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Abstract
This research aimed to investigate the effectiveness of Polyethylene-Terephthalate (PET) as a reinforcement material for sandy 
soils in enhancing the shear strength. To achieve this, different concentrations of PET were tested, and 118 sets of data were 
collected. Parameters such as relative density, normal stress in direct shear strength test, and types of PET elements (1 × 1, 
1 × 5, and fiber) were also recorded. Subsequently, four decision tree-oriented machine learning (ML) methods—decision 
tree (DT), random forest (RF), AdaBoost, and XGBoost—were applied to construct models capable of forecasting enhance-
ments in shear strength. The evaluation of these models' effectiveness was conducted using four established statistical met-
rics: R2, RMSE, VAF, and A-10. The results showed that AdaBoost results in the highest prediction accuracy among other 
algorithms, representing the high modelling performance of the algorithm in dealing with complex nonlinear problems. 
The conducted sensitivity analysis also revealed that relative density is the most crucial parameter for all the algorithms in 
predicting the output, followed by PET percentage and normal stress. Furthermore, to make the developed model in this 
study more practical and easy to use, a Graphical User Interface (GUI) was created, enabling the engineers and researchers 
to perform the analysis straightforwardly.

Keywords  Polyethylene terephthalate · Soil improvement · AdaBoost · XGBoost · Tree-based algorithms

Introduction

Overcoming the detrimental effects of non-recyclable mate-
rials has become a global concern in the last decade. Poly-
ethylene-terephthalate (PET) is one of the non-recyclable 

materials used to produce liquid containers. On the other 
hand, using such materials in soil improvement has acquired 
significant importance during the last few years. Accord-
ing to prior studies by Peddaiah et al. (2018) and Consoli 
et al. (2002), using PET elements as a reinforcer for loose 
soils reduces its destructive effects on the environment, the 
cost of soil improvement projects, and increases the soil's 
shear strengths. PET, a prominent thermoplastic polymer 
resin in the polyester family, is extensively utilised across a 
wide range of applications. This includes fabricating pack-
aging films, creating bottles and jars for consumer goods, 
in injection moulding processes for making durable items, 
and as a reinforcing material in certain composite products. 
Generally, this material is used in industry in textiles, rigid 
packaging, flexible packaging, photovoltaic modules, ther-
moplastic resins and waterproofing barriers. This material 
in geotechnical engineering is used with different shapes 
of fiber and/or crushed pieces with specific dimensions to 
improve soil specifications. Soil behaviour with the PET 
elements in the California bearing ratio (CBR) test was 
investigated by Sinha et al. (2019). Furthermore, Maher 
and Ho (1994) conducted the triaxial cyclic test to show 
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the behaviour of the PET content in cemented sand. In 
another study, the uniaxial compression test was undertaken 
on the reinforced cohesive soil with PET element and the 
stress–strain response of reinforced soil with 0% to 1% PET 
waste was investigated by Li and Ding (2002) and Babu and 
Chouksey (2011). The findings revealed a notable enhance-
ment in the specimens' strength, friction angle, and the uni-
axial strength of soil reinforced with 1% material, showing 
an increase of 73.8% compared to the unreinforced soil. 
Consoli et al. (2002) conducted a study on the engineering 
properties of sand reinforced with PET fibers. In their study, 
the dimension of PET elements was approximately 36 mm, 
and the percentage of PET was 0.9 per cent of soil weight. 
The results showed that PET increases the soil strength and 
soil specifications.

The behaviour of sandy and clayey soil with PET rein-
forcements was investigated by Acharyya et al. (2013). Their 
research determined that reinforcing sandy soil with PET 
fibers proves to be more effective compared to its applica-
tion in clayey soil. Furthermore, the optimum percentage of 
the reinforcement material in the sand is higher than in clay, 
and the optimum wet percentage in clayey soil increases 
with the PET content. Alvarez et al. (2020) and Louzada 
et al. (2019) also investigated the behaviour of clayey soils. 
Botero et al. (2015) conducted an unconsolidated undrained 
triaxial test with different equivalent pressures (i.e., 2.5, 5, 
and 7.5 m) and with various PET contents (i.e., 0, 0.3, 0.6, 
and 1%). Their study showed that PET reinforcements result 
in a decrease in friction angle and an increase in cohesion. 
Necmi and Ekrem (2020) conducted uniaxial compressive 
tests to investigate the strength properties of clayey soils 
reinforced with PET fibers derived from waste plastic. Both 
exposed and unexposed samples were tested for their resist-
ance to freeze–thaw cycles using a programmable cabinet 
under laboratory conditions. The findings of the experi-
mental study indicate that the waste PET fibers enhance 
the strength of reinforced clayey soil samples compared to 
unreinforced sandy soil samples. Additionally, the PET fib-
ers increase the resistance of reinforced clayey soil samples 
to the effects of freeze–thaw cycles.

Peddaiah et al. (2018) explored the effects of integrating 
PET strips into the mechanical characteristics of silty sand, 
employing a series of laboratory experiments such as com-
paction, direct shear, and California Bearing Ratio (CBR) 
tests on samples of silty sand blended with varied propor-
tions of plastic strips and differing aspect ratios. The results 
indicated significant improvements in the maximum dry 
unit weight, shear strength parameters, and the CBR val-
ues of the soil upon the inclusion of plastic reinforcements. 
However, the degree of enhancement in soil properties was 
contingent upon the amount of plastic used, the dimensions 
of the strips, and the type of soil. The research concluded 
that a plastic content of 0.4% and a strip dimension of 15 

mm × 15 mm markedly bettered the engineering properties 
of silty sand. In addition, the study examined the behavior 
of soil reinforced with PET through direct shear and triaxial 
tests, where Patil et al. (2016) found a notable augmenta-
tion in soil cohesion and strength due to PET incorporation.

Moghaddas Tafreshi et al. (2021) investigated the rein-
forced soil's cyclic behaviour. PET reinforcement was dis-
covered to enhance all reinforcement configurations, with 
a slightly more significant improvement observed for PETs 
of smaller size. Unlike the unreinforced condition, settle-
ment accumulation rates decreased, and resilient settlement 
increased in reinforced cases. With PET reinforcement, there 
was an average 42% improvement in lower cyclic loading 
but a 179% improvement in high cyclic loading, indicating 
that PET reinforcement is especially useful under critical 
loading. An extra layer of geogrid over the PET-reinforced 
zone reduced soil settlement by as much as 82% compared 
to the case without geogrid, as it increased the load distribu-
tion area and prevented PET distortion (Moghaddas Tafreshi 
et al. 2021). Table 1 summarises recent studies on PET and 
provides detailed information about each one.

There have been several research studies that have 
explored the impact of PET on reinforced soil's drainage 
conditions, pore water pressure, seismic behaviour, and sta-
bilisation of soil used for pedestrian purposes (Shariatmadari 
et al. (2020); Fathi et al. (2020), Hafez et al. (2019) and Car-
valho et al. (2019)). In addition, Mishra and Gupta (2018) 
showed the behaviour of the PET mixtures with Fly ash in 
clayey soil of flexible pedestrians. This material behaviour 
has also been investigated in several slope stability projects 
(Nadaf et al. 2019).

From the prior studies, it can be inferred that PET rein-
forcements significantly improve soil specifications as effi-
ciently as other improvers. Furthermore, as the ratio of PET 
content increases, the soil strength increases. Therefore, this 
type of reinforcer results in an acceptable improvement in 
the maximum shear stress, friction angle and cohesion. Due 
to these materials' availability, knowing this reinforcer's 
accurate behaviour can be effective in geotechnical analysis. 
The literature review shows the influence of various param-
eters on improving soil's mechanical parameters. However, 
the degree of accuracy and influence of parameters on each 
other has yet to be well understood.

Recently, machine learning (ML) algorithms have been 
introduced to do deeper analyses and develop more accu-
rate formulas and models for geotechnical engineering 
problems (Samaei et al. 2018, 2022; Momeni et al. 2023). 
According to the authors' awareness, ML methods have yet 
to be applied to forecast the shear strength of soils rein-
forced with PET. Predicting shear strength in soil strength-
ened by PET plastic elements involves complex, nonlin-
ear interactions among various factors, including the type 
and content percentage of plastic elements, normal stress, 
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relative density, and specific weight of soil (Acharyya et al. 
2013, Tofigh Tabrizi et al. 2021). Traditional statistical 
methods often fall short in capturing these intricate rela-
tionships, whereas ML algorithms are designed to handle 
such complexity effectively, contributing to more sustain-
able and efficient engineering practices (Frank et al. 2020). 
ML techniques have demonstrated superior accuracy and 
generalisation capabilities in predictive modelling, which 
is crucial for ensuring the safety and reliability of engineer-
ing designs (Frank et al. 2020). Given the dataset derived 
from the current study's experimental results, ML algo-
rithms are particularly advantageous due to their ability 
to process small volumes of data and extract meaningful 
patterns (Naghadehi et al. 2018).

Numerous studies in geotechnical engineering have suc-
cessfully applied ML algorithms, underscoring their effec-
tiveness in predicting soil properties and enabling engineers 
and researchers to leverage these techniques for future appli-
cations (Onyelowe et al. 2023). Several studies have explored 
different methodologies for predicting the shear strength of 
soil and understanding soil behaviour under various condi-
tions (Rabbani et al. 2023a, 2023b, 2023c, 2023d, 2024). 
Tree-based models are widely used in machine learning due 
to their high accuracy and grey-box nature, which enhances 
interpretability and facilitates further research applications 
(Rabbani et al. 2024). In contrast, models like Artificial 
Neural Networks (ANNs) are often considered black-box 
models, making them less interpretable and, thus, less useful 
for certain applications (Samaei et al. 2018).

This research introduces advanced tree-based, non-
destructive methods for accurately and reliably predicting 
shear strength in reinforced soils. These approaches are 
expected to significantly assist geotechnical engineers and 
researchers in evaluating soil behavior and performance. 
Specifically, XGBoost and AdaBoost are highlighted for 
their suitability in modeling the shear strength of soils 
enhanced with PET. XGBoost is noted for its high perfor-
mance, regularization to prevent overfitting, efficient han-
dling of missing data, and optimized computation (Chen 
and Guestrin 2016). AdaBoost, on the other hand, excels 
through its adaptive boosting mechanism, which focuses 
on the hardest-to-predict instances and iteratively adjusts 
weights, resulting in simpler models that generalize well and 
provide higher accuracy in certain scenarios (Dos Santos 
Aguiar and Paulo 2019). Other algorithms, such as neural 
networks, SVM, and linear regression, require larger data-
sets, extensive computational resources, or are too simplistic 
for capturing the complex relationships inherent in geotech-
nical data (Liu et al. 2022). Consequently, XGBoost and 
AdaBoost are preferred for their robustness and efficiency in 
this context. This study compares these advanced algorithms 
to traditional tree-based methods like Decision Tree (DT) 

and Random Forest (RF), demonstrating their capabilities in 
modelling the shear strength of PET-reinforced soils.

Materials and methods

This study started with data collection from soil samples 
extracted at Anzali Port, Iran. It proceeded by preparing 
soil samples combined with different percentages of PET 
materials, followed by direct shear tests. The data collected 
was then analyzed using machine learning models, including 
XGBoost, AdaBoost, Random Forest, and Decision Tree, 
with an emphasis on hyperparameter optimization. The 
models' performance was evaluated and ranked based on 
specific metrics. Finally, a graphical user interface (GUI) 
was developed to integrate the entire process for practical 
application. Figure 1 represents the flowchart of the meth-
odology followed in this study. The foregoing stages are dis-
cussed in more detail in the following sections.

Studied soil

In this study, the material used is the sandy soil extracted 
from Anzali Port in Iran, which is reinforced with PET plas-
tic waste material. First, several tests were carried out on the 
soil to identify its mechanical properties. The tests include 
sieve analysis, specific gravity (Gs) as well as a series of 
tests to determine the specific weight of soil ( �

d
 ) to apply 

the desired relative density (Dr) on the soil and to determine 
the properties of PET, such as specific gravity, modulus of 
elasticity, and tensile strength. After combining the rein-
forcement with soil, the reinforced samples were subjected 
to the direct shear test.

The studied sandy soil in this research is carbonated sand 
without fine grains, rounded corners, and uniform and poorly 
grained (see Fig. 2), which falls into the poorly graded sand 
(SP) class according to the Unified Soil Classification Sys-
tem (USCS). It should be noted that all the experiments were 
conducted in dry conditions. The other mechanical proper-
ties of the soil, such as uniformity coefficient (Cu) and coef-
ficient of curvature (Cc), are listed in Table 2, which were 
measured using the tests and based on the ASTM D422-43 
standard (ASTM-D422 2016).

The distribution of particles larger than 0.075 mm (soil 
remaining on the 200 sieve) was determined by conduct-
ing a granulation test by sieve. Since the percentage passing 
through the 200 sieve was very low (less than 1% by weight 
of the soil), the soil was considered coarse grain material, 
and there was no need to conduct a hydrometric test. The 
sand used in this research is uniform, and the soil particles 
have a limited size range. This can be observed in the soil 
distribution curve shown in Fig. 3. As shown in Fig. 3 (the 
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red zone), the diameter range of grains is very narrow, and 
most of the grains are in almost the same dimension range. 
In other words, this is poorly-grained sand or the SP soil in 
the USCS. The preparation of the reinforced soil samples 
was carried out to achieve three distinct relative densities: 

55%, 75%, and 95%, with the aim of examining how rela-
tive density influences the parameters of soil shear strength.

PET preparation

For this study, PET fragments were obtained by cleaning, 
drying, and then cutting discarded plastic bottles into chips 
measuring 1 × 1 cm and 1 × 5 cm with a thickness of 0.5 
mm, or alternatively, into fibers (Fig. 4). The measured 
characteristics of the prepared PETs are listed in Table 3. 
In most prior studies, the optimal PET percentage was 1% 
(Malidarreh et al. 2018). However, in this study, four differ-
ent percentages of PET (i.e., 0.1%, 0.5%, 1%, and 2%) were 
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Ranking position 2 2 1 1 2 3 1 3 15
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Fig. 1   Flowchart illustrating the methodology followed in this study

Fig. 2   The sandy soil used in this study

Table 2   Mechanical properties 
of sample soil

Properties Unit Value

Gs - 2.65
(γd)min gr/cm3 1.6
(γd)max gr/cm3 1.25
D50 mm 0.17
Cu - 1.25
Cc - 1.07
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utilised to examine the impact of PET on enhancing shear 
strength in soil within a certain tolerance.

Direct shear tests were conducted to determine the soil's 
shear strength in an unreinforced and reinforced state with 
PET fragments. The tests were undertaken on 300 × 300 
mm samples according to the ASTM D 3080–90 standard 
(ASTM-D3080 2011) and under three different normal 
stresses (Sn) of 50, 100, and 150 kPa on samples with a 
relative density of 55%, 75%, and 95% in the dry state, 

up to a strain of 10% and with a constant speed of 2.067 
mm/min. For the purpose of creating predictive models, 
a dataset was compiled from 118 sample tests, with all 
relevant features such as PET type, PET percentage, Dr, 
Sn, and shear strength meticulously recorded for each test. 
Furthermore, as the PET type is a qualitative parameter, 
the values of 1 to 3 were replaced with the PET types 1 × 1 
cm and 1 × 5 cm and fibers, respectively, to make all the 
independent variables quantitative. The descriptive statis-
tics of the dataset are presented in Table 4.

Prior to predictive model development using ML algo-
rithms, the variation in soil shear strength was evalu-
ated relatively, given the utilisation of soils with distinct 
parameter ranges in the experiments. Consequently, the 
modelling process employed the ratio of increases. A part 
of the employed data in the study is presented in Table 5. 
As seen in this table, the percentage increase in soil shear 
strength without PET is indicated in the adjacent column, 
with a reference value of 1.

Fig. 3   The particle size distri-
bution of the soil utilized in this 
study

Fig. 4   Preparation of PET 
materials for the experiments: 
a) PET containers are washed 
and dried before being cut to the 
desired sizes to prevent adhe-
sion errors, given that the con-
tainers are reused and recycled, 
and b) Shredded PET samples 
before adding to the soil

Table 3   Measured characteristics of PET elements

Length 
(mm) × width 
(mm)

Thickness (mm) Gs(g∕cm3) Chemical formula

10 × 10 0.5 1.38 (C10H8O4)n
10 × 50
Fiber
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Machine learning algorithms

Decision Tree

The decision tree (DT), a fundamental component of super-
vised learning in machine learning and artificial intelligence, 
has been deployed for tasks involving classification and pre-
diction modeling. The DT methodology encompasses a vari-
ety of subsets, including chi-squared automatic interaction 
detection (CHAID), Quick, Unbiased, Efficient, Statistical 
Tree (QUEST), C5, and the Classification and Regression 
Tree (CART). Among these, CART and CHAID are unique 
in their ability to model and predict continuous variables, 
as noted by Lin and Fan (2019). The CART algorithm, in 
particular, is favoured for its "white-box" nature, offering 
straightforward interpretability and ease in understanding 
the connections between input and output variables. Addi-
tionally, CART's performance remains robust across large 
datasets, distinguishing it from other more opaque machine 
learning algorithms, especially in scenarios involving com-
plex samples and a high variable count (Li and Sheu 2021). 
Samaei et al. (2018) highlighted that CART leverages princi-
pal component analysis (PCA) to pinpoint critical input vari-
ables while discarding those deemed insignificant. Depend-
ing on the nature of the output variable, a CART decision 
tree can be tailored as either a classification tree (CT) or a 
regression tree (RT). A CART model's effectiveness for a 

specific dataset is notably affected by key indices. For a CT, 
these critical indices encompass the Gini criterion, Entropy, 
and the Twoing criterion. Furthermore, the non-parametric 
nature of CART models means that assuming a distribution 
for the variables is unnecessary, allowing for flexibility in 
handling various types of data.

During the development of a CART model, implement-
ing specific criteria is crucial to avoid overfitting and ensure 
the model's applicability to new datasets. These preventative 
measures include setting a minimum number of observations 
required for a node split, defining the maximum depth of the 
tree, and determining the smallest error reduction necessary 
for splitting a node. These parameters, which can be adjusted 
in the Scikit-Learn package during CART model develop-
ment, help control the complexity of the tree and prevent 
overtraining. By applying these criteria, the training process 
can be guided to produce a simpler, more generalized tree. 
The structure of a decision tree comprises a root node from 
where the decision-making process starts, decision nodes 
(or interior nodes) that represent the points where choices 
are made, and terminal nodes (or leaf nodes) that signify 
the outcomes of those decisions (Samaei et al. 2018). Every 
tree originates from the root node, positioned at the top level 
of the tree, and bifurcates into left and right sub-branches. 
Each sample in the dataset is categorized starting from the 
root node, progressing through the decision nodes, until it 
can no longer be split, culminating in a terminal node (refer 
to Fig. 5) (Lin and Fan 2019).

Random forest

The Random Forest (RF) algorithm, established on the 
foundation of the CART decision tree algorithm by Brei-
man (2001), amalgamates numerous DTs to form a com-
posite model. Zhou et al. (2020) demonstrated its versatility 
as both a classification and regression tool, highlighting its 
capability without necessitating prior assumptions about the 
relationship between predictor variables and the response 
variable. Initially, the RF algorithm generates samples 
through the bootstrap sampling technique from the dataset, 
with each bootstrap sample leading to the creation of an indi-
vidual RF tree. Samples not selected during the bootstrap 

Table 4   Descriptive statistics of 
the recorded parameters

Category Symbol Unit Min Max Avg St deviation

Input PET type - 1 3 1.846 0.772
Dr % 0.55 0.95 0.75 0.164
Sn kPa 50 150 100 41
PET percentage % 0 2 0.6 0.687

Output Shear Strength (�max) kPa 36.31 144.63 84.88 31.903
Shear Strength increase 

ratio (�max ratio)

- 0.86 1.42 1.10 0.128

Table 5   Sample dataset used in this study

PET type Dr Sn PET per-
centage

�max �max ratio

1 0.55 50 0 36.313 1
1 0.55 50 0.1 37.371 1.0291
1 0.55 50 0.5 40.768 1.1226
2 0.55 50 0 39.313 1
2 0.55 50 0.1 47.077 1.197
2 0.55 50 0.5 43.680 1.111
3 0.95 150 0 110.657 1
3 0.95 150 0.1 144.631 1.307
3 0.95 150 0.5 130.070 1.175
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process, known as out-of-bag (OOB) samples, are utilized 
for validation purposes. The procedural framework of the 
RF algorithm is depicted in Fig. 6.

Probst et al. (2019) illustrated that several parameters 
can regulate the architecture of each tree within an RF: (i) 
the smallest allowable node size, (ii) the aggregate number 
of trees within the forest, and (iii) the level of randomness 
applied during the construction of trees. The RF algorithm 
offers several benefits, such as (a) the ability to save con-
structed trees for later reference, (b) resistance to overfitting 
issues, (c) shorter training times coupled with faster predic-
tion capabilities, and (d) a built-in feature selection process 
that aids in prioritising parameters based on their signifi-
cance. According to Witten et al. (2005), these attributes 
distinguish the RF algorithm from other machine learning 
methodologies.

In prior studies, the Gini-index splitting criterion has 
been used frequently as a measure to assess the level of 
inequality or discrepancy within a distribution. By using 
this criterion as a basis for splitting, decision trees can effec-
tively divide up the feature space to enhance their predic-
tive power. This has resulted in the Gini index becoming a 
widely utilised tool for evaluating theoretical concepts and 
practical applications (Charles et al. 2022). This research uti-
lized the Scikit-Learn Python library (Pedregosa et al. 2011), 
which provided two criteria for splitting data: the Gini index 
and Entropy, both of which were applied in the development 
of the model. The Gini index assesses the purity of nodes 
to determine the lowest possible error rate for the chosen 
training data group. On the other hand, the Entropy method 
measures the uncertainty or randomness information in 
a data group, helps determine which feature to split on at 
each tree node, and splits the tree to give more information 
(Hannan and Anmala 2021). If the Entropy is extended, the 
subsets homogeneity improves (Kuhn and Johnson 2013).

XGBoost

Chen and Guestrin (2016) introduced extreme gradi-
ent boosting (XGBoost), a scalable approach to ML that 
enhances tree-boosting techniques. This algorithm has out-
performed other ML algorithms across various engineering 
challenges, according to Zhu et al. (2021). Figure 7 illus-
trates that XGBoost merges weaker learners with stronger 
ones, utilising residuals from each iteration to refine earlier 
predictions. Unlike weak learners like DT or RF, which rely 
on random guesses and lack the capability to leverage errors 
for improving the ultimate model, the XGBoost algorithm 
employs gradient boosting. This enables it to use errors con-
structively to bolster the performance of the final model.

Dhaliwal et al. (2018) elucidate the salient advantages of 
employing the XGBoost algorithm, as enumerated below:

1.	 XGBoost exhibits a superior speed, being approximately 
ten times faster than other prevalent algorithms, which 
mitigates the challenges of temporal expenditure in 

Fig. 5   A Decision Tree consist-
ing of the root nodes, decision 
nodes, and terminal nodes
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Fig. 6   The process of RF trees' growth
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processing large datasets and computationally intensive 
tasks.

2.	 The algorithm's capability for parallel processing facili-
tates efficient scalability and the production of a copious 
number of instances while ensuring minimal resource 
consumption. This attribute is crucial for the efficacious 
classification and sophisticated preprocessing of data.

3.	 XGBoost's compatibility with a wide array of program-
ming languages, including Java, Python, R, and C +  + , 
extends its applicability across diverse computational 
environments.

4.	 Its strategic synthesis of weak learners into robust learn-
ers significantly diminishes the likelihood of overfitting 
and concurrently elevates the precision of predictive 
outcomes.

5.	 The feature of inherent cross-validation within the train-
ing dataset obviates the necessity for auxiliary cross-
validation frameworks.

6.	 XGBoost undertakes extensive model evaluation pro-
cesses to ascertain peak operational efficiency, meticu-
lously adjusting parameters to avert overfitting and cir-
cumvent unnecessarily complex solutions.

To mitigate the risk of overfitting, it is imperative to 
adjust several internal parameters within the XGBoost 
framework, as delineated by (Chen and Guestrin 2016). 
These include the number of iterations, which denotes the 
quantity of trees integrated into the model; the maximum 
depth, indicative of the highest number of bifurcations; 
the subsample, representing the proportion of the dataset 
allocated for training purposes; the learning rate, which 
adjusts the model's weights to enhance performance; the 
colsample_bytree, reflecting the fraction of features used 
for tree construction; and lambda and alpha, which serve 
to regularise the model's weights, with higher values pro-
moting a more cautious model approach.

AdaBoost

Studies from the 1990s revealed that combining multiple 
weak learners can result in a robust learner combination 
(Schapire 1990; Freund and Schapire 1997). Following 
this insight, Schapire (1990) laid down the initial theoreti-
cal framework for the boosting algorithm, which seeks to 
address this concept. The essence of boosting, a technique 
embedded in machine learning, lies in its ability to integrate 
a multitude of weak and less accurate predictors to create 
a highly precise prediction model. Freund and Schapire 
then improved this idea in 1997 by introducing Adaptive 
Boosting (AdaBoost) algorithm. Figure 8 shows the algo-
rithm structure and the process of modelling. To train the 
AdaBoost algorithm, weights are equalised for all training 
examples. Then, weak models are trained on the training 
dataset. These weak models can be decision trees with low 
depth or logistic regression with few features. Next, the error 
of the weak models on the training dataset is calculated. The 
error is defined as the fraction of misclassified examples. 
The weights of the misclassified examples are increased so 
that they have more influence on the next weak model. This 
ensures that subsequent weak models focus more on cor-
rectly classifying these data points. The process of train-
ing a new weak model, calculating its error, and increas-
ing the weights of the misclassified examples is repeated 
until a set number of weak models are created or the desired 
level of accuracy is reached. The final step is to combine 
the weak models by weighting their predictions according 
to their accuracy and outputting the final prediction (Azmi 
and Baliga 2020).

The application of the AdaBoost classifier leads to the 
removal of superfluous training data, including outlier features. 
This process enhances the classifier's accuracy by diminish-
ing bias and variance errors through iterative training (Rajesh 
and Dhuli 2018). It is noteworthy to mention that while the 

Fig. 7   The XGBoost algorithm 
involves a variable X and DT 
features denoted by Ө (such as 
tree depth, number of splits, 
etc.), which are utilised to con-
struct a tree aimed at predicting 
X. Here, f represents the tree 
that has been learned

Training set X

Tree 1 {X, 1} Tree k {X, k}
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computational time required for AdaBoost is comparatively 
lower than that of XGBoost due to its parsimonious set of 
hyperparameters, the former algorithm is known to be vulner-
able to noisy data, which may have a detrimental impact on its 
overall model performance (Rätsch et al. 2001).

Goodness‑of‑fit evaluation indices

In this research, to forecast the enhancement of soil strength 
through the incorporation of PET elements, four distinct arti-
ficial intelligence models were constructed utilizing algo-
rithms such as DT, RF, XGBoost, and AdaBoost. The datasets 
underwent a random partition into training (75%) and testing 
(25%) segments. The efficacy of each model was appraised 
using well-known metrics, namely the Determination Coef-
ficient (DC, R2), Root Mean Square Error (RMSE), Variance 
Accounted For (VAF), and the A-10 index. (Samaei et al. 
2018; Naghadehi et al. 2019). The aforementioned metrics 
can be determined through the application of specific math-
ematical formulas:

(1)R2 = 1 −

∑
�

yact − ypre
�2

∑
�

yact − yact
�2

(2)RMSE =

�

∑n

i=1

�

ypre − yact
�2

n

(3)VAF = [1 −
var(yact − ypre)

var(yact)
]

Here, yact ​ and ypre ​ represent the actual and predicted val-
ues, respectively. N denotes the overall count of data points, 
while m10 ​ refers to the number of instances where the ratio 
of actual to predicted value falls within the range of 0.9 to 
1.1.

Model construction

In this section, the process of model development, parameter 
tuning, and the results for each algorithm are discussed in 
detail.

DT‑based model development

The efficacy of the decision tree model hinges on the 
choice of parameters that enhance the learning procedure. 
In this study, the Scikit-learn Python library was utilized 
to build the decision tree model, and the Graphviz library 
was used to generate visualizations. During the feature 
selection process, the mean square error (MSE) serves as 
the criterion for variance reduction, which is pivotal in 
identifying the optimal split (Friedman 2001); Friedman's 
mean square error (MSE) utilises Friedman's improvement 
score to identify potential splits in the decision tree (Hastie 
et al. 2009); and Poisson uses Poisson deviance reduc-
tion to find splits (Hastie et al. 2009). Other important 
parameters, such as minimum_samples_split, minimum_
leaf_samples, and tree_depth, are crucial in the decision 
tree modelling process. The selection of these parameters 

(4)A − 10 =
m10

N

Fig. 8   Formulating a strong 
classifier through the aggrega-
tion of weak classifiers, each 
bearing unique weights, in the 
framework of the AdaBoost 
algorithm Weak classifier 1

Weak classifier 2

Weak classifier 3
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ought to be guided by the unique attributes of the dataset 
and the balance between model complexity and predictive 
accuracy (Mantovani et al. 2016). Therefore, a range of 
values was provided to the algorithm, and the most optimal 
values were selected through a trial and error approach, 
as shown in Table 6. When minimum_samples_split is set 
to 2, a node can be split if it contains at least two sam-
ples. This parameter setting can result in more flexible and 
complex decision trees, allowing the model to split nodes 
with fewer samples, leading to potentially more accurate 
predictions. It is particularly useful when working with 
smaller datasets, where setting a larger minimum sample 
split may result in underfitting and poorer model perfor-
mance. The minimum leaf samples parameter is set at the 
final node of the tree to optimise for maximum accuracy, 
and a value of one was chosen for this parameter. Tree 
depth is also critical for controlling the decision tree's 
size and preventing overfitting. It can be used as a crite-
rion to determine the best tree among a set of constructed 
trees. DTs were developed using the parameters mentioned 
above to predict reinforced soil behaviour. Table 6 displays 
the ideal settings for the DT parameters that yield the most 
effective model for forecasting the strength of reinforced 
soil. Additionally, Fig. 9 illustrates the configuration of 
the optimally trained DT dedicated to predicting the shear 
strength of reinforced soil.

Within DT models, input variables can be assigned 
ranks based on their relevance through an ad-hoc ranking 
technique. This approach ensures that variables essential 
for tree division and target prediction are situated closer 
to the root nod (Boutaba et al. 2018). The model operates 
accurately whereby any instance that involves a PET per-
centage lower than 0.5% is identified as soil that does not 
contain PET. In such cases, it is assigned the maximum 
shear strength ratio of 1. As the sample strength increases, 
the value increases and the assigned box for this specimen 
becomes darker. The algorithm assigns a brighter colour 
or sheer white colour to the three samples in which PET 
did not enhance their shear strength but also caused their 
looseness.

RF‑based model development

For the creation of an RF model aimed at predicting the 
strength of reinforced soil, Bootstrap sampling was initially 
utilized to prepare the training data. The RF algorithm then 
facilitated the generation of a diverse collection of DT sam-
ples, enhancing the precision of the forecast. An aggrega-
tion technique was subsequently employed to fine-tune the 
prediction accuracy. In the implementation with the Python 
SciKit package, the model's performance is evaluated using 
the out-of-bag (OOB) feature, which is enabled by setting it 
to True. This evaluation specifically considers the samples 
excluded from the bootstrap selection.

In the RF run, the number of estimators shows how many 
DTs were generated. Figure 10 represents some of the devel-
oped DTs in this study. Variable importance evaluations 
increase along with the number of estimators. The investiga-
tion conducted by Lunetta et al. (2004) showed that running 
the algorithm with more estimators increases the algorithm's 
run time. However, this method leads to more stable results. 
In the process of constructing an RF model to predict the 
increase in shear strength, 200 estimators were chosen as the 
optimal number after a series of trial-and-error iterations. 
By investigating deeper trees to maximise performance, this 
method may cause the model to become overfitted. A bet-
ter result was obtained using the Entropy criterion than the 
Gini criterion when it came to gaining information. Table 7 
shows the optimum values obtained for the RF-based model.

XGBoost‑based model development

Although RF is a proficient prediction technique, it still has 
some limitations. One of these is that if the algorithm makes 
an error in the initial stages, it is likely to repeat this mistake 
in the following iterations (Javeed et al. 2019). On the other 
hand, both the XGBoost and AdaBoost algorithms do not 
have this limitation. These boosting techniques can learn 
from the errors made by individual trees and use this knowl-
edge to improve the overall model performance significantly 
(Demir and Sahin 2023).

In this research, the development of an XGBoost model 
utilized the Scikit-learn and XGBoost Python libraries to 
train a comprehensive tree. Fine-tuning hyperparameters 
plays a vital role in crafting an effective XGBoost model. 
The key parameters requiring optimization encompass:

In the creation of an XGBoost-based model for this inves-
tigation, parameters such as the quantity of features, trees, 
maximum tree depth, the decision on bootstrap sampling, 
the minimal number of samples required in a node pre-split, 
and the minimal samples needed in a terminal leaf node 
were meticulously adjusted. Increasing these hyperparam-
eter settings typically simplifies the model and lowers the 
risk of overfitting. A systematic trial-and-error approach 

Table 6   The optimal values of DT parameters for the reinforced soil 
strength prediction

Parameter Range Optimum value

criterion [MSE, friedman_
mse, poisson]

MSE

Minimum sample split [2—6] 2
max depth [2—10] 4
Minimum samples leaf [1—∞] 1
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was utilized to derive the optimal values for these XGBoost 
parameters. The optimal settings for the XGBoost param-
eters, aimed at forecasting the performance of reinforced 
soil, are detailed in Table 8. A limitation observed with 
XGBoost is the inconsistency in the speed of tree generation 
and learning, which tends to undervalue newer trees relative 
to older ones (Ahn et al. 2023). To address the inconsistency 

in XGBoost between generating trees and learning from 
them, Vinayak and Gilad-Bachrach (2015) introduced the 
DART (Dropout Additive Regression Trees) booster for 
XGBoost. This approach involves randomly dropping (or 
"dropping out") certain trees during the boosting process, 
which encourages diversity in the final ensemble of trees and 
prevents overfitting. In the study using the DART booster for 

Fig. 9   The configuration of 
the optimal DT model's tree 
structure
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XGBoost, it was discovered that the model's performance 
was improved compared to other boosting algorithms. Spe-
cifically, the DART booster achieved better accuracy and 
required fewer trees to be trained to reach that level of accu-
racy. These findings demonstrate the efficacy of the DART 
booster for XGBoost, which offers a promising solution to 
the issue of inconsistency between generating and learning 
from trees in this algorithm. Figure 11 illustrates several of 
the predictors that XGBoost generated for forecasting the 
shear strength of soils improved with PET.

AdaBoost‑based model development

In the development of an AdaBoost model, adjustments were 
made to some features through a trial-and-error process. 

Initially, both CART and RF learners were tested with 
the AdaBoost algorithm, revealing that the RF regressor 
achieved higher accuracy. As previously noted, the entropy 
criterion consistently outperformed the Gini-index criterion 
for this dataset. Therefore, the entropy criterion was chosen 
for the splitting process. In order to achieve the desired tree 
depth (TD), a parametric analysis was conducted, revealing 
that reducing the TD value results in a less complex model. 
Nevertheless, accuracy was also a crucial consideration, and 
decreasing the TD led to a decrease in accuracy. Based on 
the experience gained while developing other tree-based 
models, the initial values of [2, 3, 4, 5] were chosen for TD. 
Subsequently, modifications were made to other features in 
an attempt to achieve the lowest possible TD number while 
maintaining the highest level of accuracy. At last, a TD value 
of 3 was opted for model creation. Table 9 displays the other 
essential factors needed to construct the AdaBoost model.

Results and discussion

The objective of this research was to forecast the rise in 
shear strength of sandy soils bolstered by PET elements 
employing four tree-based ML methodologies: DT, RF, 
XGB, and AdaBoost. The effectiveness of the models was 
assessed through four widely recognized performance met-
rics (R2, RMSE, VAF, and A-10). The results of the training 
and testing phases for these tree-based models are shown in 
Table 10. Zorlu et al. (2008) introduced a ranking system to 
compare the accuracy of the developed models. This sys-
tem makes it feasible to rank all the models based on their 
performance across all performance indices, including train 
and test scores. As shown in Table 10, AdaBoost, leveraging 
the DT regressor as its primary methodology, attained the 
highest prediction accuracy, earning a final ranking of 25, 
while RF and DT displayed acceptable results. Furthermore, 
it was found that the XGBoost model performs better than 
RF and DT in predicting the output parameter; however, 
its prediction performance is relatively lower than the Ada-
Boost model. Figure 12 illustrates scatter plots depicting the 
performance of the AdaBoost model during both the training 

Fig. 10   Five different estimators (DTs) developed in this study

Table 7   Hyperparameters of the RF model for predicting the shear 
strength in soils reinforced with PET

Parameter Range Optimum value

Criterion [Entropy, Gini] Entropy
Estimators number [50, 100, 200, 300] 200
Bootstrap [True, False] True
Max depth [3—7] 4
Max features [sqrt, log2] Sqrt
OOB score [True, False] True

Table 8   The best XGBoost algorithm parameters for predicting the 
shear strength of soils treated with PET

Parameter Range Optimum value

Learning rate (eta) [0.1, 0.2, 0.3, 0.5, 1, 1.5, 
2, 3]

0.3

number of estimators [50, 100, 200, 300] 100
max depth [2, 3, 4, 5, 6] 3
Gamma [0.0001, 0.001, 0.01, 0.1,0.5, 

1]
0.001

min child weight [0.2, 0.5, 0.8, 0.9, 1, 1.5, 2] 0.9
max delta step [0.2, 0.5, 0.8, 0.9, 1, 1.5, 2] 0.9
Booster [gbtree, gblinear, DART] DART​
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and testing phases, highlighting the robust predictive capa-
bilities of the model.

The XGBoost model outperformed the RF and DT mod-
els in predicting the output parameter due to several key 
advantages. Firstly, as mentioned in Section "XGBoost", 
XGBoost is built on the gradient boosting framework, which 
combines the predictions of multiple weak learners to cre-
ate a strong predictive model, effectively reducing bias and 
variance compared to single decision trees or ensemble 
methods that do not employ boosting (Kavzoglu and Teke 
2022). Additionally, XGBoost incorporates regularisation 
techniques, such as L1 and L2 regularisation, which pre-
vent overfitting and enhance the model's ability to gener-
alise to unseen data, a feature not inherently present in RF 
(Dhaliwal et al. 2018). Furthermore, XGBoost is designed to 
handle missing data efficiently during the training process, 
improving its predictive power and accuracy (Dhaliwal et al. 
2018). These combined features make XGBoost a robust 
and powerful tool for predictive modelling, surpassing the 
performance of RF and DT in this study.

However, the prediction performance of XGBoost was 
relatively lower than that of the AdaBoost model, and sev-
eral factors could be attributed to this discrepancy. Firstly, 
the adaptive boosting mechanism of AdaBoost focuses on 
the hardest-to-predict instances by adjusting the weights of 
misclassified examples and iteratively improving the model 
(Dos Santos Aguiar and Paulo 2019; Rajesh and Dhuli 
2018). This approach allows AdaBoost to handle datasets 
with noise and outliers more effectively, leading to higher 
accuracy in specific scenarios (Rätsch et al. 2001). Lastly, 
the specific characteristics of the used dataset, including 
low noise and the nature of variable relationships, may have 
favoured AdaBoost, compared to XGBoost. Its ability to 
emphasize difficult-to-predict samples likely provided an 
advantage in achieving higher predictive accuracy.

Figure 13 also presents the importance of input parame-
ters for each of the four AdaBoost, XGB, RF, and DT algo-
rithms during model development. The reduction in the 
model's criterion attributable to that feature is calculated 
and normalized to determine the importance of a feature. 
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Fig. 11   XGBoost devised four tree predictors for forecasting enhanced shear strength
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This measure can be referred to as either Gini importance 
or Mean Decrease in Impurity (MDI). When using Gini 
importance or MDI, a feature's importance is determined 
by the number of splits it contributes to (across all trees) 
concerning the number of samples it splits (Gwetu et al. 
2019). However, the Scikit-learn Python package was uti-
lised in this study, which calculates feature importance 
by averaging the actual decrease in node impurity across 

all trees and weighting it based on the number of sample 
splits (Pedregosa et al. 2011). From this figure, it can be 
seen that relative density is the most important parameter 
for all the algorithms. Following this, the PET percentage 
is detected as the second important parameter for the algo-
rithms except for the XGBoost model. On the other hand, 
the normal stress was also detected as a more important 
parameter than the PET type in all the algorithms.

Dr<0.649

yes, missing no

PET percent<1.5 leaf=-1.304

Sn<125 PET type<1.5

PET type<1.5 PET type<1.5 leaf=0.0001 Sn<75

leaf=0.0006leaf=-2.848PET type<2.5leaf=0.0008Sn<75PET percent<0.050

leaf=0.0004 leaf=-0.0006 leaf=-4.080 leaf=0.001 leaf=-0.0005 leaf=2.571

yes, missing

yes, missingyes, missing

yes, missing yes, missing yes, missing

yes, missingyes, missingyes, missing

no

nono

nonono

no no no

Dr<0.649

yes, missing no

PET type<2.5 leaf=-1.850

PET type<1.5 PET percent<0.30

leaf=0.0004leaf=5.086Sn<125Sn<125

PET percent<0.55 PET percent<1.25 PET percent <0.05 PET percent <0.05

leaf=-0.0009leaf=0.0001leaf=0.0005leaf=-0.0007leaf=3.556leaf=0.001leaf=0.0002leaf=-0.0005

yes, missing

yes, missingyes, missing

yes, missing yes, missing

yes, missingyes, missingyes, missingyes, missing

no

nono

no no

nononono

Fig. 11   (continued)

Table 9   The optimum values 
of the parameters for the best 
AdaBoost model to predict the 
shear strength of soils enhanced 
with PET

Attribute Scale Optimum value

Weak learner algorithm Random Forest, Decision Tree Random Forest Regressor
Tree depth [2—6] 3
Algorithm SAMME, SAMME.R SAMME
Criterion Entropy, Gini Entropy
Number of estimators [50, 100, 200, 300] 100
Learning rate [0.5, 1, 1.5, 2] 1.0



	 Earth Science Informatics

Graphical user interface

In response to concerns from civil engineers about the 
practicality of using machine learning (ML) techniques in 
real-world applications, a graphical user interface (GUI) 
was developed in this study (see Fig. 14). This GUI can 
help overcome some of the perceived challenges of imple-
menting ML in practice by providing users with an easy-
to-use interface. The GUI facilitates the input of essen-
tial features, enables users to run the toolbox with ease, 
and allows them to view the predictions generated by the 
ensemble models developed in the study. By providing 
access to the ensemble models and associated results, this 
interface enables users to better understand the applica-
tion of ML in civil engineering and the potential benefits 
of using such techniques. The program is available online 

through the https://​github.​com/​Farad​onbeh/​Soil-​Shear-​
Stren​gth-​Impro​vement-​using-​PET.​git website, which hosts 
the software and relevant coding. The program allows 
users to modify various parameters to better understand 
the impact of PET elements on shear strength enhance-
ment. With these capabilities, users can conduct in-depth 
analyses of the underlying data and test different scenarios 
to assess the robustness of the results.

Conclusions

This study developed four decision tree-based predic-
tive models (DT, RF, XGB, and AdaBoost) to assess the 
improvement of soil shear strength using PET elements. 
The advanced use of AI-based models effectively detected 

Table 10   Ranking of developed models based on performance indices

Model name R2 RMSE VAF A10 Final score

Train Test Train Test Train Test Train Test

AdaBoost (DT regressor) 0.99 0.91 0.01 0.04 98.91 90.95 1 1
Ranking position 4 4 3 2 4 4 1 3 25

XGBoost 0.99 0.90 0.009 0.05 99.63 85.53 1 0.96
Ranking position 4 3 4 1 5 2 1 2 22

AdaBoost (RF classifier) 0.97 0.87 0.02 0.05 96.76 87.14 1 1
Ranking position 3 2 2 1 3 3 1 3 18

Random Forest 0.95 0.87 0.03 0.05 94.32 87.14 1 1
Ranking position 2 2 1 1 2 3 1 3 15

Decision Tree 0.94 0.85 0.03 0.05 93.71 82.77 1 0.92
Ranking position 1 1 1 1 1 1 1 1 8
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Fig. 12   The correlation between the actual and predicted values of shear strength in reinforced soil by the AdaBoost predictor in the training and 
testing stages

https://github.com/Faradonbeh/Soil-Shear-Strength-Improvement-using-PET.git
https://github.com/Faradonbeh/Soil-Shear-Strength-Improvement-using-PET.git
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Fig. 13   Analysis of the sig-
nificance of features (a) RF, (b) 
XGB, (c) DT, and (d) AdaBoost
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Fig. 14   The GUI developed 
in this study for soil's shear 
strength improvement predic-
tion using PET elements
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complex nonlinear relationships between variables, sim-
plifying and accelerating the shear strength measurement 
process through a nondestructive method. These models 
account for the variability of soil properties, offering valu-
able predictions for practical engineering applications. A 
comprehensive dataset of 118 shear tests on soil samples 
with varying PET contents was used to develop these 
models. Extensive parametric analyses were conducted to 
optimize the algorithms. Among the models, AdaBoost 
demonstrated superior performance, with R2 scores of 
0.99 for training and 0.91 for testing, outperforming other 
models. The models' prediction performance was further 
validated using RMSE, VAF, and A10-index, highlight-
ing AdaBoost's remarkable capability in predicting shear 
strength.

The XGBoost model, employing DT as a weak learner, 
effectively mitigated errors by learning from previous 
iterations, refining its predictions without exacerbating 
error rates. This study confirmed that AdaBoost excels 
in low-noise datasets, making it suitable for applications 
where computational resources and immediacy of results 
are not critical concerns. The sensitivity analysis identified 
relative density as the most crucial parameter, followed by 
PET percentage and normal stress. To enhance practical 
applicability, a Graphical User Interface (GUI) was devel-
oped, allowing researchers and engineers to easily utilize 
the models. Future enhancements could include incorpo-
rating more data and addressing the public availability of 
ML models.

Additionally, the study promoted sustainable engineer-
ing practices by using PET elements, a non-recyclable 
material, for soil reinforcement. This effective use of 
waste materials not only improves soil properties but also 
addresses environmental concerns related to plastic waste.

Moreover, the introduced methods significantly aid geo-
technical engineers and researchers in evaluating soil behav-
ior and performance, providing a robust, practical tool for 
enhancing the safety and efficiency of engineering designs.
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