LEO augmentation in wide-area PPP-RTK positioning & time transfer

Kan Wang¹, Ahmed El-Mowafy², Baoqi Sun¹, Xuhai Yang¹

¹National Time Service Center, Chinese Academy of Sciences, China ²Curtin University, Australia

CONTENTS

Wide-area PPP-RTK Positioning & LEO Long-baseline time transfer based on UDUC wide-area PPP-RTK & LEO

Simulation & Reality

Summary & Outlook 01

Wide-area PPP-RTK Positioning & LEO

Static & kinematic mode Ambiguity-fixed and -float modes Single- & dual-GNSS Wide-areaMultiple systems**PPP_RTK**Undifferenced and uncombined

Network Part

$$\begin{split} & \mathbf{E}(\Delta \varphi_{r,j}^{s}) = g_{r}^{s} \Delta \tau_{r} + d\tilde{t}_{r,g} - d\tilde{t}^{s} - \mu_{j}\tilde{\iota}_{r}^{s} + \tilde{\delta}_{r,j,g} - \tilde{\delta}_{,j}^{s} + \lambda_{j}\tilde{N}_{r,j}^{s} \\ & \mathbf{E}(\Delta p_{r,j}^{s}) = g_{r}^{s} \Delta \tau_{r} + d\tilde{t}_{r,g} - d\tilde{t}^{s} + \mu_{j}\tilde{\iota}_{r,g}^{s} + \tilde{d}_{r,j,g} - \tilde{d}_{,j}^{s} \end{split}$$

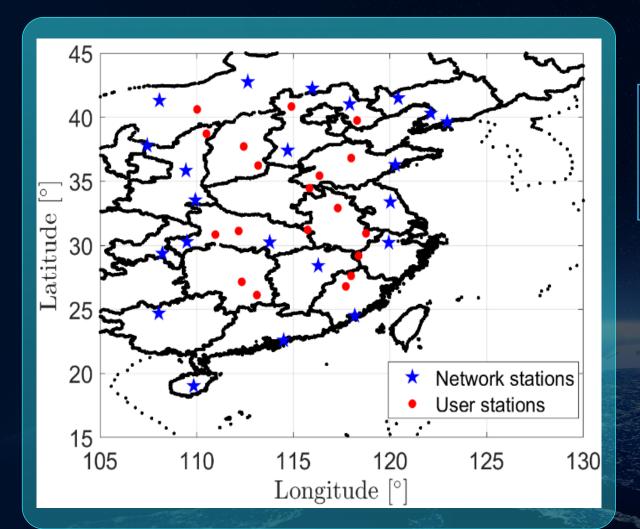
Satellite clock

Satellite phase bias

Satellite code bias (j>2)

User Part

$$\begin{split} & \mathbf{E} \Big(\Delta \varphi_{u,j}^s + d\tilde{t}^s + \tilde{\delta}_{,j}^s \Big) = (G_u^s)^{\mathrm{T}} \Delta x_u + g_u^s \Delta \tau_u + d\tilde{t}_{u,g} - \mu_j \tilde{t}_u^s + \tilde{\delta}_{u,j,g} + \lambda_j \widetilde{N}_{u,j}^s \\ & \mathbf{E} \Big(\Delta p_{u,j}^s + d\tilde{t}^s + \tilde{d}_{,j>2}^s \Big) = (G_u^s)^{\mathrm{T}} \Delta x_u + g_u^s \Delta \tau_u + d\tilde{t}_{u,g} + \mu_j \tilde{t}_u^s + \tilde{d}_{u,j,g} \end{split}$$

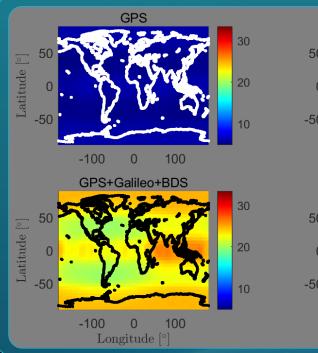

S-basis Theory

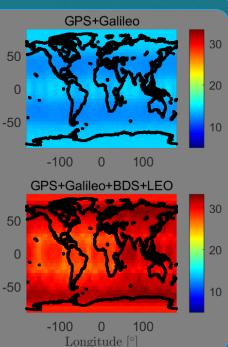
- Parameter recombination eliminates
 rank deficiency
- Hardware delays & ambiguities linked in time

Estimable parameter	Formulation
$d\tilde{t}_{r,g}(t_i)$	$dt_{1r}(t_i) + d_{1r,\mathrm{IF},g}(t_1)$
$d\tilde{t}^{s}(t_{i})$	$dt^{s}(t_{i}) + d^{s}_{,\text{IF}}(t_{1}) - dt_{1}(t_{i}) - d_{1,\text{IF},g}(t_{1})$
$\tilde{\iota}_r^s(t_i)$	$t_r^s(t_i) + d_{r,GF,g}(t_1) - d_{,GF}^s(t_1)$
$\tilde{\delta}_{r,j,g}(t_i)$	$\delta_{r,j,g}(t_i) - \delta_{1,j,g}(t_1) + \mu_j d_{1r,\text{GF},g}(t_1) - d_{1r,\text{IF},g}(t_1) + \lambda_j N^1_{1r,j,g}(t_i)$
$\tilde{\delta}^{s}_{,j}(t_i)$	$\delta_{,j}^{s}(t_{i}) + \mu_{j} \left(d_{,\mathrm{GF}}^{s}(t_{1}) - d_{1,\mathrm{GF},g}(t_{1}) \right) - d_{,\mathrm{IF}}^{s}(t_{1}) + d_{1,\mathrm{IF},g}(t_{1}) - \delta_{1,j,g}(t_{1}) - \lambda_{j} N_{1,j}^{s}(t_{i})$
$\tilde{d}_{r,j,g}(t_i)$	$d_{r,j,g}(t_i) - d_{1,j,g}(t_1) - d_{1r,\mathrm{IF},g}(t_1) - \mu_j d_{1r,\mathrm{GF},g}(t_1)$
$\tilde{d}^{s}_{,i}(t_i)$	$d_{,j}^{s}(t_{i}) - d_{,\mathrm{IF}}^{s}(t_{1}) - \mu_{j}d_{,\mathrm{GF}}^{s}(t_{1}) - d_{1,j,g}(t_{1}) + d_{1,\mathrm{IF},g}(t_{1}) + \mu_{j}d_{1,\mathrm{GF},g}(t_{1})$
$\widetilde{N}_{r,j}^s(t_i)$	$N_{1r,j}^{s}(t_{i}) - N_{1r,j,g}^{1}(t_{i})$

- Ground stations sparsely distributed
- No ionospheric interpolation/correction
- Long convergence time
- Sensitive to observation model

Gound network in China

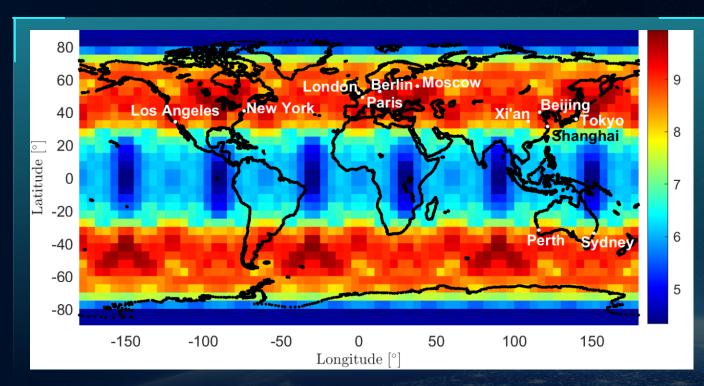

- 2550 km (Nroth & South) × 1300 km (East & West)
- GPS (L1 & L2) + BDS (B1I & B3I)


Network PartUser PartStaticStatic & kinematic
mode22 stationsAmbiguity-fixed and
-float modes

19 stations

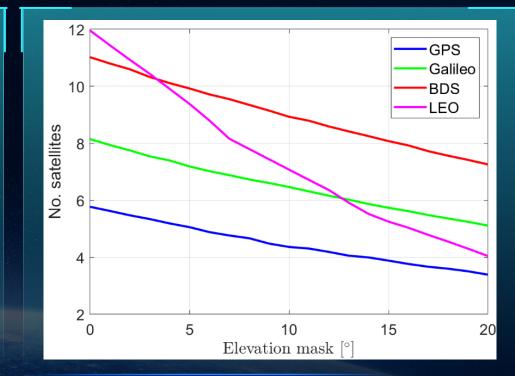
5

LEO Constellation Configuration


CentiSpace Configuration

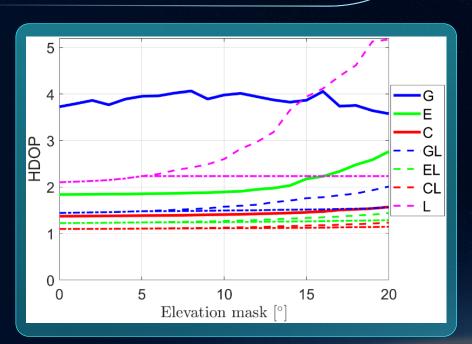
Layer ALayer BSatellites12030Orbital planes123Orbital height975KM1100 KMInclination55 degrees87.4 degrees

L1/L5, E1/E5a, B1C/B2a

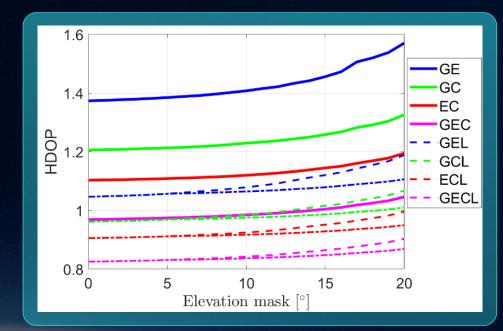

- Average daily number of visible satellites
- Elevation mask: 5 degrees

Numbers & Elevation

Mid-latitude friendly


- Big cities with strong visibilities
- Visible satellites ~ 9

LEO satellites


- Low elevation angles
- Sharp decrease of the visible satellites with elevation angles

Measurement geometry

HDOP (L1/L5)

Improvements in single-GNSSElevation mask: 10°/20°GalileoGalileoBDS-3BDS-333%48%20%21%

Improvements in multi-GNSS
ScenariosElevation mask: 20°G&EG&C30%E&C24%21%17%

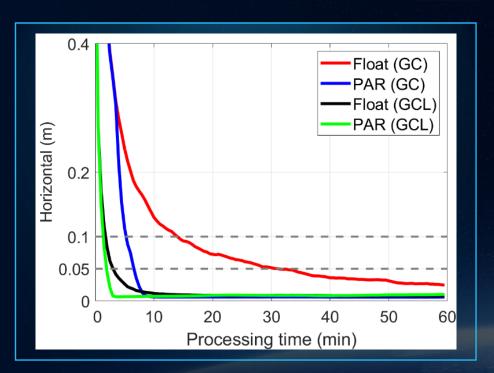
Characteristics &differencesLEO ~ GNSS

Wide coverage

Coverage in remote areas Coverage in oceans Coverage in polar areas

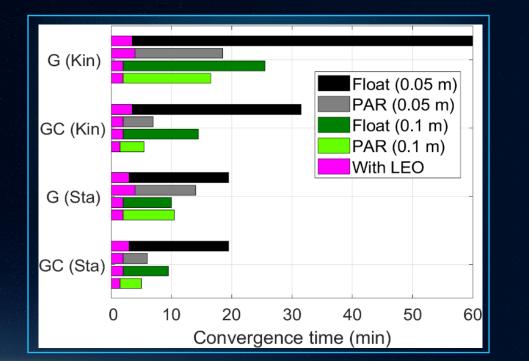
Fast speed

F


Low orbital height

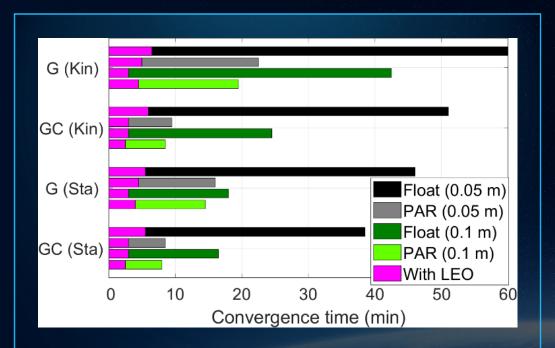
Strong signal strength Anti-jamming

Large quantity

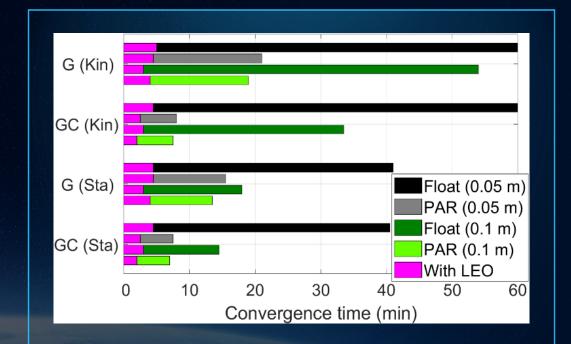

Improve visibility Improve measurement geometry Reduce PDOP, TDOP Accelerate geometric changes Shorten PPP & PPP-RTK convergence time Whiten multipath effects

LEO enhanced wide-area PPP-RTK positioning

1σ Percentile line of horizontal errors


- Static mode
- Ambiguity-fixed and -float modes
- **GPS + BDS**

Fast convergence Insensitive to the observation model


- Static & kinematic modes
- **Ambiguity-fixed and -float modes**
- Single- & dual-GNSS

LEO enhanced wide-area PPP-RTK positioning

90% Percentile line of vertical errors

- Static & kinematic mode
- Ambiguity-fixed and -float modes
- Single- & dual-GNSS

90% Percentile line of horizontal errors

Improved integrity

Long-baseline time transfer based on UDUC wide-area PPP-RTK & LEO

Method Stability Convergence

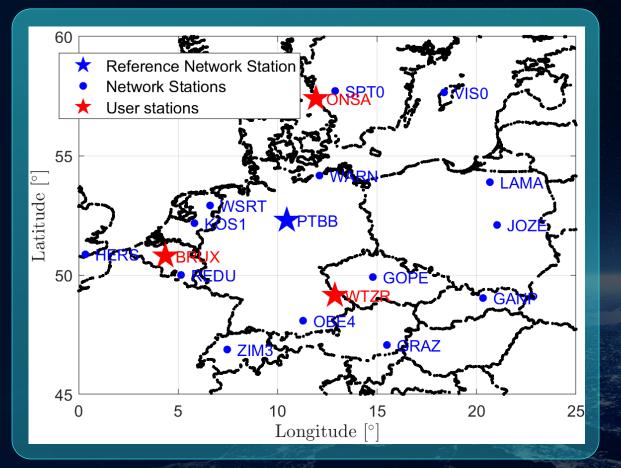
Wide-area PPP-RTK Multiple systems + UDUC

Step 1: The user solves the receiver clock

$$d\tilde{t}_{u,g}(t_i) = dt_{1u}(t_i) + d_{1u,\text{IF},g}(t_1)$$

- Difference between receiver clock and network reference clock
- Difference between the first-epoch receiver IF code delay and first-epoch reference station IF code delay
- Processing for each GNSS
- Separation between the clocks and hardware delays

Step 2: Between-station difference of the receiver clocks


$$d\tilde{t}_{uv,g}(t_i) = dt_{uv}(t_i) + d_{uv,\mathrm{IF},g}(t_1)$$

- Reduce systemic effects
- The second user station can be a time lab

Step 3: Weighted average of solutions for each GNSS

$$d\tilde{t}_{uv}(t_i) = dt_{uv}(t_i) + \sum_{g=1}^n \left(\alpha_g d_{uv,\text{IF},g}(t_1) \right)$$

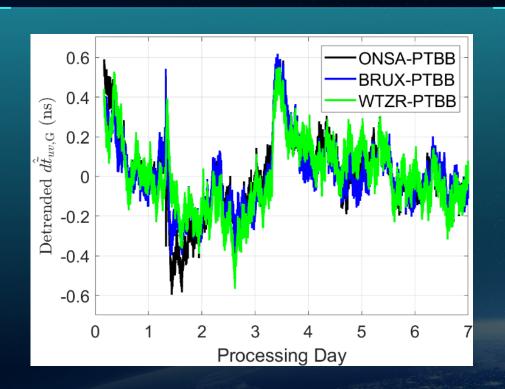
Ground Network

Ground network in Europe

- ~1440 km
- GPS (L1 & L2) & Galileo (E1 & E5a)

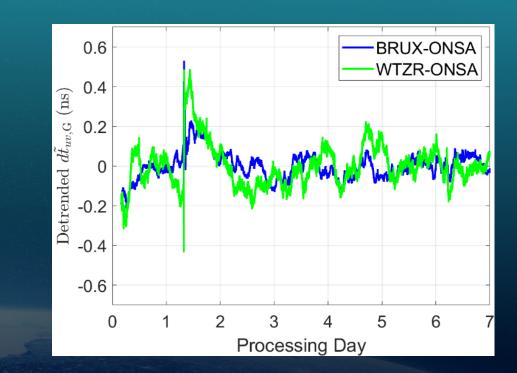
Network Part

- Static, Ambiguity-fixed and -float modes
- Reference Station PTBB ~ H-Maser


User Part

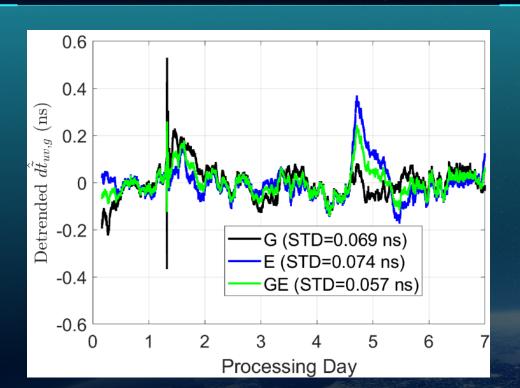
- Fixed & Static & kinematic modes
 - **Ambiguity-fixed and -float modes**
 - **H-Masers**

•


ightarrow

Between-station clocks Step 1 & 2

Step 1


- Directly estimated receiver clock in Step 1
- 7-day STD about 0.15-0.2 ns

Step 2

Systematic effects largely reduced
7-day STD 0.07~0.11 ns, 1-day STD 0.03~0.07 ns

Multi-system weighting Step 3

Step 3

- Multi-system weighted averaged improves the stability
- 7-day STD ~ 0.06 ns

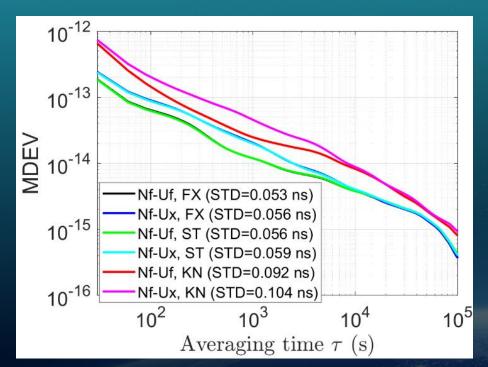
$\underbrace{\mathsf{P}}_{10^{-14}} \underbrace{\mathsf{OE}}_{10^{-15}} \left(\tau \right) \underbrace{\mathsf{OE}}_{10^{-16}} \left(\tau \right) \underbrace{\mathsf{OE}}_$

G E

GE ($\tau 0=30 \text{ s}$)

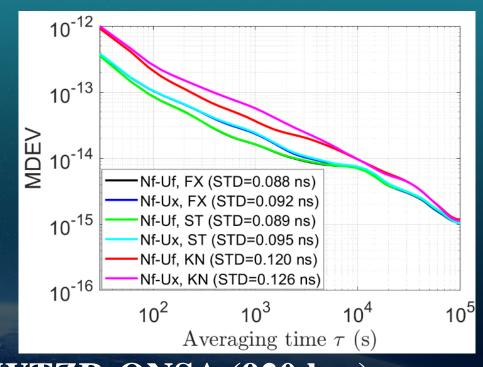
GE ($\tau 0=300 \text{ s}$)

GE $(\tau 0=3000 \text{ s})$


GE ($\tau 0=30000 \text{ s}$)

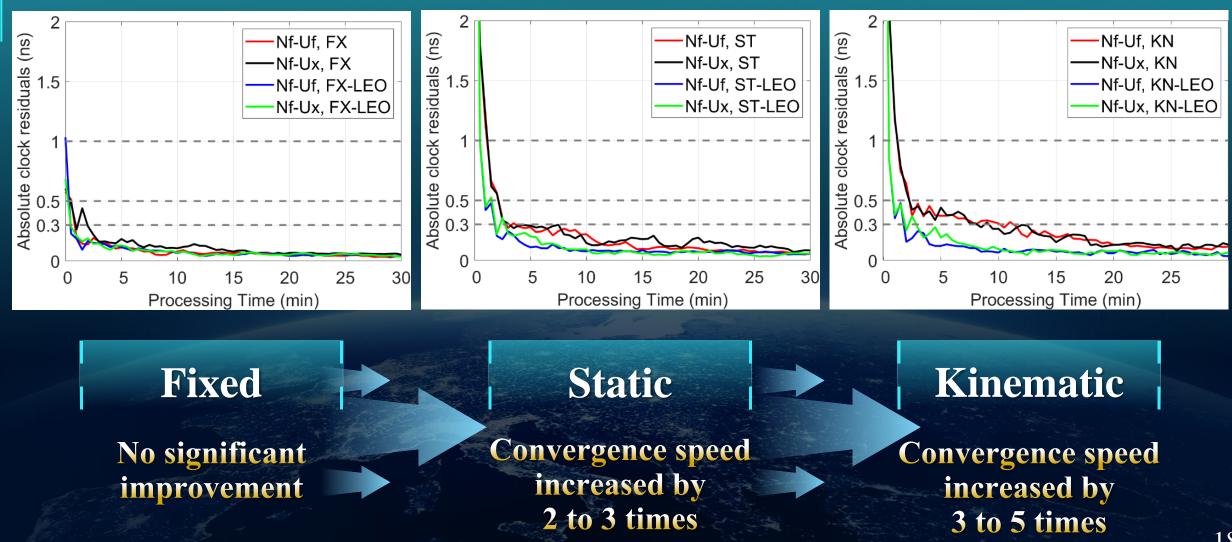
10⁻¹²

10⁻¹³ ·


• Different weighting factors can be selected for different averaging times

Different modes MDEV (G+E) different stages

BRUX-ONSA (884 km)


- Fixed- & Static-mode stability better than kinematic mode
- Ambiguity fixing not beneficial for short-term stability

WTZR-ONSA (920 km)

- No significant difference between Fixed and static modes
- Averaging time at 86400: 10⁻¹⁵

GNSS→**GNSS**+**LEO Convergence**

03

Simulation & Reality LEO Navigation Signals Biases of downlink antennas Real-time LEO satellite orbits/clocks ~

Summary & Outlook

Summary & Outlook

01

Wide-area PPP-RTK Positioning & LEO

Fast convergence Insensitive to the observation model No need of ionospheric corrections and interpolations

02

Long-baseline time transfer based on UDUC wide-area PPP-RTK & LEO

Convergence speed increased by 2-3 times in static mode 3-5 times in kinematic mode

Challenges from simulation to engineering practice

03

Challenges

04

Outlook

Future trend in satellite-based PNT services for next 10 years

THANKS

wangkan@ntsc.ac.cn