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Abstract 
In the realm of electric power systems, oil-immersed power transformers stand out as critical and 
expensive assets. The failure of a power transformer would not only result in downtime to the entire 
transmission and distribution networks but may also cause personnel and environmental hazards due to 
oil leak and fire. Owing to their vital function and high cost, the implementation of effective asset 
management strategies for power transformers becomes imperative. This ensures the continuity of 
uninterrupted power supply, mitigating financial risks, and maintaining overall grid stability. While 
extensive effort has been invested by the industry in developing various condition monitoring and fault 
diagnosis apparatuses, it is not economically feasible to apply rigorous inspection and extensive testing to 
all power transformer fleets in the network. The fundamental purpose of asset management is to balance 
cost and reliability of the system.  

With the global trend to establish digital substation automation systems, transformer online condition 
monitoring has been given much attention by utilities and researchers alike. Among the current available 
online condition monitoring technologies, Dissolved Gas Analysis (DGA) has long been recognized as a 
valuable diagnostic tool for detecting potential faults and monitoring transformers’ conditions. This study 
focuses on the integration of online DGA method into asset management practices for oil-immersed 
power transformers, employing an advanced data analytics technique known as Convolutional Neural 
Network (CNN), which is a type of deep machine learning algorithms.  

The formulated model for transformer asset management comprises two core modules: the Fault 
Diagnostic module and Life Management module, both of which have been trained utilizing CNN 
algorithms. The devised Fault Diagnostic module utilizes five-gas (H2, CH4, C2H4, C2H6, and C2H2) 
measurements collected from the online DGA device to predict potential faults, providing a corresponding 
probability of failure. Concurrently, the established Life Management module employs two-gas (CO and 
CO2) measurements from the online DGA device to forecast the percentage of remaining life and the 
extent of degradation. Notably, the outcomes exhibit a commendable performance with an approximate 
accuracy rate of 86% for the Fault Diagnostic module and about 85% for the Life Management module. 
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Chapter 1  Introduction 
1.1. Background and Challenges 
 

Oil-immersed power transformers find extensive application in power systems, primarily owing to their 
capability to manage elevated voltage levels. Power transformers represent key links in electricity grids 
that have a direct influence on the reliability of the entire network [1]. As they are performing under 
continuous thermal, electrical, and mechanical stresses, power transformers, in particular aged 
transformers, are prone to various types of faults that deteriorate its performance and reduce its 
operational life [2]. Therefore, it is necessary to assess the health condition of power transformers, 
provide strategic management plans for each transformer and determine the most economical 
management approach. Without effective asset management in place, it is difficult to make decisions 
about maintenance and replacement priorities [3]. Transformer asset management is used to help 
industry to achieve an optimal balance between technical performance, operating expenses, and capital 
investment [4]. Improper decisions could result in high maintenance costs and long periods of 
unavailability of the transformer. 

The traditional operational and maintenance strategies are time-based, wherein transformers undergo 
periodic check-ups regardless of their current condition. Over the years, various condition monitoring 
methods have been evolved to detect diverse faults in power transformers [5]. The development of online 
condition monitoring sensors offers the opportunity to implement condition-based maintenance. Real-
time condition monitoring increases the likelihood of detecting incipient faults, reducing the probability 
of failures, improving safety operation, controlling unscheduled maintenance, and assisting in prioritizing 
the maintenance and replacement schedule based on individual transformers’ conditions.  

Several online condition monitoring methods have been applied to oil-immersed power transformers, 
further enhancing the capability to assess their health. For instance, partial discharge sensors are 
employed to detect partial discharge faults, providing crucial insights into potential issues. Thermal 
sensors contribute by identifying thermal faults, ensuring timely intervention to prevent further 
escalation. Additionally, vibration sensors are designed to detect abnormal conditions, enabling a 
proactive response to deviations from normal operation.  

In industry applications, Dissolved Gas Analysis (DGA) stands out as a predominant method for 
scrutinizing power transformer oil and identifying potential incipient faults [6]. The widespread adoption 
of the DGA method in industry is attributed to its capability to offer a comprehensive diagnosis. This 
method proves particularly effective as it can identify six primary faults, encompassing critical issues such 
as partial discharge and thermal faults, which has become an essential asset management tool. The 
traditional offline DGA method involves periodic sampling and laboratory analysis, often resulting in 
delayed detection and response to emerging faults. To address these limitations, the advanced online 
DGA units have been emerged to offer real-time monitoring and continuous data acquisition. This results 
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in a substantial amount of data to be interpreted. Various conventional DGA interpretation methods, 
derived from  ANSI/IEEE standard and IEC publication 599, have been extensively utilised in the power 
industry [7, 8]. These methods, including Key gas method, Rogers Ratios, Doernenburg Ratios, Duval 
Triangles and Pentagons, have proven valuable but exhibit certain limitations such as out-of-code ratios, 
distinct boundaries, and the exclusion of gas evolution. These limitations may lead to incorrect and 
inconsistent fault diagnoses [9]. As a result, the accuracy of diagnostic results relies more on expertise 
and experience of analysts.  

Exploring alternative approaches, recent research has delved into the application of artificial 
intelligence (AI) methods, particularly machine learning, to enhance DGA interpretation. Previous studies 
scrutinizing conventional AI methods have identified several drawbacks. Notably, to enhance the accuracy 
of conventional machine learning methods often involves the utilization of carefully engineering crafted 
parameters, as illustrated in Table 1.1. However, the increased number of parameters could slow down 
the training process.  

Table 1.1 Engineering crafted parameters used in machine learning training for DGA analysis. 

Engineering Crafted Parameters 

%CH4 C2H4/C2H6 
%C2H4  C2H2/C2H4 
%C2H2 C2H2/CH4 
CH4/H2 C2H6/C2H2 
CO2/CO C2H2/H2 

 

Furthermore, the diagnosis of co-existing conditions requires multiple training models. An example is 
given in Figure 1.1 using Adaptive Neuro Fuzzy Inference System (ANFIS) machine learning method. As 
shown in the Figure, a minimum of three training models is required, namely, partial discharge criticality, 
discharge (arcing) criticality and thermal criticality. Once again, this multi-model approach has potential 
to slow down the training process.  

 

Figure 1.1 ANFIS diagnostic structure for DGA analysis. 
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1.2. Objectives and Contribution of the Thesis 
The primary objective of this thesis is to formulate a novel asset management strategy grounded in data 
acquired from the online DGA unit for power transformers. The specific objectives and contributions of 
this work encompass:  

• Crafting an asset management strategy that leverages data exclusively from online DGA devices, 
which have gained popularity in the power industry. This approach ensures comprehensive fault 
diagnosis and assessment of deterioration conditions within power transformers, utilizing real-
time data from these advanced DGA devices.  

• Identifying the essential input data required for effective asset management, the newly 
developed asset management model specifically incorporates seven-gas measurements obtained 
from online DGA devices.  

• Developing machine learning algorithms capable of recognizing data patterns within existing 
diagnosed datasets. Within the newly developed asset management framework, a Convolutional 
Neural Network (CNN) classification algorithm is employed to train the Fault Diagnostic module, 
while a CNN regression algorithm is utilized to train the Life Management module. This advanced 
approach enhances the system’s ability to effectively identify and classify fault conditions, as well 
as predict the remaining lifespan of power transformers.  

• Curating diverse datasets containing DGA measurements and target output from a variety of 
sources to enhance the performance and adaptability of the asset management approach.  

1.3. Thesis Outline 
This thesis is composed of five chapters, and the content of Chapters 2 through 5 is outlined below.  

Chapter 2 provides an extensive literature review encompassing a wide range of condition monitoring 
techniques applied to oil-immersed power transformers. This review covers both online and offline 
methodologies, offering a comprehensive examination of each approach. Additionally, the principles and 
drawbacks of each method are thoroughly explained to provide a detailed understanding of their 
applications and limitations.   

Chapter 3 delivers a comprehensive literature review addressing the domain of oil-immersed power 
transformer asset management. The primary focus is on three crucial modules essential to effective 
transformer asset management: the Fault Diagnostic module, the Reliability Assessment module based 
on Health Index, and the Life Management module. It is important to note that all three modules acquire 
data from condition monitoring. Within the review, each module is examined in detail, encompassing 
both traditional conventional methods and emerging artificial intelligence-based approaches.  

Chapter 4 describes the development of the proposed oil-immersed power transformer asset 
management model based on only online DGA measurements. This model adopts a deep machine 
learning-based approach called convolutional neural network. The chapter elucidates the architecture and 
functionality of two pivotal modules integrated into the proposed model: the Fault Diagnostic module and 
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the Life Management module. It is noteworthy that contemporary online DGA units can measure up to 
nine different gases. Within the proposed Fault Diagnostic module, five gases are utilised to assess and 
indicate the transformer’s condition, identifying potential discharge, thermal, partial discharge issues, or 
affirming a fault-free state. Simultaneously, the Life Management module relies on measurements from 
two gases to evaluate the level of insulation paper deterioration, providing an estimate of the remaining 
life of the transformer. In addition to detailing the modules’ architecture, the chapter extensively 
discusses the validation results of each module over actual transformer condition.   

Finally, in Chapter 5, the overall research conclusion and recommendations for future work are presented. 
In conclusion, this chapter encapsulates the key findings derived from the entire research endeavour. 
Additionally, the chapter outlines valuable recommendations for future research directions and potential 
areas of further exploration in the field of oil-immersed power transformer asset management.  
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The content of this chapter has been published in the following paper: Oil-immersed Power Transformer 
Condition Monitoring Methodologies: A Review 

Chapter 2  Oil-immersed Power Transformer Condition 
Monitoring Methodologies 

2.1. Introduction 
Oil-immersed power transformers play a pivotal role in power systems. These transformers endure 
continuous thermal, electrical, and mechanical stresses, making them prone to a range of potential faults. 
Faults such as windings and core mechanical deformation, partial discharge, overheating and arcing result 
in deterioration to the transformer mechanical integrity and degradation to the dielectric insulation 
system [10]. While the transformer may operate normally with incipient faults, some faults such as 
winding axial displacement can progress rapidly and lead to catastrophic consequences if not detected 
and rectified at early stage [11]. Short-circuit faults and overloading can further increase the probability 
of unexpected failures of power transformers.  

In 2017, the University of Queensland conducted a comprehensive survey on power transformer 
failures within Australia, focusing on a significant portion of the national transformer fleet. The study 
encompassed 6057 power transformers, representing approximately 98% of Australia’s transformer 
inventory [12]. The collected data, covering the period from 2000 to 2015, revealed 199 reported 
transformer failures, accounting for 3.29% of the analysed transformers. The statistics reveal a high 
number of non-catastrophic failures occurs in the 30 to 49 years age group while a higher catastrophic 
failure rate occurs in age groups 0 to 9 years and above 49 years. The causes of the failures have been 
categorized into five major groups: bushings, on-load tap changer (OLTC), windings, insulation systems, 
and others with failure distribution profile as shown in Figure 2.1 [12]. This survey emphasized the critical 
need for the adoption of reliable condition monitoring techniques across various power transformer 
components. The essential parameters for monitoring each key components are illustrated in Figure 2.2 
[13, 14]. 

 

 

Figure 2.1 Distribution of failures for Australian power transformers during the period 2000 to 2015. 
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Figure 2.2 The parameters to be monitored for oil-immersed power transformer components. 

Over the years, wide variety of sensor technologies applicable to both online or offline fault diagnostic 
methods have been developed for power transformer condition monitoring systems [15]. In this chapter, 
we explore nine typical offline diagnostic methods for power transformers.  

In contrast to offline testing methods, online condition monitoring offers numerous advantages, 
including the provision of timely information regarding the health of the transformer, early detection of 
incipient faults to facilitate informed and timely decision-making by asset managers, a reduction in the 
likelihood of unplanned downtime resulting from catastrophic failures, mitigating of production cost 
losses due to transformer outages, and a decrease in the risk to personnel, as it requires less frequent 
access to high voltage substations. Hence, there is an imperative to continually enhance online condition 
monitoring methods for oil-immersed power transformers. Four commonly known online methods are 
presented in this chapter. An overview of both offline and online condition monitoring techniques for oil-
immersed power transformers currently employed in the industry is depicted in Figure 2.3. The 
overarching goal of this comprehensive review is to introduce and explore various online and offline 
condition monitoring methods for power transformers.  
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Figure 2.3 Offline and online condition monitoring methods for oil-immersed power transformer. 

2.2. Offline Condition Monitoring Methods 

2.2.1 Degree of Polymerization of Insulation Paper 
The transformer’s insulation paper and pressboard are constructed from cellulose polymer. As 
transformer aging over the time, the structure of cellulose polymer as shown in Figure 2.4 becomes 
increasingly fragile. This fragility results in degradation of the paper insulation, losing its dielectric and 
mechanical strength. The length of the cellulose chain is measured by the number of monomer units in 
the polymer, also known as degree of polymerization (DP). The quality of cellulose is a function of the DP 
value that can be measured using average viscosity method [16, 17]. 

 

Figure 2.4 Chemical structure of cellulose. 
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In general, new transformers exhibit DP values in the range of 1000-1400 [18]. When the DP value 
drops to the range of 100-250, it is considered end of paper’s useful life, which is corresponding to end of 
transformer life [18]. Measuring DP involves collecting paper samples from various locations within the 
transformer windings, which is impractical for transformers in active service. Therefore, this method is 
only performed during planning for transformer replacement. Alternatively, indirect methods, such as 
Furan analysis, can be used to estimate the DP value of the insulation paper.  

 

2.2.2 Furan Analysis 
The utilization of furan analysis presents a viable diagnostic approach for evaluating the condition of paper 
insulation in oil-immersed power transformers. The degradation of cellulose, induced by factors such as 
elevated temperatures, oxygen exposure, moisture, and acidic content, results in the generation of five 
distinct furan compounds, as detailed in Table 2.1 [19, 20].  

Table 2.1 Furan compounds and associated types of stresses. 

Furan Compound Symbol  Nature of Stress 
2-furaldehyde 2-FAL Overheating 
5-methyl-2-furaldehyde 5-M2F Local severe overheating 
5-hydroxymethyl-2-furaldehyde 5-H2F Oxidation 
2-acetyl furan 2-ACF Lightning 
2-furfurol 2-FOL High moisture 

 
The concentration of these furan compounds, typically measured in parts per million (ppm), can be 

measured using high performance liquid chromatography (HPLC) or gas chromatography-mass 
spectrometry (GC/MS) in a laboratory environment [21]. In industry practice, 2-FAL stands out as the 
predominant compound due to its substantial generation rate and stability in oil [19]. Notably, there exists 
a strong correlation between 2-FAL measurements and the DP value, as detailed in Table 2.2, a 
relationship supported by existing literatures and IEEE guidelines [18, 22]. This correlation facilitates a 
non-intrusive diagnostic alternative to the DP test, traditionally conducted in a laboratory setting by 
trained personnel using expensive equipment. However, a standardized code linking furan analysis to DP 
for biodegradable oil and thermally upgraded paper has yet to be established.  

A novel approach, introduced in [23], combines ultraviolet-to-visible (UV-Vis) spectroscopic technology 
with artificial intelligence to estimate the concentration of the 2-FAL compound in transformer oil 
samples. The UV-Vis spectroscopic diagnostic method relies on measuring the absorbance of light by 
contaminants present in the transformer oil [24]. Consequently, this technology can not only assess the 
quality of the transformer oil but also quantify the reduction in its operational lifespan [24, 25]. The 
proposed UV-Vis spectroscopic method features low cost, easy to perform by unexperienced personnel 
and can be conducted onsite or implemented online. However, this method has not yet undergone 
extensive testing on operational transformers.  
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Table 2.2 The correlation between 2-FAL and DP for paper insulation with condition level 

2-FAL (ppm) DP Value Degree of 
Degradation 

0-0.1 1200-700 Healthy 
0.1–1.0 700-450 Moderate 
1-10 450-250 Extensive 
>10 < 250 End of Life 

 

2.2.3 Interfacial Tension Analysis and Acidity 
Interfacial tension (IFT) analysis and acidity number measurement are used to assess oil quality. The 
presence of contaminants and degradation by-products can significantly impact the physical and electrical 
properties of insulation oil, leading to a reduction in IFT. Additionally, the process of oil oxidation gives 
rise to the formation of acidic by-products [26]. To determine IFT, a planar ring with circumference d is 
inserted into a container filled with insulating oil and water mixture, then measures the interfacial force 
(F, dyne/cm) required to lift the ring 10mm upward through the oil-water interface [26]. IFT analysis is 
detailed in standard ASTM D971. In general, transformers ≤ 69kV with IFT ≤ 22 dynes/cm; and 
transformers > 69kV with IFT ≤ 25 dynes/cm are considered to approach the end of insulating oil service 
life. The conventional IFT test requires a trained person and expensive equipment to conduct the 
measurements. Therefore, the test is normally performed in a laboratory environment. There has been 
research on using UV-Vis spectrum method to determine the IFT value of transformer oil sample [27]. This 
spectroscopic measurement is based on measuring energy level in atoms and molecules. The 
measurements can then be analysed using artificial intelligence software tool to estimate the IFT value. 
This method has an online application feasibility but has not been tested on practical field yet.  

The Acidity number, also known as neutralization number (NN), provides insights into the acid content 
within insulating oil. It quantifies the mass of potassium hydroxide (KOH) in milligrams (mg) required to 
neutralize the acid in one gram (gm) of the oil. The NN tends to increase as the transformer ages, and its 
limitations are outlined in the ASTM D974 standard. In general, transformers ≤ 69kV with NN ≥ 0.20 mg 
KOH/gm; transformers of rated voltage between 69kV, 230kVwith NN ≥ 0.15 mg KOH/gm; and 
transformers ≥ 230kV with NN≥ 0.10 mg KOH/gm are considered in critical condition in terms of oil quality. 
 

2.2.4 Oil Dielectric Breakdown Voltage  
The oil dielectric breakdown voltage (BDV) test is a common method used to determine the breakdown 
voltage of insulating oil. As transformers age, the insulating oil degrades, and decomposes resulting in 
moisture, sludge, gases, and impurities that decrease the dielectric strength of the insulating oil [28]. 

The BDV test can be conducted on-site using a mobile test device. According to the standard IEC 60156, 
the test is conducted by applying a steady incremental voltage 2kV/s until breakdown occurs at the 
electrode, which is immersed in the insulating oil sample. The test is repeated at least six times and the 
average value of the measurements is considered as the oil BDV [29]. The correlation of the transformer 
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oil dielectric strength and the oil BDV is detailed in the standard IEEE C57.106 [30]. Generally, oil of a BDV 
lower than 30kV calls for further investigation and correction action [31]. 

It's worth noting that there are ongoing developments in the creation of online BDV test unit. The 
concept involves installing a detection unit in proximity to a transformer and connecting it to the primary 
oil tank, permitting a continuous closed-loop circulation of oil through the measuring unit.  
 

2.2.5 Insulation Resistance Test 
The insulation resistance (IR) test is designed to evaluate the insulation resistance of power transformers. 
IR value reveals the insulation degradation due to contamination, moisture, and severe cracking. The test 
is performed by applying a constant DC voltage for 10 minutes between windings or windings and ground 
[32, 33]. IR values are measured every minute or less in MΩ using a metering instrument called Megger 
or Megohmmeter. Typical trend of IR measurements is shown in Figure 2.5 [33]. A single IR result is not 
enough to determine the insulation status [34]. An insulator is considered as a capacitor that with the 
application of voltage, a charging current will flow. If the insulation is contaminated, the charging time is 
typically 1 minute [33]. After 10 minutes of testing, the IR value can reach a stable level. Historical trending 
results for IR is useful to monitor insulation condition over years [34]. If the IR value drops from the 
previous test, further investigation and analysis will be required.  

The polarization index (PI) represents another parameter used for evaluating the insulation condition. 
PI is typically calculated using IR measurements taken at 1 minute (IR1min) and 10 minutes (IR10min) as given 
by (2.1) [33, 35]. A sharp decline in PI is an indication to severe insulation degradation [34].  

 
𝑃𝑃𝑃𝑃 =  𝐼𝐼𝑅𝑅10𝑚𝑚𝑚𝑚𝑚𝑚 (𝑀𝑀Ω)

𝐼𝐼𝑅𝑅1𝑚𝑚𝑚𝑚𝑚𝑚 (𝑀𝑀Ω)
  (2.1) 

  
The limitation of IR test is its inability to identify the IR value of each individual insulation system such 

as bushings, paper, and oil. 
  

 

Figure 2.5 Typical IR measurements versus time of the applied voltage. 
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2.2.6 Dissipation Factor Measurement 
Dissipation factor (DF) analysis is used to assess bushings and insulation condition. This offline test is 
performed periodically on bushings and windings [36]. In an ideal scenario, insulation, essentially a 
dielectric material, can be considered as a pure capacitor. Over time, the permittivity of the material 
changes due to aging, and it causes capacitive current variations. Additionally, the degradation of the 
material leads to an increase in resistive leakage currents. 

The dissipation factor, also known as power factor or tan delta, presents the ratio between the 
capacitance current and resistive current components flowing through the insulation. Figure 2.6 (a) 
illustrates a simplified equivalent model of a dielectric structure. On an isolated transformer, AC voltage 
of up to 10kV is applied through the bushings [37]. In an ideal scenario, the insulation exhibits capacitive 
current leading the applied voltage by 90 degrees, as depicted in Figure 2.6 (b) [38]. Consequently, the 
total current I equals the capacitive current IC, and the DF (tan δ) is zero.  

However, the presence of some leakage current (resistive current IR) through the insulation’s surface 
increases due to the contamination or carbonization in the insulation, and it represents the resistive loss, 
also called watt-loss. The term tan delta (tan δ) presents the ratio between the resistive IR and capacitive 
IC current components, and power factor (cos θ) represents the fraction of IR with respect to the total 
current I.  
 

                                                                   (a)                                                        (b) 

Figure 2.6 (a) Equivalent circuit represents a dielectric and (b) phasor diagram. 

 
The DF and power factor (PF) calculations are given by (2.2) and (2.3) respectively [37, 38]. Any changes 

in these values indicate power dissipated in the insulation. Lower DF and PF means lower dielectric losses 
[39]. For mineral-oil-immersed power transformers in normal condition, PF is lower than 0.5%. PF value 
between 0.5% and 1% could be acceptable whereas a PF value over 1% is an indication for insulation 
degradation [39].  

% 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝐷𝐷𝐹𝐹 (𝐷𝐷𝐹𝐹) = % tan(𝛿𝛿) =  𝐼𝐼𝑅𝑅
𝐼𝐼𝐶𝐶

 × 100%  (2.2) 

% 𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝐹𝐹 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝐷𝐷𝐹𝐹 (𝑃𝑃𝐹𝐹) = % cos(𝜃𝜃) =  
𝑃𝑃𝑅𝑅
𝑃𝑃

 × 100% (2.3) 
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The value of DF represents the average index of the dielectric integrity considering both capacitive and 
resistive currents in the apparatus. For detailed analysis of insulation quality, the trend of IC and IR variation 
is investigated. The main drawback of DF analysis is that it provides an average condition of insulation 
integrity, and the results are sensitive to the ambient temperature [39]. This test is generally performed 
on-site during commissioning, regular maintenance, or malfunction investigation. The results of DF 
measurement are compared to previous DF rates for analysing the trend of insulation degradation.  

Online PF measurement is available for assessing the insulation condition of bushings. Figure 2.7 shows 
the equivalent circuit for bushings PF setup [37]. The bushing has dielectric resistance RX shunted by a 
capacitance CX, with bushing tap U2 connected to the ground through an impedance ZM. The voltage U2 is 
compared to a reference voltage U1. Bushing condition changes result in changes in the amplitude and 
phase of U2 with respect to the reference voltage.  

 

Figure 2.7 Equivalent circuit for bushing PF monitoring. 

 

2.2.7 Dielectric Response Methods 
Impurities such as moisture and aging by-products in oil-paper insulation system increase the dielectric 
losses [40]. Moisture content and contaminations such as sludge result in polarization within the dielectric 
molecules [41]. Moisture, temperature, aging, and other factors lead to different characteristics of 
polarization. These phenomena can be identified by the dielectric response methods listed below [42]: 

• Recovery/return voltage measurements (RVM) 
• Dielectric spectroscopy in time domain – polarization/depolarization currents (PDC) 
• Dielectric spectroscopy in frequency domain/Frequency domain spectroscopy (FDS) 
These three techniques are elaborated below.  

2.2.7.1 Recovery/Return Voltage Measurement  
Recovery voltage measurement (RVM) is utilized to analyse the slow polarization process of the oil and 
paper insulation [42, 43]. The basic measuring circuit for RVM is shown in Figure 2.8 (a). By applying a step 
DC voltage U0 and closing switch S1, the insulation is charged for a specific time period tc. This results in 
a polarization current flow through the insulation after which the insulation is short-circuited by opening 
switch S1 and closing switch S2 for a certain time td, allowing depolarization current to flow. Switch S2 is 
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opened after the short-circuit period while switch S3 is closed to measure the recovery voltage. The 
charging/discharging time and recovery voltage are shown in Figure 2.8 (b). The initial slope dUr/dt of the 
recovery voltage reveals the polarization characteristics [43, 44].  

 

 
              (a) 

 
                                                      (b) 

Figure 2.8 (a) Basic RVM measuring circuit and (b) measurements. 

 
Interpretation of RVM results hinges on both the magnitude and the position of the maximum recovery 

voltage [45]. In the polarization spectrum profile presented in Figure 2.9, parameters such as the 
maximum recovery voltage Urmax along with the central time constant are utilized for assessing the 
insulation condition [46-48]. The central time constant is the charging time to the peak value of the 
recovery voltage.  
 

 

Figure 2.9 Example of RVM polarization spectrum. 
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In general, an insulation system with a higher moisture content has a relatively shorter charging and 

discharging time. On the other hand, an insulation system with lower moisture content has a relatively 
slow polarization response [46]. RVM from factory acceptance testing (FAT) can be used as a reference to 
monitor the trend of insulation state with future test results.  
 

2.2.7.2 Polarization/Depolarization Currents 
The polarization/depolarization currents (PDC) method is a time domain analysis used to evaluate the 
transformer’s insulation condition. PDC measures the polarization and depolarization currents [49]. The 
basic test circuit is similar to RVM, with the key difference being that PDC measures currents, as illustrated 
in Figure 2.10 (a). The polarization current ip is measured when switch S1 is closed and switch S2 is open. 
The depolarization current id is measured when S1 is open and S2 is closed. Figure 2.10 (b) shows that the 
test is performed by applying a step DC voltage U0, to charge the insulation for a specific period tp, then 
short-circuit the insulation for a certain period td. Water content and contamination increase the 
insulation conductivity. Elevated conductivity levels lead to higher polarization and depolarization 
currents [45, 50]. Figure 2.11 illustrates the variation in the polarization and depolarization currents (Ip 
and Id) corresponding to insulation conductivity. Insulation with higher conductivity results in higher PDC 
values [49]. The advantage of PDC method over RVM and frequency domain spectroscopy is its ability to 
assess paper and oil’s status separately. 

 

 
                                     (a) 

 
                                      (b) 

Figure 2.10 (a) Basic PDC measuring circuit and (b) waveform of polarization and depolarization currents. 
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Figure 2.11 Example of relationship between polarization/depolarization currents and insulation conductivity. 

2.2.7.3 Frequency Domain Spectroscopy   
In the frequency domain spectroscopy (FDS) method, an AC voltage is applied to the test object with a 
frequency starts from 1kHz to 1mHz as illustrated in the basic circuit of Figure 2.12 (a). The voltage and 
current measurements are taken at each of these testing frequency points. Dielectric parameters such as 
relative complex permittivity, complex capacitance and dissipation factor (tan δ) can be obtained from 
this test [51]. These parameters reflect the polarization characteristics of oil-paper insulation system.  

In Figure 2.12 (b), a typical dielectric response of oil-paper insulation system is presented as a dielectric 
dissipation factor (tan δ) curve. The variation of dissipation factor with frequency indicates the aging and 
moisture content in both paper and oil insulation. According to the curve, the response for oil insulation 
dominates the frequency range 0.1Hz to 10Hz, and dissipation factor increases towards the lower 
frequencies [52]. 

FDS was found to be of good consistency with other chemical and electrical analysis methods, and 
hence, it has been a preferred method among the three dielectric response analysis techniques [51]. In 
addition, FDS detection method exhibits less sensitivity to external noise than PDC [47].  

 

 
                                 (a) 
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                        (b)                                             

Figure 2.12 (a) Basic FDS measuring circuit and (b) typical FDS response. 

 

2.2.8 Sweep Frequency Response Analysis  
Sweep frequency response analysis (SFRA) is primarily employed to assess the mechanical integrity of 
power transformers. Ideally, this test should be performed after the installation of the transformer to 
establish a baseline healthy frequency response signature. This baseline signature can then be compared 
with future signatures to identify any anomalies or mechanical changes [53]. The measurement is 
conducted using frequency response analyser, which introduces a low AC voltage (10V) across a wide 
frequency range (up to 2MHz) into the terminal of each phase while measuring the response at the other 
terminal. The frequency response signature could be on the form of winding impedance, admittance, or 
transfer function (in dB) as shown in Figure 2.13 that also shows the phase angle of the three phases of 
the low voltage windings. The measured response is compared with the reference signature to detect any 
variations. In cases where a reference signature is unavailable, alternative methods, such as comparing 
the signature with that of a similar sister transformer or performing a phase-to-phase comparison, can be 
employed.  

 

 
                                            (a)  
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                                      (b) 

Figure 2.13 FRA measurement example, (a) Transfer function amplitude. (b) Transfer function phase angle. 

 
While the SFRA measurement is well developed and standardized, analysis of the obtained results is 

still a challenging task. Some attempts have been published in the literatures in order to identify and 
quantify mechanical faults based on SFRA signature. Most of these techniques are developed based on 
artificial intelligence [54], statistical coefficients [55] and the estimation of transformer equivalent circuit 
parameters [56]. While the current industry practice only look at the SFRA magnitude signature, some 
studies proposed the integration of SFRA magnitude and phase angle plots into one 2D or 3D plots to 
facilitate the application of digital signal processing techniques and improve the accuracy of the 
interpretation process [57].  

The main drawback of the SFRA measurement technique is its offline nature that calls for taking 
operating transformers out-of-service. Some attempts were published in the literature for the possibilities 
of using the natural switching operation, lightning and impulse signal for online SFRA measurements [58, 
59]. However, none of these techniques has been implemented in real field applications yet. The main 
issue of implementing online SFRA measurements is the requirement to impose a signal of a wide 
frequency range to the electricity grid in which the power frequency should be maintained at 50 or 60 Hz. 
Some studies proposed the use of transformer I-V Lissajous pattern at the power frequency [60] as an 
alternative online technique to the offline SFRA method. However, this method has not been tested on 
real field application yet.  
 

2.2.9 Transformer Turns Ratio Test 
The transformer turns ratio (TTR) test can be used to determine insulation failure between turns, core 
structure insulation failure or inter-winding insulation failure. TTR test is normally performed during 
commissioning and planned maintenance periods [61].  

For comprehensive TTR testing, it is essential to check each tap position and calculate ratios for all 
three phases. To calculate the voltage ratio Vratio, a reduced voltage Vp is applied to the primary side, 
resulting in a voltage Vs on the secondary side. The primary and secondary terminal voltages are 
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proportional to the number of turns on their respective sides, namely, the primary side Np and the 
secondary side Ns. Therefore, the ideal turns ratio can be expressed in (2.4)[62]. 

 
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑉𝑉𝑝𝑝

𝑉𝑉𝑠𝑠
=  𝑁𝑁𝑝𝑝

𝑁𝑁𝑠𝑠
   (2.4) 

 
The measurements are compared to the ratios on the nameplate for all windings and tap positions. A 

key criterion is ensuring that the difference, denoted as ∆ratio and defined by (2.5), falls within specified 
limits. Generally, the acceptable tolerance for this difference is set at 0.5%, although for new 
transformers, a stricter tolerance of 0.1% is often required [39].  
 

%∆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=  �
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚  −𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚
�× 100%  (2.5) 

  
The TTR test is a widely employed offline method due to the availability of test devices [63]. It holds 

particular significance for transformers operating in parallel. When two parallel transformers have 
unequal turns ratios, disparities in voltage between their outputs can lead to the generation of circulating 
currents through busbars. Even minor errors in turns ratio can trigger substantial equalization currents, 
leading to excessive heat generation and increased power losses [63]  

2.3. Online Condition Monitoring Methods 

2.3.1 Dissolved gas analysis  
Dissolved gas analysis (DGA) stands as one of the widely adopted methods for the detection of internal 
faults in transformers [64]. This method has been developed based on the fact that under harsh operating 
conditions, the insulating oil and paper within a transformer decompose and release certain gases that 
dissolve in the oil, thereby diminishing its dielectric strength [65]. The fault gases include hydrogen (H2); 
methane (CH4); ethane (C2H6); ethylene (C2H4); acetylene (C2H2); carbon monoxide (CO) and carbon 
dioxide (CO2). Oxygen (O2) and nitrogen (N2), which are not produced by faults, are also included in the 
measurements. The amount and type of these gases are instrumental in identifying and quantifying 
various types of faults. Table 2.3 summarizes the fault types and the key gasses corresponding to each 
fault.  

The conventional offline DGA measurements are carried out in a laboratory environment using Gas 
Chromatography (GC) [66]. While this method is highly precise, it necessitates adherence to several 
standards, encompassing procedures for collecting oil samples from operational transformers, their 
transportation, and storage [58]. Moreover, this technique incurs running costs, takes a relatively long 
time, and has to be conducted by an expert. Consequently, several online DGA sensors have emerged in 
recent years, including online GC, photo-acoustic spectroscopy (PAS) and online hydrogen detection [67].  

For online DGA, the monitoring sensor is directly connected to the transformer and a pump is required 
to circulate the oil through the measuring unit. The process typically encompasses three steps: gas 
extraction, gas detection and data analysis. 
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Table 2.3 Fault types and key gases corresponding to each fault. 

 
 

2.3.1.1 Gas Extraction 
For online GC and PAS detection, a gas extraction device is required. The headspace technique is a 
matured membrane-based dissolved gas-in-oil analysis method. It applies negative pressure to the top 
space for the dissolved oil extraction [68]. This technology is highly efficient, low risk of gas pollution and 
easy to maintain. Figure 2.14 illustrates the working principle of Teflon coated membrane (Teflon AF2400) 
[69, 70]. The membrane serves as a physical barrier, permitting only gas to migrate between the gas phase 
and liquid phase. A quality membrane should offer excellent gas permeability, oleophobic characteristic, 
as well as chemical and thermal stability.  

 

 
Figure 2.14 Headspace extraction structure diagram and membrane structure. 
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2.3.1.2 Gas Detection 
Gas Chromatographic (GC) 
The most common GC detectors are: Thermal Conductivity Detector (TCD) and Flame Ionization Detector 
(FID). These types of detectors are normally used as a combined method in laboratory environment due 
to their limitations. For example, TCD sensitivity to detect hydrocarbon gases is low. FID is insensitive to 
hydrogen and requires several types of carrier/auxiliary gases including hydrogen, which is not allowed to 
be used inside substations due to its potential flammable hazards. Solid Oxide Fuel Cell (SOFC) sensor is 
newly developed on-line GC detector [71]. It has high sensitivity and good repeatability to detect H2, CO, 
CH4, C2H4, C2H6 and C2H2. The sensitivity to detect C2H2 is 0.05ppm while it is 0.5ppm in case of FID and 
TCD sensors. 

Figure 2.15 illustrates the basic structure of an online DGA system employing GC with SOFC detector. 
In this setup, the dissolved gas mixture is initially separated from oil within the gas extraction unit. Since 
different gases have different adsorption coefficients [72], the gas mixture of H2, CO, CH4, C2H4, C2H6 and 
C2H2 is separated when passing through Chromatographic Column and subsequently detected by the SOFC 
sensor. The voltage output of the SOFC detector as depicted in Figure 2.16, is then transmitted to the data 
acquisition unit, where it is converted into digital signals representing the concentration of each gas. 
 

 

Figure 2.15 Online GC system using SOFC detector. 

 
Figure 2.16 Example of voltage signal output of SOFC detector equivalent to gas concentrations. 
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Photo-acoustic Spectroscopy (PAS) 
While GC technique is indeed a highly accurate method for detecting dissolved gases, it has certain 
drawbacks, including the consumption of carrier gases. Moreover, after extended use, it requires 
calibration, replacement of chromatographic columns and sensors due to changes in their properties [73]. 
Photo-acoustic Spectroscopy (PAS) sensor uses indirect absorption spectroscopy and overcomes GC’s 
limitation. 

Figure 2.17 illustrates the principle of PAS, which relies on the photo-acoustic effect. The dissolved 
gases inside an enclosure container absorb light energy and increase the gas molecules’ kinetic energy, 
resulting in temperature increment on the macroscopic level. This heat leads to pressure fluctuations 
(sound waves) and can be detected by a sensitive microphone. The concentrations of the gases are 
measured based on the amplitude of the photoacoustic signal detected by the microphone [74-76]. 

 

Figure 2.17 The principle of photo-acoustic effect. 

The schematic diagram of PAS unit is shown in Figure 2.18 [67]. In this system, light from the laser 
source passes through the light chopper and is then measured using a photo-acoustic cell. The light 
chopper wheel rotates and switches the light on and off. The frequency of the light chopper is measured 
with a photo detector and is used as reference frequency. The performance of the PAS detection unit 
mainly depends on the characteristics of the laser light source. When the light frequency coincides with 
the gas absorption band, gas molecules absorb a portion of the light. According to the Beer Lambert Law, 
the higher the gas concentration in the cell, the more light is absorbed. Figure 2.19 illustrates the 
electromagnetic spectrum of light. The spectrum includes γ-radiation, X-ray, ultraviolet (UV), visible light, 
infrared red light, microwaves, and radio waves. The absorption spectrum for gas molecules primarily falls 
into three regions: Near Infrared (NIR), Middle Infrared (MIR) and Far Infrared (FIR) [77]. The system 
employs various types of laser light sources to enhance the detection sensitivity. Additionally, it 
incorporates an optical microphone to mitigate electromagnetic interference from the challenging 
transformer environment and an optical power meter to monitor and prevent light source power drift 
during extended operational periods [78]. 
 

 

Figure 2.18 Schematic diagram of PAS detection unit. 
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Figure 2.19 The electromagnetic spectrum for various wavelength regions of light. 

Online Hydrogen (H2) Detection 

Table 2.4 shows that the presence of dissolved H2 in transformer oil sample can be attributed to partial 
discharge, thermal faults and arcing events [79]. According to this table, an increase of H2 concentration 
can serve as an indicator for most major faults. During normal transformer operation, the H2 
concentration should ideally remain below 100 ppm [80]. While GC and PAS techniques are capable of 
detecting hydrogen, these techniques require the gas extraction component. Online hydrogen sensors, 
on the other hand, come into direct contact with transformer oil without the need for gas and oil 
separation membranes. Therefore, they require fewer components in their manufacturing, making them 
a cost-effective option for lower budget condition monitoring.  

Table 2.4 Primary faults associated with key gases. 

Key Gas Characteristic Fault 
H2, CH4, C2H4, 
C2H6 

Thermal fault from 150 to 
300°C 

H2, CH4, C2H4, 
C2H6 

Thermal fault from 300 to 
700°C 

H2, C2H4, C2H2 Over 700°C thermal fault 
CO, CO2  Decomposition of cellulose 
H2, CH4 Partial discharge 
H2, C2H2 Arcing 

 
The use of gas sensitive detection materials is a fundamental principle for H2 detectors. Over the years, 

there has been substantial research in metal-hydrogen catalytic effects [81]. In 1868, Thomas Grahab 
discovered the absorption of hydrogen by palladium (Pd) during electrolysis [82]. Studies show that Pd 
has high hydrogen solubility and is superior as a gate material for small amounts of hydrogen at room 
temperature [82]. When H2 molecules become in contact with Pd surface, H2 atoms diffuse into Pd lattice 
and forming palladium hydride (PdHx) as shown in Figure 2.20 [83, 84]. As a results, H2 absorption causes 
volume expansion in Pd structure and leads to a change in resistance (∆R), then the signal conditioning 
circuit converts the resistance variation into hydrogen concentration [84, 85].  
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Figure 2.20 Diagram of H2 atoms react with Pd surface. 

In a palladium-hydrogen system, if incorporated H2 atoms exceed the maximum H2 solubility within Pd 
layer, this can cause a hysteretic behaviour in the resistance with irreversible structural changes in the Pd 
layer [85]. This affects the sensor performance and results in a loss of long-term stability. Hence, a variety 
of Pd alloys such as Pd-Mg, Pd-Au, Pd-Ag and Pd-Ni have been studied [80]. Pd combined with Ni has 
already been implemented in industrial hydrogen sensors e.g., Siemens Energy’s SITRAM Guard hydrogen 
sensor.  

2.3.1.3 DGA Data Interpretation  
Various DGA diagnostic techniques currently used by utilities worldwide include a) Key Gas Method 
(KGM); b) Rogers Ratio Method (RRM); c) Doernenburg Ratio Method (DRM); and d) Duval Triangle 
Method (DTM) [7]. As of now, all DGA interpretation guidelines are derived from laboratory results. There 
is no widely accepted standard for online DGA [7, 86]. 

 
a) Key Gas Method 

As per IEEE Std C57.104 – 2019, the Key Gas Method (KGM) can be used to diagnose four types of faults: 
thermal degradation, overheating in oil and cellulose, partial discharge (PD) and arcing as shown in Table 
2.5. To diagnose thermal degradation faults, the presence of C2H4, along with C2H6, CH4 and H2, is indicative 
when the hotspot temperature exceeds 300°C. At temperature surpassing 700°C, the appearance of C2H2 
is expected. [87].  

In the case of overheating in oil and cellulose fault diagnosis, the oil is expected to contain CO, 
accompanied by C2H4, C2H6, CH4 and H2. For partial discharge fault diagnosis, H2 along with CH4, and much 
smaller amount of C2H4 and C2H6 will be found in the oil.  

In situations involving high energy arcing, temperature can reach the range of 2000°C to 3000°C or 
even higher [88, 89]. When the temperature exceeds 700°C, the key gas C2H2 will be formed along with 
H2, CH4, C2H4 and C2H6, and CO, which originates from insulating paper breakdown, can be identified in 
the oil [87]. 
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Table 2.5 The summary of KGM from IEEE C57.104. 

Key Gas Fault type Typical proportions of generated combustible 
gases 

Ethylene 
(C2H4)  

Thermal mineral oil Predominantly Ethylene with smaller 
proportions of Ethane, Methane, and 
Hydrogen. Traces of Acetylene at very high 
fault temperatures. 

Carbon-
Monoxide 
(CO) 

Thermal mineral oil 
and cellulose 

Predominantly Carbon Monoxide with much 
smaller quantities of Hydrocarbon Gases. 
Predominantly Ethylene with smaller 
proportions of Ethane, Methane, and 
Hydrogen.  

Hydrogen 
(H2) 

Electrical low energy 
partial discharge (PD) 

Predominantly Hydrogen with small quantities 
of Methane and traces of Ethylene and Ethane. 

Hydrogen 
and 
Acetylene 
(H2, C2H2) 

Electrical high energy 
(arcing) 

Predominantly Hydrogen and Acetylene with 
minor traces of Methane, Ethylene, and 
Ethane. Also, Carbon Monoxide if cellulose is 
involved.  

 
KGM has some limitations, primarily its conservative approach that places more emphasis on the 

absolute concentration of gases rather than the rate of gas evolution. As a result, KGM has a failure rate 
of approximately 50% when it comes to inconclusive or incorrect fault identification [7]. Additionally, it’s 
worth noting that CO may not consistently serve as a reliable indicator for detecting thermal faults in 
insulating paper. 
 
b) Rogers Ratio Method  

Roger’s ratio method (RRM) relies on three gas ratios: C2H2/C2H4, CH4/H2 and C2H4/C2H6, to identify five 
different faults as detailed in Table 2.6. In contrast to KGM, RRM offers the ability to further categorize 
thermal faults into three levels: low temperature, temperature less than 700°C, and temperature over 
700°C. For instance, if the ratio of C2H4/C2H6 falls between 1.0 to 3.0, and the ratio CH4/H2 is greater than 
1.0, the transformer’s health condition is identified as case 4, indicating a thermal fault less than 700°C. 
However, it’s important to note that RRM may have limitations in detecting certain faults, even when the 
concentration of specific gases is high [7]. 

Table 2.6 Rogers Ratio Method (RRM) from IEEE C57.104. 

Case C2H2/C2H4 CH4/H2 C2H4/C2H6 Suggested fault diagnosis 
0 < 0.1 0.1 to 1.0 < 0.1 Unit normal 
1 < 0.1 < 0.1 < 0.1 Low energy density arcing -

PD 
2 0.1 to 3.0 0.1 to 1.0 > 0.3 Arcing – High energy 

discharge 
3 < 0.1 0.1 to 1.0 1.0 to 3.0 Low temperature thermal 
4 < 0.1 > 0.1 1.0 to 3.0 Thermal < 700°C 
5 < 0.1 > 0.1 > 0.3 Thermal > 700◦C 
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c) Doernenburg Ratio Method  

The Doernenburg ratio method (DRM) relies on four gas ratios; CH4/H2, C2H2/C2H4, C2H2/CH4, and 
C2H6/C2H2 to identify three distinct fault types: thermal decomposition, corona and arcing as shown in 
Table 2.7.  

According to the table, if the ratio CH4/H2 is greater than 1.0, further comparisons are made. The ratio 
C2H2/CH4 is compared with the threshold limit of 0.3, and the ratio C2H6/C2H2 is compared with the 
threshold limit of 0.4. If C2H2/CH4 is larger than 0.3, it is more likely to indicate an arcing fault. To apply 
DRM, at least one of the four key gases used in the ratios (H2, CH4, C2H2 and C2H6) needs to exceed twice 
the relevant L1 concentration shown in Table 2.8 [67]. DRM is an old diagnosis method and due to its low 
accuracy, it is not commonly used nowadays [7]. 

Table 2.7 Doernenburg Ratio Method (DRM) from IEEE C57.104. 

Suggested fault diagnosis Ratio 1 (R1) 
CH4/H2 Extracted 
from mineral oil | 

gas space 

Ratio 2 (R2) 
C2H2/C2H4 
Extracted 

from mineral 
oil | gas space 

 

Ratio 3 (R3) 
C2H2/CH4 
Extracted 

from mineral 
oil | gas 

space 
 

Ratio 4 (R4) 
C2H6/C2H2 Extracted 

from mineral oil | gas 
space 

 

1 – Thermal decomposition >1.0 >0.1 <0.75 <1.0 <0.3 <0.1 >0.4 >0.2 
2 – Corona (low intensity PD) <0.1 <0.01 Not significant <0.3 <0.1 >0.4 >0.2 
3 – Arcing (high intensity PD) >0.1, 

<1.0 
>0.01, 
<0.1 

>0.75 >1.0 >0.3 >0.1 <0.4 <0.2 

 

Table 2.8 Limit concentrations of dissolved gases from IEEE C57.104. 

Key Gas Concentrations L1 (μL/L 
(ppm v/v)) 

Hydrogen (H2) 100 
Methane (CH4) 120 
Carbon Monoxide 
(CO) 

350 

Acetylene (C2H2) 1 
Ethylene (C2H4) 50 
Ethane (C2H6) 65 

 
d) Duval Triangle Method 

The Duval triangle method (DTM) uses the graphical triangle as depicted in Figure 2.21, to diagnose 
various fault types. This method employs the concentration of three gases: CH4, C2H2 and C2H4, which are 
presented as sides of the triangle with percentages ranging from 0% to 100%. DTM divides the entire 
triangular area into seven fault regions labelled PD, D1, D2, T1, T2, T3 and DT as given in Table 2.9 [7]. 

By employing equations (2.6) to (2.8), the gas concentration in percentages can be calculated and 
utilized within Duval Triangle to determine the fault region. An example is given in Figure 2.21, when %CH4 
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is 34.5%, %C2H4 is 31% and %C2H2 is 34.5%, the possible fault would be categorized as D2, indicating a 
discharge of high energy, according to Table 2.9. 

%𝑪𝑪𝑯𝑯𝟒𝟒 = 𝟏𝟏𝟏𝟏𝟏𝟏𝑪𝑪𝑯𝑯𝟒𝟒
𝑪𝑪𝑯𝑯𝟒𝟒+𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒+𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐

      (2.6) 

%𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒 = 𝟏𝟏𝟏𝟏𝟏𝟏𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
𝑪𝑪𝑯𝑯𝟒𝟒+𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒+𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐

    (2.7) 

%𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟏𝟏𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐
𝑪𝑪𝑯𝑯𝟒𝟒+𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒+𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐

    (2.8) 

 
Figure 2.21 Classic Duval Triangle from IEEE C57.104. 

Table 2.9 Abbreviations of basic faults. 

 
Despite the effectiveness of the classic Duval Triangle in diagnosing basic faults, it has limitations when 

it comes to potential misclassifications near the boundary regions between adjacent sections. 
Additionally, the Duval Triangle analysis may provide inaccurate results for transformers equipped with 
load tap changers or containing non-mineral insulating fluids. To address these challenges, various 
modified Duval Triangles, and alternative geometric shapes, such as the pentagon, have been introduced 
in the field of transformer fault diagnosis [7, 15, 67, 86].  

The Duval pentagon method (DPM) is similar to the DTM but extends its diagnostic capabilities by 
employing five key gases: H2, CH4, C2H2, C2H4 and C2H6. DPM can identify six distinct fault types (PD, D1, 
D2, T1, T2 and T3), along with a category for stray gassing (S), specifically in mineral oil transformers, as 
depicted in Figure 2.22. However, it’s important to note that DPM may also exhibit misdiagnosing faults 
that are in proximity to the boundaries between adjacent sections.  

Symbol Fault 
PD Partial discharge 
D1 Discharge of low energy 
D2 Discharge of high energy 
T1 Thermal faults of less than 300°C 
T2 Thermal faults between 300°C and 700°C 
T3 Thermal faults greater than 700°C 
DT Mixture of thermal and electrical faults 
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Figure 2.22 Duval pentagon 1 from IEEE C57.104. 

The implementation of online DGA method has been significantly advanced online condition 
monitoring systems. However, traditional diagnostic methods were primarily designed to identify single 
faults, and they encounter challenges when transformers experience multiple concurrent faults, making 
definitive identification difficult [7]. To enhance the accuracy of these systems, there is a growing need to 
develop new diagnostic techniques based on artificial intelligence methods [77, 79].  
 

2.3.2 Partial Discharge  
Partial discharge (PD) refers to a localized dielectric discharge that partially bridges the insulation between 
conductors or between conductors and earth [90]. In oil-immersed transformers, PD can manifest in 
various locations, including the insulating paper, oil or at the interface of oil-paper insulation. The 
presence of moisture, gas bubbles, and electrode burrs generated inside the transformer during long-
term operation can give rise to PD phenomena [91]. Additionally, insulation defects resulting from 
overvoltage conditions can cause PD and accelerate the aging of insulation material [91]. 

PD activity, when left unaddressed, can progressively deteriorate transformer performance and lead 
to further degradation of the dielectric insulation system. Once PD initiates, it has the potential to spread 
throughout the insulation until a complete breakdown occurs [92]. Consequently, the early detection of 
PD during transformer operation is important to avert transformer failures. The accuracy of online PD 
detection techniques for power transformers relies on various parameters, including electromagnetic 
emissions, acoustic emissions, and chemical changes [91], as elaborated below. 
 

2.3.2.1 Ultrahigh-frequency (UHF) Detection 
PD events generate electromagnetic pulses with frequencies typically falling within the UHF range, which 
spans from 300 MHz to 3 GHz [93]. In general, the interference signal frequency range on site is below 
400MHz [91]. Hence, UHF sensors have gained widespread adoption due to their sensitivity and ability to 
operate in noisy environments, effectively rejecting interference [94, 95]. Originally developed for use in 
gas-insulated switchgear (GIS) in 1988, the application of UHF sensors expanded to power transformers 
in 1997 [96]. 



41 
 

UHF sensors can be mounted inside or outside the wall surface of the tank or through an oil drain valve. 
In order to pinpoint the PD sources, multiple UHF sensors are strategically positioned around the 
transformer [97]. Localization of the PD source can be achieved by time differences of arrival (TDOA), 
which measures and compares the captured signals arrival time from different sensor locations [97, 98].  

These UHF sensors essentially function as antennas that receive electromagnetic (EM) waves 
originating from PD sources. The initial UHF signals undergo filtration to eliminate unwanted noise [96, 
99]. Following this, an amplifier is connected to the filter to uphold measurement sensitivity. The signals 
are then transmitted through coaxial cables to a detector and subsequently sampled by a data acquisition 
(DAQ) system, as illustrated in the process depicted in Figure 2.23.  

 

Figure 2.23 The process of PD measurement. 

UHF PD detection employs two common methods: the tuned UHF narrowband or medium band 
measurement with variable centre frequency; and the UHF broadband measurement with fixed 
bandwidth [100, 101]. Figure 2.24 (a) shows an example of PD signal measured by tuned the UHF 
narrowband/medium band method [100]. The lower trace in the figure represents the background noise, 
while the upper trace represents the actual PD signal. It is worth mentioning that the interference noise 
disturbs both the upper and lower traces. Figure 2.24 (b) shows a PD signal measured by the broadband 
UHF method with fixed bandwidth. The setting of this is easy to adapt, however, it has lower signal- to -
noise ratio (SNR). 
 

 
                                            (a)                                                                                                   (b) 

Figure 2.24 (a) Signal of tuned UHF narrowband method and (b) bandwidth of UHF broadband method. 

UHF PD detection has several advantages, including its immunity to electromagnetic disturbances 
when compared to conventional methods outlined in IEC 60270 [96]. As a result, UHF sensors have found 
use in on-site PD detection. However, it remains uncertain how the magnitude of the UHF signal correlates 
with the amount of charge in pC, which has led to a lack of appropriate calibration methods [96].   
 



42 
 

2.3.2.2 Optical Detection 
The acoustic emission (AE) method measures the amplitude, attenuation or phase delay of acoustic signals 
generated by PD events. These ultrasonic AE signals fall within the frequency range of 20 kHz to 500 kHz 
[93]. The traditional AE sensors’ detection element is Lead Zirconate Titanate (PZT)-based material [102]. 
It is difficult to ensure the sensitivity and accuracy of PD detection, especially if it is highly affected by the 
electromagnetic interference (EMI) [103, 104]. Optical fibres have advantages of anti-EMI. The traditional 
optical sensor is designed to detect the light from a PD event. However, this type of optical sensor is 
unable to localize PD source. To overcome these drawbacks, optical sensors based on AE have gained 
popularity. Moreover, optical sensors can be installed inside the transformer tank walls due to its compact 
size and the lack of using metal materials [91, 103] 

There are three main types of optical technology: extrinsic Fabry-Perot (FP) based sensor, Dual-Beam 
Interference based sensor (intrinsic interferometer) and Fibre Bragg Grating (FBG) based sensor. A brief 
comparison of various optical detection technologies is given in Table 2.10 [91, 102, 104]. 

Table 2.10 Comparison of different optical detection technologies. 

 
The Fabry-Perot Interferometer sensor is a typical Fibre Optic Interferometer [104]. In the sensor 

structure shown in Figure 2.25, the light from a laser light source propagates into the sensing probe 
through a fibre coupler. The first reflection of the light occurs in the FP cavity which is at the end of the 
fibre core. A small portion of the incident light returns along the original path of the fibre core. Most of 
the light undergoes the second reflection at the quartz membrane of the FP cavity. This second reflection 
also returns back to the fibre coupler. By adjusting the quartz membrane, the two beams of light can be 
of the same frequency, amplitude, and direction at the fibre coupler. PD event changes quartz membrane 
shape and phase of the second reflected light and can be detected by a photo-detector, that generates 
an electrical signal as shown in Figure 2.26 [91, 105].  

 
Figure 2.25 Fabry-Perot interference sensor structure. 
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Figure 2.26 Example of output electrical signal from Fabry-Perot optical sensor. 

The working principle of dual- beam Interferometers such as Mach-Zehnder sensor, Michelson sensor 
and Sagnac sensor is similar to Fabry-Perot Interference Sensor as they all have interference optical 
structure [91]. In the Mach-Zehnder sensor structure, the light in fibre coupler 1 is divided into two beams, 
through a reference and sensing fibres and interfere again in fibre coupler 2 as shown in Figure 2.27.  

 

Figure 2.27 Diagram of Mach-Zehnder interferometer structure. 

Different from the Mach-Zehnder sensor, in the Michelson sensor structure, the two light beams pass 
through the reference and sensing fibres, then are reflected by a Faraday rotating mirror back to the 
previous path as shown in Figure 2.28. So when the sensing fibre is deformed by PD, it causes phase 
difference between the two light beams [91]. 
 

 

Figure 2.28 Diagram of Michelson interferometer structure. 

In the Sagnac sensor structure, the light is divided at the fibre coupler as shown in Figure 2.29.The two 
beams of light are travelling in opposite directions through the sensing fibre. Then the two light beams 
interfere at the fibre coupler. PD event results in a phase difference between the two optical signals [91, 
106]. 
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Figure 2.29 Diagram of Sagnac interferometer structure. 

Different from interferometers, Fibre Bragg Grating (FBG) sensors have diffraction optical structure. 
This detection technology is of a reflective structure in the core of an optical fibre as shown in Figure 2.30 
[107]. It reflects particular wavelengths of light and transmits all others. 

 
Figure 2.30 Working principle of FBG. 

Any change in Bragg wavelength (λB) caused by PD is converted into an equivalent change in optical 
intensity [91]. The optical intensity differences can be detected by photodetector and converted into a 
voltage signal. The Fibre Bragg Grating sensor structure is shown in Figure 2.31. 
  

 

Figure 2.31 Diagram of Fibre Bragg Grating interferometer structure. 

Optical sensors present several advantages, including their resilience in harsh environments 
characterized by high temperatures and chemical corrosion [104]. This robustness allows for the 
installation of optical sensors within the transformer, mitigating external noise interference. The 
geometric PD sensors’ location can be determined by utilizing multiple optical sensors either around the 
transformer tank or in a sensor array [108-110]. Overall, optical sensors have been proven to be effective 
techniques for PD detection.  
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2.3.2.3 Transient Earth Voltage Detection 
Transient Earth Voltage (TEV) represents a relatively recent addition to the PD detection methods [111]. 
TEV sensors are capable of capturing two frequency ranges: several 100MHz from surface current and 
several 10MHz from PD current [111].  

During a PD event, the lower-frequency component can be detected as current, which flows from the 
external ground to the TEV sensor. The electromagnetic radiation from PD source also propagates as a 
surface current on the tank wall. Due to the skin effect, this current travels from inside of the transformer 
wall, leaks out from joints such as bushings, and is detected by the TEV sensor as shown in Figure 2.32 
[111-113].  

Although the mechanism and propagation process of the TEV signal are not fully understood yet [114], 
it is still considered as another online PD detection method. As a non-intrusive method, the major 
advantage of TEV sensors is that they can be easily attached to the outer surface of the transformer tank 
wall without any operation interruption.  
 

 

Figure 2.32 Detection principle of TEV signals. 

2.3.2.4 High-Frequency Current Transformer  
The High-Frequency Current Transformer (HFCT) represents another non-intrusive PD sensor. HFCT 
devices can be clamped onto the ground connections of a power transformer [115]. They operate by 
measuring the short transient current pulses flowing through the earth conductor due to PD activity.  

A typical HFCT sensor consists of a copper wire wound around a ferrite core, which is connected to a 
50Ω BNC connector, as illustrated in Figure 2.33. The transformer earth cable carries transient currents, 
which pass through the middle of the ferrite core. These currents on the primary side produce an 
electromagnetic flux around the cable. Subsequently, the flux induces a current and voltage on the 
secondary winding [107, 116].  
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Figure 2.33 Diagram of HFCT structure. 

2.3.3 Thermal Measurements 
The thermal measurements are used to detect temperature rise in the transformer winding and insulation 
mediums [117]. During transformer operation, heat generated in the windings and core circulates with 
oil. The hotter oil rises to the top of the tank, where it cools before descending to the tank bottom. The 
conventional approach to thermal monitoring involves measuring top oil temperature and estimate the 
hot-spot temperature (HST) [118].  

The temperature of the top oil of the tank can be measured by using resistance thermometer or 
thermocouple sensor. HST represents the maximum temperature measured from the winding insulation 
of the transformer. In the case of new transformers, optical sensors can be directly installed in the spacers 
of winding disks to measure HST [119]. However, for already assembled units, it is not practical to install 
optical probes inside the winding structure. HST values can be estimated based on the following 
techniques: thermal equivalent circuits (TECs) [119], stochastic, numerical and practical experiment 
techniques [117]. TECs are based on thermal-electrical analogy, and widely used due to their simplicity. 
The most commonly used estimation method is outlined in Clause 7 of IEEE Std C57.91 [18]. The 
continuous improvement on artificial intelligence technologies will help online thermal analysis become 
more accurate in order to handle complex applications [120]. 

An infrared thermograph application is a non-destructive thermal detection method that uses a 
thermal camera to detect infrared radiation emission. Abnormal conditions such as cooling system fault, 
short-circuit current, poor joint contact can be monitored online [121]. However, this method only scans 
the surface radiation and detect the transformer’s external temperature as shown in Figure 2.34. Although 
infrared thermograph method can be used for fast detection of temperature rise, its sensitivity is 
concerned, especially for detecting HST.   

 

Figure 2.34 An example of thermal image taken by infrared camera. 
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2.3.4 Vibration Analysis 
Vibration analysis is used to detect internal mechanical faults such as deformation or aging of the contacts 
in transformer based on changes in vibration response [122]. The vibration response can be measured by 
an accelerometer, which is the most used type. The output of the accelerometer is a voltage signal 
measured in mV, which contains noise. Therefore, for accurate results, the signal needs to pass through 
filters [123]. When transformer is in good condition, the measurements can be recorded as fingerprint for 
future comparisons [124]. Heathy transformers always produce a periodic vibration signal [122]. 

Vibration response analysis is an online method and can be used as a complement to offline methods 
such as SFRA [125]. However, vibration response is detected from individual measurement points on the 
tank, which results in inconsistent signatures.  

2.4. Challenges and Opportunities 
While several developments have been made to various condition monitoring and fault diagnosis 
techniques currently used by industry, a lot of challenges still need to be solved through comprehensive 
research and field trials.  

For instance, there is no practical online method to replace the offline SFRA measurements. While 
some research efforts can be found in the literature to identify and quantify mechanical faults within a 
transformer through its V-I characteristics at the power frequency [126], the practical feasibility of this 
technique has not been assessed yet. Also, in the current SFRA method, the analysis of the results is not 
always a straightforward process due to the lack of widely accepted interpretation codes. The use of 
artificial intelligence (AI) and effective digital signal processing techniques may result in reliable, 
consistent and automated code to analyse frequency response analysis signatures [127]. Optimization 
and digital image processing techniques may also be used to improve the accuracy of the analysis [128, 
129].  

While measurement and analysis of dissolved gases are well matured for mineral oil, research effort 
still needs to be conducted to develop reliable DGA codes for biodegradable insulating oil and thermally 
upgraded insulation paper. The currently used interpretation codes are not consistent and may result in 
different conclusion to the same oil sample. Combining these techniques in one AI code can improve the 
detection accuracy of DGA method [130]. The accuracy of current online DGA sensors depend on several 
environmental and operating conditions, which calls for more research in this area to increase the 
accuracy of such sensors and enable them to measure other oil parameters such as Furan content, acidity, 
IFT and BDV [26].  

With the global trend to increase the reliance on renewable energy sources, more fluctuation in the 
generated power and voltage is expected due to the intermittency of such sources. Moreover, the load 
demand will exhibit uncertainty in magnitude and location with the increased number of plug-in electric 
vehicles that also result in increased harmonics in the power grids due to the power electronic interface. 
Such factors will have a significant impact on the transformer condition monitoring and fault diagnosis 
techniques. For example, if the oil is sampled for DGA measurement during a ramping period in the 
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generation and/or load, inaccurate values will be revealed [88, 131]. On the other hand, the harmonics in 
the voltage signal can be employed for online frequency response analysis.  

The use of multi-sensors to measure different diagnostic parameters may also call for active research 
on wireless energy transfer to charge such sensors [124]. While the power required by each individual 
sensor is small, the use of a large number of online sensors may represent an additional burden to the 
network.    

It is worth mentioning that with the worldwide efforts to reduce greenhouse gas emission and 
establish more DC and smart grids, the adoption of solid-state transformers and advanced power 
electronic interfacing systems will be given much attention in the very near future and the use of classical 
magnetic-core based transformers may be diminished [132, 133].  

 

2.5. Summary 
Oil-immersed power transformer is a critical and expensive asset in power systems. Failures of power 
transformer result in huge repair cost, environment disaster and human injury or death. Therefore, 
reliable condition monitoring techniques must be adopted to avoid such consequences. Conventional 
offline condition monitoring techniques have been used for many years. Due to the offline line nature, 
the tests can only be performed during scheduled maintenance and the opportunity to detect incipient 
faults could be missed. The online condition monitoring technologies are relatively new and have been 
given much attention by industry and researchers. In addition, the power industry is moving towards 
digital operation, which calls for more stable and accurate online condition monitoring system. Over the 
years, researchers and developers have invented various online monitoring sensors and diagnostic 
methods such as DGA, PD, thermal measurements, and vibration analysis.  

This chapter covers the working principle of commonly used offline and online methods. To design the 
most suitable condition monitoring system for a power transformer, it is important to understand the 
functions, measuring ranges, suitable diagnostic methods and advantages and limitations of each 
technique. The future generations of condition monitoring systems would be comprehensive and could 
provide users with more precise information. In such systems, it is expected to not only provide 
information about the health condition of the transformer but also to suggest a reliable asset 
management scheme and estimating transformer remnant life based on the measured parameters.  
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The content of this chapter has been published in the following paper: State-of-the-art Review on Asset 
Management Methodologies for Oil-Immersed Power Transformers 

Chapter 3  Asset Management Methodologies for Oil-
immersed Power Transformers  

3.1. Introduction 
The traditional concept of operational and maintenance strategies is time-based, involving periodic check-
ups on transformers without considering their actual condition. The development of online condition 
monitoring sensors offers the opportunity to implement condition-based maintenance practices. Real-
time condition monitoring increases the likelihood of detecting incipient faults, reducing the probability 
of failures, improving safety operation, controlling unscheduled maintenance, and assisting in prioritizing 
the maintenance and replacement schedule based on individual transformers’ conditions.   

Due to the unavailability of online approaches, some of the condition tests are currently performed 
offline. Therefore, comprehensive transformer asset management includes both time-based and 
condition-based maintenance as shown in Figure 3.1 is usually adopted. The maintenance activities 
consist of economic-based and condition-based assessments. Economic-based assessment employs tools 
such as cost-benefit analysis. Because individual businesses have different financial plans, the economic 
assessment would not be discussed in this thesis.  

 

 

Figure 3.1 Basic structure of asset management. 

 
There has been extensive work on improving and developing condition monitoring methods and data 

analysis techniques. Advanced monitoring and diagnostic technologies are aimed to improve the accuracy 
and ease the implementation of condition assessment methods. This chapter presents a state-of-the-art 
review on the condition assessment techniques published in literature and currently used by industry 
practice.  
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The basic structure of the transformer condition-based assessment is shown in Figure 3.2. As shown in 
the figure, asset management consists of three modules: fault diagnosis, reliability assessment and life 
management. A fault diagnosis module is utilized to assess the health condition of individual transformer 
components. Different fault diagnostic methods (presented in Section 2) feed into failure modes, which 
are the underlying conditions that can lead to failures. In Section 3, reliability assessment methods will be 
reviewed. Different from fault diagnosis, reliability assessment is utilized to determine the overall health 
condition of the transformer. The Reliability Index or Health Index (HI) is the overall health score given by 
the reliability assessment. HI is designed to identify the transformer most in need of the asset manager’s 
attention and is calculated based on condition monitoring parameters or fault diagnosis data. In Section 
4, life management approaches utilized to estimate the transformer aging are presented. The estimated 
remaining life of power transformer is conducted based on the history and current condition of the 
transformer. It highlights the priority of the need for replacements for asset managers. 

 

 

Figure 3.2 The basic structure of condition assessment in asset management. 

3.2. Fault Diagnosis 
An oil-immersed power transformer is a complicated piece of equipment that comprises many 
components including bushing, tap changer, insulation, winding, and magnetic core. Through condition 
monitoring methods, transformer condition data can be analysed according to different failure modes. 
Due to the wide variety of sizes and types of power transformers, there are no standardized failure modes 
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for all power transformers. Failure modes can be generally classified based on its location and cause [134-
136]. This section presents commonly used condition monitoring methods and their diagnostic 
techniques.  

3.2.1 Condition monitoring methods 
Dissolved Gas Analysis (DGA): DGA is one of the most popular fault detection techniques for power 
transformers [137]. Under harsh operation conditions, both oil and paper insulation decompose and 
release certain gases that dissolved into the oil and decrease its dielectric strength. The fault gases, 
namely, hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon monoxide 
(CO) and carbon dioxide (CO2) can be measured using online or offline methods in parts-per-million (ppm) 
[7]. By analysing different combinations and proportions of these gases, and their dynamic rates of 
change, fault type can be identified. The conventional interpretation methods of DGA measurements, as 
outlined in IEEE Std C57.104, include Rogers Ratios, Doernenburg Ratios, Key gas, Duval Triangle and 
Pentagon methods. Table 3.1 lists the fault types that can be diagnosed using DGA [7]. Most diagnostic 
methods only focus on the primary faults, as shown in Table 3.1. Recent research has improved DGA 
interpretation by introducing Duval Triangle and Pentagon to identify sub-type faults [138, 139]. These 
new sub-zones within the Triangle method help distinguish between arcing in paper insulation and oil 
insulation. The sub-zones within the Pentagon method can recognize whether the carbonization of solid 
insulation has been involved in thermal fault or occurred solely within the oil. 

Table 3.1 Primary and sub-types of faults that can be diagnosed using DGA. 

Code Primary Faults Code Sub-type Faults 
T1 Thermal fault; T < 300 °C S Stray gassing; T < 200 °C 
T2 Thermal fault; 300 °C < T < 700 °C O Overheat; T < 250 °C 
T3 Thermal fault; T > 700 °C C Possible paper carbonization  
D1 Low energy discharge T3-H Thermal fault T3 in mineral oil 

only 
D2 High energy discharge R Catalytic reaction 
PD Partial discharge   

 

Partial Discharge (PD): PD refers to a localized dielectric discharge that partially bridges the insulation. 
During the long-term operation, the presence of moisture, gas bubbles and electrode burrs can lead to 
the development of PD events. These PD phenomena, if left unaddressed, can contribute to the gradual 
deterioration of insulation, and accelerate the aging process, ultimately culminating in insulation system 
breakdown. Thus, early detection of PD is important for reducing potential catastrophic failure and 
extending the lifespan of transformers. There is a diverse array of techniques and sensors available for 
the detection of PD, as listed in Table 3.2 [5, 92, 96, 140].  
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Table 3.2 Partial discharge detection methods 

Method Detection 
Phenomenon Sensor 

Dissolved gas analysis method Chemical reactions 
Gas Chromatographic (GC)/ 

Photo-acoustic Spectroscopy 
(PAS) 

Radio frequency (RF) method  Electromagnetic emission Ultra-High Frequency (UHF) / 
Very-High Frequency (VHF) 

Optical method  Acoustic emission Optical Sensor 

High frequency method Magnetic field High Frequency Current 
Transformer (HFCT) 

Transient earth voltage (TEV) 
method Transient earth voltage  TEV sensor 

Ultraviolet pulse detection 
method  Electromagnetic emission Ultraviolet photosensitive 

sensor  
IEC 60270 Current impulse below 1 MHz Coupling capacitor 

 

PD diagnosis goes beyond mere recognition and encompasses PD classification. There are various well-
recognized types of PD, including protruding electrodes, floating electrodes, particles, surface discharges, 
poor contacts between windings, and void PDs [141].  

Frequency Response Analysis (FRA): FRA is an effective offline method that can evaluate the transformer's 
mechanical integrity. FRA has been proven to be more accurate than the short-circuit impedance (SCI) 
measurement [14]. The FRA method compares frequency response traces with a transformer’s reference 
data to identify any deviations and determine the internal mechanical defects including winding 
deformation, which is one of the transformers common mechanical faults, resulting due to large short-
circuit currents.  

Vibration Analysis: vibration analysis is an online tool used to detect some transformer internal 
mechanical faults. Hence, it can be employed as a complementary method alongside the offline FRA 
method. Vibration signatures are typically captured using accelerometers and are instrumental in 
pinpointing mechanical faults such as clamping structure loosening, misalignment, and imbalance [5, 142, 
143]. Various signal process methods have been proposed for feature extraction associated with fault 
characteristics. Among these techniques, the analysis of the signal’s frequency spectrum stands out as the 
most commonly used method [122].  

Thermal Analysis: thermal analysis in transformers often focuses on detecting hot-spot temperature 
(HST) within the windings. HST measurement is vital for evaluating the performance of the transformer’s 
cooling system and monitoring the insulation degradation rate. Measurements can be conducted through 
installing internal thermal sensors during transformer manufacturing. For in-service transformers, HST is 
commonly estimated through top-oil temperature measurements through thermal sensors installed on 
the top of the transformer tank.  

An alternative thermal measurement method is conducted through thermographic testing, which 
employs infrared cameras to perform non-contact thermal inspection, identifying thermal anomalies. This 
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method detects infrared energy emissions from the surface of components experiencing excessive heat 
loss. The output of the thermographic test is an electrical signal presented in color-coded image on a 
screen. In these images, red and white areas indicate higher temperatures, while blue and black areas 
represent colder regions [121]. Thermographic test is particularly effective for detecting the exposed 
areas of the transformer, such as bushings and joints. However, it is not designed for internal temperature 
measurements.  

Transformer Turn Ratio (TTR): TTR test is utilized to detect potential insulation failures occurring between 
turns within a transformer winding. This test is typically conducted at all the tap positions of each winding. 
To perform the TTR test, the turn ratio is calculated by the number of turns on the low voltage (LV) and 
high voltage (HV) sides of the transformer. These measurements are then compared to the specified ratios 
provided on the transformer’s nameplate, and the difference should be within 0.5% for acceptable 
winding condition [144].  

Oil Dissipation Factor (DF) and Power Factor (PF): DF / PF test is conducted to measure the dielectric 
losses within the transformer’s oil. These losses can occur when leakage current flows from active parts 
to the grounded tank due to the presence of oil-soluble polar contaminations and aging by-products. In 
this test, the ratio of the capacitance current to the resistive current across the insulation is measured. 
This ratio is sensitive to even trace amounts of contamination [145].  

Therefore, it is generally performed as part of an oil quality testing and is also employed for online bushing 
condition monitoring. In practical, the assessment is not solely reliant on a single power factor value but 
takes into consideration the historical trend of measurements over time [118].  

Oil Breakdown Voltage (BDV): the dielectric BDV test is employed to assess the dielectric strength of the 
insulation oil [5]. Dry and clean oil exhibits higher breakdown voltage. The presence of contamination 
such as moisture, sludge, and other impurities, can lead to an increase in free-ions and ion-forming 
particles within oil, consequently significantly reducing its oil breakdown voltage.  

Oil Interfacial Tension (IFT) and Acidity: the IFT test is a chemical analysis method used to identify 
degradation products and soluble polar contaminants in the oil. The oil surface tension decreases as 
hydrophilic components in the insulation oil increase. The acidity test measures the acidic 
constituents/contaminants in the oil. The acidity is formed due to the acidic oxidation products and causes 
paper insulation degradation and corrosion of metal parts. Notably, there is a significant correlation 
between the acidity number and the IFT of the oil. [5].  

Dielectric Response Analysis – Recovery Voltage Method (RVM): RVM is a technique for scrutinizing the 
polarization process within the transformer insulation. The interpretation of RVM results hinges on the 
assessment of both the magnitude and position of the maximum recovery voltage [14, 45]. In general, 
increased maximum recovery voltage is an indicator of insulation deterioration.  
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Dielectric Response Analysis - Polarization and Depolarization Current (PDC): the PDC technique is a time 
domain analysis for insulation condition evaluation. Oil contamination increases the oil conductivity, and 
higher conductivity increases the polarization and depolarization currents. PDC measurements are highly 
sensitive to temperature [14, 47]. Therefore, the test results are more accurate with a reference 
temperature.  

Dielectric Response Analysis - Frequency Domain Spectroscopy (FDS): FDS technique is a frequency 
domain analysis for insulation condition assessment. The method is based on assessing the dielectric 
parameters such as relative complex permittivity, complex capacitance, and dissipation factor, which can 
reflect the insulation polarization characteristics. PDS is commonly used for checking the moisture content 
in different parts of solid insulation [14]. FDS measurement is also sensitive to temperature [14, 47].  

Insulation Resistance (IR): IR test is utilized to assess the insulation conditions affected by contaminations, 
which can be measured using the leaking current [33]. IR values are measured by a Megger or 
Megohmmeter at different time intervals. As the magnitude of IR value varies due to environmental 
conditions such as moisture and temperature, Polarization Index (PI), which uses the IR measurements 
taken in 1 minute and 10 minutes, has the advantage of eliminating the effect of such parameters on the 
IR reading [39]. A sharp decline in PI requires urgent attention and further investigation.  

Degree of Polymerization (DP): DP is one of the key properties of cellulosic insulation material [146]. The 
mechanical strength of paper is strongly linked to the length of the cellulose molecules. The cellulose 
polymer molecules are interconnected through long chains of glucose rings [147]. Under thermal stresses, 
the glucose chains can break, causing a reduction in the length of the cellulose molecules and a 
subsequent decrease in the paper's mechanical strength. The average length of these chains is measured 
in terms of the DP which should be in the range of 1000 – 1200 for new material. Dropping the DP value 
to 250 is considered the end of paper life [140, 148-150]. The conventional method to measure the DP 
value is through laboratory tests [151]. This approach requires paper samples to be taken from the 
transformer, which is impractical for the transformers in operation. 

Furan Analysis: Furan analysis is a valuable method for evaluating the paper insulation condition. The 
degradation of cellulose, primarily caused by factors such as high temperatures, exposure to oxygen, 
moisture, and acid contents, resulting in the production of various chemical furan compounds. These 
furan compounds include 2-furaldehyde (2-FAL), 5-methyl-2-furaldehyde (5-M2F), 5-hydroxymethyl-2-
furaldehyde (5-H2F), 2-acetyl furan (2-ACF) and 2-furfurol (2-FOL) [152]. The most stable and abundant 
furan compound is the 2-FAL [153, 154]. The concentration of the furan compounds in ppm can be 
measured using high-performance liquid chromatography or gas chromatograph-mass spectrometry. 
There exists a robust correlation between the DP value and the concentration of 2-FAL. More detailed 
calculations for predicting the DP value using 2-FAL measurements are explained in Section 3.4.   
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3.2.2 Fault Analysing Methods 
Analysing data from oil-immersed power transformers has always posed a challenge. False diagnosis can 
lead to unnecessary maintenance, and even wrong component replacement, potentially resulting in 
added costs and operational disruptions. The choice of data analysis methods depends on the 
characteristics of measured data, with feature extraction in some diagnostic approaches relying on 
numerical threshold limits, while others focus on recognizing variations in data patterns, as detailed in 
Table 3.3.  

Data analysing methods can be categorized into conventional manual diagnosis and advanced 
computational techniques such as using artificial intelligence. The distinction between these approaches 
lies in the process of feature selection and fault diagnosis. Manual diagnosis necessitates the involvement 
of experienced experts who manually select data features and assess the likelihood of abnormalities. In 
contrast, advanced computational techniques harness the power of computer science to automatically 
select relevant data features and conduct fault diagnosis, reducing the reliance on human expertise.  

Table 3.3 Conventional fault diagnostic methods. 

Condition 
Monitoring 

Methods 
Refs Threshold/Ranges/Boundaries Signal Figures/Plot Graph 

Dissolved Gas 
Analysis (DGA)  [7] 

 Rogers Ratios 
 Doernenburg Ratios 
 Key gas 
 Duval Triangles and Pentagons  

 
 

Partial Discharge 
(PD)  

[115, 
155] 

  Phase-Resolved Partial 
Discharge (PRPD) 

 Time-resolved Partial 
Discharge (waveform) 

Frequency Response 
Analysis (FRA)  [156]   Frequency response 

signatures 

Vibration Analysis  
[122, 
123, 
157] 

  Frequency Spectrum  
 Time domain 
 Time-frequency domain  
 Wavelet Transform 
 Fourier Transform 
 Hilbert Huang Transform 

(HHT) 
Thermal analysis – 
Hot-spot temperature  

  Temperature exceeds normal level  

Thermal analysis – 
Thermograph 
(temperature ∆T 
above ambient 
temperature) 

[118, 
134, 
158] 

 0 °C< ∆T ≤9 °C, attention 
 9 °C< ∆T ≤20 °C, intermediate 
 20 °C< ∆T ≤49 °C, serious 
 ∆T >49 °C, critical 

 

Transformer Turn 
Ratio (TTR)  [5]  New transformer <0.1% 

 Upper limitation <0.5%  

Dissipation/Power 
Factor (PF)  [5] 

 PF ≤0.5%, Normal 
 0.5%< PF ≤1%, Acceptable 
 PF >1%, Sign of degradation 

 

Breakdown Voltage 
(BDV) 

[30]  Minimum level: 20 kV (1 mm gap) 
and 35 kV (2 mm gap)  

Interfacial Tension 
(IFT)  [5]  Transformer size ≤69 kV, IFT ≤22 

dynes/cm, End of Life  



56 
 

 Transformer size >69 kV, IFT ≤25 
dynes/cm, End of Life 

Acidity (measured in 
Neutralization 
Number, NN)  

[5] 

 Transformer size ≤69 kV, NN ≥0.20 
mg KOH/gm, Critical  

 Transformer size 69 – 230 kV, NN 
≥0.15 mg KOH/gm, Critical 

 Transformer size ≥230 kV, NN 
≥0.10 mg KOH/gm, Critical 

 

Recovery Voltage 
Measurement 

[45, 
159] 

  Compare the maximum 
recovery voltage. 

Polarization and 
Depolarization 
Current (PDC)  

[5, 
159] 

  Current magnitude in 
time domain 

Frequency Domain 
Spectroscopy (FDS)  

[5, 
159] 

  Capacitance magnitude 
in frequency domain 

 Loss factor magnitude in 
frequency domain  

Insulation Resistance 
(IR) (measured in 
Polarization Index, 
PI)  

[10] 

 1.5 – 2, Dry insulation 
 1 – 1.5, Dirty & wet insulation 
 <1, severe pollution and wet   

Degree of 
Polymerization (DP)  [5] 

 1200 – 700, Healthy 
 700 – 450, Moderate 
 450 – 250, Extensive 
 <250, End of Life 

 

Furan analysis 
(measured in 2-FAL, 
ppm)  

[5] 

 0 – 0.1, Healthy 
 0.1 – 1.0, Moderate 
 1 -10, Extensive 
 >10, End of Life 

 

 

3.2.2.1 Challenges to conventional interpretation methods  
Conventional interpretation methods are still widely adopted by current industry practice to identify and 
quantify various faults within power transformers based on diagnostic methods listed in Table 3.3. Such 
methods are facing several challenges that include: 

• The use of precise values for ratios and ranges could sometimes lead to misdiagnosed results [87, 
160]. For instance, according to Rogers Ratio method used for DGA interpretation, if the ratios for 
both C2H2/C2H4 and C2H4/C2H6 are less than 0.1, then the ratio value of 0.1 for CH4/H2 becomes the 
critical boundary between normal and PD fault.  

• The specified ranges can vary across different research papers. For example, some authors suggested 
DP value below 200 as an indicator of end-of-life, other sources suggest 250 as the threshold [147, 
149, 161, 162].   

• When measurements fall onto graphical-based methods' boundaries, it is difficult to draw a 
conclusion [87, 160]. An example of using the DGA Duval Triangle method is shown in Figure 3.3(a). 
In this case, the marked spot that shows the fault could be D1 or D2. This issue also happens in Duval 
Pentagon method. In Duval Pentagon, the marked spot shown in Figure 3.3(b) could indicate possible 
fault T1, T3 or D2. These faults are detailed in Table 3.1. 
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                                          (a)                                                               (b) 

Figure 3.3 (a) Duval Triangle 1. (b) Duval Pentagon 1. 

• Data cannot be interpreted unless the measured values surpass the minimum threshold [87, 160]. As 
an example, according to IEEE 57.104, to apply the DGA Doernenburg Ratio method, at least one of 
the critical gases (H2, CH4, C2H2 and C2H6) concentration used in the ratio must exceed a certain level.  

• Different interpretation methods may lead to different conclusions, which can be observed in DGA 
interpretation [87, 160]. Also, graphical-based interpretation such as frequency response analysis, is 
not always consistent as it relies on the personnel expertise. 

Conventional methods depend heavily on visual inspection, expert knowledge, and judgement. 
Therefore, other diagnostic methods based on mathematical statistics, equivalent electric models, and 
artificial intelligence, have been proposed as presented in the following sections.  

3.2.2.2 Mathematical statistics method 
In this method, statistical indicators are employed to extract features with reference data. The chosen 
indicator(s) should only be sensitive to the differences in fault conditions [163]. The statistical assessment 
is used for data comparison, such as FRA data interpretation [158]. In FRA, winding deformation can be 
identified by statistical indicators such as the Correlation Coefficient (CC) and the Standard Deviation (SD) 
[14]. CC is used to calculate the variation between data variables while SD is used to assess the deviation 
of one data set from its mean value. The formulas of CC and SD are given by (3.1) and (3.2), respectively. 
Other commonly used indicators are Mean Square Error (MSE), Absolute Sum of Logarithmic Error (ASLE) 
and Maximum Minimum (MM), which have been presented in [55, 156, 164, 165].  

𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) =  
∑ 𝑋𝑋𝑟𝑟𝑌𝑌𝑟𝑟𝑁𝑁
𝑟𝑟=1 

�∑ 𝑋𝑋𝑟𝑟2 ∑ 𝑌𝑌𝑟𝑟2𝑁𝑁
𝑟𝑟=1

𝑁𝑁
𝑟𝑟=1

 
(3.1) 

𝑆𝑆𝐷𝐷(𝑋𝑋,𝑌𝑌) =  �
∑ [𝑌𝑌𝑟𝑟 − 𝑋𝑋𝑟𝑟]2 𝑁𝑁
𝑟𝑟=1
𝑁𝑁 − 1  

(3.2) 

𝑋𝑋𝑟𝑟 is the 𝐷𝐷𝐷𝐷ℎ elements of FRA fingerprint.  
𝑌𝑌𝑟𝑟 is the 𝐷𝐷𝐷𝐷ℎ elements of measured FRA trace.  
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𝑁𝑁 is the number of samples.  

No general rules define the fault level using statistics indicators [158]. While mathematical statistics 
method has improved the accuracy of graphical-based interpretation, they fail in quantifying actual fault 
level.  

3.2.2.3 Equivalent electric simulation model method 
This method uses software to build a simulation model or equivalent circuit to mimic a real system. The 
finite element modelling (FEM) is the most popular numerical method that can effectively emulate 
physical systems [166].  

Finite element analysis (FEA) software tools such as COMSOL Multiphysics and Ansys provide coupled 
physics modelling combined with computational fluid dynamics, thermal, acoustic, electromagnetic and 
structure simulation capabilities [167]. FEA has been used mainly for thermal and mechanical simulation 
of power transformer fault diagnosis. In [119, 166, 168-171], FEA is utilized to model thermal equivalent 
circuits to determine the HST and thermal profiles. In [53, 127, 172, 173], transformer mechanical 
condition is investigated through FEA. In [174], FEA uses the instantaneous voltage and current signals to 
identify mechanical deformation.  

3.2.2.4 Artificial Intelligence methods 
In recent years, artificial intelligence (AI)-based methods have been extensively studied. The significant 
advantage of using AI is its ability to handle data uncertainty and provide more accurate diagnostic results 
when compared to conventional methods. Therefore, both knowledge-based and data-driven AI 
techniques used for condition assessment have been proposed by many scholars as shown in Table 3.4.  

Table 3.4 Proposed AI methods for each condition monitoring method. 

Condition Monitoring 
Methods 

Artificial Intelligence 
Methods Refs 

Dissolved Gas Analysis (DGA) 

 Fuzzy Logic  [158, 160] 
 Decision Tree  [137, 175] 
 Random Forest [137, 176] 

 KNN  [137, 177, 
178] 

 Logistic Regression  [179, 180] 

 SVM  [177, 181, 
182] 

 Bayesian Network  [183] 
 Naïve Bayes  [137] 

 ANN  [160, 184-
186] 

 ANFIS [184, 187] 

Partial Discharge (PD) 

 Fuzzy Logic  [188] 
 Decision Tree  [188] 
 SVM  [2, 14] 
 ANN  [141] 

 CNN  [141, 189-
191] 

 ANFIS [192] 
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Frequency Response Analysis 
(FRA) 

 Fuzzy Logic  [158, 163, 
193] 

 SVM [163, 194] 
 Bayesian Classifier  [163] 
 ANN  [163, 193] 
 CNN  [195] 

Vibration Analysis  
 SVM  [196] 
 Bayesian Network  [197] 
 CNN  [198] 

Thermal analysis – Hot-spot 
temperature  

 Random Forest [161] 
 SVM  [120, 199] 
 ANN [161, 199] 

Thermal analysis – 
Thermograph  

 Fuzzy Logic  [158, 200] 
 ANN  [200] 
 ANFIS  [200] 

Dissipation/Power Factor  Fuzzy Logic  [158] 
 ANN  [37] 

Polarization and 
Depolarization Current (PDC) 

 SVM  [201, 202] 
 ANN  [203] 

Frequency Domain 
Spectroscopy (FDS) 

 Fuzzy Logic  [204] 
 SVM [201] 
 ANN  [205] 

Insulation Resistance (IR)  Fuzzy Logic  [158] 

Degree of Polymerization (DP)  ANN [206] 
 ANFIS  [207, 208] 

Furan analysis  Fuzzy Logic  [23] 
 ANFIS [209] 

 

3.2.2.4.1 Knowledge-based AI method 
Fuzzy Logic: Fuzzy Logic method has been proposed by many authors for data interpretation [210]. When 
there is no clear definition of classifications to where the data should belong, Fuzzy Logic resolves 
uncertainty at the boundaries of the defined ranges by adding conditional statements. Fuzzy Logic data 
analysis structure consists of membership functions, fuzzifier, inference engine, fuzzy rules and 
defuzzification, as shown in Figure 3.4 [26]. There are many types of membership functions, including 
triangular, trapezoidal, and Gaussian. Fuzzifier is to allocate input data to the membership function of the 
fuzzy set. Fuzzy rules are conditional statements which use words statement like “IF-THEN” or “IF-AND-
THEN”. These rules are less precise than numerical correlations as they are built based on human 
experience [211]. The inference engine then converts fuzzy inputs to fuzzy outputs using fuzzy rules. 
Defuzzifier is to convert the membership functions of the fuzzy set to output data.  

 

Figure 3.4 Structure of Fuzzy Logic data analysis. 
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3.2.2.4.2 Data-driven machine learning method 
With the development of sensors and communication technologies, the demand for online condition 
monitoring systems is continually increasing, resulting in substantial data [191]. Pattern recognition or 
classification models can be trained to learn the data features representing certain transformer 
conditions. This process is called machine learning (ML) that has two major types: supervised and 
unsupervised.  

Supervised machine learning methods 

Supervised ML uses labelled training data sets to study algorithms and statistical models that can classify 
data and predict outcomes [212]. Classification is a type of supervised ML technique that has been widely 
implemented in transformer fault diagnostic methods [213, 214]. For example, DGA diagnosis uses 
labelled data sets containing 7-key gas concentration measurements as inputs and six main fault types as 
outputs to identify classification patterns.1 In this section, commonly used classifiers are briefly described. 
Some of these methods are not only used for fault diagnosis but also employed for transformer reliability 
assessment and life management.  

Decision Tree: A decision Tree is a commonly used method in classification [175]. This method classifies 
data into branch-like segments, as illustrated in Figure 3.5. A Decision Tree structure contains a root node, 
decision node and leaf node. In the example of DGA diagnosis, the root node can be used to separate data 
into thermal-fault and electrical-fault, which is the most relevant attribute/feature of the data sets. 
Decision nodes represent a possible choice available at that point in the tree structure. Finally, each leaf 
shows an outcome (T1, T2, T3, D1, D2 and PD are the symbols of DGA fault types, as shown in Table 3.1). 

 

Figure 3.5 An example of Decision Tree structure. 

Random Forest: Random Forest is an ensemble learning algorithm that can be viewed as an extension of 
Decision Tree [215]. The model comprises several individual decision trees, with each tree learning from 
a random subset of the training dataset [176, 216]. Once all Decision Trees make their predictions, the 
prediction of Random Forest is determined by aggregating over the ensemble. Unlike a single Decision 
Tree, Random Forest is able to process multiple classification trees simultaneously; therefore, it is a fast 
classifier. It also improves the predictive accuracy and controls over-fitting issues by taking the average of 
various Decision Trees [137, 217].     
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K-nearest Neighbour (KNN): KNN is a non-parametric classification method. It stores and allocates 
training data to certain classes, with “K” denoting the number of nearest neighbours considered. The new 
data will then be classified into one of these classes where its nearest neighbour is located [218]. The 
concept behind KNN shares similarities with Decision Trees, but instead of using a tree structure, it 
calculates the distance on the graph. Running KNN is normally faster than a decision tree [217]. There are 
many different methods to calculate the distance in KNN, such as Euclidean, Chebyshev, Minkowski, city 
block, Mahalanobis, Spearman correlation, Hamming, Jaccard and cosine [218].  

Logistic Regression: Logistic Regression is a machine-learning technique for analysing discrete data [179]. 

Each set of input 𝑋𝑋𝑟𝑟 ∈ 𝑅𝑅𝑁𝑁  , 𝑅𝑅𝑁𝑁 is an N dimensional feature vector. As an example, if the DGA set comprises 

5 gases, then � 𝑋𝑋1𝑟𝑟 ,𝑋𝑋2𝑟𝑟 ,𝑋𝑋3𝑟𝑟 ,𝑋𝑋4𝑟𝑟 ,𝑋𝑋5𝑟𝑟  � = [𝐻𝐻2, 𝐶𝐶𝐻𝐻4 ,𝐶𝐶2𝐻𝐻6, 𝐶𝐶2𝐻𝐻4 ,𝐶𝐶2𝐻𝐻2] [180]. The output of this model [ 𝑌𝑌𝑟𝑟 ∈
{1, 2, 3, 4}], if there are four possible classified states – normal, thermal fault, low energy discharge and 
high energy discharge. The inputs can also be the sets of gas ratios and the outputs can be six fault types 
[179]. Logistic regression can be trained on small data sets; therefore, it is simpler and more efficient. The 
test results show that logistic regression has an accuracy rate of over 90% and has much better 
performance than conventional methods such as Rogers Ratios (60%), IEC Ratios (60%) and Duval methods 
(80%) [180].  

Support Vector Machine (SVM): SVM is a binary classifier that constructs an optimal separating decision 
surface, called a hyperplane, to maximize the margins between the hyperplane and the data set as shown 
in Figure 3.6 [177]. The support vectors are the data used to find the optimal location of the hyperplane.  

 

Figure 3.6 Principal diagram of SVM with two classes. 

SVM can map non-linear data into higher dimensional feature space and turn it into a linear regression 
problem [219]. This non-linear relationship can be expressed as a decision function given by (3.3) [220]. 
The training data set is {𝑋𝑋𝑟𝑟 ,𝑌𝑌𝑟𝑟}𝑟𝑟=1𝑚𝑚 , where 𝑌𝑌𝑟𝑟  is the label of the input vector 𝑋𝑋𝑟𝑟 . 𝑋𝑋𝑟𝑟 ∈ 𝑅𝑅𝑁𝑁 , 𝑅𝑅𝑁𝑁  is the N 
dimension of input vectors. 𝐾𝐾(𝑋𝑋𝑟𝑟 ,𝑋𝑋) is the Kernel function, which maps low-dimensional space into high-
dimension. The popular kernel functions are Linear kernel, Polynomial kernel, Gaussian kernel, Sigmoid 
and Radial Basic Function (RBF) [177]. The hyperplane can be found when 𝑓𝑓(𝑥𝑥) = 0. The two groups of 
data that are separated by boundaries are negative 𝑓𝑓(𝑥𝑥) = −1 and positive  𝑓𝑓(𝑥𝑥) = +1. SVM is a popular 
technique used in transformer fault diagnosis in which the function 𝑓𝑓(𝑥𝑥) is used to classify the conditions 
such as discharge fault (𝑓𝑓(𝑥𝑥) = +1) and thermal fault (𝑓𝑓(𝑥𝑥) = −1). 
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𝑓𝑓(𝑥𝑥) = 𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷 [�𝛼𝛼𝑟𝑟𝑌𝑌𝑟𝑟

𝑚𝑚

𝑟𝑟=1

𝐾𝐾(𝑋𝑋𝑟𝑟 ,𝑋𝑋) + 𝑏𝑏] (3.3) 

𝐾𝐾(𝑋𝑋𝑟𝑟 ,𝑋𝑋) is Kernel function.  
𝑓𝑓(𝑥𝑥) is a linear combination of kernel functions centred at the 𝑚𝑚 training 
data samples 𝑋𝑋, with their corresponding label 𝑌𝑌.  

 

𝛼𝛼𝑟𝑟 is the Lagrange multiplier corresponding to each sample.  

𝑏𝑏 is the bias term.  

SVM has the advantage of using a small amount of training data, hence, less training time [220, 221]. 
The SVM technique's accuracy depends on its parameters and the used kernel function [222].  

Bayesian Network: Bayesian Network, also known as Belief Network, is a probabilistic graphical model 
based on Bayes theorem [223]. The Bayesian Network model consists of a directed acyclic graph with 
probability table(s), as shown in Figure 3.7 [183, 224]. In the directed acyclic graph, the variables such as 
condition monitoring and fault type data are presented in nodes. These variables in the network are linked 
through edges to indicate the dependencies between variables. Using the DGA method as an example, 
measured C2H2 gas concentration is used to calculate the probability of arcing fault. The top table in Figure 
3.7 gives the probability of C2H2; (P(C2H2)) existing in the measurement. The bottom conditional 
probability table gives the probability of having arcing fault based on C2H2; (P (Arcing | C2H2)). The 
probability of arcing fault can be calculated using (3.4); in this case, P (Arcing = T) is 0.26.  

𝑃𝑃(𝐴𝐴𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑠𝑠 = 𝑇𝑇) = 𝑃𝑃(𝐴𝐴𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑠𝑠 = 𝑇𝑇|𝐶𝐶2𝐻𝐻2 = 𝑇𝑇) × 𝑃𝑃(𝐶𝐶2𝐻𝐻2 = 𝑇𝑇) +
𝑃𝑃(𝐴𝐴𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑠𝑠 = 𝑇𝑇|𝐶𝐶2𝐻𝐻2 = 𝐹𝐹) × 𝑃𝑃(𝐶𝐶2𝐻𝐻2 = 𝐹𝐹) = 0.1 × 0.8 + 0.9 × 0.2 = 0.26  (3.4) 

 

Figure 3.7 An example of Bayesian Network model. 

The Bayesian Network replaces the crisp decision bounds with probabilities and enables the integration 
of expert’s knowledge [183].  

Naïve Bayes: Naïve Bayes is a probability classification algorithm that is also based on Bayes theorem 
[137]. It assumes all features conditionally independent of each other [217]. The Naïve Bayes equation 
used for DGA arcing fault detection can be expressed by (3.5), where the conditional probability of each 
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feature is calculated and multiplied [225]. Naïve Bayes is easy to model and suitable for large data sets 
[217].  

𝑃𝑃(𝐴𝐴𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑠𝑠|𝐻𝐻2,𝐶𝐶2𝐻𝐻2) = 𝑃𝑃(𝐻𝐻2|𝐴𝐴𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑠𝑠) × 𝑃𝑃( 𝐶𝐶2𝐻𝐻2|𝐴𝐴𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑠𝑠) × 𝑃𝑃(𝐴𝐴𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑠𝑠) (3.5) 

Artificial Neural Network (ANN): The fundamental of ANN is to imitate human brain neural networks, 
using interconnected neurons to process condition monitoring parameters and determine the 
transformer condition. The basic architecture of ANN is based on three main layers: an input layer, a 
hidden layer and an output layer as shown in Figure 3.8 [186]. The input signals feed-forward the network 
and adjust the weight twice using 𝑃𝑃𝑟𝑟𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑗𝑗 . If the output is different from the actual output, the signal can 

propagate backward through the network to re-adjust the weights. In some papers, ANN is referred to 
only feed-forward network. With back-propagation algorithm, it is called Back-propagation Neural 
Network (BPNN) [205] [226] [227].  

 

Figure 3.8 Basic structure of Artificial Neural Network. 

In recent years, deep learning methods, which are based on neural networks, have attracted the attention 
of many researchers. One typical method is called Convolutional Neural Network (CNN), in which only 
some neurons in a layer are connected to the next layer [141, 228, 229]. Another commonly known deep 
learning method is the Adaptive Neuro Fuzzy Inference System (ANFIS) that combines ANN with Fuzzy 
Logic. ANFIS model combines the calculational capability of ANN and the logic capability of Fuzzy Logic 
[184]. The typical architecture of ANFIS comprises five layers as shown in Figure 3.9 [230-232]. Layer 1 is 
the fuzzy layer, which uses membership functions (MFs) to fuzzifier the input variables [233, 234]. Layer 
2 is the product layer, which calculates the firing strengths of the fuzzy rules that is calculated by 
multiplying all MFs. Layer 3 is the normalized layer, which normalizes the firing strengths by calculating 
the ratio of a rule’s firing power to the sum of all rules’ firing strength. Layer 4 is the de-fuzzy layer, and 
layer 5 gives the overall output.  
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Figure 3.9 Basic structure of ANFIS model. 

Neural networks (NNs) used for fault diagnosis have grown substantially in recent years. According to 
Table 3.4, NNs can be implemented for different condition monitoring methods. Although the hidden 
layers are not visible to users, NNs are able to develop complex non-linear relationships between 
condition parameters and fault types.  

AI algorithms developed for power transformer fault detection are designed to analyse the condition 
monitoring data automatically. The fault diagnostic module is able to pick up possible fault signals and 
offers opportunities for early intervention through patterns found in previously trained data. However, 
the major limitation of AI methods focuses on the availability of training and testing data. Balanced 
training and testing data need to include not only the normal condition but also all types of fault condition. 
Practically all these data are not always available, which can be the main barrier for engineers to 
implement AI methods.  

3.3. Reliability Assessment 
In the previous section, the fault diagnostic module was introduced as a crucial part of asset management. 
The fault diagnosis function assesses the condition of individual transformer components. Information 
provided by fault diagnosis is not enough for maintenance plans, and the asset management team needs 
to evaluate hundreds and thousands of pieces of equipment. The reliability assessment module becomes 
another important part of asset management to ensure a certain level of power system reliability within 
an economic platform. Unlike fault diagnosis, reliability assessment examines the transformer's overall 
health and delivers a maintenance priority list. The most common practice in the power industry is to use 
the health index (HI) to define the overall health condition of power transformers [235].   

3.3.1 Health Index 
HI is a powerful tool which has been employed to assess the technical and operating state of the 
transformer [236]. HI integrates data from inspection, operating conditions and condition monitoring into 
a quantitative index to provide an overall health information to asset managers [235]. HI applied in 
reliability assessment is used to assess the long-term degradation level, prioritize critical equipment, and 
propose a maintenance plan through condition parameters data.  
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3.3.1.1 Health Index input parameters 
The overall transformer health condition can be measured through different features. In the Current 
industry practice for HI algorithms, emphasis is placed on insulation system testing [4, 237]. The three 
major HI factors, namely, DGA factor (DGAF), Oil Quality factor (OQF) and Paper Insulation factor (PIF) 
collect data through routine oil sampling tests [218, 238, 239]. As depicted in Figure 3.10, the seven input 
parameters from the DGA test are the concentration of H2, CH4, C2H2, C2H4, C2H6, CO and CO2. The typical 
input parameters from an Oil Quality test are breakdown voltage (BDV), interfacial tension (IFT), acidity, 
water content, colour and dissipation factor (DF) [239]. The Paper insulation factor is generally 
determined by 2-FAL furan compound.  

 

Figure 3.10 HI model used by current industry practice. 

Prior research has seen the proposal of numerous features for the implementation of HI model by 
various authors. In [4], a total of 24 features have been listed. The load history has also been recognized 
as a critical feature in HI modelling. In [135], the condition of the tap changer was incorporated into the 
HI index and in [235, 240], the condition of the bushing has been added. Furthermore, data elements such 
as maintenance history and age, have been also leveraged as HI features [240, 241].  

The process of selecting features for the HI model necessitates careful consideration of the failure 
modes relevant to a specific transformer assessment. This involves the utilization of various condition 
assessment techniques to evaluate a failure mode. The failure modes can be categorized based on their 
criticality, including oil criticality, paper criticality, and electrical criticality, as elucidated in the following 
sections.  

3.3.1.2 Health index output scores 
The majority HI scores are typically depicted within the range of 0 – 100 (or 0% - 100%), where “0” means 
the highest probability of a failure event and “100” means the transformer is in optimal health with the 
lowest failure probability [242-246]. Some scholars adopt a numerical rating ranging from 0 to 1, where 0 
means optimal health with the lowest failure probability [247]. Based on HI score, the overall transformer 
condition can be classified into different states such as “Very poor”, “Poor”, “Fair”, “Good” and “Very 
Good”. 
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3.3.2 Health index algorithms 
So far, various HI algorithms such as the scoring-weighting method, probability of failure method, AI-
based methods, and Markov method have been presented in the literature. These methods are explained 
below. 

3.3.2.1 Summation of individual failure mode scores with weighting factor 
The basic HI calculation method is to score individual failure modes and then sum up all failure modes 
scores to give an overall health condition rating. This scoring-weighting method can be presented by a 
normalized equation as given by (3.6) [134]. The purpose of using weight factors here is to highlight the 
priority of some failure modes. For example, according to CIGRE WG 12-05, unexpected failure of OLTC 
can lead to catastrophic consequence [248]. By assigning 40% weight to the OLTC condition and 60% 
weight to the condition of remaining components within the transformer, the importance of possible 
failures in OLTC can be emphasized [4]. 

𝐻𝐻𝑃𝑃 =  
∑ 𝑊𝑊𝐹𝐹𝑀𝑀𝑚𝑚  ×  𝑆𝑆𝐹𝐹𝑀𝑀𝑚𝑚
𝑁𝑁
𝑟𝑟=1

∑ 𝑊𝑊𝐹𝐹𝑀𝑀𝑚𝑚
𝑁𝑁
𝑟𝑟=1

 (3.6) 

𝑁𝑁 is the total number of failure modes.   
𝑆𝑆𝐹𝐹𝑀𝑀  is the score of an individual failure mode.   
𝑊𝑊𝐹𝐹𝑀𝑀 is the weighting per failure mode.   

As previously mentioned, given the crucial significance of oil and paper conditions, HI algorithm is 
scored based on DGAF, OQF, and sometimes PIF, as illustrated in Figure 3.11. These parameters are scored 
based on IEEE, IEC and CIGRE standards such as IEEE C57.104 and IEEE C57.106. The weight assigned to 
each parameter 𝑊𝑊𝑟𝑟 and the respective test 𝑊𝑊𝐹𝐹𝑟𝑟 are determined through a combination of survey reports, 
statistical analysis, and expert knowledge.   

 

Figure 3.11 Scoring-weighting method used in industry. 
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The overall HI rating in percentage is calculated as a cumulative sum of the three factors with their 
corresponding weights as given by (3.7) [136, 245].  

 𝐻𝐻𝑃𝑃 = ∑ (𝑆𝑆𝑚𝑚×𝑊𝑊𝐹𝐹𝑚𝑚)
𝑁𝑁
𝑚𝑚=1

∑ (𝑆𝑆𝑚𝑚−𝑚𝑚𝑟𝑟𝑚𝑚×𝑊𝑊𝐹𝐹𝑚𝑚)𝑁𝑁
𝑚𝑚=1

× 100% =  (𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹×𝑊𝑊𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)+�𝑂𝑂𝑂𝑂𝐹𝐹×𝑊𝑊𝐹𝐹𝑂𝑂𝑂𝑂𝐷𝐷�+(𝑃𝑃𝐼𝐼𝐹𝐹×𝑊𝑊𝐹𝐹𝑃𝑃𝑃𝑃𝐷𝐷)
4×�𝑊𝑊𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+𝑊𝑊𝐹𝐹𝑂𝑂𝑂𝑂𝐷𝐷+𝑊𝑊𝐹𝐹𝑃𝑃𝑃𝑃𝐷𝐷�

× 100% (3.7) 

𝑆𝑆𝑟𝑟−𝑚𝑚𝑟𝑟𝑚𝑚  is the maximum score of each test.   

 

The scoring-weighting method is a simple algorithm as it allows weighting factors to highlight common 
failure modes. However, the weights may not be updated regularly according to changes in operating, 
aging, and health condition of power transformers. Furthermore, scoring tables from different standards 
may result in different HI ratings. Another major limitation of this method is that accuracy is heavily 
dependent on the data availability.  

3.3.2.2 Probability of failure 
The probability of failure method is worth mentioning here due to its simplicity. If the probability of each 
failure mode is known from the fault diagnostic module and historical data, this method can provide 
approximate failure probability using (3.8) [134, 249].  

𝐻𝐻𝑃𝑃 = 1 − ((1 − 𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀1)  × (1 − 𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀2)  × (1 − 𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀3)
× … (1 − 𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀𝐹𝐹)) (3.8) 

𝐷𝐷 is the total number of failure modes.   

𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀𝑟𝑟  (𝐷𝐷 = 1~𝐷𝐷) is the estimated probability of each failure mode.   

Assuming that DGA and Furan tests have been used for failure modes 1 and 2, respectively, then  
𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀1  is the estimated probability of DGA failure mode and 𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀2  is the estimated 
probability of Furan failure mode. If 𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀1 is approximately 10% and 𝑃𝑃𝐷𝐷𝐷𝐷.𝑃𝑃𝐷𝐷𝐹𝐹𝐹𝐹𝑀𝑀2 is approximately 
20%, then according to (3.8), HI is 0.28 or 28%. If DGA result shows an increased failure rate from 10% to 
60%, then HI value also increases to 68%. Although this method provides only approximate probability of 
HI, it has the advantage of not masking any failure mode over the scoring-weighting method.  

3.3.2.3 Artificial intelligence methods 
AI-based HI algorithm does not require a pre-defined formula. It uses analytic data techniques to find a 
new correlation between transformer condition indicators and HI classes: Very poor, Poor, Fair, Good, 
and Very Good. Many scholars have proposed several AI-based methods to enhance the HI algorithm. 
Table 3.5 lists some of the proposed AI methods used to build HI algorithms.  
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Table 3.5 AI methods used for HI algorithm. 

AI methods Input Variables  References Remarks 
Logistic Regression DGA, DF, Moisture, 

Acidity, BDV, 2-FAL  
[250] • Provides explicit probability of 𝐻𝐻𝑃𝑃 giving 

feature vector. 
General Regression 
Neural Network 
(GRNN) 

DGA, DF, 2-FAL, 
Dielectric strength, 
Moisture, Acidity 

[236] • Multi-dimensional measurements combine 
through an optimal scoring-weighting 
system.  

DGA, 2-FAL, Acidity, 
IFT, Moisture, BVD, 
Insulation Resistance, PF, 
Turn Ratio, winding 
resistance, short circuit 
impedance, excitation 
current, Bushing – age, 
DDF, tap changer type 
and operations per month, 
loading and maintenance 
history 

[240] • Allow using small training sets. 
• Simpler algorithm to implement than 

SVM. 
• Condition of transformer subsystems 

estimated using GRNN. 
• Condition scores for each subsystem are 

delivered by using GRNN.  
• Overall HI is non-linear combination of 

condition scores for each subsystem by 
using additive and multiplicative means.  

Fuzzy Logic  DGA, Furan (2-FAL), 
moisture, acidity, BDV, 
DF 

[251] • Results highly closer to experts’ diagnosis.  
• Hard to determine the membership 

functions. 
DGA, Furan, DF, 
Moisture, Acidity 

[252] 

Fuzzy C-Means Inaccurate and uncertain 
data 

[237] • Help with database construction, assigning 
oil characteristic record with weight to a 
particular HI level.  

Decision Tree DGA, BDV, IFT, Acidity, 
Moisture, Colour, DF, 2-
FAL 

[218] • In general, it has lower accuracy than 
SVM and KNN.   

KNN DGA, BDV, IFT, Acidity, 
Moisture, Colour, DF, 2-
FAL 

[218, 253] • Easy to implement, but poor performance 
if the predictor variables increase or the 
number of relevant attributes is low. 

• Non-parametric method, its performance 
doesn’t vary significantly depending on 
distribution pattern of data.  

• Robust to noise.  
• Can be time-consuming during the 

classification phase.  
SVM DGA, BDV, IFT, 

Moisture, DF, 2-FAL 
[254] [255]  • Non-linear classifier for large dimension 

of independent variable. 
• Possible deterioration if dimension is too 

large relative to the size of training data. 
• SVM works better with optimization 

techniques. 
ANN DGA, IFT, Moisture, 

Acidity, BDV, DDF, 
Colour, Furan 

[239] • Simplify the process of data training. 
• Fast diagnosing speed. 
• Performance depends on the completeness 

of the training sample.  
• The process is not visible. 
• Oscillation easily occurs in the 

identification.  
ANFIS DGA, BDV, DF, Acidity, 

IFT, Moisture in oil and 
paper, 2-FAL 

[256] • ANFIS provides more accurate results 
than ANN. 
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The advantage of using AI algorithms for HI classification can avoid the direct calculation of HI scores 
based on empirical weighting factors. Therefore, this can increase the accuracy by not applying crisply 
defined ranges to determine HI classes.  

3.3.2.4 Markov model  
The above HI methodologies focus on calculating HI score/classification based on the transformers 
measured conditions. In some research papers  [244, 257, 258], the Markov model has been proposed to 
predict the future HI state based on the current HI state. The future state of HI can be expressed by (3.9). 
The transition probability 𝑃𝑃 denotes the probability of transitions to the next state. 

𝐻𝐻𝑃𝑃(𝐷𝐷 + 1) = 𝐻𝐻𝑃𝑃(𝐷𝐷) × 𝑃𝑃(𝑟𝑟) (3.9) 

𝐻𝐻𝑃𝑃(𝐷𝐷) is the current state 𝐻𝐻𝑃𝑃 at time 𝐷𝐷.   
𝑃𝑃(𝑟𝑟) is the transition probability matrix at time 𝐷𝐷.  

 

3.4. Life Management 
The designed lifespan for oil-immersed power transformer is generally 25 - 40 years [259]. Due to the 
harsh operating conditions of in-service power transformers, the aging degradation rate increases, 
causing earlier retirement. Life management, as one of asset management's significant tasks, is designed 
to recognize the level of degradation and estimate the remaining lifespan of the transformer under 
current conditions. The remaining lifespan calculation predicts time intervals between fleets’ service life, 
allowing businesses to replace them gradually [260].  

From the business point of view, the definition of End of Life (EoL) can be divided into three categories: 
economical EoL, strategic EoL and technical EoL [261]. An example of economical EoL is when 
maintenance cost is too high, i.e., economically, it is no longer worth maintaining the transformer. 
Examples of strategic EoL could be power network upgrades or the obsolescence of critical components. 
This section will focus on technical assessment, and the methods used to estimate the degree of 
deterioration of power transformers. When the deterioration reaches a level where the transformer is 
too risky to be in operation, it is defined as technical EoL.    

The degradation of components such as bushings, tap-changers, tank, cooling systems, and active parts 
(magnetic core, windings, and insulation) can cause gradual reduction in the dielectric, mechanical and 
thermal strength. Even under normal operating conditions, losing strength may eventually end the 
transformer's life. Without economic considerations, replacing or refurbishing the above-mentioned 
components, apart from the active parts, is possible. Therefore, in previous studies, calculating the 
remnant life of oil-immersed power transformers is mainly focused on winding solid insulation. The solid 
insulations including paper, pressboard and wood are made of cellulosic materials [262]. The chemical 
decomposition of cellulose is caused by oxidation, hydrolysis and pyrolysis mechanism [148, 263]. Hence, 
the degradation of cellulose is strongly influenced by the level of oxygen, water content and thermal 
conditions. The oxygen and water contents are considered to be controllable by using modern oil 
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preservation systems with improved sealing systems [264]. The thermal stress is considered to dominate 
the degradation process [265]. The hotspot temperature inside the transformer can cause the most 
significant aging. Therefore, the winding hot-spot temperature (HST) is the main factor determining the 
insulation lifespan.  

3.4.1 Thermal-based Method  
The thermal methods introduced in IEEE Std C57.91 and IEC 60076.7 can be used to estimate the 
percentage loss of life (% Loss of Life) of the insulation through calculating the aging acceleration factor 
𝐹𝐹𝐷𝐷𝐷𝐷  [18, 266]. The calculation of the aging acceleration factor is based on the winding HST and the 
Arrhenius reaction rate theory [264].  

Equation (3.10), which is presented in IEEE Std C57.91 is practically applied for thermally upgraded 
paper. It commonly uses a reference HST of 110 °C for 65 °C average winding rises [18, 267]. It means the 
value of the accelerated aging factor is greater than 1 for a winding reference HST over 110 °C; and less 
than 1 for a temperature below 110 °C.  

Equation (3.11) that is presented in IEC 60076.7 (AS/NZS 60076.7) is practically applied for non-
thermally upgraded paper (Kraft paper). The reference HST is 98 °C when the aging acceleration factor 
𝐹𝐹𝐷𝐷𝐷𝐷 is equal to 1 according to Table 2 in the standard. The IEC standard also defines that the relative aging 
rate is doubled for every 6 °C increase in HST.  

For thermally upgraded 
paper 𝐹𝐹𝐷𝐷𝐷𝐷(𝐷𝐷) =  𝑃𝑃�

15000
110+273 −  15000

𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻(𝑟𝑟) + 273� (3.10) 

For non-thermally upgraded 
paper 𝐹𝐹𝐷𝐷𝐷𝐷(𝐷𝐷) =  2

𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻(𝑟𝑟) −98
6  (3.11) 

   
𝜃𝜃𝐻𝐻𝑆𝑆𝐻𝐻(𝐷𝐷) is the winding hottest-spot temperature (C°) at time 𝐷𝐷.  

 

The equivalent aging factor of the transformer for the total time is calculated by (3.12) according to 
IEEE Std C57.91. Usually, it uses a total period of 24-hour cycle, then ∑ ∆𝐷𝐷𝐹𝐹𝑁𝑁

𝐹𝐹=1  is 24.  

𝐹𝐹𝐸𝐸𝑂𝑂𝐷𝐷 =   
∑ 𝐹𝐹𝐷𝐷𝐷𝐷,𝐹𝐹  ∆𝐷𝐷𝐹𝐹𝑁𝑁
𝐹𝐹=1

∑ ∆𝐷𝐷𝐹𝐹𝑁𝑁
𝐹𝐹=1

  (3.12) 

  
𝐹𝐹𝐸𝐸𝑂𝑂𝐷𝐷 is the equivalent aging factor for the entire period.   
n is the index of the time interval ∆𝐷𝐷.  
N is the total number of time intervals.  
∆𝐷𝐷𝐹𝐹 is the time interval.  
𝐹𝐹𝐷𝐷𝐷𝐷,𝐹𝐹 is aging acceleration factor for the temperature that exists during the time interval ∆𝐷𝐷𝐹𝐹. 

 

% Loss of Life is the lifetime of cellulose lost over time, which is calculated using the equivalent aging 
factor given by (3.13). The % Loss of Life is to be subtracted from the normal insulation life to estimate 
the remaining life of cellulosic paper. According to both IEEE (Table I.2 of IEEE C57.91) and IEC (IEC 
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60076.7, Table 3) standards, the minimum Normal Insulation Life is 180,000 hours (20.5 years) for a 
thermally upgraded insulation system at reference temperature of 110 °C.   

% 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑓𝑓 𝐿𝐿𝐷𝐷𝑓𝑓𝑃𝑃 =   
𝐹𝐹𝐸𝐸𝑂𝑂𝐷𝐷  ×   𝐷𝐷  × 100

𝑁𝑁𝐷𝐷𝐹𝐹𝑚𝑚𝐷𝐷𝑁𝑁 𝑃𝑃𝐷𝐷𝐷𝐷𝐼𝐼𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿𝐷𝐷𝑓𝑓𝑃𝑃 =  
𝐹𝐹𝐸𝐸𝑂𝑂𝐷𝐷 × 24 × 100

180 000  (3.13) 

  
𝐹𝐹𝐸𝐸𝑂𝑂𝐷𝐷 is the equivalent aging factor for the total time-period.   

 

The remaining useful life (𝑅𝑅𝑅𝑅𝐿𝐿)  at time 𝐷𝐷  can be determined by using the previous state of the 
insulation paper and its current condition along with the process noise as given by (3.14) [161, 268, 269].   

 

The thermal models defined in the standards offer straightforward approaches for gauging insulation 
aging. Nevertheless, directly measuring the winding HST through sensors often proves to be cost-
prohibitive. Instead, it is typically estimated using other measurements and relevant factors. In 
accordance with IEEE Std C57.91, the HST  𝜃𝜃𝐻𝐻𝑆𝑆𝐻𝐻  can be calculated using top-oil temperature (TOT) 𝜃𝜃𝑟𝑟𝑟𝑟𝑡𝑡  

measurement. The TOT can also be estimated through the ambient temperature as per equation (3.15).  

𝜃𝜃𝐻𝐻𝑆𝑆𝐻𝐻 =  𝜃𝜃𝑟𝑟𝑟𝑟𝑡𝑡 + ∆𝜃𝜃𝐻𝐻𝑆𝑆𝐻𝐻 =  𝜃𝜃𝑟𝑟𝑚𝑚𝑎𝑎 +  ∆𝜃𝜃𝑟𝑟𝑟𝑟𝑡𝑡 +  ∆𝜃𝜃𝐻𝐻𝑆𝑆𝐻𝐻  (3.15) 
  
𝜃𝜃𝑟𝑟𝑟𝑟𝑡𝑡 is the top-oil temperature (°C).  
𝜃𝜃𝐻𝐻𝑆𝑆𝐻𝐻 is the winding hotspot temperature (°C).  
𝜃𝜃𝑟𝑟𝑚𝑚𝑎𝑎  is the average ambient temperature during the load cycle to be studied (°C).  
∆𝜃𝜃𝑟𝑟𝑟𝑟𝑡𝑡 is the top-oil rise over ambient temperature (°C).  
∆𝜃𝜃𝐻𝐻𝑆𝑆𝐻𝐻  is the winding hotspot rise over top-oil temperature (°C).  

 

In practice, the calculation of HST can be much more complex as the thermal conditions depend on 
the load, environmental and transformer conditions [161, 270]. All these uncertainties will result in errors 
in the TOT estimation, HST calculation and RUL prediction. It is worth mentioning that even a slight error 
like 2 °C in HST calculation can make about 20% difference in acceleration aging factor. Dynamic thermal 
models have been used to increase the accuracy of monitoring continuous temperature changes.  

Kalman Filter: some research suggests a state estimation tool called Kalman filter for thermal modelling 
[270-272]. Kalman filter is an optimal recursive data-processing algorithm, which can optimally estimate 
the temperature. The principle of this mathematical model is shown in Figure 3.12. The thermal dynamics 
present the actual system and ambient temperature, and TOT can be measured in the real system. The 
thermal model aims to have the estimated HST value as close as possible to the actual HST value by 
comparing the estimated and measured TOT values. The controller gain K is to control the decay rate of 
the error function, which means offering a faster elimination of the error [272].  

𝑅𝑅𝑅𝑅𝐿𝐿(𝐷𝐷) = 𝑅𝑅𝑅𝑅𝐿𝐿(𝐷𝐷 − 1) −  𝐹𝐹𝐷𝐷𝐷𝐷(𝐷𝐷) +𝑃𝑃(𝐷𝐷) (3.14) 
𝑃𝑃(t) is the process noise at time 𝐷𝐷.  
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Figure 3.12 Using Kalman filter for thermal model. 

The standard Kalman filter is only designed to model linear relationships with Gaussian noise, which 
does not change with time [272]. However, the correlation of the TOT with its relevant parameters, such 
as temperature and load is non-linear [161]. To address non-linear conditions, the Extended Kalman Filter 
(EKF) and Unscented Kalman Filter (UKF) have been developed. The drawback of this recursive algorithm 
is the problem of handling long-term predictions by accumulating prediction errors.  

Although computational methods can improve the accuracy of the thermal model, the function of 
temperature and time from IEEE or IEC is based on a well-dried and oxygen-free insulation system  [148]. 
Alternatively, the transformer's water and oxygen content remain constant, and in reality, most in-service 
transformers are not operating under such perfect condition [268]. The following section introduces 
another thermal method considering moisture and oxygen contents in oil.  

3.4.2 DP-value method 
3.4.2.1 Kinetic Model to predict DP-value 
The thermal aging process of paper can also be assessed by measuring the Degree of Polymerization (DP). 
As mentioned, it is difficult to measure DP value directly. Therefore, the Kinetic model method assesses 
the degradation of cellulose using estimated DP value with consideration of the effects of moisture and 
oxygen contents [268]. The kinetics of cellulose degradation is calculated using (16) based on the pseudo-
zero-order kinetic equation and Arrhenius reaction rate theory [153, 273]. The value “𝐴𝐴”  in the equation 
is decided by environmental factors like moisture content of the paper and dissolved oxygen in oil.  While 
the value of A can be experimentally measured, it is not constant through the transformer life [162, 274]. 
∆𝐷𝐷 is the aging period. The value of “𝐸𝐸𝑟𝑟" depends on the type of cellulose and chemical reaction [162]. 
From the International System of Units (SI), the gas constant R is 8.314 J.mol-1K-1. The temperature of the 
paper typically refers to the HST of winding as the hottest temperature causes the most degradation.  

1
𝐷𝐷𝑃𝑃(𝐷𝐷) −  

1
𝐷𝐷𝑃𝑃(𝐷𝐷 − 1) = 𝐴𝐴(𝑟𝑟−1)  × ∆𝐷𝐷 ×  𝑃𝑃

−𝐸𝐸𝑟𝑟
𝑅𝑅×𝐻𝐻(𝑟𝑟−1) (3.16) 

𝐷𝐷𝑃𝑃(𝐷𝐷 − 1) and 𝐷𝐷𝑃𝑃(𝐷𝐷) are the DP values at the start and the end of the period.  
A is the environmental factor, which can depend on the moisture and oxygen content in 
oil at (t-1) where (t-1) is the previous state and t can be hours, days, or years.  

∆𝐷𝐷 is the aging period.   
𝐸𝐸𝑟𝑟 is the activation energy of the aging reaction (J.mol-1).  
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R is the gas constant (J.mol-1.K-1).  
T is the temperature of the paper (K).  

 

Rearranging (3.16), the expected life of the paper can be calculated as below equation (3.17) [265].  

𝐸𝐸𝑥𝑥𝐷𝐷𝑃𝑃𝐹𝐹𝐷𝐷𝑃𝑃𝐸𝐸 𝐿𝐿𝐷𝐷𝑓𝑓𝑃𝑃 ∆𝐷𝐷 =

1
𝐷𝐷𝑃𝑃(𝐷𝐷) −  1

𝐷𝐷𝑃𝑃(𝐷𝐷 − 1)
𝐴𝐴(𝑟𝑟−1)

 × 𝑃𝑃
𝐸𝐸𝑟𝑟

𝑅𝑅×𝐻𝐻(𝑟𝑟−1) (3.17) 

Compared to the thermal models from IEEE/IEC standards, this model has the advantage of considering 
moisture and oxygen involvement. However, both the values of 𝐴𝐴   and HST are complicated to be 
determined.  

During paper degradation, cellulose breakdown also generates by-products; water, furan compounds 
and carbon oxides (CO, CO2) [275]. These by-products dissolve into oil and can be measured through an 
oil sample testing. Equation (3.18) is the general formula used to calculate the DP-value based on 
condition monitoring data 𝑀𝑀(𝐷𝐷) including furan concentrations or the ratio of CO and CO2 [273].  

𝐷𝐷𝑃𝑃(𝐷𝐷) =
𝐷𝐷 −  𝑁𝑁𝐷𝐷𝑠𝑠10𝑀𝑀(𝐷𝐷)

𝑏𝑏   (3.18) 

𝐷𝐷 and 𝑏𝑏 are constants that describe the linear relationship.   
 

Extensive research has shown a correlation between the DP-value and the concentration of the 2-FAL 
furan compound [276]. Therefore, the 2-FAL analysis can also be utilized to determine the deterioration 
of the cellulosic insulation system.  

Various methods have been developed to model the correlation between DP-value and 2-FAL. 
Equations (3.19) and (3.20) are the most widely used models [277]. Chendong model applies to non-
thermally upgraded paper whereas Stebbins model is applied for thermally upgraded paper. However, 
the generation of 2-FAL is also depended on the type and quantity of the paper, and these two models do 
not consider the amount of degraded paper at any time [277]. In 1999, De Pablo developed a degradation 
model which can overcome the limitation of other models. Based on experimental laboratory data 
reported by De Pablo, every three cellulose chain scissions generate one 2-FAL molecule. This model is 
represented by (3.21) which was later validated and improved by Serena [278]. Another improved model 
given by (3.22) is called De Pablo model 2 or the Pahlavanpour model [154]. The advantage of this model 
is that it can consider the different degradation rates of winding paper, i.e., effect of hot spots. These 
models are summarized in Table 3.6.  

Table 3.6 various DP-Furan correlational models. 

Chendong model: For non-
thermally upgraded paper DP =  

log10�2~FALppm � − 1.51
−0.0035  (3.19) 

Stebbins model: For thermally 
upgraded paper 𝐷𝐷𝑃𝑃 =  

𝑁𝑁𝐷𝐷𝑠𝑠10�2~𝐹𝐹𝐴𝐴𝐿𝐿𝑡𝑡𝑡𝑡𝑚𝑚  × 0.88� − 4.51
−0.0035  (3.20) 
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De Pablo model: consider the 
quantity of the paper 

𝐷𝐷𝑃𝑃 =  
7100

8.88 + �2~𝐹𝐹𝐴𝐴𝐿𝐿𝑡𝑡𝑡𝑡𝑚𝑚�
 (3.21) 

Pahlavanpour model: consider 
the different degradation rate 
for winding paper at different 
locations 

𝐷𝐷𝑃𝑃 =  
800

0.186 × �2~𝐹𝐹𝐴𝐴𝐿𝐿𝑡𝑡𝑡𝑡𝑚𝑚�+ 1
 (3.22) 

 

Furan analysis is one of the most popular methods for thermal aging estimation [279]. However, over 
the years, many cases prove that the concentrations of 2-FAL in the operating transformer oil samples are 
much lower than laboratory data for the same DP-value [279]. The correlation between furan compounds 
and DP depends on many other factors, such as the type and quality of oil/paper and ambient conditions 
(e.g., moisture) [265, 276, 279]. The above models have been established in the laboratory environment. 
Therefore, instead of performing sole furan analysis, combining such models with other oil diagnostic 
methods is more useful. 

3.4.2.2 AI methods to predict DP-value 
AI methods have also been used in predicting DP. New models employing data from realistic conditions 
have been presented in recent studies [149, 280]. The new general formula given by (3.23) can be 
established using regression analysis. In [207], ANFIS was employed to estimate DP-value based on 2-FAL, 
CO and CO2 measurements.  

𝐷𝐷𝑃𝑃 = 𝐷𝐷 × ln(2~𝐹𝐹𝐴𝐴𝐿𝐿𝐷𝐷𝐷𝐷𝑏𝑏) + 𝑏𝑏 (3.23) 
𝐷𝐷 and 𝑏𝑏 are constant developed in regression analysis.   
1 𝐷𝐷𝐷𝐷𝑏𝑏 =  0.001 𝐷𝐷𝐷𝐷𝑚𝑚   

 

3.4.2.3 RUL calculation based on DP-value 
According to IEEE C57.91 Table I.2, the End-of-Life Criteria recommended that if DP-value is 200, it is 
considered the end of paper insulation life. The remaining life of paper insulation in percentage (%RUL) 
can be calculated using retained DP value as given by (3.24) [147, 281] and (3.25) [147]. In (3.24), it is 
assumed that the degradation starts when DP is 622; while this value is changed to 820 when using (3.25).  

% 𝑅𝑅𝑅𝑅𝐿𝐿 = 1 + 88.1ln (
𝐷𝐷𝑃𝑃
622) (3.24) 

% 𝑅𝑅𝑅𝑅𝐿𝐿 = 1 +
[𝑁𝑁𝐷𝐷𝑠𝑠10(𝐷𝐷𝑃𝑃) − 2.903]

−0.006021  (3.25) 

 

Some scholars have proposed using AI methods directly to predict the transformer age from condition 
monitoring sensors. For example, in [150] [282], RUL can be estimated using ANFIS and ANN based on oil 
testing results.  
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3.5. Future Improvement areas 
Current industry practice in the field of asset condition monitoring and fault diagnosis still relies on 
personnel expertise, which may result in inconsistent interpretation and recommended asset 
management actions. AI methods are the future tools to automate and standardize asset management 
methods of oil-immersed power transformer. However, there are two areas that call for further 
development. One is to develop a suitable failure mode analysis method for the power transformers, and 
the second is to develop a proper hybrid AI-based mode that can provide proven accuracy regardless of 
the size and operating conditions of the transformer.  These two areas are briefly elaborated below. 

3.5.1 Failure modes definition 
As mentioned above, no standardized failure modes are used for power transformer condition 
assessment. The failure modes can be constructed based on the source of fault, as shown in Figure 3.13 
[283, 284]. However, implementation for such failure mode structure could be confusing. For example, 
thermal and electrical faults are closely related. Hence, it is hard to determine whether the fault is thermal 
or electrical originated. The failure mode structure can also be built based on location – winding, oil 
insulation, paper insulation, core, bushing, tap changer, cooling system and tank [134-136, 224, 285, 286]. 
It seems clear to choose the condition monitoring method for individual components and locate the fault. 
However, this calls for an extensive number of sensors to be installed. In most cases, this is not a cost-
benefit for businesses. Some research efforts have been conducted to identify various faults in the 
transformer oil and paper insulation using fuzzy logic, ANFIS, and gene expression programming [64, 65, 
287]. However, feasibility of these models has not been assessed in field application yet.  

 

Figure 3.13 Sources of faults. 

3.5.2 Hybrid models 
In the above sections, only individual AI algorithms have been summarized. Due to significant 
measurements and history, using AI and minimizing human intervention seem to be the future for big 
data analysis. Researchers are continuously exploring the optimal AI methods, including hybrid models. 
Hybrid models integrate different AI algorithms into a single model, which can bring benefits from these 
algorithms and avoid their downsides. Some examples of the hybrid model are listed in Table 3.7. 
Although researchers have claimed, their new models improved the accuracy, such models do not seem 
to be a standard model that can work for all different datasets.  
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Table 3.7 Examples of hybrid model used in condition assessment. 

References Hybrid models Remarks 

[259] Bayesian ordered regression & ANN 

 Classify HI into 5 classes (very bad, bad, 
moderate, good, very good) without 
calculating HI score.  

 Easily adapted. 
 Improved accuracy compared to some single 

AI methods. 
 Full quantized uncertainty of its parameters 

and predictions.  
 More efficient use of unsymmetrical datasets.  

[288] Unsupervised Clustering & supervised 
classification 

 Unsupervised ML Clustering used for feature 
extraction.  

 Reduce the size of data and processing time.  
[188] Fuzzy Logic & decision tree  Avoid crisp decision tree rules 

[289, 290] 
Principal Component Analysis (PCA) & 
Particle Swarm Optimization (PSO) & 
SVM 

 PCA is used to reduce the dimension of data 
sets.  

 PSO is used to obtain the optimal parameters 
for SVM algorithm.  

[291] Relevance vector machine (RVM) & 
ANFIS 

 RVM performs binary separation.  
 ANFIS performs further fault diagnosis.  
 Higher accuracy than single ANFIS, SVM and 

ANN.  
 

3.6. Summary 
Cost-effective and reliable transformer asset management techniques are essential to design strategic 
maintenance and replacement plans. Continuously improved technologies in condition monitoring and 
computational methods increase the opportunity to use condition-based maintenance. This chapter 
reviewed various methods used in condition assessment major modules: fault diagnostic module, 
reliability assessment module and life management module. In the fault diagnostic module, fault 
diagnostic methods according to individual transformer components have been introduced. However, the 
transformer condition could often be between normal and faulty conditions, which means that the 
measurements are not in the normal range but still acceptable in practice. Therefore, reliability 
assessment using HI is utilized to evaluate the overall health condition of the transformer. Calculating HI 
is commonly used in scoring-weighting and enhanced through Artificial Intelligence methods. In the life 
management module, the degradation of the insulation system has been a major indicator of End-of-Life 
for power transformers. The remaining service life of a transformer can be estimated through the 
degradation factors and other indicators.  
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The content of this chapter has been published in the following paper: Deep Machine Learning-based Asset 
Management Approach for Oil-Immersed Power Transformers using Dissolved Gas Analysis 

Chapter 4  Deep Machine Learning-based Asset 
Management Approach for Oil-Immersed Power 
transformers using Dissolved Gas Analysis 

 

4.1. Introduction 
The reliable operation of a power system is largely dependent on the health condition and performance 
of its key equipment, particularly power transformers. Faults or malfunctions in a power transformer can 
directly impact the safety and reliability of the entire power grid. Therefore, it is essential to develop cost-
effective asset management methods to assess its health condition and provide a timely decision to rectify 
emerging faults and avoid any potential catastrophic consequences. Over decades, many condition 
monitoring methods have been evolved to detect various faults in power transformers [5]. In industry 
practice, one of the most widely used methods for analysing power transformer oil to detect incipient 
faults is the Dissolved Gas Analysis (DGA) method [6]. This technique has been proven to be effective in 
identifying potential issues in power transformers and has become an essential asset management tool. 

The fundamental principle of DGA is to measure the levels of various dissolved gases in the transformer 
oil. These gases are generated as a result of overheating, arcing and partial discharge events [7]. By 
analysing the type and concentrations of dissolved gases in transformer oil samples, potential faults can 
be identified, and rate of insulation degradation can be assessed, allowing timely maintenance and repair 
plans to prevent potential severe damages to the transformer. The measured dissolved gases in 
transformer oil include Hydrogen (H2), Methane (CH4), Ethylene (C2H4), Ethane (C2H6), Acetylene (C2H2), 
Carbon Monoxide (CO) and Carbon Dioxide (CO2). These gases have been considered as key indicators of 
potential transformer faults, and their concentration can provide valuable insights into the overall health 
condition of the transformer.  

Several conventional DGA interpretation methods, derived from  ANSI/IEEE standard and IEC 
publication 599, have been extensively utilized in the power industry [7, 8]. These methods include Key 
gas method, Rogers Ratios, Doernenburg Ratios, Duval Triangles and Pentagons graphical methods. 
However, each of these methods exhibits certain limitations such as out-of-code ratios, distinct 
boundaries, and the exclusion of gas evolution, which may lead to incorrect and inconsistent fault 
diagnoses [9]. As a result, the accuracy of diagnostic results relies more on the level of experience of the 
professionals conducting the test. To overcome such subjective interpretations, researchers have 
developed several artificial intelligence (AI)-based methods to improve the diagnostic accuracy. In [9], 
various AI-based methods for DGA interpretation have been presented. One of the methods is Fuzzy Logic, 
which replaces the precise values of input-output variables with a range of values to handle the 
uncertainties and imprecisions in the DGA data [79, 158]. Other AI methods such as Decision Tree [175], 
Random Forest [176], k-Nearest neighbours (KNN) [177, 178], Logistic Regression [179, 180], 
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Support Vector Machine (SVM) [181, 182], Bayesian Network [183], Artificial Neural Network(ANN) [160, 
185, 186], Adaptive Neural Fuzzy Inference System (ANFIS) [184, 187] have also shown promising results 
in enhancing the analysis of DGA data. These methods are designed for various levels of data complexity, 
often requiring the use of multiple training models to analyse DGA data comprehensively. For example, 
ANFIS model encounters difficulties and may get stuck in the training process. On the other hand, fuzzy 
logic requires ample number of fuzzy rules, which complicate and reduce the accuracy of the DGA models 
of multiple input and output parameters. 

In recent years, another powerful AI tool called Deep Machine Learning algorithm has emerged to solve 
complex problems that were previously challenging for traditional AI methods. Deep learning is modelled 
to mimic the hierarchical structure of the human brain and is designed to process data in a similar way, 
starting with lower-level features and gradually building up to higher-level concepts [292]. By doing so, 
deep learning models are able to handle complex problems with large data sets. This has made them 
highly effective for a wide range of applications, including image and sound recognition.  

As the concept of future smart grids continues to evolve, the online monitoring of key assets including 
power transformers has become more prevalent. This will lead to a substantial rise in the amount of 
sophisticated data being collected and analysed. Some of these raw data are presented in numerical form, 
while others may take the form of images or sound signals, such as vibration signals [141, 198]. This 
requires adaptable diagnostic methods with enhanced learning and feature extraction capabilities to 
effectively reflect meaningful insights from the measured data. In  [325, 326], a specific type of deep 
machine learning called the probabilistic neural network with optimizer was developed to provide fault 
diagnosis in power transformers based on five DGA gas measurements. The output of the method 
identifies four potential fault conditions, including high/low temperature fault, partial discharge, and arc 
discharge.  

This paper aims to provide a more comprehensive asset management solution for mineral oil-
immersed power transformers. In addition to the fault diagnostic module, the developed asset 
management system also comprises a life management module to provide asset managers with the 
deterioration level of the solid insulation based on the amount of CO2 and CO gases obtained from online 
DGA measurement sensors. The fault diagnostic module encompasses “no fault” condition, in addition to 
identifying thermal fault, arc discharge and partial discharge as will be elaborated below. 

4.2. Methodologies Utilized in Developing the Asset Management 
Model 

A. Data Pre-processing – Normalization 
The aim of data normalization in the data pre-processing stage is to bring features onto a comparable 
scale to enhance the model performance and improve the training stability [293]. In the training datasets, 
the gas concentration exhibits a wide range from 0 to 100,000s ppm. To prevent the dominance of large 
values on training weights, which could potentially distort the training results [294], a commonly utilized 
normalization method called Minimum-Maximum normalization as given by (4.1) is employed [295]. The 
Minimum-Maximum normalization technique scales the data into a range between 0 and 1, based on the 
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minimum and maximum values in the datasets. Figure 4.1 (a) depicts the raw data distribution of H2 gas 
measurements (in ppm) collected from an online DGA sensor, while Figure 4.1 (b) illustrates the data 
distribution after normalization. Comparison of the two figures shows that the normalization process does 
not alter the essential features of the collected data.  

𝑋𝑋𝐹𝐹𝑟𝑟𝑟𝑟 =
𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑟𝑟𝐹𝐹

𝑋𝑋𝑚𝑚𝑟𝑟𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑟𝑟𝐹𝐹
 (4.1) 

where 𝑋𝑋 , is the original value before normalization.   
𝑋𝑋𝐹𝐹𝑟𝑟𝑟𝑟  is the 𝑋𝑋 value after normalization.  
𝑋𝑋𝑚𝑚𝑟𝑟𝑚𝑚  and 𝑋𝑋𝑚𝑚𝑟𝑟𝐹𝐹 represent the maximum and minimum of values of 𝑋𝑋 value, respectively. 
  

 

Figure 4.1 (a) Raw H2 Data (in ppm) collected from DGA sensor. (b) Data processed using Minimum-Maximum 
normalization. 

 

B. Data Pre-processing – Balance Datasets 
The training datasets often exhibit uneven distribution, where minority classes are vastly outnumbered 
by majority classes. When the model is trained using such imbalanced dataset, machine learning 
algorithms tend to favour the majority classes, leading to potential misclassification of the minority classes 
[296]. Based on the datasets presented in Table 4.1, it can be observed that the various transformer 
conditions are not evenly distributed. Specifically, the occurrence of partial discharge faults constitutes a 
relatively small percentage of all conditions (accounting for only 8.7%). On the other hand, energy 
discharge faults and thermal faults are much more prevalent, comprising approximately 35% and 41.3% 
of the total conditions, respectively. Interestingly, the normal condition makes up 15.7% of the conditions, 
which is noteworthy given that in real-world scenarios, normal conditions tend to be the most commonly 
observed results [297]. The imbalance nature of the datasets could potentially have a significant impact 
on the outcomes of machine learning algorithms.  

Another crucial issue that must be considered when utilizing machine learning algorithms is their ability 
to generalize beyond the training datasets. In the construction of the training datasets, the transformer 
fault types of transformers are typically identified based on the expert judgements, which are often 
derived from conventional interpretation methods such as IEEE/IEC ratio and Duval Triangles/Pentagons. 
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However, the heuristic nature of expert judgments, coupled with the fact that transformers may exhibit 
multiple faults simultaneously, can lead to varying degrees of inconsistency between datasets collected 
from different sources. This inconsistency in the training data can pose a significant challenge to the 
generalization capability of machine learning algorithms and may ultimately undermine their 
effectiveness in practical applications.  

Table 4.1 Datasets for Fault Diagnostic module training.  

(Note: In references [184], [291], and [307], the discrepancy between the total number of samples and the 
total number of conditions arises from some samples containing multiple conditions, resulting in overlapping 
counts.) 

To overcome the above-mentioned issues of imbalanced data, Synthetic Minority Over-sampling 
Technique (SMOTE) has been implemented [313, 314]. The principle of SMOTE is to generate synthetic 
samples for minority classes. It begins by randomly selecting a data point from the minority class and 
identifying its k nearest neighbours. SMOTE then places a synthetic point along the line connecting the 
chosen data point and one of its nearest neighbours. These steps are repeated until the dataset is 
balanced, thereby ensuring a more even representation of all classes in the training data. Figure 4.2 

Reference Energy 
Discharge No fault Partial Discharge Thermal Fault Total # of 

samples 
[178] 6 0 5 9 20 
[184] 3 0 1 3 6 
[158] 3 0 2 6 11 
[230] 4 0 0 6 10 
[290] 4 0 2 4 10 
[234] 6 12 4 12 34 
[87] 2 0 1 3 6 

[298] 2 0 1 3 6 
[299] 8 0 4 12 24 
[300] 6 13 3 11 33 
[301] 10 5 3 7 25 
[302] 28 9 0 38 75 
[303] 8 1 1 12 22 
[186] 15 8 0 8 31 
[291] 3 0 1 4 7 
[167] 4 2 0 10 16 
[183] 1 2 1 2 6 
[304] 10 0 3 23 36 
[305] 4 0 7 9 20 
[306] 3 1 1 5 10 
[307] 4 0 1 6 8 
[308] 2 2 0 0 4 
[309] 0 4 1 5 10 
[310] 4 0 3 2 9 

[8] 74 34 9 34 151 
[311] 8 6 1 15 30 

[6] 5 2 0 13 20 
[312] 6 3 3 12 24 
Total 233 104 58 274 664 

Percentage 35% 15.7% 8.7% 41.3%  
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presents a comparative histogram illustrating the effect of data balancing through SMOTE processing. 
Figure 4.2(a) provides an overview of the distribution of multi-class targets within the initial training 
dataset before the application of SMOTE. Each bin within the histogram corresponds to a distinct label. 
Specifically, the x-axis denotes the labels associated with the dataset. In this context, label “1” pertains to 
Thermal fault, label “2” signifies partial discharge (PD) fault, label “4” indicates No Fault, label “8” 
represents Discharge fault, and label “9” corresponds to a combination of Discharge and Thermal faults. 
The y-axis represents the frequency (number of instances) that belong to each label. On the other hand, 
Figure 4.2(b) shows the distribution of labels in the training data after applying SMOTE. As can be 
observed, the frequency of labels “2”, “4”, “8”, and “9” have been changed due to the introduction of 
synthetic samples. 

 

 

Figure 4.2 (a) Data distribution before SMOTE and (b) Data distribution after SMOTE. (for reference to label 
numbers, see Table 3) 

C. Convolution Neural Network  
Convolution Neural Network (CNN) has emerged as a popular and effective deep learning technique, 
particularly for analysing visual data [141]. In recent years, there has been growing interest in leveraging 
CNN for condition monitoring applications. A study published in [141] has utilized CNN to identify six types 
of PD faults in power transformers by analysing Phase-Resolved Partial Discharge (PRPD) signals captured 
by Ultrahigh Frequency (UFH) sensors. Another investigation in [198] focused on using CNN to assess 
transformer winding conditions through the analysis of vibration signatures. Furthermore, [315] explored 
the application of CNN in assessing oil quality based on oil aging images. Considering the future 
advancements and ongoing developments of online condition monitoring methods, CNN holds a great 
potential as a powerful tool that can provide more comprehensive condition assessment of power 
transformers in real-time. This will provide a more accurate and holistic understanding of transformer 
performance, facilitate timely maintenance interventions, and extend the operational lifespan of power 
transformers. 

The structure of a CNN comprises two primary components: feature selection and neural network as 
shown in Figure 4.3. The feature selection layers encompass convolutional layers, pooling layers, batch 
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normalization layers, and flattened layers [316]. The convolutional layers play a significant role in feature 
extraction, applying filters or kernels to the input data to capture patterns and spatial dependencies. The 
pooling layers reduce the spatial dimensions of the resulting feature maps, effectively summarizing the 
learned features. The batch normalization layers normalize the outputs of the previous layers to enhance 
training stability and accelerating convergence. Finally, the flattened layers transform the 
multidimensional feature maps into a one-dimensional vector. This process prepares the extracted 
features for further processing in neural network. The feature selection process in CNN provides the key 
advantage over traditional machine learning algorithms, such as Support Vector Machine (SVM). CNN can 
autonomously learn intricate features and patterns directly from the raw input data, eliminating the need 
for manual feature engineering. This capability significantly reduces the burden of feature extraction and 
enhances the overall efficiency of the model. 

 

Figure 4.3 The structure of Convolution Neural Network. 

The neural network component comprises fully connected layers, which integrate the extracted 
features and make predictions based on the learned representations.  In Figure 4.4, a neural network with 
2 hidden layers is depicted. The inputs 𝑥𝑥1 … 𝑥𝑥𝑟𝑟, contain the features of the input data that are fed into the 
network. Within the hidden layers, each neuron takes input from the previous layer, applies a weight (i.e., 
𝑃𝑃𝑟𝑟𝑖𝑖  or 𝑃𝑃𝑖𝑖𝑗𝑗) and a bias (i.e., 𝑏𝑏𝑖𝑖  or 𝐵𝐵𝑗𝑗), and passes the results through an activation function as presented 

by (2). During the training process, the backpropagation algorithm determines the weights along with 
biases of the neural network to minimize the error of difference between the predicted output and the 
target or desired output. This adjustment is performed using an optimization algorithm, such as Adaptive 
Moment Estimation. The optimization algorithm updates the weights based on the calculated error and 
the network’s learning rate, which controls the step size of the weights updates.  

Activation functions play a critical role in transforming the weighted sum of inputs and bias into an 
output value. For example, the Rectified Linear Unit (ReLU) activation function is commonly used in neural 
networks which results in the input value if it is positive, and zero otherwise. Another example is Sigmoid 
function, which squashes the input value into a range between 0 and 1, in case output needs to be 
interpreted as probabilities. 

𝑌𝑌𝑖𝑖 =  𝑓𝑓1(�(𝑃𝑃𝑟𝑟𝑖𝑖 × 𝑥𝑥𝑟𝑟 + 𝑏𝑏𝑖𝑖))
𝑟𝑟

𝑖𝑖=1

 (4.2) 

𝑃𝑃ℎ𝑃𝑃𝐹𝐹𝑃𝑃,𝑌𝑌𝑖𝑖 is the output of the first hidden layer.   
𝑥𝑥𝑟𝑟  is the input.   
𝑓𝑓1 is the activation function.  
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𝑃𝑃𝑟𝑟𝑖𝑖 is the weight.   
𝑏𝑏𝑖𝑖 is the bias.   

 

 

 

Figure 4.4 General structure of neural networks with 2 hidden layers. 

4.3. Proposed Asset Management Model 
The asset management approach proposed, as depicted in Figure 4.5, utilizes gas measurements acquired 
from an online DGA sensor. This model consists of two distinct sub-modules: a Fault Diagnostic module 
and a Life Management module. 

In this section, a detailed explanation of the training process for each module is presented, along with 
insights into the possible outputs derived from these modules.   
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Figure 4.5 Proposed workflow for the oil-immersed power transformer asset management model. 

 
A. Fault Diagnostic module 

There are six primary types of faults that can be identified using DGA method, as outlined in Table 4.2 
based on the IEC 60599 and IEEE57.104 [3]. Due to the limited information available in the datasets, fault 
types have been classified into three broader categories: Partial Discharge (PD), Energy Discharges and 
Thermal Faults.  

Table 4.2 Six fundamental types of faults diagnosed using DGA. 

Code Primary Faults 
T1 Thermal fault; T < 300°C 
T2 Thermal fault; 300°C < T < 700°C 
T3 Thermal fault; T > 700°C 
D1 Low energy discharge 
D2 High energy discharge 
PD Corona Partial Discharge 

 

Partial Discharge occurs when a localized area of solid or fluid insulation material, exposed to high voltage 
stress, undergoes a partial breakdown without fully bridging the gap between two conductive materials 
[7, 137, 317]. In this context, PD specifically refers to corona-type PD that transpire within gas bubbles or 
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voids. During PD activities, air or nitrogen in the gas phase undergoes ionization, forming a plasma of 
ionized oxygen and nitrogen atoms. This plasma interacts with the surrounding oil or cellulose, leading to 
the generation of hydrogen as the primary by-product.  

Energy Discharges in oil-immersed power transformers occur when there is an energy discharge that 
creates a localized conducting path or short circuit between conductive materials [7, 137, 317]. This leads 
to sparking around loose connections within the transformer. When low energy arcs, denoted as D1 in 
Table 4.2, occur in transformer oil, only a thin layer of the oil makes contact with the path of the arc. The 
high temperature of the arc, exceeding 3000°C, causes decomposition of this small oil layer. The 
decomposition primarily yields acetylene, with traceable amounts of ethylene being produced. In 
contrast, high energy arcs, referred to as D2 in Table 4.2, involve a greater current flowing through the 
arc path, resulting in a longer duration. The extended duration allows for a larger volume of oil to be 
heated by the arc. The convective flow of cooler surrounding oil contributes to this process. Consequently, 
a significant temperature gradient is established in the oil surrounding the arc path, ranging from around 
3000°C to 500°C. Interestingly, despite the higher energy content of D2 arcs, their average oil temperature 
is lower compared to D1 arcs. However, D2 arcs generate a substantial amount of ethylene in addition to 
acetylene due to the temperature gradient and longer duration of the arc.  

Thermal Faults in oil-immersed power transformers arise from the circulation of electric current within 
the insulating paper due to excessive dielectric losses [7, 137, 317]. Thermal faults can be classified into 
three categories: T1, T2 and T3. T1 fault occurs when there is an increase in the average winding 
temperature, typically caused by increased load or ambient temperature. T2 fault, on the other hand, 
involves localized hotspots within the winding, resulting from electrical contact or excessive current 
density. Localized hotspots generate higher temperatures, which accelerate the insulation aging and 
compromise the transformer’s overall performance. Lastly, T3 fault encompasses more severe conditions, 
such as arcing or short circuits, which cause significant temperature rise and pose an immediate risk to 
the transformer’s operation and safety.  

The proposed Fault Diagnostic module shown in Figure 4.5 employs CNN to analyse the measurements 
of five gases: H2, CH4, C2H4, C2H6, and C2H2. As introduced in the previous section, CNN has proven to be 
highly effective in processing complex data, making it ideal candidate for fault diagnosis in power 
transformers. Based on the concentrations of these gases, the module classifies the transformer’s 
condition into four fundamental categories: “Discharge”, “No Fault”, “PD”, and “Thermal”. Moreover, the 
module is capable of diagnosing combined fault conditions, such as “Discharge and Thermal Faults”, 
adding further versatility to improve diagnostic accuracy.  

In the context of enabling the module for multi-label classification tasks, a binary representation, as 
shown in Table 4.3 has been adopted. The proposed approach utilizes a four-digit binary representation 
based on 2n, where ‘n’ is set to four in this application, accommodating the representation of up to sixteen 
possible cases. 
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Table 4.3 Possible conditions represented using binary numbers. 

Case Discharge No Fault PD Thermal Diagnosis 
0 0 0 0 0 No Fault 
1 0 0 0 1 Thermal Fault 
2 0 0 1 0 PD Fault 
3 0 0 1 1 PD, Thermal Fault 
4 0 1 0 0 No Fault 
5 0 1 0 1 Thermal Fault 
6 0 1 1 0 PD Fault 
7 0 1 1 1 PD, Thermal Fault 
8 1 0 0 0 Discharge Fault 
9 1 0 0 1 Discharge, Thermal Fault 

10 1 0 1 0 Discharge, PD Fault 
11 1 0 1 1 Discharge, PD and Thermal 

Fault 
12 1 1 0 0 Discharge Fault 
13 1 1 0 1 Discharge, Thermal Fault 
14 1 1 1 0 Discharge, PD Fault 
15 1 1 1 1 Discharge, PD and Thermal 

Fault 
 

Based on the output of the Fault Diagnostic module, an asset management decision will be provided 
to users with the severity level as listed in Table 4.4.  

Table 4.4 Fault Diagnostic module outputs and corresponding Asset Management statement. 

Fault Diagnostic Module 
Output 

Asset Management Statement – severity level 

No Fault “No Fault detected, very low likelihood of 
failure.” 

PD “Sign of Partial Discharge fault, low risk of 
failure.” 

Thermal Fault “Sign of Thermal fault, moderate risk of failure” 
PD and Thermal Faults “Sign of Thermal fault, moderate risk of failure” 
Discharge Fault “Sign of Discharge fault, very high risk of failure.” 
Discharge and Thermal Faults “Sign of Discharge fault, very high risk of failure.” 
Discharge and PD Faults “Sign of Discharge fault, very high risk of failure.” 
Discharge, PD and Thermal 
Faults 

“Sign of Discharge fault, very high risk of failure.” 

B. Life Management module. 
The life expectancy of power transformers predominantly relies on their paper insulation [5]. The 
composition of transformer paper is primarily comprised of 90% cellulose by weight. Cellulose is an 
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organic compound characterized by lengthy chains of glucose rings, typically ranging between 1000 to 
1200 per chain for new paper [5]. The Degree of Polymerization (DP) refers to the average number of 
glucose rings present within each chain. Based on experience, it is commonly considered that 
transformers reach their end-of-life when the DP of paper declines to 200, which means the tensile 
strength decreases to approximately 40% of its initial value [58, 59]. However, measuring DP requires a 
paper sample from the transformer, which is not feasible for in-service transformers.   

The life expectancy of power transformers predominantly relies on their paper insulation [9]. The 
composition of transformer paper is primarily comprised of 90% cellulose by weight. Cellulose is an 
organic compound characterized by lengthy chains of glucose rings, typically ranging between 1000 to 
1200 per chain for new paper [9]. The Degree of Polymerization (DP) refers to the average number of 
glucose rings present within each chain. Based on experience, it is commonly considered that transformer 
reaches their end-of-life when the DP of paper declines to 200, which means the tensile strength 
decreases to approximately 40% of its initial value [318, 319]. However, measuring DP requires a paper 
sample from the transformer, which is not feasible for in-service transformers.  

In the present industry practice, the estimation of DP value is often conducted through the analysis of 
furan compounds. Furans are generated as by-products during the degradation of paper insulation 
impregnated with oil. Among the five furan compounds, 2-furfural (2-FAL) is commonly utilized as a 
predictor of DP due to its higher stability compared to other compounds [318]. However, the development 
of online furan measuring methods is still an ongoing research area.  

Previous research has revealed a correlation coefficient of 0.87 between 2-FAL and DP [318]. Notably, 
the ratio of carbon dioxide to carbon monoxide (CO2/CO) exhibits the highest correlation coefficient of 
0.97 [318], emphasizing its superior stability as an indicator for assessing the condition of insulation paper. 
It is important to highlight that CO2 and CO are also generated through the oxidation of oil [318]. The 
utilization of this ratio is justified by the fact that in situations of high thermal fault and arcing faults, CO 
shows a much more rapid increase compared to CO2 [320]. Conversely, during significant heat generation 
in normal operation conditions, CO2 increases at a faster rate than CO.  

Unlike conventional machine learning approaches, deep learning has the capability to directly 
incorporate measurements of CO2 and CO as input features, thereby eliminating the requirement for extra 
features such as CO2/CO ratio.  

The proposed Life Management module, also depicted in Figure 4.5, utilizes a CNN regression 
approach, incorporating simply two-gas measurements CO2 and CO to forecast the DP value.  

Based on the DP value, the Life Management module delivers an evaluation of the paper insulation 
condition and categorize it into four levels: “Healthy insulation”, “Moderate deterioration”, “Extensive 
deterioration”, and “End of insulation life”.  
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Table 4.5 DP values and  their associated significance [150]. 

DP Value Significance 
1200-700 Healthy Insulation 
700-450 Moderate Deterioration 
450-250 Extensive Deterioration 

<250 End of Life 
 

The inclusion of the estimated percentage of remaining life within the asset management framework 
does not only enhance the precision of the assessments but also provide a dynamic understanding of the 
insulation condition. An estimation for the percentage of remaining life based on the DP value can be 
conducted using (4.3) [149]. Upon review of Table 4.5, “Healthy Insulation” category corresponds to DP 
values ranging from 700 to 1200. In order to align the model with real-world applications more effectively, 
a DP value of 800 is considered to be corresponding to 100% transformer remaining life as per (4.3).  

% 𝐷𝐷𝑓𝑓 𝐹𝐹𝑃𝑃𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠 𝑁𝑁𝐷𝐷𝑓𝑓𝑃𝑃 = 166.1 × 𝑁𝑁𝐷𝐷𝑠𝑠10(𝐷𝐷𝑃𝑃) − 382.2 (4.3) 
 

4.4. Results and Discussion 
A. Fault Diagnostic module 

The database comprises a collection of 1083 DGA samples incorporated from the 29 literatures listed in 
Table 4.1. 65% of the samples were randomly selected for the training phase, with an additional 15% 
allocated for the validation phase while the remaining 20% were designated for the testing phase. 

The Fault Diagnostic module employs the capabilities of a one-dimensional CNN, which has an 
architecture adept at processing sequential data. Within this framework, several adjustable parameters 
play crucial roles in shaping the model’s performance. These parameters include the filter size, which 
determines the width of the convolutional filters employed to extract features from the input data. 
Additionally, the kernel size dictates the scope of each convolutional operation, influencing the receptive 
field of the network. The choice of padding, whether ‘valid’ or ‘same’, modifies the dimensions of the 
output feature maps. Lastly, the activation function, a vital component, governs the non-linearity 
introduced within the network, contributing to its ability to capture complex patterns and relationships 
within the data.  

The module training process involves an exhaustive exploration of various configuration settings. 
Different options were tested at filter sizes: 32, 64, and 128, along with varying numbers of neural network 
layers. Through these experiments, layers have been systematically added to assess their impact on the 
model’s performance. Despite the array of layer configurations tested, the final set of layers and 
parameters that yielded optimal results are as shown in Table 4.6.  
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Table 4.6 Optimal parameters of the developed Fault Diagnostic module. 

Layer Parameter Setting 
Convolutional layer Filter size 64 

Kernel size 3 
Padding ‘same’ 
Activation function  ‘ReLU’ 

Dense layer The number of neurons 16 
Activation function ‘ReLU’ 

Dense_1 layer Activation function ‘sigmoid’ 
 

The ReLU activation function transforms negative input values to zero while leaving positive values 
unchanged. The ReLU function finds extensive application in neural networks across diverse domains 
owing to its efficient computation and improved gradient propagation, thus facilitating the extraction of 
significant features from the input data.  

The sigmoid activation function possesses the ability to condense input values within a range between 
0 and 1, as depicted by (4.4).  

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑃𝑃−𝑚𝑚  (4.4) 

The sigmoid function exhibits an S-shaped curve is capable of transforming both positive and negative 
input values into probabilities. Thus, binary classification will be provided. For example, if both 
“Discharge” and “Thermal” faults are present, the predicted probabilities might be presented as [0.8, 0.2, 
0.4, 0.7] ([“Discharge”, “No Fault”, “PD”, “Thermal”]); with more probability assigned to the present faults. 
It’s noteworthy that each output probability is determined independently, meaning the prediction for one 
condition does not influence the prediction of another.  

During the model compilation phase, the ‘Nadam’ optimizer, which is a combination of the Nesterov 
Accelerated Gradient (NAG), and Adam optimizers has been applied. The selection of 
‘binary_crossentropy’ as the loss function, as given by  (4.5), is a common choice for binary classification 
problems. It measures the dissimilarity between predicted probabilities and true labels (0 or 1), thus 
optimizing the model to achieve accurate binary predictions.  

𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐵𝐵 𝐶𝐶𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐸𝐸𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝐷𝐷𝐵𝐵 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 =  −[𝐵𝐵𝑟𝑟 × 𝑁𝑁𝐷𝐷𝑠𝑠(𝐵𝐵�𝑟𝑟) +  (1 − 𝐵𝐵𝑟𝑟) × 𝑁𝑁𝐷𝐷𝑠𝑠(1 − 𝐵𝐵�𝑟𝑟)] 
(4.5) 

where, 𝐵𝐵𝑟𝑟 is the actual target value (0 or 1) of the i-th data point.  

𝐵𝐵�𝑟𝑟 is the predicted value of the i-th data point generated by the model.   

 



90 

Lastly, ‘accuracy’, a standard evaluation metric, is used for classification tasks. It calculates the ratio of 
correctly predicted instances to the total number of instances to provide insight into the model’s overall 
performance.  

During the last phase of model training, the model’s weights are updated based on the provided 
training data. The training process involves passing the training data through the network, computing 
predictions, comparing them with the actual targets, and then backpropagating the error to update the 
model’s weights. ‘Epochs’ defines the number of times the model will iterate over the entire training 
dataset, which is 1000 times in this case. The batch size determines the number of training examples the 
model processes in each update of the gradient. Smaller batch sizes may lead to more frequent updates, 
while larger batch sizes can speed up the training process. A batch size of 16 has been chosen for the 
developed model based on running through many simulations with different batch sizes. 

The training process of the model randomly runs due to the random initial weights, leading to varying 
results in accuracy and loss. Following parameters adjustments, the training model has been executed 
several times, and the run producing the highest accuracy and lowest loss is selected. The generated plots 
shown in Figure 4.6 provide valuable insights into the training process and the performance of the 
developed CNN model. The alignment or divergence of the curves reveals the overfitting or underfitting 
phenomena and guide potential adjustments in the model architecture or hyperparameters for optimal 
performance. In Figure 4.6(a), the ‘Training loss’ curve, depicted in yellow, shows how the model’s loss 
decreases as it learns to better fit the training data. The ‘Validation loss’ curve, depicted in red, 
demonstrates the model’s performance on unseen validation data. A decreasing validation loss over 
epochs indicates successful generalization of the model. In some runs, it was noticed the validation loss 
started to rise after a certain number of epochs while the training loss curve was stable. This overfitting 
phenomenon indicates that the model has started to memorize the training data instead of capturing 
underlying patterns. In Figure 4.6(b), the ‘Training acc’ curve in yellow illustrates the model’s accuracy 
using the training data, showing the performance of predicting the training samples. The ‘Validation acc’ 
curve in red showcases the model’s performance using validation data. As epochs progress, observed 
increasing validation accuracy that aligned with the training accuracy reflects the model’s ability to 
generalize and predict unseen data accurately.  

 



91 

 

Figure 4.6  Fault Diagnostic module: (a) Training and validation loss plot. (b) Training and validation accuracy 
plot. 

The satisfied model performance was achieved with an accuracy of 0.8479 and a corresponding loss of 
0.2989 using the test dataset. This model was subsequently saved for the Fault Diagnostic module. To 
operate the Fault Diagnostic module, new gas measurements were fed into the module, enabling the 
prediction of outputs through its learned capabilities. 

In order to evaluate the performance of the Fault Diagnostic module, a dataset comprising 151 samples 
from the IEC TC10 database was used [4]. Subsequently, a thorough assessment of misdiagnoses within 
each class was carried out. Notably, the analysis revealed that misdiagnosis predominantly occurred 
within the “No Fault” condition as revealed by confusion matrix of the Fault Diagnostic module shown in 
Figure 4.7. This may be attributed to the fact that the majority of the collected datasets were 
predominantly geared towards the identification of fault conditions.   

 

 

Figure 4.7 Confusion matrix of the proposed Fault Diagnostic module. 
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The samples presented in Table 4.7 originate from the IEC TC 10 database (samples 1-151) and Table 
4.8 from Korea Electric Power Corporation (KEPCO) historical data [8, 321]. The second last column in the 
table shows the actual condition of the transformers as determined through physical inspection while the 
last column lists the diagnostic results generated from the proposed Fault Diagnostic module. Certain 
discrepancies have been identified in the samples #21, #51, #60, #80, #87, #90, #91, #97, #107, #120-
#122, #125, #127, #132, #141, #142, #144, #150, #151 and KEPCO’s samples. In Table 4.9 & Table 4.10, 
traditional IEEE and IEC DGA interpretation methods are used to analyse all samples and compare the 
results with those obtained from the module. The following observations can be drawn out of these 
comparisons:  
• In the case of sample #21, the actual condition is described as “Traces of discharges in paper of cone 

junction of HV cable”, categorized as low energy discharge. Traditional methods such as Duval 
Triangle 1, Roger ratio and IEC ratio methods can identify this discharge fault. However, the 
developed module did not capture this specific fault.  

• For samples #51, #60, and #80, the observed reveal instances of high energy discharge, detectable 
through IEEE and IEC ratios as well as Duval Triangle 1 methods. Surprisingly, the developed module 
failed to identify these faults. 

• In the case of samples #87, #90, and #91, the inspection findings indicate “Thermal runaway in thick 
paper insulation”, classified as a low thermal fault. Both the IEC ratio method and Duval Triangle 1 
successfully identified this fault. However, the proposed module encountered a misdiagnosis in these 
instances.  

• For sample #97, the actual condition is described as “Low temperature overheating of clamping 
beams of yokes by stray flux”, categorized as a low thermal fault. It is noteworthy that both the IEC 
ratio and Duval Triangle 1 methods indicate a PD fault. The proposed module diagnosed it as a 
discharge fault.  

• For sample #107, the inspection outcome shows “Defects on contacts of tap changer selector”, 
categorized as high thermal fault. While both the Roger ratio method and the proposed module 
diagnose a discharge fault, the Duval Triangle 1 method identifies it as a thermal fault.   

• In the cases of #120, #121, #122, #125, #127, #132, #141, #142, #144, #150, #151, the inspection 
result denoted no fault. Notably, all other methods, including the proposed approach, failed to 
correctly indicate the condition. 

• Observations reveal that the module occasionally indicated the presence of multiple faults, as seen 
in samples #3, #31 and #86. In the case of sample #3, the module detected a PD fault in addition to 
a thermal fault. Notably, when the Duval Triangle 1 was applied to analyse sample #3, the result 
aligned with the inspection outcome. Similarly, for sample #31, the module detected a discharge fault 
along with a PD fault. The application of the Duval Triangle 1 method to sample #31 also produced 
the result consistent with the inspection finding. For sample #86, in contrast to the inspection result 
which revealed a thermal fault, the proposed module indicated a thermal fault along with a discharge 
fault. Other traditional methods, on the other hand, aligned with the inspection result.  
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• Another assessment was conducted on four KEPCO transformers based on their annual DGA 
measurements. The results exhibited the capability of the developed module in early fault detection 
for transformers 1, 2 and 3, which enables proactive maintenance measures to be taken. In the case 
of transformer 4, the module not only detected the thermal fault but also identified a potential 
discharge fault.  

• In the overall assessment of diagnostic accuracy using IEC TC10 data, the developed module 
consistently demonstrates a better accuracy when compared to traditional methods. It’s worth 
noting that the Doernenburg ratio method appears to have higher accuracy when applied to KEPCO 
data. This discrepancy can be attributed to a specific requirement outlined in IEEE C57.104 [3], which 
mandates a minimum concentration limit for at least one key gas used in the ratios before the 
Doernenburg ratio method can be applied. In the KEPCO dataset, the “No Fault” cases appear to have 
very low gas concentration levels, therefore, identified as “No Fault”. On the other hand, in the IEC 
TC10 data, for samples #120, #121, #122, #125, #127, #132 #141, #142, #144, #150, and #151, the 
gas measurements exceed the concentration limit, resulting in incorrect outcomes when utilizing the 
Doernenburg ratio method. This issue also manifests in the KEPCO data, producing inconclusive 
results for 12 or 24 months before the actual failures may really happen.  

 

Table 4.7 Comparison between the diagnostic result from the Fault Diagnostic module and actual condition from 
inspection. (All gases are measured in PPM) 

IEC 
TC10 

Samples 
H2 CH4 C2H4 C2H6 C2H2 

Actual 
condition 

from 
inspection 

Module's result 

1 32930 2397 0 157 0 PD PD 
2 37800 1740 8 249 8 PD PD 
3 92600 10200 0 0 0 PD PD; Thermal 
4 8266 1061 0 22 0 PD PD 
5 9340 995 6 60 7 PD PD 
6 36036 4704 5 554 10 PD PD 
7 33046 619 2 58 0 PD PD 
8 40280 1069 1 1060 1 PD PD 
9 26788 18342 27 2111 0 PD PD 

10 78 20 13 11 28 Discharge Discharge 
11 305 100 161 33 541 Discharge Discharge 
12 35 6 26 3 482 Discharge Discharge 
13 543 120 411 41 1880 Discharge Discharge 
14 1230 163 233 27 692 Discharge Discharge 
15 645 86 110 13 317 Discharge Discharge 
16 60 10 4 4 4 Discharge Discharge 
17 95 10 11 0 39 Discharge Discharge 
18 6870 1028 900 79 5500 Discharge Discharge 
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19 10092 5399 6500 530 37565 Discharge Discharge 
20 650 81 51 170 270 Discharge Discharge 
21 210 22 6 6 7 Discharge No Fault 
22 385 60 53 8 159 Discharge Discharge 
23 4230 690 196 5 1180 Discharge Discharge 
24 7600 1230 836 318 1560 Discharge Discharge 
25 595 80 89 9 244 Discharge Discharge 
26 120 25 8 1 40 Discharge Discharge 
27 8 0 43 0 101 Discharge Discharge 
28 6454 2313 2159 121 6432 Discharge Discharge 
29 2177 1049 440 207 705 Discharge Discharge 
30 1790 580 336 321 619 Discharge Discharge 
31 1330 10 66 20 182 Discharge Discharge; PD 
32 4 1 7 2 52 Discharge Discharge 
33 1900 285 957 31 7730 Discharge Discharge 
34 57 24 27 2 30 Discharge Discharge 
35 1000 500 400 1 500 Discharge Discharge 
36 440 89 304 19 757 Discharge Discharge 
37 210 43 102 12 187 Discharge Discharge 
38 2850 1115 1987 138 3675 Discharge Discharge 
39 7020 1850 2960 0 4410 Discharge Discharge 
40 545 130 153 16 239 Discharge Discharge 
41 7150 1440 1210 97 1760 Discharge Discharge 
42 620 325 181 38 244 Discharge Discharge 
43 120 31 66 0 94 Discharge Discharge 
44 755 229 404 32 460 Discharge Discharge 
45 5100 1430 1140 0 1010 Discharge Discharge 
46 13500 6110 4510 212 4040 Discharge Discharge 
47 1570 1110 1780 175 1830 Discharge Discharge 
48 3090 5020 3800 323 2540 Discharge Discharge 
49 1820 405 365 35 634 Discharge Discharge 
50 535 160 305 16 680 Discharge Discharge 
51 13 3 3 1 6 Discharge No Fault 
52 137 67 53 7 104 Discharge Discharge 
53 1084 188 166 8 769 Discharge Discharge 
54 34 21 49 4 56 Discharge Discharge 
55 7940 2000 3120 355 5390 Discharge Discharge 
56 150 130 55 9 30 Discharge Discharge 
57 8200 3790 4620 250 5830 Discharge Discharge 
58 260 215 334 35 277 Discharge Discharge 
59 75 15 14 7 26 Discharge Discharge 
60 530 345 266 85 250 Discharge No Fault 
61 60 5 21 2 21 Discharge Discharge 
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62 90 28 31 8 32 Discharge Discharge 
63 220 77 170 22 240 Discharge Discharge 
64 5900 1500 1200 68 2300 Discharge Discharge 
65 420 250 530 41 800 Discharge Discharge 
66 2800 2800 3500 234 3600 Discharge Discharge 
67 99 170 200 20 190 Discharge Discharge 
68 310 230 610 54 760 Discharge Discharge 
69 800 160 260 23 600 Discharge Discharge 
70 1500 395 395 28 323 Discharge Discharge 
71 20000 13000 29000 1850 57000 Discharge Discharge 
72 305 85 197 25 130 Discharge Discharge 
73 1900 530 383 35 434 Discharge Discharge 
74 110 62 140 90 250 Discharge Discharge 
75 3700 1690 2810 128 3270 Discharge Discharge 
76 2770 660 712 54 763 Discharge Discharge 
77 245 120 131 18 167 Discharge Discharge 
78 1170 255 312 18 325 Discharge Discharge 
79 4419 3564 2861 668 2025 Discharge Discharge 
80 810 580 570 111 490 Discharge No Fault 
81 5000 1200 1000 83 1100 Discharge Discharge 
82 10000 6730 7330 345 10400 Discharge Discharge 
83 1570 735 1330 87 1740 Discharge Discharge 
84 1270 3450 1390 520 8 Thermal Thermal 
85 3420 7870 6990 1500 33 Thermal Thermal 
86 360 610 260 259 9 Thermal Discharge; 

Thermal 
87 1 27 4 49 1 Thermal No Fault 
88 3675 6392 7691 2500 5 Thermal Thermal 
89 48 610 10 29 0 Thermal Thermal 
90 12 18 4 4 0 Thermal No Fault 
91 66 60 7 2 0 Thermal No Fault 
92 1450 940 322 211 61 Thermal Thermal 
93 0 18900 540 410 330 Thermal Thermal 
94 960 4000 1560 1290 6 Thermal Thermal 
95 24700 61000 42100 26300 1560 Thermal Thermal 
96 14 44 7 124 1 Thermal Thermal 
97 2031 149 3 20 0 Thermal Discharge 
98 480 1075 1132 298 0 Thermal Thermal 
99 40000 400 600 70 6 Thermal Thermal 

100 8800 64064 95650 72128 0 Thermal Thermal 
101 6709 10500 17700 1400 750 Thermal Thermal 
102 1100 1600 2010 221 26 Thermal Thermal 
103 290 966 1810 299 57 Thermal Thermal 
104 2500 10500 13500 4790 6 Thermal Thermal 
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105 1860 4980 10700 0 1600 Thermal Thermal 
106 860 1670 2050 30 40 Thermal Thermal 
107 150 22 60 9 11 Thermal Discharge 
108 400 940 820 210 24 Thermal Thermal 
109 6 2990 26076 29990 67 Thermal Thermal 
110 100 200 670 110 11 Thermal Thermal 
111 290 1260 820 231 8 Thermal Thermal 
112 1550 2740 5450 816 184 Thermal Thermal 
113 3910 4290 6040 626 1230 Thermal Thermal 
114 12705 23498 34257 6047 5188 Thermal Thermal 
115 1 8 100 8 6 Thermal Thermal 
116 300 700 1700 280 36 Thermal Thermal 
117 107 143 222 34 2 Thermal Thermal 
118 134 134 45 157 0 No Fault No Fault 
119 100 200 200 200 20 No Fault No Fault 
120 0 225 110 225 3 No Fault Thermal 
121 105 125 166 71 10 No Fault Thermal 
122 100 50 50 65 15 No Fault Discharge 
123 100 70 170 70 10 No Fault No Fault 
124 150 0 220 0 8 No Fault No Fault 
125 0 224 112 224 5 No Fault Thermal 
126 200 50 200 50 3 No Fault No Fault 
127 85 0 35 80 70 No Fault Discharge 
128 175 0 375 100 3 No Fault No Fault 
129 80 0 100 200 4 No Fault No Fault 
130 150 0 100 200 15 No Fault No Fault 
131 125 100 150 100 20 No Fault No Fault 
132 200 3 200 50 0 No Fault Discharge 
133 50 30 0 0 5 No Fault No Fault 
134 100 70 170 70 10 No Fault No Fault 
135 95 280 150 250 10 No Fault No Fault 
136 60 40 60 50 3 No Fault No Fault 
137 84 79 166 52 56 No Fault No Fault 
138 66 111 110 90 15 No Fault No Fault 
139 235 180 145 270 336 No Fault No Fault 
140 250 150 250 150 150 No Fault No Fault 
141 150 0 220 0 150 No Fault Discharge 
142 200 50 200 50 30 No Fault Discharge 
143 134 224 224 550 154 No Fault No Fault 
144 250 0 150 15 280 No Fault Discharge 
145 150 0 320 80 22 No Fault No Fault 
146 0 150 200 550 150 No Fault No Fault 
147 150 0 200 200 150 No Fault No Fault 
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148 200 100 100 100 50 No Fault No Fault 
149 250 190 250 180 180 No Fault No Fault 
150 75 35 110 50 80 No Fault Discharge 
151 151 131 250 73 266 No Fault Discharge 

 

Table 4.8 Comparison between the diagnostic results from the Fault Diagnostic module and actual condition 
during inspection for Korea Electric Power Corporation (KEPCO) historical data. (All gases are measured in PPM) 

KEPCO Samples H2 CH4 C2H4 C2H6 C2H2 KEPCO 
Health State 

Module’s  
result 

Transformer 
1 

1999 0 6 2 2 0 No Fault No Fault 
2000 0 25 13 9 0 No Fault No Fault 
2001 0 35 37 31 0 No Fault Thermal 
2002 0 44 28 85 0 No Fault Thermal 

2003 251 139 256 123 1064 Electrical 
Fault Discharge 

Transformer 
2 

2011 10 7 2 5 0 No Fault No Fault 
2012 13 11 3 26 0 No Fault No Fault 
2013 48 24 12 63 14 No Fault Discharge 

2015 335 246 1324 150 1123 Electrical 
Fault Discharge 

Transformer 
3 

2000 0 1 5 0 0 No Fault No Fault 
2002 0 7 11 14 0 No Fault No Fault 
2003 0 64 150 99 0 No Fault Thermal 
2004 218 744 1743 264 7 Thermal fault Thermal 

Transformer 
4 

2000 5 44 4 9 0 No Fault No Fault 
2001 6 42 10 9 0 No Fault No Fault 
2002 6 44 12 10 0 No Fault No Fault 
2003 7 56 12 10 0 No Fault No Fault 

2004 628 1381 1873 351 2.8 Thermal Fault Discharge; 
Thermal 

 

Table 4.9 Comparison of diagnostic results: proposed module vs. the traditional methods for the IEC TC 10 
database. (All gases are measured in PPM) 

IEC 
TC10 

Sample 
# 

Actual 
condition 

from 
inspection 

Roger 
Ratio 

Method 

Doernenburg 
Ratio 

Method 

IEC 
Ratio 

Method 
Duval Triangle Module's result 

1 PD N/A N/A N/A PD PD 
2 PD N/A N/A PD PD PD 
3 PD N/A N/A N/A PD PD; Thermal 
4 PD N/A N/A N/A PD PD 
5 PD N/A N/A N/A PD PD 
6 PD N/A N/A N/A PD PD 
7 PD PD N/A PD PD PD 
8 PD N/A PD PD PD PD 
9 PD No Fault N/A N/A PD PD 
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10 Discharge Discharge Discharge Discharge Discharge Discharge 
11 Discharge N/A Discharge Discharge Discharge Discharge 
12 Discharge N/A Discharge Discharge Discharge Discharge 
13 Discharge N/A Discharge Discharge Discharge Discharge 
14 Discharge Discharge Discharge Discharge Discharge Discharge 
15 Discharge Discharge Discharge Discharge Discharge Discharge 
16 Discharge Discharge N/A N/A Discharge Discharge 
17 Discharge N/A Discharge N/A Discharge Discharge 
18 Discharge N/A Discharge Discharge Discharge Discharge 
19 Discharge N/A Discharge N/A Discharge Discharge 
20 Discharge N/A N/A N/A Discharge Discharge 
21 Discharge Discharge N/A Discharge Discharge No Fault 
22 Discharge Discharge Discharge Discharge Discharge Discharge 
23 Discharge N/A Discharge Discharge Discharge Discharge 
24 Discharge Discharge Discharge Discharge Discharge Discharge 
25 Discharge Discharge Discharge Discharge Discharge Discharge 
26 Discharge N/A Discharge Discharge Discharge Discharge 
27 Discharge N/A N/A N/A Discharge Discharge 
28 Discharge Discharge Discharge Discharge Discharge Discharge 
29 Discharge Discharge Discharge Discharge Discharge Discharge 
30 Discharge Discharge N/A Discharge Discharge Discharge 
31 Discharge N/A N/A N/A Discharge Discharge; PD 
32 Discharge N/A Discharge Discharge Discharge Discharge 
33 Discharge N/A Discharge Discharge Discharge Discharge 
34 Discharge Discharge Discharge Discharge Discharge Discharge 
35 Discharge Discharge Discharge Discharge Discharge Discharge 
36 Discharge Discharge Discharge Discharge Discharge Discharge 
37 Discharge Discharge Discharge Discharge Discharge Discharge 
38 Discharge Discharge Discharge Discharge Discharge Discharge 
39 Discharge N/A Discharge N/A Discharge Discharge 
40 Discharge Discharge Discharge Discharge Discharge Discharge 
41 Discharge Discharge Discharge Discharge Discharge Discharge 
42 Discharge Discharge Discharge Discharge Discharge Discharge 
43 Discharge N/A Discharge N/A Discharge Discharge 
44 Discharge Discharge Discharge Discharge Discharge Discharge 
45 Discharge N/A Discharge N/A Discharge Discharge 
46 Discharge Discharge Discharge Discharge Discharge Discharge 
47 Discharge Discharge Discharge Discharge Discharge Discharge 
48 Discharge N/A N/A N/A Discharge Discharge 
49 Discharge N/A Discharge Discharge Discharge Discharge 
50 Discharge Discharge Discharge Discharge Discharge Discharge 
51 Discharge Discharge Discharge Discharge Discharge No Fault 
52 Discharge Discharge Discharge Discharge Discharge Discharge 
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53 Discharge N/A Discharge Discharge Discharge Discharge 
54 Discharge Discharge Discharge Discharge Discharge Discharge 
55 Discharge Discharge Discharge Discharge Discharge Discharge 
56 Discharge Discharge N/A N/A Discharge Discharge 
57 Discharge Discharge Discharge Discharge Discharge Discharge 
58 Discharge Discharge Discharge Discharge Discharge Discharge 
59 Discharge Discharge Discharge Discharge Discharge Discharge 
60 Discharge Discharge Discharge Discharge Discharge No Fault 
61 Discharge N/A N/A N/A Discharge Discharge 
62 Discharge Discharge Discharge Discharge Discharge Discharge 
63 Discharge Discharge Discharge Discharge Discharge Discharge 
64 Discharge Discharge Discharge Discharge Discharge Discharge 
65 Discharge Discharge Discharge Discharge Discharge Discharge 
66 Discharge Discharge Discharge Discharge Discharge Discharge 
67 Discharge N/A N/A N/A Discharge Discharge 
68 Discharge Discharge Discharge Discharge Discharge Discharge 
69 Discharge Discharge Discharge Discharge Discharge Discharge 
70 Discharge Discharge Discharge Discharge Discharge Discharge 
71 Discharge Discharge Discharge Discharge Discharge Discharge 
72 Discharge Discharge N/A Discharge Discharge Discharge 
73 Discharge Discharge Discharge Discharge Discharge Discharge 
74 Discharge Discharge Discharge N/A Discharge Discharge 
75 Discharge Discharge Discharge Discharge Discharge Discharge 
76 Discharge Discharge Discharge Discharge Discharge Discharge 
77 Discharge Discharge Discharge Discharge Discharge Discharge 
78 Discharge Discharge Discharge Discharge Discharge Discharge 
79 Discharge Discharge Discharge Discharge Discharge Discharge 
80 Discharge Discharge Discharge Discharge Discharge No Fault 
81 Discharge Discharge Discharge Discharge Discharge Discharge 
82 Discharge Discharge Discharge Discharge Discharge Discharge 
83 Discharge Discharge Discharge Discharge Discharge Discharge 
84 Thermal Thermal Thermal Thermal Thermal Thermal 
85 Thermal Thermal Thermal Thermal Thermal Thermal 
86 Thermal Thermal Thermal Thermal Thermal Discharge; 

Thermal 
87 Thermal N/A No Fault Thermal Discharge; 

Thermal 
No Fault 

88 Thermal Thermal Thermal Thermal Thermal Thermal 
89 Thermal Thermal N/A Thermal PD Thermal 
90 Thermal Thermal No Fault Thermal Discharge No Fault 
91 Thermal Thermal No Fault N/A Discharge No Fault 
92 Thermal Discharge N/A N/A Thermal Thermal 
93 Thermal N/A N/A N/A Thermal Thermal 
94 Thermal Discharge Thermal Thermal Thermal Thermal 
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95 Thermal Thermal Thermal Thermal Thermal Thermal 
96 Thermal N/A No Fault Thermal Thermal Thermal 
97 Thermal N/A N/A PD PD Discharge 
98 Thermal Thermal N/A Thermal Thermal Thermal 
99 Thermal N/A PD N/A Thermal Thermal 

100 Thermal Thermal N/A Thermal Thermal Thermal 
101 Thermal Thermal Thermal Thermal Thermal Thermal 
102 Thermal Thermal Thermal Thermal Thermal Thermal 
103 Thermal Thermal Thermal Thermal Thermal Thermal 
104 Thermal Thermal Thermal Thermal Thermal Thermal 
105 Thermal N/A N/A N/A Thermal Thermal 
106 Thermal Thermal Thermal Thermal Thermal Thermal 
107 Thermal Discharge N/A N/A Thermal Discharge 
108 Thermal Thermal Thermal Thermal Thermal Thermal 
109 Thermal Thermal Thermal Thermal Thermal Thermal 
110 Thermal Thermal Thermal Thermal Thermal Thermal 
111 Thermal Thermal Thermal Thermal Thermal Thermal 
112 Thermal Thermal Thermal Thermal Thermal Thermal 
113 Thermal N/A Thermal N/A Thermal Thermal 
114 Thermal N/A Thermal Thermal Thermal Thermal 
115 Thermal Thermal N/A Thermal  Thermal  Thermal 
116 Thermal Thermal Thermal Thermal Thermal  Thermal 
117 Thermal Thermal Thermal Thermal Thermal  Thermal 
118 No Fault N/A No Fault Thermal  Thermal  No Fault 
119 No Fault Thermal  Thermal  Thermal  Discharge; 

Thermal 
No Fault 

120 No Fault N/A N/A N/A Thermal Thermal 
121 No Fault Thermal  Thermal  Thermal  Thermal  Thermal 
122 No Fault Discharge N/A N/A Discharge; 

Thermal 
Discharge 

123 No Fault Thermal N/A N/A Thermal No Fault 
124 No Fault N/A N/A N/A Thermal No Fault 
125 No Fault N/A N/A N/A Thermal Thermal 
126 No Fault Thermal N/A N/A Thermal No Fault 
127 No Fault N/A N/A N/A Discharge Discharge 
128 No Fault N/A N/A N/A Thermal No Fault 
129 No Fault N/A N/A Thermal Thermal No Fault 
130 No Fault N/A N/A N/A Thermal No Fault 
131 No Fault Discharge N/A N/A Thermal No Fault 
132 No Fault N/A N/A N/A Thermal Discharge 
133 No Fault N/A N/A N/A Discharge No Fault 
134 No Fault Discharge N/A N/A Thermal No Fault 
135 No Fault Thermal Thermal Thermal Thermal No Fault 
136 No Fault Thermal N/A N/A Thermal No Fault 
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137 No Fault Discharge N/A N/A Discharge; 
Thermal 

No Fault 

138 No Fault N/A Thermal N/A Discharge; 
Thermal 

No Fault 

139 No Fault Discharge N/A N/A Discharge No Fault 
140 No Fault Discharge N/A N/A Discharge; 

Thermal 
No Fault 

141 No Fault N/A N/A N/A Discharge  Discharge 
142 No Fault Discharge N/A N/A Thermal Discharge 
143 No Fault N/A N/A N/A Discharge No Fault 
144 No Fault N/A N/A N/A Discharge Discharge 
145 No Fault N/A N/A N/A Thermal No Fault 
146 No Fault N/A N/A N/A Discharge No Fault 
147 No Fault N/A N/A N/A Discharge No Fault 
148 No Fault Discharge  N/A N/A Discharge; 

Thermal 
No Fault 

149 No Fault Discharge  N/A N/A Discharge; 
Thermal 

No Fault 

150 No Fault Discharge  N/A Discharge  Discharge  Discharge 
151 No Fault Discharge  Discharge  Discharge  Discharge  Discharge 

 
Table 4.10 Comparison of diagnostic results: proposed module vs. the traditional methods for Korea Electric 

Power Corporation (KEPCO) historical data. (All gases are measured in PPM) 

 

KEPCO Samples 
KEPCO 
Health 
State 

Roger 
Ratio 

Method 

Doernenburg 
Ratio 

Method 

IEC Ratio 
Method 

Duval 
Triangle 

Module’s 
result 

Transformer 
1 

1999 No Fault N/A No Fault N/A Thermal No Fault 
2000 No Fault N/A No Fault N/A Thermal No Fault 
2001 No Fault N/A No Fault N/A Thermal Thermal 
2002 No Fault N/A N/A N/A Thermal Thermal 

2003 Electrical 
Fault N/A Discharge N/A Discharge Discharge 

Transformer 
2 

2011 No Fault Thermal No Fault N/A Thermal No Fault 
2012 No Fault N/A No Fault N/A Thermal No Fault 
2013 No Fault N/A N/A N/A Discharge Discharge 
2015 Electrical 

Fault 
Discharge Discharge Discharge Discharge Discharge 

Transformer 
3 

2000 No Fault N/A No Fault N/A Thermal No Fault 
2002 No Fault N/A No Fault N/A Thermal No Fault 
2003 No Fault N/A N/A N/A Thermal Thermal 

2004 Thermal 
fault Thermal Thermal Thermal Thermal Thermal 

Transformer 
4 

2000 No Fault Thermal No Fault N/A Thermal No Fault 
2001 No Fault Thermal No Fault Thermal Thermal No Fault 
2002 No Fault Thermal No Fault Thermal Thermal No Fault 
2003 No Fault Thermal No Fault Thermal Thermal No Fault 

2004 Thermal 
Fault Thermal Thermal Thermal Thermal Discharge; 

Thermal 
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From the above analysis, it can be concluded that the developed CNN-based fault diagnostic module 
comprises the following unique features: 

• Ability to identify multi-label classification: Conventional DGA interpretation techniques like Duval 
Triangle 1, IEEE, and IEC ratios methods predominantly pinpointed singular faults. Among them, 
Duval Triangle 1 method can only identify a combined discharge and thermal fault. In contrast, the 
CNN model exhibits the ability to discern distinct features across all four different conditions. 

• Using a single training model: To distinguish three pivotal faults; Discharge, Partial Discharge, and 
Thermal faults, the conventional machine learning methods require three distinct training models to 
collectively assess the transformer’s overall condition. However, CNN method streamlines this 
process by utilizing a single training model, which minimizes the training duration substantially. This 
simplified approach not only expedites the training phase but also produces a remarkable level of 
accuracy.  

• Avoiding data manipulation: The CNN model possesses inherent feature selection capabilities, which 
facilitates the use of raw data directly and independently. This mechanism circumvents the need for 
manually engineered features like gas ratios or gas percentage. Additionally, this intrinsic capability 
contributes to reduce execution time, making it particularly suitable for real-time condition 
monitoring. 

B. Life Management module 
The training of the Life Management module employed 47 datasets sourced from three distinct literatures 
as listed in Table 4.11 [207, 322, 323]. These datasets were divided into a training set comprising 80% of 
the data and a testing set constituting the remaining 20%. 

Table 4.11 Training datasets for Life Management module 

Sample # CO2 CO DP 
1 5315 662 329 
2 3089 405 570 
3 1936 97 1055 
4 5004 935 343 
5 229 10 1024 
6 2500 350 484 
7 7800 1050 296 
8 1600 145 965 
9 2600 360 465 
10 12000 1650 146 
11 218 34 1150 
12 4150 592 392 
13 877 98 727 
14 4465 1062 300 
15 16500 1750 152 
16 809 64 1304 
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17 2631 368 490 
18 1493 135 963 
19 4404 595 266 
20 2490 148 846 
21 2584 391 500 
22 2509 359 654 
23 4342 577 362 
24 4200 580 268 
25 2980 502 600 
26 1817 209 785 
27 4210 580 276 
28 2514 376 652 
29 700 5495 705 
30 189 2011 467 
31 697 3685 1015 
32 8197 22789 229 
33 582 4567 502 
34 892 7038 725 
35 1843 2492 110 
36 1582 12371 263 
37 669 6764 514 
38 299 2348 235 
39 297 2323 725 
40 162 1139 725 
41 242 1883 993 
42 356 3347 725 
43 902 7135 725 
44 1695 13345 217 
45 964 4002 1015 
46 102 1274 525 
47 542 2346 1015 

 
The training model in this context also incorporated a one-dimensional CNN architecture. The specific 

parameters utilized in configuring the CNN architecture are detailed in Table 4.12.  

Table 4.12 Optimal parameters of the developed Life Management module. 

Layer Parameter Setting 
Convolutional layer 
 

Filter size 128 
Kernel size 1 
Activation function ‘ReLU’ 

Dense layer The number of neurons 64 
Activation function  ‘ReLU’ 

Dense_1 layer The number of neurons 1 
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In the phase of compiling the model, the Adaptive Moment Estimation ‘adam’ optimizer and ‘mse’ loss 
function are adopted. As stated above, ‘adam’ enhances optimization by independently adjusting learning 
rates for each parameter based on the historical gradients. The Mean Squared Error ‘mse’ loss function 
as given by  (4.6), quantifies the average squared difference between the predicted values generated by 
a model and the target values in the dataset. It is often used as a loss function for regression models to 
guide the optimization process.  

𝑀𝑀𝑆𝑆𝐸𝐸 =  
1
𝐷𝐷 × �(𝐵𝐵𝑟𝑟  −  𝐵𝐵�𝑟𝑟)2 (4.6) 

where, n is the total number of samples in the dataset used to evaluate the 
model performance.   

𝐵𝐵𝑟𝑟 is the actual observed value of the i-th data point.  

𝐵𝐵�𝑟𝑟 is the corresponding predicted value by the model of the i-th data point.   

By setting the number of epochs to 5000 and the batch size to 16, an optimal model performance has 
been observed. The progression of the training process is visually depicted in Figure 4.8. A substantial 
reduction in both the training and validation losses over the course of training can be observed from the 
figure. 

 

Figure 4.8 The training and validation loss plot for the Life management module. 

To assess the accuracy of the developed module, a database that was not included in the training 
process was analysed as outlined in Table 4.13 [324]. As can be seen in the Table, only two samples (#5 
and #7) out of the total 15 results deviate from the expected target values. This reflects an accuracy level 
of 86.7% for the developed model. 
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Table 4.13 Comparison between the predicted result from the Life Management module and actual condition 
from dataset. 

Sample # CO2 CO Targeted 
DP 

Condition 
based on 
targeted DP 

Predicted 
DP 

Condition 
based on 
predicted DP 
(using CO, 
CO2) 

1 812 62 1304 Healthy 1020 Healthy 
2 2628 370 490 Moderate 540 Moderate 
3 1498 132 963 Healthy 984 Healthy 
4 1878 164 1189 Healthy 727 Healthy 
5 2298 214 1149 Healthy 596 Moderate 
6 4400 594 266 Extensive 338 Extensive 
7 2562 146 846 Healthy 565 Moderate 
8 2587 387 500 Moderate 544 Moderate 
9 2502 353 654 Moderate 556 Moderate 

10 4348 576 362 Extensive 339 Extensive 
11 4206 586 268 Extensive 341 Extensive 
12 2984 503 600 Moderate 489 Moderate 
13 1815 211 785 Healthy 748 Healthy 
14 4217 566 276 Extensive 342 Extensive 
15 2421 372 652 Moderate 564 Moderate 
 

In the past, there was a lack of records connecting CO2 and CO measurements with the degree of 
deterioration of insulating paper. To pursue further module testing, an additional 131 CO2 and CO 
measurements have been collected from diverse sources of the literature. Table 4.14 presents the degree 
of deterioration corresponding to CO2 and CO measurements [207]. Subsequently, the CO2 and CO 
measurements are fed into the life management module for processing. Upon comparing the module’s 
outcomes with the estimated results, a variance was observed in 20 out of 131 cases, shown in Table 4.15, 
demonstrating an approximate 85% concurrence rate.  

Table 4.14 CO2 and CO concentration ranges and the corresponding levels of deterioration [207]. 

CO2 CO Significance 
0 - 2500 0 - 350 Health Insulation 

2500 - 4000 350 - 570 Moderate Deterioration 
4000 - 10000 570 - 1400 Extensive Deterioration 

≥ 10000 ≥ 1400 End of Life 
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Table 4.15 Comparison between the predicted result from the Life Management module and estimated 
condition according to Table 4.14 

Samples 
# CO2 CO 

Condition 
based on 
Table 4.14 
ranges 

Predicted 
DP 

Condition 
based on 
predicted 
DP 

1 4310 586 Extensive 340 Extensive 
2 8713 951 Extensive 252 Extensive 
3 3144 400 Moderate 479 Moderate 
4 4463 576 Extensive 338 Extensive 
5 9778 971 Extensive 234 End of Life 
6 7310 1128 Extensive 268 Extensive 
7 3468 389 Moderate 442 Extensive 
8 6171 881 Extensive 297 Extensive 
9 5777 614 Extensive 314 Extensive 

10 6447 603 Extensive 304 Extensive 
11 4832 1018 Extensive 314 Extensive 
12 3625 516 Moderate 414 Extensive 
13 6691 1062 Extensive 281 Extensive 
14 5184 858 Extensive 314 Extensive 
15 5337 604 Extensive 322 Extensive 
16 1856 145 Healthy 736 Healthy 
17 1819 129 Healthy 755 Healthy 
18 1255 82 Healthy 1164 Healthy 
19 2345 195 Healthy 586 Moderate 
20 262 97 Healthy 696 Moderate 
21 2480 158 Healthy 574 Moderate 
22 1577 137 Healthy 926 Healthy 
23 592 213 Healthy 886 Healthy 
24 384 21 Healthy 770 Healthy 
25 405 21 Healthy 782 Healthy 
26 685 33 Healthy 947 Healthy 
27 872 53 Healthy 1056 Healthy 
28 612 25 Healthy 904 Healthy 
29 475 14 Healthy 824 Healthy 
30 560 23 Healthy 874 Healthy 
31 588 24 Healthy 890 Healthy 
32 505 205 Healthy 835 Healthy 
33 549 193 Healthy 861 Healthy 
34 1145 104 Healthy 1204 Healthy 
35 1013 65 Healthy 1138 Healthy 
36 1117 76 Healthy 1196 Healthy 
37 913.9 66.71 Healthy 1080 Healthy 
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38 860 32 Healthy 1050 Healthy 
39 758 37 Healthy 989 Healthy 
40 528 36 Healthy 854 Healthy 
41 306 109 Healthy 721 Healthy 
42 3137 436 Moderate 477 Moderate 
43 1420 56 Healthy 1049 Healthy 
44 1698 124 Healthy 841 Healthy 
45 3795 353 Moderate 407 Extensive 
46 6760 614.4 Extensive 298 Extensive 
47 1859 126 Healthy 738 Healthy 
48 1917 177 Healthy 714 Healthy 
49 1454 140.3 Healthy 1014 Healthy 
50 5498 701 Extensive 315 Extensive 
51 2012 190 Healthy 683 Moderate 
52 3686 700 Extensive 393 Extensive 
53 22790 8200 End of Life 191 End of Life 
54 4568 585 Extensive 335 Extensive 
55 7040 900 Extensive 282 Extensive 
56 12372 1585 End of Life 167 End of Life 
57 6765 670 Extensive 296 Extensive 
58 2350 300 Healthy 577 Moderate 
59 2325 295 Healthy 581 Moderate 
60 1140 298 Healthy 1190 Healthy 
61 1885 163 Healthy 725 Healthy 
62 7136 680 Extensive 289 Extensive 
63 4992 675 Extensive 325 Extensive 
64 13346 1700 End of Life 162 End of Life 
65 715 195 Healthy 959 Healthy 
66 452.12 152.44 Healthy 806 Healthy 
67 41.42 55.9 Healthy 544 Moderate 
68 1458.83 255.75 Healthy 998 Healthy 
69 711.18 771.67 Healthy 936 Healthy 
70 611.92 885.87 Healthy 874 Healthy 
71 218 34 Healthy 670 Moderate 
72 265 40 Healthy 700 Healthy 
73 318 47 Healthy 730 Healthy 
74 381 55 Healthy 767 Healthy 
75 452 65 Healthy 809 Healthy 
76 533 75 Healthy 856 Healthy 
77 624 86 Healthy 909 Healthy 
78 726 98 Healthy 968 Healthy 
79 838 112 Healthy 1034 Healthy 
80 960 126 Healthy 1105 Healthy 
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81 1093 142 Healthy 1180 Healthy 
82 1236 158 Healthy 1169 Healthy 
83 1388 176 Healthy 1058 Healthy 
84 1548 194 Healthy 941 Healthy 
85 1714 212 Healthy 819 Healthy 
86 1884 231 Healthy 718 Healthy 
87 2058 250 Healthy 662 Moderate 
88 2231 269 Healthy 608 Moderate 
89 2402 289 Healthy 572 Moderate 
90 2878 355 Moderate 513 Moderate 
91 1983 189 Healthy 692 Moderate 
92 1283 157 Healthy 1136 Healthy 
93 1903 192 Healthy 716 Healthy 
94 1734 83 Healthy 820 Healthy 
95 1666 159 Healthy 860 Healthy 
96 1504 192 Healthy 972 Healthy 
97 1720 152 Healthy 822 Healthy 
98 1867 194 Healthy 727 Healthy 
99 1351 183 Healthy 1084 Healthy 

100 2460 155 Healthy 576 Moderate 
101 1669 126 Healthy 861 Healthy 
102 1979 117 Healthy 702 Healthy 
103 1808 227 Healthy 750 Healthy 
104 1319 120 Healthy 1114 Healthy 
105 762 114 Healthy 989 Healthy 
106 1819 129 Healthy 755 Healthy 
107 3797 496 Moderate 396 Extensive 
108 1761 244 Healthy 782 Healthy 
109 2247 264 Healthy 604 Moderate 
110 4778 1062 Extensive 313 Extensive 
111 7310 1128 Extensive 268 Extensive 
112 1261 139 Healthy 1153 Healthy 
113 1752 235 Healthy 789 Healthy 
114 1296 255 Healthy 1115 Healthy 
115 1335 110 Healthy 1104 Healthy 
116 2131 220 Healthy 643 Moderate 
117 3144 400 Moderate 479 Moderate 
118 1812 151 Healthy 757 Healthy 
119 5002 893 Extensive 316 Extensive 
120 6440 902 Extensive 292 Extensive 
121 5029 737 Extensive 322 Extensive 
122 4962 679 Extensive 325 Extensive 
123 6256 762 Extensive 300 Extensive 
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124 5495 700 Extensive 315 Extensive 
125 9751 913 Extensive 236 End of Life 
126 13289 1671 End of Life 162 End of Life 
127 24996 3052 End of Life 210 End of Life 
128 25007 2304 End of Life 215 End of Life 
129 11780 1489 End of Life 180 End of Life 
130 22789 8197 End of Life 191 End of Life 
131 23691 11281 End of Life 197 End of Life 

 

C. Contribution and significance 
Results show that the developed asset management module offers a generalized approach to evaluate 
power transformer condition. Constructed using diverse datasets from reputable literature sources, this 
model emerges as a comprehensive tool for users at all stages. The model features a continuous learning 
capacity, progressively enhancing its performance as it encounters new data, thus ensuring its adaptability 
to specific requirements, including power transformers operating within distinct conditions and 
environments.   

   The model’s foundation lies in the employment of CNN deep machine learning algorithms, 
empowering it to assimilate fresh information and fine-tune its predictions accordingly. By harnessing this 
innovative model, users can access invaluable insights into the well-being of their power transformers, 
facilitating well-informed decisions regarding maintenance and potential replacements.  

   While the model was developed mainly for mineral oil immersed-power transformers due to the 
availability of required data, same concepts can be used to modify the model to other transformer types 
once sufficient data are available to train the model.   

Overall, key advancements and contributions highlighted in this study include:  

• Developed transformer asset management solely relying on measurements obtained from online 
DGA sensors.  

• Empowerment of the model to interpret online DGA measurements accurately and diagnose multiple 
faults to provide more insights into transformer health condition. 

• Estimating the DP value based on CO and CO2 measurements and hence eliminating the need to 
measure furan compounds offline. This feature facilitates the online implementation of the 
developed asset management model.   

• Employing CNN, which utilizes a single training model and requires minimal input features.  
 

4.5. Summary 
This chapter presents a comprehensive approach for transformer asset management through the 
integration of two modules: Fault Diagnostics and Life Management. Both modules have undergone 
training utilizing deep CNN machine learning technique. This technique empowers the model to harness 
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the potential of online DGA measurements, providing asset managers with a streamlined means to obtain 
highly accurate insights into the health condition of power transformers. Furthermore, the model offers 
indication of paper insulation deterioration in real time using the measurements of CO and CO2 that can 
be obtained using online DGA sensors. The feature is crucial information for effective real time asset 
management schemes. The adoption of CNN not only simplifies the process, but it utilizes a single training 
model and requires minimal input features. The proposed approach enhances the precision of predictions, 
hence facilitating informed decision-making for asset managers. This comprehensive strategy, 
encompassing fault diagnostics and life assessment, demonstrates the integration of cutting-edge 
technology into asset management practices, and contributes to the enhanced reliability and longevity of 
power transformer.
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Chapter 5  Conclusions and Future Work 
5.1. Conclusions 
This thesis represents a dedicated effort toward the development of a comprehensive online asset 
management model for oil-immersed power transformers.  

Commencing with an exhaustive exploration into contemporary condition monitoring methodologies 
applicable to oil-immersed power transformers, this study navigated through a thorough investigation. 
Following Chapter 1 introduction, Chapter 2 meticulously examined 15 distinct condition monitoring 
methods, encompassing 11 offline methodologies and 4 online approaches. Of particular focus within 
these online methods, Chapter 2 intricately dissected the technologies integral to the DGA method. 
Detailed insights were provided into the operational functionality of prevalent DGA units, elucidating 
their capacity to extract gases present in insulation oil within power transformers. Among the diverse 
technologies available, GC and PAS emerged as the most prevalent and widely adopted techniques in 
the current market landscape. Moreover, the chapter encapsulated the realm of DGA data 
interpretation. Predominantly, the industry standard involves the application of ratios and graphical 
methods derived from esteemed IEEE and IEC standards, often complemented by the expertise of 
seasoned professionals. This combined approach has demonstrated reasonably accurate DGA analyses 
within the industry. However, it is imperative to acknowledge the limitations of these practices in 
achieving real-time, online condition monitoring. Despite their reliability, these methodologies fall short 
in providing instantaneous and continuous monitoring capabilities, prompting the need for a paradigm 
shift towards developing an advanced online asset management model.  

Chapter 3 of this thesis constitutes a pivotal segment wherein a comprehensive review of methods 
employed in the management of oil-immersed power transformers, primarily focusing on condition-
based assessment, is meticulously presented, Within the framework of asset management, this chapter 
intricately dissects three fundamental modules: fault diagnosis, reliability assessment, and life 
management, delineating the diverse methods utilized within each. Specifically, this section delves into 
an exploration of cutting-edge methodologies deployed in recent years, notably emphasizing the 
burgeoning advancements in AI techniques. Among these AI techniques, data-driven machine learning 
methods have garnered substantial attention and scrutiny for their potential applications in augmenting 
the efficiency and accuracy of condition-based assessment strategies for oil-immersed power 
transformers.  

In Chapter 4, a pivotal stride was taken towards innovation through the development of a novel 
power transformer asset management model meticulously comprising two integral modules: the fault 
diagnostic module and the life management module. The fault diagnostic module represents a 
significant advancement, leveraging five gas measurements, H2, CH4, C2H4, C2H6, C2H2 to precisely 
determine fault conditions and assess their severity levels. Simultaneously, the life management module 
harnesses the potential of two gas measurements, CO, CO2 to derive the DP value. The DP value is then 
utilized to calculate the transformer’s remaining life in percentage and degree of deterioration. One 
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advantage lies in the availability of these gas measurements for numerous critical transformers already 
equipped with online DGA units. The development of these modules was anchored in the utilization of 
CNN, a form of deep machine learning. The profound advantage of employing deep machine learning, 
over conventional methods is its inherent feature selection capability. This enables the direct utilization 
of raw gas measurements as inputs, streamlining the training process by employing only a single model 
for each module. The adoption of this approach significantly simplifies training process and substantially 
reduces training time while maintaining a high degree of accuracy. Notably, the achieved accuracy for 
both the fault diagnostic and life management modules stands commendably at approximately 86%, 
affirming the efficacy and reliability of the developed asset management model in advancing the realm 
of oil-immersed power transformer maintenance and management.  

In conclusion, this study has presented a comprehensive framework for transformer health 
management integrating the fault diagnostics and the life management modules. Through the 
development of and implementation of these modules, significant advancements in predictive 
maintenance strategies for power transformers have been achieved.  

Appendix A contains the Python script for training this fault diagnostic module, where Appendix B 
includes the Python script for training the life management module. Both training processes enable users 
to adapt and enhance the diagnostic capabilities based on specific requirements by adjusting the training 
data. Appendix C contains the Python script for the asset management module, including an intuitive 
interface for data entry and visualization (see Figure 5.1). 

 

Figure 5.1 Asset Management Module Interface. 

When executing the Python script outlined in Appendix C, users will be presented with an interface 
window featuring two distinct data entry sections. The upper left section is dedicated to the fault 
diagnostic module, allowing users to input 5-gas measurements for analysis. Upon clicking the “Fault 
Diagnosis” button, the potential fault will be displayed in this window, along with the corresponding 
likelihood of failure shown in the lower section. On the upper right, users can input 2-gas measurements 
within the life management module section. Subsequently, the predicted DP value will be presented in 
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the window. Additionally, the remaining life expectancy and level of insulation deterioration will be 
displayed in the lower window, corresponding to the entered data.  

 

5.2. Future Work 
Currently, clients can utilize the interface to manually input gas measurements and obtain results 
promptly. However, a significant advancement lies in transitions towards an online DGA diagnostic 
system. This system would automate the collection of and processing of data, streamlining the entire 
diagnostic process.  

In this envisioned system, data collected by online DGA units would be wirelessly transmitted back to 
a central computer or server. These data could be stored in formats such as Excel or a database, ready for 
analysis. Upon receiving new data, the system would automatically trigger the diagnostic model to process 
the information without requiring manual intervention.  

This transition to an online DGA diagnostic system offers several advantages. Firstly, it significantly 
reduces the time and effort required for data entry, as measurements are collected and processed in real-
time. Secondly, it enhances the efficiency of the diagnostic framework, allowing for continuous 
monitoring and analysis of transformer health status.  
In considering future avenues for research and enhancement, the importance of robust data collection 
emerges as a cornerstone for refining data-driven machine learning algorithms, pivotal to our developed 
model. While our model exhibits commendable accuracy, its potential can be further amplified by 
sourcing datasets derived from real fault conditions observed during transformer open inspections. 
Augmenting our dataset with this authentic information holds the promise of significantly improving the 
precision and reliability of our model’s predictions.  

Expanding our model’s diagnostic capabilities to include the identification of additional fault types such 
as T1, T2, and T3 thermal faults, along with D1 and D2 energy discharge faults, holds substantial promise. 
By incorporating data on these six primary fault conditions into our training dataset, the model can offer 
more detailed fault type classification to clients. This enhancement not only enriches the diagnostic 
capabilities of our model but also provides actionable insights for preventive maintenance strategies, 
enabling asset managers to proactively address a broader spectrum of transformer issues before they 
escalate into critical failures.  

Moreover, an area ripe for future improvement lies in the amalgamation of the DGA method with 
other condition monitoring techniques, specifically operational thermal measurements. Previous studies 
have unveiled the intricate relationship between temperature variations and the generation rates of key 
DGA gases. Notably, even minor temperature fluctuations can impact these gas generation rates, 
especially in aged oil samples, rendering them more sensitive to load ramping compared to new oil 
samples. To mitigate the risk of erroneous online DGA diagnoses, it becomes imperative to record and 
assess load variations during oil sample collection. This data integration will be pivotal in the development 
of a new model that comprehensively considers and accounts for these multifaceted factors, thereby 
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enhancing the accuracy and reliability of our asset management model for oil-immersed power 
transformers.  
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import matplotlib.pyplot as plt1
import numpy as np2
import pandas as pd3
from imblearn.over_sampling import SMOTE4
from sklearn.preprocessing import MultiLabelBinarizer5
from sklearn.utils import shuffle6
from keras.models import Sequential7
from keras.layers import Conv1D, Flatten, Dense, BatchNormalization8
from sklearn.preprocessing import MinMaxScaler9
import joblib10

11
# Load csv file into a Pandas DataFrame12
data = pd.read_csv('C:/Users/20884857/OneDrive - Curtin University of 
Technology Australia/'

13

   'AM model datasets/Classification/Data sets from 
references REV11a - labels.csv',

14

 usecols=[0, 1, 2, 3, 4, 5],15
 header=0)16

17
# Exclude the 1st column from normalization18
numeric_cols = data.select_dtypes(include=['float64', 'int64']).columns19

20
# Normalize the data using the Min-Max normalization method21
scaler = MinMaxScaler()22
data[numeric_cols] = scaler.fit_transform(data[numeric_cols])23

24
# Save the scaler object for App use25
joblib.dump(scaler, 'scaler1.joblib')26

27
# Define fault labels using binary encoding28
fault_labels = data['Fault'].apply(lambda x: x.split(';'))29
mlb = MultiLabelBinarizer()30
fault_labels_encoded = pd.DataFrame(mlb.fit_transform(fault_labels), columns=
mlb.classes_)

31

32
# Add the encoded labels to the DataFrame33
data = pd.concat([data, fault_labels_encoded], axis=1)34

35
# Drop the original fault column36
data = data.drop('Fault', axis=1)37

38
# Shuffle the datasets39
data = shuffle(data, random_state=42)40

41
# Split data into training, validation, and testing sets42
train_data = data[:int(0.65 * len(data))]43
val_data = data[int(0.65 * len(data)):int(0.8 * len(data))]44
test_data = data[int(0.8 * len(data)):]45

46
train_features = train_data.iloc[:, :5].values47
train_targets = train_data.iloc[:, 5:].values48
val_features = val_data.iloc[:, :5].values49
val_targets = val_data.iloc[:, 5:].values50
test_features = test_data.iloc[:, :5].values51
test_targets = test_data.iloc[:, 5:].values52

53
# Calculate the binary representation of each label combination54
label_combinations = np.arange(2 ** train_targets.shape[1])55
power_labels = np.array([list(bin(x)[2:].zfill(train_targets.shape[1])) for x
 in label_combinations], dtype=int)

56
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57
# Calculate the multi-class targets for each instance58
# and convert train targets to multi-class59
train_targets_multi_class = []60
for j in range(train_targets.shape[0]):61

 train_targets_multi_class.append(np.where((power_labels == train_targets
[j]).all(axis=1))[0][0])

62

63
train_targets_multi_class = np.array(train_targets_multi_class)64

65
# Add the multi-class targets as a new column to the DataFrames66
train_data = train_data.assign(multi_class_targets=train_targets_multi_class
)

67

68
# Generate class labels based on unique values in train_targets_multi_class69
class_labels = [str(label) for label in np.unique(train_targets_multi_class
)]

70

71
# Use SMOTE to balance the training data72
sm = SMOTE(random_state=42, k_neighbors=1)73
train_features_resampled, train_targets_resampled = sm.fit_resample(
train_features,

74

train_targets_multi_class.reshape(-1, 1))
75

76
# Convert resampled train targets from multi-class back to binary encoding77
train_targets_binary = []  # Initialize empty list for binary targets78
# Loop through each target value in train_targets_resampled79
for target in train_targets_resampled:80

 index = target  # Fine the index of the target value in power_labels81
 binary_values = power_labels[index]  # Get the corresponding binary 

values from power_labels
82

   train_targets_binary.append(binary_values)  # Append the binary values 
to train_targets_binary

83

# Convert train_targets_binary to a numpy array84
train_targets_binary = np.array(train_targets_binary)85

86
# train_features_resampled array needs to be reshaped to 3D array so that it
 can be used as input of 1DCNN.

87

n_samples = train_features_resampled.shape[0]88
n_features = train_features_resampled.shape[1]89
train_features_resampled = np.reshape(train_features_resampled, (n_samples, 
1, n_features))

90

91
# define the input shape92
input_shape = (1, n_features)93

94
# Define the model architecture95
model = Sequential()96
model.add(Conv1D(64, 3, padding='same', activation='ReLU', input_shape=
input_shape))

97

model.add(BatchNormalization())98
model.add(Flatten())99
model.add(Dense(16, activation='ReLU'))100
model.add(Dense(fault_labels_encoded.shape[1], activation='sigmoid'))101
model.summary()102

103
# Compile the model104
val_features = np.reshape(val_features, (val_features.shape[0], 1, 
val_features.shape[1]))

105
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test_features = np.reshape(test_features, (test_features.shape[0], 1, 
test_features.shape[1]))

106

107
# opt = AdamW()108
model.compile(optimizer='Nadam',109
              loss='binary_crossentropy',110
              metrics=['accuracy'])111

112
history = model.fit(train_features_resampled, train_targets_binary,113
                    validation_data=(val_features, val_targets),114
                    epochs=1000, batch_size=16)115

116
# Evaluate the model on the test set117
test_loss, test_acc = model.evaluate(test_features, test_targets)118
print('Test accuracy:', test_acc)119

120
# save the model121
model.save('FDDGACNN1083SC19.h5')122

123
loss = history.history['loss']124
val_loss = history.history['val_loss']125
epochs = range(1, len(loss) + 1)126
plt.plot(epochs, loss, 'y', label='Training loss')127
plt.plot(epochs, val_loss, 'r', label='Validation loss')128
plt.title('Training and validation loss')129
plt.xlabel('Epochs')130
plt.ylabel('Loss')131
plt.legend()132
plt.show()133

134
acc = history.history['accuracy']135
val_acc = history.history['val_accuracy']136
plt.plot(epochs, acc, 'y', label='Training acc')137
plt.plot(epochs, val_acc, 'r', label='Validation acc')138
plt.title('Training and validation accuracy')139
plt.xlabel('Epochs')140
plt.ylabel('Accuracy')141
plt.legend()142
plt.show()143

144
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# This model uses CO and CO2 measurements to predict DP.1
import matplotlib.pyplot as plt2
import pandas as pd3
from keras.layers import Dense, Conv1D, Flatten4
from keras.models import Sequential5
from sklearn.model_selection import train_test_split6
from sklearn.preprocessing import MinMaxScaler7
import joblib8

9
# load data into a pandas DataFrame10
data = pd.read_csv('C:/Users/20884857/OneDrive - Curtin University of 
Technology Australia/'

11

 'AM model datasets/Regression/RLCOCO2ratioDP.csv',12
 usecols=[1, 2, 3],13
 header=0)14

15
# shuffle data16
data = data.sample(frac=1)17

18
# convert DataFrame to numpy arrays19
X = data.iloc[:, :2].values  # use columns 2 and 3 as input features20
y = data.iloc[:, 2].values21

22
# apply max-min normalization to X23
scaler = MinMaxScaler()24
X = scaler.fit_transform(X)25

26
# save the scaler object for later use27
joblib.dump(scaler, 'scalerCOCO2DP2.joblib')28

29
# reshape X to have a 3D shape (samples, time steps, features)30
X = X.reshape((X.shape[0], 1, X.shape[1]))31

32
# split data into training and testing sets33
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42)

34

35
# create and compile the 1D CNN model36
model = Sequential()37
model.add(Conv1D(filters=128, kernel_size=1, activation='relu', input_shape=(
1, X.shape[2])))

38

model.add(Flatten())39
model.add(Dense(64, activation='relu'))40
model.add(Dense(1))41
model.compile(loss='mse', optimizer='adam')42
model.summary()43

44
# train the model45
history = model.fit(X_train, y_train, epochs=5000,46

 batch_size=16, verbose=1, validation_data=(X_test, y_test
))

47

48
# evaluate the model on the testing set49
mse = model.evaluate(X_test, y_test, verbose=0)50
print("Mean squared error on testing set:", mse)51

52
# save the model53
model.save('DPCOCO2_3.h5')54

55
# plot the training and validation loss56
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plt.plot(history.history['loss'], label='Training loss')57
plt.plot(history.history['val_loss'], label='Validation loss')58
plt.title('Training and validation loss')59
plt.xlabel('Epoch')60
plt.ylabel('Loss')61
plt.legend()62
plt.show()63
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import math1
import numpy as np2
import joblib3
from keras.models import load_model4
from tkinter import *5
import customtkinter as ctk6
from customtkinter import *7

8
ctk.set_appearance_mode("dark")9

10
11

class App(ctk.CTk):12
 def __init__(self):13

 super().__init__()14
15

 self.geometry("1000x600")16
 self.title("Condition Assessment of Transformer TF0001")17

18
 # define Frames19
 self.grid_columnconfigure(0, weight=1)20
 self.grid_rowconfigure(0, weight=1)21

22
 self.frameBody = ctk.CTkFrame(master=self)23
 self.frameBody.grid(row=0, column=0, sticky="nswe")24

25
 # Main pane body26
 self.paneBody = PanedWindow(self.frameBody)27
 self.paneBody.pack(fill="both", expand=TRUE)28

29
 # other panes30
 self.paneLeftBody = PanedWindow(self.paneBody, orient="vertical")31
 self.paneBody.add(self.paneLeftBody)32

33
 self.paneTop = PanedWindow(self.paneLeftBody, height=650)34
 self.paneLeftBody.add(self.paneTop)35

36
 self.paneFD = PanedWindow(self.paneTop, bg="#FFD700", width=750)37
 self.paneTop.add(self.paneFD)38

39
 self.paneRL = PanedWindow(self.paneTop, bg="#9400D3")40
 self.paneTop.add(self.paneRL)41

42
 self.paneBottom = PanedWindow(self.paneLeftBody, bg="#83838B")43
 self.paneLeftBody.add(self.paneBottom)44

45
 self.label_H2 = ctk.CTkLabel(self.paneFD,46

 text="H2:",47
 text_color="black",48
 font=("Helvetica", 16, "bold"))49

 self.label_H2.grid(row=0, column=0, padx=5, pady=(10, 0), sticky="w"
)

50

51
 self.entry_H2 = ctk.CTkEntry(self.paneFD)52
 self.entry_H2.grid(row=0, column=1, padx=5, pady=(10, 0))53

54
 self.label_CH4 = ctk.CTkLabel(self.paneFD,55

 text="CH4:",56
 text_color="black",57
 font=("Helvetica", 16, "bold"))58

 self.label_CH4.grid(row=1, column=0, padx=5, pady=(10, 0), sticky="w59
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")59
60

 self.entry_CH4 = ctk.CTkEntry(self.paneFD)61
 self.entry_CH4.grid(row=1, column=1, padx=5, pady=(10, 0))62

63
 self.label_C2H4 = ctk.CTkLabel(self.paneFD,64

 text="C2H4:",65
 text_color="black",66
 font=("Helvetica", 16, "bold"))67

 self.label_C2H4.grid(row=2, column=0, padx=5, pady=(10, 0), sticky=
"w")

68

69
 self.entry_C2H4 = ctk.CTkEntry(self.paneFD)70
 self.entry_C2H4.grid(row=2, column=1, padx=5, pady=(10, 0))71

72
 self.label_C2H6 = ctk.CTkLabel(self.paneFD,73

 text="C2H6:",74
 text_color="black",75
 font=("Helvetica", 16, "bold"))76

 self.label_C2H6.grid(row=3, column=0, padx=5, pady=(10, 0), sticky=
"w")

77

78
 self.entry_C2H6 = ctk.CTkEntry(self.paneFD)79
 self.entry_C2H6.grid(row=3, column=1, padx=5, pady=(10, 0))80

81
 self.label_C2H2 = ctk.CTkLabel(self.paneFD,82

 text="C2H2:",83
 text_color="black",84
 font=("Helvetica", 16, "bold"))85

 self.label_C2H2.grid(row=4, column=0, padx=5, pady=(10, 0), sticky=
"w")

86

87
 self.entry_C2H2 = ctk.CTkEntry(self.paneFD)88
 self.entry_C2H2.grid(row=4, column=1, padx=5, pady=(10, 0))89

90
   self.button_FD = CTkButton(self.paneFD, text="Fault Diagnosis", 

command=self.predict_fault)
91

 self.button_FD.grid(row=5, column=1, padx=30, pady=30, sticky="ew")92
93

 self.label_FD = ctk.CTkLabel(self.paneFD,94
 text="The potential fault is:",95
 text_color="black",96
 font=("Helvetica", 16, "bold"))97

 self.label_FD.grid(row=6, column=0, padx=30, pady=30)98
99

 self.potentialFault = ctk.CTkLabel(self.paneFD, text="")100
 self.potentialFault.grid(row=6, column=1, padx=30, pady=30)101

102
 self.comment_FD = ctk.CTkLabel(self.paneBottom, text="")103
 self.comment_FD.grid(row=1, column=0, padx=5, pady=(10, 0))104

# --------------------------------------------------------------------------
------------

105

 self.label_CO2 = ctk.CTkLabel(self.paneRL,106
 text="CO2:",107
 text_color="black",108
 font=("Helvetica", 16, "bold"))109

 self.label_CO2.grid(row=0, column=0, padx=5, pady=(10, 0), sticky="
w")

110

111
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 self.entry_CO2 = ctk.CTkEntry(self.paneRL)112
 self.entry_CO2.grid(row=0, column=1, padx=5, pady=(10, 0))113

114
 self.label_CO = ctk.CTkLabel(self.paneRL,115

 text="CO:",116
 text_color="black",117
 font=("Helvetica", 16, "bold"))118

 self.label_CO.grid(row=1, column=0, padx=10, pady=(10, 0), sticky="
w")

119

120
 self.entry_CO = ctk.CTkEntry(self.paneRL)121
 self.entry_CO.grid(row=1, column=1, padx=10, pady=(10, 0))122

123

# --------------------------------------------------------------------------
------------

124

125
   self.button_DP = CTkButton(self.paneRL, text="Predict DP", command=

self.predict_DPoutput)
126

 self.button_DP.grid(row=4, column=1, padx=30, pady=30, sticky="ew")127
128

 self.label_predictDP = ctk.CTkLabel(self.paneRL,129
 text="The predicted DP is:",130
 text_color="black",131
 font=("Helvetica", 16, "bold"))132

 self.label_predictDP.grid(row=5, column=0, padx=30, pady=30)133
 self.predicted_DP = ctk.CTkLabel(self.paneRL, text="")134
 self.predicted_DP.grid(row=5, column=1, padx=30, pady=30)135

136
 self.label_remaining_life = ctk.CTkLabel(self.paneBottom,137

 text="% of remaining life:"
,

138

 text_color="black",139
 font=("Helvetica", 16, "

bold"))
140

   self.label_remaining_life.grid(row=2, column=0, padx=5, pady=(10, 0
), sticky="w")

141

142
 self.remaining_life = ctk.CTkLabel(self.paneBottom, text="")143
 self.remaining_life.grid(row=2, column=1, padx=5, pady=(10, 0))144

145
 self.insulation_status = ctk.CTkLabel(self.paneBottom, text="")146
 self.insulation_status.grid(row=2, column=2, padx=5, pady=(10, 0))147

148

# --------------------------------------------------------------------------
------------

149

150
 def predict_FD(self, input_measurements, scaler, model):151

 # Apply max-min normalization to the input measurements152
 x = np.array(input_measurements).reshape((1, 5))153
 x = scaler.transform(x)154
 # Reshape the input measurements to have a 3D shape (samples, time 

steps, features)
155

 x = x.reshape((1, 1, 5))156
 # Make a prediction using the model157
 y_pred = model.predict(x)158
 # convert to binary159
 threshold = 0.5160
 binary_pred = np.where(np.array(y_pred) >= threshold, 1, 0)161
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 # Return the predicted Fault162
 return (binary_pred)163

164
 def get_fault_label(self, condition):165

   if np.array_equal(condition, [[0, 1, 0, 0]]) or np.array_equal(
condition, [[0, 0, 0, 0]]):

166

 return "No Fault detected."167
   elif np.array_equal(condition, [[0, 0, 0, 1]]) or np.array_equal(

condition, [[0, 1, 0, 1]]):
168

 return "Thermal Fault detected."169
   elif np.array_equal(condition, [[0, 0, 1, 0]]) or np.array_equal(

condition, [[0, 1, 1, 0]]):
170

 return "Partial Discharge Fault detected."171
   elif np.array_equal(condition, [[0, 0, 1, 1]]) or np.array_equal(

condition, [[0, 1, 1, 1]]):
172

 return "Partial Discharge and Thermal Faults detected."173
   elif np.array_equal(condition, [[1, 0, 0, 0]]) or np.array_equal(

condition, [[1, 1, 0, 0]]):
174

 return "Discharge Fault detected."175
   elif np.array_equal(condition, [[1, 0, 0, 1]]) or np.array_equal(

condition, [[1, 1, 0, 1]]):
176

 return "Discharge and Thermal Faults detected."177
   elif np.array_equal(condition, [[1, 0, 1, 0]]) or np.array_equal(

condition, [[1, 1, 1, 0]]):
178

   return "Discharge and Partial Discharge Faults detected."179
 else:180

 return "Discharge, Partial Discharge and Thermal Faults detected
."

181

182
183

 def comment_fault(self, condition):184
 if np.array_equal(condition, [[0, 1, 0, 0]]) or \185

 np.array_equal(condition, [[0, 0, 0, 0]]):186
   return "No fault detected, very low likelihood of failure."187

 elif np.array_equal(condition, [[0, 0, 1, 0]]) or \188
 np.array_equal(condition, [[0, 1, 1, 0]]):189

   return "Sign of Partial Discharge fault, low risk of failure."190
 elif np.array_equal(condition, [[0, 0, 0, 1]]) or \191

 np.array_equal(condition, [[0, 0, 1, 1]]) or \192
 np.array_equal(condition, [[0, 1, 0, 1]]) or \193
 np.array_equal(condition, [[0, 1, 1, 1]]):194

   return "Sign of Thermal fault, moderate risk of failure."195
 else:196

 return "Sign of Discharge fault, very high risk of failure."197
198

 def predict_fault(self):199
 # Get the input measurements from the line edits200
 H2 = float(self.entry_H2.get())201
 CH4 = float(self.entry_CH4.get())202
 C2H4 = float(self.entry_C2H4.get())203
 C2H6 = float(self.entry_C2H6.get())204
 C2H2 = float(self.entry_C2H2.get())205

206
 # Load the saved model207
 model = load_model('FDDGACNN1083SC19.h5')208

209
 # Load the scaler210
 scaler = joblib.load('scaler1.joblib')211

212
 # Make a prediction using the function213
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 input_measurements = [H2, CH4, C2H4, C2H6, C2H2]214
 condition = self.predict_FD(input_measurements, scaler, model)215

216
 # Get the fault label217
 label = self.get_fault_label(condition)218

219
 # Display the predicted output in a message box220

   # CTkMessagebox(title="Prediction", message=f"The predicted output 
is: {label}\nCondition: {condition}")

221

 self.potentialFault.configure(text=f"{label}", text_color="black", 
font=("Helvetica", 16, "bold"))

222

223
 # Comment on the fault condition224
 comment = self.comment_fault(condition)225

   self.comment_FD.configure(text=f"{comment}", text_color="black", 
font=("Helvetica", 16, "bold"))

226

227

# --------------------------------------------------------------------------
------------

228

229
 def predict_DP(self, input_COCO2, scaler3, model3):230

 # Apply max-min normalization to the input measurements231
 x = np.array(input_COCO2).reshape((1, 2))232
 x = scaler3.transform(x)233
 # Reshape the input measurements to have a 3D shape (samples, time 

steps, features)
234

 x = x.reshape((1, 1, 2))235
 # Make a prediction using the model236
 DP_pred = model3.predict(x)[0][0]237
 # Return the predicted 2FAL value238
 return DP_pred239

240
 def predict_DPoutput(self):241

 # Get the input measurements from the line edits242
 CO2 = float(self.entry_CO2.get())243
 CO = float(self.entry_CO.get())244

245
 # Load the saved model246
 model3 = load_model('DPCOCO2_3.h5')247

248
 # Load the scaler249
 scaler3 = joblib.load('scalerCOCO2DP.joblib')250

251
 # Make a prediction using the function252
 input_COCO2 = [CO2, CO]253
 dp = self.predict_DP(input_COCO2, scaler3, model3)254

255
 # Display the predicted output in a message box256
 self.predicted_DP.configure(text=f"{int(dp)}",257

 text_color="black",258
 font=("Helvetica", 16, "bold"))259

260
 rl = 166.1 * math.log10(dp) - 382.2261

262
 self.remaining_life.configure(text=f"{int(rl)}" + "%",263

 text_color="black",264
 font=("Helvetica", 16, "bold"))265

266
 if dp > 700:267

140 



Asset Management Model HMI

Page 6 of 6

 status = "Health insulation"268
 elif 450 < dp <= 700:269

   status = "Moderate deterioration shown in insulation"270
 elif 250 < dp <= 450:271

   status = "Extensive deterioration shown in insulation"272
 else:273

 status = "End of insulation life"274
275

 self.insulation_status.configure(text=status,276
 text_color="black",277
 font=("Helvetica", 16, "bold"))278

279
280

if __name__ == "__main__":281
    app = App()282
    app.mainloop()283

284
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