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Abstract

A wide range of biocompatible hydrogels is a common biomaterial for micro and nano-
encapsulation, injectable gels, and bioprinted scaffolds. All of these can be used for drug and
cell delivery. Developing safe, biocompatible biomaterial with permeation enhancers can be
valuable to many therapies, allowing for prolonged, focal drug delivery.

Bile acids are surfactants with unique chemical structures with rigid steroid core that gives
them a curved shape. On the convex side, they are hydrophobic, and on the concave, they
are hydrophilic. Based on this, bile acid can self-assemble into micelles and react with the
surrounding environment. Bile acids are permeation enhancers. They promote paracellular
and transcellular drug absorption by widening tight junctions between cells and transporting
liposoluble drugs through membranes in the form of micelles. BAs increase membrane
permeability through micelles and cell swelling in low concentrations. Bile acids associate with
membrane phospholipids at concentrations above critical micellar concentration, causing a
membranolytic effect directly proportional to BA's enhancer effect.

Bile acids have beneficial effects on biomaterials, like lowering matrix erosion, reducing
swelling and increasing mechanical strength. This is crucial as it provides durability and lowers
the degradation of biomaterials in common biological conditions. Bile acids have antioxidant
and anti-inflammatory effects on cells encapsulated within biomaterials. Bile acid can activate
several important membrane and nuclear receptors, leading to immunomodulatory effects,
lowered fibrosis, and lowered pro-inflammatory response. Bile acids can reduce ER stress in
some cells, but these effects are versatile and concentration-dependent, and proper
formulation is crucial to obtain these positive effects. Designing and developing biocompatible
hydrogel with incorporated bile acid is a major aim of this thesis.

Different types of hydrogels have been developed using a wide range of polymers, including
sodium alginate, Poloxamer 407, polysaccharides, chitosan, polytetrafluoroethylene and

others. Bile acids were incorporated within the polymer matrix, and resulting hydrogels were



tested for their rheological properties and biocompatibility on five different cell lines. The best-
performing formulation in terms of rheology and biological impact on cells was smart
thermoresponsive cyclodextrin-based nanogels with deoxycholic acid, which can be potential

drug delivery vehicles for inner ear drug delivery.
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Hypothesis and Objectives

Hypothesis

Bile acids are pharmacologically beneficial in biocompatible hydrogel matrices for potential
drug delivery.

Objectives

This thesis has two main objectives:

1. To screen potential bile acids from the literature for anti-inflammatory activities and

evaluate their formulation suitability in terms of polymer compatibility and microencapsulation

properties. Selected bile acids will proceed to further studies.

2. To design bile acid hydrogel capsules/scaffolds with optimal chemical and physical
stability properties, focusing on biocompatibility and characterization. Incorporate selected bile
acids into the hydrogels and investigate their effects on rheological properties and cellular bio-

parameters.
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Structure of the Thesis

This thesis consists of a total of 10 publications that cover the design and manufacture of bile
acid-based hydrogels/nanogels, the investigation of hydrogel/nanogel's rheological properties

and biocompatibility with five different cell lines.
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Chapter 1: Introduction And Literary Review

The Contents Of This Chapter Are Covered By Publication 1 (Pages 22-35):

Kovacevic B, Jones M, lonescu C, Walker D, Wagle S, Chester J, Foster T, Brown D, Mikov
M, Mooranian A, Al-Salami H. The emerging role of bile acids as critical components in
nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-

biomaterial applications. Biomaterials. 2022;283:121459.

Chapter 1 discusses the role of bile acids as critical components in nanotechnology and
bioengineering, explores existing and future applications of bile acids and provides a synopsis

of their role in advanced, novel therapeutic delivery systems.

This chapter achieved the following objective:

1. through searching the literature, potential bile acids will be screened for anti-inflammatory

activities. Selected bile acids will then be examined for formulation suitability in terms of

polymer compatibility and their microencapsulation properties. Several bile acids will be

selected for further studies.

12



Chapter 2: Sodium Alginate And Bile Acid-Based Hydrogels: Rheological Properties
And Biocompatibility

Chapters 2-4 achieved the following objective:

2. Biocompatibility and characterisation of bile acid hydrogels: design of hydrogel
capsules/scaffolds with optimum chemical and physical stability properties. Selected bile acids
will be incorporated with the hydrogels, and their effects on rheological properties and cellular

bio-parameters will be investigated.

The contents of this chapter are covered by publication 2 (pages 38-52), publication 3

(pages 54-61), publication 4 (pages 63-85), and publication 5 (pages 87-97):

Publication 2 (pages 38-52):

Kovacevic B, lonescu CM, Jones M, Wagle SR, Lewkowicz M, Dani¢ M, Mikov M, Mooranian
A, Al-Salami H. The Effect of Deoxycholic Acid on Chitosan-Enabled Matrices for Tissue

Scaffolding and Injectable Nanogels. Gels. 2022;8(6):358.

Sub-objective (1): to design and create hydrogels utilising sodium alginate, various
concentrations of chitosan and deoxycholic acid and to examine the shear stress, viscosity,
surface tension, torque, microstructure, and zeta potential of hydrogels. Additionally, the
hydrogels were incubated with 3 different cell lines (AML 12, C2C12 and NIT-1). Their impact
on viability in normal and hypoxic conditions and their impact on bioenergetic parameters was

investigated.

Publication 3 (pages 54-61):
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Kovacevic B, lonescu CM, Wagle SR, Jones M, Lewkowicz M, Wong EYM, Dani¢ M, Mikov
M, Mooranian A, Al-Salami H. Impact of Novel Teflon-DCA Nanogel Matrix on Cellular

Bioactivity. Journal of Pharmaceutical Sciences. 2023;112(3):700-7.

Sub-objective (2): to design and create hydrogels utilising sodium alginate,
polytetrafluoroethylene, and various concentrations of deoxycholic acid and to examine the
shear stress, viscosity, surface tension, torque, microstructure, and zeta potential of
hydrogels. Additionally, the hydrogels were incubated with 3 different cell lines (AML 12,
C2C12 and NIT-1). Their impact on viability in normal and hypoxic conditions and their impact

on bioenergetic parameters was investigated.

Publication 4 (pages 63-85):

Kovacevic B, lonescu CM, Jones M, Wagle SR, Foster T, Lewkowicz M, Wong EYM, BPani¢
M, Mikov M, Mooranian A, Al-Salami H. Novel polysaccharides—bile acid—cyclodextrin gel
systems and effects on cellular viability and bioenergetic parameters. Therapeutic Delivery.

2024;15(2):119-34.

Sub-objective (3): to design and create hydrogels utilising sodium alginate, pectin, and
various concentrations of deoxycholic acid and beta-cyclodextrin, and to examine the shear
stress, viscosity, surface tension, torque, microstructure, and zeta potential of hydrogels.
Additionally, the hydrogels were incubated with 3 different cell lines (AML 12, C2C12 and NIT-
1). Their impact on viability in normal and hypoxic conditions and their impact on bioenergetic

parameters was investigated.

Publication 5 (pages 87-97):
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Kovacevic B, Wagle SR, lonescu CM, Jones M, Lewkowicz M, Wong EYM, Kajic S,
Stojanovic G, PBani¢ M, Mikov M, Mooranian A, Al-Salami H. Novel hydrogel comprising non-
ionic copolymer with various concentrations of pharmacologically active bile acids for cellular

injectable gel. Colloids and Surfaces B: Biointerfaces. 2023;222:113014.

Sub-objective (4): to design and create hydrogels utilising sodium alginate, poloxamer 407,
and various concentrations of deoxycholic acid, and to examine the shear stress, viscosity,
surface tension, torque, microstructure, and zeta potential of hydrogels. Additionally, the
hydrogels were incubated with 3 different cell lines (AML 12, C2C12 and NIT-1). Their impact
on viability in normal and hypoxic conditions and their impact on bioenergetic parameters was

investigated.
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Chapter 3: Poloxamer 407 And Bile Acid-Based Hydrogels: Rheological Properties And

Biocompatibility

The contents of this chapter are covered by publication 6 (pages 100-121) and

publication 7 (pages 123-136):

Publication 6 (pages 100-121):

Kovacevic B, Jones M, Wagle SR, lonescu CM, Foster T, Bani¢ M, Mikov M, Mooranian A,
Al-Salami H. Influence of poly-L-ornithine-bile acid nano hydrogels on cellular bioactivity and

potential pharmacological applications. Therapeutic Delivery. 2023;14(8):499-510.

Sub-objective (5): to design and create hydrogels utilising poloxamer 407, poly-L-ornithine,
ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, taurocholic acid, and
lithocholic acid and to examine the shear stress, viscosity, surface tension, torque,
microstructure, and zeta potential of hydrogels. Additionally, the hydrogels were incubated
with 3 different cell lines (AML 12, C2C12 and NIT-1). Their impact on viability in normal and

hypoxic conditions and their impact on bioenergetic parameters were investigated.

Publication 7 (pages 123-136):

Kovacevic B, Jones M, Wagle S, lonescu C, Foster T, Dani¢ M, Mikov M, Mooranian A, Al-
Salami H. The effect of deoxycholic acid-based hydrogels on hepatic, muscle and pancreatic

beta cells. Therapeutic Delivery. 2024;15(1):41-54.

Sub-objective (6): to design and create hydrogels utilising poloxamer 407, deoxycholic acid
and polysaccharides (starch, pectin, acacia, carboxymethylcellulose and methyl 2-

hydroxyethyl cellulose) and to examine the shear stress, viscosity, surface tension, torque,

16



microstructure, and zeta potential of hydrogels. Additionally, the hydrogels were incubated
with 3 different cell lines (AML 12, C2C12 and NIT-1). Their impact on viability in normal and

hypoxic conditions and their impact on bioenergetic parameters was investigated.
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Chapter 4: Poloxamer 407 And Bile Acid-Based Nanogels For Inner Ear Delivery:

Rheological Properties And Biocompatibility

The contents of this chapter are covered by publication 8 (pages 142-151), publication

9 (pages 153-169) and publication 10 (pages 171-181):

Publication 8 (pages 142-151):

Kovacevic B, Wagle SR, lonescu CM, Foster T, Dani¢ M, Mikov M, Mooranian A, Al-Salami
H. The biocompatibility and the metabolic impact of thermoresponsive, bile acid-based
nanogels on auditory and macrophage cell lines. European Journal of Pharmaceutics and

Biopharmaceutics. 2023;190:248-57.

Sub-objective (7): to design and create nanogels utilising poloxamer 407, polyvinyl alcohol,
deoxycholic acid, lithocholic acid and ursodeoxycholic acid and to examine the shear stress,
viscosity, surface tension, torque, microstructure, and zeta potential of nanogels. Additionally,
the nanogels were incubated with 2 different cell lines (HEI-OC1 and RAW?264.7) and their
impact on viability, total intracellular reactive oxygen species, as well as their impact on

bioenergetic parameters, was investigated.

Publication 9 (pages 153-169):

Pharmacological and bioenergetic effects of smart thermoresponsive polymer-bile acid

enhanced nanogel on hearing cells

Kovacevic B, Wagle S, lonescu C, Foster T, DBani¢ M, Mikov M, Mooranian A, Al-Salami H.

Reactive and Functional Polymers
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Sub-objective (8): to design and create nanogels utilising poloxamer 407, Tyloxapol, and
deoxycholic acid and to examine the shear stress, viscosity, surface tension, torque, and zeta
potential of nanogels. Additionally, the nanogels were incubated with 2 different cell lines (HEI-
OC1 and RAW264.7), and their impact on viability and bioenergetic parameters was

investigated.

Publication 10 (pages 171-181):

Advanced smart-polymers-bile acid chemical nano-biotechnological effects on cyclodextrin-
based nanogels for ear delivery and treatment of hearing loss
Kovacevic B, Wagle S, lonescu C, Foster T, BPani¢ M, Mikov M, Mooranian A, Al-Salami H.

Journal:

Sub-objective (9): to design and create nanogels utilising poloxamer 407, polyvinyl alcohol
and deoxycholic acid and to examine the shear stress, viscosity, surface tension, torque,
microstructure, and zeta potential of nanogels. Additionally, the nanogels were incubated with
2 different cell lines (HEI-OC1 and RAW264.7) and their impact on viability, total intracellular
reactive oxygen species, inflammatory profile, macrophage polarisation as well as nanogel

impact on bioenergetic parameters was investigated.

Chapter 5: General Discussion and Conclusion, Limitations and Future Perspective
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Chapter 1

Introduction And Literary Review

The Contents Of This Chapter Are Covered By Publication 1 (Pages 22-35):

Kovacevic B, Jones M, lonescu C, Walker D, Wagle S, Chester J, Foster T, Brown D, Mikov
M, Mooranian A, Al-Salami H. The emerging role of bile acids as critical components in
nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-

biomaterial applications. Biomaterials. 2022;283:121459.

Chapter 1 discusses the role of bile acids as critical components in nanotechnology and
bioengineering, explores existing and future applications of bile acids and provides a synopsis

of their role in advanced, novel therapeutic delivery systems.

This chapter achieved the following objective:

1. through searching the literature, potential bile acids will be screened for anti-inflammatory

activities. Selected bile acids will then be examined for formulation suitability in terms of

polymer compatibility and their microencapsulation properties. Several bile acids will be

selected for further studies.
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B. Kovacevic et al.

Table 2
Studies using BA in cell delivery systems.
Bile acid Pdymer Tissue Form Reference
UDCA Alginate Islets/p-cells Microcapsules [1,42,93,94,124,254]
CA Alginate B-cells Microcapsules [255]
TCA Alginate B-cells Microcapsules [256]

5. Conclusion

This review outlines the emerging role of BAs in the homeostasis of
endocrine, gastrointestinal, immune, and cardio-metabolic biological
systems, and how their unique pharmacological and physico-chemical
properties conwibute to potential roles in the new areas of bio-
materials research, with a key focus on the creation of artificial organs.
The ability of endogenous BAs to modify key cellular signalling path-
ways atwibuted to graft rejection, fibrosis, and tissue necrosis, could
dramatically alter the science of transplantation and xenograft research,
and perhaps re-examine the widespread use of immunosuppressants in
clinical practice. Future research is needed to best guide the clinical
manifestations of BA-mediated artificial organs, and to determine the
benefits of BAs as pharmacological agents in the management of im-
mune related disorders.
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The contents of this chapter are covered by publication 2 (pages 38-52), publication 3

(pages 54-61), publication 4 (pages 63-85), and publication 5 (pages 87-97).

Publication 2 (pages 38-52):

Kovacevic B, lonescu CM, Jones M, Wagle SR, Lewkowicz M, Dani¢ M, Mikov M, Mooranian
A, Al-Salami H. The Effect of Deoxycholic Acid on Chitosan-Enabled Matrices for Tissue

Scaffolding and Injectable Nanogels. Gels. 2022;8(6):358.

Sub-objective (1): to design and create hydrogels utilising sodium alginate, various
concentrations of chitosan and deoxycholic acid and to examine the shear stress, viscosity,
surface tension, torque, microstructure, and zeta potential of hydrogels. Additionally, the
hydrogels were incubated with 3 different cell lines (AML 12, C2C12 and NIT-1). Their impact
on viability in normal and hypoxic conditions and their impact on bioenergetic parameters was

investigated.
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Publication 3 (pages 54-61):

Kovacevic B, lonescu CM, Wagle SR, Jones M, Lewkowicz M, Wong EYM, Dani¢ M, Mikov
M, Mooranian A, Al-Salami H. Impact of Novel Teflon-DCA Nanogel Matrix on Cellular

Bioactivity. Journal of Pharmaceutical Sciences. 2023;112(3):700-7.

Sub-objective (2): to design and create hydrogels utilising sodium alginate,
polytetrafluoroethylene, and various concentrations of deoxycholic acid and to examine the
shear stress, viscosity, surface tension, torque, microstructure, and zeta potential of
hydrogels. Additionally, the hydrogels were incubated with 3 different cell lines (AML 12,
C2C12 and NIT-1). Their impact on viability in normal and hypoxic conditions and their impact

on bioenergetic parameters was investigated.
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Publication 4 (pages 63-85):

Kovacevic B, lonescu CM, Jones M, Wagle SR, Foster T, Lewkowicz M, Wong EYM, DPani¢
M, Mikov M, Mooranian A, Al-Salami H. Novel polysaccharides—bile acid—cyclodextrin gel
systems and effects on cellular viability and bioenergetic parameters. Therapeutic Delivery.

2024;15(2):119-34.

Sub-objective (3): to design and create hydrogels utilising sodium alginate, pectin, and
various concentrations of deoxycholic acid and beta-cyclodextrin, and to examine the shear
stress, viscosity, surface tension, torgue, microstructure, and zeta potential of hydrogels.
Additionally, the hydrogels were incubated with 3 different cell lines (AML 12, C2C12 and NIT-
1). Their impact on viability in normal and hypoxic conditions and their impact on bioenergetic

parameters was investigated.
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Publication 5 (pages 87-97):

Kovacevic B, Wagle SR, lonescu CM, Jones M, Lewkowicz M, Wong EYM, Kajic S,
Stojanovic G, Pani¢ M, Mikov M, Mooranian A, Al-Salami H. Novel hydrogel comprising non-
ionic copolymer with various concentrations of pharmacologically active bile acids for cellular

injectable gel. Colloids and Surfaces B: Biointerfaces. 2023;222:113014.

Sub-objective (4): to design and create hydrogels utilising sodium alginate, poloxamer 407,
and various concentrations of deoxycholic acid, and to examine the shear stress, viscosity,
surface tension, torque, microstructure, and zeta potential of hydrogels. Additionally, the
hydrogels were incubated with 3 different cell lines (AML 12, C2C12 and NIT-1). Their impact
on viability in normal and hypoxic conditions and their impact on bioenergetic parameters was

investigated.
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Further research is required to expand the clinical significance of the
proposed hydrogels.

To better understand the impact of DCA in hydrogels on various cell
lines, we made different mathematical models, as some cells ate more
responsive to bile acids (Fig. 8, 1-6). There are no ideal and fully-
described and in-depth established mathematical models that can fully
explain the effects of bile acid on the viability of the cells at the various
amounts of oxygen for AML 12 and C2C12 cells. Cells that showed better
viability under hypoxic conditions (AML 12 and C2C12) were not crit-
ically responsive to DCA, indicating that cells that prefer hypoxia are not
affected by an increase in DCA concentration. In contrast, DCA con-
centration has a growing impact with an increase in hypoxia in NIT-1
cells (Figures 8.5 and 8.6). Biodegradation of hydrogels and controlled
release of DCA in cell media should have minimal impact, as poloxamer
407 is not biodegradable, and alginate was not crosslinked. Cross-
linked alginate biodegrades in the body primarily by an ion exchange
process, which results in the loss of divalent ions responsible for cross-
linking alginate chains [73,74].

4. Conclusion

This study investigated novel DCA-based copolymer hydrogels
regarding rheological properties and biclogical effects on murine he-
patie, muscle and pancreatic beta cells. All hydrogels retained shear-
thinning behaviour, while DCA concentration modified zeta potential.
Lower concentrations of DCA in hydrogels are possibly linked with
higher viability in all cells. In comparison, higher concentrations are
mostly linked with high non-mitochondrial oxygen consumption, and
cells seem to shift to anaerobic metabolism. This effect proved beneficial
under hypoxic stess for hepatic and muscle cells, allowing for possible
retainment of viability in a hypoxic environment, Pancreatic beta cells,
in turn, were more sensitive to DCA impact under hypoxic conditions
than in a normal environment. The unique ability of DCA to enable cells
to withstand hypoxia conditions by readapting, reconditioning and
restructuring their biocellular processes and effects, may help with
preconditioning cells expected to undergo hypoxic stress, present in
various drug delivery systems. Presented data suggest that a low dose of
DCA in permeable, biocompatible hydrogels can be beneficial for cells to
combat hypoxic conditions.
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Chapter 3

Poloxamer 407 And Bile Acid-Based Hydrogels: Rheological Properties And

Biocompatibility

The contents of this chapter are covered by publication 6 (pages 100-121) and

publication 7 (pages 123-136).

Publication 6 (pages 100-121):

Kovacevic B, Jones M, Wagle SR, lonescu CM, Foster T, Bani¢ M, Mikov M, Mooranian A,
Al-Salami H. Influence of poly-L-ornithine-bile acid nano hydrogels on cellular bioactivity and

potential pharmacological applications. Therapeutic Delivery. 2023;14(8):499-510.

Sub-objective (5): to design and create hydrogels utilising poloxamer 407, poly-L-ornithine,
ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, taurocholic acid, and
lithocholic acid and to examine the shear stress, viscosity, surface tension, torque,
microstructure, and zeta potential of hydrogels. Additionally, the hydrogels were incubated
with 3 different cell lines (AML 12, C2C12 and NIT-1). Their impact on viability in normal and

hypoxic conditions and their impact on bioenergetic parameters was investigated.
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Publication 7 (pages 123-136):

Kovacevic B, Jones M, Wagle S, lonescu C, Foster T, Dani¢ M, Mikov M, Mooranian A, Al-
Salami H. The effect of deoxycholic acid-based hydrogels on hepatic, muscle and pancreatic

beta cells. Therapeutic Delivery. 2024;15(1):41-54.

Sub-objective (6): to design and create hydrogels utilising poloxamer 407, deoxycholic acid
and polysaccharides (starch, pectin, acacia, carboxymethylcellulose and methyl 2-
hydroxyethyl cellulose) and to examine the shear stress, viscosity, surface tension, torque,
microstructure, and zeta potential of hydrogels. Additionally, the hydrogels were incubated
with 3 different cell lines (AML 12, C2C12 and NIT-1). Their impact on viability in normal and

hypoxic conditions and their impact on bioenergetic parameters was investigated.
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Chapter 4

Poloxamer 407 And Bile Acid-Based Nanogels For Inner Ear Delivery: Rheological

Properties And Biocompatibility

The contents of this chapter are covered by publication 8 (pages 142-151), publication

9 (pages 153-169) and publication 10 (pages 171-181).

Publication 8 (pages 142-151):

Kovacevic B, Wagle SR, lonescu CM, Foster T, Dani¢ M, Mikov M, Mooranian A, Al-Salami
H. The biocompatibility and the metabolic impact of thermoresponsive, bile acid-based
nanogels on auditory and macrophage cell lines. European Journal of Pharmaceutics and

Biopharmaceutics. 2023;190:248-57.

Sub-objective (7): to design and create nanogels utilising poloxamer 407, polyvinyl alcohol,
deoxycholic acid, lithocholic acid and ursodeoxycholic acid and to examine the shear stress,
viscosity, surface tension, torque, microstructure, and zeta potential of nanogels. Additionally,
the nanogels were incubated with 2 different cell lines (HEI-OC1 and RAW264.7) and their
impact on viability, total intracellular reactive oxygen species, as well as their impact on

bioenergetic parameters, was investigated.
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Publication 9 (pages 153-169):

Pharmacological and bioenergetic effects of smart thermoresponsive polymer-bile acid
enhanced nanogel on hearing cells
Kovacevic B, Wagle S, lonescu C, Foster T, Dani¢ M, Mikov M, Mooranian A, Al-Salami H.

Reactive and Functional Polymers

Sub-objective (8): to design and create nanogels utilising poloxamer 407, Tyloxapol, and
deoxycholic acid and to examine the shear stress, viscosity, surface tension, torque, and zeta
potential of nanogels. Additionally, the nanogels were incubated with 2 different cell lines (HEI-
OC1 and RAWZ264.7), and their impact on viability and bioenergetic parameters was

investigated.
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Highlights

Nanogel characteristics: small particle size, average neutral charge, and shear-
thinning properties.

Cell-specific responses: The study shows varied cellular viability responses, with
auditory cell lines unaffected and macrophages experiencing slightly reduced
viability, mitigated by Tyloxapol.

Metabolic changes in macrophages: Indicates decreased coupling efficiency and
increased proton leak, suggesting impaired oxidative phosphorylation upon nanogel
exposure.

Importance of tailored formulations: The study underscores the need to customise
nanogel formulations for specific cell types and consider matrix components to
optimise drug delivery systems for biomedical applications.
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Abstract

This study presents novel thermoresponsive nanogels composed of chenodeoxycholic acid and
Tyloxapol for potential inner ear drug delivery. The nanogels exhibit non-Newtonian, shear-thinning
fluid behaviour and rapid gelation at body temperature. Biocompatibility studies were conducted on
auditory and macrophage cell lines. Nanogels had a minimal impact on cellular viability, glycolysis,
and mitochondrial respiration of auditory cells after 24 hours of exposure. However, exposure to
macrophage cells leads to decreased viability and mitochondrial dysfunction. These findings suggest
that thermoresponsive bile acid and Tyloxapol nanogels have the potential to be safe and effective
drug delivery vehicles for inner ear applications.
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Introduction

Recent research is focused on polymeric surfactants, with poloxamer block copolymers being
extensively studied. Dimeric/oligomeric surfactants, some characterised by a smaller number of
monomers, are emerging as promising biomaterial compounds (1, 2). Despite the focus on polymeric
surfactants, oligomeric surfactants may be suitable biomaterials as they seem to exhibit low critical
micelle concentration (CMC) and high viscosity at low concentrations in water solutions due to
potentially large aggregates and superior surface activity (3).

The utilisation of surfactant micelles as carriers for drug delivery offers several advantages. Many of
these amphiphilic aggregates have played a significant role in enhancing the solubility of hydrophobic
drugs. The remarkable improvement in drug solubility is attributed to the hydrophobic interior of the
micelle, fostering hydrophobic—hydrophobic interactions. However, conventional surfactant-based
micellar systems seem to exhibit a high critical micelle concentration and tend to disassemble upon
dilution, leading to poor in vivo performance (4).

One avenue for enhancing micelle-based delivery systems' efficiency is combining different
surfactants to create mixed micelles. These mixed micelles emerge as a promising choice for drug
delivery due to their thermodynamic stability and superior solubilisation capacity compared to
micelles derived from individual components (5, 6).

This study examines a nanogel-based delivery system made of three surfactants: polymeric
surfactant poloxamer 407, oligomeric surfactant Tyloxapol, and a bile acid, chenodeoxycholic acid
(CDCA).

Poloxamers are synthetic polymers consisting of tri-block copolymers composed of two hydrophilic
chains (poly(ethylene oxide)) around hydrophobic chains (poly(propylene oxide)) (7). The bioactivity,
microstructure, and gel-sol temperature transition of poloxamers can be adjusted to replicate the
behaviour of diverse tissue types. Additionally, their amphiphilic nature and capacity for self-
assembly into micelles make them potential candidates for drug delivery systems (8).

Tyloxapol, a 4-isooctylpolyoxyethylene phenol-formaldehyde polymer, comprises an average of seven
conjoined molecules of Triton X-100. Its remarkable physical and biological properties render
Tyloxapol suitable for biomedical applications (9-11). It is a suitable excipient for nanotechnology-
based ocular delivery systems (12, 13) and hepatic delivery systems (14).

CDCA and other bile acids show significant pharmacological and biological effects and a potential for
biomaterial design (15). CDCA has shown an excipient stabilising effect on tissue-loaded
microcapsules, resulting in improved graft function and survival post-transplantation (16).

Rheological properties of nanogels were assessed, including fluid behaviour, gelation time, surface
tension and zeta potential. Furthermore, the biological impact on nanogels has been evaluated on
two cell lines, auditory HEI-OC1 and macrophage RAW?267 .4, via cellular viability and bioenergetics.

159



Materials and Methods

Materials for the synthesis of nanogels (Tyloxapol, Poloxamer 407 and polyvinyl alcohol (PVA)) were
procured from Sigma Chemical Co (St. Louis, MO, USA). CDCA was obtained from Qingdao Yuanrun
Chemical Co., Ltd (Qingdao, Shandong, China). Unless otherwise specified, materials used in tissue
culture were also obtained from Sigma Chemical Co (St. Louis, MO, USA). The HEI-OC1 auditory cell
line {(House Ear Institute-Organ of Corti 1) was obtained from Prof. Federico Kalinec (University of
California, CA, USA), while the RAW 264.7 macrophage cell line (ATCC®, TIB-71™) was sourced from
the American Type Culture Collection (ATCC, Manassas, VA, USA). Cell lines were cultured in high-
glucose DMEM supplemented with 10% FBS without antibiotics, with media replacement every 48
hours. HEI-OC1 cells were cultured at 33°C with 10% CO2, whereas RAW 264.7 cells were cultured at
37°C with 10% CO2.

All five groups of nanogels had the same Poloxamer 407 concentration (18%) (D1-D5). PVA (0.5%)
was added to D2, D3, D4 and D5 nanogels. Tyloxapol {0.5%) was added to D4 and D5. CDCA {0.04%)
was added to D3 and D5 nanogels. The deionised water was used as a solvent. The first step in
nanogel manufacture was a PVA dissolution at 60°C under constant stirring. The solution was then
slowly cooled to room temperature. Tyloxapol, CDCA and Poloxamer 407 were added to the PVA
solution, with Poloxamer at the end. Nanogels were left overnight at four °C under constant stirring.
Nanogels were sterilised with UV light in aseptic conditions for 30 minutes prior to use in tissue
culture.

Zeta potential measurements were performed using the same instrument, employing a
customised SOP for zeta potential assessment and executing 25 runs for each
measurement. Surface tension analysis was conducted using a tensiometer (Sigma 703,
ATA Scientific, Caringbah, Australia). The average particle size of nanogels was determined
utilising a 3000HS Zetasizer (Malvern Instruments, Malvern, UK) per the standard operating
procedure (SOP) of the accompanying software (25 runs per measurement). The shear rate,
shear stress and viscosity values of freshly prepared nanogels were measured using a
Visco-88 viscometer (Malvern Instruments, Malvern, UK). All measurements were carried out
at room temperature (17-23). All obtained data were in triplicates (n = 3).

The gelation time assessment was conducted using the vial tilting methodology, wherein a
vial containing 500 ul of nanogels at ambient temperature was submerged in a 37°C water
bath. Gelation time was recorded at the loss of fluidity during vial tilting. (24).

The rheological evaluation of the fluid was conducted by determining the Consistency
coefficient (K) and the flow behaviour index (n) through the application of curve fitting of
rheological data using the Power Law model (Eq. 1). The curve fitting procedure employed
the solver function (Microsoft Excel), utilising a nonlinear optimisation algorithm (25).

The power Law equation:

g=Ky"

Q)]
Where o is the shear stress (Pa), K is the consistency coefficient, y is the shear rate (s7),
and n is the flow behaviour index.

The cell viability assay employed a standardised protocol utilising Water Soluble Tetrazolium Salts-1
(WST-1) assay (Cell Proliferation Reagent WST-1, Sigma Chemical Co, St. Louis, MO, USA). The
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identical procedure was applied to both cellular strains. Cells were seeded at a concentration of 1-1.5
x 1015 cells/ml, with 180 pl per well, and allowed to incubate overnight to facilitate cell adhesion.
Subsequently, nanogels were introduced (20 pl per well) and co-incubated with the cells for 24
hours. Following incubation, the cell media containing nanogels was aspirated, and cells were rinsed
thrice with phosphate-buffered saline (PBS) prior to the WST-1 assay. The resulting absorbance was
quantified using a PerkinElmer Multimode Plate Reader (Waltham, MA, USA) at a wavelength of 450
nm. The data were normalised against the background signal and expressed as a percentage relative
to untreated cells (C). All experimental data were performed in triplicates.

Bioenergetics analysis was executed after coincubation with 20 pl of nanogels for 24 hours preceding
assays, adhering to the identical protocol employed for viability assessments. After 24h, cells were
washed three times with PBS. The Seahorse XF Cell Mito Stress Test and the Seahorse XF Glycolysis
Stress Test were conducted utilising the Seahorse Flux Analyser XF 96 (Agilent Technologies, Santa
Clara, CA, USA). Protocol optimisation was implemented for each specific cell line studied, following
internally developed methodologies and manufacturer guidelines (17, 26-28). Untreated cells
served as the control group (C). Data collection was conducted in triplicate (n = 3).

Statistical analysis was conducted using GraphPad Prism 9.5 (Graphpad, Inc. San Diego, CA, USA).
One-way ANOVA, regression analysis, and Tukey HSD tests were employed as appropriate. Data are
presented as mean + SEM, with statistical significance presented as * {p < 0.01) and ** (p < 0.05).
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Bile acids in biomaterials can have a detrimental impact on cellular viability, depending on
the concentration, formulation, and tissue type (27, 36). To ensure high viability of the
auditory cell line after nanogel exposure, formulations in this study based on bile acid
concentration on a study by Kovacevic et al. (35), which showed higher viability at low bile
acid concentrations. The auditory cell line showed no decrease in viability in the presence of
nanogels (Figure 2a). However, the macrophage cell line did experience a reduction in
viability after exposure to CDCA-enriched nanogel (Figure 2b). Interestingly, adding
Tyloxapol ameliorated the negative impact of PVA and CDCA. Tyloxapol have been found to
mitigate the pathological consequences of endotoxins in vivo and desensitise endotoxin-
sensitive receptors on macrophages (37), with that effect being dependent on the Tyloxapol
dose and the time of exposure (38).

Basal respiration shows the cellular energetic requirements before the start of the assay.
ATP-linked respiration is calculated through the decline in OCR after introducing oligomycin,
which acts as the ATP synthase inhibitor. The residual OCR, which is not linked to ATP
synthesis, signifies proton leakage, indicating potential mitochondrial impairment. Non-
mitochondrial respiration is OCR attributable to cellular enzymes, excluding mitochondria,
measured after administering rotenone and antimycin A (39).

The conversion of reducing equivalents, derived from acetyl-CoA oxidation, to ATP through
oxidative phosphorylation defines coupling efficiency. Mitochondrial coupling is imperfect,
leading to the dissipation of redox energy as heat during normal oxidative phosphorylation.
This incomplete coupling primarily results from the natural proton leak across the
mitochondrial inner membrane (40). Here, coupling efficiency is calculated as ATP
production linked to OCR shown as a percentage of basal respiration (41). A reduction in
coupling efficiency may lead to lower energetic yield and low ATP production (42). A
decrease in coupling efficiency is significant in macrophage lines exposed to all nanogels
(Figure 4g), suggesting impaired oxidative phosphorylation. Furthermore, a decrease in
coupling efficiency is linked with increased proton leak in the same cells (Figure 4f), further
confirming metabolic dysfunction. An increase in OCR linked to proton leak may occur due to
damage to the inner mitochondrial membrane, damage to the electron transport chain,
increased activity of the uncoupling protein and electron slippage (43). The metabolic
response of RAW 264.7 is similar across all groups of exposed nanogels, suggesting that
the Poloxamer matrix may be responsible, irrelevant to added tyloxapol and CDCA (Figure
4). This is concurrent with previous studies showing that pro-inflammatory stimuli may
induce a metabolic shift in macrophages from oxidative phosphorylation to glycolysis (44).
Interestingly, impaired mitochondrial respiration in RAW 264.7 did not lead to changes in
glycolysis (Figure 4).
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Conclusion

In summary, this study highlights key innovations in nanogel technology, emphasising the significance
of particle size, neutral charge, and shear-thinning properties. The investigation of nanogel impact on
cellular viability reveals cell type-specific responses. While auditory cell lines remain unaffected, the
macrophage cell line experiences viability reduction, mitigated by Tyloxapol. Metabolic analyses
demonstrate decreased coupling efficiency and increased proton leak in macrophages exposed to
nanogels, indicative of impaired oxidative phosphorylation. Notably, the Poloxamer matrix appears
to influence the metabolic response across all groups, suggesting a potential role in inducing a pro-
inflammatory shift in macrophage metabolism. The findings underscore the importance of tailoring
nanogel formulations to specific cell types and considering the influence of matrix components on
cellular responses to optimise drug delivery systems and enhance their biomedical applications.
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Publication 10 (pages 171-181):

Advanced smart-polymers-bile acid chemical nano-biotechnological effects on cyclodextrin-
based nanogels for ear delivery and treatment of hearing loss
Kovacevic B, Wagle S, lonescu C, Foster T, Dani¢ M, Mikov M, Mooranian A, Al-Salami H.

Journal: Nano Today

Sub-objective (9): to design and create nanogels utilising poloxamer 407, polyvinyl alcohol
and deoxycholic acid, and to examine the shear stress, viscosity, surface tension, torque,
microstructure, and zeta potential of nanogels. Additionally, the nanogels were incubated with
2 different cell lines (HEI-OC1 and RAW264.7) and their impact on viability, total intracellular
reactive oxygen species, inflammatory profile, macrophage polarisation as well as nanogel

impact on bioenergetic parameters was investigated.
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Chapter 5

General Discussion and Conclusion
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General Discussion and Conclusion

This thesis examined the role of bile acids as components of biocompatible hydrogels and
nanogels as potential drug delivery vehicles. Bile acids greatly impacted cellular viability and
mitochondrial respiration based on the type and concentration of present bile acid. The
addition of bile acids did not change the overall fluid behaviour of the polymer matrix (non-
Newtonian, shear-thinning fluid behaviour for polymer matrices based on sodium alginate or
Poloxamer 407). Bile acids influenced the surface tension of hydrogels and nanogels,
depending on whether the concentration of bile acids was above or below the polymer
saturation point of the given formulation. Bile acids mostly contributed to the more balanced
zeta potential of hydrogel formulations. The addition of bile acids to the polymer matrix

minimally impacted the hydrogel’'s microstructure.

Tissues responded differently to bile acids. Generally, in the presence of high concentrations
of bile acids, bile acids disrupt mitochondrial respiration, specifically ATP production, shifting
overall cellular metabolism to anaerobic metabolism. This usually leads to a decline in cell
viability. Further evidence of impaired mitochondrial respiration is seen in the lack of response

to hypoxia in cells exposed to high concentrations of bile acids.

Nanogels based on Poloxamer 407 with adjusted concentrations of bile acids showed
substantial biocompatibility. The presence of nanogels had an insignificant impact on
mitochondrial function, glycolysis, cellular viability, and intracellular reactive oxygen species
in the auditory cell line. Effects on macrophage cell line were more pronounced. Nanogels with
deoxycholic acid and ursodeoxycholic acid demonstrated the best biocompatibility.

Thermoresponsive nanogels created with Poloxamer 407, deoxycholic acid and beta-
cyclodextrin had porous inner structures and exhibited non-Newtonian, shear-thinning fluid
behaviour. The gelation at 37°C was fast, and there was minimal albumin adsorption on the

nanogels surface. These nanogels slightly impacted the House Ear Institute-Organ of Corti 1
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cell line. The cellular viability, mitochondrial respiration, glycolysis, intracellular oxidative
stress, and inflammatory profile were not profoundly impacted by the presence of nanogels.
Furthermore, nanogel exposure to macrophage cell line RAW264.7 leads to minimal
polarisation changes from M2 anti-inflammatory to M1 pro-inflammatory macrophages.
Inflammatory products of macrophages did not overly disrupt the survivability of auditory cells.
This study suggests that thermoresponsive nanogels with bile acid can be potential inner ear

drug delivery candidates.

Limitations

Firstly, natural polymers used in this study (sodium alginate, starch, acacia, pectin,
carboxymethyl and methyl 2-hydroxyethyl cellulose) were purchased from appropriate
commercial vendors and used without further modifying or purifying. This may affect the
results obtained from subsequent, repeated experiments, as the physicochemical properties
of natural polymers may vary depending on a vendor and batch. For example, the properties
of sodium alginate vary depending on the ratio of L-guluronate and D-mannuronate, sodium
alginates' main components, and that ratio differs depending on batch and manufacturer. In
addition, only endogenous bile acids were used (DCA, UDCA, CDCA, TCA, LCA), with an
accent on deoxycholic acid, which may omit beneficial properties of other bile acids, given the

heterogenicity of the bile acid pool and their various physicochemical and biological effects.

Incubation with hydrogels and nanogels was limited to 24 h, and more long-term effects of
hydrogels and nanogels should be explored to confirm long-term biocompatibility.
Furthermore, suitable cellular and animal models need to be explored to confirm relevant drug

penetration properties in the inner ear.
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Future Perspective

Limitations of this thesis should be addressed in future studies arising from this work. Thus,
future studies should implement longer-duration biocompatibility studies on cell models and
investigate the more precise mechanisms behind the permeation enhancer effect of bile acids.
Furthermore, a wider range of bile acids should be included, and the relationship between
drug permeation, biocompatibility and molecular structure of bile acids should be investigated.
The biocompatibility of nanogels should be investigated during longer time intervals, including
daily, weekly, and monthly time periods, utilising cellular and animal models.
Thermoresponsive nanogels should be further optimised for optimal physicochemical and
microbiologic stability. Nanogels should be optimised based on the application, especially in
terms of viscosity and gelation speed.

As there is an increase in pro-inflammatory molecules from macrophages in the presence of
nanogels, the immune response to nanogels should be more thoroughly investigated using
different in vitro and in vivo models.

A drug of interest should be selected, including hydrophobic drugs with low bioavailability and
tissue permeation, and drug permeation should be observed with and without nanogels to
facilitate local drug permeation in cellular and animal models for inner ear delivery. Further
studies should consider in vivo studies of mice and larger mammals such as cats and primates

with the ultimate intention of progressing into human clinical trials.
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