010. To detect instances of extreme rainfall in the 

basin, series of extreme rainfall indices, like PRC PTOT, CWD, R95p, were employed. 

The findings of this study exposed a decreasing trend in the annual average rainfall 

throughout the KRB, with an increasing trend of extreme weather events. Furthermore, 

the flow data from the Hanwella station showed a decreasing trend during that period 

of time. However, climate and the environment are changing day by day. As mentioned 

earlier, land use changes, population growth, extreme rainfall over the basin and 

frequent flood hazards are evident in the KRB. Hence, it should be confirmed whether 

or not these findings have continued over the most recent decade.  

 

 

 



24 
 

 
 

2.5 Flood hazards 

2.5.1 Overview of flood hazards 

 

Floods are the most prevalent form of natural calamity globally and they present 

significant hazards to human life, property, the environment, and agricultural 

production. According to Jarvis (1936), a flood is a waterflow event that significantly 

inundates dry areas or where a stream overflows channel banks. Nevertheless, the 

public perception of flooding is of catastrophic events resulting in severe losses of life 

and disturbance or damage to their property (Birkholz et al., 2014). Floods can be 

classified according to their generative mechanisms (Mishra et al., 2022). There are 

three main types of flood – inland flood, coastal flood, and compound flood, as seen 

in Figure 2.5. 

 

 

 

 

Figure 2.5 Schematic diagram of the different flood types (Source: Mishra et al., 2022) 
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2.5.1.1 Inland flooding 

 

Inland flooding can be broadly classified into three categories – riverine flood, flash 

flood, and urban flood (Mishra et al., 2022).   

 

 Riverine flood: Extreme rainfall, tropical cyclone, or atmospheric rivers (large, 

narrow sections of the Earth's atmosphere that carry moisture from the Earth's 

tropics near the equator to the poles) making landfall (Aryal et al., 2018; 

Mishra et al., 2022), persistent thunderstorms over a specified area (Smith et 

al., 2001), and snowmelt (Bell et al., 2016).  

 

 Flash flood: Heavy or extreme rainfall over a short time, rapid water level rises 

in creeks, rivers, and urban areas (Ávila et al., 2016; Khajehei et al., 2020; 

Ozturk et al., 2018). 

 

 Urban flood: Rainfall over an urban area, where impervious surfaces prevent 

the infiltration of water into the soil, leading to high surface runoff (Mishra et 

al., 2022).  

 

 

 

2.5.1.2 Coastal flooding 

 

Coastal flooding is caused by tidal waves, storm surges, heavy rainfall, and strong 

onshore winds (Mishra et al., 2022). This type of flooding is prominent in South Asia 

(Douglas, 2009; Mirza, 2011), northwestern Europe (Ganguli et al., 2020), and the 

southeastern United State (Gornitz et al., 1994; Mishra et al., 2022). Storm surges 

happen when water levels increase beyond the usual tidal levels, strengthened by the 

forces of powerful winds blowing onto the shore, waves, and decreased atmospheric 

pressure (Mishra et al., 2022).  
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2.5.1.3 Compound flooding 

 

This type of flood is caused by the interaction among various physical drivers, such as 

landforms at coastal boundaries, and hydro-meteorological-related mechanisms 

(Couasnon et al., 2020). Anthropogenic climate change, sea level rises, and augmented 

impermeable surface accompanying urban development have resulted in notable 

inundation by compound floods in prominent coastal urban areas over the past century 

(Mishra et al., 2022).  

 

2.5.2 Global flood hazard 

As a consequence of climate change, the world is becoming more and more vulnerable 

to unforeseen events. Therefore, there is a shift in the magnitude, frequency, intensity, 

spatial extent, duration, and timing of various natural disasters caused by these extreme 

weather or climate events (Perera, 2021). However, global natural disasters are 

increasing. According to the Emergency Event Database (EM-DAT, 2023) report, 

there were more natural disasters in 2022 than in 2021.  

Focusing on 2022, the EM-DAT report found that 387 natural hazards and worldwide 

disasters affected 85 million people and resulted in the loss of 30,704 lives. The same 

EM-DAT report indicated that flood was the most common type of disaster across the 

globe in 2022 (176 events worldwide), and floods are some of the most devastating 

natural disasters, causing severe damage and significant socioeconomic impacts on 

different sectors (Sun et al., 2020). For instance, a United Nations Office for the 

Coordination of Humanitarian Affairs (OCHA, 2023) report indicates that in 2023, 7.7 

million people were affected by flood events in Pakistan. The EM-DAT (2023) report 

indicated that floods in Brazil in February 2022 killed 272 people and floods in Eastern 

Australia in February and March 2022 cost USD 6.6 billion. Furthermore, Nigeria lost 

603 lives in that year to flood. In 2021, 3 million people in Zhengzhou and Henan 

Provinces of China were affected by flood hazards (Flood-List, 2021). In August 2020, 

in Madya Pradesh, India, 24 died and 11,000 were evacuated due to severe flood 

hazards (Flood-List, 2020). Also in 2022, 7.2 million people were affected by flood in 

Bangladesh (EM-DAT, 2023). Mirza (2011) has outlined that South Asia is considered 

one of the most vulnerable regions in the world due to the increases there in severe 
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flood frequency, magnitude, and extent. Figure 2.6, depicts Global flood risk under 

climate change. 

 

 

 

2.5.3 Flood hazards in Sri Lanka 

 

Sri Lanka is a disaster-prone area, particularly floods and landslides, due to its 

geographic conditions and geomorphology (UNDP, 2009). Floods are said to be the 

most common natural disasters affecting the economy and society (Manawadu & 

Wijeratne, 2021). Almost 75% of annual average rainfall is recorded during the SWM 

and the NEM, and 60% of annual average rainfall accompanies a few intense storms 

(Alahacoon et al., 2018). Severe floods have occurred in some years because of 

tropical depressions and cyclones accompanying the southwest monsoon (Wijesinghe 

et al., 2023). For instance, on 25-26 May 2017, the island received 600 mm of rainfall, 

causing floods and landslides in the country's southwest region. Total deaths were 212 

Figure 2.6 Global flood risk under climate change. Sri Lanka as a small 

island belongs to the increase in flood frequency category.  

(Source: Polka, 2018) 

  

Sri Lanka 
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and 683,831 people were affected (Disaster Managment Center, 2018). The same IM2 

and NEM periods also witness serious flood hazards. The country is receiving massive 

rainfall over and above its normal monsoonal rain because of the frequent development 

of low-pressure and tropical cyclones in the Bay of Bengal (Perera, 2021). 

Furthermore, most cyclonic floods occur (Basnayake et al., 2019) between October 

and December in the island's east, north, and north-central areas. However, the history 

of Sri Lankan floods provides further evidence suggesting that there has been an 

increase in the frequency of floods since 1925, with a substantial further acceleration 

since 1989 (Manawadu & Wijeratne, 2021). According to recent data, every two to 

three years on average Sri Lanka has experienced large-scale flooding affecting around 

200,000 people (Ministry of National Policies and Economic Affairs and Ministry of 

Disaster Management, 2017). Further, the Kelani, Kalu, Nilwala, and Gin River Basins 

of Sri Lanka have the highest susceptibility to annual flooding among 103 river basins. 

For example, the Disaster Management Centre of Sri Lanka reported significant levels 

of flooding in low-lying areas of the Gin River basin in May 2023 (OCHA, 2023). In 

the Wet Zone, the Kelani and Kalu Rivers have been identified as having the highest 

frequency of flooding and accompanying damage (UNDP, 2011). 

 

2.6 Flood risk assessment  

 

According to the UN (1992), “Risk is the expected loss (of lives, persons injured, 

property damaged, and economic activity disrupted) due to a particular hazard for a 

given area and reference period.” This is the broadly acknowledged definition 

articulating the multidimensionality of risk, which also applies to flood risk 

assessment. Accordingly, flood risk assessment considers the potential negative effects 

of floods on human health, economic activity, the environment, and cultural heritage, 

in addition to the probability of flooding events.  As shown by UNDP (2004) and UN 

(1992) flood risk is a combination of flood hazard and flood vulnerability.  

 

a) Flood hazard (natural phenomena): Flood characteristics determine the degree 

to which objects in an economy, society, or environmental system are exposed to 

flooding (Solin & Skubincan, 2013). 
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b) Flood vulnerability: Analysis of economic, social, and environmental systems 

regarding their susceptibility to damage, resilience, and capacity for recovery which 

already existed before a flood event (Solin & Skubincan, 2013). 

 

Flood risk assessment can be done using two methods – a) absolute assessment and b) 

relative assessment (Solin & Skubincan, 2013). In the absolute approach to flood risk 

assessment, the anticipated loss from any level of hazard severity combined with its 

probability is considered (Coburn et al., 1994). That means the area under the damage 

probability curve represents the risk of flooding (Solin & Skubincan, 2013) (Figure 

2.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the area under the damage probability curve (Figure 2.7) represents the 

average annual damage. Nevertheless, Haimes (2009) and Merz et al., 2009 emphasise 

that it is very difficult to assess the effectiveness of flood defence measures using the 

average yearly damage as an indicator of flood risk. Haimes (2009, cited in Solin and 

Skubincan, 2013) shows that the use of average yearly damage as the sole measure in 

risk estimation is the primary cause of chaotic projections of flood risk and incorrect 

management conclusions and decisions. Further, Solin and Skubincan (2013) argued 

that, according to the probability curve, as the expected average annual flood risk value 

Figure 2.7 Damage probability curve (Source: Floodsite, 2006) 
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bears the same weight, one side can express a negative effect with a small probability 

while the other side expresses a small negative effect with a greater probability. 

Therefore, using the average annual damage by floods does not lead to judicious 

decisions in flood-risk management. The study by Merz et al. (2009) also indicated 

that the use of average annual damage may provide a misleading picture for flood-risk 

management. They showed that the low probability of high-damage floods contributes 

only a small part to average annual damage and should therefore have little impact on 

flood-risk management decisions. On the other hand, they point out that mitigation 

measures are often initiated in reaction to the high damage caused by severe floods, 

despite their low likelihood. Further, according to the average annual damage concept, 

decision-makers and individuals are risk-neutral, but this assumption is wrong due to 

the human tendency to be safety-conscious. To avoid these problems, flood-risk 

analysis via relative assessment is now prevalent.  

 

Cochrane (2004, cited in Rose 2004) explained that there are problems regarding the 

financial assessment of social and environmental effects. Therefore, risk analysis using 

relative assessment can provide meaningful background to flood-risk management. In 

the relative method, the dimensionless values are aggregated and ranked in classes 

expressing a high, moderate, or low level of risk regarding vulnerabilities and potential 

negative consequences for economic, social, and environmental systems (Solin & 

Skubincan, 2013). This process is the core of spatial multi-criteria analysis and 

decision-making (MCDA/MCDM) (Solin & Skubincan, 2013; Taherdoost & 

Madanchian, 2023). The MCDM process weights the alternatives and ranks them from 

best to worst (Taherdoost & Madanchian, 2023) and is shown in Figure 2.8. 

 

 

 

 

 

 

 

 

Figure 2.8 Steps of MCDM (Source: Taherdoost & Madanchian, 2023) 
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With the development of Geographic Information Systems (GIS), MCDM is rapidly 

advancing. The MCDM consists of two main components (Hwang & Yoon, 1981). 

They are multi-attribute decision-making (MADM) and multi-objective decision-

making (MODM) (Hwang & Yoon, 1981; Solin & Skubincan, 2013). To address a 

problem, MADM selects the best alternative from a set of available alternatives. 

Further, the MADM uses raster-based GIS operations for evaluating the alternatives. 

In MODM, the number of alternatives is not specifically defined, which makes it 

indefinite. In the GIS environment, MODM uses vector-based operations for decision-

making (Malczewski, 1999).  

 

Considering the above information, when dealing with complex decision 

constellations, the MCDM method can be considered as a Decision Support Tool 

because it links with technological, economic, ecological, and social aspects (Ogato et 

al., 2020). In the MCDM environment, weighting individual variables indicates how 

far those variables influence the overall level of flood risk. This is a very delicate step 

for MCDM, since even small changes in overall weights can transform into more 

significant changes that will influence the analysis (Solin & Skubincan, 2013). In order 

to get a better understanding of the selected variables and criteria of the study on a 

hierarchical basis, Saaty (1977) proposed the Analytical Hierarchy Process (AHP) 

methodology. Thus, the use of MCDA with AHP in research has been a widespread 

and accepted method for several decades (Wijesinghe et al., 2023). The ability of users 

to define the weight of variables and provide a solution is one of the main features of 

the AHP method (Dissanayake et al., 2020). Hence, AHP will be one of the most 

valuable methods for flood vulnerability assessment (Ouma & Tateishi, 2014). There 

are many studies of flood vulnerability and risk assessment which use the AHP-based 

MCDA method (Cai et al., 2021; Danumah et al., 2016; Gacu et al., 2022; Ghosh & 

Kar, 2018; Ogato et al., 2020). 

 

Nevertheless, the use of a geographical information systems (GIS) with the AHP-based 

MCDM method for flood modelling has become popular in recent years. Geospatial 

technology offers the most efficient way of analysing and delivering the results needed 

to make prompt and effective decisions regarding floods (Dewan & Yamaguchi, 2009; 

Ogato et al., 2020). For instance, Ghosh and Kar (2018) used a composite flood hazard 

and vulnerability index to establish policy measures to reduce the risk of flooding in 
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the Malda district in West Bengal, India. In their study, the AHP was applied with the 

help of GIS to develop flood hazard and vulnerability indicators. Previous flood risk 

and vulnerability maps had been prepared based on morphological and hydro-

geomorphological elements. In contrast, demographic, socioeconomic, or 

infrastructure factors were also used to draw up their maps. The study by Hu et al. 

(2017) employed the AHP-based MCDM approach to map flood-risk zones in 

Fangshan District, China. They used six factors for flood hazard assessment, while 

three were considered for vulnerability assessment. The study demonstrated the 

effectiveness and reliability of assessing and mapping flood risks, comparing the risk 

map they developed with a real flood event. Further, Rahmati et al. (2016) evaluated 

the AHP's effectiveness in identifying flood hazard zones compared to that of 

hydrographical models. Their comparison results indicate that it is possible to 

accurately and reliably predict the extent of flood risk with an AHP. Their results 

suggest that a combination of GIS and AHP for flood hazard assessment is appropriate 

in an area with relatively little or no data. 

 

2.6.1 AHP-based flood risk assessment in Sri Lanka 

Few studies have used the AHP-based MCDM method for flood vulnerability 

assessment in Sri Lanka. Wijesinghe et al. (2023) used the AHP method for flood 

vulnerability assessment in the Neluwa Divisional Secretariat (DS) division of Sri 

Lanka. The study used elevation, slope, stream density, water bodies, Normalised 

Difference Vegetation Index (NDVI), land use, population, road networks, and 

buildings as parameters to create a flood vulnerability map. The feedback from 50 

people in the Neluwa DS division validated the flood vulnerability map. More than 

50% of them were highly satisfied with the flood vulnerability assessment. The study 

provides valuable insights for decision-makers to mitigate flood effects in Neluwa DS. 

Weerasinghe et al. (2018) conducted a qualitative flood risk assessment for the western 

province of Sri Lanka using the AHP method. The statistical assessment of risks, 

exposures, and vulnerabilities is the essence of this method which determines the 

overall level of flood risk. The risks considered were social, economic, and physical 

(housing). The results indicated that economic vulnerability is more important than 

social vulnerability for the population. The study recommended taking necessary 
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action to reduce the population's vulnerability and allocating sufficient relief and 

rehabilitation funds. The study by Perera (2021) of flood hazard assessment in the 

LKRB also used the AHP method, but only considering the physical factors that affect 

flood hazards. These factors include slope, elevation, land use, drainage density, 

rainfall, and soil type (six criteria) in the analysis. The study revealed that land use is 

the main contributor to flood hazards in the LKRB. Although socioeconomic factors 

not being considered is one of the shortcomings of this study, the flood vulnerability 

map generated is a good outcome of AHP-based assessment. However, it seems that 

there is relatively less research on the use of the AHP methodology for evaluating the 

risk of flooding in Sri Lanka. The findings from comprehensive studies employing the 

AHP approach to assess the flood risk of river basins in Sri Lanka would be extremely 

beneficial to inform flood-risk control. 

 

2.6.2 FR analysis as a hazard assessment method 

 

The FR is a bivariate statistical technique for assessing hazard susceptibility based on 

observed connections between hazard distributions and causative factors. This method 

is highly recommended by various scholars to establish a spatial correlation regarding 

various hazard aspects between the hazard area and the causative factors (Khan et al., 

2019; Tiwari et al., 2021; de Santana et al., 2021; Ullah & Zhang, 2020; Santana et al., 

2021). Some examples of FR-based hazard assessment are discussed below. 

 

The study by Silalahi et al. (2019) shows how the FR method can serve as an advanced 

method of landslide susceptibility assessment. The FR model was implemented with 

the help of GIS to assess landslide contribution factors in Bogor, Indonesia. Soil, 

rainfall, land cover, geology, and DEM maps were prepared to examine landslide 

factors. The landslide inventory map includes 173 points. The results showed that 

lithology, soil, and land cover are the most prominent generators of landslides in the 

study area, from the middle to the southern part of the Bogor area, which is categorised 

as a moderate-to-high landslide susceptibility zone. The results were validated with 

the Area Under Curve (AUC) test, which defines the accuracy of the prediction rate 

curve as 87.30%. Megahed et al. (2023) used the FR method to develop a flood 

prediction map for New Cairo City, Egypt. They used elevation, slope, aspect, LULC, 
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lithology, stream distance, stream density, topographic wetness index (TWI), surface 

runoff, and terrain ruggedness index (TRI) as primary factors driving and defining 

flash floods in the city. 143 spatial points were included in their flood inventory map. 

They found that 19.32% of the total area of New Cairo City is highly susceptible to 

flooding. The AUC result was 90.11%, showing that the FR model was extremely 

effective for mapping flood hazards in New Cairo City. 

 

Some researchers coupled the FR model with other statistical methods and decision-

making models for hazard assessment (Biswas et al., 2023; Rehman et al., 2022; 

Wubalem et al., 2020). The study by Tiwari et al. (2021) is one example of such 

studies. This study discusses forest fires in Pauri Garhwal, India. As it was a 

comparative study, it used FR, AHP, and Fuzzy AHP (FAHP) modelling techniques 

for forest fire mapping in the study area. They used fourteen different topographic, 

biological, climatic, and human-induced criteria for forest fire assessment. The 

validated AUC revealed the maximum prediction accuracy of FAHP as 83.47%, with 

AHP at 81.75% and FR at 77.21%.  

 

As this study mainly considers island’s flood risk assessment, prior use of the FR 

model for risk assessment in the Sri Lankan context should be considered. Hence the 

study discusses some studies in which the FR model has already been used to assess 

and analyse risks in Sri Lanka. 

 

Senanayake et al. (2020) investigated soil erosion hazards in Sabaragamuwa Province, 

Sri Lanka. For the mapping and classification of soil erosion hazards, input data on 

rainfall, soil type, terrain characteristics, and land coverage were used. They mainly 

used Landslide FR for hazard zoning. Further, they used a revised universal soil loss 

equation (RUSLE) model and informatics techniques to analyse soil erosion hazards 

associated with land uses. They found that soil erosion increased from 14.56 to 15.53 

t/ha/year between 2000 and 2019, that the highest landslide frequency ratios were seen 

in less dense forest areas, and that cropping areas are very vulnerable to future 

landslides. Parts of Athtanagalu Oya, Kalani River-south, and Kalani River-north 

basins, which are in Sabaragamuwa Province, were identified as immediate priority 

soil conservation areas. Liyanage et al. (2019) undertook a comprehensive study on 

predicting landslide susceptibility in Kalutara District, Sri Lanka. 84 landslide areas 
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were considered for this study, with 12 conditioning factors (slope, aspect, geology, 

hydrology, soil type, soil thickness, land use, landform, Sediment Transport Index 

(STI), TWI, Stream Power Index (SPI), and rainfall). The landslide susceptibility 

prediction model used the Random Forest algorithm, FR, and Information Gain Ratio 

(IGR) models. The study found that soil thickness is the most crucial factor affecting 

flood hazard in the district.  

 

However, this study found very limited studies, those used the FR method for hazard 

assessment in Sri Lanka. However, no any study has carried out for flood hazard 

assessment using FR in the islands. Our study will be able to fill the gap. 

 

2.6.3 HAND Model for Flood Inundation Mapping     

Simplified conceptual models for flood inundation mapping have developed rapidly in 

recent decades. The digital elevation model (DEM) and digital terrain model (DTM) 

are the basis of these models and can be used as primary input with only a couple of 

parameters needing adjustments because they do not normally solve hydraulic 

equations or they require an initial and boundary condition for the calculation (Li et 

al., 2023). In future, these models may be able to use DEM products for hyper-

resolution algorithms (Demiray et al., 2021). 

The HAND model is one of the simplified models derived from a DEM, which is often 

used for flood inundation mapping (Godbout et al., 2019; Speckhann et al., 2018). A 

pixel by pixel comparison of a certain water depth with the HAND value is used to 

generate the inundation map, which shows the variance in elevation between a pixel 

and the pixel in the drainage network to which it drains (Nobre et al., 2011).  

At present many studies use the HAND model for flood inundation mapping coupled 

with other models (Aristizabal et al., 2023; Chaudhuri et al., 2021; Fang et al., 2023). 

For instance, the study by Speckhann et al. (2018) developed methodology for flood 

hazard mapping for the Itajaí River Basin, Santa Catarina State, Southern Brazil, 

combining flow frequency analysis with the HAND model. The map derived from this 

combined method showed a 92% match with the 2011 flood event in the basin. 

Another study by Tewari et al. (2021) proposed a hybrid flood prediction model using 

Long Short Term Memory (LSTM) and the HAND model for flood mapping of Cedar 
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Rapids City in Linn County, Iowa, USA. Their study proved that this hybrid model is 

more efficient and easy to use for real-time flood mapping than traditional forecasting 

models. Further, the study by Komolafe et al. (2020) for the first time combined the 

AHP and HAND models for flood susceptibility mapping in the Ogun River Basin, 

Nigeria. In order to identify areas where vulnerable populations and assets are located, 

the flood hazard map was overlayed over the demographic data. The study revealed 

that this integrated model provided a more accurate background for flood zoning maps.  

When assessing flood risk, many studies combine decision-making models and 

statistical models. The most prominent integration method uses AHP and FR for flood 

susceptibility mapping (Tariq et al., 2022; Waqas et al., 2021; Yilmaz, 2022). For 

instance, the study by Ali et al. (2019) applied both AHP and FR to map flood-

vulnerable and at-risk areas in the Sundarban region, India. This integrated model was 

81.42% accurate in predicting flood hazards in the region. The study revealed that this 

combined method was very useful for flood mitigation strategies. However, there is 

no research combining the decision-making model, statistical model, and flood 

inundation model. Therefore, for the first time, this research proposed an integrated 

model for flood susceptibility, using AHP, FR, and HAND models. This proposed 

methodology is discussed in section 3.2.11. 

 

2.7 Disaster risk reduction processes 

 

As flood risk assessment is a component of flood risk reduction strategy, this section 

briefly mentioned international agreements and frameworks used to reduce flood risk 

globally. When considering flood risk reduction, mitigation and adaptation are crucial 

factors to be taken into account. Flood mitigation involves actions aimed at reducing 

the severity or the impact of floods, such as implementing land-use planning 

regulations, constructing flood barriers, and improving drainage systems (Abbas et al., 

2016; Ahmad & Afzal, 2020; Qi et al., 2021). Additionally, flood adaptation strategies, 

timely and accurate warning systems, forecasts, rainwater harvesting, and impact 

mitigation measures (such as relocating vulnerable infrastructure or communities to 

safer areas, enhancing community preparedness and resilience, and so on.) can 

decrease vulnerability to flooding in any region (Tamagnone et al., 2020; Zainudini & 

Sardarzaei, 2022). 
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In order to reduce the risk of disasters, there are several international frameworks and 

agreements reflecting the collective efforts of countries to address the challenges posed 

by disasters. In view of the focus of the study on natural hazards, it is important to 

highlight the two main processes of disaster risk reduction implemented by the United 

Nations (UN), as described below. 

 

a. Sendai Framework (SF) 

The Sendai Framework is an international document adopted by UN member countries 

to achieve a substantial reduction in disaster risk and losses in terms of lives, 

livelihoods, health, and the economic, physical, social, cultural, and environmental 

assets of individuals, businesses, communities, and countries during the period from 

2015 to 2030 (United Nations Office for Disaster Risk Reduction – UNDRR, 2024). 

The framework is widely followed by countries to reduce risks arising from hazards. 

The Sedai Framework outlines seven global targets to be achieved by 2030. 

i.  Reduce global disaster mortality 

ii.  Reduce the number of affected people globally 

iii.  Reduce direct economic loss in relation to GDP 

iv.  Reduce disaster damage to critical infrastructure and disruption of basic services 

v.  Increase the number of countries with national and local disaster risk reduction 

strategies 

vi.  Substantially enhance international cooperation to developing countries 

vii.  Increse the availability of and access to multi-hazard early warning system 

(UNDRR, 2024) 

SF is the main process most of countries follow to reduces risk from hazard.  

 

b. The Paris Agreement on climate change 

The Paris Agreement is an international accord on climate change that was initiated in 

2015 and entered into force on 4 November 2016. This treaty covers climate change 

adaptation, mitigation, and finance. It is followed by 196 member countries of the 



38 
 

 
 

United Nations Framework Convention on Climate Change (UNFCCC). The 

Agreement sets long-term goals for all member countries to follow. 

 substantially reduce global greenhouse gas emissions to hold global temperature 

increase to well below 2°C above pre-industrial level and pursue efforts to limit 

it to 1.5°C above pre-industrial levels, recognizing that this would significantly 

reduce risks and the impacts of climate change 

 periodically assess collective progress towards achieving the purpose of this 

agreement and its long-term goals 

 provide financing to developing countries to mitigate climate change, strengthen 

resilience, and enhance abilities to adapt to climate impacts.  

(UNDRR, 2019) 

As a member state of the United Nations, Sri Lanka has undertaken essential measures 

to reduce risks associated with hazards. The Disaster Management Centre of Sri Lanka, 

together with the UN and others involved in disaster management institutions such as 

the Irrigation Department, Meteorology Department, Central Environment Authority, 

and so on, has set up initiatives to ensure livelihood protection for citizens (UNDRR, 

2019). These organizations show an acute concern for hazards linked to extreme 

rainfall events and continue to tackle every aspect that is threatening the welfare of 

citizens in a proactive manner. Early warning systems for a wide range of natural 

disasters have been implemented by the Disaster Management Centre and it has taken 

appropriate mitigation measures in order to reduce risks (UNDRR, 2019). In addition, 

to increase the effectiveness of risk reduction strategies and ensure their compatibility 

with international frameworks such as the Sendai Framework or the Paris Agreement, 

a concerted effort is being made to work together with researchers. 

 

 

2.8 Chapter summary 

 

This chapter began by examining the impact of climate change on extreme weather 

events, particularly in South Asia, which is emerging as a key region for global 

warming. The ramifications of an increase in extreme rainfall are far-reaching and will 

severely impact the delicate balance between human wellbeing and ecosystems, 

especially in regions where agriculture is the main economic activity. Moreover, this 
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chapter notes that extreme precipitation events are linked to a number of consequential 

hazards, particularly floods and landslides. However, analysis of extreme rainfall in 

the Sri Lankan context is limited. There should be more comprehensive studies 

conducted of Sri Lankan extreme rainfall patterns. 

 

Floods have become the most common hazard associated with extreme rainfall in the 

recent past. This chapter covers key concepts and definitions relating to flood, as well 

as analyses of current flooding situations around the world, with particular attention to 

floods in Sri Lanka. The chapter delves into the concepts related to flood-risk 

assessment, which is a critical part of flood management and mitigation. There are two 

distinct methods of flood-risk assessment: a) absolute assessment and b) relative 

assessment. Risk assessment studies recommend relative assessment as the preferred 

method because it incorporates MCDM techniques and provides a more 

comprehensive and nuanced assessment of flood risks. Furthermore, this chapter 

explained the integration of GIS and AHP-based MCDM as a promising method for 

flood-risk assessment.  

 

Flooding is a recurrent natural disaster in Sri Lanka, causing significant damage to 

human life, property, and the environment. The country's geographic location, SAM, 

and climate change all contribute to the vulnerability of different regions to flooding. 

Despite the fact that Sri Lanka has already carried out some AHP-based flood risk 

assessments, it is necessary to carry out more extensive studies to address current 

research gaps and present a clear basis for policies and measures dealing with floods.  

 

It is significant that no studies have been carried out to predict flood hazards based on 

FR technique. Existing research, as described in sections 2.4.2 and 2.4.3, emphasise 

the need of integrated models in providing comprehensive flood risk maps required 

for effective flood management strategies. In light of previous mentioned matter, the 

present study introduces a novel approach to flood risk mapping by integrating AHP, 

FR and HAND models.  

 

Governments, communities, and relevant stakeholders must work together at a high 

level to address the increasing threat of extreme precipitation events and their 

associated hazards, in particular flooding. To reduce the adverse effects of climate 
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change on vulnerable regions and to strengthen overall resilience, a comprehensive 

understanding of the spatiotemporal patterns of extreme rainfall events is needed in 

combination with effective flood risk assessment and management strategies. To this 

end, a coherent and structured framework to reduce risks arising from different hazards 

is provided for by the Sendai Framework and the Paris Agreement. 
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3. METHODOLOGY 

 

This study examines the relationship between extreme rainfall and flood hazards in Sri 

Lanka. Three main objectives were set as instrumental benchmarks to achieve the 

identified research objectives within the research framework. This chapter presents the 

methodological framework used to achieve these objectives in two main sections. The 

first section will define the study area and explain the dataset according to the main 

objectives. The methodologies used to systematically analyse explained in the next 

section. This chapter is an introductory exposition of the parameters and processes 

needed to objectively examine the relationship between extreme rainfall events and 

subsequent flooding hazards. 

 

3.1 Description of the study area and data 

 

3.1.1. Spatial and temporal variations of extreme rainfall events over Sri Lanka 

  

Sri Lanka is situated close to the southernmost point of the Indian subcontinent, 

extending from latitude 5°55′ N to 9°51′ N and from longitude 79°42′ E to 81°53′ E. 

The country has a total land area of around 65,610 km2 Malmgren et al., 2003, and 

experiencing relatively low mean annual temperature variation, between 26.5 °C and 

28.5 °C (Department of Meteorology, 2019). The island has significant spatiotemporal 

variations in mean annual rainfall, between 880 mm and 5500 mm (De Silva M & 

Hornberger, 2019). The inter-annual variation of rainfall is governed by the ITCZ and 

SAM. Cyclones and low-pressure systems are frequent during the inter-monsoon 

period (IMP). Based on the amount of annual rainfall it receives, the island can be 

divided into three climatic zones (Figure 3.1) – the Wet Zone (> 2500 mm), the 

Intermediate Zone (2500 mm - 1750 mm), and the Dry Zone (< 1750 mm) (De Silva 

M & Hornberger, 2019). The Wet Zone is located in the southwestern area, which is 

dominated by heavy rainfall during the SWM. The elevation of the country varies 

between 0 and 2524 metres (Survey Department, 2019), with the highest point in the 

central highlands of the southern central area. 
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Figure 3.1 Elevation of Sri Lanka with climate zones and 

the distribution of meteorological stations 
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When considering the spatial distribution of rainfall over the country, the importance 

of the central highland should be considered (Figure 3.1). As the island is situated in 

the path of the ITCZ oscillation, the central highland acts as a climate barrier to 

monsoon air masses, causing considerable orographic effects. As a result of monsoonal 

wind and air masses in the SWM and NEM and their directions, the central highland 

divides into windward and leeward flanks to form a föhn or foehn1 (Domroes, 1998). 

When the SWM (May – September) hits the central highland, the southwestern 

lowlands and the windward flanks of the southwestern highland area receive copious 

rainfall. After that, rain-desiccating monsoonal winds blow across the north, north-

central, and southeastern regions (Domroes, 1998). The circulation of the atmosphere 

during the SWM provides prime conditions for thunderstorms which lead to extreme 

rainfall over the Wet Zone and heavy rainfall over the western slopes of the central 

highland region (Thevakaran et al., 2019).  

For this task, daily rainfall data (1991–2020) from 19 meteorological stations (main 

stations covering the whole island) were obtained from the Department of 

Meteorology (see Figure 3.1). Table 3.1 lists the geographical locations and elevations 

of each station. The rationale for using these 19 stations is that they have minimal 

missing data for the period being considered, less than 2%. Azman et al. (2021) have 

suggested that Inverse Distance Weighted (IDW) is the best method to estimate 

missing rainfall values because it has minimum Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) values. Hence, this study used the IDW method to 

estimate the missing rainfall values.  

After filling in the missing data, the quality of the dataset was checked with the help 

of RClimDex in the R package (Yang, 2004). It is important to mention that the 

Department of Meteorology follows standard procedures, as used by WMO, to collect 

and convert its data into the metric system and carry out quality control. The data can 

thus be regarded as homogeneous (Malmgren et al., 2006).   

 

 

                                                           
 1 Foehn winds are warm, dry, and strong winds that form in the lee of mountains or major hills 

(Sharples, 2018). 
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Table 3.1 Location and elevation of the 19 meteorological stations across Sri Lanka 

used in this study. The climate zone for each station is listed as well. 

No Station  Latitude 

(0) 

Longitude 

(0) 

Elevation 

(m) 

Climate zone 

01 Anuradhapura 8.35 80.38 92 Dry 

02 Batticaloa 7.72 81.70 8 Dry 

03 Hambantota 6.12 81.13 16 Dry 

04 Maha-

Illuppallama 8.12 80.47 117 Dry 

05 Mannar 8.98 79.92 4 Dry 

06 Pottuvil 6.88 81.83 4 Dry 

07 Puttalam 8.03 79.83 2 Dry 

08 Trincomalee 8.58 81.25 24 Dry 

09 Vavuniya 8.75 80.50 98 Dry 

10 Badulla 6.98 81.05 670 Intermediate 

11 Bandarawela 6.84 80.98 1225 Intermediate 

12 Kurunegala 7.47 80.37 116 Intermediate 

13 Colombo 6.90 79.87 7 Wet 

14 Galle 6.03 80.22 12 Wet 

15 Katugastota 7.33 80.63 417 Wet 

16 Katunayake 7.17 79.88 8 Wet 

17 Nuwara Eliya 6.97 80.77 1894 Wet 

18 Ratmalana 6.82 79.88 5 Wet 

19 Rathnapura 6.68 80.40 86 Wet 

(Compiled by researcher, 2023) 
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3.1.2 Identification of rainfall and water level fluctuations and their relationships 

in the Kelani River Basin 

 

The Kelani River Basin (KRB) is a region of great ecological and socioeconomic 

significance. The basin covers a vast area of about 2230 km2 and stretches from the 

central highland to the coastal plains (Figure 3.2). The KRB lies between northern 

latitudes 60 47’ and 70 05’ and between eastern longitudes of 790 52’ to 800 13’, with a 

mean altitude of between 1.8 m and 2300 m above sea level (Samarasinghe et al., 

2022). The Kelani River originates in the peak wilderness sanctuary of the central hills. 

It provides vital freshwater to a large population through its tributaries, which make it 

the primary local source of drinking water, irrigation, and hydropower. It meanders 

through lush forests, picturesque landscapes, and urban areas, before finally 

discharging into the Indian Ocean close to the commercial city of Colombo. 

 

 

 

 

 

Figure 3.2 The KRB with meteorology and hydrological stations 

Lower KRB Upper KRB 
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The whole KRB is situated in the Wet Zone of the country. Centred on the Hanwella 

hydrology station, the KRB is divided into two main parts, the lower KRB (LKRB) 

and upper KRB (UKRB) (Samarasinghe et al., 2022). The lower KRB is highly 

urbanised, while the upper areas have dense vegetation. The rainfall distribution across 

the catchment varies, with the upper catchment receiving an average annual rainfall of 

around 5700 mm, while the lower basin receives approximately 2300 mm 

(Hettiarachchi, 2016). This rainfall corresponds to an approximately 7860 10^6 water 

volume, of which 43% is discharged into the Indian Ocean. The basin receives its 

highest rainfall during the SWM. During the monsoon season, streamflow varies 

between 600 and 1800 m3/s along the river’s length (Dissanayaka & Rajapakse, 2019). 

Under this objective, the study obtained rainfall data and river flow data for the KRB. 

 

Rainfall data 

The study used rainfall data from 1991 to 2020 from the Department of Meteorology 

of Sri Lanka for ten stations spread over the KRB (Table 3.2). These stations had less 

than 2% missing data, which was essential for this study. The missing values were 

estimated with the IDW method, as outlined in section 3.1.1. The mean-based 

adjustment technique (available in the RHtestsV4 package) was used to homogenise 

hydro-meteorological data. 
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Table 3.2 Rainfall stations and hydrology stations in the KRB 

No Station name Latitude 

(0) 

Longitude 

(0) 

Elevation 

(m) 

Meteorology stations 

1 Awissawella Estate 6.92 80.18 229 

2 Chesterford 7.07 80.18 198 

3 Hanwella Group 6.88 80.12 82 

4 Labugama Tank 6.83 80.18 172 

5 Laxapana 6.90 80.52 1105 

6 Maliboda 6.88 80.43 274 

7 Maussakelle 6.85 80.55 1195 

8 Undugoda 7.13 80.37 332 

9 Angoda Hospital 6.93 79.92 15 

10 Colombo 

 

6.90 79.87 7 

Hydrology stations 

1 Hanwella Station 6.91 80.08 17 

2 Nagalagam Street 6.98 79.88 7 

 

 

Discharge and water level data 

The study used water level data from 1991 to 2020 from Hanwella and Nagalagam 

Street (N’Street) hydrological stations (Table 3.2), provided by the Irrigation 

Department of Sri Lanka. The reason for choosing these two stations was that they are 

located in the lower river basin area, which has a high population density and is most 

vulnerable to flood hazards. Dushyantha and Ptuhina (2020) found that these two 

stations are at high risk of being inundated due to heavy rainfall. The Hanwella 

hydrology station is located approximately 25 km from the sea, whereas the N’Street 

station is situated nearly 2 km from the coast. 
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3.1.3 Assessing flood risk due to extreme rainfall in the LKRB 

 

This objective considers the LKRB (Figure 3.3) as the study area. The LKRB lies 

below Hanwella River Gauging Station, on generally flat terrain covering nearly 808 

km2. The lower catchment is a highly urbanised and highly populated area. However, 

the river gauge station located at Nagalagam Street records that the lower part of the 

basin is frequently flooded during the SWM season, for example, the floods of 1989, 

2016, and 2018. Rapid urbanisation, reduction in drainage density, and unplanned 

development activities are the leading causes of floods in the LKRB (Samarasinghe et 

al., 2022). 

 

 

Figure 3.3 The Lower Kelani River Basin (LKRB) 
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As this study used AHP-based MCDM, FR, and HAND models in a GIS environment 

for flood risk assessment, the data mentioned below were obtained from various 

different sources (Table 3.3) according to hazard and vulnerability factors. The 

relevance of the factors used in flood-risk assessment is discussed in section 3.2.3. 

Two main criteria have been selected, with thirteen factors for the mapping of flood 

risk set out along with a comprehensive literature review and expert opinion survey.  

 

Table 3.3 Hazard and vulnerability factors and their data sources 

Criteria Factors Data source 

 

 

 

 

 

Hazard 

Daily rainfall data 

(1991 – 2020) 

Department of Meteorology of Sri Lanka 

Topological 

Wetness Index 

(TWI) 

Survey Department of Sri Lanka, Digital 

Elevation Model (DEM) layer, accuracy 1 m 

Slope Survey Department of Sri Lanka, Digital 

Elevation Model (DEM) layer 

Drainage density Survey Department of Sri Lanka, Digital 

Elevation Model (DEM) layer 

Soil permeability Survey Department Digital data layers 

Proximity to the 

river 

Irrigation Department of Sri Lanka, stream of 

the LKRB layer 

Elevation Survey Department of Sri Lanka, Digital 

Elevation Model (DEM) layer 

Normalised 

difference 

vegetation index 

(NDVI) 

United States Geological Survey (USGS), 

Landsat 8 OLI/TIRS (30 m resolution) 

https://earthexplorer.usgs.gov/  

Land use / Land 

Cover (LULC) 

United States Geological Survey (USGS), 

Landsat 8 OLI/TIRS (30 m resolution) 

https://earthexplorer.usgs.gov/  

 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Vulnerability 

 

Population Density 

Oak Ridge National Laboratory, LandScan 

Data (Gridded data - Approximate 1 km 

spatial resolution - Reclassified to 30m) 

https://landscan.ornl.gov/   

Road Network Survey Department of Sri Lanka, road 

network layer 

Distance to flood 

shelter 

Survey Department of Sri Lanka, buildings 

and places layer 

Normalised 

difference built-up 

index (NDBI) 

United States Geological Survey (USGS), 

Landsat 8 OLI/TIRS (30 m resolution) 

https://earthexplorer.usgs.gov/  

(Compiled by researcher, 2023) 

 

The criteria and alternatives for the current study were chosen based on the literature, 

the available data, and their applicability and impact on flood risk. Using spatial 

thematic layers were created for each factor as raster layers. The spatial resolution was 

set as a cell size of 30 m x 30 m using the ‘Reclassify’ tool.  

Further, this study created NDVI, NDBI, and land use / land cover thematic layers 

based on the Landsat OLI/TIRS 8 image.  

 

Normalised Difference Vegetation Index (NDVI) 

NDVI was calculated using Landsat 8 OLI/TIRS images. The NDVI values range from 

-1 to +1. Values close to +1 indicate high vegetation in an area. Values varied between 

-0.13 and 0.58 in the LKRB. The NDVI was calculated using equation 2 (Tucker, 

1979). 

𝑵𝑫𝑽𝑰 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

 

Where, NIR refers to near-infrared and RED refers to red reflectance bands in the 

Landsat image. 

 

Equation 4.1 

https://landscan.ornl.gov/
https://earthexplorer.usgs.gov/
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Normalised Difference Built-up Index 

NDBI was calculated with the help of Landsat 8 OLI/TIRS data using Equation 2 (Zha 

et al., 2003). The values lie between -1 and +1. If values are positive and close to +1, 

this denotes built-up areas. NDBI values for vegetation are low. NDBI values vary 

between -0.4 and 0.3 in the LKRB. 

 

𝑵𝑫𝑩𝑰 =
(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)
 

 

Where, SWIR refers to shortwave infrared and NIR refers to near-infrared reflectance 

in the Landsat image. 

 

Figure 3.4 NDVI in the LKRB 

NDVI

Low : -0.13

High : 0.58

Equation 4.2 
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Land Use / Land Cover Classification 

A pixel-based supervised classification was performed on the Landsat 8 OLI/TIRS. 

Five classes (vegetation, built-up, agricultural land, water bodies, and other) were 

extracted. By using majority filters and hybrid classification methods, issues of 

misclassification error or ‘salt and pepper effect’ caused by spectral confusion were 

solved (Zhou & Zhang, 1999). 

 

 

 

 

NDBI

Water

Built- up area

Other

Vegetation

Figure 3.5 NDBI in the LKRB 
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Further, this study prepared a TWI map layer based on the DEM layer obtained from 

the Survey Department of Sri Lanka. 

 

Topological Wetness Index (TWI) 

Beven and Kirkby (1979) first proposed TWI as a Water Transport Initiative by 

integrating the stream accumulation areas upstream and the catchment slopes. This 

index is widely used to evaluate the impact of terrain on flood occurrence, soil 

saturation, and environmental and hydrological processes (Fatah et al., 2022; Koriche 

& Rientjes, 2016). Figure 3.7 depicts, TWI of the LKRB. 

 

 

 

Land Use

Water 

Vegetation

Cultivated

Built-up

Other

Figure 3.6 Land uses of the LKRB 
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The TWI is calculated using below equation. 

𝑇𝑊𝐼 = 𝐼𝑛 (
𝐴𝑐𝑐

𝑡𝑎𝑛𝛽
) 

Where 𝐴𝑐𝑐 and 𝛽 are the contributing areas of upslope and slope gradient, respectively. 

In this study, the TWI ranged from 5.13 to 22. Highest TWI values represent higher 

susceptibility for flooding. The values were classified using natural breaks 

classification method into five classes of flood influence.  

 

 

 

Figure 3.7 TWI in the LKRB 

TWI

Very Low Risk

Low Risk

Moderate Risk

High Risk

Very High Risk

Equation 4.3 
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3.2 Methods 

3.2.1 Processing rainfall and water level data 

Gradual or abrupt changes in the various components of the hydro-climate data 

collection, its transformation methods, and the locations of the measuring stations may 

result in non-natural changes to climatic time-series data (Costa & Soares, 2009). 

Hence, the RHtestsV4 package in R software (R-Core-Team, 2013) was used to test 

the homogeneity of the daily water level time-series data, while the RHtests_dlyPrcp 

package was used to process the daily rainfall time-series. The software also provides 

for the inclusion of a data-adaptive Box-Cox transformation procedure with a 

penalised maximal F test and, secondly, it considers non-normal distributions of daily 

rainfall data series (Wang et al., 2010). Subsequently, non-homogeneous daily time-

series data were homogenised by applying mean-based adjustments, as available in the 

RHtests_dlyPrcp package. 

 

3.2.2 Extreme precipitation indices 

This study examined extreme rainfall over Sri Lanka. For this purpose, this research 

used nine extreme precipitation indices (Table 3.4) to identify extreme precipitation 

over the island, defined by the Expert Team on Climate Change Detection Indices 

(ETCCDI) of the WMO (2020).  
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Table 3.4 List of indices used in this study (after ETCCDI, 2012) 

Index Name Description Unit 

RX5day  Wettest 5-day 

period 

Monthly maximum consecutive 5-day precipitation. mm/year 

RX1day  Wettest Day Monthly maximum 1-day precipitation. mm/year 

R99p  Rainfall on 

Extremely Wet 

Days 

Annual total precipitation when daily rainfall amount 

on a wet day > 99 percentile. 

mm/year 

R95p  Rainfall on 

Very Wet Days 

Annual total precipitation when daily rainfall amount 

on a wet day > 95 percentile. 

mm/year 

SDII  Average Daily 

Rainfall 

Intensity 

Annual total precipitation divided by the number of 

wet days (mm/day) in the year. Wet days are defined 

as precipitation ≥ 1.0 mm. 

mm/days/year 

PRCPTOT  Total 

Precipitation 

Annual total precipitation in wet days (precipitation ≥ 

1 mm). 

mm/year 

R20-mm  Days with ≥ 

20mm Rain 

The R20mm index is the annual count of the number 

of days when daily precipitation exceeds 20 mm (R ≥ 

20mm) during the study period. 

days/year 

R10-mm  (Days with ≥ 

10mm Rain) 

The R10mm index is the annual count of the number 

of days when daily precipitation exceeds 10 mm (R ≥ 

10mm) during the study period. 

days/year 

CWD Consecutive 

Wet Days 

The CWD index is annual count of maximum 

number of consecutive days when daily precipitation 

exceeds at least 1 mm (R ≥ 1 mm).  

days/year 

 

SDII and PRCPTOT indices provide average and total values, respectively, while the 

other seven indices identify extreme events.  

 

3.2.3 Interpolation techniques 

This study tries to identify the spatial pattern of extreme rainfall as part of first 

objective. Accordingly, the RMSE and MAE were calculated for the IDW, Kriging, 

and Spline interpolation techniques, regarding extreme rainfall indices. In particular, 

the IDW interpolation method has shown to be the lowest RMSE and MAE values for 

extreme rainfall indices compared with other techniques evaluated. For instance, for 

the RX5day index, the IDW technique showed an RMSE value of 0.12, whereas the 

Kriging technique showed an RMSE value of 19.66. Subsequently, the IDW 

interpolation technique was used to map the spatial pattern of extremely rainfall over 

the island. IDW assumes that the local influence and weight of each measured point 
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decreases parallel to the distance from the observed and sample points (Li & Revesz, 

2004).  

 

3.2.4 Statistical techniques 

For the first two objectives, this study attempted to analyse trends in rainfall and water 

level data. For the trend analysis, the Mann Kendall test, Modified Mann Kendall test, 

and Sen’s slope were used. 

 

3.2.4.1 Mann-Kendall (MK) test and Modified Mann-Kendall (MMK) test 

This study used MK and MMK test to identify the trends in rainfall and water level 

data. 

The non-parametric MK test is widely applied to the analysis of trends in precipitation 

indices (Alahacoon & Edirisinghe, 2021; Jiang et al., 2019). The MK test (Kendall, 

1962; Mann, 1945)  is based on a nonparametric approach that searches for monotonic 

changes over time without necessarily assuming their statistical distribution. 

Assuming that the rainfall time series was independent, then Mann-Kendall statistic 𝑆 

was computed as, 

 

𝑆 = ∑ ∑ 𝑠𝑔𝑛 (

𝑛

𝑗=𝑖+1

𝑥𝑗 − 𝑥𝑖

𝑛−1

𝑖=1

), 

where 𝑛 is the sample size and 𝑥𝑗 − 𝑥𝑖 are sequential data for the 𝑖th and 𝑗th terms. 

Assuming (𝑥𝑗 − 𝑥𝑖) = 𝜃, the value of 𝑠𝑔𝑛 (𝜃) is calculated as: 

 

sgn(𝜃) = {
1
0
−1

 𝑖𝑓 𝜃 > 0
 𝑖𝑓 𝜃 = 0
 𝑖𝑓 𝜃 < 0

 

 

 

Equation 4.4 

Equation 4.5 
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The statistic S is approximately Gaussian when n = 18 with the mean 𝐸[𝑆] and 

variance 𝑉𝑎𝑟 (𝑆)of the statistic 𝑆 given by 

 

𝐸[𝑆] = 0, 𝑉𝑎𝑟 (𝑆) =  
𝑛(𝑛 − 1)(2𝑛 + 5)

18
 

 

However, if ties (zero difference between compared values) exist in the dataset, then 

the expression for 𝑉𝑎𝑟 (𝑆) has to be adjusted and becomes 

𝑉𝑎𝑟[𝑆] =
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑘

𝑛
𝑘=1 (𝑡𝑘 − 1)(2𝑡𝑘 + 5)

18
 

 

The variables n and tk in equation 4.7 area a number of tied groups and a number of 

data values in the pth group, respectively. The standardized statistic 𝑍 for the one-tailed 

test of the statistic S is given as follows. 

𝑍𝑚𝑘 =

{
 
 

 
 

𝑠 − 1

√𝑉𝑎𝑟(𝑠)
  𝑖𝑓 𝑆 > 0

0                 𝑖𝑓 𝑆 = 0 
𝑠 + 1

√𝑉𝑎𝑟(𝑠)
  𝑖𝑓 𝑆 < 0

 

If 𝑍𝑚𝑘 is positive, then the trend is increasing, and if 𝑍𝑚𝑘 is negative, then the trend is 

decreasing. 

However, serial correlation, very often found in hydro-climatic time-series, is not 

considered by the MK test (Hamed & Rao, 1998). When there is a serial correlation in 

a dataset, it increases the probability of finding significant trends even if they don't 

exist, which may lead to a misleading interpretation of results. Hamed and Rao (1998) 

propose the MMK method to avoid serial correlation in hydro-climatic datasets. In the 

presence of autocorrelation, this methodology is strong and relies on modified 

variations of the MK test (Hamed & Rao, 1998). To compensate for the effects of serial 

correlation on variance, the modified variance should be calculated using an effective 

sample size (Hamed & Rao, 1998).  

Equation 4.6 

Equation 4.7 

Equation 4.8 
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MMK is calculated as, 

𝑉𝑎𝑟 (𝑆)∗ = 𝑉(𝑆)
𝑛

𝑛∗
 

 

where 𝑉𝑎𝑟 (𝑆)∗ is the modified variance and 𝑛∗ is the effective sample size. The 𝑛/𝑛∗ 

ratio was computed with equation 4.9, as proposed by Hamed & Rao (1998). 

𝑛

𝑛∗
= 1 +

2

𝑛(𝑛 − 1)(𝑛 − 2)
∑ (𝑛 − 𝑖)(𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)𝑟𝑖

𝑛−1

𝑖=1
 

 

where 𝑛 = actual number of observations and 𝑟𝑖 = lag-i significant autocorrelation 

coefficient of rank i of time series. Once 𝑉𝑎𝑟 (𝑆)∗ was computed with equation 4.9, it 

was then substituted for 𝑉𝑎𝑟(𝑠) in equation 4.10. Finally, the Mann-Kendall Z was 

tested for significance of trend, comparing it with the threshold level of 1.96 for a 5 % 

level of significance. 

 

3.2.4.2 Sen’s slope estimator 

The MK test shows only the direction of a trend but does not quantify its magnitude. 

Therefore, the nonparametric Sen’s slope (Sen, 1968) is used to determine the 

magnitude of an underlying trend. This test is recommended by WMO (2018) for 

detecting trends in hydro-meteorological data. In this study, Sen’s slope value were 

calculated to detecting the magnitude of the rainfall and water level trend. Sen's slope 

for a monotonically increasing or decreasing time (𝑡) series 𝑓(𝑡) is computed as 

𝑓(𝑡) = 𝑄𝑡 + 𝐵, 

 

where 𝑄 is slope of the trend 𝑓(𝑡), and 𝐵 is the intercept. To determine 𝑄 in equation 

4.12, slopes between each data pair are calculated using:  

 

𝑄𝑖 = [
𝑋𝑗 − 𝑋𝑘

(𝑗 − 𝑘)
]  𝑤ℎ𝑒𝑟𝑒 𝑗 > 𝑘 

 

Equation 4.9 

Equation 4.10 

Equation 4.12 

Equation 4.13 
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If there are n values of Xj in the time series, then there will be N = n (n − 1)/2 slope 

estimates of Qi. Sen's estimator of the slope is the median of these N values of Qi. 

 

3.2.4.3 Sequential Mann Kendall (SqMK) Test 

In 1990, Sneyers,  developed a sequential version of Mann-Kendall (SqMK) test 

statistics for time-series to detect recognised events or change-points in long-term 

time-series. This method is widely applied for detecting change points in a time series 

by various scholars (Tiwari & Pandey, 2019; Zarenistanak et al., 2023). The SqMK 

test requires calculating two series, one progressive and the other regressive. A 

statistically significant turning-point occurs when the two series cross and deviate 

above the 95 % confidence limit. SqMK calculation depends on ranked values, yi of 

the original values in analysis (x1, x2, x3, … xn). The magnitudes of yi (i = 1,2,3, ……, 

n) are compared with yj (j = 1,2,3, ……., i - 1). For each comparison, the cases where 

yi > yj are counted and denoted by ni (Sneyers, 1990). Hence, ti can be defined as, 

𝑡𝑖 = ∑𝑛𝑖

𝑖

𝑗=1

 

The mean and variance of t are calculated by equations 4.15 and 4.16, respectively. 

𝐸(𝑡𝑖) =
𝑖(𝑖 − 1)

4
 

 

𝑉𝑎𝑟 (𝑡𝑖) =
𝑖(𝑖 − 1)(2𝑖 + 5)
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The sequential values of the statistic 𝑢(𝑡) are then calculated as, 

 

𝑢(𝑡) =
𝑡𝑗 − 𝐸(𝑡)

√𝑉𝑎𝑟 (𝑡𝑗)
 

The values of the 𝑢(𝑡)  regressive series are calculated as for progressive calculations, 

but starting from the end of the data series.  

 

Equation 4.14 

Equation 4.15 

Equation 4.16 

Equation 4.17 
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3.2.4.4 Pearson’s correlation coefficient 

The Pearson’s correlation coefficient is used to determine the relationship that exists 

between two variables and it is used when both variables being studied are normally 

distributed (Mukaka, 2012). Hence, this study applied Pearson’s correlation 

coefficient to identify the relationship between water level and rainfall across the KRB 

for the second objective. 

 

𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2
 

 

where 𝑟 is the correlation coefficient, 𝑥𝑖 is value of the x-variable in a sample, �̅� is the 

mean of the values of the x-variable, 𝑦𝑖 is the value of the y-variable in a sample, and 

�̅� is the mean of the values of the y-variable.  

 

3.2.4.5 Lag correlation 

 

If we use X-values from earlier periods to explain present Y-values, then a lag 

correlation should be used for the two different time-series (Good data, 2023). The 

following equation is used for calculating lag correlation between rainfall and water 

levels in the KRB. 

𝐶𝐶𝐹(𝑘) =
∑[(Rt − R̄)(Wt−k − W̄)]

[√(Σ(Rt − R̄)2 ∗ Σ(Wt−k −  W̄)²)]
 

 

Where, CCF (k) represents the cross-correlation at lag k, R denotes rainfall, and W is 

water level. Rt and Wt−k are the values of the rainfall and water level time-series at 

time t and time t-k, respectively. R̄ and W̄ are the mean values of the rainfall and water 

level time-series, correspondingly. Σ is the summation of the specified range of data-

points, which is derived from the beginning of the time series to the end. 

 

Equation 4.18 

Equation 4.19 
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3.2.5 Innovative Trend Analysis (ITA) 

 

The ITA method introduced by Şen (2012), as a new non-parametric basis 

methodology for detecting trends in a time series. Because of its advantages over other 

nonparametric methods, the ITA approach has been used in most studies to analyse 

and detect trends in climatological, meteorological, and hydrological data time-series 

around the world (Gujree et al., 2022; Wang et al., 2020). The first stage of this strategy 

will be to split the hydro-meteorological time-series data into two equal parts, with 

each one progressively placed in a different order. In the second phase, the first half of 

the sub-series (Xi; I = 1, 2… n/2) is positioned at the X-axis, while the second (1/2 

(Xj; j = n/2 + 1, n/2 + 2… n) is positioned at the Y-axis of a Cartesian coordinate 

system, as depicted in Figure 3.8. In order to describe the domain differences of 

individual subgroups (low, medium, and high), a number of clusters can be applied. If 

the data-points in the scatterplot are placed on the 1:1 (45°) line, it is revealed that they 

are trendless. The ± 10% lines are used to get a better understanding of the distance 

from the 1.1 line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Illustration of ITA (Source: Sen, 2012) 

Low 

Medium 

High 
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For the third objective, this study proposes new integrated method (ARH method) for 

flood susceptibility mapping. Accordingly, the following topics described process of 

AHP, FR, and HAND models.  

 

3.2.6 AHP-based flood risk assessment 

This study has performed detailed analysis of how AHP-based MCDM can be used to 

analyse the flood risk in the LKRB. This method was developed by Saaty (1977).  The 

AHP is an easy way of designing prototypes, and it is one of the most popular 

techniques for combining decision-making processes with geospatial analysis 

(Wijesinghe et al., 2023). This method is widely applied as an MCDM method for 

flood-risk estimation in various regions (de Brito & Evers, 2016). A common approach 

with the AHP is gathering expert information (Chandio et al., 2013; Laura & Deswal, 

2018). Accordingly, this study also used ten expert opinions (from a hydrologist, two 

geomorphologists, two climatologists, and five researchers) and a literature review to 

define the criteria and factors for flood-risk assessment in the LKRB. The relevance 

of the data for flood-risk assessment is explained below.  

Rainfall is the most important factor in creating floods (Costache et al., 2019). 

Especially when heavy rainfall occurs, the intensity of occurring floods arises. 

Hapuarachchi et al. (2011) explained the capacity of extreme rainfall to create flash 

floods within a few hours. The KRB has witnessed severe flood hazards due to extreme 

rainfall events in recent years, especially in 2016. The study used daily rainfall data 

from six meteorological stations (at Awissawella Estate, Chesterford, Hanwella 

Group, Labugama Tank, Angoda Mental Hospital, and Colombo) for the study. 

TWI is used to quantify topographic controls on hydrological processes (Sørensen et 

al., 2006) and greater TWI values are usually found in flooded areas (Shafapour et al., 

2019). The usefulness of TWI for flood susceptibility mapping using the AHP method 

has been shown in many studies (Mehravar et al., 2023; Ullah & Zhang, 2020; Vilasan 

& Kapse, 2022). This study generated the TWI map layer with the help of the DEM 

layer obtained from the Survey Department of Sri Lanka. 

Slope is an important factor that contributes to the destructive strength of floods (Gacu 

et al., 2022). Most of the LKRB is generally flat terrain with a low slope profile. Hence, 
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the LKRB is one of the river basins in Sri Lanka most exposed to floods (Randil et al., 

2022). Every 2 to 3 years the basin experiences large-scale flood events, affecting 

approximately 200,000 people (Manawadu & Wijeratne, 2021). Accordingly, the 

slope map for the LKRB was generated with the help of the DEM layer. 

Elevation is one of the most crucial factors in flood susceptibility. Also, flood and 

elevation are inversely proportional to food security risk (Sarkar & Mondal, 2019). As 

mentioned regarding slope above, most of the LKRB is low-lying areas which are 

highly vulnerable to flood hazards. Using the DEM layer, an elevation map was 

created for the LKRB. 

Drainage density is one of the crucial factors in determining flood events in a river 

basin (Yang et al., 2022). In general, a decrease in soil infiltration capacity or 

permeability increases drainage density (Radwan et al., 2018). Radwan et al. (2018), 

show how high drainage density values indicate the presence of impervious subsurface 

materials or geomorphology, or of sparse vegetation. Drainage density for the LKRB 

was mapped using the DEM layer.   

NDVI is a widely used remote sensing index used as a flood control factor (Tang et 

al., 2020). The index is frequently used as an appropriate factor in flood-zone mapping 

(Chowdhuri et al., 2020; Saha et al., 2021). The study prepared a NDVI map for the 

LKRB with the help of Landsat OLI/TIRS 8.  

Soil permeability is primarily an indicator of soil’s ability to store water. Permeability 

changes can be used as early warning signs of flood risk and soil degradation 

(Desertification Indicator System for Mediterranean Europe, 2004). Soil type and 

texture are also very important factors in determining infiltration and water-holding 

capacity, which affect an area’s susceptibility to flooding (Seejata et al., 2018). The 

Kelani River Basin includes different types of soil. The lower basin has alluvial soils 

with variable drainage and texture on its flat terrain (Goonatilake et al., 2016), but the 

area has more construction than the UKRB. 

Proximity to the river is a crucial factor in flood vulnerability. Areas close to main 

canals and stream accumulation are more prone to flooding. Human proximity to rivers 

especially determines the magnitude of flood risks (Mård et al., 2018). Due to the 

urbanisation and high human settlement density of the LKRB, people close to the 

Kelani River suffer from extreme hydrological events (Wijeratne & Li, 2022). This 
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study applied Multiple Buffer Rings analysis (ArcGIS 10.8 software) to the stream 

layer to detect distances from streams.  

LULC is one of the most crucial factors in flood susceptibility. Areas with sparse 

vegetation are more prone to flood (Rahman et al., 2021) and urbanised areas with 

impervious surfaces and barren land increase surface runoff (Mojaddadi et al., 2017). 

The study prepared a LULC map, using the Landsat OLI/TIRS data. Supervised 

classification was carried out to identify the five LULC classes – vegetation, 

agricultural land, built-up areas, water bodies, and other.  

Population is a very important factor in flood vulnerability assessment. Highly 

populated areas are often more susceptible to floods. The risk of flood increases with 

population increase (Li et al., 2019). Because the LKRB includes two highly populated 

districts, Colombo and Gampaha, high population density and industrial density are 

evident in the area (Amarasinghe, 2016). Using LandScan satellite imagery, 

population density for the LKRB was extracted. This imagery has a nearly 1 km spatial 

resolution and reclassifies into 30 m x 30 m raster cell size. LandScan satellite imagery 

provides researchers with data on population density, especially in countries that do 

not conduct a regular census.  

Building density is another factor increasing flood risk. Floodwater is assumed to be 

impeded and flow more slowly when in contact with buildings (Kelman & Spence, 

2004). This study used satellite-derived NDBI to identify built-up areas in the LKRB, 

using Landsat OLI/TIRS 8 data. This index is used by researchers for flood 

susceptibility mapping (Bui et al., 2020; Vilasan & Kapse, 2022).  

Road networks play an important part during flood relief work (Ghosh & Kar, 2018). 

On the other hand, impermeable surfaces like roads also increase the rainfall surface 

runoff (Mukherjee & Mishra, 2021). Therefore, road networks are another factor 

affecting flood risk.  

Distance to flood shelter is an important factor in flood risk management. Due to 

submergence by flood, people leave their homes for safety, hygiene, and sanitisation 

reasons (Ghosh & Kar, 2018). In Sri Lanka, government schools and religious 

buildings act as flood shelters during flooding events. Therefore, this study extracted 

government schools and Buddhist temples from a buildings and places digital layer. 
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Afterwards, distances were calculated in the ArcGIS 10.8 software environment using 

Multiple Buffer Rings analysis.  

 

3.2.6.1 Establishment of criteria and factors for the AHP 

After collecting the necessary data, this study prepared the AHP-based flood risk 

assessment. In the AHP, a hierarchical structure is established from the highest to the 

lowest levels, interrelating and connecting all the decision sections, and the study's 

objectives were set on the upper part of the hierarchical structure. Figure 3.9 illustrates 

this composite flood risk assessment model. 
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All the factors have been divided into five separate risk classes, which are assigned as 

per the functional relationships to risk level, followed by ranking values (Table 3.5). 

Very high to very low flood risk was valued from 5 to 1. Reclassification was 

performed on these risk classes to produce the final risk map.   
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Table 3.5 Ranking of flood factors  

No Factors Very high risk 

5 

High risk 

4 

Moderate risk 

3 

Low risk 

2 

Very low risk 

1 

 

Physical vulnerability 

1 TWI* 17 – 20.5 13.5 - 17 10 – 13.5 6.5 - 10 3.7 – 6.5 

2 LULC (Perera, 2021; Weerasinghe et al., 

2018) 

Water bodies and marsh Built-up area Agricultural land Barren lands Forest/ Forest Plantation/ 

Scrubland 

3 Elevation (m) (Weerasinghe et al., 2018) 0 – 2 2 - 5 5 - 10 10 - 20 > 20 

4 Slope (Perera, 2021) 0-30 3-60 6-90 9-120 > 120 

5 Rainfall (Average annual rainfall)  >  3500 mm 3200 - 3500 mm 2900-3200 mm 2600-2900 mm < 2600 mm  

6 NDVI*  -0.13 – 0.14 0.14 – 0.25 0.25 – 0.34 0.34 – 0.41 0.41 – 0.58 

7 Drainage density (sq. km) (Hagos et al., 

2022; Perera, 2021) 

 

0 – 0.5 0.5 – 1 1 – 1.7 1.7 – 2.5 2.5 – 4.4 

8 Soil permeability (Perera, 2021) Alluvial soil, bog and 

half-bog soil, sandstone 

and claystone  

Red-yellow podzolic 

soils with soft or hard 

laterite, rolling and 

undulating terrain 

Red-yellow podzolic soils 

with strongly mottled 

subsoil & low humic clay 

soils 

Red-yellow podzolic 

soils steeply dissected 

Bog and half-hog soils, high 

terrain  

9 Proximity to the river (m) (Weerasinghe et 

al., 2018) 

 

< 100 100 - 200 200 - 300 300 - 500 > 500 
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Social Vulnerability 

 

10 Population density* (km2) >5000 3000 - 5000 2000 - 3000 2000 - 1000 < 1000 

 

11 NDBI* 0 to 0.27 -0.11 to 0 -0.17 to -0.11  -0.23 to -0.17 -0.44 to -0.23 

12 Distance to flood shelter* 

 

< 500 m 500 – 1000 m 1000 – 1500 m 1500 – 2000 m > 2000 m 

13 Distance to road (Wijesinghe et al., 2023) 

 

< 100 m 100 -200 m 200 – 300 m 300 – 600 m > 600 m 

Note: * Factors classified into five classes according to the generated maps of the LKRB
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3.2.6.2 Assigning normalised weights to AHP factors 

Logical decisions are based on a complete analysis of criteria and alternatives, and 

many factors may influence one decision. The AHP method is a semi-quantitative 

decision-making value-judgment approach for decision-makers to achieve various 

objectives (Razandi et al., 2015; Saaty, 1977). This method enables planning to make 

group decisions by splitting problems into hierarchical structures and solving them 

with AHP (Dissanayake et al., 2020; Razandi et al., 2015). The AHP process was 

developed by Saaty (1977). In the present study, hazard and vulnerability factors were 

assigned weights according to the AHP. 

This study used four steps for the AHP: construct the decision hierarchy; determine 

the relative importance of attributes and sub-attributes; evaluate each alternative and 

calculate its overall weight regarding each attribute; and check the consistency of the 

subjective evaluations (Ogato et al., 2020; Ouma & Tateishi, 2014). A pairwise 

comparison was performed for hazard and vulnerability factors as the first step of the 

AHP. This pairwise comparison was done according to the experts’ preferences, on a 

scale from 1 to 9 (Ammarapala et al., 2018), and the existing literature. Table 3.6 

shows the pairwise comparison scales. 

Table 3.6 AHP pairwise comparison scales 

Scale Definition Explanation 

1 Equal importance Two elements contribute equally to the objective. 

3 Moderate importance Experience and judgment slightly favour one parameter over 

another. 

5 Strong importance Experience and judgment strongly favour one parameter over 

another. 

7 Very strong importance One parameter is favoured very strongly and is considered 

superior to another; its dominance is demonstrated in practice. 

9 Extreme importance The evidence favouring one parameter as superior to another 

is of the highest possible order of affirmation. 

2,4,6,8 Intermediate values The importance lies in-between two degrees. 

(Sources: Ogato et al., 2020; Saaty, 1977) 

 

In the second step, a pairwise comparison matrix was constructed. For example, Table 

3.7 shows this study's pairwise comparison matrix of hazard factors. The matrix was 



71 
 

 

completed by rating each factor against every other factor by assigning scores between 

1 and 9 depending on relative importance (Ogato et al., 2020; Saaty, 1977). 

Accordingly, the pairwise comparison matrix (Table 3.7) was normalised using 

equation 4.20 (Saaty, 1977).  

𝑎𝑖𝑗 =
1

∑ 𝑎𝑖𝑡𝑗
𝑛
𝑖=1

   𝐹𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1, 2, 3, … . 𝑛 

 

Then the vector of weights for the normalised pairwise comparison matrix was 

computed, with W= [w1, w, w3, ….] based on Saaty’s eigenvector procedure, using 

the following equation: 

𝑎𝑗𝑖 = 
∑ 𝑎𝑗𝑖
𝑛
𝑗=1

𝑛
  𝐹𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, 2, 3, … . . 𝑛 

 

Table 3.7 Comparison matrix for physical vulnerability factors 

Matrix TWI Land 

Cover 

Elevation Slope Rainfall NDVI Drainage 

density 

Soil Proximity 

to river 

TWI 1 1 1 1 1 3 3 3 1 

Land cover 1 1 1 2 3 1 2 3 3 

Elevation 1 1 1 0.5 0.5 2 0.5 2 1 

Slope 1 0.5 2 1 1 2 0.5 2 0.5 

Rainfall 1 0.33 2 1 1 2 2 2 2 

NDVI 0.33 1 0.5 0.5 0.5 1 1 1 0.5 

Drainage 

density 

0.33 0.5 2 2 0.5 1 11 2 1 

Soil 0.33 0.33 0.5 0.5 0.5 1 0.5 1 0.33 

Proximity to 

river 

1 0.33 1 2 0.5 2 1 3 1 

Column 

Total 

7 6 11 10.5 8.5 15 11.5 19 10.33 

 

 

Equation 4.20 

Equation 4.21 
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After calculating the pairwise matrix, a weighted, normalised pairwise matrix was 

computed. Let [A]9X9 be the normalised pairwise matrix, then [A]9X9 is given in Tables 

3.8 and 3.9. 

 

Table 3.8 Normalised pairwise matrix for physical vulnerability factors 

Matrix TWI 
L. 

cover 
Ele. Slope Rainf. NDVI Dra.D Soil 

Pro. 

River 
Weight 

Priority 

(%) 

TWI 0.14 0.17 0.09 0.10 0.12 0.20 0.26 0.16 0.10 0.15 14.85 

L. cover 0.14 0.17 0.09 0.19 0.35 0.07 0.17 0.16 0.29 0.18 18.19 

Ele. 0.14 0.17 0.09 0.05 0.06 0.13 0.04 0.11 0.10 0.10 9.89 

Slope 0.14 0.08 0.18 0.10 0.12 0.13 0.04 0.11 0.05 0.11 10.63 

Rainfall 0.14 0.06 0.18 0.10 0.12 0.13 0.17 0.11 0.19 0.13 13.35 

NDVI  0.05 0.17 0.05 0.05 0.06 0.07 0.09 0.05 0.05 0.07 7.00 

Dra.D 0.05 0.08 0.18 0.19 0.06 0.07 0.09 0.11 0.10 0.10 10.00 

Soil 0.05 0.06 0.05 0.05 0.06 0.07 0.04 0.05 0.03 0.05 5.20 

Pro.River 0.14 0.06 0.09 0.19 0.06 0.13 0.09 0.16 0.10 0.11 10.73 

 1 1 1 1 1 1 1 1 1 1 100 

 

Table 3.9 Normalised pairwise matrix for social vulnerability factors 

Matrix 
Pop. 

Den. 

Land 

Use 
NDBI 

Road 

dis. 

Pro. 

Shelter 
Weight 

Priority 

(%) 

Pop. Den. 0.35 0.46 0.40 0.20 0.31 0.34 34.44 

Land Use 0.18 0.23 0.27 0.30 0.31 0.26 25.63 

NDBI 0.12 0.12 0.13 0.20 0.15 0.14 14.40 

Road dis 0.18 0.08 0.07 0.10 0.08 0.10 9.94 

Pro. Shelter 0.18 0.12 0.13 0.20 0.15 0.16 15.58 

 1 1 1 1 1 1 100 

 

A relationship exists between the vector weights, W, and the judgment matrix [A]9X9 

as shown in equation 4.22, developed by Saaty (1977). 

𝐴𝑤 = λ𝑚𝑎𝑥𝑤 

The λmax value is an important validating parameter in AHP (Saaty, 1977). After that, 

this study calculated the estimated vector consistency ratio (CR). To calculate CR, the 

consistency index (CI) for each matrix of order n was obtained from equation 4.23.  

𝐶𝐼 =
λ𝑚𝑎𝑥 − 𝑛

(𝑛 − 1)⁄  

Equation 4.22 

Equation 4.23 
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The final step is calculating CR. This ratio calculates CI and random index (RI). It can 

be derived from equation 4.24 below. The maximum threshold value for CI is < 0.1 

and CR < 10% (Saaty, 1977). 

𝐶𝑅 = 𝐶𝐼 𝑅𝐼⁄  

Saaty (1980) has suggested RI values relating to the number of factors we consider in 

a study. The RI values are shown in Table 3.10. Accordingly, the RI value for the nine 

hazard factors is 1.45 and the RI for the five vulnerability factors is 1.12. 

 

Table 3.10 Random Index (RI) 

N 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

Further, the CI and CR values for hazard factors are 0.096 and 0.066, 

respectively. CI and CR values for vulnerability factors are 0.092 and 0.082, 

respectively. Hence the pairwise matrix ranking for both criteria, hazard and 

vulnerability, is accepted. 

The flood-risk map for the LKRB was created with the help of ArcGIS weighted 

overlay tools. Depending on the weighted overlay tool, this study created two separate 

maps for hazard and vulnerability. After that, using Equation 4.25, the final risk map 

was prepared. 

𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑  𝐱  𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

 

 

3.2.7 Frequency Ratio (FR) Analysis  

The FR model can be used as a basic geospatial assessment tool to compute the 

probabilistic connection between dependent and independent variables, such as found 

in multi-classification maps (Oh et al., 2017). Bonham-Carter (1994) introduced the 

FR approach, which represents the likelihood of a specific characteristic occurring. It 

is important to note that a sub-class with a higher value indicates higher potential for 

a particular event in the FR model. In this model, the physical vulnerability factors 

Equation 4.24 

Equation 4.25 
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utilised in the AHP process, were used to generate the FR values. For this study of 

flood susceptibility mapping, the FR model has been calculated based on equations 

presented by Bonham-Carter (1994): 

 

𝐹𝑅 = (𝑁𝑖𝑗/𝑃𝑖𝑗) ⁄ (𝑁/𝑃) 

 

Where, FR indicates the frequency ratio of the sub-classes, Nij is the number of flood 

locations, Pij is the total number of flood locations in the study area, N is the total 

number of pixels for each class of factors, and P is the total number of pixels in the 

study area. 

To examine the association between flood locations and factor classes, the flood 

relative frequency (FRF) index was used. The FRF is the normalised value of the 

previous frequency ratios for the variables and can be calculated with the following 

equation, presented by Bonham-Carter (1994). 

 

𝐹𝑅𝐹 =
𝐹𝑅𝑓𝑐
∑𝐹𝑅𝑓𝑐

 

 

Where, FRF is the flood relative frequency, FR is the frequency ratio, 𝐹𝑅𝑓𝑐 is the 

factor class of FR, and ∑𝐹𝑅𝑓𝑐   is the summation of factor classes of FR. Appendix A 

shows FRF values for each physical factor class with prediction rate.  

The predicted rate was estimated with Equation 4.28 below to identify the relational 

interdependencies between independents Bonham-Carter (1994). 

 

𝑃𝑅 =
(𝑀𝑎𝑥𝑅𝐹 −𝑀𝑖𝑛𝑅𝐹)

𝑀𝑖𝑛(𝑀𝑎𝑥𝑅𝐹 −𝑀𝑖𝑛𝑅𝐹)
 

 

Where PR is the predicted rate, 𝑀𝑎𝑥𝑅𝐹 and 𝑀𝑖𝑛𝑅𝐹 are the maximum and minimum 

values of the relative frequency, and 𝑀𝑖𝑛(𝑀𝑎𝑥𝑅𝐹  −𝑀𝑖𝑛𝑅𝐹) is the minimum value of all 

Equation 4.26 

Equation 4.27 

Equation 4.28 



75 
 

 

selected variables (𝑀𝑎𝑥𝑅𝐹 −𝑀𝑖𝑛𝑅𝐹). Appendix A presents the table of PR values for 

each factor. 

 

3.2.8 Height Above Nearest Drainage (HAND) Model  

Rennó et al. (2008) first proposed the HAND model as a quantitative terrain descriptor 

and the model characterises the hydrological behaviour of the catchment and hillslope 

(Komolafe et al., 2020) in a watershed. Through two sets of procedures, the HAND 

terrain model normalises the altitude of the basin based on the relative height of the 

drainage network and determines the gravitational and relative drainage potential of 

the area (Nobre et al., 2010). For the calculation of the HAND index, the DEM of the 

study area and the drainage contributing area should be used (Komolafe et al., 2020). 

The ultimate goal of this model is to produce flood inundation maps. Figure 3.10 

indicates the steps in creating the HAND model. 

 

 

The first step of creating the HAND model is defining flow direction based on DEM. 

To compute the drainage direction map, this study used the D8 method with flow 

direction functions available in ArcGIS 10.8 software. To compute the drainage 

direction, the D8 method calculates the steepest slope from the eight possible 

directions for a given cell. After computing the drainage direction, the flow 

accumulation should be computed to identify the drainage cell. The drainage cell is a 

part of a number of flow chains exceeding an accumulated area threshold. The nearest 

drainage cell is then the drainage cell for a first cell in the flow chain. Finally, the 

Figure 3.10 Process for preparing the HAND model (Source: Rebolho et al., 2018)  
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HAND model can be calculated by subtracting the height of the cell in the original 

DEM from the height of the nearest drainage cell in the original DEM.  

 

3.2.9 Model Validation 

 

To verify the efficiency and applicability of a model, validation is an essential element 

of natural hazard susceptibility mapping. The Area Under the Curve (AUC) approach 

was used to validate the results generated by the flood hazard map. AUC is a simple, 

widely applicable method based on science that allows us to make accurate evaluations 

of the tests (Sarkar & Mondal, 2019). In the AUC curve, the false positive rate is shown 

on the x-axis while the true positive rate is on the y-axis. AUC is used to validate a 

model's predictions, and AUC values can be categorised as follows: 0.5–0.6 (poor); 

0.6–0.7 (average); 0.7–0.8 (good); 0.8–0.9 (very good); and 0.9–1.0 (excellent) (Al-

Abadi, 2017; Sarkar & Mondal, 2019) 

 

3.2.10 Flood Inventory Mapping 

Flood inventory mapping is a systematic assessment of existing floods across a region 

using different techniques, including field survey, Google Earth imagery interpretation 

or aerial photographs, satellite information interpretation, and literature searches for 

historical flood records, government reports, technical and scientific reports, and 

interviews with experts (Wubalem et al., 2020). In this study, 140 points were 

identified based on the flood event of May 2018. For this purpose, Google Earth 

images for the time-period considered, filed observations, satellite images, and 2018 

flood maps from the Survey Department, Sri Lanka were considered. Usually, 70% of 

flood occurrences are used in training datasets for developing flood susceptibility 

models, with the remaining 30% used for validation of the output model (Sarkar & 

Mondal, 2019; Wubalem et al., 2020).  In this study, 98 (70%) of the flood locations 

were used to train flood susceptibility models, while the remaining 42 (30%) were 

used to validate the models. Figure 3.11 illustrates flood inventory map for the LKRB. 
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Figure 3.11 Flood inventory map of the LKRB 
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3.2.11 Proposed integrated flood risk assessment method (AFH-Method) 

 

This task, introduces an innovative approach, integrating AHP, FR, and HAND 

method (geo-spatial model) for flood risk assessment in the LKRB.  For the new 

technique, only physical vulnerability factors were considered.  Figure 3.12 shows a 

methodological flowchart for the suggested flood hazard mapping process. This new 

combination provides extensive insights into the physical factors that influence hazard 

zonation, improving the accuracy and efficacy of flood risk assessments. This method 

was developed in ArcGIS 10.8.2 package. 

 

 

 

Figure 3.12 Proposed integrated AFH method for flood risk assessment 
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4. RESULTS 

 

Climate change has a wider impact on rainfall pattern of Sri Lanka, with various 

consequences such as an increase in the incidence of extremely high rainfall events 

and associated hazards. Over the past three decades (1991-2020), the island has 

witnessed a noticeable increase in extreme rainfall events and flood occurrences. This 

chapter describes the findings derived from analysis of data in accordance with three 

specified objectives. In particular, this chapter includes identifying extreme rainfall 

events throughout the island and within the KRB following an analysis of flood 

susceptibility using AHP, FR, and AFH methods. 

 

4.1 Rainfall variations over Sri Lanka  

4.1.1 Spatial patterns of extreme rainfall events  

This research is a significant advance in this field of research, as it has for the first 

time identified and illustrated the spatial distribution of extreme rainfall over Sri 

Lanka. Nine distinct indices of extreme rainfall were analysed and their results 

presented in this section. In pursuit of that aim, the study has calculated mean values 

of those extreme rainfall indices for each meteorological station. Following that, the 

study employed the Inverse Distance Weighted (IDW) interpolation technique to map 

the spatial patterns of extreme rainfall (Figure 4.1) and the results indicate that all nine 

indices covered by the abovementioned methodology display complex topographical 

patterns across the island. 

It can be seen at a glance that the island's orography significantly impacts the spatial 

distribution of its extreme rainfall indices, shown in Figure 4.1. Nonetheless, it has 

generated a somewhat different pattern for the annual mean rainfall over the island. 

(See Figure 2.4 for an average annual rainfall pattern for Sri Lanka). Accordingly, all 

indices show their highest values in the southwest part of the country (Wet Zone), 

except for the SDII index. Thereafter, indices’ values gradually decrease towards the 

country's northern and eastern sides (Dry and Intermediate Zones).  
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Figure 4.1 Spatial pattern of extreme rainfall indices based on the IDW interpolation 

method. Note: All indices show similar spatial pattern having highest 

accumulation in the southwest part of the island but SDII index: (a) RX5day 

(b) RX1day (c) SDII (d) R99p (e) R95p (f) PRCPTOT (g) R20mm (h) R10mm 

(i) CWD 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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To ascertain the effect of orography, the study considered the R99p index values at 

Badulla Meteorological Station on the eastern side of the central highlands (in the 

Intermediate Zone), and Rathnapura Meteorological Station, which is closed to the 

SWM windward flanks of the central highlands (in the Wet Zone) (Figure 4.2). It is 

visible that Rathnapura station received more than twice the extreme rainfall of 

Badulla station. It is clear from the data shown in Figure 4.2 that, over approximately 

ten years, Rathnapura station consistently produced nearly 700 mm of rainfall, and 

this distinctive pattern does not appear to be found on any other indices throughout the 

study period. 

 

 

 

 

 

 

 

 

 

 

Conversely, as seen with the indices SDII, RX1day, and R99p, there are areas of 

markedly reduced extreme rainfall, particularly in the central hills. Nuwara Eliya 

meteorological station is the most elevated station in the study, situated in the middle 

of the central highlands. This station shows comparatively low values for all extreme 

rainfall indices, which could lead to show low spatial distribution of extreme rainfall 

in these indices for the central highland in Figure 4.1.    

 

 

 

Figure 4.2 R99p indices values.  Note: Dark blue line represents Ratnapura 

station and light blue line represents Badulla station. Red circles 

indicate peak points in every 10-year cycle. 
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The spatial pattern of extreme rainfall indices according to climate zones, is presented 

in Table 4.1.   

Table 4.1 Ranges of annual average extreme rainfall indices arranged according 

to the climate zones 

Indices Wet Zone Intermediate Zone Dry Zone 

RX5day 974.0 – 1731.6 mm 865.8 – 1190.4 mm 649.3 – 1190.4 mm 

RX1day 422.1 – 826.1 mm 511.9 – 646.6 mm 377.2 – 601.7 mm 

R99p 164.1 – 286.2 mm 103.0 – 184.5 mm 82.7 – 164.1 mm 

R95p 442.1 – 875.9 mm 318.1 – 628.0 mm 256.1 – 504.1 mm 

R20 mm 24 – 63 days 34 – 44 days 15 – 34 days 

R10 mm 48 – 105 days 48 – 73 days 25 – 65 days 

PRCPTOT 1792.4– 3682.9 mm 1522.4 – 2602.7 mm 982.2 – 2062.5 mm 

SDII 11.4 – 19.3 days 12.4 – 17.4 days 12.4 – 21.3 days 

CWD 10.3 – 18 days 10.3 – 14.7 days 7 – 13.6 days 

 

Table 4.1 indicates that the Wet Zone is typically characterised by a wide range of 

rainfall extremes, signifying a higher degree of variability in extreme rainfall events. 

Compared with the Intermediate and Dry Zones, these extreme rainfall indices are 

characterised by a narrower range, indicating more consistent but generally lower 

values. These findings are of decisive importance in understanding local differences 

between extreme rainfall patterns across different climate zones. Table 4.1 also 

indicates the SDII index difference, showing the highest values in the Dry Zone. 

However, when focusing on the spatial pattern of extreme rainfall, the most surprising 

finding was that the SDII index is highest along the east coast part of the Dry Zone. 

At the same time, the lowest values are recorded in the Intermediate Zone. Moreover, 

this same coastal region exhibits reduced values for the annual total precipitation index 

(PRCPTOT), and a parallel decrease is apparent in the consecutive wet days (CWD) 

values. It is visible that this area has less rain, but its intensity is high. The highest 

SDII values, for the east coast area, are a novel illustration of the extreme rainfall 

pattern in Sri Lanka, contributing to advancing knowledge in this field. 
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4.1.2 Temporal pattern of extreme rainfall events  

 

Upon identifying the spatial pattern of extreme rainfall events, the study attempted to 

identify the temporal pattern of extreme rainfall indices. The calculations in this 

analysis were based on the average Z-values for each station derived from the MK and 

Sen’s slope tests (Appendix B). A visual representation of how these trends are 

distributed in different spatial orders is provided in Figure 4.3, which specifically 

focuses on the differences between meteorological stations located in Wet, 

Intermediate, and Dry Zones. 

 

In particular, it was noted that the intensities of extreme rainfall increased substantially 

in the Dry Zone. As illustrated in Figure 4.3 (a) and (b), the trend in RX5day and 

RX1day indices are already increasing at almost all stations in the Dry Zone. The 

Anuradhapura station has shown an upward trend for both indices. Similarly, the 

Batticaloa station showed a significant increase in the RX5day index, with a Z-value 

of 2.68 mm per year and a P-value of 0.01. In contrast, the Pottuvil station shows a 

significant increase in the RX5day index, with a Z-value of 2.34 mm per year and a P-

value of 0.01. SDII showed an overall increasing trend in the intensity of rainfall >0.14 

days in all stations apart from Katunayaka, Pottuvil, and Rathnapura (Figure 4.3 (c)). 

Mannar (Z-value 2.39 mm/days/year and p-value 0.02) and Anuradhapura (Z-value 

2.52 mm/days/year and p-value 0.01) showed the highest significant increasing trend 

in the SDII index. All these stations are situated in the northern part of the country. A 

significant increasing trend in the SDII index in the northern part of the country is one 

of the exciting findings of this study. 

 

Figure 4.3 (d) represents the R99p index. Anuradhapura meteorological station, 

situated in the Dry Zone, is the only station that showed a significant increasing trend 

in rainfall on extremely wet days (p-value = 0.009). Apart from that, Maha 

Illuppallama, Puttalam, Trincomalee, Hambantota, Gall, and Ratmalana stations 

showed annual precipitation ≤ 99 percentile daily rainfall (mm). Nevertheless, they 

were not significant data. Other stations showed a slight increase in extreme rainfall 

events. Figure 4.3 (e) shows heavy rainfall distribution over the country. Overall, the 

stations showed an increasing trend. The most significant point is that the Mannar 
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station showed the highest annual precipitation ≥ 95th percentile daily rainfall (mm) 

in the Dry Zone. It has MK trend test Z-value = 3.287 mm/year (p-value 0.001; Sen’s 

slope 10.49). Significantly, the PRCPTOT (Figure 4.3 (f)) in the Dry Zone has an 

increasing trend, apart from in Puttalam. When considering stations in the Wet Zone, 

most of them showed a decreasing trend. 
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Figure 4.3 Spatial pattern of rainfall trend. Note: (a) RX5day (b) RX1day (c) SDII (d) R99p 

(e) R95p (f) PRCPTOT (g) R20mm (h) R10mm (i) CWD 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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When considering heavy precipitation days with a magnitude ≥ R10 mm (Figure 4.3 

(h)), almost every meteorological station in the Dry Zone had an increasing trend. The 

index had a decreasing trend, except for Rathnapura and Ratmalana stations in the Wet 

Zone. Interestingly, all stations in the Intermediate Zone show a growing trend in 

heavy precipitation days (average 0.197 days/year). Very heavy precipitation days 

with a magnitude of R20 mm are shown in Figure 4.3 (g). Only three stations in the 

Wet Zone show a decreasing trend, while others offer an increasing trend. 

Anuradhapura (1.737 days) and Bandarawela (1.612 days) have the highest number of 

heavy precipitation days. Nuwara Eliya meteorological station shows a remarkable 

decrease in heavy precipitation days, a characteristic that is also compatible with the 

annual total precipitation (PRCPTOT) trend.  

The CWD (Figure 4.3 (i)) index also showed the highest decreasing trend in Nuwara 

Eliya, Galle, and Ratmalana stations in the Wet Zone. Galle station was the only 

station with a significant decreasing trend (Z-value -2.14 days/year and p-value 0.03). 

Pottuvil in the Dry Zone shows the highest significant increasing trend (Z-value 3.1 

days/year and p-value 0.002). However, in the Wet Zone, Rathnapura station is the 

only station that shows a positive magnitude increasing trend in CWD (Sen’s Slope = 

0.11). 

The most notable observation from this temporal pattern analysis is that the Wet Zone 

is getting drier while the Intermediate and Dry zones are getting wetter regarding 

extreme rainfall events. This observation is a new contribution to the knowledge base 

in the field of climate studies in the region. For further investigation, the non-

monotonic ITA approach was used to identify further trends in extreme rainfall in each 

climate zone.     

 

4.1.3 Identifying non-monotonic trends in extreme rainfall indices 

The Innovative Trend Analysis (ITA) method was used to identify the non-monotonic 

trends (also hidden trends) in each extreme rainfall index based upon different climate 

zones. Extreme climatic index values observed at different meteorological stations 

have been used to calculate the average value for each climate zone. Figures 4.4 and 

4.5 show the results of ITA for each individual extreme rainfall index within a given 

climate zone. 
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Figure 4.4 ITA results for 

extreme rainfall indices in 

climate zones.  

Note: The blue diagonal 

line indicates the 1.1 line 

or no-trend line.  

Data in the upper triangle 

denote increased trend and 

lower triangular denote 

decreased trend. The other 

two dashed lines (red and 

green) indicate ± 10% 

from 1.1 line (distance of 

the points from the no-

trend line).  

Purple circles indicate 

data clusters with 

significant trends. Also, 

trend slope (magnitude) of 

ITA for each index is 

shown in the upper left 

part of each scatterplot. 
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CWD SDII PRCPTOT R10 mm 
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(e) 
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(l) 

Figure 4.5 ITA results for extreme 

rainfall indices in climate zones.  

Note: The blue diagonal line 

indicates the 1.1 line or trend-free 

line.  

Data in the upper triangle denote 

increased trend and in the lower 

triangle denote decrease trend. The 

other two dashed lines (red and 

green) indicate ± 10% from the 1.1 

line (distance of the points from the 

no-trend line).  

Purple circles indicate data clusters 

with significant trends. Also, trend 

slope (magnitude) of ITA for each 

index is shown in the upper left part 

of each scatterplot. 
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Focusing on the RX5day index, the Intermediate Zone shows a significant trend 

compared to the other two zones (Figure 4.4 (c)). It is discernible that the majority of 

scatter points appear in the medium value region (see Figure 3.8 for identifying 

medium value region) in the RX5day plot, indicating a high and increasing trend. 

Compared with the other two zones, the Wet Zone shows the minimum ITA results in 

monthly maximum consecutive 5-day precipitation. Most of the scatter points lie 

within the dashed lines or close to that, showing that the RX5day trend is to monotonic 

trends in the region. The Dry Zone also shows an increasing trend in RX5day indices, 

but it is less significant than in the Intermediate Zone. For the RX1day index, the Dry 

Zone and Intermediate Zone show an increasing trend. The magnitude of these upward 

trends was estimated to be 1.8 to 2.97 mm/year, respectively. There is a high-value 

point cluster in the Intermediate Zone scatterplot (Figure 4.4 (f)). Along with the 

RX5day index, the Dry Zone shows the lowest trend in the RX1day index. 

The indices for extremely wet days (R99p) and very wet days (R95p) show an 

interesting pattern of ITA results. In the Wet Zone, scatter points for both the indices 

located in lower values lie within ± 10% from the region, closer to the 1.1 line (no-

trend). In the Dry Zone, R99p and R95p (Figure 4.4 (g) and (j)) indices show a 

significant non-monotonic trend. Most of the points are above the 10+ line. The scatter 

points in the Intermediate Zone for both indices show an increasing trend. All the 

scatter points are above the 10+ line. Nevertheless, all these points scatter in the 

medium x and y value regions above the 1.1 line. Thus, a medium increase non-

monotonic trend in both indices can be predicted. 

The magnitude of the trend values for the R10 mm index varies between 0.09 

days/year to 0.34 days/year in all the climate zones. Most of the scatter points in the 

Wet Zone spread between the ±10% line (very close to the 1.1 line, showing a trend-

free pattern). In the Dry Zone, 10 mm shows a monotonic trend, as seen in Figure 4.5 

(b). Most of the points scatter between ±10% areas. Only the Intermediate Zone shows 

a cluster beyond the +10% line. This cluster appears in the upper part of the medium 

value region above the +10% line. Concerning R20 mm, the magnitude of trend values 

varies by 0.09-0.25 days/year for all climate zones. Among the three climate zones, 

the Intermediate Zone has a significant increasing non-monotonic trend (Figure 4.4 

(o)), with scatter points clustered in the upper area of the medium-value region. The 

other two zones have their points scattered between the ±10% lines. These results 
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generally indicate that very heavy rainfall days (R20 mm) have occurred more 

frequently in this Zone during the period considered.     

The annual total precipitation of wet days (PRCPTOT) for Dry Zone and Intermediate 

Zone scatter points (Figure 4.5 (e) and (f)) shows an increasing trend. Even though 

Wet Zone scatter points show an increasing trend, located between the +10 line and 

1.1 line (closer to 1.1 line). Focusing on the simple daily intensity index (SDII), all the 

climates exhibit an increasing trend. All the scatter points in Wet Zone and Dry Zone 

lay between the +10 and 1.1 lines. Compared with the other two climate zones, there 

is a tendency to increasing scatter points beyond the 10+ line in the Intermediate Zone. 

According to Figure 4.5 (k) and (l), an increasing non-monotonic trend appears in the 

CWD index for the Dry and Intermediate zones. 

 

4.1.4 Detecting possible turning point (year) for extreme rainfall  

The study attempted to detect possible turning points (trend change years) of extreme 

rainfall trends in the island. For this purpose, the study used the SqMK test statistic, 

which allows the detection of the approximate beginning of a developing trend in a 

time-series. As explained in section 3.2.4.3, when U(t) and U’(t) exceed a specific 

confidence limit before and after the crossing points, this turning point is considered 

significant at the corresponding level of 1.96. Consequently, the results of SqMK test 

statistics for yearly mean values of extreme rainfall indices are shown in Figure 4.6.  

Concerning the R99p index (Figure 4.6 (a)), there is a decreasing trend from 1994 to 

1997. Though the curves intersect the 1992, 1993, 1994, and 1995 years, they cannot 

be recognised as significant turning points. There is a slight increase from 1997 to 

2001 and a drastic drop in visible ageing in both U(t) and U’(t) lines after the 2001 to 

2005 period. From 2007 onward, there was a gradual increase in extreme precipitation. 

There are five intersections of U(t) and U’(t) in the R99p index. Among them, the 

2009 intersection point lies in an increasing trend. After 2015, there was a decrease up 

to 2017 and again a slight increase until now. Also, the R95p indices (Figure 4.6 (b)) 

illustrate a similar pattern to the R99p indices. When considering R95p indices, the 

prograde and retrograde cross in 1992, 1995, and 2010. A drastic drop can be seen 

after the 1995 intersection until 2005. After 2010, there is a significant increasing trend 

in the R95p. RX5day and RX1day indices (Figure 4.6 (c) and (d)) have some similar 
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patterns. Both the indices show a decreasing trend from the 2001 to 2005 period. 

PRCPTOT (Figure 4.6 (e)) shows a slight decreasing trend until 2005 and a significant 

increasing trend beginning in 2009.  

 

For the SDII index (Figure 4.6 (f)), U(t) shows an increasing trend from 1992 to 

1994/1995, while a decreasing trend can be seen in the U’(t) trend line. The curves 

intersect each other in 1994, 1995, and 1996 respectively. Again, there is an increase 

after 2005 in the U(t) trend line while there is fluctuation in the U’(t) line. 2001 and 

2007 show intersections again. However, none of these five intersections have 

significant probability values much higher than the accepted significance level 

(p≤0.05). 20 mm index (Figure 4.6 (g)) shows a decreasing trend for the 2000 to 2006 

period. After 2006, the U(t) line shows an increasing trend while the U’(t) line shows 

a fluctuating trend. The 10 mm index (Figure 4.6 (h)) shows a similar pattern to the 

20 mm index. After 2001, the U(t) curve shows an increasing trend while the U’(t) 

curve shows fluctuation. CWD index (Figure 4.6 (i)) illustrates an interesting pattern 

Figure 4.6 SqMK statistics for extreme precipitation indices: Note: None of the indices 

have possible turning year of extreme rainfall. (a) R99p; (b) R95p; (c) RX5day; 

(d) RX1day; (e) PRCPTOT; (f) SDII; (g) R20mm; (h) R10 mm; and (i) CWD. 
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showing no intersection of U(t) and  U’(t) lines. Nevertheless, when focusing on all 

these indices, there are no significant turning points in the period considered. 

 

4.2 Identification of rainfall and water level fluctuations and their relationships 

in the Kelani River Basin 

 

After identifying the spatial and temporal patterns of extreme rainfall, the study 

focused on examining the relationship between rainfall and water levels in the KRB.  

 

4.2.1 Detecting long-term trends in rainfall and water level in the KRB during 

the period 1991 to 2020  

The current study carried out an important analysis of overall trends for rainfall 

distribution and water level fluctuations in the KRB as a preliminary phase. In this 

first effort, a calculation of the total annual and seasonal rainfall was carried out for 

the ten meteorological stations. Subsequently, as illustrated in Figure 4.7 and Figure 

4.8, the resulting total values have been used to calculate the annual average and 

seasonal average rainfall in the KRB. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 clearly displays that annual total rainfall had a gradual increase from 1991 

to 2020. Upon initial examination, it was apparent that annual precipitation patterns 

vary from year to year. The lowest annual total rainfall occurred in the year 2001 with 

Figure 4.7 Annual total rainfall of the KRB (at 95% confidence level) 
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a value of 2494.2 mm, while the highest value was reported in 2019, reaching 4108.9 

mm. The inherent dynamism of the rainfall levels is underlined by this very wide range 

in annual variability. The variability indicates that the region has experienced both dry 

and wet years, which is typical of many climate systems. As for the overall temporal 

trend, it appears that, from the early 1990s to the early 2000s, there was a period of 

decreasing precipitation, followed by increases in the period from the late 2000s to the 

early 2020s. There was a very high annual total precipitation of 4108.9 mm in 2019, 

which is considered to be an extreme year. It's possible this was due to a particularly 

wet year. On the other hand, 2001 is a year with significantly lower precipitation, 

2494.2 mm, suggesting a dry year. The last few years, such as 2017 to 2020, appear 

to have had more precipitation than is typical. 

 

 

The seasonal behaviour of rainfall also showed interesting patterns between 1991 and 

2020 (Figure 4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Figure 4.8 Seasonal rainfall in the KRB. Note:(a) IM1; (b) SWM; (c) IM2; (d) NEM (at 

95% confidence level). 
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Upon initial examination, a clear upward trend can be observed in the amount of 

precipitation across all seasons. Focusing on Figure 4.8 (a) as characteristic of the IM1 

season, year-to-year variability is noted in common rainfall amounts. Examining 

temporal trends, the study observed several fluctuations over time. For instance, in the 

years 1991 to 2002, there was a significant increase in IM1 rainfall, with notable 

fluctuations between 1995, 1999, and 2002. Overall, rainfall during IM1 has been 

decreasing steadily since 2002, with occasional peaks and troughs. This shows that 

rainfall patterns in the IM1 have changed during this period. The year 2008 is an 

outlier, with exceptionally high IM1 precipitation of 903.66 mm, whilst the lowest 

rainfall was 254.23 mm, in 1998. Figure 4.8 (b) illustrates the SWM rainfall pattern 

during the study period. Looking at temporal trends, SWM rainfall has been 

fluctuating over time. A strong linear trend is not apparent, but there are periods in 

which more or less rainfall can be observed. For instance, the incidence of high 

rainfalls in 1992, 1998, and 2010 is noted, while 2001 and 2012 were characterised by 

low precipitation. Exceptionally high SWM rainfalls of 2298.41 mm in 2013 and 

2082.49 mm in 2020 are noted as extremes. Conversely, 2002 recorded the lowest 

SWM rainfall (967.01 mm). Figure 4.8 (c) depicts the total rainfall amount in the IM2. 

The fluctuations in IM2 rainfall can be observed by examining time patterns. The 

exceptional rainfall of 1225.30 mm in 2005 and 1260.25 mm in 2006 represent some 

remarkable extremes. On the other hand, the lowest IM2 rainfalls of 455.59 mm were 

observed in 2011. Figure 4.8 (d) shows the total rainfall pattern for the NEM season 

for the 1991 to 2020 period considered. Due to the transitional and variable nature of 

NEM seasons, there is a significant difference in annual rainfall totals between years. 

In the catchment area of the KRB, this season is linked to the lowest rainfall amounts. 

However, high total rainfalls in 2014 (593.14 mm) and 2015 (523.04 mm) were among 

the most significant extremes. By contrast, NEM rainfall was at an all-time low of 

214.55 mm in 2016.  As this study is about the relationship between rainfall and water 

level in the KRB, the general pattern of water levels at the Hanwella and N’Street 

hydrology stations was also studied. 
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An interesting observation can be made about the levels of water recorded at Hanwella 

and N'Street hydrology stations. During the period between 1991 and 2020, there has 

been a decline in water levels at the Hanwella hydrographic station (Figure 4.9 (a)), 

whereas N'Street hydrographic station shows an increasing trend Figure 4.9 (b). The 

seasonal pattern also provides a clear picture of water level changes in the KRB 

(Figure 4.10). 

 

 

 

In all seasons, Hanwella station shows a decreasing trend while N’Street has an 

increasing trend. For Hanwella station, the highest water levels are observed in the 

IM2 season, from October to November, which is associated with heavy rainfall 

convection currents. The second highest water levels are observed in the SWM season, 

Figure 4.9 Water level at hydrology station. Note:(a) Hanwella and (b) N’Street stations 

respectively.  

(b) (a) 

Figure 4.10 Seasonal water level. Note: (a) Hanwell (b) N’Street stations  

(a) (b) 
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from May to September. This corresponds to a period of heavy rainfall in Sri Lanka 

associated with the SWM. Even though during the SWM season the general pattern of 

water levels shows a decreasing trend, after 2015 there is an increasing trend towards 

2020. Conversely, the lowest water levels have been recorded during the NEM season, 

which is consistent with the drier weather conditions which are characteristic of NEM 

due to the orography of the island. The IM1 season displays intermediate water levels, 

which are characterised by the development of transitional weather patterns between 

major monsoon seasons.  The water level variation is comparatively high among the 

seasons. The N’Street station also has its highest water levels in the IM2 and second-

highest during the SWM season. The lowest levels were recorded in the NEM and 

IM1 periods. However, variations between the water levels in climate seasons were 

minimal during the study period.  

After identifying the general pattern of rainfall and water level in the KRB, the MMK 

test and Sen’s slope (Appendix C) were used to identify trends trend in these two 

variables. The MMK results indicate that the basin had a significant increasing (Z-

value 5.36) trend over the study period. Figure 4.11 depicts the MMK Z-values for 

rainfall at meteorological stations.  
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¯
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(d) IM2 (e) NEM 

Figure 4.11 Rainfall trends in the KRB. Note: The values generated at 95% confidence level.   

 



98 
 

 

According to the MMK results, 60% of the meteorological stations show an increasing 

trend in the 1991 to 2020 period (Figure 4.11 (a)). Colombo, Angoda, Chesterford, 

Labugama Tank, and Maliboda stations show a significant increasing trend. Out of the 

four stations, three stations (Undugoda, Laxapana, and Maussakelle) in the more 

elevated areas show a decreasing trend.  

During the IM1 period (Figure 4.11 (b)), Colombo, Angoda, Maliboda, Chesterford, 

and Hanwella meteorological stations show an increasing but not significant trend. 

Further, stations in more elevated areas (except Maliboda) show a decreasing trend. 

During the SWM season (Figure 4.11 (c)), 70% of the meteorological stations showed 

a decreasing trend. Among the stations with decreasing trends, Awissawella, and 

Maussakelle show a significant decrease trend (P-values of 0.0269 and 0.0295 

respectively). The highest increasing trend belongs to the Maliboda meteorological 

station, with a P-value of 0.00. Chesterford Meteorological Station also has a 

significant increasing trend in rainfall (P-value of 0.0034). During the IM2 season 

(Figure 4.11 (d)), 50% of the meteorological stations showed a decreasing trend, with 

Maussakelle having a significant P-value (0.04). During this season, the Maliboda 

meteorological station showed the highest significant increasing trend (P-value of 0). 

It is notable that the Labugama Tank station had an unchanged trend during this 

season, from 1991 to 2020. During the NEM season (Figure 4.11 (e)), 70% of the 

meteorological stations had an increasing trend. Colombo and Maliboda 

meteorological stations had a prominent increasing trend, with P-values of 0.0385 and 

0, respectively. Hanwella, Awissawella, and Udugoda stations showed a decreasing 

trend.  Even though Colombo, Labugama Tank, Maussakelle, and Laxapana 

meteorological stations showed an increasing trend during NEM, the picture was 

different during the SWM season. Accordingly, trends in water levels at Hanwella and 

N’Street stations are shown in Table 4.2. 
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Table 4.2 Trends in water level in the KRB. Note: Values generated at 95% 

confidence level. *Denotes significant trends. 

 

 

The annual trend in both these hydrological stations shows a completely different 

direction during the study period. The water level at Hanwella station shows a 

significant decrease, while N’Street station shows a significant increase. During all 

four seasons, Hanwella hydrology station has a decreasing trend. Among all four 

seasons, only the IM1 shows a non-significant decreasing trend, at Hanwella. For 

N’Street hydrology station, all four seasons show an increasing trend. Remarkably, 

during the IM2 season the station had a non-significant increasing trend while other 

three seasons significant increase trend. 

 

4.2.2 Extreme rainfall in the KRB 

In order to identify the extreme rainfall over the basin, extremes precipitation indices, 

including R99p, R95p, RX5day, PRCPTOT, CWD and SDII were calculated based on 

daily rainfall data of the ten meteorological stations. To evaluate the intensity and 

variability of extreme rainfall events within an area, the calculation of these extreme 

rainfall indices has served as a comprehensive measure. The general pattern of extreme 

rainfall events in the KRB is illustrated in Figure 4.12. 

 Annual  1IM SWM 2IM NEM 

1991-2020 
period 

Z-
value 

Sen's 
Slope Z-value 

Sen's 
Slope Z-value 

Sen's 
Slope 

Z-
value 

Sen's 
Slope 

Z-
value 

Sen's 
Slope 

Hanwella 
Station 

-7.52* -0.04 -15.65 -0.04 -5.67* -0.04 -6.5* -0.05 -9.03* -0.04 

N'Street 
Station 

13.27* 0.00 9* 0.00 5.26* 0.00 1.58 0.00 8.21* 0.00 
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 The general pattern of extreme rainfall over the basin shows that, contrasting with 

other indices, there is a reduction in the intensity of extreme rainfall.   This observation 

aligns with the findings in sections 4.1.1 and 4.1.2. Also, from 1993 to 2001 a general 

decline in extreme rainfall is observed in all the indices. Except for the SDII, all indices 

have shown an increasing trend since 2001. It revealed that, although with lower 

intensity, an increased incidents of extreme rainfall events are expected in the basin. 

 

 

Figure 4.12    General pattern of extreme rainfall in the KRB (95% confidence level). 

Note: (a) R99p, (b) R95p, (c) RX5day, (d) PRCPTOT, (e) CWD, and 

(f) SDII. Blue line indicates average extreme values and yellow line 

indicates five year moving average values  

(a) (b) 

(c) (d) 

(e) (f) 
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After calculating extreme rainfall indices, the MK and Sen’s Slope tests were 

employed to identify the trends in extreme rainfall indices (Table 4.3). 

 

Table 4.3 Trends in extreme rainfall over the KRB. Note: These MK Z values 

generated at 95% confidence level and * presents significant trends. 

Met Stations RX5day R95p R99p PRCPTOT CWD SDII 

Angoda -0.57 -0.75 1.69 0.71 0.90 -3.57* 

Awissawella -3.89* -2.82* -3.14* -2.85* -0.32 -3.32* 

Chesterford 1.21 0.78 0.34 2.66* 3.13* -0.09 

Colombo 0.14 -0.07 0.62 0.14 0.47 0.14 

Hanwella -1.39 -1.50 -0.84 -0.43 0.43 0.54 

Labugama -0.71 -0.64 -0.47 -0.43 -0.23 -1.37 

Laxapana -1.71 -0.64 -0.36 -1.82 -1.50 -1.04 

Maliboda 5.82* 4.69* 3.42* 6.60* 6.00* 3.53* 

Maussakelle -2.36* -1.64 -0.81 -2.78* -1.15 -2.79* 

Undugoda -1.00 0.57 1.23 -0.54 -0.45 -1.64 

Average of indices 0.68 0.01 0.89 2.39* 1.52 -0.75 

   

In the analysis of extreme rainfall patterns in the KRB, a discernible trend of overall 

increase is evident across all averages of indices except SDII. Notably, the Maliboda 

station shows a significant increase in extreme rainfall. Contrarily, the Avissawella 

station portrays a significant decreasing trend. 

When focusing on the monthly maximum 5-day precipitation (RX5day) index, 70% 

of stations exhibit a decreasing trend. The Avissawella and Maussakelle stations have 

a significant decreasing trend with Sen’s slope values of -2.05 and -1.24, respectively. 

Chesterford, Colombo, and Maliboda stations show an increasing trend. Among these 

three stations, Maliboda exhibits a significant trend (Sen’s slope value is 8.13). The 

average values of RX5day indicate an increasing trend. 

The heavy rainfall (R95p) in the basin also shows an increasing trend (with the lowest 

increasing trend found in the average value) during the study period. However, only 

three stations (Undugoda, Maliboda, and Chesterford) have an increasing trend. The 
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Maliboda station has a significant trend with Sen’s slope value of 0.15. Further, all 

other 70% of other stations show a decreasing trend in R95p. The extreme rainfall in 

the basin (R99p) is also on the rise. Fifty percent of stations (Angoda, Chesterford, 

Colombo, Maliboda, and Undugoda) indicate an increasing trend. Regarding the 

decreasing trend, the Avissawella station stands out with a significant trend having 

Sen’s slope value of -11.4. It is ascertained that the increasing trend of R99p leads to 

more extreme rainfall-related hazards in the basin. 

The Annual total precipitation on wet days (PRCPTOT) presents a significantly 

increasing trend in the basin for the average value (Z-value of 2.39, Sen’s slope value 

of 21.02). This marks the highest increasing value among any average index value in 

the basin. However, 60% of stations indicate an increasing trend, with Avissawella 

and Maussakelle trends being significant (Sen’s slope value of -44.76 and -29.69, 

respectively). On the other hand, Chesterford and Maliboda stations exhibit a 

significant increasing trend (Sen’s slope value of 35.22 and 286.71). The average 

CWD index value also increases in the KRB. Fifty percent of stations show an 

increasing trend from the CWD index. Among them, Chesterford and Maliboda 

stations display a significant increasing trend (Sen’s slope value of 0.71 and 1, 

respectively). The other five stations with decreasing trends do not have any 

significant value. Nevertheless, an increasing trend in the CWD index signals flood 

hazards in the KRB. When focusing on the SDII index, the basin exhibits a decreasing 

trend, though it is not significant (Sen’s slope value of -0.26). The Maliboda station is 

the only station having a significant increasing trend (Sen’s slope value of 0.53). 

Angoda, Avissawella, and Mausskelle stations have a significant decreasing trend 

(Sen’s slope value of -0.25, -0.21, and -0.14, respectively). In general, 70% of the 

stations show a decreasing pattern. 

 

4.2.3 Relationship between rainfall and water levels in the KRB 

When considering the relationship between rainfall and water levels in the basin, as 

its first step this study calculated correlation coefficients for these two variables on a 

daily basis. The correlation coefficient value for daily rainfall and water level at 

Hanwella station is 0.42, a moderately positive relationship. On the other hand, the 

coefficient value for N’Street is 0.36, a weakly positive correlation (with 95% 
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confidence interval). Subsequently, the monthly relations between rainfall and water 

level in the KRB were considered. According to Figure 4.13, it is apparent that the 

increase in rainfall has led to increased water levels, a positive correlation between 

water levels in the KRB and precipitation.  

During the Southwest Monsoon (IM2) season, where strong winds with widespread 

rain affect the whole island, the peak of water level and precipitation is discernible in 

the months of October and November. The correlation between seasonal average water 

level and rainfall during the IM2 is 0.63 (Hanwella station) and 0.88 (N’Street station) 

is the highest among all four seasons, with a 95% confidence level. 

 

 

After the IM2, the first phase of SWM (May and June) shows the second-highest peaks 

in rainfall and water discharge/water level. In the SWM period, there is a 0.41 and 

0.81 correlation between rainfall and water discharge in Hanwella and N’Street 

stations respectively. This correlation value is 0.16 (Hanwella) and 0.48 (N’Street) 

during NEM, the lowest of the four seasons. During the IM1, 0.34 and 0.6 correlation 

is seen at Hanwella and N’Street stations respectively, with a 95% confidence level. 

Even though the correlation shows a moderate to high positive correlation between 

water levels and rainfall, season-wise, it shows a strong positive correlation. Further, 

the study examined the relationship between monthly rainfall and water levels. See 

Appendix D for the monthly average correlation coefficients.  

As mentioned above, an analysis of daily rainfall and water levels in the KRB shows 

a moderately positive correlation. Nevertheless, the monthly relationship between 

these two variables shown in Figure 4.14 and 4.15 demonstrate a fascinating pattern. 

It is generally a positive relationship throughout the year, except for January. During 

Figure 4.13 Monthly water levels and rainfall in the KRB from 1991 to 2020.  

(a)  (b)  
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the month of January, the N'Street station showed a negative correlation of 0.03 

(Figure 4.14 (b)), with a 95% confidence level, while the Hanwella station showed a 

moderately positive correlation (0.49). Nevertheless, the monthly correlation 

coefficient varies between moderately positive (0.4) and highly positive (0.9) for the 

remaining months at N'Street station. On the other hand, correlation coefficients 

ranged from 0.3 to 0.83 at Hanwella station, indicating a variation between low and 

high positive correlations throughout the year. The month of May has a nearly perfect 

relationship at both stations (Figure 4.14 (i) and (j)). Also, the highest positive 

coefficient values belong to the month of May, 0.83 and 0.9 for Hanwella and N'Street 

stations, respectively. In particular, the strong relationship observed in Figure 4.14 for 

the relevant months is apparent between the SWM and IM2 seasons. Both stations 

indicate that the relationship of water level to rainfall approaches a near-perfect 

relationship (Figure 4.14 (k), (l), and Figure 4.15 (a), (b), (f), (h), (i), (j)) in the months 

of June, July, September, and November. During these months, the correlation 

coefficients for Hanwella station were 0.63, 0.76, 0.75, and 0.64, respectively. 

Correlation coefficients of 0.71, 0.76, 0.87, and 0.81 were observed at N'Street station 

in the same months. This detailed analysis shows the complex monthly and seasonal 

dynamic of the correlation between rainfall and water levels in the KRB, which is 

essential for information management and planning regarding water resources. 
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(a) January Hanwella station (b) January N’Street station (c) February Hanwella station (d) February N’Street station 

(e) March Hanwella station (g) April Hanwella station 

(i) May Hanwella station (k) June Hanwella station 

(f) March N’Street station (h) April N’Street station 

(j) May N’Street station (l) June N’Street station 

Figure 4.14 Relationship between rainfall and water level in the KRB at monthly scale. 
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(a) July Hanwella station (c) August Hanwella station 

(e) September Hanwella station (g) October Hanwella station 

(i) November Hanwella station (k) December Hanwella station 

(b) July N’Street station (d) August N’Street station 

(f) September N’Street station (h) October N’Street station 

(j) November N’Street station (l) December N’Street station 

Figure 4.15 Relationship between rainfall and water level in the KRB at monthly scale. 
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As its next step, this study tried to identify when rainfall increases will be in sync with 

water levels at different time lags. The study used lag correlation for this task. Figures 

4.16 and 4.17 illustrate a scatter plot for the lag correlation over 10 days. The study 

used a 10-day period for lag correlation because when floods occur in the basin their 

effects remain for at least 7-10 days. 

 

 

The lag correlation analysis shows that the station at Hanwella (Figure 4.16) exhibits 

a moderate positive correlation of 0.42 during the initial interval. Subsequently, the 

correlation increases in the second lag interval and gradually decreases from the 

second to the eleventh lag. In particular, there were notably high positive correlation 

coefficients of 0.65, 0.62, and 0.52 for the second, third, and fourth lags. This positive 

correlation indicates that, after a certain period of time, an increase in rainfall in the 

Kelani River Basin is accompanied by an increase in water levels. Such correlation 

patterns can be observed in the lag analysis for N’Street station shown in Figure 4.17. 

A moderately positive correlation is shown for the first lag of the N Street station, 

though with a slightly lower coefficient of 0.36 than for the first lag correlation of the 

Hanwella station. N’Street, on the other hand, shows a strong positive correlation, with 

1 2 3 

4 5 6 

8 9 7 

10 11 

Figure 4.16 Lag effect between rainfall and water levels at Hanwella hydrology 

station (at 95% confidence level) 
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coefficients of 0.61, 0.62, and 0.51 in the second, third, and fourth lags, similarly to 

Hanwella. It should be noted that there are certain differences between these two 

stations’ lag correlation patterns, mainly regarding the lags where a higher correlation 

coefficient was recorded. In particular, the Hanwella station has the highest lag 

correlation in the second lag, while the N’Street station has the highest lag correlation 

in the third lag. These findings provide insight into the temporal dynamics of rainfall 

and water levels at these two hydrological stations in the KRB. The lag correlation 

clearly illustrated that, when rainfall is high, it is linked with water level increases in 

the basin which is useful for understating extreme rainfall related flooding. 

 

 

According to the results, it is clearly visible that there is a positive relationship between 

rainfall and water levels in the KRB. There is thus a high tendency toward flood 

hazards with extreme rainfall over the basin. Therefore, the next objective requires 

presenting the AHP-based flood-risk assessment results of this study.  

 

7 

1 2 3 

4 5 6 

8 9 

10 11 

Figure 4.17 Lag effect between rainfall and water level at N’Street hydrology station 

(at 95% confidence level) 
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4.3 Examining flood risks caused by extreme rainfall in the Lower Kelani River 

Basin 

The third objective has two main parts: 

1. Detailed flood risk assessment based on the AHP method.  

2. The proposed Integrated AFH method for flood risk assessment. 

 

4.3.1 AHP based flood risk assessment 

4.3.1.1 Determining weight and weight prioritisation for hazard and vulnerability 

factors 

Weights were calculated for factors based on expert opinions and the literature with 

the help of a pairwise matrix. The descriptive statistics of weight assigned factors for 

each criterion are shown in Table 4.4. 

 

Table 4.4 Weights assigned for factors of each criterion. Note: AHP weights are 

based on expert opinion and literature 

Criteria Factors Weight Relative 

weight (%) 

Rank 

Physical  

Vulnerability 

TWI 0.14 14.85 2 

Land cover 0.18 18.19 1 

Elevation 0.10 9.89 7 

Slope 0.11 10.63 4 

rainfall 0.13 13.35 3 

NDVI  0.07 7.00 8 

Drainage Density 0.10 10.00 6 

Soil 0.05 5.20 9 

Proximity to river 0.11 10.73 5 

     

Social 

Vulnerability 

Population Density 0.34 34.44 1 

Land Use 0.26 25.63 2 

NDBI 0.14 14.40 4 

Distance from Road 0.10 9.94 5 

Distance to shelter 0.16 15.58 3 
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When considering Table 4.3, higher weight values indicate higher causativity of flood 

hazard and vulnerability. The weights vary between zero and one, equalling the sum 

of weights marked as one (weighted linear combination). In flood hazards, land cover 

(18.19%), TWI (14.85%), and heavy rainfall (13.35%) play prominent roles in causing 

flood hazards in the LKRB. Focusing on flood vulnerability, population density 

(34.44%) and land use (25.63%) have the highest weighted values. It is evident that 

during a flood event people face many difficulties and their property may be lost or 

damaged. 

 

 

4.3.1.2 Composite maps for physical vulnerability and social vulnerability 

 

The study has prepared composite maps for each factor according to the flood risk 

levels. In the first phase, composite maps for physical vulnerability are illustrated in 

Figure 4.18. 
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Figure 4.18 Thematic 

maps for physical 

vulnerability of floods 

in the LKRB.  

Note: All maps were 

reclassified according 

to the flood risk level. 

The legends indicate 

very low risk to very 

high risk for flood 

hazards.  

(a) Proximity to river,  

(b) Land use 

(c) Rainfall 

(d) Drainage density 

(e) Soil 

(f) Elevation  

(g) TWI 

(h) NDVI  

(i) Slope 

Very low risk 
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Moderate risk  
High risk 
Very high risk 
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High risk 
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Low risk 
Moderate risk  
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Low risk 
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Low risk 
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Very high risk 

Very low risk 
Low risk 
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High risk 
Very high risk 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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As mentioned in 2.1, the eastern part of the LKRB is elevated at nearly 450 m and the 

western seaward part is almost a flat terrain. Figure 4.18 (a) shows the proximity to 

the river. The eastern hilly part of the study area has more streams than the western 

side. The closer to the river or stream, the greater the probability of susceptibility to 

flood. In Figure 4.18 (b) depicts the reclassified land cover of the LKRB. More built-

up areas can be seen towards the sea and the hillsides are covered with forests and 

plantations. Built-up areas are highly susceptible to flooding, while forest and 

plantation areas have very low susceptibility to flooding. Out of the total land area 

(808 km2) of the LKRB, 41.47% (335.13 km2) is at very low risk, 2.31% (18.64 km2) 

is at low risk, 26.20% (211.78 km2) is at moderate risk, 25.52% (206.29 km2) is at 

high risk, and 4.50% (36.38 km2) is at very high risk of flood. Figure 4.18 (c) depicts 

the reclassified map of rainfall effects on flood risk. As we know, the higher altitudes 

of the KRB receive more rainfall than the lower altitudes. 

Nevertheless, when it comes to flood hazards, the rainfall layers have been reclassified. 

Figure 4.18 (d) shows the drainage density of the LKRB. Nearly 25% (193.06 km2) of 

the total land area of the LKRB has rich drainage density. Especially in the eastern 

side of the study area is at low risk for flood susceptibility. Accordingly, due to poor 

drainage systems, nearly 49% (392.2 km2) of the total land area is highly affected by 

flood hazards. Nearly 27% of the total land area has a moderate flood risk due to 

moderate drainage density. According to Figure 4.18 (e), nearly 58% of the study area 

is covered by rolling and undulating terrain red-yellow podzolic soils with soft or hard 

laterite. The surface runoff process is more prominent in hard laterite soils than water 

is infiltration. Thus, according to the soil type, the area has high susceptibility to flood 

hazards. The elevation of the LKRB is one of the main factors influencing flood 

hazards (Figure 4.18 (f)). Most of the land area (53.95% or 435.37 km2) in the LKRB 

is 20 m or more above mean sea level and is thus marked as very low risk of flood 

susceptibility. 

11.59 % (93.55 km2) of the total study area is < 5 m elevation and is thus at high and 

very high risk of flood susceptibility. Figure 4.18 (g) illustrates the TWI of the LKRB. 

The highest values were concentrated in the study area's western side, which is flat 

terrain with very high flood susceptibility. The highest areas in the eastern part of the 

LKRB have the lowest TWI values, representing the lowest susceptibility to flood 

hazards. Values obtained for NDVI reclassification (Figure 4.18 (h)) reveal that most 
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of the study area is covered by vegetation. Due to the urbanisation process and 

increased population density, most dense vegetation can be observed on the eastern 

side of the study area. At the same time, low concentrations are visible in the west. 

According to the reclassification, nearly 511 km2 (63.20%) of the LKRB total area is 

marked as low and very low for flood risk. Only 137.81 km2 (17.04%) of the land area 

is high or very high for flood susceptibility, according to the NDVI values. Flood 

susceptibility by slope is seen in Figure 4.18 (i), showing that more than half of the 

study area (53.73%) is under a 30-degree slope angle, which causes a very high risk of 

flood. 17% (141.34 km2) of the total land area is above a 60-degree slope angle, 

causing moderate to very low risk of flood. The remaining 28.69 % (230.57 km2) of 

the area is at high risk of flood. 

After the thematic reclassified maps were prepared, a weighted overlay was performed 

to prepare a flood hazard map of the LKRB (Figure 4.19). 

 

Figure 4.19 Physical vulnerability for flood hazard in the LKRB 
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According to the physical vulnerability map (Figure 4.19), nearly 0.43% of the area is 

marked at very low risk of flood susceptibility. 39.11% (315.7 km2) of the area of the 

LKRB, primarily spread over the eastern side of the study area, is at low risk of flood. 

Nearly half of the total land area (47.34%) belongs the moderate risk of flood category. 

The high risk and very high risk areas are observable on the western side of the LKRB 

(10.5.88 km2), especially along the main river and in very low-lying regions. After 

prepared physical vulnerability map, the study focusses on preparing social 

vulnerability map for the LKRB. As the first step study prepared thematic maps for 

flood vulnerability factors (Figure 4.20).  
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Figure 4.20 Thematic maps for social vulnerability of floods in the LKRB. Note: 

All maps were reclassified according to the flood risk level. The 

legends indicate very low risk to very high risk for flood hazards. 

(a) Distance from road, (b) NDBI, (c) Land use, (d) Population 

density, and (e) Distance to shelter 

(a) 

(b) 

(c) 

(d) 

(e) 
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When considering the factor of distance from a road (Figure 4.20 (a)), a high 

proportion of (360.22 km2) the LKRB has minimum vulnerability to flood risk, 

especially on the western side of the study area. Road density is concentrated on the 

western side of the LKRB, creating higher risks of flood. 9.83% of the area is at 

moderate risk category and 21.99% is belonged to high risk and very high risk of flood 

susceptibility categories. Building density and urbanisation process are at high levels 

there, so both NDBI and land use factors causing high and very high risk of flood 

susceptibility are visible on the western side of the LKRB (Figure 4.20 (b) & (c)). 

377.92 km2 of the area is at moderate to very high risk of flood due to building density. 

The area is closer to the built-up areas, which cover 454.45 km2 of land and have a 

moderate to very high risk for flood. Figure 4.20 (d) illustrates the reclassified 

population density of the study area. Most of the area in the LKRB (57.51% land cover) 

has less population density (<1000). 97.4 km2 of land area has a population density of 

>5000, specifically the western part, which is highly vulnerable to flood. Highly 

vulnerable and moderately vulnerable areas cover 17.02% of the total area of the 

LKRB. Distance to shelter (Figure 4.20 (e)) also shows an interesting pattern. The 

LKRB has many temples and government schools that the study considered as flood 

shelters. Only 30.62 km2 (3.79%) of the LKRB, in the highly elevated eastern side, is 

at high risk of flood. In contrast, other areas are at moderate to very low risk of flood 

vulnerability. After the thematic reclassified maps were prepared, a weighted overlay 

was performed to prepare a social vulnerability map of flood hazard in the LKRB 

(Figure 4.21). 
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According to the social vulnerability map, most of the areas on the eastern side of the 

LKRB are at low and very low risk of flood. The total area belongs to those two 

categories is 562.81 km2 (69.73%). Further, 18% of the total land area is at moderate 

risk of flood. High risk and very high risk areas are minimal compared to the other risk 

categories, and the total land area in the high and very high risk categories is only 

98.04 km2 (12.15 %) of the total study area. Most of the highly flood-vulnerable areas 

are situated on the western side, with high population and urbanisation visible. 

 

 

 

 

Figure 4.21 Social vulnerability for flood hazard in the LKRB 
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4.3.1.3 Flood risk map for the LKRB 

The final step for third objective was to prepare a flood risk map for the LKRB. The 

map was prepared (Figure 4.22) based on Equation 9 in the section 3.2.6.2, using a 

flood hazard map and flood vulnerability map. 

As delineated in Figure 4.22, the areas at very high and high risk of floods are generally 

clustered at the western end of the LKRB, while some are scattered throughout the 

central area. An impressive area of approximately 3 km2 on the higher eastern flank 

has been determined to be a ‘no flood risk’ zone. Very low and low susceptibility to 

flooding, particularly in the eastern sector, characterise a significant part of the total 

land area, accounting for 42.3% (367.56 km2). A significant part of the area, distributed 

widely throughout the LKRB's central domain, is classified as moderate risk. Areas 

classified as very high risk account for 9.4% of the total area, mainly located on the 

Figure 4.22 Flood risk distribution of the LKRB. Note: this map is a combination of 

physical and social vulnerability for flood hazard in the LKRB 



119 
 

 

western side and there are been occasional pockets of moderate risk in the central and 

eastern sectors. A total area of 56.81 km2 (7.04%), predominantly located on the 

western periphery, has been identified as very high risk, and additional areas have been 

identified close to the river in the middle area. The majority of these are classified in 

the moderate risk category, comprising 40.26% of the total land area of the LKRB. 

 

4.3.2 Proposed integrated AFH method for flood risk assessment 

As early mentioned, this proposed methodology only considers physical factors. As 

AHP physical vulnerability have been already discussed in section 4.3.1.2, this section 

presents results of FR, HAND and integrated AFH method.   

4.3.2.1 FR based flood risk assessment 

As mentioned in section 3.2.7, the FRF index and prediction rates values are presented 

in Appendix A. According to the prediction rates, drainage density appears with the 

highest value of 5.67, while NDVI records the lowest value at 1. Soil permeability 

comes second place, securing a prediction rate value of 3.24, with elevation ranking 

third at a prediction rate value of 2.95. Depending on prediction rate values of the each 

physical factor, FR based flood risk map has prepared in ArcGIS 10.8 environment 

(Figure 4.23).    
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As delineated in Figure 4.23, the areas at very high and high risk of floods are generally 

scattered throughout the central area. An impressive area of approximately 13.2 km2 

on the higher eastern flank and some patches in the eastern half of the LKRB have 

been determined to be ‘no flood risk’ zones. Zones of very low and low susceptibility 

to flooding are scattered throughout the study area, covering 51.6% of the land area 

(416.3 km2). Areas classified as very high-risk account for 2.7% (22 km2) of the total 

area, mainly at river merge areas and major river bend areas in the middle part of the 

LKRB. High risk areas and moderate risk areas are visible alongside the streams. The 

total areas of these zones are 8.8% (70.9 km2) and 23.7% (191 km2) of the study area, 

respectively. 

Figure 4.23 Flood susceptibility in the KRB based on FR model 
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To validate the FR flood susceptibility map, the AUC (Figure 4.24) was generated 

with the help of the ArcSDM tool. The AUC value for flood hazard using the FR 

method was 0.794, which indicates that this model is suitable for analysing flood 

susceptibility in the LKRB. 

 

 

 

 

 

 

 

 

 

Under this section, the study validated the AHP based physical vulnerability map and 

results indicate 0.739 value (Figure 4.25). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 AUC for FR base flood susceptibility map.  

Figure 4.25 AUC for AHP base physical vulnerability 

map. Note: This map in presented in section 

4.3.1.2 
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4.3.2.2 Flood inundation map based on HAND model 

After preparing FR based flood susceptibility map, the study prepared the HAND 

model, whose results are presented below (Figure 4.26). According to the HAND 

model, the KRB has most area > 12 m, covering 39.7 % of the total land area of the 

LKRB. Land between 0 m and 1.5 m above the nearest drainage area covers 25.3% 

(204.3 km2). In this model every minor stream was considered when calculating the 

HAND model, which is why there is a considerable area in the 0 – 1.5 m category. The 

Department of Irrigation says that when the water level of the main Kelani River is 

between 1.5 m and 2.1 m it considers it as a minor flood event in the basin. According 

to the HAND model, when there is such a minor flood hazard, an additional 38.9 km2 

is inundated over and above the inundation of the 0 – 1.5 m height area. According to 

the HAND model, when the water level reaches between 2.1 m and 2.7 m, there is a 

major flood event in the LKRB and 34.5% of the total land area is inundated. Water 

levels between 2.7 m and 3.6 m constitute a dangerous flood event, which may 

inundate up to about 60% of the basin’s total land area. However, due to some flood 

management projects implemented on the western side of the LKRB, riverine flood 

hazards in the Colombo city area are now minimal.    
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4.3.2.3 Results of proposed integrated AFH method 

The final goal of this objective is to integrate the AHP, FR, and HAND models and 

prepare a flood hazard map for the LKRB.  The results of this new integrated model 

are shown in Figure 4.27. According to the integrated model map, most of the land 

area belongs to the low-risk and very-low-risk flood hazard categories. 46.8% (378.1 

km2) of the total land area falls into these two categories.  7.5% (60.7 km2) of the land 

area is flood-free. Most of these flood-free areas are scattered throughout the far 

eastern hillsides of the LKRB. Moderate risk distribution areas can be seen close to 

the streams and 236.2 km2 (29.3%) of the total land area falls into this category. High 

and very-high-risk flood hazard zones are mostly on the western side, central part, and 

north-eastern side of the LKRB.  16.4% (132 km2) of the land area falls into these two 

risk categories. 

Figure 4.26 Flood inundation map based on the HAND model 
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To validate this newly proposed AFH model, the AUC (Figure 4.28) was prepared, 

with a value of 0.807 (exclude water surface). According to the AUC classification, 

this novel AFH model belongs to the very good model category, which can be 

recommended for flood susceptibility mapping. 

 

 

 

Figure 4.27 Flood risk distribution in the LKRB, based on AFH method  
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4.4 Chapter summary 

This section provides a summary of the results in this study. The first part of this 

chapter presents outcomes that are in line with the primary objective and examines the 

spatial and temporal variations resulting from extreme rainfall across Sri Lanka. Nine 

relevant extreme rainfall indices – RX5day, RX1day, R99p, R95p, R20mm, R10mm, 

PRCPTOT, SDII, and CWD – have been used for this investigation. The spatial 

patterns of these indices (except SDII) show their highest accumulations in the Wet 

Zone during the study period. However, on the eastern coast of the Dry Zone, the SDII 

index shows its highest accumulations. In parallel, the values for PRCPTOT and CWD 

show less accumulation throughout this region, which indicates that the east coast 

receives low rainfall, but with high intensity. On a temporal basis, with the exception 

of CWD at the Kurgalaune station, the Intermediate Zone shows an increasing trend 

across all extreme indices. Similarly, the Dry Zone shows an overall positive trend for 

the extreme rainfall indices at most stations, although some stations show a decreasing 

trend for RX1day and R99p. On the other hand, only SDII and R95P indices – unlike 

other indices which have both rising and falling trends – have an increasing trend 

across all meteorological stations in the Wet Zone. Overall, results indicated that the 

Wet Zone is getting drier and the Intermediate Zone and Dry Zone were getting wetter 

Figure 4.28 AUC for integrated AFH method base flood 

risk map 
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in the period considered. The ITA results also indicated that the Intermediate Zone had 

non-monotonic trends for most of the indices, unlike the other two climate zones. 

Nevertheless, there was no significant turning point for increasing or decreasing trends 

in the indices, according to the SqMK results. 

This study investigated the correlation between precipitation patterns and water level 

within the KRB as part of its second research objective. The overall rainfall across the 

KRB shows a consistent and statistically significant increasing trend. In all four 

seasons, that trend has been observed consistently. In parallel, the Hanwella hydrology 

station shows a decreasing trend in water levels, as opposed to N’Street, where an 

apparent increasing trend has been observed. According to the MMK analysis, 60% of 

KRB weather stations showed increasing trends during the study period, with 

Colombo, Angoda, Chesterford, Labugama, and Maliboda stations recording 

significant increases. Notwithstanding this, only three and four stations appear to have 

increased during the SWM and IM2 seasons, which produce high rainfall in the KRB. 

Regarding the daily dynamics of rainfall and water levels, the Hanwella hydrology 

station showed a moderately positive correlation, whereas the N’Street station showed 

a weaker positive correlation. Moreover, the lag correlation analyses indicated that 

periods of increased rainfall are temporally associated with increases in water levels 

across the basin. 

For its third objective, this research tried to assess flood risk due to extreme rainfall in 

the LKRB. Two methods were used to analyse the flood risk in the basin. The AHP 

method was used to identify the flood risk areas, based on physical vulnerability and 

social vulnerability. The area at high risk of floods is generally clustered at the west 

end of the LKRB. Most of the LKRB area is under the moderate risk category, 

comprising 40.26% of the total land area. Areas at very low risk of flooding, 

particularly in the eastern part of the LKRB, account for 42.3% of total land area. The 

integrated AFH method shows, high and very-high-risk flood hazard zones are mostly 

on the western side, central part, and north-eastern side of the LKRB.  16.4% (132 

km2) of the land area falls into these two risk categories. With 0.807 AUC model value, 

this model can be recommended for flood risk mapping in any river basin in the world 

with considered factors.  
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5. DISCUSSION     

In recent times, Sri Lanka has seen an escalation in the occurrence of severe rainfall 

incidents, with projections indicating the likelihood of their continued increase. These 

information reveals that, the country is significantly impacted by extreme rainfall. 

While rainfall is a fundamental factor in Sri Lanka's economy, its extremes have 

contributed to consequential hazards like floods and landslides in recent times, 

significantly impairing the country's development.  

Accordingly, this study examined spatial and temporal patterns of extreme rainfall 

over the island as the first objective. The spatial patterns of extreme rainfall in Sri 

Lanka are primarily influenced by orography and the monsoon effect. This pattern is 

consistent with the general rainfall pattern of the country, as observed in previous 

studies by Wickramagamage (2016) and Hapuarachchi and Premalal (2021). While 

the coherence of rainfall patterns across different regions is relatively low, a significant 

number of weather stations on the island have reported extreme rainfall increases in 

most indices, which agrees with the study by Naveendrakumar et al. (2018). During 

the study period, the spatial pattern of simple daily intensity (SDII) showed its highest 

accumulations on the country's east coastline (Dry Zone), while other indices had their 

highest values in the southwest part. Higher values for SDII on the east coastline could 

be due to the changes in the Northeast Monsoon (NEM), the primary rainfall source in 

the Dry Zone. Prakash et al. (2012) have confirmed a significant increasing trend in 

the NEM, and Wickramagamage (2016) found that the second phase of NEM is 

primarily positive, bringing rainfall to the island. Furthermore, the United Nations 

Office for Disaster Risk Reduction (UNDRR, 2022) revealed that, according to climate 

model projections, the intensity of extreme one-day rainfall has exhibited the most 

significant increase (58%) over South Asia. This could be one of the reasons behind 

the trend of increased intensity of extreme rainfall events observed in the eastern 

coastal area of the country.  

The temporal patterns of extreme rainfall also provided valuable information. Most 

extreme precipitation measurements indicated an increase in mean values for South 

Asia, consistent with global observations (Sheikh et al., 2015).  This study's results 

also found that most of the indices showed an increasing trend at most stations. The 

study by Xavier et al. (2018) identified that strengthening the monsoon low-level jet 
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stream brings heavy rainfall over the Indian subcontinent, which may be one of the 

reasons for the increasing trend of extreme rainfall over the island. In the study period, 

the frequency of extreme rainfall (R20 mm and R10 mm) has fallen in the Wet Zone. 

These findings are highly compatible with the studies by Basher et al. (2018) and 

Bhatti et al. (2020) of extreme rainfall over Bangladesh and Pakistan. The magnitude 

of extreme rainfall events (RX5day and RX1day indices) also declined in the Wet 

Zone. Along with that, the persistence of extreme rainfall (CWD) shows a similar 

pattern. However, a non-significant decreasing trend in SWM over Sri Lanka was 

observed by Shelton and Pushpawela (2022) between 1980 and 2013. Further, Swapna 

et al. (2022) revealed a weakening of SWM and an increasing frequency of extreme 

cyclones in the North Indian Ocean fuelled by global warming. This trend may 

sometimes reflect a decreasing trend in extreme rainfall events, as indicated by indices 

such as RX5day and R99p at stations like Ratmalana, Ratnapura, Katunayaka, 

Ktugastota, and Nuwara Eliya in the Wet Zone. Also, this may be the reason for a 

significant trend in extreme rainfall indices at stations like Anuradhapura, Pottuvil, 

Mannar, and Bandarawela in the Dry and Intermediate zones. Further, global warming 

especially has greatly influenced the island's SDII, R95p, and PRCPTOT increases. 

Thus, due to extreme rainfall events, many stations show an increasing trend in total 

precipitation (Jayawardena et al., 2018).  

Bhatti et al. (2020) showed that extreme rainfall has an inverse relationship with 

altitude. The current study obtained data from four meteorological stations – Nuwara 

Eliya and Katugastota stations in the Wet Zone and Badulla and Bandarawela stations 

in the Intermediate Zone – at higher altitudes (>400 m). However, in the Sri Lankan 

context, the inverse relationship between extreme rainfall and elevation is only seen 

for the Wet Zone. The central highland areas of the country show decreasing trends of 

extreme rainfall events, as reported by Wickramagamage (2016) at Nuwara Eliya 

station, supporting the findings of this study.  

In general, the temporal pattern, most of the Dry and Intermediate Zone stations 

showed an increasing trend of extreme rainfall events, whereas the Wet Zone showed 

both rising and falling trends for some extreme indices. This condition indicates that 

the Wet Zone became drier, and the Intermediate and Dry Zones became wetter which 

is resonate with the works of Bhatti et al. (2020), which delved into extreme rainfall 

pattern in Pakistan. By analysing extreme rainfall indices, they also found that core 
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monsoon rainfall and the westerly humid regions were drying in Pakistan. We 

observed that large-scale atmospheric and oceanic factors might be linked with 

extreme rainfall events over the area studied in similar studies in the South Asian 

Region (Basher et al., 2018; Sheikh et al., 2015). The results suggested that Sri Lanka 

is experiencing an increasing trend of extreme rainfall events, particularly in the Dry 

and Intermediate Zones, which could have serious implications for water resources, 

agriculture, and infrastructure planning and management. Further, the ITA results also 

presented that R99p and R95p indices in the Intermediate and Dry Zones have 

significant non-monotonic trends which will provide information for possible flood 

hazards in these regions. To get a better understanding, the general pattern of R95p 

index is presented in Figure 5.1. It is clearly visible that Intermediate and Dry zones 

have decreased pattern.  

 

 

It is important to discuss extreme rainfall and its impact on the development of a 

country. As a South Asian country, Sri Lanka also faces severe extreme rainfall and 

its associated hazards. In 2016, when the SWM was activated, parts of the country 

were hit by the heaviest rainfall in over 18 years (Disaster Managment Center, 2016). 

The island faced similar extreme weather conditions again in 2017 and 2019, and most 

recently in 2021, with consequential hazards like flood which are barriers to the 

development of the country. As a developing country, this increase extreme rainfall is 

becoming a serious concern for the economic development of Sri Lanka. Furthermore, 

floods and landslides are not the only harmful effects of extreme rainfall. People's lives 

are also affected in areas not subject to such influences. Extreme rainfall events can 

impact social and economic activities like fishery, agriculture, and pottery. For 

instance, Alahacoon and Edirisinghe (2021) demonstrated that the increasing trend of 

rainfall on the island has led to a decrease in the production of salt in the Hambantota 

Figure 5.1 Linear regression for R99p index with 95% confidence level: (a) Dry 

Zone; (b) Intermediate Zone; (c) Wet Zone. 

(a) (c) (b) 
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District in the Dry Zone. Thus, climate change adaptation strategies should be devised 

to sustain communities in these climate zones. For instance, the findings of this work 

showed that the Anuradhapura meteorological station presents a significantly 

increasing trend of extreme rainfall events, indicating that people living in the 

Anuradhapura area should prepare for future adverse events caused by climate change. 

The area has intensive paddy cultivation, and an increase in extreme rainfall could 

severely impact paddy cultivation and negatively affect the farming community. 

Furthermore, the findings of this study will provide valuable insights for identifying 

changes associated with rainfall patterns over the island and in the Indian subcontinent. 

Additionally, these findings will serve as foundational information for the 

development of strategies, aimed at adapting to extreme rainfall events. 

Further, increase in the frequency of extreme rainfall events across the country, 

underscoring the pivotal role in developing and implementing national adaptation 

strategies for climate change. Sri Lanka has already established a national adaptation 

plan for climate change (Climate Change Secretariat, 2016). The identification of gaps 

in climate information, which poses a significant obstacle to the development and 

implementation of adaptation measures by various stakeholders, is clearly emphasized 

within the scope of this plan. Furthermore, the increase in extreme rainfall events 

becomes imperative in strengthening resilience, which constitutes fundamental 

objectives underscored within the Paris Agreement. The Agreement stresses the 

enhancement of adaptive capacity and strengthening of resilience as integral 

components of comprehensive efforts to prepare for climate change. By facilitating the 

identification of current trends and spatial patterns, the findings on extreme rainfall 

patterns have the potential to address existing climate information gaps and identify 

areas for enhancing climate resilience. 

 

However, evidence suggests that climate change has altered the spatiotemporal 

characteristics of rainfall, including total magnitude and seasonal dispersal (Feng et 

al., 2013). Also, the United Nations Office for Disaster Risk Reduction and World 

Meteorological Organizatio (2023) projects that extreme rainfall events will escalate 

threefold with a temperature increase of 2°C. In this scenario, Sri Lankan river basins 

would be highly vulnerable to floods, especially in the Wet Zone. Nevertheless, there 
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should be a detailed examination of the relationship between rainfall and water levels 

in river basins in Sri Lanka.  

Rainfall acts as one of the critical factors influencing the increase of river water levels. 

The amount of rainfall directly influences the volume of water that flows across a river 

basin and causes flooding when extreme rainfall occurs. Accordingly, this study chose 

KRB to examine rainfall and water levels and the relationship between them. The 

findings indicate noteworthy outcomes, which are discussed in the following 

discussion.  

Overall, the KRB has a significantly increasing trend in annual total rainfall, which do 

not in line with the study by Jayasekara et al. (2020) that shows a decreasing rainfall 

trend in the KRB from 1983 to 2013. Similarly, the study of Ampitiyawatta and Guo 

(2009) found the Kalu River basin in the Wet Zone, showed a decrease rainfall trend. 

These two studies discussed about rainfall pattern in river basins in the Wet Zone over 

a decade ago. However, as documented by Alahacoon and Edirisinghe (2021), rainfall 

pattern over Sri Lanka has significant increase in annual rainfall during 1989-2019 

period due to climate change. This could be the reason showing significant increase 

trend in rainfall over the KRB in this study. Further, this increasing trend may be 

influenced by using mean based adjusted homogeneity daily rainfall data that, this 

study used.  At the same time, all four seasons demonstrate an increasing trend in 

rainfall patterns, but the increasing trend in SWM and 2IM is incompatible with the 

results of the study of the KRB by Jayasekara et al. (2020).  

Furthermore, the study of Chandimala and Zubair (2007) showed how the El Niño – 

Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) affect rainfall and 

streamflow in the KRB, especially during April – September. Therefore, rainfall over 

the basin significantly varies depending on these teleconnections (De Silva & 

Hornberger, 2019). During La Niña events, SWM rainfall increases, whereas during 

El Niño events it reduces. Zubair et al. (accessed 2016) explained that the flooding of 

May 2016 in the KRB was caused by the El Niño event. However, examining the 

influence of these dipolar ocean-atmosphere phenomena on rainfall distribution is 

beyond the scope of this study. In additional, this study found that, during 2017-2020 

period, the KRB appeared to have more rainfall than typical and this may suggest that 
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there has recently been a shift in climatic conditions. However, a more thorough 

analysis would need to be undertaken before that can be confirmed. 

The changes in the water levels of the KRB can be summarised as follows. Just like 

the overall water levels during the period, Hanwella station showed a decreasing trend. 

However, several factors have caused the reduction of water discharging into the river 

basin. Land use changes and river water management projects are prominent among 

them. In the KRB, reduced water volume is strongly connected to hydropower plants. 

The KRB has five major hydropower stations (JICA, 2004). To meet demand for 

electricity, the Ceylon Electricity Board has expanded hydropower projects in the 

major river basins of Sri Lanka in recent years. With decreasing rainfall and increasing 

electricity consumption, these hydropower stations must hold more dammed water to 

produce electricity, which may be a reason for decreasing water levels in this lower 

basin station. 

Dissanayaka and Rajapakse (2019) also showed that the annual and SWM 

precipitation, and the IM2 streamflow at Hanwella hydrology stations will show 

negative trends in the 2020s. These results are in line with this study. Further, the 

reduction in streamflow largely affects urban water consumption of tap water by the 

metropolitan cities of Colombo and Gampha regions, mainly from the Kelani River 

Basin (Jayasekara et al., 2020). There are two major industrial areas in the river basin, 

at Seethawaka and Biyagama, as well as a significant number of industries that are not 

in the industrial zone along the river (Abeykoon & Nawarathna, 2011) but which also 

use water from the Kelani River. 

Malede et al. (2022) found that rainfall alone does not affect water flows, but also 

changes in land cover and uses, as well as human interventions like extractions from 

groundwater. Decreasing water discharges at Hanwella Hydrology Station may 

influence future land use changes and human intervention. In addition, the decline in 

streamflow may have a negative impact on the aquatic biodiversity of the river and its 

ecosystem, the recharging capacity of the groundwater, and the natural degradability 

of KRB water (Jayasekara et al., 2020). 

Water levels in the N'Steet showed an increasing trend during the study period. As this 

station is close to the Indian Ocean (only about 2 km away), increased water levels 

there may affect tidal and climate change. The study by Palamakumbure et al. (2020) 
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shows that, in the next 50 years, seasonally adjusted tidal gauge data in Colombo, Sri 

Lanka (rate of sea-level rising = 0.288 ± 0.118 mm/month) suggest an inundation 

height of approximately 0.1 to 0.2 m. It revealed that, increasing water levels will lead 

to inundations at heights up to about 3.5 – 15.0 m above today's sea level. Furthermore, 

the study by Samarasinghe et al. (2022) clearly explained how the tidal wave effects 

to backwash the Kelani River water closer to the N'Street station area. This tidal effect 

may result in an increasing trend at this hydrology station. Figure 5.2 depicts the 

increase in Indian Ocean tidal wave heights over recent years. 

 

 

 

In this scenario, as this station is close to the sea, continual increases in water levels 

may be linked with increasing sea levels. The salt intrusion into the lower basin, which 

comes with rising sea levels, could pose another problem for users of KRB water. This 

phenomenon can be seen when salty water flows into Ambathale's treatment plant in 

the lower flow periods (Abeykoon & Nawarathna, 2011), but it needs more detailed 

research. 

Figure 5.2 Seasonal pattern of tidal waves. Note: Seasonal component (solid lines) and 

linear trend line (dotted lines) for the Hulhule and Gan tidal stations in the 

Maldives and the Colombo tidal station in Sri Lanka (Source: 

Palamkumbure et al., 2020) 
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Jayasekara et al. (2020) specified that variations in streamflow are mainly attributed 

to the rainfall generated over the KRB catchment. However, this study found that the 

relation between rainfall and water level in the KRB shows a moderately positive 

correlation which is evidence of the implementation of water resources and flood 

management plans (Samarasinghe et al., 2022). Also, human interventions in land 

use/land cover are rapidly increasing in the KRB (Samarasinghe et al., 2022). Land 

use changes and human interventions may be the reasons for the moderately positive 

correlation between rainfall and water level observed during the study period.  

Nevertheless, monthly correlation shows positive correlations between rainfall and 

water level at the two stations. However, in the month of January N’Street Hydrology 

station had a slightly negative correlation. January is in the NEM period, where the 

KRB receives less rainfall.  

The lower KRB is experiencing increased flood events with increased rainfall intensity 

(Wijeratne & Li, 2022). The lag correlation results for the basin clearly show how the 

rainfall sync with water level in the daily basis. This has provided a background to 

understand the extreme rainfall and its relation to flood hazard. Especially when upper 

KRB meteorological stations recorded total rainfall of more than 500 mm for more 

than two days, there is a chance that water levels in the basin will rise and cause a 

flood. The two recent major flood incidents in the KRB are shown below to visualise 

the relationship between extreme rainfall and the water level at two hydrology stations, 

which were not considered in this study.   

In the month of May in both 2016 and 2018, during the SWM, the KRB faced flood 

hazards after extreme rainfall. Table 5.1 indicates the average rainfall received in the 

KRB over 10 days during these flood events. 

 

 

 

 

 

 



135 
 

 

Table 5.1 Average rainfall received in 10-day periods in the month of May for 2016 

and 2018 (Source: Department of Meteorology of Sri Lanka) 

2016 

Day 

Average 

Rainfall 

(mm) 

2018 Day 

Average 

Rainfall 

(mm) 

13-May 37.45 17-May 9.83 

14-May 29.15 18-May 14.58 

15-May 182.90 19-May 42.24 

16-May 73.42 20-May 116.54 

17-May 72.69 21-May 55.59 

18-May 10.69 22-May 14.78 

19-May 68.47 23-May 50.57 

20-May 12.52 24-May 50.29 

21-May 17.30 25-May 37.05 

22-May 11.12 26-May 22.57 

23-May 18.09 27-May 26.75 

 

It is visible on the graphs that, when average rainfall across the basin is over 100 mm, 

it tends to cause water level increases at the two stations on the following day (Figure 

5.3). 
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At Hanwella station the water level reached nearly 10 m, indicating a high flood event. 

During the 2016 flood event, from 15 – 17 May, the upper KRB meteorological 

stations received total rainfalls of 1083.5 mm, 695.4mm, and 662.0 mm, respectively. 

In 2018, the same stations received total rainfall of 901.0 mm and 533.3 mm on May 

20th and 21st.  

It is visible that, after the heavy rainfall over the basin, these two hydrology stations 

in the lower KRB recorded increases in water levels. Most probably, the water level 

reached its maximum the day after the extreme rainfall event, signalling a flood hazard 

in the LKRB. The maximum water level remained for a few days, severely damaging 

the people and environment of the river area. Samarasinghe et al. (2022) revealed that 

rapid land use changes and urbanisation in the KRB have significantly contributed to 

flooding and its severity in recent years.   

Reports suggest that the KRB is flooding frequently. Approximately two-third of the 

KRB is hilly uplands, while the rest is in the lowlands and flat coastal areas (Abeykoon 

& Nawarathna, 2011). Due to heavy rainfall and rapid water discharge from upstream, 

the river may overflow its banks on the lower flats.  

2016 (a) 

2018 (c) 2018 (d) 

2016 (b) 

Figure 5.3 Rainfall and water levels during flood events in the lower KRB. Note:  

(a) & (c) Hanwella Station; (b) & (d) N’Street Station. 
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Floods have become some of the world's most severe and devastating disasters. 

Therefore, flood risk assessment plays a vital role in sustainable decision-making 

about flood management. Accordingly, assessing areas vulnerable to flood hazards and 

creating risk maps are main components of disaster mitigation (Ogato et al., 2020). 

Apart from riverine floods, the LKRB is undergoing rapid urbanisation and urban 

flood events can be seen which are caused by heavy rainfall. Disaster risk is a 

calculation combining hazard and vulnerability factors. Various factors related to 

hazard and vulnerability in a region provide a background to determining the risk level 

of a hazard in a region. The third objective of this study is assessment of the flood risk 

in the LKRB, so this study also used nine flood hazard factors and five flood 

vulnerability factors to identify flood risks in the LKRB.     

The results of this study indicated that the western part of the LKRB is at high flood 

risk, while most of the eastern side is at low or very low risk of flood. As discussed 

earlier, high population density, low elevation, urbanisation, low vegetation, low slope 

angle, low drainage density, and exacerbated climatic hazards like extreme rainfall 

caused high flood risks on the western side of the LKRB. Further, flood severity 

depends greatly on population and its growth, and also on phenomena like frequent 

land cover changes or unauthorised landfilling in the study area. 

To validate the AHP flood risk map, this study sent a final copy of its outcomes to the 

ten experts, from whom we got opinions for the AHP. Six were satisfied with the 

outcomes and four of them were moderately satisfied with the outcome. As the western 

side of the LKRB is highly urbanised, urban floods are frequently seen which are 

caused by inappropriate structures, land filling, and canal overflow in the LKRB 

(Figure 5.4).  
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Further, to validate the AHP flood risk map and AFH  flood risk map,  they were 

compared with the May, 2016 actual inundation map, prepared by the Survey 

Department of Sri Lanka and the Asian Disaster Preparedness Centre (ADCP, 2017) 

(Figure 5.5). 

 

 

 

 

 

 

 

 

 

The flood inundation maps (Figure 5.5) show that Kelaniya, Kolonnawa, Kaduwela, 

and some parts of Colombo, Homagama, Hanwella, and Sri Jayawardenapura Kotte 

faced flood hazards. This study’s risk maps also identifies those areas in the high-risk 

category. However, in the AHP risk map, some areas that are less affected by flood 

hazards arising from riverine flooding belong to the high-risk category for flood 

Figure 5.4 Urban flooding in the Kolonnawa area of the LKRB (Source: Nishanthi and 

Dissanayaka, 2021) 

(b) (a) 

Figure 5.5 (a) Flood inundation map 2016 (Source: Survey Department of Sri Lanka) 

(b) Flood inundation depth (m) in May 2016 (Source: ADCP, 2017) 
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susceptibility. This could be a reason that this study used rainfall as one of the factors 

for AHP method. However, AFH map was able to detect most of the flood 

susceptibility areas, which was proved by comparing with the actual inundation maps 

in the study area. As an example, the AFH map was compared to actual flood maps 

prepared by the Survey Department of Sri Lanka for the 2016 and 2018 disasters. The 

new map identified most of the areas affected by the 2016 and 2018 floods. Therefore, 

this novel method can be utilised for flood susceptibility mapping in any part of the 

world and could bring advantages for disaster management. Figure 5.6 shows 

inundation areas belongs to the 2016 and 2018 disasters. 

 

 

Figure 5.6 Inundation map for major flood events in LKRB. Note: (a) Inundation 

map for 2016 flood hazard and (b) inundation map for 2018 flood 

hazard. Area under the red ovals have compared with the integrated 

AFH map (Source: Survey Department of Sri Lanka, 2020) 

(a) 

(b) 
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The effects of urbanisation and the related human activities and population growth on 

flood hazards in the LKRB should also be discussed. To enhance accessibility to 

infrastructure and services, people in both the Colombo and Gampaha districts of the 

LKRB tend to live close to big cities (Manawadu & Wijeratne, 2021). Hence, the basin 

is rapidly urbanising. As the LKRB becomes an economic and residential centre, 

unplanned constructions are common sights in the study area and cause land use and 

land cover changes, when wetlands are exploited for development. The natural 

drainage system is obstructed by unauthorised settlement and industrial developments 

in wetlands, resulting in prolonged floodwater retention (Manawadu & Wijeratne, 

2021). Also, because wetland areas retain floodwater, they are a natural flood-

controlling factor, but wetland areas are gradually decreasing in the LKRB. For 

instance, Manawadu and Wijeratne (2021) showed that the Kolonnawa Divisional 

Secretariat in the LKRB showed a 42% decrease in marshy land between 2005 and 

2017, which has created severe flood impacts in the study area. Samarasinghe et al. 

(2022) also explained that land use changes in the KRB have greatly impacted the 

severity of flooding in the basin. Wijeratne and Li (2022) also explained that flood 

events have increased due to the stress of urban sprawl in the LKRB. Further, during 

the last few years, some flooding events caused by extreme rainfall events have 

occurred where there was no time to evacuate (Wijeratne & Li, 2022), a tragic scenario 

for people and property. For example, in the 2016 flood event, 228,871 and 74,003 

people were affected by floods in the Colombo and Gampaha districts along the Kelani 

River (CRIP, 2018). Paying attention to all these matters, Dissanayake et al. (2018) 

suggest several reasons for this unprecedented flooding in the KRB. 

 The hydropower reservoirs located upstream at Laksapana, Castlereigh, and 

other points were full and were generating maximum power and discharging 

water into the Kelani River. 

 The mouth of the Kelani River, where water discharges into the sea, was 

partially blocked during the dry months due to poor water outflow and the sea 

sand brought into the river mouth by littoral drift. 

 The large amount of unauthorised housing in the vicinity of the riverbank. 

 Unauthorised filling of marshes, canals, and drainage paths which drain or 

discharge rainwater remaining blocked and unable to discharge to their total 

capacity. 
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When considering these facts, it is evident that changes caused by human behaviour 

have increased flood severity and resulted in more significant damage to society and 

the environment. The Government of Sri Lanka has implemented several actions in 

the past to mitigate flood hazards. Accordingly, the Irrigation Department introduced 

the Flood Protection Act No. 22 of 1955. As this Act is outdated, a review with input 

from the Ministry of Disaster Management has been initiated (Dissanayake et al., 

2018). Furthermore, the government collaborates with international institutions to 

implement flood management projects in the study area. The World Bank-funded 

“Strategic Environmental Assessment (SEA) for the Kelani River” is the most recent 

ongoing project aiming to propose flood and drought mitigation measures for the study 

area (CRIP, 2018). 

 

Even though several flood mitigation steps have been implemented, the LKRB is still 

experiencing severe floods (e.g., the flood of June 2021), especially in its western part 

where urban sprawl and high population density prevail. Therefore, there should be 

more studies conducted on various aspects, as there is no single solution to mitigate 

flood hazards in the LKRB amidst extreme rainfall escalation. However, the final risk 

maps from this study will help overcome the lack of flood risk maps in the study area 

reported by Wijeratne and Li (2022) and Dissanayake et al. (2018) and can be used as 

a base map for flood management in the LKRB.  

 

Further progress in flood risk assessment requires enhanced integration of scientific 

data and community knowledge into flood risk models, thereby improving their 

accuracy and applicability. This study contributes valuable insights into incorporating 

such data and knowledge into GIS-based flood risk models, offering guidance for 

future flood analysis. Moreover, the utilisation of methods such as AHP, FR, and AFH 

facilitates the incorporation of diverse factors into these models, thus enhancing their 

effectiveness. For instance, by employing weighted analysis within these models, 

priority areas for wetland restoration and afforestation, which serve as nature-based 

solutions for flood risk mitigation, can be identified. Consequently, the findings of this 

study hold significance for both current and future flood risk management strategies 

in the island, aiding in the identification of critical areas vulnerable to flooding. 

Additionally, the adaptable nature of the proposed AFH method enables its application 
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in flood risk assessment in any part of the world, accommodating various criteria 

tailored to specific contexts. 

 

In addition, for national climate change adaptation strategies and disaster risk 

reduction initiatives, the results of this research could be very useful. Sri Lanka's 

commitment to reducing risks stemming from natural hazards is illustrated by its 

alignment with the Sendai Framework for disaster risk reduction. In line with the 

Sendai Framework for disaster risk reduction, the proposed AFH method can be used 

as a strategic approach for the identification of flood risk zones, and its suitability can 

be reinforced by its alignment with initiatives undertaken by the Disaster Management 

Centre of Sri Lanka. 

 

Further, incorporating climate change projections into flood risk assessments is crucial 

for anticipating future flood scenarios and developing adaptive strategies. 

Collaborative efforts between government agencies, academia, NGOs, and local 

communities are essential for holistic flood risk management. This will help for 

capacity building among local authorities and communities. Finally, leveraging 

emerging technologies such as GIS, RS, artificial intelligence, and crowd-sourced data 

can revolutionize flood risk assessment and response mechanisms for Sri Lanka. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

Over the last few years, extreme rainfall events have increased and they are expected 

to increase even further in the near future. The frequency and intensity of rainfall 

extremes are linked with risks of riverine and flash floods in susceptible regions across 

the globe. Sri Lanka is an island state, which is particularly vulnerable to extreme 

rainfall events and consequential hazards. The variations in rainfall caused by the two 

monsoons bring unique flows of water throughout the island. The complex rainfall 

patterns of the island contribute to its high agricultural productivity, rich biodiversity, 

and remarkable beauty. However, the island has faced extreme rainfall events in recent 

years due to climate change and atmospheric teleconnections. Extreme rainfall-related 

consequential hazards like floods and landslides have caused massive damage to the 

country's people, economy, and environment. However, there has been no detailed 

examination of the spatial and temporal patterns of extreme rainfall events in the Sri 

Lankan context. The Kelani River Basin on the island is highly vulnerable to annual 

flooding due to extreme rainfall. The Kelani River flows through the country's main 

cities and most densely populated areas. Moreover, floods are common in the river 

basin, highlighting the need to regularly monitor rainfall patterns, water levels, and 

water capacity throughout the region. There should also be comprehensive research on 

rainfall and water levels in the KRB for better water resource management. Moreover, 

Sri Lanka still needs proper flood-risk assessment, especially a flood-risk map, of 

hazards associated with extreme rainfall. Considering all these facts, the following 

conclusions can be drawn based on the main findings of this study.  

As the first step, the study examined spatial and temporal variations of extreme rainfall 

over Sri Lanka. For this task, daily rainfall data from 19 meteorological stations were 

used to derive nine extreme rainfall indices (RX5day, RX1day, SDII, R99p, R95p, 

PRCPTOT, R20mm, R10mm, and CWD) during 1991–2020. Orography and the 

monsoon effect influence the spatial patterns of extreme rainfall in Sri Lanka. In 

particular, the R95p and SDII indices demonstrated a noticeable increase at all the 

meteorological stations, indicating a significant rise in heavy precipitation and extreme 

rainfall intensity over recent years.  

These trends are reflected in the increased frequency of flood and landslide hazard 

events throughout the country. The east coast region exhibited high rainfall intensity, 
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with the highest SDII values. However, the persistence (CWD) and total precipitation 

(PRCPTOT) remained low within the same area (Batticaloa, Trincomalee, and 

surrounding areas). The study revealed that this area experienced less rainfall but with 

higher intensity. The study also found that the Dry and Intermediate Zones showed 

increasing trends in extreme rainfall events, while the Wet Zone showed both rising 

and falling trends. Further, the magnitude of extreme rainfall events is declining in the 

Wet Zone. These findings were based on in situ rainfall data and did not consider the 

direct influence of atmospheric teleconnections.  

The findings could help policymakers take necessary measures to minimise the 

impacts of extreme rainfall events in Sri Lanka. Further research should be conducted 

to assess the relationship between global warming and extreme rainfall events in the 

country. Also, the risks, exposure indices, and remedies associated with extreme 

precipitation in the island should be addressed in future studies. 

Under the second objective, this study examined rainfall and water levels and their 

relationship during the 1991–2020 period. Using MK and MMK tests, trends were 

detected in all variables. The study used Pearson's correlation coefficient and lag 

correlation to identify the relationship between rainfall and variability of river flows. 

The study's conclusions can be summarised in the following way: 

 The annual total rainfall over the KRB has shown a significant increase from 

1991 to 2020.  

 On an annual basis, 50% of the meteorological stations studied had a 

significant increasing trend (Colombo, Angoda, Chesterford, Labugama Tank, 

and Maliboda). 40% of the meteorological stations showed a decreasing trend 

in rainfall during the study period. 

 Water levels at Hanwella hydrology station showed a significant decreasing 

trend, while N'Street had a significant increasing trend in the study period. 

 Considering seasonal rainfall patterns, there was a decreasing trend at 70% of 

meteorological stations in SWM, 50% in IM2, 30% in NEM, and 50% in IM1. 

 All the stations in the LKRB had an increasing trend in rainfall, except the 

Hanwell Group meteorological station. In contrast, a decreasing trend was seen 

at the UKRB stations, except for Maliboda with a significantly increasing 

trend. 
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 Intensity of extreme rainfall is decreasing, while duration and amount of 

extreme rainfall is increasing in the KRB. 

 The relationship between daily rainfall and water levels was moderately 

positively correlated from 1991 to 2020. 

 Lag correlation revealed that daily rainfall affects water levels and increases 

vulnerability to flood hazards. 

 The months of May, June, July, September, and November show the highest 

correlations between rainfall and water levels in the KRB. 

Although rainfall plays a crucial role in driving changes in the KRB, the impact of 

human activities has consistently been recognised as harsh and as a contributor to 

exacerbating the complexity of the natural environment’s reactions. The Sri Lankan 

government has adopted sustainable water management plans for the catchment area 

because the Kelani River flows through densely populated urban areas which are 

frequently subject to flooding. In particular, the government aims to prevent harmful 

effects on individuals and the environment in the basin caused by extreme rainfall-

related floods. In order to plan new water projects for the KRB, it will thus be helpful 

to consider the findings of this study to understand climatic variability across the basin. 

Identifying flood hazard zones in the LKRB was the key objective of this study. Flood 

risk assessment in the LKRB has done in two ways. As the first part of this objective, 

the AHP-based MCDM method was used to analyse 13 factors under two criteria, 

flood physical and social vulnerability. A literature review, personal observations, and 

experts’ opinions used to identify the risk factors for flooding. Flood risk is a 

combination of flood hazard and flood vulnerability. Accordingly, the study created a 

flood hazard map showing physical vulnerabilities prior to flood hazard occurrence. 

The results of this flood hazard map indicate that 0.27% (2.2 km2), 12.85% (103.68 

km2), 47.34% (382.11 km2), 39.11% (315.7 km2), and 0.43% (3.43 km2) of the LKRB 

is at very high, high, moderate, low, and very low risk of flooding, respectively. These 

values indicate that moderate hazard areas are proportionally high in the watershed 

(47.34%). Further, most high and very high-risk areas are on the western side of the 

LKRB. Considering flood vulnerability in the study area, 0.002 % (0.012 km2), 12.44 

% (98.02 km2), 18.12% (146.29 km2), 44.83% (361.85 km2), and 24.9% (200.95 km2) 

of the LKRB is at very high, high, moderate, low, and very low risk of flood, 

respectively. Most of the area (69.73%) has low or very low flood vulnerability. The 
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remaining area (30.27%) falls into the moderate to very high category. The flood-risk 

map in the watershed illustrates that 7.03% (56.81 km2), 9.4% (75.86 km2), 40.26% 

(325.02 km2), 23.92% (193.09 km2), 19.01% (153.47 km2), and 0.36% (2.94 km2) of 

the LKRB is at very high, high, moderate, low, very low, and no risk for flooding, 

respectively. These values indicate that the most areas belong to the LKRB has a 

moderate risk of flood susceptibility. However, the western part is at high or very high 

risk of flooding.  

The map generated through the integrated AFH method for physical vulnerability 

(flood hazard) has provided a more detailed assessment of flood risk in the LKRB. The 

AFH flood-risk map in the watershed illustrates that 46.8% (378.1 km2) belongs to the 

low-risk and very low-risk categories, which constitute the highest proportion in the 

LKRB area. 7.5% (60.7 km2) of the land area is flood-free. Moderate-risk areas include 

236.2 km2 (29.3%), while 16.4% (132 km2) belong to the high and very high-risk 

categories. These areas lie mostly in the western, central, and northeastern parts of the 

LKRB. This model has an AUC value of 0.807, denoting its accuracy for flood 

susceptibility assessment in the basin. This new method can be applied in any river 

basin, taking into account relevant factors.  

The results of this study will be beneficial for the flood mitigation processes of the 

LKRB. As this study shows flood-risk areas in the LKRB, it is easy to identify which 

zones should be prioritised for flood hazard management. Suggestions for measures to 

combat flood risk include restricting human interventions on marshy lands and 

riverbanks, regulated construction on high and very high-risk areas, accurate flood 

alarming and monitoring systems, community awareness programs, sustainable 

drainage systems in urban areas, and enhanced environmental education in civil 

society. However, if the principles of good government are not applied, no approach 

will be effective. Finally, the findings of this study can be helpful in identifying factors 

that improve resilience and should be included in subsequent flood-risk management 

and planning decisions. Such a study could be carried out at district or basin level, 

making it possible to develop more comprehensive risk maps and provide better 

assessments of risks associated with riverine flooding. 

Furthermore, a detailed flood-risk map needs to be made which comprehensively 

identifies relevant mitigation measures to minimise flood risks throughout the 
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designated study area. These invaluable tools (AHP and proposed integrated AFH 

method) have the potential to provide policymakers and the responsible authorities 

with valuable insight and guidance and enable them to make informed decisions. At 

the same time, the flood risk map will also benefit local people by providing them with 

essential information to enable them to spot and manage possible dangers in their 

vicinity. In addition, the lack of flood-risk maps makes identifying vulnerable areas 

difficult and prevents effective flood mitigation strategies from being developed. Such 

essential cartographic resources will ensure the ability to carry out accurate risk 

assessments in future. Further, it is critical to continue to improve the quality and 

amount of data utilised in flood risk mapping. Hence, integrating numerous datasets 

can be used to improve the accuracy and reliability of flood risk assessment. The 

advancement of technologies such as Geographic Information Systems (GIS), is paved 

the path for utilize the advanced modelling approaches, not just for flood risk 

assessment, but also for other risk assessment like landslides. 
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APPENDIX A – Flood relative frequency index with prediction rate 

No Factors 
Factor 

class 

Classes 

area 

% of 

classes 

area 

No of 

point  

% of 

point 

counts 

FR RF 
Prediction 

rate 

1 Elevation 

1 482598 54.12 32400 25.71 0.48 0.06 

2.92 

2 211309 23.70 33300 26.43 1.12 0.14 

3 95662 10.73 27000 21.43 2.00 0.24 

4 56068 6.29 19800 15.71 2.50 0.31 

5 46082 5.17 13500 10.71 2.07 0.25 

          

2 
Drainage 

Density 

1 41187 4.62 24300 19.29 4.18 0.59 

5.67 

2 230241 25.82 51300 40.71 1.58 0.22 

3 384710 43.14 42300 33.57 0.78 0.11 

4 199400 22.36 6300 5.00 0.22 0.03 

5 36181 4.06 1800 1.43 0.35 0.05 

          

3 Soil 

1 1255 0.14 900 0.71 5.08 0.49 

3.24 

2 9327 1.05 1800 1.43 1.37 0.13 

3 218421 24.49 17100 13.57 0.55 0.05 

4 518022 58.09 50400 40.00 0.69 0.07 

5 144694 16.23 55800 44.29 2.73 0.26 

          

4 
Proximity to 

river 

1 280175 31.42 9900 7.86 0.25 0.04 

1.8 

2 177184 19.87 29700 23.57 1.19 0.21 

3 117213 13.14 23400 18.57 1.41 0.25 

4 141814 15.90 29700 23.57 1.48 0.26 

5 175333 19.66 33300 26.43 1.34 0.24 

          

5 TWI 

1 305687 34.28 29700 23.57 0.69 0.10 

1.97 

2 331469 37.17 41400 32.86 0.88 0.13 

3 168593 18.91 30600 24.29 1.28 0.19 

4 70270 7.88 19800 15.71 1.99 0.29 

5 15700 1.76 4500 3.57 2.03 0.29 

          

6 Slope 

1 57350 6.43 4500 3.57 0.56 0.13 

1.05 

2 38469 4.31 2700 2.14 0.50 0.12 

3 60831 6.82 9900 7.86 1.15 0.28 

4 255806 28.69 27000 21.43 0.75 0.18 

5 479265 53.75 81900 65.00 1.21 0.29 

          

7 Rain 

1 98438 11.04 900 0.71 0.06 0.01 

2.15 

2 267834 30.04 37800 30.00 1.00 0.22 

3 229792 25.77 39600 31.43 1.22 0.26 

4 132352 14.84 28800 22.86 1.54 0.33 

5 163303 18.31 18900 15.00 0.82 0.18 
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8 NDVI 

1 265599 29.79 36000 28.57 0.96 0.19 

1 

2 299415 33.58 37800 30.00 0.89 0.18 

3 176169 19.76 27900 22.14 1.12 0.23 

4 115239 12.92 20700 16.43 1.27 0.26 

5 35297 3.96 3600 2.86 0.72 0.15 

          

9 Land Use 

1 370913 41.60 50400 40.00 0.96 0.15 

1.99 

2 19574 2.20 6300 5.00 2.28 0.36 

3 233985 26.24 36900 29.29 1.12 0.18 

4 227932 25.56 26100 20.71 0.81 0.13 

5 39315 4.41 6300 5.00 1.13 0.18 
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Appendix B: MK and Sen’s slope values for extreme rainfall indices 
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Appendix C: MMK test results according to the annual and seasonal level 

 

 

  

 

 

 

  

  

  

Table 1 Annual MMK results 

Station Name Z-value P-value Sen’s Slope Tau 

Colombo 2.164 0.030 0.000 0.014 

Angoda     

Hanwella 1.911 0.056 0.000 0.028 

Awissawella -0.081 0.935 0.000 -0.001 

Chesterford -1.019 0.308 0.000 -0.014 

Undugoda 1.954 0.051 0.000 0.058 

Maliboda -0.016 0.987 0.000 0.000 

Laxapana 2.055 0.040 0.000 0.166 

Maussakelle -1.220 0.223 0.000 -0.012 

Labugama -1.385 0.166 0.000 -0.020 

Average 1.871 0.061 0.000 0.019 

Table 4 IM2 MMK results 

 

Station Name Z-value P-value Tau Sen’s Slope 

Colombo 0.3925 0.6947 0.0529 2.0857 

Angoda 0.0768 0.9388 0.0115 1.0364 

Hanwella -0.0571 0.9545 -0.0069 0.3907 

Awissawella -1.0171 0.3091 -0.1333 -6.8011 

Chesterford 0.2141 0.8305 0.0299 1.2522 

Undugoda -0.3568 0.7212 -0.0483 -1.7183 

Maliboda 5.2453 0.0000 0.6782 55.8367 

Laxapana -1.3202 0.1868 -0.1724 -10.7545 

Maussakelle -2.0696 0.0385 -0.2690 -7.5889 

Labugama 0.0000 1.0000 0.0023 0.0034 

Average 0.5383 0.5904 0.0759 3.1125 

Table 5 NEM MMK results 

 

Station Name Z-value P-value Tau Sen’s Slope 

Colombo 2.0696 0.0385 0.2690 6.5000 

Angoda 0.4639 0.6427 0.0621 1.1004 

Hanwella -0.0357 0.9715 -0.0069 -0.3552 

Awissawella -1.3322 0.1828 -0.2138 -5.8782 

Chesterford 0.8207 0.4118 0.1080 3.7125 

Undugoda -0.7136 0.4754 -0.0943 -2.3428 

Maliboda 5.4237 0.0000 0.7011 22.4030 

Laxapana 0.3568 0.7212 0.0483 1.2091 

Maussakelle 1.2132 0.2251 0.1586 2.3727 

Labugama 0.0357 0.9715 0.0069 0.2500 

Average 1.1061 0.2687 0.1448 2.4536 
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Table 2 IM1 MMK results 

 

Station Name Z-value P-value Sen’s Slope Tau 

Colombo 0.9634 0.3353 3.7619 0.1264 

Angoda 0.3568 0.7212 0.9814 0.0482 

Hanwella 0.4282 0.6685 1.8992 0.0575 

Awissawella -0.9990 0.3177 -0.1310 -4.3857 

Chesterford 1.5700 0.1164 8.5588 0.2046 

Undugoda -0.3917 0.6953 -1.6838 -0.0437 

Maliboda 8.1086 0.0000 34.3572 0.7931 

Laxapana -1.3811 0.1672 -0.1586 -6.2960 

Maussakelle -1.2489 0.2117 -4.2400 -0.1632 

Labugama -0.0357 0.9715 -0.2773 -0.0069 

Average 1.2846 0.1989 0.1678 3.7536 

Table 3 SWM MMK results 

 

Station Name Z-value P-value Tau Sen’s Slope 

Colombo -0.6423 0.5207 0.5207 -0.0851 

Angoda 0.0714 0.9431 0.0115 0.3144 

Hanwella -0.7493 0.4537 -0.0989 -6.5695 

Awissawella -2.2123 0.0269 -0.2874 -20.7958 

Chesterford 2.9259 0.0034 0.3793 22.5909 

Undugoda -0.2855 0.7753 -0.0391 -4.2108 

Maliboda 5.4527 0.0000 0.8207 155.3184 

Laxapana -1.2489 0.2117 -0.1632 -16.1667 

Maussakelle -2.1766 0.0295 -0.2828 -22.1600 

Labugama -0.4282 0.6685 -0.0575 -3.2000 

Average 1.8555 0.0635 0.2414 12.5774 



180 
 

 
 

 

Appendix D: Monthly correlation coefficient of rainfall and water level in two Hydrology st

ations (with 95% confidence level) 

 

 

 

Month 

Hanwella 

station  

N’Street 

station 

January 0.486474 -0.02805 

February 0.317721 0.4293 

March 0.316389 0.529025 

April 0.567867 0.626604 

May 0.825415 0.89896 

June 0.62556 0.712226 

July 0.755624 0.7555 

August 0.301845 0.761322 

September 0.752237 0.870345 

October 0.555205 0.72496 

November 0.640162 0.810837 

December 0.627676 0.712474 

Yearly -0.01751 0.756372 


