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ABSTRACT 

The global trend in policymaking indicates a move towards cleaner energy in the 

coming years, with natural gas poised to serve as a crucial transition fuel. 

Understanding the economic dynamics behind regional gas markets is essential. This 

thesis addresses this need by examining the interactions among key gas prices in Asia 

Pacific, Europe, and North America and their relationship to the crude oil price. 

This thesis employs robust econometric methods to test several hypotheses. It begins 

by assessing the degree of integration between gas markets through convergence and 

cointegration testing, aiming to determine if the extent of inter-regional trade 

eliminates arbitrage opportunities, leading to price co-movement as per the Law of 

One Price theory. The study also identifies convergence clusters among regional 

markets and evaluates the significance of the international oil price. It investigates the 

propagation of shocks in international gas markets using analyses such as causality 

assessments, impulse-response analysis and forecast variance error decomposition. 

Robustness tests are implemented to ensure reliability, examining asymmetric shock 

responses, and identifying structural breaks. Furthermore, the thesis estimates the 

price and income elasticities of gas demand for two major gas importers, Japan and 

Korea, that have received limited attention in the literature.  

The above investigation leads to a rich collection of results relevant to policymakers 

relying on gas markets to achieve environmental goals and energy security at stable 

prices. This study validates earlier research by confirming that natural gas prices in 

major global trading hubs converged before the 2008-2009 financial crisis, driven by 

the dominant price-indexation of gas prices to oil. However, after the shift to gas-on-

gas pricing started in 2009, this convergence ceased, forming separate clusters in gas 

prices. European hub prices now form a single cluster, while Asian LNG spot import 

prices have become increasingly integrated with European prices. Japanese gas import 

prices remain closely tied to crude oil prices, mostly under long-term contracts. The 

North American market has largely decoupled from these trends, attributed to the shale 

revolution's supply growth. These findings challenge the idea that current 

infrastructure and trade volumes, particularly in LNG, can effectively arbitrage 
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transoceanic gas prices. Nonetheless, there is evidence of increased integration among 

spot prices in Europe and Asia, accompanied by reduced influence from oil prices in 

recent years.  

In analysing shock propagation, interesting dynamic patterns emerged. Particularly, it 

was found that within LNG and gas spot prices in Europe and Asia, the Russian gas 

export price acts as a leading force, with implications for European policies amid the 

Russia-Ukraine conflict. Additionally, while European and Asian prices still respond 

to oil price shocks, the North American price is primarily influenced by its gas market 

fundamentals. The study discusses further policy implications by aligning the findings 

with commonly predicted policy scenarios, including the anticipated expansion of 

LNG trade in the Asia Pacific region, ongoing gas price liberalisation, and the 

increasing roles of the United States and Qatar as LNG exporters. 

Overall, this thesis offers important contributions to understanding economic forces 

operating in major gas trading hubs with a focus on price dynamics. A chapter of this 

thesis has already been published in The Journal of Commodity Markets, and further 

dissemination of results is expected soon.   
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CHAPTER 1  
INTRODUCTION 

1.1  Chapter Outline 

This chapter is organised into five sections, each serving a specific purpose in 

introducing the thesis framework. Section 1.2 presents the background and motivation 

that underlie the broader context of the thesis. Section 1.3 presents the main research 

questions and objectives, which define the specific boundaries of the study's 

investigation. Section 1.4 explores the contributions to the existing literature, 

explaining its unique value in academic discourse, while Section 1.5 explains the 

organisation and structure of the thesis. 

1.2 Context and Motivation for Research 

Natural gas is an important alternative for the growing global energy demand. Its 

appeal lies in two main factors. First, it offers a cleaner environmental profile than 

conventional energy sources like oil and coal, which are major contributors to 

greenhouse gas emissions. In the transition to renewable energy and carbon emission 

reduction, natural gas plays a crucial role by providing energy resilience and 

affordability while facilitating the decommissioning of highly polluting assets like 

coal and oil power plants. Investments in lower-emission fuel production, addressing 

methane emissions, and electrifying oil and gas operations are essential for an orderly 

transition. Given recent challenges like the war in Ukraine and the COVID-19 

pandemic, the urgency for energy resilience has heightened, underscoring the 

importance of natural gas as a transitional fuel.  

McKinsey & Company (2022) highlights uncertainties despite progress at COP27 

towards global cooperation on emissions reduction targets. To bridge the gap between 

current trajectories and desired commitments, substantial scaling up of renewable 

energy capacity is imperative, with McKinsey’s analysis indicating a need for nearly 

tripling annual solar and wind installations over the next decade. In this scenario, 

natural gas emerges as a crucial element in the energy transition, facilitating the move 
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towards renewable energy sources while guaranteeing a dependable and cost-effective 

energy supply. 

Although natural gas presents itself as a competitive option and complements 

emerging renewable energies, a notable challenge arises from the regionalisation of 

its markets. This regionalisation is primarily a result of substantial investments in 

natural gas infrastructure and transportation systems. The intricate network of 

pipelines, terminals, and transportation routes poses barriers to entry for a globally 

integrated natural gas market. The strategic positioning of liquefied natural gas (LNG) 

facilities, crucial for facilitating natural gas transportation over long distances via 

ships, introduces an additional layer of complexity to the investment landscape, 

reinforcing the regional nature of natural gas markets. 

At present, the natural gas trade is primarily divided into three main trading regions: 

North America, Europe, and Asia. Each region functions within its unique market 

dynamics, influenced by geographical, infrastructural, and geopolitical factors, 

domestic natural gas demand and production capacities. The availability and scale of 

domestic natural gas production significantly shape the market dynamics in these 

regions. Geographical factors play a role in determining the accessibility and cost-

effectiveness of natural gas supply. At the same time, the development of 

infrastructure, including LNG facilities and pipeline networks, further defines the 

regional landscape. Table 1.1 highlights the significance of each region in the global 

natural gas trade. 

Table 1.11 International Natural Gas Trade Statistics by Region in 2021  

Natural Gas Inter-Regional Trade 

United States 2021 (BCM) World Share 2021 (%) 

Total imports 76.5 7.5 

Total exports 179.3 17.5 

Europe 2021 (BCM) World Share 2021 (%) 

Total imports 341 33.4 

Total exports 3.8 0.4 

Asia (China + OECD) 2021 (BCM) World Share 2021 (%) 

 
1 Table 1.1 continues on the next page. 
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Asia (China + OECD) 2021 (BCM) World Share 2021 (%) 

Total imports 332.9 32.6 

Total exports 108.3 10.6 

LNG Trade 

United States 2021 (BCM) World Share 2021 (%) 

Total imports 0.6 0.1 

Total exports 95 18.4 

Europe 2021 (BCM) World Share 2021 (%) 

Total imports 108.2 21 

Total exports 3.8 0.7 

Asia Pacific  2021 (BCM) World Share 2021 (%) 

Total imports 371.8 72 

Total exports 176.3 34.2 

Source: BP Statistical Review of World Energy 2022. 

Aguilera, Inchauspe and Ripple (2014) explored regional market structures within the 

natural gas industry. North America is described as competitive, with abundant shale 

gas supply maintaining prices at relatively low levels, averaging around US$2 to $4 

per million British thermal units (MMBtu) for much of the 2010–20 period. In 

contrast, Europe, traditionally characterised as an oligopolistic gas market with few 

sellers and many buyers, has experienced a shift toward competitiveness in recent 

years. During the same period, prices in Europe have hovered around $10. Asia, on 

the other hand, has conventionally been depicted as a bilateral monopoly with few 

sellers and few buyers. Prices in the Asian natural gas market have averaged 

approximately $20 over the past decade. 

However, over the past decade, the natural gas industry has undergone a rapid and 

transformative expansion, reshaping the dynamics of international gas trading. A 

significant driver of this expansion lies in the substantial growth of LNG liquefaction 

capacity and trade. This surge in LNG trade has contributed to faster transactions and 

increased the number of players in the natural gas trade, which played a role in an 

attempt to diminish gas price differentials. 

Fulwood (2023) highlights a significant transformation in the industry's dynamics, 

transitioning from traditional oil indexation to adopting gas-on-gas (spot and short-
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term) pricing mechanisms. Oil indexation is a gas pricing mechanism that correlates 

with other fuel prices, primarily oil or refined products. On the other hand, gas-to-gas 

pricing involves indexation to spot prices that mirror the fluctuations in supply and 

demand for natural gas within a market. This increased contractual flexibility reflects 

a departure from the previously entrenched link between gas and oil prices and long-

term contracts. This change in pricing structures has been particularly pronounced in 

Europe and, to a lesser extent, Asia. 

Furthermore, the emergence of gas hubs and spot price benchmarks in Europe and 

Asia have added dynamism to global gas trading. The acceleration of LNG trade, the 

departure from oil indexation, and the establishment of these benchmarks have 

diversified trading options and marked an evolution in the industry's overall trading 

and pricing mechanisms. Figure 1.1 illustrates the evolution of the total LNG trade in 

MTPA (left axis) versus the proportion of spot and short-term transactions in the total 

LNG purchase agreements (right axis) over the last decade.  

 

Figure 1.1 Share of Spot and Short-term vs. Total LNG Trade (MTPA/%). Source: 

GIIGNL (2023). 

The continuous changes could have potential impacts on the gas market. If the LNG 

market strengthens, with lower transaction costs and increased flexibility, it could lead 

to a significant transformation, creating a more globally integrated gas market. The 

issue of market integration is fundamentally structural and requires a long-term 

perspective. Consequently, it prompts questions about the current stability 

relationships of the natural gas markets, specifically between oil and gas prices and 

within gas prices themselves. The past decade underscores this point, with oil prices 

significantly diverging from gas prices after the 2008 financial crisis and the US shale 

gas revolution. Similar trends were observed in the US during the eighties and nineties. 

Since the 1990s, the increasing prominence of combined cycle gas turbines and more 

Source: GIIGNL (2023)
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recent innovations like horizontal drilling and rock fracturing techniques may have 

significantly changed the relationship between natural gas and crude oil over time. 

Given the critical importance of the global integration of natural gas markets, there is 

an increasing need to investigate the current dynamics among international natural gas 

prices. This proposed research aims to comprehensively assess the spot and long-term 

contract gas prices within the three main trading regions. The research uses rigorous 

econometric analysis involving convergence, cointegration, and causality assessments 

to identify gas prices that exhibit greater reactivity to market fundamentals and other 

gas prices, contrasting those that still maintain a significant influence from oil price 

indexation. Another crucial aspect of this research is identifying market leaders 

shaping the natural gas price formation.  

This thesis also examines factors that influence the demand for natural gas. It looks 

closely at Japan and Korea, significant importers of natural gas in Asia. It will analyse 

economic factors that impact their natural gas markets more closely. Through this 

detailed analysis, the research aims to provide valuable insights into how natural gas 

markets are changing globally and in specific regions. This helps us understand both 

the major trends and region-specific characteristics. 

1.3 Research Questions and Objectives 

This thesis aims to explore the subsequent overarching research questions: 

1. To what degree have geographically distant natural gas markets achieved 

integration due to developments in the LNG industry over the past decade? 

2. Which natural gas markets exhibit higher reactivity to market fundamentals, 

and conversely, which markets are more significantly influenced by oil price 

indexation, and what factors contribute to these distinctions in pricing 

mechanisms? 

3. How does price discovery occur in the global natural gas markets, specifically 

focusing on the Asian and European markets, and what can be discerned about 

leading and lagging markets in this context? 

4. How can econometric models be utilised to assess the factors influencing 

natural gas demand in Japan and Korea, two significant Asian gas importers? 
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Based on the outlined research questions, this research expects to achieve the 

following objectives: 

1. Using unique econometric approaches and considering new natural gas price 

benchmarks, assess the extent of integration in geographically distant natural 

gas markets resulting from advancements in the natural gas industry over the 

last decade. 

2. Identify natural gas markets that demonstrate greater sensitivity to market 

fundamentals, leading to price formation through gas-on-gas mechanisms and 

aligned with gas hubs' spot prices. Concurrently, assess the recent influence of 

oil price indexation on natural gas prices, providing an up-to-date analysis and 

validating or challenging existing findings from the literature. 

3. Examine the price discovery mechanisms in global natural gas markets, 

identifying leading and lagging markets within this framework. Consequently, 

propose policy implications related to the co-movements of natural gas prices. 

4. Build a comprehensive model to examine the elasticities of natural gas demand 

in key natural gas importing nations, comparing both industrial and residential 

sectors. Specifically, the research will evaluate the price and income 

elasticities of natural gas demand in Japan and Korea while also analysing the 

substitutive or complementary dynamics between natural gas and other energy 

sources. 

1.4 Research Significance 

Given the significant transformations in the global natural gas market in recent years, 

this thesis proposes an enhanced and up-to-date sampling framework to evaluate the 

current dynamics between interregional gas markets. This includes examining recently 

established gas price benchmarks in Asia and Europe. By doing so, the research not 

only updates existing literature but also addresses a gap in the current body of 

knowledge concerning these recent developments. Methodologically, the study 

contributes to the existing field of research by applying a rigorous set of state-of-the-

art econometrics tools. 
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Assessing the degree of integration in the global natural gas market and the current 

role of the traditional oil indexation price mechanism holds great importance for 

industry stakeholders and policymakers. A more integrated global market potentially 

reduces price risk for importing countries by fostering diversification in gas imports 

and decreasing dependence on major gas suppliers. Moreover, a globally integrated, 

market-oriented gas market will likely draw in a broader range of market participants 

and enhance liquidity in spot gas trading compared to long-term contracts, often tied 

to oil prices. As a result, it is expected that the price of natural gas will reflect the 

combined expectations of all participants in the market, considering both current and 

future supply and demand conditions. This shift carries significant implications for 

businesses and consumers. Additionally, it provides policymakers valuable insights 

into the commoditisation of gas and the potential expansion of LNG trade, facilitating 

the reduction of greenhouse gas emissions and the transition from coal to natural gas 

in the global energy mix. Also, it provides the groundwork for developing effective 

energy supply-demand policies and addressing risks related to market price 

fluctuations. 

As a complementary study, this research extends beyond existing literature focused 

on investigating the elasticity of natural gas demand, particularly in Europe and China. 

The current study shifts its focus to other key importer markets, Japan and Korea, the 

second and third-largest consumers of LNG globally, offering a more comprehensive 

perspective on assessing natural gas demand. 

The thesis is structured across chapters to address the research questions 

systematically. Chapter 2 reviews the relevant literature and theoretical perspectives 

to contextualise the research, while Chapter 3 provides an overview of the main natural 

gas trading markets – North America, Europe, and Asia. Chapter 4 outlines the main 

gas price datasets used throughout the thesis and assesses the main properties of the 

thesis' data, such as the stationarity and structural breaks, to ensure accurate modelling 

in later analysis. Chapter 5 uses Phillips and Sul's growth convergence testing and 

clustering algorithms to examine natural gas price relationships. Chapter 6 provides a 

theoretical foundation for the methods used for the subsequent chapters. Chapter 7 

presents the empirical results from implementing bivariate Autoregressive Distributed 

Lag (ARDL) models along with the bounds cointegration test, while Chapter 8 applies 
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the Non-linear ARDL (NARDL) model, also assessing cointegration in our main 

thesis' data. Chapter 9 assesses the dynamic and causality relationships among gas 

prices by proposing a unified VAR composed of all gas prices in our dataset. Chapter 

10 assesses natural gas demand in Japan and Korea, revealing distinct price and 

income elasticities across industrial and residential sectors. Lastly, Chapter 11 

concludes the thesis with a summary of key findings, policy implications, and 

directions for future research. 
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CHAPTER 2  
INTEGRATION OF THE GLOBAL NATURAL GAS 

MARKET: A LITERATURE REVIEW 

2.1 Introduction 

This chapter thoroughly examines existing literature that investigates the dynamics 

between natural gas prices across three primary gas trading regions. It is crucial to 

note that before the ground-breaking study by Siliverstovs et al. (2005), research on 

the relationship between natural gas prices predominantly concentrated on regional 

assessments. The focus was on assessing the degree of market liberalisation in each 

region and the impact of oil prices on gas price formation. Initially centred on the 

North American market (late 1990s), these studies shifted their attention to the 

European market in the 2000s and early 2010s, coinciding with its gas market 

liberalisation process. The literature is notably deficient in a regional evaluation of the 

Asian market due to significant constraints on market liberalisation persisting into 

recent periods.  

This chapter, however, refrains from an in-depth review of these regional assessments. 

Instead, a brief discussion will be included when presenting an overview of each 

regional market in the subsequent chapter. This decision aligns with the thesis's 

primary focus on examining the relationship of natural gas prices on an interregional 

level. 

2.2 Early Investigations into the Integration of the Global Natural 

Gas Market (2005 - 2014) 

Siliverstovs et al. (2005) assess the degree of integration in natural gas markets across 

Europe, North America, and Japan from 1993 to 2004. It utilises principal components 

analysis and the Johansen likelihood-based cointegration procedure to evaluate the 

connection between international gas market prices and their correlation with oil 

prices. The study's primary findings reveal the successful integration of regional gas 

prices in North America, driven by factors like gas-to-gas competition and regulatory 
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changes. European and Japanese gas markets show integration, attributed to similar 

contract structures and oil-price indexation. The study highlights the need for further 

integration between natural gas markets across the Atlantic, underscoring distinct 

market dynamics and limited arbitrage opportunities during the observed period. 

Brown and Yücel (2009) and Neumann (2009) addressed analogous questions 

concerning the integration of interregional natural gas markets and the impact of oil 

indexation. The focus was on assessing the impact of increased LNG trade, 

particularly its import into the North American market.  

Brown and Yücel (2009) analyse the transmission of natural gas price shocks across 

the Atlantic, examining the influence of oil prices on this transmission. Using data 

from 1997 to 2008, their study employs causality tests on North American and 

European natural gas prices. Bivariate tests reveal bidirectional causality between the 

US Henry Hub and the UK’s National Balancing Point (NBP) in natural gas prices, 

indicating coordinated movements. Multivariate models emphasise the role of crude 

oil prices in coordinating natural gas prices across the Atlantic. LNG pricing reinforces 

the link between European crude oil and natural gas prices. 

Neumann (2009) extends the analysis of the North American and European gas 

markets from 1999 to 2008. Utilising the Kalman Filter, the study indicates a growing 

convergence in spot prices across transoceanic markets. This convergence is attributed 

primarily to LNG market arbitrage, with a lesser impact coming from oil prices, 

contrary to the findings of Brown and Yücel (2009).  

Erdös (2012) examines the integration between gas prices in the UK and the US and 

utilises spot gas prices from the Henry Hub and the National Balancing Point, along 

with WTI crude oil prices. It models data from 1997 to 2011 using vector error 

correction models to examine the relationship between oil and natural gas prices. The 

models' estimates indicate the decoupling of US natural gas prices from European gas 

and crude oil prices after 2009. However, US gas and oil prices demonstrate long-term 

integration in the preceding period (1997-2008). The author explains that the absence 

of liquefying and export capacities in the US has constrained interregional price 

arbitrage since 2009, preventing the flow of oversupply caused by the commencement 

of shale production. This results in lower gas prices from the US to Europe and 
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maintained the decoupling of North American gas prices from oil-integrated prices in 

Europe and Asia. 

Nick and Tischler (2014) conduct a pairwise price convergence test on international 

gas prices, focusing on the convergence of gas prices in the US and the UK from 2000 

to 2012. They employ a threshold error correction model with time-varying 

parameters obtained through the Kalman filter. Although their findings suggest 

integration in the US and UK markets from 2000 to 2008, the period spanning 2009 

to 2012 reveals substantial threshold estimates that underscore challenges beyond 

justifiable transportation costs that have not been previously considered.  

Li, Joyeux, and Ripple (2014) serve as a precursor to the methodology discussed in 

Chapter 5 of this thesis. Inspired by Neumann's (2009) research, Li, Joyeux, and 

Ripple (2014) tackle the same question by employing the methodology introduced by 

Phillips and Sul (2007, 2009). They employ a method that includes examining a set of 

compiled time series of prices to assess long-term trends that characterise growth 

convergence groups or clusters. This dataset integrates gas prices from the US, the 

UK, and three regional Asian markets (Japan, Taiwan, and South Korea). Three 

notable findings are observed: (1) the three Asian gas prices converge toward a shared 

trend; (2) there is limited evidence of convergence between Asian and European 

prices, which is linked to substantial oil indexation in both markets; and (3) the Henry 

Hub price in North America demonstrates a unique and dynamic pattern. 

2.3 Recent Investigations into the Integration of the Global Natural 

Gas Market (2015 - 2020) 

Caporin and Fontini (2017) investigate the impact of the rise of shale gas production 

in the US on the long-term relationship between oil and the US natural gas price by 

testing monthly data from 1997 to 2013, accounting for potential breaks. The authors 

propose an evaluation using a Vector Error Correction Model (VECM), demonstrating 

that, in the short run, gas production significantly influences the formation of the 

Henry Hub gas price following the beginning of shale gas production, with the impact 

of oil price doubling. However, based on the available data, the long-run relationship 

between WTI oil and Henry Hub is still to be determined. 
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Aruga (2016) expands on this research by investigating the impact of changes in the 

US natural gas market structure after the shale gas revolution on the gas markets in 

Japan and Europe. The study employs the Bai–Perron test to pinpoint the break date 

associated with the shale gas revolution and assessed through the Johansen 

cointegration method changes in market linkages among US, Japanese, and European 

gas markets before and after the determined break date, using data from 1992 to 2012. 

After the shale gas revolution, the US gas market's ties with Japanese and European 

markets weakened, suggesting the global impact of increased US gas supply is limited, 

likely due to constrained exports. Furthermore, this indicates that the influence of the 

US shale gas revolution remains largely regional. 

Employing a Markov regime-switching model, Geng, Ji, and Fan (2016) evaluate how 

the North American shale gas revolution affects gas prices in Europe and North 

America from 1998 to 2015. They demonstrate that, although the revolution altered 

North American natural gas price movements, this shift was minimal. Before the 

revolution, North American gas prices showed a seasonal pattern, which disappeared 

afterwards, indicating a decoupling from the crude oil price. However, the relationship 

between crude oil and gas prices varied around an equilibrium level in Europe. The 

sudden increase in natural gas output due to the shale gas revolution did not 

immediately influence the European price, which still followed the crude oil price 

dynamics. 

Utilising a novel systemic time series methodology, Zhang et al. (2018) explores how 

oil prices and market fundamentals impact gas prices in Japan, the United States, and 

Germany from 2000 to 2016. Results show that in Japan and Germany, gas prices are 

less influenced by supply and demand factors than by oil prices, whereas, in the US 

market, where gas-on-gas competition prevails, these factors play a more prominent 

role than oil prices. The study suggests that the Asian premium is primarily due to the 

influence of oil prices through the oil-indexed pricing mechanism rather than inherent 

market factors. This emphasises the potential to create reference gas prices in Asia, 

backed by gas-on-gas trading hubs, aiming for better alignment with local market 

fundamentals and efficient utilisation of gas resources. 

Zhang et al. (2018) use a multiple bubble test to compare oil indexation and hub-based 

pricing, using gas price data from Japan, Europe, and the US from 1982 to 2017. The 
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research reveals that Japan's oil-indexed natural gas pricing results in higher prices, 

increased volatility, and more frequent pricing bubbles during crude oil price surges, 

influenced by increased financialisaton and post-2008 uncertainty in natural gas 

fundamentals. In contrast, the US hub pricing system, more connected to natural gas 

fundamentals, experienced fewer explosive movements post-2008. Europe reflected a 

mixed system, exhibiting fewer bubbles than Japan but more than the US, indicating 

evidence of oil indexation, particularly in fluctuations mirroring Brent crude oil 

bubble periods.  

Mu and Ye (2018) explore the degree of integration over time in spot LNG markets 

across various regions, including East Asia, Iberia, Northwest Europe, and South 

America, through time-varying models and price convergence methods, considering a 

sample period from 2010 to 2015. Employing Phillips and Sul (2007, 2009) approach, 

the study assesses if market indices post-Fukushima are moving towards perfect 

competition. Results demonstrate evident price convergence in spot LNG markets and 

between spot LNG and NBP prices, especially towards the end of the sample period. 

This suggests a more integrated market may emerge as LNG availability for spot and 

short-term markets increases, coupled with enhanced infrastructure interconnection. 

Chai et al. (2019) focus on the Chinese gas market and examine the recent links 

between the world's natural gas markets, specifically the Far East, the Middle East, 

the United States, Europe, China, and Japan, characterising the time-varying 

characteristics of these relationships. The authors employ a methodology based on the 

DCC-GARCH- NARDL-ARDL-ECM models and data ranging from 2014 to 2018, 

intending to capture the impact of China's natural gas market price reforms in 2014. 

The study reveals that global natural gas markets have limited integration with distinct 

regional characteristics. Japan, the United States, and Europe are identified as highly 

representative of the international natural gas market. Despite China's natural gas 

market being subject to strict residential gas price controls, effective integration with 

the global market is essential. The examination of risk spillover suggests that China's 

natural gas market is not aligned with the global market, as differences between 

domestic and international markets impede the prompt transmission of gas prices. 

In a similar investigation, Wang et al. (2020) explore the US gas price and regional 

natural gas market fundamentals influencing China's natural gas import prices. Using 
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a VECM framework and data from 2006 to 2019, the results are summarised as 

follows: the crude oil price primarily influences China's natural gas import prices. 

Regional market dynamics within China significantly impact import prices, 

underscoring the success of gas market reforms. Following the 2014 pricing 

mechanism reforms, crude oil's importance in import prices diminished for both LNG 

and pipeline natural gas. Post-2014, the influence of Henry Hub natural gas price 

changes on LNG import prices strengthened, indicating a greater connection between 

China's LNG market and the US natural gas market. These results are significantly 

different from those presented by Chai et al. (2019). 

A significant investigation of the global natural gas market's integration in recent years 

was undertaken by Chiappini, Jégourel, and Raymond (2019). The study evaluates the 

integration levels among European, North American, and Asian markets, considering 

the growth in global LNG export capacity and the increase of spot and short-term gas 

trades. Analysing gas price data from 2004 to 2018, the authors employ cointegration 

tests with one or more structural breaks and threshold error correction models in their 

methodology. The results show that an increased integration in gas markets has 

occurred, with stronger connections between gas prices and a weakened link to oil 

prices. European gas markets show significant integration, with a notable rise in 

integration between European and American markets post-2014. In Asia, European 

markets are closely linked with the Japan-Korea Marker (JKM) gas spot price, while 

the Henry Hub (HH) showed no significant connection. Asymmetric adjustments to 

long-term equilibrium are observed between HH and the European National Balancing 

Point (NBP) spot price and between HH and JKM. Adjusting to positive deviations in 

NBP or JKM prices requires more time than negative ones, a pattern possibly 

influenced by market arbitrages from exporting nations experiencing a rise in spot 

transactions. 

Finally, Kim and Kim (2019) and Kim et al. (2020) assess the integration of North 

American, Asian, and European gas markets, focusing on the impact of swing 

suppliers like Russia and Qatar in the 2010s and Japan's increased gas imports after 

the Fukushima disaster in 2011. The first study, with data spanning from 2000 to 2017, 

employs a VECM price discovery framework to analyse leading and lagging markets. 

Initially, the Asian market took the lead in the natural gas market dynamics, but a shift 
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occurred after 2011, with the European market assuming the role of price discovery. 

Following a market shock, the Asian market emerged as the primary adjuster, 

indicating that changes in the European market have a consequential impact on the 

Asian market. The second study explores the integration of North American, 

European, and Asian markets through Engle-Granger cointegration and error 

correction model on data samples from 2000 to 2019. European and Asian markets 

display integration, with econometric findings suggesting that Qatar's emergence 

might have indirectly enhanced integration. Furthermore, the integration between the 

North American and European markets, evident in the early 2000s, has diminished. 

2.4 Conclusions and Summary of Literature Review 

This chapter offers a comprehensive overview of the key findings that address the 

central questions of this thesis. The studies are divided into two periods: 2005-2014, 

which covers pioneering research on the subject, and 2015-2020, which includes 

updated investigations reflecting the ongoing development of the natural gas industry 

and trade. Additionally, the impact of the US shale gas revolution, which began 

boosting domestic gas production in late 2008 and significantly influenced the global 

gas industry in the early 2010s, is considered when organizing the literature review 

based on their data and modelling sample periods. 

A synthesises of the key findings from two decades of literature on global gas market 

integration and the influence of oil prices on gas prices is presented. Notably, 

conclusions have evolved over time, indicating an increasing integration of natural gas 

markets, particularly between Asia and Europe. Furthermore, the once robust 

correlation between oil prices and natural gas markets appears to be decreasing. This 

comprehensive review underscores the need to continue exploring this topic using 

diverse econometric models and, critically, with a more recent dataset. Incorporating 

spot prices from Europe, notably the European Transfer Title Facility (TTF), and 

Asian spot LNG prices, which have gained prominence, is essential for a thorough 

understanding. This thesis aims to address this gap in the literature, offering updated 

results and valuable insights for future studies. 

Tables 2.1 and 2.2 provide a concise overview of the literature review outlined in this 

chapter. The next chapter introduces this thesis's three main natural gas markets, 
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detailing their historical evolution, market structures, and the oil-gas price relationship. 

It also presents the principal gas and oil prices used as crucial data for the thesis's 

econometric models. 

Table 2.12 Summary of Literature Review Findings (2005 - 2014) 

Author(s) Sample 
Period  Methodology 

Variables 
(Natural gas 
and Oil prices) 

Main Findings 

Siliverstovs 
et al. (2005) 

1993 – 
2004 

Johansen 
cointegration 
test 

• HH 
• PIPE US 
• LNG US 
• LNG EUR 
• LNG EUR 
• LNG JPN 
• BRENT 
  

• European and Japanese gas 
markets exhibit cointegration, 
emphasizing oil-indexation 
price formulas. 

• Natural gas markets lack 
integration across the Atlantic, 
specifically with the North 
American Henry Hub. 

• Henry Hub is driven by 
regional market fundamentals 
rather than the oil price. 

Brown and 
Yucel 
(2009) 

1997 – 
2008 

Johansen Full 
cointegration 
test and 
Error 
Correction 
Model 
 
 

• HH 
• NBP 
• BRENT 
• WTI 
 
 
  

• Henry Hub and NBP 
demonstrate bidirectional 
causality, with both prices 
adjusting in response to each 
other. 

• Crude oil is more significant in 
price arbitrage across the 
Atlantic than LNG shipments. 

 
Neumann 
(2009) 

1999 –  
2008 
 

Kalman Filter  
 
 

• HH 
• NBP 
• ZEE 
• WTI 
• BRENT 

• Results indicate integration 
between Henry Hub and NBP. 

• Rather than oil, LNG is 
identified as the key factor for 
transmitting regional impacts 
on gas prices. 

Erdös 
(2012) 

1997 – 
2011 

Vector error 
correction 
models 
(VECM) 

• HH 
• NBP 
• WTI 

• US natural gas prices decoupled 
from European gas and crude 
oil prices after 2009. 

• Long-term integration between 
US gas and oil prices occurred 
in 1997-2008. 

• The absence of US LNG export 
capacities since 2009 
maintained decoupling from 
oil-integrated prices in Europe 
and Asia. 

 

 
2 Table 2.1 continues on the next page. 
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Table 2.1   Summary of Literature Review Findings (2005 – 2014), Continued. 

Author(s) Sample 
Period  Methodology 

Variables 
(Natural gas 
and Oil prices) 

Main Findings 

Nick and 
Tischler 
(2014) 

2000 – 
2011 

Threshold 
error 
correction 
model and 
Kalman Filter 

• HH 
• NBP 

• Integration was observed in US 
and UK markets from 2000 to 
2008. 

• 2009 to 2012 revealed 
significant threshold estimates, 
highlighting challenges beyond 
justifiable transportation costs. 

Li, Joyeux, 
and Ripple 
(2014) 

1997 – 
2011 

Phillips and 
Sul (2007, 
2009) 
convergence 
test and 
Kalman Filter  

• HH 
• NBP 
• LNG JPN 
• LNG KOR 
• LNG TWN 
• BRENT 

• Three Asian gas prices show a 
shared trend. 

• Limited evidence of 
convergence between Asian and 
European prices is linked to 
substantial oil indexation in 
both markets. 

• Henry Hub price in North 
America exhibits a unique and 
dynamic pattern. 

Table 2.23 Summary of Literature Review Findings (2015 - 2020) 

Author(s) Sample 
Period  Methodology 

Variables 
(Natural gas 
and Oil prices) 

Main Findings 

Caporin and 
Fontini 
(2017) 

1997 – 
2013 

Vector error 
correction 
model 
(VECM) 
 

• HH 
• WTI 
• US Gas 

Output 
  

• Short-run causality: Shale gas 
production notably impacted 
Henry Hub gas prices; oil price 
had a doubling effect on this 
relationship. 

• Long-run causality: The 
cointegration between WTI oil 
and Henry Hub in the long term 
has yet to be confirmed, 
requiring further analysis. 

Aruga 
(2016) 

1992 – 
2012 

Johansen Full 
cointegration 
test and 
Bai-Perron 
test 
 
 

• HH 
• LNG JPN 
• RUS GAS 
• US Gas 

Output 
 
 
  

• The US gas market links to 
Japan and Europe weakened, 
signalling a limited global 
impact due to export 
constraints. 

• The US shale gas revolution 
primarily influences local 
dynamics, with global markets 
not significantly affected 
despite increased supply. 

 

 
3 Table 2.2 continues on the next pages. 
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Table 2.2   Summary of Literature Review Findings (2015 – 2020), Continued. 

Author(s) Sample 
Period  Methodology 

Variables 
(Natural gas 
and Oil prices) 

Main Findings 

Geng, Ji, 
and Fan 
(2016) 

1998 –  
2015 
 

Markov 
regime-
switching 
model  
 
 

• HH 
• NBP 
• WTI 
• BRENT 

• The shale gas revolution 
changed the HH gas price, 
eliminating seasonal patterns 
and decoupling from crude oil. 

• The European gas price 
remained tied to crude oil 
dynamics despite the shale gas 
revolution's surge in natural gas 
output. 

Zhang et al. 
(2018) 

1997 – 
2011 

VAR 
approach by 
Diebold and 
Yilmaz (2009) 

• HH 
• JPN LNG 
• RUS GAS 
• WTI 
• BRENT 
• DUBAI 

• Japan and Germany: Gas prices 
in these countries are more tied 
to oil prices than supply and 
demand, contrasting with the 
US market. 

• US: Gas-on-gas competition in 
the US makes supply and 
demand factors more influential 
than oil prices. 

• The oil prices largely drive the 
Asian premium through the oil-
indexed pricing mechanism 
rather than inherent market 
factors. 

Zhang et al. 
(2018) 

1982 – 
2017 

Multiple 
bubble test 

• HH 
• NBP 
• LNG JPN 
• WTI 
• BRENT 
 

• Oil-indexed natural gas pricing 
in Japan leads to higher prices, 
heightened volatility, and more 
frequent pricing bubbles during 
crude oil price surges. 

• The US hub pricing system, 
tied closely to natural gas 
fundamentals, experienced 
fewer explosive movements 
post-2008. 

• Europe shows a mixed system 
with fewer bubbles than Japan 
but more than the US, 
suggesting evidence of oil 
indexation, especially during 
Brent crude oil bubble periods. 
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Table 2.2   Summary of Literature Review Findings (2015 – 2020), Continued. 

Author(s) Sample 
Period  Methodology 

Variables 
(Natural gas 
and Oil prices) 

Main Findings 

Mu and Ye 
(2018) 

2010 – 
2015 

Phillips and 
Sul (2007, 
2009) 
convergence 
test 

• LNG Asia 
• LNG NW 

Europe 
• LNG Iberia 
• LNG South 

America 
• NBP 

• Results show clear price 
convergence between spot LNG 
prices and between spot LNG 
and NBP prices. 

• The findings suggest the 
potential emergence of a more 
integrated market as LNG 
availability for spot and short-
term markets increases, coupled 
with improved infrastructure 
interconnection. 

Chai et al. 
(2019) 

2014 – 
2018 

DCC-
GARCH-
NARDL-
ARDL-ECM 

• US FOB 
• Middle East 

FOB 
• JPN CIF 
• Europe CIF 
• China LNG 

• Global natural gas markets 
show limited integration with 
distinct regional characteristics. 

• Japan, the United States, and 
Europe highly represent the 
international natural gas 
market. 

• The examination of risk 
spillover indicates that China's 
natural gas market is not 
aligned with the global market, 
hindered by differences 
between domestic and 
international markets, impeding 
prompt price transmission. 

Wang et al. 
(2020) 

2006 –  
2019 

Vector error 
correction 
model 
(VECM) 

• HH 
• China LNG 
• China Pipe 
• BRENT 
• WTI 
• China Gas 

Output 
• China Gas 

Imports 
• Climate 

factors 

• Regional market dynamics 
significantly influence import 
prices in China, showcasing the 
success of gas market reforms. 

• After the 2014 pricing reforms 
in China, the significance of 
crude oil in import prices 
decreased for both LNG and 
pipeline natural gas prices. 

• Post-2014, the influence of 
Henry Hub natural gas price 
changes on LNG import prices 
strengthened, highlighting a 
stronger connection between 
China's LNG market and the 
US natural gas market. 
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Table 2.2   Summary of Literature Review Findings (2015 – 2020), Continued. 

Author(s) Sample 
Period  Methodology 

Variables 
(Natural gas 
and Oil prices) 

Main Findings 

Chiappini, 
Jégourel, 
and 
Raymond 
(2019) 

2004 –  
2018 

Cointegration 
test with 
structural 
breaks and 
Threshold 
error 
correction 
models 

• HH 
• NBP 
• NCG  
• TTF 
• JKM 
• WTI 

• Gas prices exhibit increased 
correlations, whereas the link 
between gas and oil prices has 
weakened. 

• Significant integration in 
European gas markets; rise in 
European-American integration 
post-2014. 

• Asymmetric adjustments in 
long-term equilibrium seen 
between HH and NBP/JKM 
spot prices 

Kim and 
Kim (2019) 

2000 – 
2017 

VECM price 
discovery 
framework 

• NBP 
• JKM 

• The Asian market initially led 
the market, but the European 
gas price took over as price 
discovery after 2011. 

• After the market break in 2011, 
the Asian market became the 
primary adjuster, impacted by 
European market changes. 

 

Kim et al. 
(2020) 

2000 – 
2019 

Granger 
cointegration 
and Error 
correction 
model 

• HH 
• NBP 
• JKM 

• European and Asian markets 
are integrated, with econometric 
findings suggesting Qatar's 
emergence indirectly 
contributed to integration. 

• Integration between North 
American and European 
markets, present in the early 
2000s, has diminished over 
time. 
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CHAPTER 3  
PRELIMINARY OVERVIEW OF THE NATURAL GAS 

MARKETS 

3.1 Introduction 

The previous chapter has discussed how studies in the literature have tested 

relationships between regional gas markets relying on reduced-form models that 

primarily use price data. This chapter will explore the major regional gas trading hubs 

and present a historical economic account of the development of these markets. 

Li, Joyeux, and Ripple (2014) and Zhang et al. (2018) highlight the distinct nature of 

natural gas markets, contrasting it with the more universally structured crude oil 

market. They emphasise that natural gas trading is predominantly regional, occurring 

in three major regions: North America, Europe, and Asia. In the United States, natural 

gas pricing mechanisms are primarily influenced by gas-on-gas competition, 

exemplified by the pricing formation at the Henry Hub. European markets also rely 

heavily on gas hubs such as the United Kingdom's National Balancing Point (NBP) 

and the Dutch Title Transfer Facility (TTF), where prices are determined through 

competitive interactions between regional market players. Nonetheless, certain 

European gas markets, particularly those involving Russian natural gas imports, 

continue to employ oil indexation in their pricing strategies. The Asian natural gas 

market has historically adhered to an oil indexation pricing model. Oil-indexation has 

the disadvantage of not fully reflecting the natural gas sector's specific supply and 

demand conditions. Consequently, this approach results in the Asian market being 

distinct from the supply and demand-driven pricing mechanism that is becoming 

predominant in other regions. 

This chapter offers a historical overview of the above markets and proceeds as follows. 

Section 3.2 initially explores the historical relationship between gas and oil prices. 

Section 3.3 presents the distinctiveness of the global natural gas supply chain 

compared to conventional fossil fuels. A comprehensive examination of the major 
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natural gas markets under investigation, North America, Europe, and Asia, are detailed 

in Sections 3.3, 3.4, and 3.5, respectively.  

3.2 Overview of the Crude Oil and Gas Price Relationship 

One basic notion is that oil prices significantly influence natural gas supply and 

demand, largely due to their substitution relationship. Villar and Joutz (2006) highlight 

that this belief stems from the interchangeable use of oil and gas, particularly before 

the 2000s when gas was frequently used as an alternative to oil in electricity generation 

and industrial applications. For instance, when oil prices rise, gas often becomes a 

more cost-effective option for energy production, increasing demand. This increased 

demand for gas, in turn, applies upward pressure on its prices, demonstrating the 

interconnected nature of oil and gas markets. 

Since the mid-2000s, studies such as Stern (2007, 2009) have increasingly suggested 

that the traditional oil-gas price substitution model is no longer applicable. The main 

reasons are that crude oil became almost extinct from the stationary energy sectors, 

tight environmental standards favour the demand for gas over oil, and the emergence 

of new gas-burning technologies has made the utilisation of oil inefficient in the 

industrial sector. In addition, several other major differences make the short-run 

substitutability inefficient. The costs associated with the two commodities are very 

distinct, such as the costs related to production, processing, transportation, and 

storage. 

Since the rapid development of gas in the late 1990s, the substitution of gas-oil 

demand has not provided the main link between oil and gas prices. The main link is 

oil-price-indexation in long-term natural gas contracts. The latter is a practical solution 

that traders have applied to set gas prices between points with very few transactions 

and rely on long-term contracts. As fossil fuel producers often produce oil and gas, 

sometimes from the same fields, the oil price becomes a good proxy for the 

opportunity cost of supplying gas. Under oil-indexation, the price of natural gas in 

long-term contracts is set with a formula that ties it to an average price of a basket of 

oil prices and includes bounds. These contractual conditions are typically known as S-

shape pricing clauses.  
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Despite all the above, the divergence in oil and gas prices across different markets is 

a significant phenomenon. In the case of crude oil, despite the distinct characteristics 

of different benchmarks like Brent and WTI, their prices tend to be closely related. In 

contrast, regional supply and demand dynamics are crucial in shaping the price 

formation of spot natural gas prices at major hubs. As a result, the factors driving 

natural gas prices vary significantly by region, which will be further elaborated in 

subsequent sections. However, Stern and Rogers (2014) point out that the 

interdependency of regional natural gas markets has increased, promoting a favourable 

ground for global gas market integration. 

The impact of oil prices on gas markets remains apparent due to the correlation 

between them, as outlined in some purchase agreements, particularly in the Asian gas 

markets. This approach, however, goes against oil and gas's contrasting supply and 

demand patterns and their declining interchangeability as commodities. Therefore, 

determining the extent of oil price influence on gas price formation in different 

markets is relevant when investigating the integration of the global natural gas 

markets. For this purpose, the Brent crude oil spot price is included in the panel data 

set of this thesis, as it is the most appropriate benchmark when considering the three 

different natural gas markets: Europe, Asia, and North America. 

3.3 The Global Gas Supply Chain and its Unique Characteristics 

Another important discussion when assessing the relationship between gas and other 

energy sources is the distinctiveness of the global gas supply chain compared to other 

conventional fossil fuel sources, such as crude oil. The global natural gas industry 

requires considerable investment concentration due to the substantial capital needed 

for infrastructure projects. Projects such as extraction facilities, pipelines, and LNG 

terminals require significant long-term financial commitments. Unlike oil, which 

benefits from well-established and widespread infrastructure, natural gas projects 

typically require extensive initial investments in production and transportation 

systems. This concentrated and intensive investment requirement shapes distinctive 

market dynamics, impacting aspects ranging from regional supply security to global 

trade patterns. 
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The transportation and logistics of the natural gas supply chain present unique 

challenges and complexities that are distinct from other energy sources. It primarily 

relies on extensive pipeline networks that demand substantial upfront investment and 

long-term planning. Furthermore, liquefying natural gas for shipping involves intricate 

and costly infrastructure, requiring specialized tankers and regasification terminals at 

the receiving end. These facilities add layers of complexity and cost to the logistics of 

natural gas transportation (Energy Working Group 2018). 

Putišek and Karasz (2017) outline the key aspects of the natural gas supply chain, 

which includes: 

• Pipeline networks: Extensive networks are crucial for transporting natural gas 

from production sites to consumers, demanding substantial capital investment 

and careful route planning to ensure efficient distribution. The transportation 

pipelines, typically large steel pipes over 1 meter in diameter, operate at high 

pressures of up to 125 bar and pass through compressor stations, metering 

stations, and storage facilities. They are crucial in directing the flow of natural 

gas. They undergo stringent monitoring and inspection to mitigate risks such 

as seam failures, corrosion, and materials failure. From these transportation 

pipelines, natural gas moves through distribution pipelines (also known as 

mains), which are medium-sized pipes ranging from 0.1 to 0.7 meters in 

diameter. Distribution pipelines carry gas at varying pressure levels and are 

constructed from steel, cast iron, plastic, and occasionally copper. Finally, 

service pipelines smaller than 0.05 meters in diameter connect distribution 

pipelines to meters and typically carry odorised natural gas at low pressures. 
   

• Liquefaction and LNG transportation: Natural gas often undergoes 

liquefaction to facilitate transportation over long distances. Natural gas is 

liquefied in specialized liquefaction plants where it is cooled to approximately 

-161.5 °C, reducing its volume significantly for easier transportation by ship 

or truck. These liquefaction plants typically operate multiple processing units 

called "trains" that work in parallel to maximize efficiency and allow for 

continuous operation during maintenance. The liquefaction process involves 

purifying natural gas to near-pure methane, removing impurities like sulphur 
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and CO2, and separating natural gas liquids (NGLs) such as propane and 

butane. The LNG is then stored onsite before being loaded onto LNG vessels 

— these vessels, equipped with either spherical tanks or membrane tanks, 

transport LNG across seas. Upon arrival at regasification plants, LNG is 

returned to its gaseous state through vaporization using heat exchangers 

fuelled by seawater. The regasified natural gas is then injected into the pipeline 

grid, which mixes with existing natural gas supplies for distribution. 
  

• Storage and distribution challenges: Storing natural gas presents unique 

challenges due to its lower density than oil, necessitating advanced 

technologies and secure facilities for safe and efficient storage and distribution. 

Natural gas storage balances supply and demand fluctuations, especially 

between seasons. When demand is lower in the summer, natural gas is injected 

into storage facilities and withdrawn during the winter when demand peaks. 

Storage options include underground facilities such as depleted reservoirs, 

aquifers, caverns (salt and rock), and aboveground storage like gasholders and 

LNG tanks. Additionally, line pack storage within pipelines helps manage 

short-term demand variations. These solutions ensure a steady supply of 

natural gas despite fluctuations in consumer demand, providing essential 

flexibility and reliability to the distribution network.  

In the long term, the natural gas supply chain offers a valuable model for developing 

hydrogen as an emerging energy carrier. In particular, green hydrogen, produced from 

renewable sources, requires a similarly extensive infrastructure and significant 

investment. The current natural gas infrastructure, including pipelines, LNG and 

storage facilities, could be adapted to accommodate hydrogen, easing the transition to 

a hydrogen-based economy. The expertise developed in managing the complexities of 

the natural gas supply chain will be crucial for overcoming the challenges related to 

hydrogen transportation and distribution. This knowledge base can significantly 

contribute to the growth of hydrogen as a clean energy source, potentially 

revolutionizing global energy markets by leveraging insights gained from the natural 

gas industry (International Energy Agency 2019). 

The unique attributes of the natural gas supply chain (its complexity, high investment 

needs, and specialized infrastructure) not only define the current global gas market but 
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also provide a strategic framework for future energy transitions, notably the 

integration of hydrogen into the energy landscape. 

3.4 Overview of the Natural Gas Market in North America 

Before 1978, pipeline owners purchased most of the gas they transported for resale 

from the United States. The trade transactions were made in long-term (20 or more 

years) purchase contracts with field producers, bundling supplied marketing and 

transportation as a single product. In addition, federal regulation at that time resulted 

in higher transaction costs for natural gas production and transmission. However, the 

US was the first region to reorganise its natural gas market by promoting the 

deregulation of wellhead prices and opening access to gas pipeline infrastructure by 

implementing the Natural Gas Policy Act (NGPA) in 1978 (Neumman 2009). Doane 

and Spulber (1994) state that after the NGPA, considerable changes happened in the 

pricing and transportation of natural gas in North America. These sudden changes 

resulted in many contract disputes as pipelines had to prevent losses from take-or-pay 

obligations. According to Doane and Spulber (1994), a major milestone in the 

unbundling of gas marketing and transportation in the US was taken by the Federal 

Energy Regulatory Commission (FERC) in Order No. 436 in 1985, which considered 

pipelines as open-access transporters for gas purchased by all classes of buyers directly 

from the gas producers. This created an incentive for the complete separation of the 

marketing and transportation services of the interstate pipeline. Moreover, it allowed 

the entrance of local distribution and electric utility companies and industrial 

customers as natural gas buyers. 

After the 1980s regulatory changes, there was a notable shift in the natural gas industry 

from long-term to short-term contracts, typically of a duration of around one week. 

This shift facilitated the development of natural gas futures contracts. According to 

Doane and Spulber (1994), open-access transportation policies led to trading these 

commodity contracts, making spot prices a benchmark for long-term contract pricing 

and reducing transaction costs. 

A significant outcome of these changes was the establishment of the Henry Hub in 

Louisiana as a key natural gas trading location. Brown and Yücel (2008) highlight that 

Henry Hub became a crucial market centre, connecting at least 16 pipelines, LNG 



27 

 

infrastructures, and underground storage facilities. Since its inception, it has been the 

reference point for the New York Mercantile Exchange (NYMEX) gas futures 

contract, fostering a liquid market and becoming the primary price reference for most 

natural gas traded in North America (Neumman 2009). 

The Henry Hub can be considered the most important gas exchange centre in the 

world. Heather and Petrovich (2017) assesses natural gas hubs based on liquidity and 

transparency, focusing on five aspects: traded volume, product variety, tradability 

index, market participant diversity, and churn rates. By these criteria, the Henry Hub 

is deemed the most mature gas hub, excelling in all five aspects, and is widely regarded 

as a model for other gas markets globally. 

Despite all the liberalisation measures since the 1980s and the emergence of a liquid 

and mature natural gas market in the US, the initial penetration of natural gas has 

historically been dependent on crude oil-linked contracts, with gas serving as a direct 

substitute for crude oil for heating and industrial purposes. However, Perifanis and 

Dagoumas (2018) stated that the US was a pioneer in weakening the linkages between 

crude oil and natural gas with the development of the shale gas revolution in the 2000s. 

The increase in unconventional shale oil and gas production oversupplied the US 

domestic market.  

Furthermore, the Organization of the Petroleum Exporting Countries (OPEC) adopted 

a strategy to maintain production, plunging the crude oil price to $26 a barrel in 2016. 

This situation resulted in US oil and gas companies improving efficiency and reducing 

costs. In addition, shale gas producers continued their increase in production without 

interruptions, as it became clear that demand for natural gas had different drivers than 

crude oil, especially considering the increased substitution of coal for natural gas in 

the industrial power generation units. The evolution of the natural gas market in the 

US has made this region the most mature and integrated regional gas market compared 

to the European and Asian gas markets. 

3.5 Overview of the Natural Gas Market in Europe 

In the past, the production and export of natural gas in Europe were controlled by large 

publicly owned companies, which exerted monopolistic or oligopolistic market 
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behaviour and had extensive market power, resulting in gas prices higher than the 

competitive level (Hulshof, Maat and Mulder 2016). However, since the late 1990s, a 

series of regulatory policies has significantly changed the natural gas markets in 

Europe. Renou-Maissant (2012) argues that these changes resulted from European 

energy regulations targeting a single European gas market. These policies aimed to 

offer a more competitive environment to all gas consumers in the European Union 

(EU), as well as to promote the efficiency of the natural gas sector by providing new 

opportunities and enhancing cross-border trade. 

The historical convention of oil indexation in the gas price, which linked the price of 

gas to the price of oil, has lost momentum. Oil indexation was the leading pricing 

mechanism in Europe until the early 21st century. However, the energy sector has 

developed, and oil products have yet to remain an optimal substitute for gas. Stern 

(2007) demonstrated that the fuel switching between gas and oil products in the 

European energy markets had already plunged to low levels in the mid-2000s. The 

share of oil-linked gas trades in Europe had recently fallen to 25% in 2018 from 80% 

in 2005 (Stern, 2020). 

During the latter half of the 2000s, the European Union made further progress toward 

promoting market liberalisation in the natural gas sector by enhancing the efficacy of 

third-party access and ownership unbundling. Furthermore, the extinction of 

destination clauses in purchase contracts drastically changed the regulatory and 

market context in which they operate. According to Stern and Rogers (2014), the 

European gas market underwent a contextual shift due to two main factors: the rise of 

third-party access and the creation of gas hubs that offered market-based pricing of 

gas, accessible to any market player both within and outside Europe. 

Ache et al. (2013) point out that the UK was the first European country to deregulate 

its gas market in the 1990s following the privatisation of the state-owned company 

British Gas in 1986. Following deregulation policies in the UK, gas trading has 

witnessed a surge in the Over-the-Counter (OTC) market, facilitated by the creation 

of the National Balancing Point (NBP) virtual gas hub. The NBP has established a 

price reference for several forward transactions and future contracts in the UK. Further 

to this, the fundamentals of gas-to-gas competition and spot gas prices spread to other 

European countries with the development of the Interconnector (pipeline connecting 
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the UK gas market to continental Europe), which started its operations in 1998. 

Consequently, spot and derivative gas trading also emerged in continental Europe, 

such as the Zeebrugge (ZEE) hub, the arrival point of the Interconnector pipeline 

system in Belgium, and the Netherlands' Title Transfer Facility (TTF) hub. In the last 

decade, the TTF emerged as the main gas price reference in Europe, surpassing the 

NBP as the most liquid and mature European gas hub and further promoting a gas-on-

gas competition in the northwest European region (Bennet 2019, Liao and Skykes 

2019). 

The European gas market largely depended on gas imports, accounting for 73% of the 

EU gas demand in 2015, because of its declining domestic gas production and the low 

probability of developing unconventional gas reserves. Russia is a significant 

participant in the European gas market. Eurostat data indicates the EU's substantial 

reliance on gas imports from Russia, reaching nearly 40% of all European gas supply 

in 2020. Stern and Rogers (2014) argues about the importance of the Russian gas 

supply for EU energy security as it still has several long-term contracts that will expire 

in the next decade. In the 2000s, the Russian state-owned company Gazprom was the 

primary opponent of shifting from oil indexation to hub-based gas prices. In 2012, the 

company made several adjustments to its gas contracts, reducing the base price by 7-

10% and reducing take or pay obligations to avoid losing market share. However, oil 

indexation still accounts for a considerable proportion of the gas pricing imported from 

Russia to the EU. 

3.6 Overview of the Natural Gas Market in Asia 

Natural gas is more critical in Asia's energy portfolio than anywhere else. According 

to the BP (2018) report, from 2010 to 2018, Asia's contribution to global natural gas 

demand almost doubled from 12% to 21%. This region faces a significant challenge 

due to its limited domestic gas production, leading to a substantial gap between 

demand and supply and a consequent reliance on imports. A particular obstacle is the 

insufficient regional transport infrastructure, like pipelines, making Asian markets 

heavily dependent on imported LNG. In fact, in 2021, Asian gas markets accounted 

for 72% of global LNG trade, as per BP's 2022 findings. 
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The LNG sector is marked by high production, storage, and transport costs, 

influencing the nature of contractual arrangements in Asian markets, which differ 

notably from those in the US and Europe. As Vivoda (2019) notes, to protect the 

interests of both importers and exporters, LNG contracts in Asia often involve long-

term agreements spanning 15 to 25 years, including take-or-pay clauses. However, 

Rodríguez (2008) suggests that these contractual restrictions lead to market 

inefficiencies. He argues that adopting a more flexible 'free destination' approach in 

LNG trading could potentially enhance the value of long-term LNG supplies by up to 

40%. 

Moreover, the traditional Asian pricing mechanism in LNG contracts linked the gas 

price to the Japan Crude Cocktail (JCC) price (Aguilera, Inchauspe and Ripple 2014) 

- the Japan Crude Cocktail is the average price of crude oil products imported into 

Japan (Stern and Rogers 2014). Vivoda (2014) explains that the traditional pricing 

formula for the cost of Asian LNG imports is (JCC × price slope) + an established 

premium. The agreed premium is fixed and unaffected by any changes in oil prices, 

as it is typically based on shipping costs. The slope defines the relationship between 

LNG and oil prices. Most of the traditional Asian oil-indexed gas long-term contracts 

present a slope so-called “S-curve”, which has a flatter slope at low and high oil prices, 

protecting both buyers and sellers from adverse oil price fluctuations (Ernst & Young, 

2013). 

While the oil-indexed pricing model for natural gas was effective in Asian markets for 

many years, Stern and Rogers (2014) contends that its efficiency diminished following 

the surge in oil prices above US$100 per barrel post-2008. This decline in 

effectiveness was further aggravated by the 2011 Fukushima nuclear disaster, which 

led to a spike in Japan's natural gas demand and a consequent surge in Japanese LNG 

import prices. Consequently, natural gas prices in Asia began to deviate significantly 

from those in Europe and even more so from US prices, especially after America's 

shale gas revolution. This disparity in pricing is often referred to in the literature as 

the "Asian premium" (Shi and Shen 2021). 

Another factor fuelling criticism of oil indexation in Asian gas markets is the 

increasingly apparent competition between gas and coal rather than the oil-gas 

substitution in the industrial energy sector. Shi and Variam (2016) argue that oil 
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indexation fails to accurately reflect the supply and demand dynamics in the gas 

markets for determining wholesale prices. Consequently, they believe this pricing 

strategy is no longer suitable for the current market conditions. 

Most oil-indexed LNG procurement contracts in Asia are set to expire within the next 

20 years, by 2030-40, thereby enhancing the importers' bargaining power to lower the 

oil indexation slope or shift towards spot and short-term LNG procurement contracts 

(Shahati, Khadadeh and Al-Aradah 2019). Another major development in the LNG 

industry in the last decade was the increase in the shares of LNG spot trading because 

of the recent surplus of supply from the shale gas revolution in the US and from new 

LNG projects coming online in Australia and Russia (Alim, Hartley and Lan 2018). 

In 2000, spot LNG trade constituted merely 5% of the total trade, whereas, in 2020, 

spot and short-term imports accounted for a significant 40% share of the total LNG 

imports (GIIGNL 2021). That is an 800% per cent increase in 20 years. These recent 

developments have already decreased the number of new traditional long-term 

agreements and stimulated the emergence of Asian LNG pricing indexes associated 

with the spot transactions.  

To evaluate gas-on-gas spot prices, the Japan-Korea Marker (JKM) is the most widely 

used price index among LNG traders in the Asian market. It is published by Platts and 

is based on prices reported in spot market trades from Japan, South Korea, Taiwan, 

and China. Another alternative is the Northeast Asia Spot LNG DES (ALNG) price 

index, which is evaluated every week by Refinitiv (Reuters). Although assessed by 

different agencies, the two price indexes reflect identical transactions, resulting in a 

similar price trend. Furthermore, their prices are expected to have less contribution 

from the oil-indexed LNG prices and more influence from the local supply/demand 

factors. 

3.7 Concluding Remarks 

This chapter provides a comprehensive overview of the natural gas markets, 

highlighting key distinctions regarding the natural gas supply chain characteristics and 

its price formation across the primary trading regions of Asia, Europe, and North 

America. It also elaborates on the complexities of natural gas pricing mechanisms, 
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including oil indexation, its influence in various markets, and the emergence and role 

of different natural gas benchmarks.  

This thesis gains relevance from the notable rise in global natural gas trades over the 

past decade. Figures 3.1 and 3.2 illustrate the major natural gas movements in 2009 

and 2021, respectively, using data extracted from the BP Statistical Review of World 

Energy 2010 and 2022 editions - the latest available as of May 2024. These figures 

reveal a roughly 50% increase in trade volumes, primarily driven by a significant surge 

in LNG imports to Asia. 

 

Figure 3.1 Natural Gas Major Trade Movements in BCM (Pipeline and LNG) in 

2009. Source: BP (2010) 
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Figure 3.2 Natural Gas Major Trade Movements in BCM (Pipeline and LNG) in 

2021. Source: BP (2022) 

Overall, this chapter underscores the significant regional variations in natural gas price 

drivers and the evolution of global natural gas markets, illustrating the evolving 

landscape of natural gas economics in the last 20 years. 

  



34 

 

CHAPTER 4  
DATA DESCRIPTION AND TIME SERIES 

PROPERTIES OF THE THESIS DATASETS 

4.1 Introduction 

This thesis uses established econometric techniques to analyse the current 

relationships within the global natural gas markets and their connections to crude oil. 

The primary data for this study are solely time series of natural gas and oil prices, 

deliberately excluding variables such as regional production, consumption, and 

volumes of gas exports and imports. This focused approach aligns with a well-

established price-based assessment methodology outlined in Chapter 2. Despite the 

limited data selection, we anticipate that this thesis will provide a comprehensive 

assessment of global natural gas market dynamics supported by the latest data.  

This chapter details the six distinct natural gas prices used as key inputs in the 

econometric tests intrinsic to this thesis's methodology. Additionally, the Brent crude 

oil benchmark is incorporated into the data set to explore the influence of oil 

indexation across different gas markets.  

One might question the criteria utilised for selecting the six natural gas prices included 

in this thesis’ analysis. These prices represent the most significant distribution hubs 

and globally traded natural gas benchmarks. Heather (2023) report confirms this 

selection. It highlights the main European gas hubs and other key global gas prices. 

This data is depicted in Figures 4.1 and 4.2, which were extracted from their report. 

Figure 4.1 illustrates the price trends of global natural gas from 2018 to 2022 as 

identified by the Oxford Institute for Energy Studies (OIES), aligning with the price 

data selected for this thesis. Additionally, Figure 4.2 ranks European gas hubs based 

on their trading volumes in 2022, which corresponds with the chosen European gas 

prices for this study. 
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Figure 4.1 Global Gas and Brent Prices: Jan 2018 - Dec 2022. Source: Heather 

(2023) 

 

Figure 4.2 Total Traded Volumes in European Gas Hubs in 2022 (TWh). Source: 

Heather (2023) 

This chapter also examines the statistical characteristics of the time series used in 

Chapters 6, 7, and 8. The choice of econometric techniques to be applied to the data 

later will consider these statistical features. In particular, the presence or absence of a 

unit root in a time series can significantly impact its behaviour and properties over 

time. Stationary time series should be treated differently than non-stationary series in 
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time series econometric models (Brooks 2008). The second important aspect of this 

chapter is the investigation of structural breaks, represented by external shocks that 

can permanently change the time series behaviour over time. Considering the presence 

of structural breaks is essential in preventing biased results in multivariate modelling. 

The definition of stationarity is crucial when exploring econometric methods such as 

Autoregressive Distributed Lag models (ARDL), Vector Auto Regression models 

(VAR), and Vector Error Correction Models (VECM), which are used to test the 

cointegration and causality relationships amongst the time series. Additionally, when 

examining the stationarity characteristics of a time series, it is important not to 

overlook the potential presence of structural breaks. According to Perron (1989), 

failure to account for structural breaks could result in unit root tests being unable to 

reject the null hypothesis of a spurious unit root and incorrectly identifying a time 

series as non-stationary. Consequently, Section 4.2 will include a unit root test that 

considers the presence of a structural break. This test will determine an endogenous 

break date based on recursive estimation of t-statistics. 

The organisation of this chapter is as follows: Section 4.2 provides the data description 

of the gas prices used throughout this thesis’ methodologies, highlighting its relevance 

in elaborating the main thesis’ objectives. Section 4.3 offers a comprehensive 

overview of the main unit root tests, detailing their application in scenarios without 

and with a single structural break in the time series variable. Section 4.4 presents the 

outcomes of these unit root tests, conducted on the time series data pertinent to this 

thesis, both in the absence and presence of structural breaks. Sections 4.4.1 and 4.4.2 

display the time series plots and their descriptive statistics, respectively. Subsequently, 

Sections 4.4.3 and 4.4.4 present the key findings, and Section 4.4 provides concluding 

remarks. 

4.2 Data Description 

We study natural gas prices in the six major trading hubs in the world. All these prices 

were obtained on the standard unit of US$ per million British thermal units 

(US$/MMBtu), except the National Balancing Point (NBP) and Title Transfer Facility 

(TTF) prices. Unit conversion to US$/MMBtu was implemented for these European 

benchmarks to align with the common unit used in gas price integration research, 
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enabling comparative analyses between the findings of this thesis and existing 

literature. A key methodological step involves transforming these time series into their 

natural logarithmic values, a common initial step in analysing trended time series. This 

transformation is implemented to facilitate the interpretation of results, as data in this 

format readily convey elasticity changes in percentage. 

The Henry Hub gas price in North America has been the primary benchmark in the 

region in the last two decades. The European gas market's selection of datasets 

effectively represents the region's price formation dynamics. The NBP  and TTF hubs 

are highlighted as key indicators of the EU's spot gas market prices. The Russian gas 

export price (RUS) is also noted for its hybrid pricing model, which combines the 

average import price at the Russian border with a component based on spot prices. 

This study will represent the Asian gas market by examining spot and contract prices. 

The evaluation of spot prices will be carried out through the weekly Northeast Asia 

Spot LNG DES assessment. In contrast, Japan's LNG customs average import prices 

will be utilised to evaluate long-term contracts. By analysing the Asian market through 

both spot and long-term contract prices, it will be feasible to examine the recent 

disconnection of spot and long-term oil-indexed gas prices in Asia, as suggested by 

Fulwood (2019). 

This thesis selects the Brent crude oil price as the crude oil benchmark due to its 

relevance to the European and Asian markets, accurately reflecting the European 

energy market's crude oil pricing. Although the West Texas Intermediate (WTI) crude 

oil price, the US benchmark, has sometimes deviated from international crude oil 

prices due to domestic supply management issues. Outside these periods, both Brent 

and WTI benchmarks are generally closely aligned. Consequently, the choice of either 

benchmark is not expected to affect the econometric outcomes of the study 

substantially. A concise summary of each time series is provided below. 

1. The variable LnOIL represents the natural logarithm of the Europe Brent Crude 

Oil Spot price time series. This benchmark is initially traded in US$ per barrel. A 

conversion factor is employed to align with the methodology's unit convention, 

equating each oil barrel to 5.698 MMBtu (U.S. Energy Information 

Administration 2020). This time series is obtained in a monthly frequency, 

spanning from January 2001 (2001M01) to February 2020 (2020M02), and 
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includes a total of 230 data points. The source of this data is the US Energy 

Information Administration (EIA) database. 

 
2. The variable LnHH is defined as the time series of the natural logarithm of the 

Henry Hub (HH) gas spot price, which is traded in the United States. This time 

series reflects the North American natural gas market. The data is in monthly 

frequency and spans again from 2001M01 to 2020M02. The data for LnHH was 

sourced from the US Energy Information Administration (EIA) database. 

 
3. The LnNBP variable represents the time series of the natural logarithm of the 

National Balancing Point (NBP) gas one-day-ahead price, a virtual trading 

platform in the United Kingdom. The trading unit for these contracts is Pence per 

Therm. The conversion involves two steps to standardise this unit to 

US$/MMBtu: first, converting Therms to MMBtu, and then converting Pence to 

US$ using the monthly average exchange rate time series from the OzForex 

Limited database (OzForex Limited 2021). This time series, representing a key 

European natural gas price, includes monthly observations from 2001M01 to 

2020M02. The data for LnNBP was sourced from Datastream and is identifiable 

by the Reuters Instrument Code (RIC) TRGBNBPD1. 

 
4. The LnTTF variable represents the time series of the natural logarithm of the Title 

Transfer Facility (TTF) gas one-day-ahead price, which is virtually traded in the 

Netherlands. In the day-ahead market, participants buy or sell financial assets a 

day before the delivery day. The TTF price is sourced in US$ per megawatt-hour 

(US$/MWh). To align this with the study's standard unit of US$/MMBtu, a 

conversion factor from the U.S. Energy Information Administration (2021) was 

used to transform MWh into MMBtu. This time series represents another 

European benchmark. Its dataset comprises 116 monthly observations covering 

July 2010 (2010M07) to February 2020 (2020M02). The timeframe is notably 

shorter than most series in this thesis, limited by data availability before 2010. 

The data for LnTTF is obtained from Datastream and is identified by the Reuters 

Instrument Code (RIC) TRNLTTFD1. 

 
5. The LnRUS variable represents the time series of the natural logarithm of the 

Russian natural gas (RUS) price. This series includes the average export border 
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price and spot price components. This thesis considers the RUS time series as one 

of the European natural gas prices. This time series is characterised by a monthly 

frequency comprising 230 observations from 2001M01 to 2020M02. The data for 

LnRUS were sourced from the World Bank open database, ensuring reliable and 

accessible information for this analysis (The World Bank 2021). 

 
6. The LnJPN is the time series of Japan's (JPN) monthly average LNG import 

prices, historically influenced by long-term contracts tied to oil prices. This thesis 

recognises the JPN time series as one of Asia's key natural gas prices. This time 

series is compiled with a monthly frequency from 2001M01 to 2020M02. The 

data for LnJPN was sourced from Datastream and is identifiable under the Reuters 

Instrument Code (RIC) LNG-TOT-JP. 

 
7. The LnALNG variable is a time series representing the natural logarithm of spot 

LNG prices imported into Northeast Asia (ALNG), as assessed by Refinitiv 

(Reuters). This natural gas price is anticipated to exhibit a lower influence of oil 

indexation in its price formation, given that it is derived from spot price 

transactions rather than long-term contractual agreements. In the context of this 

thesis, the ALNG time series is identified as one of Asia's natural gas prices. This 

time series maintains a monthly frequency and includes 116 observations, 

covering the timeframe from 2010M07 to 2020M02. This period was constrained 

by the unavailability of data before 2010. The data for LnALNG was obtained 

from Datastream and is designated by the Reuters Instrument Code (RIC) LNG-

AS. 

Figures 4.3 and 4.4 present a graphical visualization of the price time series in two 

datasets in US$/MMBtu from 2001M01 to 2020M02 and from 2010M07 to 2020M02, 

respectively. In addition to the time series graphs, Tables 4.1 and 4.2 present 

correlation matrixes from both datasets. These initial analyses will offer insights into 

the relationships between the prices under study. Furthermore, it serves as a foundation 

for the subsequent analysis in this thesis, aimed at challenging conclusions drawn 

solely from visual observations by examining short-run and long-run dynamic links 

and causality directions, identifying leading time series in price formation, and 

assessing long-term convergence. 
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Figure 4.3 Price Time Series in US$/MMBtu from 2001M01 to 2020M02. 

 

 

 

Figure 4.4 Price Time Series in US$/MMBtu from 2010M07 to 2020M02. 

Table 4.1 Correlation Matrix of Price Time Series from 2001M01 to 2020M02. 
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Table 4.2 Correlation Matrix of Price Time Series from 2010M07 to 2020M02. 

 

4.3 Unit Root Tests and Stationarity of Time Series 

A time series is considered stationary if its mean and variance-covariance structure 

remain constant over time (Lütkepohl and Krätzig 2004). Formally, the following two 

conditions define stationarity: 

1.  +(-!) = /" for all 0 ∈ 2 

2.  +[4-! − /"54-!#$ − /"5] = 7$ for all 0 ∈ 2 and all integers ℎ such that 0 −

ℎ ∈ 2 

The first condition is that the observations of a time series representing a stationary 

stochastic process must have a constant and equal mean. In other words, the time series 

should have no trend. The second condition is that the variance is also constant over 

time, as the variance 9"% = + :4-! − /"5
%
; = 7& and covariances +[4-! − /"54-!#$ −

/"5] = 7$ do not depend on 0. 

If a time series is non-stationary, the regression equations estimated by the OLS 

method will generally not result in accurate economic modelling (Glynn, Perera and 

Verma 2007). If variables are non-stationary, exploring the potential for a long-run 

cointegrating relationship between them is necessary. Cointegration occurs when a 

linear combination of (non-stationary and possibly stationary) time series become a 

stationary process. If it exists, this long-run relationship is known as an error-

correction term when incorporated in models as an explanatory variable. For bivariate 

analysis, the ARDL models are a popular choice that can effectively determine both 
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long-run and short-run relationships between time series variables when they are either 

stationary in first difference, I(1) hereafter, or a mix of stationary in first difference 

and in levels, I(0) and I(1) variables (Pesaran, Shin and Smith 2001). 

In assessing the unit root hypothesis for time series, it is essential to consider the 

findings of Nelson and Plosser (1982). This research suggests that random shocks can 

have enduring impacts on the long-term behaviour of time series. Such shocks may 

permanently alter the dynamic characteristics of the series over time. Highlighting this 

aspect, Zaklan, Abrell, and Neumann (2016) noted that strong autocorrelation is a key 

feature of long-run commodity prices, like natural gas prices, underscoring the 

importance of investigating whether price shocks have persistent effects on future 

observations. The forthcoming section will concisely review the literature on major 

unit root tests for time series,  including those able to detect endogenous structural 

break and permanent shock effects. 

4.3.1 Stationarity and Unit Root Tests Without Structural Breaks 

A stationary time series always fluctuates around its mean with broadly constant 

amplitude (variance). It will always return to its mean value (mean reversion) (Hall, 

Taylor and Cuthbertson 1993). Therefore, a stationary time series will present the 

same mean, variance, and autocovariance value independent of the period measured. 

The importance of stationarity in time series is to define its deterministic and random 

components. It is essential to note that non-stationary time series can lead to erroneous 

regression analysis, commonly called spurious regression. This issue occurs because 

non-stationary time series may exhibit similar trends, leading to statistically 

significant coefficients in regression analysis, even when there is no genuine 

relationship between the variables. Yule (1926) first introduced this concept. The idea 

of spurious regression was further developed by Granger and Newbold (1974) as they 

presented an important rule of thumb to identify spurious problems in the regression: 

R2 > d (Durbin-Watson value). 

The literature has developed several methods to test for unit roots in time series. Next, 

we will briefly introduce three of the most popular methods. While a wide range of 

tests exist, varying in application and complexity, this discussion will be limited to the 

fundamental tests applied to the data in this thesis. 
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The first unit-root test presented in this chapter is based on Dickey and Fuller (1979) 

and allows the detection of a unit root in univariate time series data. This test assesses 

the existence of a unit root in the following stochastic process: 

<! = 	=<!#' + >! (4.1) 

Where <! is the time series, and >! is the white-noise error term. The Dickey and Fuller 

(DF) test considers a null hypothesis on the coefficient =. When |=| = 1, (4.1) can be 

simplified as ∆<!#' =	>!, and the time series <! is cointegrated of order 1. In other 

words, <! has a unit root and is considered non-stationary. Differencing is applied to 

the data to convert <! to a stationary time series. 

There are two other possibilities to test a null hypothesis on the value =. When |ρ| < 1, 

time series <! will converge to a stationary series as t increases. On the other hand, if 

|ρ| > 1, <!	 becomes non-stationary, and its variance increases exponentially. 

Manipulating (1.1) by subtracting <!#' from both sides, we obtain a more 

autocorrelation-friendly regression model for the DF tests, which can be expressed as: 

∆<! = 	B<!#' + >! ; 		B = (= − 1) (4.2) 

Therefore, if = = 1, B = 0. In this case, the null hypothesis of a unit root is confirmed, 

and the time series tested is said to be non-stationary. It is important to notice that if 

B = 0, then (4.2) can be written as: 

∆<! =	<! − <!#' = >! (4.3) 

As previously stated, >! is a white-noise error term assumed to be stationary. It implies 

that the first difference of a random walk time series is also stationary. Model (4.2) 

may include an intercept and/or a linear time trend. If stationarity is found in these 

formulations, it will be concluded that the process is stationary with a 

drift and/or deterministic trend. In its general form, the Dickey-Fuller (DF) test, as 

shown in Equation (4.2), treats >! as uncorrelated over time. However, Dickey and 

Fuller introduced an enhanced version known as the Augmented Dickey-Fuller (ADF) 

test for scenarios where the white-noise error is correlated. The ADF test modifies the 

equation by including lagged values of the changes in <! on the right side to mitigate 

autocorrelation in the residuals. It allows for including a constant and a trend variable 
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in the regression. This extension makes it possible to consider trend stationarity as an 

alternate hypothesis. The equation for the ADF test, based on Equation (4.1), is 

reformulated as follows: 

<! =	D'<!#' +⋯+ D(<!#( + >! (4.4) 

Where is the white-noise error term, and D) are fixed coefficients. By applying the lag 

operator, Equation (4.4) can be reduced as: 

41 − D'F −⋯− D(F(5<! = >! or  D(F)<! = >! (4.5) 

With D(F) = 1 − D'F −⋯− D(F(. 

Equation (4.5) is integrated when D(1) = 1 − D' −⋯− D( = 0. For the ADF test, 

the hypothesis of interest is D(1) = 0. However, a reparameterization of the model is 

required to test for the null hypothesis against the alternative of stationarity. By 

subtracting <!#' on both sides, (4.4) can be rearranged as follows: 

∆<! =	G<!#' +HD*
∗∆<!#* +

(#'

*,'

>!	 (4.6) 

Where  G = −D(1) and D*∗ = −(D*-' +⋯+ D(). In (4.6), the null hypothesis to be 

tested is !&:	G = 0 against the alternative !':	G < 0. In the ADF test, a test is 

conducted based on the t-statistic of the coefficient	G from an OLS estimation of (4.6) 

(Dickey and Fuller 1979). The Tao-distribution of this statistic and critical values are 

obtained through simulation methods; MacKinnon's (1991) work is a renowned 

reference for these critical values in the literature.  

It is crucial to choose a parsimonious lag length when using this test. Including more 

lag lengths than necessary in the ADF test can decrease its efficiency since it involves 

estimating more parameters and considering fewer effective observations. Conversely, 

using a small number of lag lengths may cause the null hypothesis of a unit root to be 

excessively rejected at any significant level (Campbell and Perron 1991). Information 

criterion methods provide an intriguing approach to determining the optimal lag 

lengths. More details about the optimal lag length selection through the main 

information criterion methods are in Section 6.2 of Chapter 6. 



45 

 

A disadvantage of the ADF test is that it may become less reliable when applied to a 

stationary time series with a unit root near the non-stationary boundary (Brooks 2008). 

We can find other methods in the literature that provide a greater testing power. We 

will briefly explore two of them, Phillips and Perron (1988) and Kwiatkowski et al. 

(1992), known as the PP and KPSS unit root tests. 

A prerequisite for the Dickey-Fuller (DF) test is that the residuals should be 

uncorrelated and identically distributed. To address issues of autocorrelation in DF 

test residuals, the Augmented Dickey-Fuller (ADF) test incorporates lagged terms of 

the dependent variable. Phillips and Perron (1988) introduced a unit root test that 

resolves the serial correlation problems in residuals without adding lagged dependent 

variables. Their approach employs a non-parametric statistical method and applies a 

correction to the standard deviation, providing a robust variance estimate. The 

regression formula used in the Phillips-Perron (PP) unit root test is as follows: 

<! = 	J<!#' + >! (4.7) 

Where >! may be heteroskedastic and I(0). The PP tests account for serial correlation 

and heteroskedasticity in the errors >! by manipulating the test statistics 0.,& and 2./ . 

The modifications in the t-statistics are represented by K! and K., which are defined 

as follows: 

K! = L
9M%

NO%
P
'/%

	0.,& −
1
2
L
NO% − 9M%

NO%
PL
2 ∗ R+(JM)

9M%
P (4.8) 

K. = 2./ −
1
2
L
2% ∗ R+(JM)

9M%
P 4NO% − 9M%5 (4.9) 

The variables 9M% and NO% are consistent estimates of the variance parameters, 

represented as: 

9% =	 lim
1→3

2#'H+[>!%]
1

!,'

  

N% =	 lim
1→3

H+V2#'R1
%W

1

!,'
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Where R1 = ∑ >!1
!,' . The residuals >!	in (4.7) have a consistent estimate of 9%, and 

the Newey-West long-run variance of the residuals is a consistent estimate of N%. The 

null hypothesis tested is that J = 0. When the null is not rejected, the PP test statistics 

K! and K. present equal asymptotic distributions as the ADF t-statistic. 

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS, 1992) test offers an alternative 

method for assessing the stationarity of time series. Unlike the ADF or PP tests, the 

KPSS test reverses the hypothesis framework. In the KPSS approach, the null 

hypothesis assumes that <! is I(0), meaning the time series is stationary. This positions 

the KPSS test as a stationarity test compared to a unit root test. The KPSS test utilises 

the following model for its analysis: 

<! =	YZ! + /! + >! (4.10) 

/! = /!#' + [! , 	[!~^_(0, 94%)  

Where Z! represents the deterministic components, >! may be heteroskedastic and 

I(0). /! is represented by a random walk with innovation variance 94%. To satisfy the 

null hypothesis that <! is I(0), /! must be constant. Hence, 94% = 0. 

The t-statistic of the KPSS test is the Lagrange multiplier (LM) for testing 94% = 0 

against the alternative that 94% > 0 and is presented as follows: 

abRR = c2#% 	H :R!d
%
;

1

!,'

e/NO% (4.11) 

Where R!d = ∑ >M*
!
*,' , >M! is the residual of a regression of <! on Z!, and NO% is a consistent 

estimate of the long-run variance of >! through >M!. 

The KPSS test is particularly useful when the ADF or PP tests do not provide strong 

evidence to reject their null hypothesis of a unit root. Under such circumstances, the 

KPSS test can be instrumental in determining if there's insufficient evidence to reject 

its null hypothesis of stationarity. As a result, the KPSS test is best employed as a 

supplementary unit root test, complementing the findings from the ADF and PP tests. 
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4.3.2 Stationarity and Unit Root Tests with Structural Break 

Accurately addressing structural breaks in time series data is important, as ignoring 

them can lead to biased outcomes in unit root tests. Neglecting to account for structural 

breaks in time series data can result in not rejecting unit root null hypotheses and 

falsely classifying the time series as non-stationary. Chiappini, Jégourel and Raymond 

(2019) noted that the natural gas market has significantly changed over the past decade 

due to the 2008 financial crisis and the US shale gas revolution, potentially causing 

structural breaks. These events have significantly decoupled oil and gas prices. In this 

subsection, we will provide a concise overview of the commonly used unit root tests 

that enable the detection of a single structural break. We will focus on two structural 

break detection methodologies: the models proposed by Perron (1989, 1997) and the 

Zivot and Andrews (1992) model.  

4.3.2.1 Perron’s Model for Unit Root Tests with Structural Break 

Perron (1989) argues that the conventional ADF unit root test may mistakenly identify 

a trend-stationary time series as non-stationary if a structural break exists in the 

intercept and/or trend functions. The ADF test may present biased results in favour of 

the null hypothesis of non-stationarity. To assess this, Perron (1989) enhanced the 

ADF unit root test by incorporating a broader set of dummy variables in the regression 

model. This modification allows for considering a structural break in the trend 

function at a pre-determined date, denoted as Tb (where 1 < Tb < T). Essentially, this 

method tests for a single exogenous break, grounded in underlying asymptotic 

distribution theory principles (Glynn, Perera and Verma 2007). 

Perron (1989) introduces three distinct model settings for testing the existence of a 

structural break in time series. The first, termed the 'crash' model, is an ADF model 

enhanced with an intercept dummy variable, allowing for an exogenous break in the 

level of the series. The second, the 'growth rate' model, accommodates a break in the 

growth rate of the series, reflected in the slope of the trend function without an abrupt 

change in the intercept at the break date. The third model merges the features of the 

first two, permitting breaks in the trend function's level and slope. All three models 

posit the null hypothesis as a unit root with a break and the alternative hypothesis as a 



48 

 

stationary trend with a break. The specific hypotheses for each of these models are 

formulated as follows: 

o Null hypotheses 

Model 1: <! = / + gZ(2h)! + <!#' + i!  (4.12) 

Model 2: <! = / + <!#' + (/% − /')Zj! + i! (4.13) 

Model 3: <! = / + <!#'gZ(2h)! + (/% − /')Zj! + i! (4.14) 

In these equations, Z(2h)! = 1 if  0 = 2h + 1; if not, Z(2h)! = 0. Moreover, Zj! =

1  if 0 = 2h + 1; if not, Zj! = 0. 

o Alternative hypotheses 

Model 1: <! = / + k0 + (/% − /')Zj! + i!  (4.15) 

Model 2: <! = / + k0 + (k% − k')Z2! + i! (4.16) 

Model 3: <! = / + k0 + (/% − /')Zj! + (k% − k')Z2! + i! (4.17) 

In these alternative hypothesis equations, Z2 = 0 − 2h if 0 > 2h; if not,  Z2 = 0.  

In all models, only one exogenous structural break is allowed. Model 1, under the null 

hypothesis of a unit root, accommodates a one-time structural change at Tb in the time 

series level. The alternative hypothesis suggests trend stationarity with a single 

structural break impacting only the trend function's intercept. Model 2, known as the 

'growth rate model,' involves a shift in the drift parameter (μ) under the unit root null 

hypothesis. This shift happens at the structural break date Tb, transitioning from μ1 to 

μ2. The alternative hypothesis in model 2 implies a change in the trend function's slope 

without a significant drift in the time series level. Model 3, as delineated in (4.9), 

uniquely incorporates the potential for a sudden change in the time series' level and 

slope. 

Building upon Perron's initial concept, Perron and Vogelsang (1992) expanded the 

previous approach by creating two distinct test statistics for different structural breaks. 

The first, the Additive Outliers (AO) model, focuses on sudden shifts in the mean of 
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the time series, enhancing the original 'crash' model. The second, the Innovation 

Outliers (IO) model, considers more gradual changes in the time series function. Later, 

Perron (1997) refined the IO model by differentiating between two types: IO1, which 

involves gradual changes in the intercept, and IO2, which includes alterations in the 

intercept and slope of the trend function. Perron (1997) concluded this line of work by 

proposing three distinct models to test for unit roots in the presence of an exogenous 

structural break, each represented by a specific equation. The equations representing 

these three models are as follows: 

AO Model: -! = / + k0 + 7(Z2) + D-!#' + ∑ lm∆-!#'
5
),' + i!  (4.18) 

IO1 Model: 
-! = / + k0 + n(Zj) + BZ(26) + D-!#' +Hlm∆-!#'

5

),'

+ i! 

(4.19) 

IO2 Model: -! = / + k0 + n(Zj) + 7(Z2) + BZ(26) + D-!#'

+Hlm∆-!#'

5

),'

+ i! 

(4.20) 

Where 26 is the period chosen for the structural break, Zj represents the intercept 

dummy, Z2 represents the slope dummy, and Z(26) represents the crash dummy. In 

addition,  Zj = Z2 = Z(26) = 1 if 0 > 2h; if not,  Zj = Z2 = Z(26) = 0. The test 

is based on the t-statistic for testing D = 1.  

The appropriate model selection for testing the unit root follows a top-down approach, 

aligning with the standard criteria outlined by Shrestha and Chowdhury (2005). This 

method initially employs the IO2 model as the most comprehensive option, 

accommodating breaks in the trend function's level and slope. This model includes the 

time trend (0) and the structural break date Z(26),  as key components. After applying 

the IO2 model, the statistical significance of the t-statistic for 0 and Z(26) is examined. 

If both are not statistically significant, the analysis then shifts to assess the significance 

of Zj and Z2. A lack of significance in these four variables indicates an absence of a 

structural break in the time series at the specified period 26. 
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However, if all four variables in the regression are statically significant, then the model 

IO2 is the appropriate one to choose. Another possibility is that only 0 and Z(26) could 

be statistically significant in the set of break variables, with Zj being significant 

testing for Zj and Z2 only. In this case, the model allows for a structural break in the 

intercept (Zj). Therefore, the selected model would be the IO1 with time trend t and 

structural break date 26. On the other hand, the AO model should be selected if only 

Z2 is significant when testing for Zj and Z2, therefore assuming a structural break 

only in the trend function (Zj) slope. 

4.3.2.2 Zivot and Andrews’ Model for Unit Root Tests with Structural Break 

A key limitation of Perron's (1989) method lies in the predetermined, or exogenous, 

nature of the break point, chosen based on the observed behaviour of the time series. 

This predetermined selection can lead to issues, as Christiano (1992). In response to 

Christiano's critique, researchers explored methods to determine the structural break 

date endogenously, aiming to mitigate bias in unit root tests. The Zivot and Andrews 

(1992) (ZA) endogenous structural break test is a notable development in this area. 

This sequential method utilizes a unique dummy variable for each potential break date, 

allowing for a more intrinsic evaluation of the structural break.  

In the ZA test, the selection of the break date is by the minimum t-statistic (negative) 

value from the ADF test of unit root, meaning that the break will be considered when 

there is the least evidence of a unit root null hypothesis (Glynn, Perera and Verma 

2007). This means that the methodology does not determine the break point by 

inputting an estimated break date (exogenously) but rather by determining the break 

point endogenously through a recursive method (i.e. estimating regression models for 

all possible dates). The test evaluates the null hypothesis of a unit root by checking 

the t-statistics based on a critical value greater than Perron's (1997) critical value, thus 

making it harder to reject the null hypothesis in the ZA model. It chooses the break 

point according to the minimum t-statistic on α = 1 for a break point at period 1<Tb<T. 

The model then tests the null hypothesis by analysing the smallest t-value of the series, 

comparing it with some specific critical values estimated by Zivot and Andrews 

(1992). 
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The test first identifies the smallest t-value at a significant level and then compares it 

with the critical value. If the smallest t-value is greater than the critical value, the null 

hypothesis of the unit root is rejected, and the stationarity of the time series is 

confirmed. However, the time series can be considered non-stationary if the smallest 

t-value is smaller than the critical value. Zivot and Andrews (1992) developed three 

equations for their methodology: models A, B, and C. 

A crucial consideration in all ZA models is including the endogenous variable lagged 

by one period. Model A consists of a regression containing the intercept dummy 

variable (Zj), equal to 1 in periods after the break point and zero in the periods before 

the break. Moreover, model A contains the endogenous variable lagged by one period, 

the first difference of the endogenous variable lagged by one period, and a linear trend 

function. Model B consists of a regression containing the trend dummy (Z2), a 

variable that allows for a change in the trend function and produces a new linear trend. 

Finally, Model C consists of a regression containing the trend dummy (Z2) and 

intercept dummy variable (Zj) to investigate a break in the intercept and trend 

functions. Formally, the models are as follows: 

Model A: -! = / + k0 + nZj(26) + D-!#' + ∑ lo∆-!#'
5
*,' + i!  (4.21) 

Model B: -! = / + k0 + 7Z2(26) + D-!#' +∑ lo∆-!#'
5
*,' + i!  (4.22) 

Model C: -! = / + k0 + nZj(26) + 7Z2(26) + D-!#' +

∑ lo∆-!#'
5
*,' + i!  

(4.23) 

Where the dummy variables are Z2 which allows for a break in the trend function, 

and Zj	which allows for a break in the intercept at the break time (26). Zj = 1 if  

0 > 0 − 26, and equals to zero otherwise. Z2 = 1 if  0 > 	26, and equals to zero 

otherwise. Furthermore, the rejection of the null hypothesis depends on the coefficient 

of D.		If the coefficient of D is statistically significant in the regression, then the model 

rejects the null hypothesis. 
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4.4 Implementation of the Unit Root Tests to the Thesis Dataset 

As outlined in Chapter 3, the market integration analysis will encompass seven time 

series. This set comprises six natural gas prices alongside one crude oil benchmark 

price. Within the natural gas price series, Europe's TTF and Asia's ALNG have a 

relatively shorter sampling period from July 2010 to February 2020, in contrast to the 

longer durations covered by the other five time series in the dataset. 

This thesis uses two primary data samples for the econometric models to examine the 

relationships between the time series. The first sample encompasses four conventional 

natural gas prices and the Brent crude oil price, covering the period from January 2001 

(2001M01) to February 2020 (2020M02). The second sample, with a shorter duration, 

includes all seven price variables, which incorporate the TTF and ALNG time series 

spanning from July 2010 (2010M07) to February 2020 (2020M02). Consequently, 

unit root testing will be conducted on these two distinct dataset representations. The 

outcomes of these tests will lay the groundwork for further econometric modelling 

that necessitates unit root verification. 

This section presents the empirical findings from the unit root tests conducted on the 

thesis data. Figure 4.5 provides a graphical representation of all seven price time series 

over time. The time series plots are followed by a presentation of the descriptive 

statistics for each of the two data samples under consideration. Subsequently, the 

outcomes of the standard unit root tests and the Zivot and Andrews (1992) endogenous 

structural break test (ZA) are detailed. 
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4.4.1 Graphical Representation of Thesis Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5 Graphical Representation of Time Series in Natural Logs. 
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4.4.2 Descriptive Statistics of Thesis Data 

Tables 4.3 and 4.3 display the descriptive statistical outcomes for the two datasets. 

Table 4.1 focuses on the dataset covering January 2001 to February 2020, which 

includes 230 monthly observations for each of the five time series. On the other hand, 

Table 4.3 encompasses the dataset from July 2010 to February 2020, featuring 116 

monthly observations for each of the seven time series. 

Table 4.3 Descriptive Statistics of the Dataset with Sample Period between 

2001M01 and 2020M02. 

 
LnHH LnNBP LnRUS LnJPN LnOIL 

Mean 1.419 1.803 1.918 2.157 2.346 
Median 1.371 1.862 2.012 2.168 2.401 
Maximum 2.597 2.929 2.768 2.891 3.148 
Minimum 0.548 0.577 1.033 1.379 1.189 
Std. Dev. 0.436 0.474 0.439 0.437 0.489 
Skewness 0.405 −0.364 −0.222 −0.011 −0.425 
Kurtosis 2.545 2.502 1.946 1.895 2.312 
Jarque-Bera 8.271 7.472 12.527 11.712 11.445 
Probability 0.0160 0.0238 0.0019 0.0029 0.0033 
Sum 326.425 414.649 441.188 496.146 539.4945 
Sum Sq. Dev. 43.491 51.408 44.170 43.698 54.848 
Observations 230 230 230 230 230 

 

Table 4.4 Descriptive Statistics of the Dataset with Sample Period between 2010M07 

and 2020M02. 

 
LnHH LnNBP LnRUS LnTTF LnJPN LnALNG LnOIL 

Mean 1.138 1.958 2.023 1.930 2.434 2.237 2.573 
Median 1.094 2.013 2.113 1.978 2.395 2.257 2.556 
Maximum 1.792 2.445 2.556 2.780 2.891 2.944 3.092 
Minimum 0.548 1.037 1.068 0.967 1.763 1.099 1.684 
Std. Dev. 0.248 0.327 0.381 0.361 0.317 0.453 0.357 
Skewness −0.058 −0.639 −0.452 −0.596 −0.133 −0.198 −0.267 
Kurtosis 2.565 2.630 2.008 2.888 1.729 2.006 1.945 
Jarque-Bera 0.977 8.560 8.705 6.932 8.151 5.541 6.763 
Probability 0.613 0.0138 0.0129 0.0312 0.0170 0.0626 0.0340 
Sum 131.966 227.169 234.643 223.870 282.288 259.524 298.469 
Sum Sq. Dev. 7.084 12.349 16.721 14.960 11.525 23.649 14.665 
Observations 116 116 116 116 116 116 116 
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An analysis of Tables 4.1 and 4.2 reveals that, on average, producing a unit of energy 

with oil is generally more expensive than generating the same amount of energy from 

gas across various markets. The average values indicate that gas traded at HH is the 

most cost-effective option, while ALNG ranks the most expensive. Notably, the 

ALNG gas price demonstrates greater volatility compared to oil. This higher 

fluctuation can be linked to the lack of long-term purchase agreements associated with 

the ALNG price, highlighting the instability of short-term LNG import prices in Asia. 

As detailed in Section 3.6 of Chapter 3, long-term contracts often tie gas prices to oil 

prices using an 'S-curve' mechanism, which establishes limits for significant oil price 

variations, thus reducing volatility in gas prices. 

4.4.3 Empirical Results of the Unit Root Tests Without Structural Break 

This section details each variable's unit root test results within the two data samples, 

as outlined in the previous section. The findings are presented in two separate tables, 

featuring three standard unit root tests discussed earlier in this chapter: the augmented 

Dickey-Fuller (ADF) test, the Phillips and Perron (PP) test, and the Kwiatkowski et 

al. (KPSS) test. 

The ADF and PP tests are initially applied to assess the unit root hypothesis. These 

tests are conducted on the variables in levels and first differences, selecting the 

appropriate lag length based on Akaike's Information Criterion (AIC) with a cap of 5 

lags. Consistent with established practices, a trend function is incorporated in the 

regression for level testing but excluded for first difference testing in ADF and PP 

tests. Both tests use MacKinnon's response surface equation for critical values. The 

null hypothesis for these tests is the existence of a unit root. 

The KPSS test similarly applies to the data in levels and first differences. The trend 

function is included in level testing and omitted in the first difference testing. The 

bandwidth for the KPSS test in levels is set at 5, and for the first differences, it is 

automatically determined using Newey-West selection and the Bartlett-Kernel 

estimation method. The critical values are derived from Kwiatkowski-Phillips-

Schmidt-Shin's equation. Unlike the ADF and PP tests, the KPSS test's null hypothesis 

is stationarity, meaning rejection of the null indicates non-stationarity. 
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Table 4.5 presents the t-statistics for the unit root tests applied to each of the dataset's 

five variables, encompassing monthly observations from January 2001 (2001M01) to 

February 2020 (2020M02). The results of these unit root tests indicate that all five 

time series in this dataset achieve stationarity when differenced once. The results show 

they are integrated in the first order, denoted as I(1). 

Table 4.5 Standard Unit Root Testing Results for the 2001-2020 Data Sample. 

 
Augmented Dickey-

Fuller Tests Phillips-Perron Tests Kwiatkowski et al. 
(KPSS) Tests 

Time Series Levels First 
Differences Levels First 

Differences Levels First 
Differences 

LnHH −2.7499 −15.4679*** −3.0866 −15.4586*** 0.3420*** 0.0393 
LnNBP −3.0386 −7.7831*** −1.9805 −11.022*** 0.5213*** 0.0978 
LnRUS −0.0709 −6.2435*** −0.7902 −10.4642*** 0.7492*** 0.2909 
LnJPN −1.8425 −6.4456*** −1.4269 −8.4553*** 0.7128*** 0.1504 
LnOIL −1.9449 −11.5760*** −2.0246 −11.5052*** 0.7191*** 0.2132 
*, ** and *** denote significance at better than 10, 5, and 1 percent, respectively. 

Table 4.6 displays the t-statistics of the unit root tests for each of the seven variables 

within the dataset covering monthly observations from July 2010 (2010M07) to 

February 2020 (2020M02). The results from these tests reveal that all seven time series 

in this dataset achieve stationarity when differenced once, classified as I(1). However, 

an exception is noted in the KPSS test results for LnTTF, which indicates evidence of 

stationarity in levels. 

Table 4.6 Standard Unit Root Testing Results for the 2010-2020 Data Sample. 

 
Augmented Dickey-

Fuller Tests Phillips-Perron Tests Kwiatkowski et al. 
(KPSS) Tests 

Time Series Levels First 
Differences Levels First 

Differences Levels First 
Differences 

LnHH −2.8010 −11.4085*** −2.3782 −11.3945*** 0.0744 0.0551 

LnNBP −3.1613 −7.6703*** −2.8259 −7.5021*** 1.175*** 0.0574 

LnRUS −0.1673 −4.8434*** −1.9217 −6.7498*** 1.3211*** 0.1003 

LnJPN −2.1898 −5.6134*** −1.8820 −5.5364*** 0.2130** 0.1606 

LnTTF −2.6047 −10.1376*** −3.4199* −15.4799*** 0.1098 0.0611 

LnALNG −2.7403 −8.1915*** −2.5513 −8.0624*** 1.2142*** 0.0736 

LnOIL −2.2932 −8.0916*** −2.0712 −7.8862*** 1.1162*** 0.1224 

*, ** and *** denote significance at better than 10, 5, and 1 percent, respectively. 
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4.4.4 Empirical Results of the Zivot and Andrews (1992) Unit Root Test 

with Structural Break 

This section reports the results for the Zivot and Andrews (1992) unit root test on the 

two datasets in this thesis. The ZA test uses dummy variables to account for changes 

in the intercept, trend, or both in the time series regression and reports findings through 

three distinct models: Model A, Model B, and Model C, as previously outlined. Model 

A focuses on a single break in the intercept, Model B on a break in the trend, and 

Model C on both level and trend changes.  

Ben-David and Pepell (1997) suggest that most economic time series exhibit a trend, 

advocating for the inclusion of a trend function in regression analyses. Given this, 

either Model B or Model C could be more suitable for estimating the break date. 

However, contemporary literature in econometrics often favours a single dummy 

variable approach for structural breaks, marked as one from the break date onwards 

and zero prior (as seen in works by Kisswani, 2021; Pata and Caglar, 2021; Murshed, 

2020; Alsamara et al., 2019). This approach is represented in Equation 4.22. 

Therefore, Model B, which aligns with this methodology and focuses on a shift in 

trend, is deemed appropriate for identifying the break date and assessing stationarity 

in the time series across the two sample periods. 

The ZA test is also utilised to verify the order of integration of each time series. Many 

econometric models analysing time series relationships are limited to handling 

variables that are either integrated of order zero (I(0)) or order one (I(1)). The inclusion 

of a second-order integrated (I(2)) time series can lead to issues like highly positive 

residual correlations, an unexpectedly high coefficient of determination, and the risk 

of spurious regression. Haldrup (2002) suggests that, in cases where I(2) time series 

are identified, appropriate data treatment is necessary to mitigate these issues. One 

solution is to divide the time series into two segments, each characterised as I(1).  

The ZA test is applied to their first differences to determine if the variables are I(2). If 

the results indicate trend-stationarity with a structural break, it confirms that the series 

is I(1), characterised by a single structural break. Conversely, if the test shows non-

stationarity in the first-differenced series, it implies the need to segment the series into 

two I(1) parts, each defined by a distinct structural break. 
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Similar to the previous unit root tests, the ZA test is conducted on two datasets. Table 

4.7 displays the t-statistics for the three ZA models applied to the five variables within 

the dataset covering monthly observations from January 2001 (2001M01) to February 

2020 (2020M02). According to Zivot and Andrews (1992), the most appropriate 

selection of a structural break date in a time series is when the t-statistics are 

significant at a maximum 5 per cent level. This significance level is indicative of the 

trend-stationarity of the variable. 

Table 4.7 Zivot and Andrews (1992) Unit Root Testing Results for the 2001-2020 

Data Sample in Levels. 

 Model A Model B Model C 
 t-stat Break t-stat Break t-stat Break 

LnHH - - −4.92*** 2008M06 −5.66*** 2008M08 
LnNBP −4.58* 2004M08 −4.56** 2005M11 −4.72 2004M08 
LnRUS −2.23 2015M01 −3.06 2008M05 −3.02 2007M10 
LnJPN −5.67*** 2014M12 −3.87 2011M08 −5.52** 2014M12 

LnOIL −4.33 2014M07 −3.58 2007M11 −4.24 2014M07 

*, ** and *** denote significance at better than 10, 5, and 1 percent, respectively. 

Model B determines the stationarity and identifies a structural break for each variable. 

Referring to Table 4.7, LnRUS, LnJPN, and LnOIL are the three variables that do not 

reject the null hypothesis of a unit root, aligning with earlier interpretations of non-

stationarity at levels in the standard unit root tests without a structural break. 

Conversely, Model B indicates trend-stationarity for LnHH and LnNBP, rejecting the 

null hypothesis. The break points for these variables are identified in June 2008 

(2008M06) and November 2005 (2005M11), respectively. This finding contradicts 

their previously determined non-stationarity, concluding that these two variables are 

integrated of order zero (I(0)) with a structural break in levels. 

To verify whether the remaining three time series in the dataset are integrated of order 

one (I(1)), Table 4.8 presents the outcomes of the three ZA models applied to all 

natural gas and Brent crude oil price variables, but in their first differences. Moreover, 

rejecting the null hypothesis in these ZA tests will guide the optimal selection of the 

break point for these three variables. 
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Table 4.8 Zivot and Andrews (1992) Unit Root Testing Results for the 2001-2020 

Data Sample in First Differences. 

 Model A  Model B  Model C  
 t-stat Break t-stat Break t-stat Break 

∆LnHH −15.62*** 2008M07 - - −15.82*** 2005M11 

∆LnNBP −8.32*** 2009M08 −8.16*** 2017M03 −8.45*** 2005M12 

∆LnRUS −6.62*** 2004M04 −6.72*** 2004M08 −7.14*** 2016M09 

∆LnJPN −8.61*** 2016M06 −8.71*** 2014M12 −8.71*** 2014M12 

∆LnOIL −11.81*** 2016M02 −11.88*** 2016M02 −11.88*** 2016M02 

*, ** and *** denote significance at better than 10, 5, and 1 percent, respectively. 

According to Table 4.8, the five time series in the dataset demonstrate trend-

stationarity in their first differences. This indicates that, aside from the LnHH and 

LnNBP variables, which are I(0), the other three time series are indeed I(1). These 

findings confirm the presence of both I(0) and I(1) variables in the dataset covering 

the period from January 2001 (2001M01) to February 2020 (2020M02). This 

distinction is crucial for selecting appropriate econometric models to examine the level 

relationships among natural gas prices. Additionally, the results verify that no time 

series in the dataset are non-stationary in their first differences, confirming the absence 

of I(2) variables. 

Turning to the dataset spanning from July 2010 (2010M07) to February 2020 

(2020M02), Table 4.9 presents the t-statistics for the three ZA models as applied to 

the seven variables, evaluated at their level values. 

Table 4.9 Zivot and Andrews (1992) Unit Root Testing Results for the 2010-2020 

Data Sample in Levels. 

 Model A Model B Model C 

 t-stat Break t-stat Break t-stat Break 
LnHH −3.391 2014M12 −2.911 2018M09 −3.441 2014M12 

LnNBP −3.632 2017M07 −3.521 2018M09 −4.158 2018M03 

LnTTF −2.652 2016M10 −2.762 2018M09 −3.792 2017M11 

LnRUS −2.517 2015M01 −2.083 2018M09 −2.768 2018M04 

LnJPN −4.933** 2015M02 −2.799 2016M06 −4.740 2015M02 

LnALNG −3.531 2014M10 −2.943 2018M09 −3.665 2017M09 

LnOIL −4.549 2014M10 −3.314 2016M01 −4.712 2014M10 

*, ** and *** denote significance at better than 10, 5, and 1 percent, respectively. 
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Table 4.9 shows that all variables in the dataset remain non-stationary at level values, 

consistent with previous unit root test findings. Table 4.10 then examines these 

variables in their first differences using the ZA models to determine their integration 

order and potential break points. 

Table 4.10 Zivot and Andrews (1992) Unit Root Testing Results for the 2010-2020 

Data Sample in First Differences. 

 Model A Model B Model C 
 t-stat Break t-stat Break t-stat Break 

∆LnHH −11.791*** 2012M05 −11.449*** 2018M08 −11.943*** 2012M05 

∆LnNBP −6.617*** 2016M09 −6.287*** 2018M08 −6.825*** 2016M09 

∆LnTTF −10.716*** 2016M03 −10.337*** 2018M03 −10.745*** 2016M09 

∆LnRUS −6.134*** 2016M09 −5.279*** 2018M08 −6.403*** 2016M09 

∆LnJPN −6.983*** 2016M06 −5.977*** 2015M03 −6.943*** 2016M06 

∆LnALNG −8.792*** 2016M03 −8.434*** 2018M07 −8.791*** 2016M03 

∆LnOIL −9.353*** 2016M02 −8.249*** 2014M11 −9.279*** 2016M02 

*, ** and *** denote significance at better than 10, 5, and 1 percent, respectively. 

Table 4.10 reveals that model B rejects the null hypothesis of non-stationarity for all 

time series when assessed in their first differences, indicating that these variables are 

trend-stationary with a structural break. This finding aligns with prior standard unit 

root test results, confirming that all variables in this dataset are I(1) and discarding the 

presence of I(2) variables. Thus, modelling the time series in both datasets with a 

single structural break is appropriate. 

Building on the assumption that the rejection of the null hypothesis in the ZA test 

(model B) confirms the appropriate selection of the break date, Tables 4.11 and 4.12 

provide a comprehensive summary of the ZA test outcomes for each time series across 

both datasets. 

Table 4.11 Summary of the Zivot and Andrews (1992) Unit Root Testing Results 

for the 2001-2020 Data Sample. 

 Stationarity 
in Levels 

Break 
Date 

LnHH I(0) 2008M06 
LnNBP I(0) 2005M11 
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Table 4.11  Summary of the Zivot and Andrews (1992) Unit Root Testing Results 

for the 2001-2020 Data Sample, Continued. 

 Stationarity 
in Levels 

Break 
Date 

LnRUS I(1) 2004M08 
LnJPN I(1) 2014M12 
LnOIL I(1) 2016M02 

 
Table 4.12 Summary of the Zivot and Andrews (1992) Unit Root Testing Results 

for the 2010-2020 Data Sample. 

 Stationarity 
in Levels 

Break 
Date 

LnHH I(1) 2018M08 
LnNBP I(1) 2018M08 
LnTTF I(1) 2018M03 
LnRUS I(1) 2018M08 
LnJPN I(1) 2015M03 
LnALNG I(1) 2018M07 
LnOIL I(1) 2014M11 

4.5 Concluding Remarks 

Chapter 4 provides a detailed exploration of the time series properties of the thesis' 

data, first introducing their graphical representation based on the sample periods and 

their descriptive statistics. Furthermore, our comprehensive analysis, employing a 

range of unit root tests, enabled an understanding of the stationarity and integration 

order of the natural gas and oil price variables. The augmented Dickey-Fuller, Phillips-

Perron, and Kwiatkowski-Phillips-Schmidt-Shin tests, along with the Zivot-Andrews 

test, were used to assess the stationarity nature of the time series and also in the context 

of structural breaks. 

The results obtained have significant implications for future econometric modelling in 

this thesis. The confirmation of stationarity and structural breaks guide the selection 

of appropriate econometric techniques in subsequent chapters. This analysis enhances 

the reliability of our market integration studies and contributes to a more nuanced 

understanding of the natural gas market dynamics. This chapter lays the groundwork 
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for the advanced modelling techniques employed in the following chapters, ensuring 

that the interpretations and conclusions are accurate and relevant. 
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CHAPTER 5  
ANALYSING NATURAL GAS PRICE CONVERGENCE: 

THE PHILLIPS-SUL RELATIVE CONVERGENCE 
TEST 

5.1 Introduction 

This chapter outlines the methodology, results and discussions in my recent paper, 

Loureiro, Inchauspe and Aguilera (2023). It performs a general assessment of long-

run convergence between the various prices and identifies within convergence groups. 

The testing methodology keeps structural assumptions at a minimum and does not rely 

on unit root or structural break assumptions. The latter will be considered in the 

upcoming structural time series models, whose results will be interpreted in 

conjunction with the findings of this chapter.  

Chapters 2 and 3 highlighted the significant regional price differences in natural gas, 

contrasting with oil prices, and explored the literature review on the debate over their 

convergence over time. This topic has gained considerable attention in media and 

specialised reports, driven by the rapid evolution of the industry and LNG trade. For 

instance, a 2017 The Wall Street Journal article announced the arrival of a global 

natural gas market (The Wall Street Journal 2017). A 2020 report from the Center for 

Strategic & International Studies acknowledged some price convergence post-2014 

but questioned its sustainability (Center for Strategic & International Studies 2020). 

Existing academic studies provide varied, often outdated insights on price 

convergence. This points to the need for a comprehensive re-evaluation of the issue 

with up-to-date data for all major regional prices. Addressing this gap, this chapter 

presents a thorough and up-to-date global evaluation of the convergence among key 

regional gas prices. 

Natural gas markets exhibit diverse regional structures, leading to complex economic 

reasoning for potential price convergence. A notable theory, originating in Neumann 

(2009), suggests LNG trade as a key factor in reducing price disparities across the US, 
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Europe, and Asia Pacific, gaining more relevance with the recent surge in LNG 

exports from Australia, the US, and Qatar. In contrast, another hypothesis, particularly 

pertinent to Asia and Europe, proposes that natural gas prices converge due to their 

linkage with international oil prices (Li, Joyeux, and Ripple 2014). However, the rise 

of spot price trading hubs in these regions and a decreasing dependency on oil 

indexation have challenged this view (Fulwood 2019, Liao and Skykes 2019). Hence, 

the expected results are unclear. Additionally, a third perspective posits that enhanced 

market integration, through improved distribution and storage and reduced trade 

barriers, should narrow price gaps; this has been observed within European markets 

(Dukhanina, Massol, and Lévêque 2019; Chiappini, Jégourel, and Raymond 2019; 

Broadstock, Li, and Wang 2020)  and between the US and Canada (Olsen, Mjadele, 

and Bessler 2015). 

In this chapter, the testing approach enhances traditional methods used in related 

research. Traditional testing often involves bivariate regression models with a time-

varying slope coefficient determined by a Kalman filter. This method assumes that the 

slope coefficient should approach one if the Law of One Price is valid. Advanced 

studies use these estimates to develop a non-linear error-correction term with a time-

varying coefficient. However, these conventional methods face limitations: they are 

pairwise and hence, problematic when multiple convergence pairs with common 

prices exist and rely heavily on parametric assumptions for the error correction term. 

This chapter applies the Phillips and Sul (2007, 2009) relative convergence test to 

overcome these drawbacks. This test identifies long-run convergence trends in a panel 

of stacked time series. The methodology was previously applied to gas prices by Li, 

Joyeux, and Ripple (2014) in a way that the present chapter follows closely to compare 

results. This chapter also includes traditional Kalman-filter pairwise analysis as a 

robustness check. 

Following what was presented in Chapter 4, the panel we analyse in this thesis 

comprises six key gas price references. These include four traditional benchmarks: the 

US Henry Hub (HH), the UK National Balancing Point (NBP), Japan’s Average LNG 

Import Price (JPN), and Russia’s Average Export Price (RUS). Additionally, we 

incorporate spot prices from two newer, influential liquid markets - the Title Transfer 

Facility (TTF) price in the Netherlands and the Reuters LNG Asia spot price (ALNG). 
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Our dataset spans from 2001 and deliberately omits the period affected by COVID-

19. 

This chapter is structured in the following manner: Section 5.2 offers insights and 

support for testing market arbitrage activities and explores global gas market-

integration hypotheses. Section 5.3 details the methodology used, emphasising two 

properties relevant to this thesis. The core findings from the panel analysis are 

presented and examined in Section 5.4. Section 5.5 presents an additional analysis for 

robustness, focusing on pairwise comparisons. An extended discussion of the results 

is found in Section 5.6. Finally, Section 5.7 concludes the chapter with key takeaways. 

5.2 Fundamentals of Gas Arbitrage Activities and Key Hypotheses 

For an accurate assessment of arbitrage dynamics, it would be ideal to use netback 

prices, which represent a gas producer's actual sales revenue, accounting for costs like 

transportation, storage, and other transaction expenses. However, netback prices are 

only accessible for a limited number of markets, and compiling a comprehensive 

dataset of all associated costs for each market is exceedingly challenging. 

Given the challenges in data availability for gas price arbitrage, there has been a 

significant focus in the literature on developing methods to work around this issue. 

Most empirical studies, including works by Broadstock, Li, and Wang (2020), 

Chiappini, Jégourel, and Raymond (2019), Dukhanina, Massol, and Lévêque (2019), 

Heather and Petrovich (2017), Renou-Maissant (2012),  Neumann (2009), and 

Neumann, Siliverstovs, and Hirschhausen (2006), combine various price definitions, 

such as netback prices, pipeline-traded spot prices, and LNG prices. This thesis aligns 

with these approaches and focuses on long-run dynamics that can be assumed to be 

independent of the price definition, which is in line with the literature and the 

theoretical assumptions outlined next. The baseline theory is illustrated in Figure 5.1 

and is deliberately simplified to capture relevant aspects only. 
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Figure 5.1 Arbitrage in International Markets and Long-run Dynamics Implications. 

The model depicted in Fig. 1 illustrates the mechanism of gas arbitrage in international 

markets and its impact on price dynamics. It features two representative markets at the 

top: Market A, akin to the USA, and Market B, comparable to Asia. Each market is 

represented by standard demand and supply curves. Initially, in a state of autarky, 

Market A's price is lower than Market B's, mirroring the situation before 2016 when 

US LNG exports were minimal. However, post-2016, the substantial netback price 

difference spurred investments in infrastructure, enabling increased US LNG exports 

to Asia. 

Theoretically, arbitrage opportunities diminish when the netback price in the US 

market equals what a producer earns from sales to Asia. This leads to an equilibrium 

price, P*, shown in Figure 5.1. P* represents a balance where the excess net demand 

in Asia (pZqqqq) aligns with the excess net supply from the US (rsqqqq), establishing a state 

of no-arbitrage equilibrium in the markets. 

In an ideal scenario free from infrastructure constraints and other barriers, the dynamic 

process of gas arbitrage would lead to the convergence of netback gas prices in 

Markets A and B towards a specific point, P*. However, significant infrastructure 
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limitations exist in the real-world example of the US-Asia gas trade. These restrictions 

impede the full potential of export capabilities, thus maintaining a gap in netback 

prices between these markets. In a theoretical framework where suppliers and buyers 

face no restrictions, there would be a natural incentive to develop necessary 

infrastructure over time, gradually allowing netback prices in each market to align 

with P*. This convergence tends to be a slow process, and the primary objective of 

this chapter is to examine its occurrence and persistence in the long term. 

Let us now focus on the long-run dynamics of demand and supply growth in gas 

markets. To incorporate these dynamics, assume that gas demand in Asia increases 

annually, causing its demand curve to shift rightward each year. Holding other factors 

constant, this scenario would escalate yearly export demand. Therefore, as Asia's 

demand surges, the long-run equilibrium netback price, P*, to which domestic prices 

converge, is also expected to rise progressively (P*">P*'>P*). Domestic netback 

prices do not align with a static equilibrium value but adjust to a continuously 

ascending trend. 

This upward trend in P* will not directly mirror the demand growth rate; rather, it will 

be influenced by the rate in conjunction with the price elasticities of demand and 

supply in each market. If P* grows at a constant rate annually, the logarithm of P* 

would exhibit a linear trend, as illustrated in the lower section of Figure 5.1. For 

simplicity, we've considered only demand growth here, but the model can be extended 

to include various assumptions about demand and supply growth. In some instances, 

we might observe a decline in demand and/or supply, which could lead to a downward 

trend for P*. 

In the empirical section of this thesis, we avoid any pre-emptive assumptions about 

the direction of this underlying trend. Additionally, our chosen empirical method is 

resilient to temporary price divergences. It is well-suited to accommodate short-term 

demand and supply shocks, like those experienced during the Global Financial Crisis. 

This approach is particularly effective for our long-term analysis. 

It is important to address the definitions of prices used in our analysis. The focus was 

primarily on netback gas prices, which are not always directly observable. This led to 
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exploring relative convergence in this chapter, as opposed to absolute price level 

convergence.  

Relative convergence refers to the alignment of growth rates. The lower section of 

Figure 5.1 elucidates this concept, showing that the growth rate of LNG prices paid 

by Market B at its destination aligns with the growth rate of netback spot prices in 

Market B. However, these prices are anticipated to stay at a manageable level due to 

costs like transportation, storage, liquefaction, re-gasification, and other transaction 

fees, which create a vertical gap between the long-run trends depicted in Figure 5.1. 

For such convergence to happen, these transaction costs must not display a long-term 

positive growth trend. If transaction costs were to decrease, which is plausible given 

the potential economies of scale from trade infrastructure development, this would not 

impede convergence. Although with a lack of comprehensive cost data, transaction 

costs seem unlikely to increase over time consistently. Nevertheless, in our robust 

hypothesis testing, we remain open to the possibility of steady cost increases as a 

potential explanation for non-convergence outcomes. 

This present chapter tests an intuitive hypothesis: the convergence of growth rates 

among two or more gas prices, each uniquely defined by their associated transaction 

costs. Should we observe such convergence, it would indicate effective arbitrage, 

likely driven by the expansion of infrastructure in response to market incentives. On 

the other hand, if convergence is not evident, there are two alternative explanations to 

consider. Firstly, the lack of observed convergence might be due to transaction costs, 

which are influenced by the level of infrastructure investment, exhibiting a long-term 

upward trend. Secondly, convergence might only occur if the existing infrastructure 

(and its growth rate) and other barriers, such as regulatory hurdles, are sufficient to 

facilitate effective arbitrage through trade. While we lean towards the second 

explanation as being more plausible in most scenarios, our analysis is constrained by 

data limitations. As a result, our conclusions can only confirm the presence or absence 

of effective arbitrage but cannot definitively identify the reasons for its failure in 

certain instances. 

The arbitrage process in the gas market can be traced through an analysis of trade 

flows, consumption, and production data. However, the complexity of identifying 
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arbitrage operations increases significantly due to multiple trade patterns. This 

complexity is a key reason why price assessment is often preferred. Another advantage 

of using price data is its frequency, which results in a larger number of observations 

compared to gas production and consumption data, thereby enhancing the robustness 

of the findings. 

Although our study employs the Phillips-Sul method, there has yet to be a simulation 

to determine the minimum number of observations required for this specific approach. 

Drawing from Toda (1994) findings and recommendations on cointegration analysis, 

at least 100 observations are generally necessary to achieve robust results. While we 

do not directly use trade data in our analysis, it remains crucial to consider trade 

volumes as a contextual factor. 

Two major developments have significantly transformed the international gas trading 

landscape in recent years. Firstly, the period preceding the COVID-19 pandemic 

witnessed a remarkable surge in LNG trade. Based on BP's 2020 data, US LNG 

exports experienced exponential growth, escalating from 1.5 bcm in 2010 to 74.5 bcm 

by 2019. Similarly, Russia's LNG exports expanded from 13.5 bcm in 2010 to 39.4 

bcm in 2019, with significant portions delivered to Europe and Asia. Qatar, a major 

player in the LNG market, saw its exports increase from 77.8 bcm in 2010 to 107.1 

bcm in 2019. Australia's LNG exports also showed a remarkable rise, from 25.8 bcm 

in 2010 to 104.7 bcm in 2019. Notably, Australian exports, primarily consumed within 

Asia, directly compete with LNG from the US, Qatar, and other Asian sources. 

The second key development in recent years is the rise of spot markets in Europe and 

Asia, representing a shift from traditional oil-indexed pricing systems to those driven 

by market demand and supply forces. This change in gas price formation offers both 

benefits and drawbacks. On the positive side, gas prices become less susceptible to the 

volatile fluctuations of the oil market, including seasonal variations that significantly 

impact oil storage levels. It could also lead to fewer contract disputes, renegotiations, 

and arbitrations in the gas sector, as market participants are not bound to long-term, 

oil-linked agreements spanning decades. However, the transition from oil-indexed 

pricing to spot pricing is challenging. While economists and analysts generally favour 

spot pricing for its reflection of the product's fundamental value, natural gas in most 

economies no longer directly competes with oil. Oil is mainly used in transportation, 
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whereas natural gas is primarily for stationary applications like power generation and 

industrial production. 

Despite these changes, there are still advocates for oil indexation. It often results in 

higher prices for consumers, but it offers a degree of security regarding volume and 

predictability for future imports. Oil prices are volatile and unpredictable, but oil-

indexed contracts often include protective measures like price ceilings and floors, 

offering some stability. Oil-indexed pricing ensures demand security for gas 

producers, encouraging investment in capital-intensive infrastructure, especially for 

LNG sellers concerned about demand risks. Furthermore, the gas market can 

experience significant instability, with periods of oversupply or shortage. Oil 

indexation can provide a measure of price stability, especially during relatively stable 

oil market periods. Over the past decade, a notable trend has been adopting a hybrid 

pricing model, combining oil-indexation and spot gas pricing elements. In this hybrid 

model, the gas price is determined by a formula where a portion is based on oil-

indexation and the remainder on a spot price benchmark like HH. 

Considering the insights above, the rise in LNG trade flows, coupled with markets 

functioning in a more price-flexible setting, could create sufficient arbitrage 

opportunities. This idea may lead to the relative convergence of regional gas prices 

globally, though not necessarily to their absolute convergence. Figure 5.2 provides 

additional visualisation that supports this hypothesis. 
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Figure 5.2 Schematic Representation of the Price-Levelling Arbitrage Hypothesis. 

Source: Data from BP (2020) for 2019. 

This analysis supports using the prices listed in Table 5.1 for our evaluation. All price 

data was converted into natural logarithms of their value in US dollars per energy unit 

(MMbtu). The Brent oil price, a leading global benchmark, is also included to assess 

the oil-gas connection in the three main markets. Following Hodrick and Prescott 

(1997), we applied the Hodrick-Prescott filter to the data series to align with common 

practices in studies using the Phillips-Sul methodology (2007, 2009). This process 

helps filter out short-term fluctuations, enhancing the effectiveness of the long-term 

convergence test. The summary statistics of this analysis can be found in Table 5.2. 

Table 5.14 Variables Description and Sourcing. 

Data Sourcing 

Price Variable Original Source 

U.S. Henry-Hub Price  

(#!!) 

U.S. Energy Information Administration 

British National Balancing Point  

(#"#$) 

Refinitiv. Reuters Instrument Code: TRGBNBPD1 

Japan’s Average LNG Import Price  

(#%$") 

Refinitiv. Reuters Instrument Code: LNG-TOT-JP 

  

 
4 Table 5.1 continues on the next page. 
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Table 5.1   Variables Description and Sourcing, Continued. 

Price Variable Original Source 

Russia’s Export/Spot Weighted Average  

(#&'() 

World Bank Open Database 

Reuters LNG Asia Delivered Ex-Ship Spot 

Price  (#)() 

Refinitiv. Reuters Instrument Code: LNG-AS 

Dutch Title Transfer Facility Day-Ahead  

(#**+) 

Brent Crude Oil Price  

(##&,"*) 

Refinitiv. Reuters Instrument Code: TRNLTTFD1 

 

U.S. Energy Information Administration 

 

Table 5.2  Descriptive Statistics for Monthly Regional Price Variables. 

Descriptive Statistics 

 Sample:  

01:2001-02:2020 

Sample:  

07:2010-02:2020 

 #!! #"#$ #%)$ #&'( ##&,"* #)( #**+ 

Mean 1.419238 1.802822 2.157158 1.918210 2.345628 2.237279 1.929912 
Median 1.280852 1.921270 2.204283 1.928491 2.428987 2.171551 1.889165 
Maximum 2.033104 2.262484 2.791791 2.419452 2.961698 2.735219 2.258278 
Minimum 0.884456 0.981227 1.484790 1.243779 1.384435 1.615430 1.328654 
Std. Dev. 0.354551 0.356089 0.404491 0.384240 0.438752 0.348527 0.256293 
Jarque-Bera 
Prob. 0.000025 0.000000 0.003718 0.000081 0.000030 0.004719 0.048803 

Observations 230 230 230 230 230 116 116 

 

The sample period was carefully chosen using the best monthly data available, 

excluding the COVID-19 era, to avoid skewed results. This exclusion is crucial 

because the pandemic led to irregular demand and supply shifts in natural gas, 

resulting in significant price differences and storage capacity problems unique to that 

period and not indicative of long-term trends. During the pandemic, oil-linked gas 

prices frequently fell to their lowest contract levels, aligning with the 2020 oil price 

crash. This crash included instances where West Texas Intermediate oil futures 

contracts had negative values due to storage constraints. To ensure comprehensive 

analysis, convergence tests were applied to the entire dataset and specific segments 

identified by structural changes and data availability. 



73 

 

5.3 Relative Convergence Testing and Clustering Methodology 

In this section, we describe our methodology, which is grounded in the approach 

developed by Phillips and Sul (2007, 2009). The central concept of this test is to 

identify price time series, denoted as b)!5, from a panel encompassing t distinct prices 

expanded by m = {1, … , t} over a period 0 = 1,… , 2. These series are analysed for 

convergence towards a common long-run trend, represented as /!. It is hypothesised 

that each time series b)! includes a unique long-term stochastic trend x)! and a 

stochastic, potentially non-linear, time-varying factor y)! that accounts for all other 

variations. The model can be expressed as follows:  

b)! = z
y)! + x)!
/!

{ /! = B)!/!		 
(5.1) 

This introduces the challenge that the transitional dynamic coefficient B)! and the long-

run trend /! are not directly observable. To address this, we focus on deriving the 

relative transition coefficient ℎ)!, which can be calculated from the available data. The 

formula for ℎ)! is defined as follows: 

ℎ)! =
b)!

t − 1∑ b)!7
),'

=
B)!

t − 1∑ B)!7
),'

 (5.2) 

Equation (5.2) facilitates the testing of the convergence hypothesis by examining 

whether B)! approaches a constant value B as time 0 approaches infinity. Similarly, 

this is equivalent to checking if the relative transition coefficient converges towards 1 

as 0 goes to infinity. To implement this, we adopt semi-parametric approximations for 

the mean-square transition differential, denoted as !!, and for B)!. These 

approximations are used to implement the test effectively. 

!! =
1
t
H(ℎ)! − 1)% ≅

r
F(0)%0%8

7

),'

 (5.2) 

 

(5.3) 

 
5 For a price time series !! expanding over " = {1, … , (}, the Hodrick and Prescott (1997) filtered value *! is obtain as 

+,-./0"!{∑ (!! − *!)
#
+ 6[(!!$% − *!) − (!! − *!&%)]

#'
!(%

). Following the authors’ recommendation, we adopt the penalty 

coefficient 6 = 14,400 for monthly observations. 

José Roberto Loureiro
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B)! ≅ B) +
9-

:(!)!.
})!		 with B)! → B) = B as 0 → ∞ (5.2) 

 

(5.4) 

In Equation (5.3) r > 0 and 9) > 0. The variable })! is assumed to be independently 

and identically distributed (mmg) with a mean of 0 and a standard deviation of 1. The 

parameter D represents the speed of adjustment, which is positive in the context of 

convergence. To facilitate the examination of convergence, even in scenarios where D 

equals 0, we introduce the slow-changing function F(0) = ÄÅÇ(0). This formulation 

clearly articulates the null hypothesis of relative convergence and its corresponding 

alternative hypothesis as6: 

!&:	B) = B, and D ≥ 0 (5.2) 
 

(5.5) 

!': {B) = B with D < 0} or : {B) ≠ B with D ≥ 0} (5.2) 
 

(5.6) 

In their study, Phillips and Sul (2009) present a method for deriving a rejection rule 

based on the HAC t-statistic of h in OLS regression , as outlined in Equation (5.7). 

They explain that as h converges in probability towards 2D, it follows an asymptotic 

normal distribution. This convergence and distribution characteristic forms the basis 

for their proposed rejection rule.  

log z
!'
!!
{ − 2 log F(0) = y + h log 0 + >! (5.2) 

 

(5.7) 

The term 2 log F(0) in the model functions as a penalty factor in the test, with an initial 

trimming of 25% of the observations. The test rejects the null hypothesis of relative 

convergence when the calculated t-statistic, 06> < 0&.&@;1#5#' ≅ −1.65. 

Initially, this test was applied to a comprehensive panel dataset of N prices. However, 

it can also be effectively utilised for subsets of prices or clusters, which leads to the 

potential identification of multiple convergence clusters, denoted as {â', … , < âB}, 

with each cluster having its distinct /B and BB values. To identify these clusters, 

Phillips and Sul (2007, 2009) propose a clustering algorithm as presented next. This 

 
6 That is, lim

!→*
>+! = > iff >+! = > and ? ≥ 0; and lim

!→*
>+! ≠ > iff >+! ≠ > and/or ? < 0. 

José Roberto Loureiro
 (5.4)     

José Roberto Loureiro
 (5.5)     

José Roberto Loureiro
 (5.6)     
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approach is more efficient than “brute force's” exhaustive examination of all possible 

cluster combinations “. 

Step 1. Arrange the series {b)!} from the panel dataset in descending order based on 

their final values, beginning with the series that has the highest final value. 

Step 2. Form a core convergence cluster with the first ä highest ranked {b)!} series 

in the panel. Determine the optimal cluster size ä∗ after running regression 

(5.8) for all possible cluster formations starting from the top and applying 

this criterion: ä∗ = ArgMax5{06/C } subject to Min5ë06/C í > −1.65. 

Step 3. Sieve the data. Add one price series I at a time to the core group starting from 

the top. Keep the member if 06/C > 0. 

Step 4. Repeat steps 2 and 3 in a loop with the remaining prices to identify all 

possible convergence groups in the data set. 

Step 5. Conduct a convergence test on all contiguous groups identified through the 

procedure, known as the "club merging test". 

In the context of this chapter's application, it is important to emphasize two notable 

characteristics of this procedure. 

Property 1. Define relative convergence as Ämì
!→3

+Vb)! b*!⁄ W = 1, level convergence 

as Ämì
!→3

+Vb)! − b*!W = 0, and growth convergence as Ämì
!→3

+V∆b)! − ∆b*!W = 0. 

Consequently, (i) The type of convergence observed in this test is relative, not level, 

which is ideal for including price differences due to transportation, storage, 

liquefaction, and re-gasification costs; and (ii) Relative convergence suggests the 

presence of growth convergence. 

This concept can be better understood with an example. Suppose we have /! = 0, 

b'! = 5 + 0.05/! + >!, and b%! = 2 + 0.05/! + ï!, where >! and ï! are zero mean 

i.i.d. shocks. From this, it can be deducted that lim
D→3

E[P'D P%D⁄ ] = 1, indicating that the 

expected ratio of b'! to b%! approaches 1 as 0 goes to infinity. Similarly, 

lim
D→3

E[P'D − P'D] = 3, showing a consistent difference of 3 in the long term. 

Furthermore, lim
D→3

EV∆PED − ∆PFDW = 0 suggests that the difference in their increments 

over time converges to zero, implying both relative and growth convergence. Visually, 
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imagine the series expanding over time along two parallel lines that converge in 

relative values and growth rates, yet they never intersect (converge in levels), 

maintaining a constant differential. 

Property 2. A pair of prices sets, {b)! , b*!}, demonstrating price convergence might 

not always pass a cointegration test. However, they can be regarded as asymptotically 

cointegrated. Moreover, these sets may also display brief periods of transitional 

divergence. 

From Equation (5.1), we can express the sequence as b)! − b*! = (B)! − B*!)	/!, and 

focus on scenarios where /! is non-stationary while B)! and B*! converge to B. When 

adjustment speeds are relatively slow, b)! and b*! might not form a stationary linear 

combination that confirms cointegration. Nevertheless, these series can still be 

considered asymptotically cointegrated. This concept is particularly relevant for 

analyzing markets gradually evolving towards a stable long-term relationship, even if 

they have not fully stabilized yet. Additionally, the theory acknowledges that short-

term transitional divergence may occur but does not significantly impact the overall 

convergence assessment; a point further elaborated in Phillips and Sul (2007). 

5.4 Phillips and Sul (2007, 2009) Convergence Test Results  

5.4.1 Whole sample convergence clustering 

Our analysis commenced with a convergence test on the entire dataset, covering the 

period from January 2001 to February 2020, with the process and results detailed in 

Table 5.3. The data was organized by the logged US dollar prices per million British 

thermal units, revealing a significant correlation between the Brent oil price and 

Japan's imported gas price, indicative of Japan's long-term oil-indexed gas contracts. 

Further analysis highlighted a trend between Russia's average gas price and the UK's 

National Balancing Point gas price, reinforcing the known pattern of interconnected 

European gas prices, including the UK. However, these trends are individual and do 

not merge into a single long-term direction. In a unique case, the Henry Hub price 

follows its distinct pattern, not aligning with the other long-term trends identified in 

the dataset. 
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Table 5.3 Convergence Test Results for 01:2001-02:2020. 

Clustering Algorithm Implementation 

Numerical values are C,"-  statistics for each step in the algorithm 

Step 1:   Ordering Order the members of the panel according to their final values:  P%. > 

P#. > ⋯ > P/. 

Step 2: Form core groups 

 
Cumulatively moving down. 
Optimal cut-off point criterion: 

 

k
∗
=	

ArgMax1{t2#- } subject to 

Min1Qt2#- R > −1.65 

 
 
Core groups 

 
Iteration I 

Iteration II 

(Step 4) 
Iteration III 

    

P3456. (Base) -  

P786 3.87* -  

P638 -23.18 (Base)  

P49: -32.72 6.00*  

*;; -55.39 -39.34  

    

    

Core 

group 
*<=>?' + *@A? *?<A + *=BC  

Step 3: Sieving 
 

Add one member at a time to Core 

Group. Keep member iff "D$- > V
∗, 

where V∗ = 0 is adopted. 
 

    

*<=>?' - -  

*@A? - -  

*?<A -23.18 -  

*=BC -30.06 -  

*;; -52.82 -39.34  

    

Final Cluster (“Club”) Formations Club 1: *<=>?' + *@A? 

Club 2: *?<A + *=BC 

Club 3: *;; 

 

 

Club-merging "D#-   

(Step 5) Club 1 + Club 2: -32.72 (Non-Convergent) 

In Figure 5.3, the relative convergence coefficients reveal shifting patterns in gas 

prices. Considering data until mid-2006, all prices moved together, as indicated by 

coefficients nearing 1. However, data after 2006 show a change, clarifying some past 

misunderstandings in research on the topic. Specifically, Brent and Japan's gas prices 

followed the same trend until mid-2015, heavily influencing overall convergence 

assessments. Yet, there is a noticeable divergence after 2015, possibly due to the rise 

of gas-on-gas competition and new market entrants. Meanwhile, the convergence 

between the UK's NBP and Russia's gas prices strengthened from 2016 onwards, 

which aligns with earlier findings of European market integration and might need to 

be noticed by studies that include the most recent data. 
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Figure 5.3 Relative Convergence Coefficients for the 2001-2019 Panel Data of 6 

Stacked Prices. 

The findings presented require careful consideration due to a significant structural 

break that coincides with the global financial crisis (GFC)—this period marked 

historical highs in oil and gas prices. The Zivot and Andrews test, detailed in Chapter 

4, confirmed the existence of this breakpoint. A notable finding from the test is the 

early detection of a break in the Henry Hub price series around August 2008, marked 

by a highly significant t-statistic of -5.66, significant at the 1% level. This significant 

break point justifies further analysis of the data in subsamples, as shown in the 

following sections. 

5.4.2 The Pre-GFC Sub-period 

Figure 5.3 suggests that the period from 2001 to 2008 was characterized by a trend of 

apparent convergence in gas prices, impacting studies that excluded later data. 

Analysis of this sub-sample (presented in Table 5.4) indicates a weak convergence 

among all gas prices towards a single trend, as per the club formation test results. This 

finding is even more pronounced when excluding the last two years of the sample. 

This period's analysis clarifies certain findings in previous studies. For example, it 

supports Nick and Tischler (2014) observation of converging prices in the US and UK, 

a pattern not evident in the complete dataset. It also aligns with Li, Joyeux, and Ripple 
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(2014) results of convergence between the NBP and Japan's gas price, initially 

attributed to the oil-link hypothesis. However, this hypothesis does not hold with more 

recent data, indicating that the impact of oil prices may be limited to Japan's gas price. 

Table 5.4 also demonstrates that no single gas price converges towards the oil price, 

which suggests that oil indexation in contracts does not automatically lead to 

convergence in growth rates with oil prices for two reasons. Firstly, long-term 

contracts often include a profit margin on oil prices that varies with market conditions. 

Secondly, these contracts usually have clauses for extreme oil price scenarios (S-

curve), activated by the oil price fluctuations during this time. 

Table 5.4 Convergence Test Results for 01:2001-08:2008. 

Clustering Algorithm Implementation 

Numerical values are C,"-  statistics for each step in the algorithm 

Step 1:   Ordering Order the members of the panel according to their final values:  P%. > 

P#. > ⋯ > P/. 

Step 2: Form core groups 
 
Cumulatively moving down. 

Optimal cut-off point criterion: 
 

k
∗
=	

ArgMax1{t2#- } subject to 

Min1Qt2#- R > −1.65 

 
 

Core groups 

 
Iteration I 

Iteration II 
(Step 4) 

Iteration III 

    

*<=>?' (Base) -  

*@A? -21.07 (Base)  

*=BC -31.83 1.20  

*?<A -23.78 -0.28  

*;; -20.34 -0.41*  

    

    

Core 
group 

*<=>?' *@A? + *=BC

+ *?<A + *;; 

 

Step 3: Sieving 
 
Add one member at a time to Core 

Group. Keep member iff "D$- > V
∗, 

where V∗ = 0 is adopted. 

 

    

*<=>?' - -  

*@A? -21.07 -  

*?<A -12.00 -  

*=BC -3.94 -0.28  

*;; -25.06 -3.12  

    

Final Cluster (“Club”) Formations Club 1: *<=>?' 

Club 2: *@A? + *=BC + *?<A + *;; 
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5.4.3 The 2010-2020 Sub-period with New Gas Price Benchmarks 

This analysis incorporates data from two emerging benchmark spot markets: the Title 

Transfer Facility (TTF) in the Netherlands and the Asian Spot (AS) gas prices. Data 

availability limits the chosen timeframe for the study, deliberately omitting the periods 

affected by the global financial crisis (GFC) and the COVID-19 pandemic. 

Surprisingly, this sub-period disrupts many previously identified trends of 

convergence. According to Table 5.5, there is no convergence in natural gas price 

outside of Europe. The data supports that gas prices in the UK's National Balancing 

Point (NBP), the Netherlands' TTF, and Russia converge. This aligns with earlier 

research, suggesting that incorporating additional European gas prices into the study 

would likely reinforce this trend of convergence. In contrast, the rest of the prices in 

the study display distinct trends, illustrated in Figure 5.4, effectively challenging the 

hypothesis that liquefied natural gas (LNG) arbitrage leads to price convergence. 

Moreover, the AS spot price in Asia does not show convergence with Japan's LNG 

import price. Similarly, Japan's LNG import price does not converge with oil prices. 

Table 5.57 Convergence Test Results for 01:2010-02:2020. 

Clustering Algorithm Implementation 

Numerical values are WE%-  statistics for each step in the algorithm 

 Step 1:   Ordering Order the members of the panel according to their 

final values:  *%' > *#' > ⋯ > */' 

 

Step 2: Form core groups  
 
Cumulatively moving down. Optimal 

cut-off point criterion: 
 

 X∗ =	

ArgMaxF{"D$-} subject to 

MinFQ"D$-R > −1.65 

 
 

 
 
Core groups 

 
Iteration I 

Iteration II 
(Step 4) 

Iteration III 
(Step 4) 

Iteration IV 
(Step 4) 

     

*<=>?' (Base) - - - 

*@A? -5.23 (Base) - - 

*GC -26.64 -28.30 (Base) - 

*=BC -28.17 -25.58 -17.31 (Base) 

*?<A -21.79 -17.79 -7.91 5.34 

*''H -18.77 -14.82 -7.83 0.43* 

*;; -29.54 -28.96 -26.35 -28.67 

     
Core 
group 

*<=>?' *@A? *GC *=BC

+ *?<A

+ *''H 

 
7 Table 5.5 continues on the next page. 
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Table 5.5    Convergence Test Results for 01:2010-02:2020, Continued. 

Clustering Algorithm Implementation 

Numerical values are WE%-  statistics for each step in the algorithm 

Step 3: Sieving  
 
Add one member at a time to Core 

Group. Keep member iff "D$- > V
∗, 

where V∗ = 0 is adopted. 

 

     

*<=>?' - - - - 

*@A? -5.23 - - - 

*GC -26.24 28.30 - - 

*=BC -29.80 -30.46 -17.31 - 

*?<A -18.88 -3.60 -3.16 - 

*''H -17.31 -13.94 -6.33 0.43 

*;; -37.99 -32.71 -24.58 -28.67 

     

Final Cluster (“Club”) Formations Club 1: *<=>?' 

Club 2: *@A? 

Club 3: *GC 

Club 4: *=BC + *?<A + *''H 

Club 5: *;; 

  

Club-merging "D$-  

(Step 5) 

Club 4 + Club 1: -19.28 (Not Convergent) 
Club 4 + Club 2: -16.33 (Not Convergent) 

Club 4 + Club 3: -7.83 (Not Convergent) 
Club 4 + Club 5: -16.33 (Not Convergent) 

 

 

Figure 5.4 Relative Convergence Coefficients for the 2010-2019 Panel Data of 8 

Stacked Prices. 
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5.5 Robustness Check: Kalman Filter (Law of One Price Estimates) 

Building upon the previous findings, this section examines the data using the 

perspective of the Kalman-filter LOOP methodology, a method extensively 

acknowledged in previous studies. This analysis employs a pairwise approach based 

on stricter assumptions, resulting in outcomes that are more limited in scope. 

The main idea is to estimate the constant 7)* and the time-varying coefficient k)*,! in 

the following pairwise model: 

b),! =	7)* + k)*,!b*,! + [)!, [)!~òmg(0, !!) (5.2) 
 

(5.8) 

This model is designed to assess the validity of different versions of the Law of One 

Price (LOOP). The LOOP holds true without transaction costs if 7)* = 0 and k)*,! =

1. However, when accounting for transportation, liquefaction, gasification, and 

storage costs, represented by (y)* + [)!),  a less strict form of the LOOP focuses on 

verifying whether k)*,! = 1. This condition suggests relative and growth convergence, 

meaning, as time approaches infinity, the expected ratio of prices approaches to 1 

(Ämì!→3E[b)!/b*!] = 1), and the difference in their growth rates approaches to 0 

(Ämì!→3E[ôb)! − ôb*!] = 0), respectively. However, it does not imply that the 

absolute level of prices will converge (Ämì!→3E[b)! − b*!] = 7)* + [)!). The 

parameter k)*,! indicates a co-movement or non-linear correlation between prices. 

When beta is not equal to 1, it does not have a specific interpretation. 

The insights from Equation (5.8) can be applied to model cointegration. A basic 

method involves a two-step process where i),!, defined as i),! = [b),!#' −	7)* −

k)*,!b*,!#'], acts as a non-linear error-correction term, assuming it is stationary. 

However, this thesis opts not to use this approach, as it does not add substantial new 

information. 

To calculate the time-varying coefficient k)*,! over time, we use the Kalman Filter 

technique (Kalman 1960, Kalman and Bucky 1961). We reformulate Equation (5.8) 

into a standard state-space model, utilizing vectors J! = [7)*,! k)*,!] and ö! =

[1 b),!]: 
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b),! =	ö!HJ! + [)!, [)!~òmg(0, !!)  (5.9) 

In this formulation, J! represents the state variable, conceptualized as a random walk 

to facilitate inference on time-varying elements. Equation (5.10) acts as the 

measurement equation. During the prediction step, estimates for J! and its covariance 

matrix õ! are derived using historical data up to time (0 − 1), starting from initial 

values J& and õ&, as detailed in Harvey (1989). 

JM!|!#' = JM!#' (5.11) 

Following this, the filtering step occurs, during which the predictor for the state 

variable at time t is updated to incorporate information available up to that point, as 

described below: 

JM! = JM!|!#' 	+ 	a!(b*! − ö!HJM!|!#') (5.14) 

In this context, a!, representing the Kalman Gain, is calculated as a! =

õ!|!#'ö!H(ö!õ!|!#'ö!H + !!)#'. The prediction error for one step ahead is defined as 

ï! = b*,! − ö!HJM!|!#'. To determine the parameter estimates, the log-likelihood 

function is maximised, a method supported by the works of Kalman (1960) and 

Harvey (1989): 

log F =Hlog(JM!Hõ!|!#'JM! +	!!)

1

!,'

+ 2 log
1
2
H

(b*,! − ö!
HJM!|!#')%

(JM!
Hõ!|!#'JM! +	!!)

1

!,'

 
(5.16) 

The insights derived from the estimates produced by the Kalman Filter are relevant to 

the Phillips-Sul approach. These can be compared by integrating Equations (5.1) and 

(5.8): 

J! =	J!#' + Y)!, Y)!~òmg(0, ú!) (5.10) 

õ!|!#' = õ!#' + ú! (5.12) 

õ!|!#' = E[(J!#' − JM!#')(J!#' − JM!#')′] (5.13) 

õ! = õ!|!#' − a!ö!õ!|!#' (5.15) 
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The comparison between the Phillips-Sul method and the Kalman Filter approach 

highlights two primary differences. Firstly, the Phillips-Sul method posits that the 

price b)! adheres to a long-term trend /!, which could either be another price b*,! as 

seen in the Kalman Filter method or an average of various prices within the panel. 

Secondly, a notable distinction arises if we assume /! = b*,! under the Phillips-Sul 

method in that the Kalman Filter suggests a linear functional form. This presupposition 

is more stringent than Phillips-Sul's allowance for potential non-linearity in y)! and x)! 

, which are neither directly observed nor identified. Instead, Phillips-Sul utilizes the 

metric B)! for statistical inference regarding long-term trends within the data, which 

can exist amidst temporary divergences. Despite these constraints, the Kalman Filter's 

Weak LOOP approach proves instrumental in examining shifts in transaction costs 

(y)* + [)!), a topic we explore in Section 5.6. 

Figure 5.5 presents the estimates from the Kalman Filter analysis of k)*,! across 

various pairs of traditional gas price benchmarks and the oil price. These estimates 

offer a dynamic and non-linear correlation, suggesting co-movement towards unity, 

where the slope determines the degree of convergence. The findings corroborate 

earlier research, showing a tendency for the NBP (UK's National Balancing Point) and 

Russian gas prices to align closely. In contrast, the Henry Hub shows a weak 

correlation with other benchmarks. Prices for Japan, Brent crude, NBP, and Russian 

gas all move together within the 0.8 to 1 range, indicating co-movement. However, 

these time-varying estimates do not reveal the number of distinct long-term 

convergence trends among these series, marking a limitation of this method. This gap 

was addressed through formal analysis in the preceding section, establishing that only 

the NBP and Russian prices share a common convergence trend. 

b)! = z
y)! + x)!
/!

{ /! = B)!/! ≅ 7)* + k)*,!b*,! + [)! 
(5.17) 

Phillips-Sul Weak LOOP via Kalman Filter 
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Figure 5.5 Traditional Gas Price Benchmarks and Oil Price: Kalman-Filter 

Estimates with 2-Standard Deviation Prediction Bands. 

Figure 5.6 presents the dynamic co-movement estimates for emerging benchmarks, 

specifically AS (Asian Spot) and TTF (Title Transfer Facility in Europe). It shows that 

the AS price does not align with Japan's LNG import price or any others, supporting 

the idea that regional demand and supply dynamics predominantly influence spot LNG 

trading in Asia. The TTF price also does not demonstrate clear convergence with any 

of the prices presented in Figure 5.5. A notable limitation of this pairwise method is 

its inability to identify a unified trend towards which all European prices might 

converge, which was established in Section 5.4. The analysis highlights a period of 

divergence among European prices during 2018-2020, suggesting an area of interest 

for future research. This divergence underscores gas price benchmarks' complex and 

evolving nature, indicating the need for continuous monitoring and analysis. 
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Figure 5.6 The New Gas Price Benchmarks (AS and TTF): Kalman-Filter Estimates 

with 2-Standard Deviation Prediction Bands. 

5.6 Discussion of the Results 

The key observation that there is no integration across transoceanic gas markets 

necessitates a retrospective analysis of prior convergence trends. These past trends can 

be partially attributed to oil-indexation and to similar regional demand and supply 

dynamics. For instance, the historical linkage between Japan's gas prices and Brent oil 

prices is a case in point. During 2010-2015, Japanese gas prices rose sharply in tandem 

with oil prices, which were around $100 a barrel, and then fell significantly after 2015 

as oil prices declined. Although spot trading has become more prevalent in Asia, 

replacing government-regulated prices, the proportion of oil-indexed pricing in the 

region's market has grown compared to two decades ago. 
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The post-2015 convergence of European and Asian gas prices can be linked to a surge 

in LNG production, leading to a global oversupply and lower prices. In Europe, gas-

on-gas competition, particularly at the TTF hub, has become a significant pricing 

factor, moving away from the oil-indexation that dominated earlier. This shift was 

further supported by the construction of numerous LNG regasification facilities across 

Europe, enhancing the continent's access to global gas markets and reducing its 

dependence on Russian gas, which was traditionally priced against oil products. 

Consequently, the oil-linked pricing formulas in LNG and pipeline sales contracts 

have been largely replaced by hub-based pricing, such as the Dutch TTF and the UK 

NBP. In the US, gas prices have remained relatively low and disconnected from other 

markets due to the boom in unconventional gas production during the 2010s. Domestic 

production exceeded consumption, but it was not until the late 2010s that the US began 

exporting significant amounts of LNG, marking a shift in its role in the global gas 

market. 

This thesis also explores whether the costs associated with transportation, storage, 

liquefaction, and gasification can account for the observed lack of growth convergence 

in transoceanic gas prices. While a detailed analysis goes beyond the scope of this 

thesis, the preliminary conclusion is that it is highly unlikely. A scenario where 

transaction costs steadily increase over the long term, which could explain the lack of 

convergence, contradicts available evidence. Temporary cost shocks might lead to 

short-term divergence but are insufficient to justify a sustained lack of convergence 

over the long term. This perspective is reinforced by research from Oglend, Kleppe, 

and Osmundsen (2016), which developed a model to estimate gas economic profit 

spreads, incorporating cost factors like freight, distance, LIBOR rates (as a proxy for 

expected returns), and the NBER recession indicator (reflecting global economic 

conditions), while treating liquefaction, regasification, and storage costs as fixed 

constants in the model. Both linear and quadratic models for cost functions were 

tested. The findings underscore that variations in price spreads between markets like 

the US-Europe, Europe-Asia, and US-Asia are largely influenced by factors other than 

transaction costs, which tended to remain stable over time. 
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5.7 Concluding Remarks 

The findings in this chapter provide a critical insight for energy analysts, researchers, 

industry stakeholders, and policymakers: there is no formal evidence supporting the 

existence of price convergence across transoceanic natural gas markets. Convergence 

is only found within European gas prices, rejecting the hypothesis that LNG trade 

serves as a global price equaliser. The investigation replicates temporary convergence 

patterns previously reported, which were tied to now-changed market conditions. This 

result is confirmed by incorporating two new benchmark prices for natural gas and 

deliberately excluding the volatile COVID-19 period. Additionally, the results show 

that considering the period after the Global Financial Crisis, natural gas prices do not 

align with oil prices, indicating a divergence of the oil-gas price linkage. 

The findings suggest that despite moving away from oil price dependence, the current 

volume of LNG trade needs to be increased to act as an effective mechanism for price 

arbitrage. This leads to the anticipation that increased LNG trade volumes may 

ultimately foster price convergence in the future. 
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CHAPTER 6  
REVIEW OF ECONOMETRIC METHODS  

6.1 Introduction 

Economic datasets are often presented in dynamic multivariate time series, where 

contemporary or sequential relationships may exist in the short-run or the long-run. 

Additionally, variables can be dependent and/or independent within such frameworks. 

This thesis aims to examine how natural gas prices across various regional markets 

are linked. The main challenge in modelling the relationship between time series in a 

multivariate analysis is finding the correct representation of the model, as highlighted 

by Brandt and Williams (2007). This chapter will present various methodological 

approaches to modelling multiple time series, discussing the implementation and 

implications of each.  

To facilitate model development, the literature in this area employs four key related 

methods for analysing multivariate time series data, namely: Autoregressive 

Integrated Moving Average (ARIMA) models, Simultaneous or Structural Equation 

(SEQ) systems, Error Correction Models (ECM), and Vector Autoregression (VAR) 

models (Brandt and Williams 2007). Additionally, variants like the Autoregressive 

Distributed Lag (ARDL) models have been used to accommodate these primary 

methods for the unique aspects of the multivariate dataset. These econometric 

approaches share a common mathematical foundation, employing various forms of 

linear regression, including ordinary least squares, generalised least squares, and 

multiple least squares. Yet, they are distinguished by their core assumptions and the 

foundational elements that critically influence the interpretation of their outcomes. 

The theory exposition in this chapter is centred around VAR modelling and includes 

an extensive discussion of single-equation ECMs and ARDL models as special cases. 

Similar procedures are used in all cases for lag selection and to make causality 

inferences.  
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The chapter reviews the following econometric methods. In Section 6.2, a brief 

introduction to the primary methods is presented. Section 6.3 introduces the main 

concepts of the VAR analysis. Section 6.4 presents a modification of the VAR model, 

the vector error correction model (VECM), and the concept of cointegration among 

time series. Sections 6.5 and 6.6 investigate a different method to assess cointegration 

between time series using the linear and asymmetric ARDL model approach. At the 

end of the chapter, Section 6.7, we present notable indicators of global economic 

activity and market fundamentals relevant to modelling oil prices in recent literature. 

These indicators can also enhance the econometric models used in this thesis, with 

natural gas prices as endogenous variables. Finally, Section 6.8 presents concluding 

comments. 

6.2 Introduction to Multivariate Time Series Models 

6.2.1 Simultaneous Equation Method 

The Simultaneous Equation (SEQ) modelling approach involves transforming a 

singular economic theory into a set of equations, laying the groundwork for building 

a multi-equation time series model. This process builds on the theory's delineation of 

relationships between variables, categorizing them as either exogenous or endogenous 

within the system. Leamer (1985) states that an exogenous variable, x, influences 

another variable, -, without its value being affected by any alterations in -. 

Essentially, exogenous variables are predetermined and external to the equation 

system. Conversely, endogenous variables are integral to and dependent within the 

system, and the equation framework determines their values. A single structural 

system of equations represents the relationship between the variables (Brandt and 

Williams 2007).  

Using an example from Brooks (2008), where SEQ is used to model the quantity of 

new houses sold, the set of structural equations are defined as: 

ú = D + kb + 7R + > (6.1) 

ú = N + /b + äR + ï (6.2) 
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where; ú is the number of new houses, b is the average price of new houses, R is the 

price of older houses, 2 is a variable containing the state of housebuilding technology, 

and > and ï are the residuals. 

In Equations (6.1) and (6.2), the price depends on quantity, and so does quantity on 

price. Therefore, Q and P are considered endogenous, while S and T are exogenous to 

the system of equations. To estimate the parameters in the equations by an Ordinary 

Least Squares model (OLS), they must be represented in the reduced form, where all 

exogenous variables are on the right-hand side of the equation. The reduced form of 

Equations (6.1) and (6.2) are: 

ú =	
/D − kN
/ − k

−
kä
/ − k

2 −
/7
/ − k

R +
/> − kï
/ − k

 (6.3) 

b =
N − D
k − /

+
ä

k − /
2 −

7
k − /

R +
ï − >
k − /

 
(6.4) 

If we rewrite Equations (6.3) and (6.4) as: 

ú =	J'& − J''2 − J'%R + [' (6.5) 

b = J%& − J%'2 − J%%R + [% (6.6) 

where the J) coefficients are the combinations of the original coefficients in (6.5) and 

(6.6). Rather than obtaining the demand and supply equations by re-parametrisation 

(something that can only be done in exactly identified models), authors typically rely 

on a Two-Stage-Least-Square method in which predicted values from the OLS 

reduced-form equations are substituted into the demand and supply equations. A 

GMM can also be used to obtain parameter estimates. 

A notable challenge in constructing Simultaneous Equation (SEQ) models is the need 

for users to select variables and their lags to ensure model identification. This process 

often employs hypothesis testing to determine which variables to exclude, a practice 

that can introduce bias into the final model. Sims (1980) highlighted a critical concern: 

such exclusion restrictions might lack theoretical support and fail to be corroborated 

by empirical evidence, potentially causing a misrepresentation of the SEQ model's 

dynamics. 
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Generally, vector autoregressors (VAR) are preferred over SEQ to model 

simultaneous economic systems. This is because the former provides a much richer 

collection of dynamic insights and superior forecasting power in general. 

6.2.2 ARIMA Method 

The ARIMA model, also known as the Box-Jenkins approach, proposed by Box and 

Jenkins (1970), analyses multiple time series by treating them as individual univariate 

entities influenced by exogenous variables within the regression framework. The core 

objective of the ARIMA methodology is to identify the most suitable and streamlined 

model for each time series, ensuring the residuals are uncorrelated, which involves 

distinguishing between endogenous and exogenous variables within the model's 

structure. A key advantage of ARIMA, compared to the Simultaneous Equation (SEQ) 

method, is its superior forecasting capability, attributed to its emphasis on the principle 

of parsimony. 

The ARIMA model is primarily univariate; hence, it attributes the behaviour of most 

time series to its historical data, overlooking the potential influence of other variables. 

This approach prioritizes the analysis of individual time series without adequately 

addressing the broader interactions among them. Furthermore, a significant drawback 

arises from the model's requirement for one equation per time series, necessitating 

perfect independence among these equations to accurately estimate parameters. This 

condition can be challenging to meet in practice, affecting the model's efficiency in 

parameter estimation. 

6.2.3 Error Correction Model  

Brandt and Williams (2007) describe Error Correction Models (ECM) as an extension 

of ARIMA and SEQ approaches, leveraging the autoregressive distributed lag (ADL) 

framework for analysing two or more time series that may share long-term 

relationships. Unlike ARIMA, which focuses on a time series past values, ECM 

explicitly accounts for the dynamic interplay between multiple series, capturing both 

their long-term equilibrium and short-term fluctuations. The process begins with 

testing for stationarity using unit root tests to ensure the time series are suitable for 

analysis. Upon confirming stationarity, the modeller employs specialised techniques 
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to explore the long-term relationships between the series. Subsequently, regression 

analysis is applied to model the short-term deviations around this established long-

term trend, offering insights into how the series interact over time in the short and long 

run. 

The ECM can be applied as a vector error correction model (VECM) in a multivariate 

system. In this case, the model may show a variety of long-run and short-run dynamics 

across all different time series. The ECM can also be applied to a single regression 

equation; typically, this is done in Autoregressive Distributed Lag (ARDL) models. 

6.2.4 Vector Autoregression Method 

The Vector Autoregression (VAR) model combines elements of SEQ and ARIMA 

models. It is the most encompassing framework for analysing multivariate time series, 

prioritising the relationships and dynamics among series over their generative 

structures. Originating from the work of Sims (1972, 1980), the VAR approach models 

each variable as influenced by its historical values and those of every other variable in 

the analysis. Sims (1980) emphasised that the efficacy of VAR models hinges on 

carefully selecting relevant variables and determining appropriate lag lengths based 

on empirical data. Unlike the SEQ models, which necessitate the exclusion of certain 

variables and lags for identification, the VAR model avoids potential bias from 

omitted variables by including all variables and their lags across all equations. While 

this inclusive strategy helps prevent bias, it also leads to a more complex model with 

more parameters to estimate, potentially affecting the model's efficiency. 

In the upcoming sections, we aim to offer a comprehensive examination of the Vector 

Autoregression (VAR) model and its restricted version, the Vector Error Correction 

Model (VECM). These multivariate time series frameworks are foundational for 

uncovering causal relationships between time series data. 

6.3 Vector Autoregression Model  

Sims (1980) argues that in simultaneous relationships among a group of time series, 

the traditional separation of variables into endogenous and exogenous categories 

becomes irrelevant; instead, all variables should be treated as endogenous. Brandt and 

Williams (2007) describe the Vector Autoregression (VAR) model as an 
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"interdependent reduced form dynamic model". A basic illustration of this concept is 

the bivariate VAR model, which involves two variables, -'! and -%!, as detailed by 

Brooks (2008): 

-'! =	k'& + k''-'!#'+	. . . +k'5-'!#5 + D''-%!#'+	. . . +	D'5-%!#5 + >'! (6.7) 

-%! =	k%& + k%'-%!#'+	. . . +k%5-%!#5 + D%'-'!#'+	. . . +	D%5-'!#5 + >%! (6.8) 

The Vector Autoregression (VAR) model. It is a flexible system that includes multiple 

time series variables, with each variable's equation incorporating its lagged values and 

those of all other variables in the model. This results in each equation having û(Ä + 1) 

coefficients, where Ä is the number of lags and û is the number of variables. Brandt 

and Williams (2007) describe how the VAR model efficiently encapsulates these 

dynamics in a compact mathematical form: 

-! = 	l +H-!#JkJ

(

J,'

+	i! (6.9) 

where -!#J is the 1	x	û vector of Äth lagged variables, kJ is the û	x	û matrices of the 

coefficients for the äth lag,  l is the 1	x	û vector of the k)& intercepts, and i! is the 

1	x	û vector of residuals. 

As a non-specific general framework, the Vector Autoregression (VAR) model has 

versatile applications in economic modelling. Brandt and Williams (2007) identify 

three primary uses of the VAR model: exploring causality among endogenous 

variables, analysing the dynamic effects of changes in one variable on others within 

the system, and assessing how changes within each variable and across other variables 

contribute to its overall variance. These different interpretative approaches provide a 

multifaceted understanding of the interactions within the VAR model and will be 

examined further in this section. Before exploring these applications, an essential step 

in VAR model estimation involves selecting an optimal lag length for the endogenous 

variables in the regression system, ensuring the model's efficacy and accuracy. 



95 

 

6.3.1 Optimal VAR Lag Length Selection 

To accurately select the optimal number of lags for each time series within a VAR 

model, Brandt and Williams (2007) suggest employing two hypothesis tests. The first 

test is the likelihood ratio test, which involves comparing the likelihood values derived 

from VAR models with different lag lengths, specifically comparing a model with ä1 

lags against another with fewer lags, ä&, where ä' >	ä&. This comparison allows for 

an assessment of how additional lags affect the model's likelihood, aiding in 

determining the most appropriate lag length. The likelihood comparison between 

models with ä' >	ä& lags can be expressed as: 

(2 − 1 − ûä')(logü∑&†ü − logü∑'†ü). (6.10) 

where ∑K† is the error covariance of the VAR containing ä) lags.  The null and 

alternative hypothesis of the likelihood ratio test or °%  test are: 

• H0: The VAR model has ä& lags. 

• HA: The VAR model has ä' lags. 

The °% is based on the number of restrictions equal to the degrees of freedom; thus, 

the t-statistics is  asymptotically distributed (Brooks 2008). The test is distributed °% 

with û%(ä' − ä&) degrees of freedom. If the restricted model is accepted in the 

hypothesis test, the number of lags excluded from the unrestricted model (ä' lags) will 

be equal to û%(ä' − ä&). The disadvantage of the likelihood ratio test is that it requires 

the errors from each equation to be normally distributed, which is rare in most 

economic data. 

The second approach for determining the optimal number of lags in a VAR model 

involves using information criteria (IC). This method, which is also crucial for 

establishing the optimal lag length in other econometric tests like the ADF and PP unit 

root tests (as discussed in Chapter 4), offers a significant advantage by not 

necessitating the normality assumption required by the likelihood ratio test. It works 

by incorporating a penalty for each additional lag in the model. The methodology is 

quantified through three distinct information criteria equations, each tailored to 
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balance the trade-off between model complexity and fit. The equations that represent 

the three different information criteria (IC) are: 

• Akaike's IC: _r¢p = logü∑dü +
2äH

2
 

(6.11) 

• Bayesian's IC: 
_s¢p = logü∑dü +

äH

2
log(2) 

(6.12) 

• Hannan-Quinn 

IC: 
_!ú¢p = logü∑dü +

2äH

2
log (log(2)) 

(6.13) 

where ∑d is the error covariance matrix of the VAR, 2 is the number of observations, 

and äH is the number of regressors in all equations, also presented as û(äû + 1) for a 

VAR system with ä lags and û variables. The value for each IC is given for each 

number of lags (0, 1, ..., k). The optimal lag length is selected from the minimum value 

of the given IC. As presented in the literature, the most common IC used is Akaike’s 

Information Criterion (AIC). Therefore, when applying the IC method to select the 

optimal lag length required for any econometric method in this thesis, the AIC will be 

used. 

6.3.2 Granger Causality Tests 

Understanding how lagged variables influence the dependent variable is crucial in 

analysing an unrestricted Vector Autoregression (VAR) model. This concept explores 

the extent to which a lagged variable r! can predict future values of another variable 

s!. Pioneering work by Granger (1969) and Sims (1972) first investigated these 

interrelationships within multiple time series. Granger's contribution led to what is 

now known as the Granger causality test, which assesses the sequential predictive 

power of one time series over another within a multiple time series framework. A 

bivariate VAR model is typically employed to define and apply this test formally: 

r! =	£& +H£)r!#) +HN)s!#)

L

),'

L

),'

+ >'! 
(6.14) 

s! =	N& +H/)r!#) +H§)s!#)

L

),'

L

),'

+ >%! 
(6.15) 
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From Equation (6.14), if the coefficients of the lagged values of s!	are nonzero (N) ≠

0, for m = 1, 2, . . . , ò), then  s!   Granger causes r!. From Equation (6.15), the logic is 

the same. If the coefficients of the lagged values of	r!	are nonzero (/) ≠ 0, for m =

1, 2, . . . , ò), then it is said that	r!   Granger causes s!. In this case, the Granger causality 

test investigates if past values of the variable		r! 	(r!#', 	r!#%, . . . , 	r!#L) impacts the 

contemporaneous value of s!. The test consists of an F-test or a °%-test for a joint 

hypothesis that a regressor does not cause changes in the dependent variable, 

considering one equation in the VAR system. Therefore, from Equation (6.14), the 

null hypothesis of the Granger causality test can be described as: 

• H0: s! does not Granger cause	r! if N' = N% = NM =	. . . = 	 NL = 0. 

• HA: s! Granger causes	r! if N' ≠ 0, 	N% ≠ 0,			. . ., or NL ≠ 0. 

Brooks (2008) elaborates on the concept of Granger causality, explaining that if the 

lagged values of s! significantly affect r! without the reverse occurring, it indicates a 

one-way causality from s! to r!, making s! strongly exogenous as per Equation 

(6.14). The reverse scenario, detailed in Equation (6.15), also holds. However, if 

lagged values from both time series significantly influence each other, this suggests a 

two-way or bidirectional causality. Conversely, if neither set of lagged values has a 

significant impact, then variables s! and r! are deemed independent, indicating no 

causal relationship between them. 

Brooks (2008) states that Granger causality should not be interpreted as a literal causal 

relationship where one variable directly influences another. Rather, it is a statistical 

concept used in VAR models to identify correlations between past and present 

observations of time series. The essence of Granger causality lies in determining the 

statistical significance of lagged variables in predicting changes in dependent 

variables within the model. 

6.3.3 Impulse Responses in a VAR Model 

A key aspect of analysing VAR models involves examining the dynamic interactions 

between variables, specifically how changes in one variable might positively or 

negatively influence others and the duration of these effects. To assess these dynamics, 

analysts employ impulse response functions and variance decompositions, which are 
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instrumental in understanding the temporal effects of variables on each other within 

the VAR framework. 

Impulse responses in a VAR model measure how dependent variables react to shocks 

in each of the model's regressors (Brooks 2008). The approach involves introducing a 

one-unit shock to the error term of each dependent variable in each equation and 

observing the effect on the entire VAR system over time. In a VAR model with - 

variables, this results in -% possible impulse responses across all equations. By 

conceptualizing the VAR as a vector moving average (VMA), it is understood that 

these shocks will gradually decrease as the system returns to stability. Brandt and 

Williams (2007) note that viewing the VAR through a VMA lens helps clarify its 

structural dynamics, allowing for an analysis of how it reacts to external shocks in the 

error terms. Brooks (2008) illustrates this with an example of a bivariate VAR(1) 

model, which includes just one lag. 

-! =	r'-!#'	+	>! (6.16) 

where r' = :0.5 0.3
0.0 0.2

; 

 The general form of the bivariate VAR in (5.16) can also be expressed using 

vectors and matrices as follows: 

:
-'!
-%!
; = 	 :0.5 0.3

0.0 0.2
; :
-'!#'
-%!#'

; + :
>'!
>%!

; (6.17) 

Following the example from Brooks (2008), if a unit shock is applied in -'! at time 

0 = 0, the impacts in the VAR system at time 0 = 0, 1, 2 can be described as follows: 

-& = :
>'&
>%&

; = 	 :1
0
; (6.18) 

-' =	r'-& = :0.5 0.3
0.0 0.2

; :1
0
; = :0.5

0
; (6.19) 

-% =	r'-' = :0.5 0.3
0.0 0.2

; :0.5
0
; = :0.25

0
; (6.20) 

Thus, introducing a unit shock to -'! allows for assessing the impulse response 

functions for both -'! and -%!. The coefficient of -'!#' in the equation for -%!, derived 
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from matrix r', is zero, indicating that a shock to -'! will invariably not affect -%!. 

Similarly, applying a unit shock to -%! at 0 = 0  will result in specific impulse response 

functions: 

-& = :
>'&
>%&

; = 	 :0
1
; (6.21) 

-' =	r'-& = :0.5 0.3
0.0 0.2

; :0
1
; = :0.3

0.2
; (6.22) 

-% =	r'-' = :0.5 0.3
0.0 0.2

; :0.3
0.2
; = :0.21

0.04
; (6.23) 

The examples illustrate that computing impulse response functions in a simple two-

variable VAR model are relatively straightforward. However, this method can also be 

applied to more complex VAR models with more variables and longer lags, where the 

effects of external shocks can be more complicated. In these scenarios, computational 

analysis becomes essential to achieve precise outcomes (Brooks 2008). 

These simple examples assume no correlation exists between shocks to the variables 

introduced through the error terms. When shocks are assumed to be 

contemporaneously correlated, then a structural VAR representation with 

contemporaneous relationships will emerge. Several techniques are available to 

identify and estimate the model. This thesis uses a Cholesky-decomposition technique 

that restricts the matrix of contemporaneous relationships to be upper triangular, based 

on assumptions. In other words, with a Cholesky-decomposition approach, the 

modeller has to choose one independent shock, a second shock that will depend on the 

latter only, a third shock that will depend on the last two, etc. This decision can be 

informed by economic theory, causality results, and forecast error variance 

decomposition. 

6.3.4 Decomposition of Forecast Error Variance 

Forecast variance decompositions offer an alternative method for examining the 

dynamic relationships between variables in a VAR model. This approach quantifies 

the extent to which fluctuations in each variable within the VAR system can be 

attributed to changes in the other variables over a specified timeframe. In a VAR 

system, a shock to one variable can affect others due to the system's inherent structural 
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dynamics. Variance decompositions measure the contribution of changes in each 

explanatory variable to the variance of forecast errors for an endogenous variable at 

future steps (s=1, 2,...), using the VMA representation to calculate these forecast 

errors. An example from Brandt and Williams (2007) demonstrates how a VAR(p) 

model is transformed into a VMA for this purpose. 

-! = l + -!#'s' + -!#%s%+. . . +-!#(s( + i!	,  

 

(6.24) 

-!−	-!#'s' − -!#%s%−. . . −	-!#(s( = l + i!	, 

-!(¢ − Fs' − F%s%−. . . −	F(s() = l + i!		, 

-! − g = i!(¢ − Fs' − F%s%−. . . −	F(s()#'	, 

-! − g = i!(¢ + Fp' + F%p%−. . . )	 

where Lk is the lag operator that transforms any variables in its lagged k periods: 

F5-! = -!#5. Furthermore, d is the VAR constant term (c) divided by the AR lag 

polynomial. The VMA coefficients p) in (6.24) are obtained by recursive equations as 

follows: 

p' = s'  

(6.25) 

 

p% = s'p' + s% 

pM = s'p% + s%p' + sM 

Considering the VMA form of a VAR(p) model as outlined in equation (6.24), the 

forecast errors for the VAR system at time period s are calculated as follows: 

-!-N − -M!-N =	i!-N + p'i!-N#' + p%i!-N#%+. . . +pN#'i!-' (6.26) 

In Equation (6.26), the left side shows the discrepancy between the actual observed 

values of the endogenous variables at time t + s and their predicted values based on 

VAR estimations. On the right side, Equation (6.26) depicts the forecast errors 

expressed in the VMA format, tracing from the current time T = s  back to T = s - 1 

(Brandt and Williams 2007). This setup illustrates how the VAR model's innovations 
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are accounted for by their historical values in the VMA context. Additionally, the 

forecast error variance in Equation (6.26) is defined as follows: 

õ(-!-N − -M!-N) = 	+[(-!-N − -M!-N)H(-!-N − -M!-N)]

= 	∑ + p'∑p'
H + p%∑p%

H+. . . +pN#'∑pN#'
H 

(6.27) 

where ∑ = +[i!Hi!] is the covariance of the forecast errors in time t. 

The outcomes of forecasting error decomposition are typically displayed in tables or 

charts, illustrating the proportion of a variable's forecast error variance attributed to its 

shocks and those from other variables within the VAR system. It is important to 

recognise the inherent accuracy limitations of impulse responses and variance 

decompositions, making the use of confidence intervals around these results 

indispensable (Runkle 1987). 

6.4 Cointegration Techniques 

This section discusses two cointegration methods: The Engle-Granger method, which 

applies to single-equation settings, and the Johansen method, which applies to VARs. 

Granger and Newbold (1974) highlight that trends in non-stationary data can result in 

incorrect interpretations. Addressing this issue, the ECM approach is designed to 

account for these trends and reduce the risk of spurious regression outcomes. The Error 

Correction Model (ECM) is based on a principle that was formally first 

studied in Engle and Granger (1987). This article states that a stationary linear 

relationship may be obtained from a linear combination between two non-stationary 

time series that share a common trend. Brandt and Williams (2007) outline three key 

benefits of this approach. Firstly, the ECM facilitates the study of a shared trend and 

interactions between two or more time series, thereby minimising the chances of 

encountering spurious regression issues. Secondly, the ECM provides insights into the 

time series' short-term and long-term dynamics within a single regression framework. 

Lastly, it allows for assessing causal relationships (Granger causality) among the time 

series, even when they are integrated or exhibit trends. An example of the ECM 

includes a model with two I(1) variables  and illustrates how these concepts are 

applied. 
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<! =	k'K! +	k%<!#' + kMK!#' + ¶! (6.28) 

where  O0-O1
'#O2

  is the total multiplier that accounts for changes in K!. Engle and Granger 

(1987) explain that if a linear regression involving K! and <!	results in a stationary 

series, these variables are deemed cointegrated. However, it is not feasible to estimate 

the overall multiplier directly using Ordinary Least Squares (OLS) due to the 

nonstationary nature of the residuals in Equation (6.28). To address this issue, the 

model is adjusted by incorporating the first differences of the variables, thereby 

transforming it into an error correction model as described below: 

<! =	<!#' + K!k'
∗

− K!#'k'
∗	+	k%

∗	<!#'	−	k%
∗	<!#%	+	kM

∗	K!#'	−	kM
∗	K!#%

+ >! , 

(6.29) 

(1 − F)<! =	k'
∗(1 − F)K! +	k%

∗(1 − F)<!#' + kM
∗(1 − F)K!#' + >!  (6.30) 

Δ<! =	ΔK!k'
∗	+	k%

∗	Δ<!#'	+	kM
∗	ΔK!#' + >! 

One drawback of employing Equation (6.29) is the inability to calculate the overall 

multiplier directly from Equation (6.28). Brandt and Williams (2007) show that using 

the Error Correction Model (ECM), Equation (6.30) can be transformed into a 

stationary form as follows: 

(1 − F)<! = k'K! + (k% − 1)<!#' +	kMK!#' + ï! ,  

 

(6.31) 

(1 − F)<! = k'(1 − F)K! + (k% − 1)<!#' +	(k' + kM)K!#' + g! , 

Δ<! =	k'ΔK! + (k% − 1) ®<!#' + z
k' + kM
k% − 1

{K!#'© + Ç! , 

Δ<! = k'ΔK! + (k% − 1)>!#' + Ç! 

The representation of the ECM in Equation (6.31), facilitates the estimation of the 

long-term multipliers, k' and kM, as well as the short-term dynamics through the 

coefficient k%. Additionally, the residual Ç! is stationary, which mitigates the issue of 

spurious regression. In incorporating a second equation for K! from the prior example, 
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the ECM is integrated into a VAR framework. To illustrate this, we consider -!as a 1 

x 2 vector comprising <!and K!, as outlined below: 

-! =	H-!#JrJ

(

J,'

+ >! 
(6.32) 

As in Equation (6.29), we subtract -!#' from both sides of Equation (6.32) as follows: 

-!	−	-!#' =	 	−	-!#' +H-!#JrJ

(

J,'

	+ >! , 
(6.33) 

∆-! =	 		-!#'Π + ∆-!#'Γ'	+. . . +	∆-!#(-'Γ(#' 	+ >! .  

where;  

Π = −(¢P − r'−. . . −	r(), 

Γ) = −(r)-'+. . . +	rQ), m = 1, . . . , ¨ − 1, 

∆-! represents the first difference of -!, Π represents the long-run equilibrium, and Γ) 

the short-run dynamics. Upon identifying a cointegrated relationship within the model, 

this relationship is captured in the cointegration term Π. The coefficients representing 

long-term and short-term effects in equation (6.33) are derived from the coefficients 

of the Vector Autoregression (VAR) model as follows: 

r' = Γ' + Π + ¢P, 

r) = Γ) − Γ)#', m = 2,… , ¨ − 1, 

r( = −Γ(#'. 

A set of reduced rank regression models or canonical correlation analysis estimates the 

model. This method evaluates the number of cointegrating relationships between the 

time series by estimating the rank (i.e. number of linearity independent relationships) 

in the matrix Π = λβ. The short-run relationship is obtained by estimating the 

coefficients Γ) (Johansen 1995). Brandt and Williams (2007) argue that the VECM 

models are suitable for multiple time series that follow the same trend over time. 

If cointegration is confirmed, Equation (6.33) can be represented as an ECM. For 

example, we present a bivariate VECM (¨',! and ¨%,!) with 2 optimal lags as follows: 
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Δ¨',! = N'(¨',!#' − G& − G'¨%,!#') + n'Δ¨',!#' + n%Δ¨%,!#' + [!' (6.34) 

Δ¨%,! = N%(¨',!#' − G& − G'¨%,!#') + nMΔ¨',!#' + nRΔ¨%,!#' + [!%  

The error-correction term, represented by ¨',!#' − G& − G'¨%,!#', along with the 

coefficients N), which denote the speed of adjustment, are key components in 

understanding how two variables adjust over time. The coefficients n) describe the 

short-term interactions between these variables. Stigler and Sherwin (1985) 

highlighted that the closer N) is to one, the quicker the adjustment to price changes. 

Engle and Granger (1987) noted that although the error correction term approaches 

zero in the long run, indicating a return to equilibrium, any deviation from the long-

term trend by either variable will trigger an adjustment back to equilibrium at the rate 

of N). For the adjustment towards long-term equilibrium to be corrective following an 

external shock, N) must be negative, ensuring that the time series reverts to its long-

term trend.  

In summary, this section introduced two principal methodologies for examining 

cointegration among time series. The first approach, developed by Engle and Granger 

(1987), employs a two-step residual-based procedure to evaluate the null hypothesis 

that there is no cointegration. The second method, proposed by Johansen (1995), 

utilizes a system of equations through reduced rank regression to investigate 

cointegration presence. A common limitation of both approaches is their applicability 

solely to variables integrated of order one, meaning they are non-stationary at their 

levels. This requirement necessitates preliminary tests for the stationarity of the time 

series, which can introduce additional uncertainty and potential bias into the findings 

(Pesaran, Shin and Smith 2001). Furthermore, as highlighted in Chapter 4, overlooking 

structural breaks in standard unit root tests can distort the outcomes, leading to biased 

conclusions. 

6.5 ARDL Cointegration Model 

Chapter 4 revealed that within the dataset spanning from January 2001 to February 

2020, there exists a combination of both stationary (I(0)) and non-stationary (I(1)) 

variables. For this reason, the cointegration methodology proposed by Pesaran, Shin 

and Smith (2001) will be used. This method is capable of testing relationships between 
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time series without the need for the regressors to be exclusively I(0), exclusively I(1), 

or mutually cointegrated. Specifically, this method uses a ARDL (Autoregressive 

Distributed Lag) approach for investigating cointegration. It also offers several 

additional benefits, which will be elaborated later. Before exploring the specifics of 

the cointegration technique, an overview of the fundamental principles of an ARDL 

model is provided. 

In essence, an ARDL model incorporates both current and lagged values of 

independent variables (defining it as a distributed-lag model) as well as lagged values 

of the dependent variable (making it autoregressive) (Gujarati 2003). In a simplified 

bivariate model where ¨' is the dependent variable and ¨% is the independent variable, 

an ARDL(p,q) framework includes p lags of ¨' and q lags of ¨% in its explanatory 

variables. The representation of the model is as follows: 

¨',! = k& + k'¨',!#' + k%¨',!#% +⋯+ k(¨',!#( + B'¨%,!#' + B%¨%,!#%

+⋯+ BS¨%,!#S + [! 

(6.35) 

In a compact form, the ARDL(p,q) presented in (6.35) can be written as follows: 

¨',! = k& +Hk)¨',!#)

(

),'

+HB*¨%,!#*

S

*,&

+ [! 
(6.36) 

The ARDL model uniquely combines autoregressive elements, where its past values 

influence the dependent variable ¨', and distributed lag aspects, where ¨' is affected 

by past (and potentially current) values of an independent variable ¨%. A key strength 

of the ARDL approach is its capability to handle both I(0) and I(1) series and to 

accommodate varying lag lengths for different variables, showcasing the model's 

flexibility in capturing dynamic relationships. To ensure the effectiveness of the 

ARDL model, especially when applying bounds cointegration tests, it is vital to 

determine the optimal lag lengths for each variable, which is achieved through the 

selection of Information Criterion such as the Akaike Information Criterion (AIC), 

Schwarz Bayesian Criterion (SBC), or Hannan-Quinn Criterion (HQC), where the 

preferred model minimizes these statistical estimates, thereby optimizing the lag 

structure for the analysis. 
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The most significant contribution of Pesaran, Shin and Smith (2001) is introducing the 

ARDL framework to assess cointegration via the so-called bounds test. If 

cointegration is found, an error correction term is added to the ARDL model. To 

illustrate this model, a revised version of Equation (6.35) is proposed as follows: 

Δ¨',! = k& +HN)∆¨',!#)

(

),'

+HB*Δ¨%,!#*

S

*,&

+ Ø'¨',!#' + Ø%¨%,!#' + ∞! 
(6.37) 

where the coefficients Ø' and Ø% represent the long-run relationship, and the 

coefficients N) and B) corresponds to the short-run dynamics of the model. 

The bounds cointegration test consists of an F-test implemented on the joint null 

hypothesis that the coefficients of the lagged variables ¨',!#' and ¨%,!#' in Equation 

(5.37) are all equal to zero. The,, the null hypothesis of no long-run relationship 

(cointegration) can be presented as follows: 

• !&:	Ø' = Ø% = 0 (Null hypothesis, i.e. no long-run relationship or cointegration 

exists) 

• !':	Ø' ≠ Ø% ≠ 0 (Alternative, i.e. the long-run relationship or cointegration 

exists) 

The F-statistic test used in the ARDL framework is unaffected by whether the model 

variables are I(0) or I(1). Pesaran, Shin and Smith (2001) provide critical values for 

the F-statistics, which vary based on the model's number of variables and the inclusion 

of an intercept and/or trend. These critical values are categorized into two groups: one 

for models with all I(0) variables, indicating no cointegration, and another for models 

with all I(1) variables, suggesting the presence of a long-run, cointegrated relationship. 

A specific range of critical values exists for each model scenario, accommodating all 

potential classifications of variables as either I(0) or I(1) (Nkoro and Uko 2016). 

Upon conducting the bounds tests, if the F-statistics for the variables in Equation (6.37) 

is greater or lower than the specified critical bounds for I(0) and I(1), the results are 

conclusive regardless of the variables' classification as I(0), I(1), or mutually 

cointegrated. An F-statistic above the upper critical bound indicates cointegration, 

leading to rejecting the null hypothesis (!&). In contrast, an F-statistic below the lower 
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critical bound suggests no long-run relationship, thus not rejecting !&. However, if the 

F-statistic lies within the bounds, the test's outcome is indeterminate and dependent on 

the actual integration order of the variables. It is important to note that the presence of 

any I(2) variables invalidates the F-statistics, as the test assumes variables to be either 

I(0), I(1), or cointegrated. Although pre-testing for unit roots is not essential, verifying 

that variables are not I(2) through unit root testing of their first differences before 

applying the bounds F-test is advisable (Nkoro and Uko 2016). 

Pesaran, Shin and Smith (2001) argue that an advantage of the ARDL approach for 

testing cointegration is that it may represent a single long-run relationship, 

distinguishing the ARDL method between the dependent and explanatory variables. 

At first, the ARDL approach considers that only a single reduced-form equation exists 

between the variables. Another advantage is that the Error Correction Model (ECM) 

can be modelled from the ARDL through a linear transformation, integrating short-run 

with long-run dynamics without losing long-run information. As such, the ARDL 

model may be viewed as a form of unrestricted ECM, as all long-run relationship 

variables are specified and not restricted. 

The ARDL model, which includes an Error Correction Term (ECT) as shown in 

Equation (6.37), assumes a symmetric effect of explanatory variables on the dependent 

variable, meaning that both positive and negative variations in the explanatory 

variables are presumed to have equal and direct impacts on the dependent variable. 

This assumption is a limitation of the ARDL error correction model outlined by 

Pesaran, Shin and Smith (2001), given that economic variables often exhibit 

asymmetric relationships where positive and negative shifts in explanatory variables 

do not equally affect the dependent variable, as evidenced in studies by Neftçi (1984), 

Falk (1986), Kisswani, Zaitouni, and Moufakkir (2020), and Kisswani (2021). To 

enhance the analysis of cointegration between natural gas and oil prices in this thesis, 

an advanced method, the non-linear ARDL model (NARDL) proposed by Shin, Yu 

and Greenwood-Nimmo (2014), is considered, addressing the limitations of the 

traditional ARDL model by accommodating asymmetry. The subsequent section will 

explore this innovative approach. 
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6.6 A Non-linear ARDL (NARDL) Approach to Cointegration 

Shin, Yu and Greenwood-Nimmo (2014) developed a different ARDL bounds 

cointegration test to assess the asymmetric influence of the explanatory variables in 

the model by proposing a non-linear ARDL model (NARDL). The asymmetry of 

explanatory variables is introduced by partial sums, which decompose the variables 

into positive and negative shocks. Using the explanatory variable ¨%,! from Equation 

(6.35), the positive shock (¨%,!-) and negative shock (¨%,!#) can be represented as 

follows: 

¨%,!- =H∆¨%,)-
!

*,'

=Hmax	(∆¨%,* , 0)

!

*,'

 
(6.38) 

¨%,!# =H∆¨%,)#
!

5,'

=Hmin	(∆¨%,5 , 0)

!

5,'

 
(6.39) 

Using the example of the bivariate model proposed by Equation (6.37), the new ECM 

model as proposed by Shin, Yu and Greenwood-Nimmo (2014) is as follows: 

Δ¨',! = k& +HN)∆¨',!#)

(

),'

+HB'*∆¨%,!#*-
S

*,&

+HB%5∆¨%,!#5#
T

5,&

+ Ø'¨',!#' + Ø%¨%,!#'- + ØM¨%,!#'# + ±! 

(6.40) 

The ECM model outlined in equation (6.40) facilitates an asymmetric evaluation of 

the causal impact on the dependent variable ¨' over long-term and short-term periods. 

Shin, Yu and Greenwood-Nimmo (2014) state that the methodological framework for 

the bounds cointegration test by Pesaran, Shin and Smith (2001), using the F-statistic, 

also applies to this equation. In equation (6.40), the coefficients ∑ N)
(
),' ,  ∑ B')

S
),&  and 

∑ B%)
T
),& , related to the changes in explanatory variables, delineate the asymmetric 

short-term effects on the variable’s (¨') volatility. Meanwhile, Ø', Ø%, and ØM capture 

the asymmetric long-term impacts on the dependent variable. The existence of long-

run causal asymmetry between ¨% and ¨' is verified if Ø% significantly diverges from 

ØM, and short-run asymmetry is established if ∑ B')
S
),&  significantly differ from 
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∑ B%)
T
),& . These differences can be statistically verified through the Wald-test for joint 

significance. 

Therefore, the F-test is applied for the null hypothesis: Ø' = Ø% = ØM = 0, against 

the alternative Ø' ≠ Ø% ≠ ØM ≠ 0. As presented previously, if the null is rejected, 

cointegration is confirmed for the asymmetric model. 

6.7 Global Economic Conditions Indicator  

Understanding the key drivers of world energy markets is crucial for policymakers 

and academic researchers, especially given the recent disruptions caused by COVID-

19. Academic studies, such as those by Baumeister and Kilian (2012) and Alquist, 

Kilian, and Vigfusson (2013), have contributed significantly by developing models 

that improve energy price dynamics modelling by focusing on economic 

fundamentals. Kilian's (2009) dry-cargo shipping rate measure was a notable early 

indicator, but its reliability has diminished due to recent market volatility. Researchers 

now explore alternative indicators, such as world industrial production (Baumeister 

and Hamilton, 2019; Hamilton, 2019), broader commodity prices (Alquist, Bhattarai, 

and Coibion, 2020), and global steel production (Ravazzolo and Vespignani, 2020), 

to better predict energy demand and prices. 

Baumeister, Korobilis, and Lee (2022) conducted a remarkable study introducing new 

variables to improve energy price forecasting, including geopolitical risk, 

transportation developments, oil price uncertainty, and weather indicators. They 

discovered that combining these variables with world industrial production enhances 

the accuracy of global oil price and demand forecasts. Their analysis also includes 

measures indicating potential upward or downward oil price pressures and predicts the 

likelihood of oil prices staying within recent ranges over two years. The study's 

applicability is demonstrated through a risk assessment for shale oil producers during 

the volatile period of early 2020.  
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6.7.1 The Global Economic Conditions Indicator: A Multi-Dimensional 

Approach  

Baumeister, Korobilis, and Lee (2022) identified 16 indicators to improve forecasting 

energy prices and demand, guided by four principles: diversity in data categories, 

economic relevance, broad coverage, and manageability. These categories include: 

• Real Economic Activity: This involves the World Industrial Production (WIP) 

index, the Conference Board Leading Economic Index, and the OECD Consumer 

Confidence Index to gauge global economic conditions and their impact on 

energy demand. 

• Commodity Prices: Copper prices, deflated by the U.S. consumer price index, 

are used as they are key indicators of manufacturing, construction, and future 

global growth. 

• Financial Indicators: These include the broad real trade-weighted U.S. dollar 

index, MSCI world index stock returns, and the excess return on the Fama-French 

transportation sector portfolio, reflecting trade, financial flows, and energy 

consumption. 

• Transportation: Indicators such as vehicle registrations and U.S. total vehicle 

miles travelled are used to predict future fuel demand. 

• Uncertainty Measures: The geopolitical risk index and long-run oil price 

uncertainty, measured by the realized volatility of WTI futures contracts, reflect 

geopolitical events' impact on energy markets. 

• Expectations Measures: The Michigan Survey's index of consumer expectations 

and an oil price expectations measure, derived from WTI futures prices, indicate 

future economic and energy market trends. 

• Weather Indicators: The Oceanic Niño Index (ONI) and the Residential Energy 

Demand Temperature Index (REDTI) are used to account for the impact of 

weather phenomena like El Niño on energy use and demand. 

• Energy-related Indicators: The measure of energy production and electricity 

distribution in the EU28 reflects the overall intensity of economic activity and 

direct energy demand. 
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The authors created a global economic conditions indicator (GECON) using the first 

principal component from the 16 variables. This indicator is normalized to a mean of 

zero and a standard deviation of one. A 3-month moving average is applied to 

emphasize persistent economic trends. This indicator effectively tracks major 

economic events, showing severe downturns during the 2008-09 financial crisis and 

early 2020 due to the coronavirus pandemic, and periods of strong growth in the late 

1980s and mid-2000s. It also highlights an improvement in 2013 and sluggish growth 

from 2015 to 2017. 

Baumeister, Korobilis, and Lee (2022) concluded that the most accurate model 

employs the newly developed global economic conditions indicator in forecasting the 

real Brent price and fuel consumption together. They demonstrate how this model's 

real-time forecasts for price and consumption can generate metrics that offer 

policymakers and markets a quantitative assessment of anticipated oil price pressures 

and future energy demand trends. 

6.7.2 Incorporating the GECON Indicator into Econometric Models of 

this Thesis 

Baumeister, Korobilis, and Lee (2022) demonstrated that the GECON indicator 

significantly enhances econometric models for forecasting oil prices and consumption. 

Given that natural gas is a major byproduct of oil, and its prices are still somewhat 

correlated with oil prices, we will incorporate the GECON indicator into the 

econometric models presented in Chapters 7, 8, and 9. These models will serve as a 

robustness check. Specifically, we will compare models that include only natural gas 

and crude oil prices and their causality and cointegration outcomes with similar 

models that also incorporate the GECON indicator as an exogenous variable. The 

objective is to determine whether the results are consistent across both sets of models, 

thereby verifying their reliability. 

6.8 Concluding Remarks 

This chapter provides a detailed overview of the methodologies employed in 

subsequent chapters to explore the links between global natural gas prices and the 

extent of interdependence between natural gas and oil prices. It sets the stage for the 
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econometric models to be detailed in Chapters 7, 8 and 9 by initially explaining how 

economic models articulate the interactions among multiple time series. Particular 

emphasis is placed on two critical methods: the VAR and the ARDL approaches, with 

or without cointegration. 

Given the dataset (2001M01 to 2020M02) contains a mix of I(0) and I(1) time series, 

the bounds cointegration test by Pesaran, Shin and Smith (2001) is identified as the 

most suitable econometric approach to examine the relationship between natural gas 

prices. This test offers several advantages over traditional cointegration methods like 

those by Engle and Granger (1987) and Johansen (1995). Key advantages include its 

capability to analyse short-term and long-term causality between time series without 

requiring the regressors to be exclusively I(0) or I(1), its utilization of a simplified 

single-equation form, its effectiveness in addressing endogeneity issues, and its ability 

to determine the optimal lag length for variables. Importantly, the ARDL framework 

allows for simultaneous evaluation of the short-run and long-run impacts of 

explanatory variables on the dependent variables, aligning closely with the objectives 

of this thesis. 

Additionally, the bounds cointegration test has been enhanced by Shin, Yu and 

Greenwood-Nimmo (2014) through the introduction of the NARDL model, which 

allows for the examination of asymmetric causal relationships between time series. 

This innovative approach distinguishes between the effects of positive and negative 

shocks, analysing whether the impacts of such changes differ in the short and long 

term across variables. It is important as it may detect cointegrating relationships and 

causal links that may not be detectable in the linear (misspecified) ARDL models. 

In the next chapter, the traditional ARDL method for the bounds cointegration test 

will be employed in bivariate models across two datasets. Chapter 8 will further 

explore the NARDL method in bivariate models to examine and substantiate the 

standard ARDL bounds cointegration test findings, specifically focusing on 

asymmetries in the causal relationships between natural gas and crude oil prices. 

Consistent with the approach outlined in Chapter 4, a structural break analysis for each 

dependent variable will be incorporated to ensure the accuracy and reliability of the 

results. The analysis of bivariate models will be complemented with a more general 

VAR model analysis that will help discard spurious causality in the former models. 
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CHAPTER 7  
BIVARIATE LINEAR ARDL MODELS  

7.1 Introduction 

The last chapter outlined the theoretical foundation for the econometric methods used 

in this thesis, highlighting a distinction between short- and long-run analysis It also 

identified the autoregressive distributed lag (ARDL) model, favoured for handling 

time series of mixed integration orders, as the best approach for analysing natural gas 

prices, noting its ability to produce unbiased estimates and to incorporate structural 

breaks to improve model accuracy. 

This chapter analyses price relationships between different regional natural gas 

markets and the Brent crude oil prices, employing the ARDL method and 

cointegration bounds test as per Pesaran, Shin and Smith (2001) to uncover short-run 

and long-run causality. It focuses on linear analysis within the ARDL models, 

highlighting symmetric adjustments to shocks in the variables relative to their long-

term equilibrium. The results are examined for their statistical significance, 

particularly focusing on detecting cointegration among natural gas prices for Europe, 

North America, and Asia, including some newly established spot price benchmarks. 

Additionally, this chapter uses the ARDL cointegration models to explore price 

discovery dynamics, identifying leading and lagging markets. 

It is worth noting that the lack of growth convergence observed in Chapter 5 may or 

may not be consistent with an error-correction term that includes a drift, restricted 

constant or a deterministic trend. In this sense, the former test is more restrictive than 

the latter. 

7.2 Empirical Results of the Bivariate Linear ARDL Models 

This section outlines the findings from the bounds cointegration test and the 

calculation of short-run and long-run coefficients' estimates for the variables in each 

bivariate ARDL model, applied to two distinct datasets: Sample 1 and Sample 2. The 

rationale behind using these two samples and their unit root test results were discussed 
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in Chapter 4. The Sample 1 notation and break dates are detailed in Table 7.1. Sample 

2 is likewise shown in shown in Table 7.2. 

Table 7.1 Summary of Sample 1 Dataset (Jan 2001 – Feb 2020). 

Markets North 
America Europe Asia Crude Oil 

Variables LnHH LnNBP LnRUS LnJPN LnOIL 
Stuctural 
Break 

2004M06 2005M11 2004M08 2014M12 2016M02 

Table 7.2 Summary of Sample 2 Dataset (Jul 2010 – Feb 2020). 

When choosing the best lag length for VAR or ARDL models, we consider three 

information criteria: Akaike's Information Criterion (AIC), Schwarz Bayesian 

Criterion (SIC), and Hannan-Quinn Criterion. The optimal lag is selected based on the 

lowest value within each criterion. Generally, AIC is favoured for its superior 

predictive accuracy, aiming to provide the best forecast using historical data and 

capturing complex data relationships. On the other hand, SIC seeks to find the most 

streamlined model. Akaike's criterion is preferred for examining the causal links in 

natural gas price time series, allowing for selecting the best lag with up to four lags for 

both dependent and explanatory variables in the ARDL models, focusing on achieving 

the most accurate predictive performance. 

After defining the optimal lag length, we calculate each bivariate model's bounds test 

statistic to determine if the variables are cointegrated. If cointegration exists, we 

estimate the Error Correction Model (ECM), from which we explore the long-run and 

short-run dynamics for further analysis. In cases where cointegration is absent, we 

estimate a new ARDL model using the first differences of the time series to explore 

short-run causality. This step involves testing whether the lagged coefficients of the 

explanatory variables are significantly different from zero. It is important to note that 

in assessing short-run causality, we do not consider the contemporary coefficient 

Markets North 
America Europe Asia Crude Oil 

Variables LnHH LnNBP LnRUS LnTTF LnJPN LnALNG LnOIL 
Stuctural 
Break 

2018M08 2018M08 2018M08 2018M03 2015M03 2018M07 2014M11 
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estimates of the explanatory variables in the ARDL model. For clarity, the ARDL 

methodology is outlined in Figure 7.1. 

 

Figure 7.1  Flowchart of the ARDL Approach. 

In the following subsection, we discuss the findings for Sample 1. The outcomes 

related to Sample 2 are detailed in Section 7.2.3. 

7.2.1 Unit Root and Structural Break Analysis 

Before exploring the ARDL method, we conducted ADF, PP, and KPSS unit root tests, 

with findings in Chapter 4, Tables 4.3 (Sample 1) and 4.4 (Sample 2). These tests 

indicate that variables from both datasets are first-order integrated, or I(1). To refine 

our analysis, we utilized the ZA unit root test, which accounts for a structural break, 

to assess the true integration order of the variables that might misleadingly seem to be 
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I(1) but could actually be I(0) with a break, and similarly for variables that might 

appear to be I(2) instead of I(1) with a break. The ZA test results for both levels and 

the first differences of Sample 1 variables are in Tables 4.5 and 4.6, while for Sample 

2, they are in Tables 4.7 and 4.8 of Chapter 4. These outcomes suggest a mixture of 

I(0) and I(1) variables in Sample 1 and confirm all Sample 2 variables as I(1), showing 

no evidence of I(2) variables when accounting for a structural break. When such 

breaks are significant, we incorporate appropriate dummy variables into the ARDL 

model to adjust for them. 

7.2.2 Bivariate Linear ARDL Models Applied to Sample 1 

The ARDL method for conducting the bounds cointegration test is outlined in 

Equation 6.37, found in Chapter 6, and re-written as follows: 

Δ¨',! = k& +HN)∆¨',!#)

(

),'

+HB*Δ¨%,!#*

S

*,&

+ Ø'¨',!#' + Ø%¨%,!#' + ∞! 
(7.1) 

In the model, ¨' is the dependent endogenous variable, while ¨% is the explanatory 

variable. Additionally, lagged values of  ¨' are included on the right-hand side of the 

equation as explanatory variables. The coefficients N) and B) capture the short-run 

dynamics, which follow the first-differenced explanatory variables. The optimal lag 

lengths, ¨ and ±, for each explanatory variable in their first differences are determined 

using the Akaike Information Criterion (AIC). The long-term relationship is depicted 

through the coefficients Ø' and Ø%. The F-distributed bounds cointegration test, which 

tests the null hypothesis that the long-run coefficients jointly equal zero, is used to 

ascertain cointegration. Rejecting this null hypothesis indicates cointegration, i.e., a 

long-term relationship exists. Upon establishing cointegration, we adopt the error 

correction model representation of Equation 7.1 to analyse the relationship further. 

Δ¨',! = k& +HN)∆¨',!#)

(

),'

+HB*Δ¨%,!#*

S

*,&

+ D+p2!#' + ∞! 
(7.2) 

The error correction term (D+p2!#') replaces the ARDL long-run terms (Ø'¨',!#' +

Ø%¨%,!#'). The long-run influence of the explanatory variable is denoted by the 
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coefficient Ø% normalised on Ø'; U2
U0

. The coefficient D represents the speed of 

adjustment of the bivariate model to long-run equilibrium, while the long-run 

coefficient U2
U0

 represents the long-run impact of the explanatory variable ¨% over ¨'. 

To ensure convergence toward long-run equilibrium, the coefficient estimate D must 

be negative and significant; otherwise, the model will be considered unstable and 

explosive. If D is significant, then ¨% Granger-causes ¨' in the long-run. The 

significance of D is assessed by its t-statistic value. The error correction term is 

represented as follows: 

+p2!#' = ¨',!#' − (k + kVW(J¨%,!#') (7.3) 

where kVW(J represents the loading factor of the explanatory variable in the bivariate 

model. From Equations 7.1, 7.2 and 7.3 we conclude that − U2
U0

 is equal to !*"−$YZ[\%. 

Table 7.3 reports the F-statistics for the linear bivariate ARDL cointegration bounds 

test (Pesaran, Shin and Smith 2001) applied to Sample 1. If cointegration is confirmed, 

the speed of adjustment DM, and the long-run term of the explanatory variable − U2X

U0X
 

(denoted by ØM  in Table 6.3) are also reported.  

Table 7.38 Linear ARDL Bivariate Models Applied to Sample 1 – Cointegration 

and ECM Long-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL  
Model  

Definition 
(AIC) 

Bounds 
Test:  

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$  
(t-stats) 

Loading  
Factor 
%&!"#$ 

(t-stats) 

#$ 
*'−%!"#$(= 

)$	 
(t-stats) 

LnHH – LnNBP ARDL(1,2) 2.58 4.94 5.73 N NA NA NA 
LnHH – LnRUS ARDL(1,1) 4.09 4.94 5.73 N NA NA NA 
LnHH – LnJPN ARDL(1,2) 4.80 4.94 5.73 N NA NA NA 
LnHH – LnOIL ARDL(1,3) 2.46 4.94 5.73 N NA NA NA 
LnNBP – LnHH ARDL(2,0) 5.08 4.94 5.73 N NA NA NA 
LnNBP – LnRUS ARDL(2,1) 13.10*** 4.94 5.73 Y −0.189*** 

(-5.130) 
0.801*** 
(5.601) 

0.151*** 
(3.598) 

LnNBP – LnJPN ARDL(2,1) 8.48*** 4.94 5.73 Y −0.124*** 
(−4.127) 

0.875*** 
(3.375) 

0.609***  
(2.926) 

LnNBP – LnOIL ARDL(2,2) 24.57*** 4.94 5.73 Y −0.202*** 
(−7.026) 

1.156*** 
(7.952) 

0.234***  
(6.420) 

 

 

 
8 Table 7.3 continues on the next page. 
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Table 7.3   Linear ARDL Bivariate Models Applied to Sample 1 – Cointegration 

and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL 
Model 

Definition 
(AIC) 

Bounds 
Test: 

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$ 
(t-stats) 

Loading 
Factor 
%&!"#$ 

(t-stats) 

#$ 
*'−%!"#$(= 

)$  
(t-stats) 

LnRUS – LnHH ARDL(4,2) 3.70 4.94 5.73 N NA NA NA 

LnRUS – LnNBP ARDL(4,4) 5.74** 4.94 5.73 Y −0.064*** 
(−3.393) 

1.075*** 
(4.781) 

0.068***  
(3.161) 

LnRUS – LnJPN ARDL(2,3) 1.50 4.94 5.73 N NA NA NA 
LnRUS – LnOIL ARDL(4,0) 11.17*** 4.94 5.73 Y −0.077*** 

(−4.737) 
1.009*** 
(5.231) 

0.078*** 
 (4.273) 

LnJPN – LnHH ARDL(2,3) 1.07 4.94 5.73 N NA NA NA 
LnJPN – LnNBP ARDL(2,0) 6.88** 4.94 5.73 Y −0.030*** 

(−3.718) 
0.863*** 
(4.609) 

0.026***  
(3.265) 

LnJPN – LnRUS ARDL(2,2) 1.80 4.94 5.73 N NA NA NA 
LnJPN – LnOIL ARDL(3,2) 34.92*** 4.94 5.73 Y −0.108*** 

(−8.376) 
0.902*** 
(20.448) 

0.098***  
(8.174) 

LnOIL – LnHH ARDL(2,1) 2.49 4.94 5.73 N NA  NA 
LnOIL – LnNBP ARDL(2,1) 2.58 4.94 5.73 N NA  NA 
LnOIL – LnRUS ARDL(2,0) 3.64 4.94 5.73 N NA  NA 
LnOIL – LnJPN ARDL(2,1) 2.05 4.94 5.73 N NA  NA 
Notes: The I(0) and I(1) Bound Test critical values are reported from Pesaran, Shin, and Smith (2001), Critical values: Case III – constant 
and no trend. α̂ is the speed of adjustment coefficient. ***, ** represent statistical significance at the 1% and 5% levels, respectively. The 
ARDL model definition ARDL(x,y) using the AIC approach represents that the lag length of the dependent variable is x and that the lag 
length of the explanatory variable is y. 

Analysing Table 7.3 reveals that within Sample 1, 7 out of 20 ARDL bivariate models 

exhibit cointegration, indicated by their F-statistic values exceeding the 5% critical 

value for the I(1) Bound. Notably, the NBP gas price is the most responsive in the long 

run, influenced by three variables, while the RUS and JPN gas prices react to two 

variables. The long-term impact of the OIL price series is observed in the European 

gas prices (NBP and RUS) and the Asian JPN price, although OIL itself is unaffected 

by any other series in Sample 1. Such a pattern positions the OIL price as a leading 

factor, likely driving the cointegration process among natural gas prices across Europe 

and Asia. Conversely, the HH gas price shows no long-term adjustment to other series, 

indicating the US natural gas market's independence and disconnection from other gas 

and oil prices. This aligns with research by Kim et al. (2020), Li, Joyeux, and Ripple 

(2014), and Siliverstovs et al. (2005), which identified integration between European 

and Asian gas markets and characterised Henry Hub as a distinct market with unique 

pricing dynamics. Additionally, Li, Joyeux, and Ripple (2014) and Siliverstovs et al. 



119 

 

(2005) highlighted that the cointegration between European and Asian gas markets is 

supported by long-term contracts that are indexed to oil prices. 

As discussed in Section 6.7, we will replicate the bounds cointegration analysis 

performed on Sample 1, this time incorporating the Global Economic Condition 

(GECON) Indicator as an exogenous variable in all bivariate models. Baumeister, 

Korobilis, and Lee (2022) demonstrated that the GECON indicator enhances the 

forecasting accuracy of econometric models for oil prices. Thus, we expect that 

including it in the models presented in Table 7.3 will provide a significant robustness 

check. Consequently, Table 7.4 presents the cointegration analysis for these bivariate 

ARDL models, mirroring the format of Table 7.3. 

Table 7.49 Linear ARDL Models with GECON Indicator as Exogenous Variable 

Applied to Sample 1 – Cointegration and ECM Long-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL  
Model  

Definition 
(AIC) 

Bounds 
Test:  

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$  
(t-stats) 

Loading  
Factor 
%&!"#$ 

(t-stats) 
LnHH – LnNBP ARDL(1,2) 2.44 4.94 5.73 N NA NA 
LnHH – LnRUS ARDL(1,1) 3.51 4.94 5.73 N NA NA 
LnHH – LnJPN ARDL(1,1) 3.87 4.94 5.73 N NA NA 
LnHH – LnOIL ARDL(1,3) 2.31 4.94 5.73 N NA NA 
LnNBP – LnHH ARDL(2,0) 4.91 4.94 5.73 N NA NA 
LnNBP – LnRUS ARDL(2,1) 13.79*** 4.94 5.73 Y −0.195*** 

(-5.265) 
0.845*** 
(6.020) 

LnNBP – LnJPN ARDL(2,1) 8.23*** 4.94 5.73 Y −0.123*** 
(−4.066) 

0.885*** 
(3.357) 

LnNBP – LnOIL ARDL(3,2) 25.97*** 4.94 5.73 Y −0.224*** 
(−7.223) 

1.106*** 
(8.420) 

LnRUS – LnHH ARDL(4,2) 3.55 4.94 5.73 N NA NA 

LnRUS – LnNBP ARDL(4,4) 5.58 4.94 5.73 N NA NA 
LnRUS – LnJPN ARDL(2,3) 1.27 4.94 5.73 N NA NA 
LnRUS – LnOIL ARDL(4,0) 11.56*** 4.94 5.73 Y −0.093*** 

(−4.420) 
1.004*** 
(6.349) 

LnJPN – LnHH ARDL(3,3) 1.12 4.94 5.73 N NA NA 
LnJPN – LnNBP ARDL(2,0) 6.50** 4.94 5.73 Y −0.028*** 

(−3.612) 
0.885*** 
(4.514) 

LnJPN – LnRUS ARDL(2,1) 3.59 4.94 5.73 N NA NA 
LnJPN – LnOIL ARDL(2,4) 33.24*** 4.94 5.73 Y −0.136*** 

(−8.172) 
0.897*** 
(25.851) 

 
9 Table 7.4 continues on the next page. 
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Table 7.4   Linear ARDL Models with GECON Indicator as Exogenous Variable 

Applied to Sample 1 – Cointegration and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL 
Model 

Definition 
(AIC) 

Bounds 
Test: 

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

α$ 
(t-stats) 

Loading 
Factor 
,-%&'( 

(t-stats) 
LnOIL – LnHH ARDL(3,1) 3.72 4.94 5.73 N NA  
LnOIL – LnNBP ARDL(2,4) 5.73 4.94 5.73 N NA  
LnOIL – LnRUS ARDL(2,0) 9.58** 4.94 5.73 Y −0.126*** 

(−4.387) 
0.666*** 
(4.785) 

LnOIL – LnJPN ARDL(2,1) 2.19 4.94 5.73 N NA  
Notes: The I(0) and I(1) Bound Test critical values are reported from Pesaran, Shin, and Smith (2001), Critical values: 
Case III – constant and no trend. α̂ is the speed of adjustment coefficient. ***, ** represent statistical significance at 
the 1% and 5% levels, respectively. The ARDL model definition ARDL(x,y) using the AIC approach represents that 
the lag length of the dependent variable is x and that the lag length of the explanatory variable is y. 

Table 7.4 largely confirms the results of the models that included only natural gas and 

oil prices. Specifically, incorporating the GECON indicator as an exogenous variable 

resulted in 18 out of 20 bivariate model outcomes remaining consistent with those in 

Table 7.3. Only two models exhibited different cointegration outcomes: the LnRUS - 

LnNBP bivariate model lost its cointegration when the GECON indicator was included, 

while the LnOIL – LnRUS ARDL model became cointegrated. Overall, the results of the 

ARDL models, with and without the GECON indicator, show a 90% consistency. 

In summary, Figure 7.2 provides a diagram illustrating the long-run causality 

directions between the time series in Sample 1, based on the results in Tables 7.3 and 

7.4. The arrows indicate the direction of causality. Solid lines represent cointegrated 

pairs consistent across both ARDL model assessments. Dotted lines denote weakly 

cointegrated pairs identified only in the models without the GECON indicator (Table 

7.3). Meanwhile, dashed lines indicate weakly cointegrated pairs found only in the 

models with the GECON indicator (Table 7.4). 

 

Figure 7.2 Diagram of the Linear Long-Run Causality Directions of Sample 1. 

RUS NBP

OILJPN

Same Cointegration Outcome 
(with and without GECON)

Weak Cointegration Outcome 
(without GECON)

Weak Cointegration Outcome 
(with GECON)
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While short-run dynamics are important to assess, our primary focus is on long-run 

causalities (cointegration). Therefore, we will not perform a robustness check by 

including the GECON indicator and comparing the short-run causality results. This 

decision is to avoid excessively extending the results and discussion of this thesis. 

The short-run causality of the cointegrated ARDL models can be determined by 

performing a joint F-test of the explanatory variable's short-run terms (Equation 7.2). 

The significance of the coefficients of the short-run terms determines the causal 

impact. Table 7.5 reports the results of the coefficients’ estimates, when applicable, as 

well as the results of the Wald test for joint significance, indicating if there is a short-

run causal relationship in the bivariate ECM. 

Table 7.5 Linear ARDL Bivariate Models Applied to Sample 1 – ECM Short-Run 

Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory 

Explanatory variable’s coefficients 
.& (t-stats) 

Wald Test: 
Coefficients Joint 

Significance -  
F-statistic 

Short-run 
Causality 

Relationship 

Short-run 
Causality 

(Y/N) 

∆LnNBP – ∆LnRUS No short-run coefficients in ECM NA RUS → NBP N 
∆LnNBP – ∆LnOIL ∆LnOILt-1 =−0.322*** (−3.080) 9.486*** OIL → NBP Y 
∆LnNBP – ∆LnJPN No short-run coefficients in ECM NA JPN → NBP N 
∆LnRUS – ∆LnNBP ∆LnNBP t-1 = 0.066** (2.083) 

∆LnNBP t-2 = 0.044 (1.404) 
∆LnNBP t-3 = −0.075** (−2.369) 

4.574*** NBP → RUS Y 

∆LnRUS – ∆LnOIL No short-run coefficients in ECM NA OIL → RUS N 
∆LnJPN – ∆LnNBP No short-run coefficients in ECM NA NBP → JPN N 
∆LnJPN – ∆LnOIL ∆LnOILt-1 = −0.038 (−1.258) 1.582 OIL → JPN N 
Notes: δ̀	are coefficients of the short-run terms of the bivariate ECM. ***, ** represent statistical significance at the 1% and 5% 
levels, respectively.  

If cointegration is not confirmed with the F-statistic bounds test, no ECM is included 

in the bivariate model, but short-run dynamics are still investigated. ARDL models 

are estimated using time series in the first differences for these cases. Again, the AIC 

is used to determine the optimal lag lengths. Formally, these ARDL models are as 

follows. 

Δ¨',! = 7& +HY)∆¨',!#)

T

),'

+Hn*Δ¨%,!#*

N

*,&

+ ∞! 
(7.4) 

where Y) are the short-run terms of the dependent variable, n) are the short-run terms 

of the explanatory variable, and ≤ and ≥ are the optimal lag lengths determined by 
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AIC. Similar to the cointegrated ARDL model, the short-run causality is determined 

by performing a joint F-test of the short-run terms n) of the explanatory variable. 

Results for the estimates of n), and the Wald test for joint significance (where 

applicable), are presented in Table 7.6. 

Table 7.6 AIC-Augmented Linear ARDL Bivariate Models Applied to Sample 1 – 

Short-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory 

ARDL 
Model 

Definition 
(AIC) 

Explanatory variable’s 
coefficients 
0& (t-stats) 

Wald Test: 
Coefficients Joint 

Significance -  
F-statistic  

Short-run 
Causality 

Relationship 

Short-run 
Causality 

(Y/N) 

∆LnHH – ∆LnNBP ARDL(1,1) ∆LnNBPt-1 = 0.143** (2.357) 5.555** NBP → HH Y 
∆LnHH – ∆LnRUS ARDL(1,3) ∆LnRUSt-1 = −0.019 (−0.136) 

∆LnRUSt-2 = 0.363*** (2.632) 
∆LnRUSt-3 = −0.255 (−1.861) 

2.904** RUS → HH Y 

∆LnHH – ∆LnJPN ARDL(1,0) No short-run coefficients  NA JPN → HH N 
∆LnHH – ∆LnOIL ARDL(1,2) ∆LnOIL t-1 = −0.161 (−1.596) 

∆LnOIL t-2 = 0.362*** (3.780) 
7.375 *** OIL → HH Y 

∆LnNBP – ∆LnHH ARDL(1,0) No short-run coefficients  NA HH → NBP N 
∆LnRUS – ∆LnHH ARDL(4,1) ∆LnHH t-1 = 0.101*** (3.048) 9.290*** HH → RUS Y 
∆LnRUS – ∆LnJPN ARDL(4,3) ∆LnJPNt-1 = −0.098 (−0.817) 

∆LnJPNt-2 = 0.313*** (2.618) 
∆LnJPNt-3 = 0.170 (1.510) 

4.793*** JPN → RUS Y 

∆LnJPN – ∆LnHH ARDL(4,2) ∆LnHH t-1 = 0.046** (2.369) 
∆LnHH t-2 = 0.056*** (2.862) 

6.688*** HH → JPN Y 

∆LnJPN – ∆LnRUS ARDL(4,3) ∆LnRUSt-1 = 0.097** (2.341) 
∆LnRUSt-2 = 0.049 (1.163) 
∆LnRUSt-3 = 0.065 (1.563) 

3.541** RUS → JPN Y 

∆LnOIL – ∆LnHH ARDL(1,0) No short-run coefficients  NA HH → OIL N 

∆LnOIL – ∆LnNBP ARDL(1,0) No short-run coefficients  NA NBP → OIL N 
∆LnOIL – ∆LnRUS ARDL(1,1) ∆LnRUSt-1 = −0.125 (−1.400) 1.960 RUS → OIL N 
∆LnOIL – ∆LnJPN ARDL(1,0) No short-run coefficients  NA JPN → OIL N 
Notes: à	are the coefficients of the ARDL models. ***, ** represent statistical significance at the 1% and 5% levels, respectively. The ARDL 
model definition ARDL(x,y) using the AIC approach represents that the lag length of the dependent variable is x and that the lag length of 
the explanatory variable is y. 

The analysis of short-term dynamics in the energy market, using data from Tables 7.5 

and 7.6, reveals that Henry Hub (HH) and Russia (RUS) gas prices are highly 

responsive in the short term, influenced by European gas and oil prices. Out of 20 

studied bivariate ARDL models, 9 exhibit short-term causal relationships. The 

Japanese (JPN) gas price also shows significant short-term sensitivity, mainly affected 

by RUS and HH prices, while the UK's National Balancing Point (NBP) gas price is 

the least responsive, only influenced by oil prices. Oil prices in turn impact NBP and 
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HH prices but remain unaffected by other series within the sample. The analysis 

suggests that the increase in LNG exports from the U.S. to Europe and the significant 

role of crude oil are key drivers in short-term price formations, especially for HH, 

despite its lack of long-term relationships with other variables. 

Following the representation in Figure 7.2, Figure 7.3 displays the directions of short-

term causality among the time series, as outlined in Tables 7.5 and 7.6 findings. 

 

Figure 7.3 Diagram of the Linear Short-Run Causality Directions of Sample 1. 

The next section presents the results of the linear ARDL bounds cointegration test 

applied to Sample 2. 

7.2.3 Bivariate Linear ARDL Models Applied to Sample 2 

Following the methodology proposed in the previous subsection, Table 7.7 reports the 

F-statistic value for the linear bivariate ARDL cointegration bounds test applied to 

Sample 2. If cointegration is confirmed, the speed of adjustment and the long-run term 

estimate are also reported. 

Table 7.710 Linear ARDL Bivariate Models Applied to Sample 2 – Cointegration 

and ECM Long-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL  
Model  

Definition 
(AIC) 

Bounds 
Test:  

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$  
(t-stats) 

Loading  
Factor 
%&!"#$)*+ 
(t-stats) 

#$ 
*

b−cIJKL
M&N
d

= 
)$	 

(t-stats) 
LnHH – LnNBP ARDL(1,0) 9.21*** 4.94 5.73 Y −0.206*** 

(−4.312) 
0.649*** 
(3.811) 

0.133*** 
(3.332) 

 

 
10 Table 7.7 continues on the next pages. 
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Table 7.7   Linear ARDL Bivariate Models Applied to Sample 2 – Cointegration 

and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL 
Model 

Definition 
(AIC) 

Bounds 
Test: 

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$ 
(t-stats) 

Loading 
Factor 
%&!"#$)*+ 
(t-stats) 

#$ 
*

b−cIJKL
M&N
d

= 
)$  

(t-stats) 
LnHH – LnRUS ARDL(1,3) 5.54 4.94 5.73 N NA NA NA 
LnHH – LnTTF ARDL(1,1) 5.62 4.94 5.73 N NA NA NA 
LnHH – LnJPN ARDL(1,1) 4.63 4.94 5.73 N NA NA NA 
LnHH – LnALNG ARDL(1,0) 7.58*** 4.94 5.73 Y −0.191*** 

(−3.912) 
0.434*** 
(3.275) 

0.083*** 
(2.833) 

LnHH – LnOIL ARDL(1,4) 4.13 4.94 5.73 N NA NA NA 
LnNBP – LnHH ARDL(2,0) 3.92 4.94 5.73 N NA NA NA 
LnNBP – LnRUS ARDL(4,1) 16.80*** 4.94 5.73 Y −0.653*** 

(−5.824) 
0.747*** 
(21.766) 

0.488*** 
(5.265) 

LnNBP – LnTTF ARDL(2,2) 12.49*** 4.94 5.73 Y −0.207*** 
(−4.071) 

0.846*** 
(13.080) 

0.337*** 
(4.335) 

LnNBP – LnJPN ARDL(2,0) 4.70 4.94 5.73 N NA NA NA 
LnNBP – LnALNG ARDL(2,1) 8.9*** 4.94 5.73 Y −0.318*** 

(−4.212) 
0.630*** 
(10.059) 

0.201*** 
(3.659) 

LnNBP – LnOIL ARDL(2,3) 8.21*** 4.94 5.73 Y −0.202*** 
(−7.026) 

0.699*** 
(5.888) 

0.145***  
(3.434) 

LnRUS – LnHH ARDL(2,3) 1.54 4.94 5.73 N NA NA NA 
LnRUS – LnNBP ARDL(1,4) 9.33*** 4.94 5.73 Y −0.244*** 

(−4.340) 
1.269*** 
(18.53) 

−0.244***  
(−4.272) 

LnRUS – LnTTF ARDL(2,2) 3.02 4.94 5.73 N NA NA NA 
LnRUS – LnJPN ARDL(2,3) 2.75 4.94 5.73 N NA NA NA 
LnRUS – LnALNG ARDL(3,4) 5.71 4.94 5.73 N NA NA NA 
LnRUS – LnOIL ARDL(4,0) 7.85*** 4.94 5.73 Y −0.172*** 

(−3.982) 
0.957*** 
(8.881) 

0.165*** 
 (3.805) 

LnTTF – LnHH ARDL(3,2) 1.76 4.94 5.73 N NA NA NA 
LnTTF – LnNBP ARDL(1,2) 36.63*** 4.94 5.73 Y −0.697*** 

(−8.598) 
1.063*** 
(18.795) 

0.741***  
(7.915) 

LnTTF – LnRUS ARDL(3,4) 6.26** 4.94 5.73 Y −0.371*** 
(−3.556) 

0.728*** 
(6.619) 

0.270**  
(2.604) 

LnTTF – LnJPN ARDL(3,1) 2.14 4.94 5.73 N NA NA NA 
LnTTF – LnALNG ARDL(4,0) 11.53*** 4.94 5.73 Y −0.381*** 

(−4.825) 
0.691*** 
(7.784) 

0.264***  
(4.353) 

LnTTF – LnOIL ARDL(2,0) 6.36** 4.94 5.73 Y −0.237*** 
(−3.584) 

0.714*** 
(4.149) 

0.169***  
(2.805) 

LnJPN – LnHH ARDL(2,0) 8.48*** 4.94 5.73 Y −0.074*** 
(−4.137) 

0.548 
(1.816) 

0.041**  
(2.245) 

LnJPN – LnNBP ARDL(2,1) 9.46*** 4.94 5.73 Y −0.101*** 
(−4.370) 

0.446** 
(2.558) 

0.045**  
(2.539) 
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Table 7.7   Linear ARDL Bivariate Models Applied to Sample 2 – Cointegration 

and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL 
Model 

Definition 
(AIC) 

Bounds 
Test: 

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$ 
(t-stats) 

Loading 
Factor 
%&!"#$)*+ 
(t-stats) 

#$ 
*

b−cIJKL
M&N
d

= 
)$  

(t-stats) 
LnJPN – LnRUS ARDL(2,4) 5.80** 4.94 5.73 Y −0.104*** 

(−3.422) 
0.361** 
(1.989) 

0.038  
(1.542) 

LnJPN – LnTTF ARDL(2,0) 7.90*** 4.94 5.73 Y −0.085*** 
(−3.992) 

0.319 
(1.896) 

0.027**  
(1.994) 

LnJPN – LnALNG ARDL(2,1) 15.01*** 4.94 5.73 Y −0.124*** 
(−5.504) 

0.471 
(4.148) 

0.058***  
(4.025) 

LnJPN – LnOIL ARDL(2,4) 111.31*** 4.94 5.73 Y −0.477*** 
(−14.993) 

0.829*** 
(30.088) 

0.395***  
(14.238) 

LnALNG – LnHH ARDL(2,0) 2.90 4.94 5.73 N NA NA NA 
LnALNG – LnNBP ARDL(1,2) 6.93*** 4.94 5.73 Y −0.236*** 

(−3.741) 
1.313*** 
(9.565) 

0.309***  
(3.406) 

LnALNG – LnRUS ARDL(2,4) 10.06*** 4.94 5.73 Y −0.360*** 
(−4.507) 

1.066*** 
(13.466) 

0.383***  
(4.087) 

LnALNG – LnTTF ARDL(2,0) 5.16 4.94 5.73 N NA NA NA 
LnALNG – LnJPN ARDL(2,0) 2.93 4.94 5.73 N NA NA NA 
LnALNG – LnOIL ARDL(2,1) 8.93*** 4.94 5.73 Y −0.221*** 

(−4.246) 
1.068*** 
(7.829) 

0.236***  
(3.909) 

LnOIL – LnHH ARDL(2,2) 7.88*** 4.94 5.73 Y −0.164*** 
(−3.988) 

0.218 
(0.942) 

0.036  
(0.908) 

LnOIL – LnNBP ARDL(2,1) 7.00** 4.94 5.73 Y −0.163*** 
(−3.759) 

0.244 
(1.236) 

0.040  
(1.118) 

LnOIL – LnRUS ARDL(2,0) 8.30*** 4.94 5.73 Y −0.185*** 
(−4.093) 

0.238 
(1.329) 

0.044  
(1.171) 

LnOIL – LnTTF ARDL(2,0) 8.64*** 4.94 5.73 Y −0.176*** 
(−4.176) 

0.223 
(1.491) 

0.039  
(1.404) 

LnOIL – LnJPN ARDL(2,0) 7.52** 4.94 5.73 Y −0.156*** 
(−3.896) 

−0.005 
(−0.012) 

−0.001  
(−0.012) 

LnOIL – LnALNG ARDL(2,2) 7.20** 4.94 5.73 Y −0.169*** 
(−3.811) 

0.188 
(1.054) 

0.032  
(0.933) 

Notes: The I(0) and I(1) Bound Test critical values are reported from Pesaran, Shin, and Smith (2001), Critical values: Case III – constant 
and no trend. α̂ is the speed of adjustment coefficient. ***, ** represent statistical significance at the 1% and 5% levels, respectively. The 
ARDL model definition ARDL(x,y) using the AIC approach represents that the lag length of the dependent variable is x and that the lag 
length of the explanatory variable is y. 

Reviewing the findings in Table 7.7 reveals that within Sample 2, 27 out of 42 ARDL 

bivariate models demonstrate cointegration, indicating a significant level of long-run 

relationship among the variables. The Japanese (JPN) gas price emerges as the most 

responsive in the dataset, influenced by all six examined variables. Specifically, the 
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adjustment speed (αµ) to return to long-run equilibrium with the other five gas prices 

ranges from -0.074 to -0.124, signifying a 7.4% to 12.4% monthly adjustment rate 

following an external shock. However, when paired with oil (OIL) in a bivariate ECM, 

JPN's adjustment speed dramatically increases to -0.477, indicating a strong and rapid 

adjustment to OIL price changes within two months. 

Following JPN, the UK's National Balancing Point (NBP) and the Title Transfer 

Facility (TTF) in Europe are the next most responsive gas prices, each influenced by 

four variables in the long term. NBP shows a strong long-run correlation with Russian 

(RUS) gas prices, while TTF's quickest adjustment is with NBP. 

The Asian LNG (ALNG) price is the third most responsive, mainly influenced by 

European gas prices and OIL in the long run. Henry Hub (HH) and RUS gas prices 

display the least responsiveness, being impacted by two variables each; HH is notably 

influenced by NBP and ALNG, whereas RUS by NBP and OIL. 

A key observation is that despite the long-term influence of OIL on NBP, TTF, RUS, 

and ALNG prices, their adjustment speeds with other gas prices exceed those with 

OIL. Remarkably, HH gas price showcases long-run integration with European and 

Asian gas markets, an aspect not observed in Sample 1. These results suggests an 

increased integration among intercontinental gas markets over time and a diminishing 

but still considerate long-term correlation between gas and oil prices, aligning with 

findings by Chiappini, Jégourel, and Raymond (2019). The exception in this trend is 

JPN, which remains more significantly affected by OIL due to its historical reliance 

on oil-indexed long-term contracts for price formation. 

An interesting finding in the cointegration analysis from Table 7.7 is that the oil price 

is affected in the long run by all other five gas prices with similar adjustment speeds 

ranging from 0.155 to 0.185. Therefore, there is a bidirectional long-run causality 

between the natural gas prices and OIL price in Sample 2, excluding HH, which is not 

affected by OIL in the long run. 

As outlined in the previous subsection, we conducted a second cointegration 

assessment using the models presented in Table 7.7, this time incorporating the 

GECON indicator as an exogenous variable. Again, this additional assessment will 
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serve as a robustness check to verify the validity of the cointegration outcomes for 

Sample 2, ensuring that our findings remain relatively consistent and reliable even 

when external economic conditions are considered. This approach helps to solidify the 

conclusions drawn from the original models and provides greater confidence in the 

long-term causal relationships identified. Table 7.8 presents the cointegration analysis 

for these bivariate ARDL models, following the format of Table 7.7. 

Table 7.811 Linear ARDL Models with GECON Indicator as Exogenous Variable 

Applied to Sample 2 – Cointegration and ECM Long-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL  
Model  

Definition 
(AIC) 

Bounds 
Test:  

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$  
(t-stats) 

Loading  
Factor 
%&!"#$)*+ 
(t-stats) 

LnHH – LnNBP ARDL(1,0) 10.96*** 4.94 5.73 Y −0.240*** 
(−4.703) 

0.557*** 
(3.804) 

LnHH – LnRUS ARDL(1,3) 6.78** 4.94 5.73 Y −0.212*** 
(−3.699) 

0.299** 
(2.048) 

LnHH – LnTTF ARDL(1,1) 6.68** 4.94 5.73 Y −0.197*** 
(−3.670) 

0.392** 
(2.194) 

LnHH – LnJPN ARDL(1,1) 5.34 4.94 5.73 N NA NA 
LnHH – LnALNG ARDL(1,0) 9.06*** 4.94 5.73 Y −0.222*** 

(−4.277) 
0.366*** 
(3.177) 

LnHH – LnOIL ARDL(1,4) 4.07 4.94 5.73 N NA NA 
LnNBP – LnHH ARDL(2,0) 3.95 4.94 5.73 N NA NA 
LnNBP – LnRUS ARDL(4,1) 16.71*** 4.94 5.73 Y −0.656*** 

(−5.809) 
0.752*** 
(21.372) 

LnNBP – LnTTF ARDL(2,2) 13.10*** 4.94 5.73 Y −0.417*** 
(−5.142) 

0.872*** 
(13.501) 

LnNBP – LnJPN ARDL(2,0) 4.64 4.94 5.73 N NA NA 
LnNBP – LnALNG ARDL(2,1) 8.67*** 4.94 5.73 Y −0.207*** 

(−4.068) 
0.720*** 
(5.440) 

LnNBP – LnOIL ARDL(2,3) 8.21*** 4.94 5.73 Y −0.202*** 
(−7.026) 

0.699*** 
(5.888) 

LnRUS – LnHH ARDL(2,3) 1.60 4.94 5.73 N NA NA 
LnRUS – LnNBP ARDL(1,4) 9.49*** 4.94 5.73 Y −0.249*** 

(−4.378) 
1.256*** 
(18.26) 

LnRUS – LnTTF ARDL(2,2) 3.16 4.94 5.73 N NA NA 
LnRUS – LnJPN ARDL(2,3) 2.68 4.94 5.73 N NA NA 
LnRUS – LnALNG ARDL(3,4) 5.59 4.94 5.73 N NA NA 
LnRUS – LnOIL ARDL(4,0) 7.77*** 4.94 5.73 Y −0.171*** 

(−3.961) 
0.969*** 
(8.432) 

 

 
11 Table 7.8 continues on the next pages. 
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Table 7.8   Linear ARDL Models with GECON Indicator as Exogenous Variable 

Applied to Sample 2 – Cointegration and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL 
Model 

Definition 
(AIC) 

Bounds 
Test: 

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$ 
(t-stats) 

Loading 
Factor 
%&!"#$)*+ 
(t-stats) 

LnTTF – LnHH ARDL(3,2) 2.59 4.94 5.73 N NA NA 
LnTTF – LnNBP ARDL(1,2) 41.76*** 4.94 5.73 Y −0.755*** 

(−9.182) 
1.024*** 
(19.413) 

LnTTF – LnRUS ARDL(3,4) 7.54** 4.94 5.73 Y −0.404*** 
(−3.902) 

0.699*** 
(6.698) 

LnTTF – LnJPN ARDL(3,1) 3.07 4.94 5.73 N NA NA 
LnTTF – LnALNG ARDL(4,0) 11.69*** 4.94 5.73 Y −0.281*** 

(−4.233) 
0.657*** 
(7.766) 

LnTTF – LnOIL ARDL(2,0) 5.08 4.94 5.73 N NA NA 
LnJPN – LnHH ARDL(2,0) 7.82*** 4.94 5.73 Y −0.075*** 

(−3.972) 
0.572* 
(1.808) 

LnJPN – LnNBP ARDL(2,1) 8.75*** 4.94 5.73 Y −0.100*** 
(−4.202) 

0.444** 
(2.512) 

LnJPN – LnRUS ARDL(2,4) 5.77** 4.94 5.73 Y −0.102*** 
(−3.132) 

0.332** 
(1.779) 

LnJPN – LnTTF ARDL(2,0) 7.20*** 4.94 5.73 Y −0.085*** 
(−3.992) 

0.320 
(1.836) 

LnJPN – LnALNG ARDL(2,1) 14.26*** 4.94 5.73 Y −0.126*** 
(−5.364) 

0.474*** 
(4.206) 

LnJPN – LnOIL ARDL(2,4) 191.97*** 4.94 5.73 Y −0.505*** 
(−19.683) 

0.831*** 
(32.223) 

LnALNG – LnHH ARDL(2,0) 2.89 4.94 5.73 N NA NA 
LnALNG – LnNBP ARDL(1,2) 6.91*** 4.94 5.73 Y −0.236*** 

(−3.733) 
1.304*** 
(9.235) 

LnALNG – LnRUS ARDL(2,4) 10.06*** 4.94 5.73 Y −0.360*** 
(−4.507) 

1.066*** 
(13.466) 

LnALNG – LnTTF ARDL(2,0) 5.12 4.94 5.73 N NA NA 
LnALNG – LnJPN ARDL(2,0) 3.11 4.94 5.73 N NA NA 
LnALNG – LnOIL ARDL(2,1) 9.30*** 4.94 5.73 Y −0.221*** 

(−4.334) 
1.068*** 
(7.829) 

LnOIL – LnHH ARDL(2,2) 8.37*** 4.94 5.73 Y −0.167*** 
(−4.111) 

0.046 
(0.193) 

LnOIL – LnNBP ARDL(2,1) 7.59** 4.94 5.73 Y −0.169*** 
(−3.916) 

0.204 
(1.048) 

LnOIL – LnRUS ARDL(2,0) 8.90*** 4.94 5.73 Y −0.189*** 
(−4.238) 

0.194 
(1.078) 

LnOIL – LnTTF ARDL(2,0) 8.99*** 4.94 5.73 Y −0.178*** 
(−4.155) 

0.216 
(1.331) 

LnOIL – LnJPN ARDL(2,0) 9.11** 4.94 5.73 Y 0.089*** 
(4.289) 

3.413 
(0.968) 
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Table 7.8   Linear ARDL Models with GECON Indicator as Exogenous Variable 

Applied to Sample 2 – Cointegration and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

ARDL 
Model 

Definition 
(AIC) 

Bounds 
Test: 

F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

#$ 
(t-stats) 

Loading 
Factor 
%&!"#$)*+ 
(t-stats) 

LnOIL – LnALNG ARDL(2,2) 7.77** 4.94 5.73 Y −0.171*** 
(−3.959) 

0.139 
(0.761) 

Notes: The I(0) and I(1) Bound Test critical values are reported from Pesaran, Shin, and Smith (2001), Critical values: 
Case III – constant and no trend. α̂ is the speed of adjustment coefficient. ***, ** represent statistical significance at the 
1% and 5% levels, respectively. The ARDL model definition ARDL(x,y) using the AIC approach represents that the lag 
length of the dependent variable is x and that the lag length of the explanatory variable is y. 

Similar to the findings for Sample 1, Table 7.8 predominantly confirms the 

cointegration results of the original models presented in Table 7.7 for long-run 

causality relationships within Sample 2. With the GECON indicator included as an 

exogenous variable, 39 out of 42 bivariate model cointegration outcomes remain 

consistent with those in Table 7.7. Only three models exhibit different cointegration 

outcomes. Overall, the bivariate ARDL models applied to Sample 2, with and without 

the GECON indicator, demonstrate a 93% consistency in cointegration results. 

Similar to the diagram presented in Figure 7.2 for Sample 1, Figure 7.4 illustrates the 

long-run causality directions between the price time series in Sample 2, as derived 

from the results in Tables 7.7 and 7.8. 

 

Figure 7.4 Diagram of the Linear Long-Run Causality Directions of Sample 2. 
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Table 7.9 reports the results of the B) coefficient’s estimates, when applicable, as well 

as the results of the Wald test for joint significance, indicating if there is a short-run 

causal relationship in the bivariate ECM applied to Sample 2. 

Table 7.912 Linear ARDL Bivariate Models Applied to Sample 2 – ECM Short-Run 

Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory 

First-differenced explanatory 
coefficients 
. (t-stats) 

Wald Test: 
Coefficients Joint 

Significance -  
F-statistic 

Short-run 
Causality 

Relationship 

Short-run 
Causality 

(Y/N) 

∆LnHH – ∆LnNBP No short-run coefficients in ECM NA NBP → HH N 
∆LnHH – ∆LnALNG No short-run coefficients in ECM NA LNG → HH N 
∆LnNBP – ∆LnRUS No short-run coefficients in ECM NA RUS → NBP N 
∆LnNBP – ∆LnTTF ∆LnTTF t-1 = −0.114 (−1.918) 3.679 TTF → NBP N 
∆LnNBP – ∆LnALNG No short-run coefficients in ECM NA LNG → NBP N 
∆LnNBP – ∆LnOIL ∆LnOILt-1 =  −0.245 (−2.080) 4.326 OIL → NBP N 
∆LnRUS – ∆LnNBP ∆LnNBP t-1 = 0.249*** (3.776) 

∆LnNBP t-2 = −0.027 (−0.521) 
∆LnNBP t-3 = −0.112** (−2.146) 

9.303*** NBP → RUS Y 

∆LnRUS – ∆LnOIL ∆LnOILt-1 = 0.079 (0.772) 
∆LnOILt-2 = −0.257*** (−2.848) 

4.219** OIL → RUS Y 

∆LnTTF – ∆LnNBP ∆LnNBP t-1 = −0.461*** (−2.319) 5.378*** NBP → TTF Y 
∆LnTTF – ∆LnRUS ∆LnRUS t-1 = 0.242 (1.128) 

∆LnRUS t-2 = 0.303 (1.534) 
∆LnRUS t-3 = 0.301 (1.600) 

2.755 RUS → TTF N 

∆LnTTF – ∆LnALNG No short-run coefficients in ECM NA LNG → TTF N 
∆LnTTF – ∆LnOIL No short-run coefficients in ECM NA OIL → TTF N 
∆LnJPN – ∆LnHH No short-run coefficients in ECM NA HH → JPN N 
∆LnJPN – ∆LnNBP No short-run coefficients in ECM NA NBP → JPN N 
∆LnJPN – ∆LnRUS ∆LnRUS t-1 = −0.007 (−0.132) 

∆LnRUS t-2 = −0.061 (−1.174) 
∆LnRUS t-3 = 0.153*** (2.993) 

3.439** RUS → JPN Y 

∆LnJPN – ∆LnTTF No short-run coefficients in ECM NA TTF → JPN N 
∆LnJPN – ∆LnALNG No short-run coefficients in ECM NA LNG → JPN N 
∆LnJPN – ∆LnOIL ∆LnOILt-1 = −0.385*** (−10.082) 

∆LnOILt-2 = −0.379*** (−10.234) 
∆LnOILt-3 = −0.284*** (−7.017) 

50.185*** OIL → JPN Y 

∆LnALNG – ∆LnNBP ∆LnNBP t-1 = 0.274** (2.582) 6.667** NBP → LNG Y 
∆LnALNG – ∆LnRUS ∆LnRUS t-1 = −0.147 (−0.967) 

∆LnRUS t-2 = 0.442*** (3.070) 
∆LnRUS t-3 = −0.403*** (−2.846) 

4.606*** RUS → LNG Y 

∆LnALNG – ∆LnOIL No short-run coefficients in ECM NA OIL → LNG N 
∆LnOIL – ∆LnHH ∆LnHH t-1 = −0.110 (−1.709) 2.921 HH → OIL N 
∆LnOIL – ∆LnNBP No short-run coefficients in ECM NA NBP → OIL N 

 
12 Table 7.9 continues on the next page. 
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Table 7.9   Linear ARDL Bivariate Models Applied to Sample 2 – ECM Short-Run 

Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory 

First-differenced explanatory 
coefficients 
. (t-stats) 

Wald Test: 
Coefficients Joint 

Significance - 
F-statistic 

Short-run 
Causality 

Relationship 

Short-run 
Causality 

(Y/N) 

∆LnOIL – ∆LnRUS No short-run coefficients in ECM NA RUS → OIL N 
∆LnOIL – ∆LnTTF No short-run coefficients in ECM NA TTF → OIL N 
∆LnOIL – ∆LnJPN No short-run coefficients in ECM NA JPN → OIL N 
∆LnOIL – ∆LnALNG ∆LnLNG t-1 =  −0.095 (−1.570) 2.465 LNG → OIL N 
Notes: δ̀	are coefficients of the short-run terms of the bivariate ECM. ***, ** represent statistical significance at the 1% and 5% 
levels, respectively.  

As before, for the bivariate models that are not cointegrated, the short-run impacts are 

assessed by ARDL models using the dependent and explanatory time series in first 

differences, and the results are reported in Table 7.10. 

Table 7.1013 AIC-Augmented Linear ARDL Bivariate Models Applied to Sample 

2 – Short-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory 

ARDL Model 
Definition 

(AIC) 

First-differenced explanatory 
coefficients 
0 (t-stats) 

Wald Test: 
Coefficients 

Joint 
Significance -  

F-statistic  

Short-run 
Causality 

Relationship 

Short-run 
Causality 

(Y/N) 

∆LnHH – ∆LnRUS ARDL(1,2) ∆LnRUSt-1 = 0.003 (0.019) 
∆LnRUSt-2 = 0.362** (2.388) 

3.173 RUS → HH N 

∆LnHH – ∆LnTTF ARDL(1,0) No short-run coefficients  NA TTF → HH N 
∆LnHH – ∆LnJPN ARDL(1,0) No short-run coefficients  NA JPN → HH N 
∆LnHH – ∆LnOIL ARDL(1,3) ∆LnLNGt-1 = −0.123 

(−0.890) 
∆LnLNGt-2 = 0.370*** (2.679) 
∆LnLNGt-3 = 0.227 (1.624) 

4.404*** OIL → HH Y 

∆LnNBP – ∆LnHH ARDL(4,0) No short-run coefficients  NA HH → NBP N 
∆LnNBP – ∆LnJPN ARDL(4,0) No short-run coefficients  NA JPN → NBP N 
∆LnRUS – ∆LnHH ARDL(1,4) ∆LnHHt-1 = 0.185*** (3.125) 

∆LnHHt-2 = −0.082 (−1.345) 
∆LnHHt-3 = −0.034 (−0.578) 
∆LnHHt-4 = 0.146** (2.470) 

4.648*** HH → RUS Y 

∆LnRUS – ∆LnTTF ARDL(4,1) ∆LnTTFt-1 = 0.151*** (3.726) 13.883*** TTF → RUS Y 
∆LnRUS – ∆LnJPN ARDL(4,2) ∆LnJPNt-1 = −0.286 

(−1.320) 
∆LnJPNt-2 = 0.407** (2.304) 

2.677 JPN → RUS N 

      

 
13 Table 7.10 continues on the next page. 
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Table 7.10   AIC-Augmented Linear ARDL Bivariate Models Applied to Sample 2 – 

Short-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory 

ARDL Model 
Definition 

(AIC) 

First-differenced explanatory 
coefficients 
0 (t-stats) 

Wald Test: 
Coefficients 

Joint 
Significance - 

F-statistic 

Short-run 
Causality 

Relationship 

Short-run 
Causality 

(Y/N) 

∆LnRUS – ∆LnALNG ARDL(2,3) ∆LnLNGt-1 = 0.173*** (3.372) 
∆LnLNGt-2 = 0.005 (0.093) 
∆LnLNGt-3 = 0.203*** (3.980) 

8.989*** LNG → RUS Y 

∆LnTTF – ∆LnHH ARDL(2,1) ∆LnHHt-1 = 0.380*** (2.938) 8.632*** HH → TTF Y 
∆LnTTF – ∆LnJPN ARDL(2,0) No short-run coefficients  NA JPN → TTF N 
∆LnALNG – ∆LnHH ARDL(1,0) No short-run coefficients  NA HH → LNG N 
∆LnALNG – ∆LnTTF ARDL(1,0) No short-run coefficients  NA TTF → LNG N 
∆LnALNG – ∆LnJPN ARDL(1,0) No short-run coefficients  NA JPN → LNG N 
Notes: à	are the coefficients of the ARDL models. ***, ** represent statistical significance at the 1% and 5% levels, respectively. The ARDL 
model definition ARDL(x,y) using the AIC approach represents that the lag length of the dependent variable is x and that the lag length of 
the explanatory variable is y. 

The short-run causality relationships of Sample 2 are investigated using the results 

from Tables 7.9 and 7.10. The results show that 13 out of 42 ARDL bivariate models 

in Sample 2 have a short-run causal relationship. 

Russia is the most reactive gas price in the short-run affected by shocks from all prices 

other than JPN. The variables TTF, JPN, and ALNG are each affected by two prices 

in the short-run. The TTF gas price is caused by HH and NBP, which is evidence of 

the short-run link between the European and the U.S. markets. These relationships can 

be attributed to LNG exports from the U.S. to Europe and the fact that the TTF is the 

commercial centre of the European gas market, resulting in a strong linkage of price 

signalling from other hubs (such as NBP) to the transport cost differentials to TTF. 

OIL and RUS cause the JPN gas market in short-run. However, the impact of OIL is 

much stronger, as seen from the F-statistic (Coefficients Joint Significance) shown in 

Table 7.9. The ALNG is affected by two European gas markets, RUS and NBP. This 

proves that ALNG has a strong short-run correlation with gas markets rather than the 

OIL market. The HH and NBP prices are only affected by the OIL market in the short-

run. Finally, the OIL market is the least reactive market, as its development in the 

short-run is not affected by any other market in Sample 2. 

Figure 7.5 illustrates the short-run causality directions between the variables in 

Sample 2 according to Tables 7.9 and 7.10. 
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Figure 7.5 Diagram of the Linear Short-Run Causality Directions of Sample 2. 

The short-run results fill the gap in explaining dynamic relationships between prices 

that are not cointegrated in some cases (LnHH - LnOIL, LnRUS - LnHH, and LnRUS - LnALNG). 

It is worth highlighting that there are price pairs that show no relationship at all, either 

in the long run or the short run. These bivariate models are in Table 7.10 (non-

cointegrated models), with no short-run causality. 

7.2.4 Price Discovery Assessment - Leading and Lagging Prices  

Building on the cointegration analysis within bivariate ARDL models presented in 

subsections 7.2.2 and 7.2.3, we now focus on determining between leading and 

lagging markets by employing a concept known in the literature as price discovery. 

The bounds cointegration test in Pesaran, Shin and Smith (2001), when applied to 

bivariate ARDL models, can yield one of three outcomes. Firstly, it might find no 

evidence of cointegration, indicating that the variables operate independently in the 

long run without a shared equilibrium dynamic. Secondly, cointegration may be 

detected only when one of the variables acts as the dependent variable in the model. 

This suggests that this variable adjusts in response to long-term shocks from the other 

variable, thereby identifying it as the lagging market in this relationship. Lastly, 

cointegration could be established with both variables acting as dependents, indicating 

mutual long-term causality. In such scenarios, the leading and lagging markets within 

these cointegrated pairs can be distinguished using the price discovery method, which 
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evaluates the relative speed of adjustment coefficients to determine the share of total 

adjustment. 

Price discovery in this context is determined by analysing the relative speed of 

adjustment ratios, drawing upon methodologies from Schwarz and Szakmary (1994), 

Foster (1996), and Theissen (2002). Within a bivariate model that incorporates prices 

¨' and ¨%, alongside D' and D% representing the respective speed of adjustment 

coefficients for prices ¨' and ¨% towards long-term equilibrium, the comparative ratio 

of these adjustment speeds is articulated as follows:  

n' =
|D%|

|D'| + |D%|
	,			n% =

|D'|
|D'| + |D%|

	,				n' + n% = 1	 
(7.5) 

In this formula, n) measures the responsiveness of price m to an unexpected shock in 

the system. Specifically, a lower (higher) n) corresponds to a higher (lower) D), 

indicating that price m adjusts rapidly (gradually) back to the long-term equilibrium. 

Consequently, price m is classified as the lagging (leading) market within the context 

of the bivariate cointegration analysis. 

Tables 7.11 and 7.12 offer a summary of the speed of adjustment coefficients of each 

cointegrated bivariate model in Samples 1 and 2, respectively. Importantly, it 

identifies which bivariate models have a bidirectional causality in the long-run, 

enabling the calculation of the relative ratio of the speed of adjustment coefficients. 

The tables also report the number of months that it will take for the dependent variable 

to return to long-run equilibrium. 

Table 7.11 Summary of the Speed of Adjustment Coefficients of Cointegrated 

Bivariate Models in Sample 1. 

Bivariate Model Speed of 
Adjustment 

#$ 

Return to 
Long-run 

Equilibrium 
(months) 

Long run 
Causality 

Relationship 
Dependant 

Variable 
Explanatory 

Variable 

LnNBP LnRUS −0.189 5.29 
Bidirectional 

LnRUS LnNBP −0.064 15.63 
LnNBP LnJPN −0.124 8.06 

Bidirectional 
LnJPN LnNBP −0.030 33.33 
LnNBP LnOIL −0.202 4.95 Unidirectional 
LnRUS LnOIL −0.077 12.99 Unidirectional  
LnJPN LnOIL −0.108 9.26 Unidirectional 
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Table 7.12 Summary of the Speed of Adjustment Coefficients of Cointegrated 

Bivariate Models in Sample 2. 

Bivariate Model Speed of 
Adjustment 

α$ 

Return to 
Long-run 

Equilibrium 
(months) 

Long run 
Causality 

Relationship 
Dependant 

Variable 
Explanatory 

Variable 

LnHH LnNBP −0.206 4.85  Unidirectional  
LnHH LnALNG −0.191 5.23 Unidirectional 
LnNBP LnRUS −0.653 1.53 

Bidirectional 
LnRUS LnNBP −0.244 4.09 
LnNBP LnTTF −0.207 4.83 

Bidirectional 
LnTTF LnNBP −0.697 1.43 
LnNBP LnALNG −0.318 3.14 

Bidirectional 
LnALNG LnNBP −0.236 4.24 
LnNBP LnOIL −0.202 4.95 

Bidirectional 
LnOIL LnNBP −0.163 6.13 
LnRUS LnOIL −0.172 5.81 

Bidirectional 
LnOIL LnRUS −0.185 5.40 
LnTTF LnALNG −0.381 2.62 Unidirectional 
LnTTF LnRUS −0.371 2.70 Unidirectional 
LnTTF LnOIL −0.237 2.62 

Bidirectional 
LnOIL LnTTF −0.176 5.68 
LnJPN LnALNG −0.124 8.06 Unidirectional 
LnJPN LnRUS −0.104 9.61 Unidirectional 
LnJPN LnNBP −0.101 9.90 Unidirectional 
LnJPN LnTTF −0.085 11.76 Unidirectional 
LnJPN LnHH −0.074 13.51 Unidirectional 
LnJPN LnOIL −0.477 2.09 

Bidirectional 
LnOIL LnJPN −0.156 6.41 
LnALNG LnRUS −0.360 2.78 Unidirectional 
LnALNG LnOIL −0.221 4.52 

Bidirectional 
LnOIL LnALNG −0.169 5.92 
LnOIL LnHH −0.164 6.10 Unidirectional 

Having identified the bidirectional causal long-run relationships, the relative speed of 

adjustment coefficients were calculated to determine the leading market in these 

bivariate models for price discovery. The summarised findings in Table 7.11 for 

Sample 1 reveal that the influence of OIL prices on gas prices, except HH, is 

predominantly one-way. Despite the bidirectional cointegration among European and 

Asian gas markets, OIL prices emerge as the leading market due to their significant 

role in shaping the long-term dynamics between NBP, RUS, and JPN. 
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The summary findings from Table 7.12 reveal that the RUS market leads the price 

discovery relative to the TTF and ALNG gas prices due to a unidirectional long-term 

relationship. In the Asian market, ALNG is the leading market that influences the JPN 

gas price. Additionally, ALNG and the NBP gas prices play significant roles in 

shaping the price discovery dynamics of the North American HH gas price. 

When examining bidirectional long-term relationships, the analysis reveals that purely 

natural gas price models exhibit a higher speed of adjustment than those models 

integrating gas and oil prices, with the JPN gas price being an exception. In this case, 

it is unclear which are the leading (price discovery) and lagging gas prices. Therefore, 

the price discovery is assessed only for those bivariate models in Sample 2 (Table 

7.12) that present a bidirectional long-run relationship. Table 7.13 presents the results. 

Table 7.13 Price Discovery Assessment of Cointegrating Pairs in Sample 2. 

Bivariate Model Speed of 
Adjustment 

α$ 

Relative 
Ratio of 1, 

2, 

Price 
Discovery Dependant 

Variable 
Explanatory 

Variable 
LnNBP LnRUS −0.653 0.272 Lagging 
LnRUS LnNBP −0.244 0.728 Leading 
LnNBP LnTTF −0.207 0.771 Leading 
LnTTF LnNBP −0.697 0.229 Lagging 
LnNBP LnALNG −0.318 0.426 Lagging 
LnALNG LnNBP −0.236 0.574 Leading 
LnNBP LnOIL −0.202 0.447 Lagging 
LnOIL LnNBP −0.163 0.553 Leading 
LnRUS LnOIL −0.172 0.518 Leading 
LnOIL LnRUS −0.185 0.482 Lagging 
LnTTF LnOIL −0.237 0.426 Lagging 
LnOIL LnTTF −0.176 0.574 Leading 
LnJPN LnOIL −0.477 0.246 Lagging 
LnOIL LnJPN −0.156 0.754 Leading 
LnALNG LnOIL −0.221 0.433 Lagging 
LnOIL LnALNG −0.169 0.567 Leading 

Analysing the data from Table 7.13, the RUS gas price emerges as the leader in price 

discovery within Sample 2, showcasing the highest n) in its cointegration model with 

the NBP and OIL prices. Similarly, OIL assumes a leading role in price discovery 

across all its paired interactions, except when compared with RUS. However, in the 

cointegrating pairs of OIL with NBP, TTF, and ALNG, the n) values for OIL do not 

markedly exceed 0.5, indicating a relatively equal pace of adjustment towards long-



137 

 

term equilibrium between the paired prices. A significant difference is observed in the 

pair involving JPN and OIL prices, where JPN lags OIL. An interesting finding is that 

the ALNG price leads in price discovery when evaluated against its long-term 

equilibrium with the NBP price, underscoring its influence in the global LNG market. 

7.3 Concluding Remarks 

This chapter presented the main results of the Pesaran, Shin and Smith (2001) ARDL 

cointegration models that apply to the two datasets of natural gas prices and the Brent 

crude oil price time series, complemented with short-run dynamics analysis.  

We conducted a robustness check to ensure the reliability of our long-run causalities 

(cointegrated bivariate models) results, which are based solely on price time series. 

The outcomes remained consistent when we included the GECON indicator, an 

exogenous variable that accounts for various global economic factors influencing 

commodity market dynamics. Therefore, our interpretation will focus on the original 

cointegration results in Tables 7.3 and 7.7. The number of causality relationships is 

summarized in Table 7.14. 

Table 7.14 Summary of the Linear ARDL Bivariate Models Results. 

 Sample 1 
2001 - 2020 

Sample 2 
2010 - 2020 

Number of Variables 5 7 

Number of long-run 
relationships (Linear ARDL) 

7 out of 20 
(35%) 

27 out of 42 
(64.3%) 

Number of short-run 
relationships (Linear ARDL) 

9 out of 20 
(45%) 

13 out of 42 
(31%) 

Analysing Table 7.14, shows that the number of cointegrated markets increased 

significantly between the two sample periods. It increased from 7 out of 20 pairs (35%) 

in Sample 1 to 27 out of 42 (64.3%) in Sample 2 (Sample 2 has two additional time 

series). This comparison is interpreted as evidence of a higher degree of market 

integration between gas markets in the most recent sample period, even though the 

number of variables increased by two. Furthermore, in Sample 1, which starts in 2001, 

the number of short-run causality relationships far exceeded the long-run 

relationships, meaning that the causality dynamics between the markets were 
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predominantly unstable and temporary, and the markets’ long-run dynamics were 

significantly affected by the OIL price. On the other hand, in Sample 2, the long-run 

relationships were predominant, indicating that the causality dynamics between the 

gas prices became more stable and persistent from 2010 to 2020. 

An important consideration is that in Sample 1 (2001 to 2020), there is evidence of 

integration between the European and Asian markets. However, the leading price is 

OIL, which affects, in a unidirectional relationship, all other gas prices in the long run 

other than the HH, as the OIL price can facilitate the long-run relationship between 

NBP, RUS, and JPN. Also, the HH is not cointegrated with any other time series in 

Sample 1, which suggests that the North American market is rather independent and 

has its gas-on-gas price formation. 

On the other hand, when analysing the cointegration relationships in bivariate models 

in Sample 2 (2010 to 2020) by adding two other gas prices (TTF and ALNG), the 

results present a different scenario than that of Sample 1. First, the speed of adjustment 

of the bivariate models containing only natural gas prices is more significant than the 

bivariate models with gas and oil prices. The result shows a greater cointegration 

between gas prices and that the long-term relationship between natural gas and oil 

prices has become bidirectional. 

Second, there is a high degree of integration between the three European gas prices 

(RUS, NBP, TTF) and the Asian spot LNG price ALNG. Even though there is a 

bidirectional causality in most of these bivariate models, the RUS gas price is the 

leading market. The slow growth of Russian natural gas exports to Europe in the last 

decade can explain this. Kutcherov et al. (2020) show that more than 35% of European 

gas imports in 2018 came from Russia. Furthermore, Russia exports natural gas in the 

form of LNG to the Asia Pacific region, Europe, and other countries (the Middle East 

and Canada), considering the period of the sample (pre-Russia-Ukraine war). 

Third, in Sample 2, there is evidence of cointegration between the U.S. (Henry Hub), 

Europe (NBP), and Asia (ALNG) gas markets. The results suggest that both NBP and 

ALNG affect the HH in the long run. This outcome could be justified by the recent 

increase in the U.S. domestic gas production through shale gas production, which 

changed the United States' status from an importer to a net exporter of natural gas. In 
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2018, the net natural gas exports from the U.S.  to Europe and Asia reached 16.6 bcm 

(Kutcherov et al. 2020). Finally, regarding Sample 2, the natural gas market still highly 

dependent on OIL price is the JPN, which, despite being affected by all other gas 

prices, has a speed of adjustment with OIL price more than four times greater than any 

other gas price. 

Another interesting finding when analysing the ARDL results for Sample 2 is that 

there is a bidirectional long-run causality between the natural gas prices and the OIL 

price in Sample 2, excluding the HH, which is not affected by OIL in the long run. 

Several factors could have contributed to the bidirectional causality between oil and 

gas prices. Technological advancements and regulatory changes in the energy industry 

over the past decade have increased the production and supply of natural gas, which 

may have led to changes in the relationship between oil and gas prices. In particular, 

the shale gas revolution in the US has significantly increased domestic gas production 

and reduced dependence on foreign oil imports, which may have influenced the 

dynamics of the oil-gas price relationship (Newell and Raimi 2014). Moreover, the 

impact of environmental policies and concerns on energy markets must be addressed. 

As governments and societies worldwide have become increasingly focused on 

reducing carbon emissions and transitioning to renewable energy sources, the demand 

for oil and gas has been affected (Dong, Sun and Hochman 2017). This could have 

spilled over the long-run relationship between oil and gas prices. 

Contemplating these possibilities, the next chapter applies the Asymmetric ARDL 

bounds cointegration test proposed by Shin, Yu and Greenwood-Nimmo (2014) to 

Samples 1 and 2. Then, Chapter 9 will present a VAR assessment englobing all seven-

time series in Sample 2 in a single model to assess the causality relationship of the 

variables as a group and also to investigate if there are some different insights from 

the bivariate ARDL models' results discussed in this chapter. 
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CHAPTER 8  
BIVARIATE ASYMMETRIC ARDL MODELS  

8.1 Introduction 

This chapter conducts a robustness check on the findings from Chapter 7, with an 

alternative Nonlinear Autoregressive Distributed Lag (NARDL) model. Unlike the 

symmetric ARDL models that assume uniform effects of independent variables on the 

dependent variable regardless of the direction of change, the NARDL model 

recognizes that the impacts of positive and negative changes in independent variables 

can differ. This advancement allows for exploring asymmetric effects, offering a more 

detailed and flexible analysis of causality relationships. Utilizing the NARDL model 

enhances our understanding of how variations in independent variables influence the 

dependent variable, thereby facilitating more precise and insightful decision-making 

based on these complex dynamics. 

Therefore, the focus is to investigate if there are asymmetric influences in the long- 

and short-run dynamics between the gas prices by decomposing each time series into 

positive and negative increments. The bivariate configuration of the models will be 

the same as presented in Chapter 7. Hence, 20 bivariate models for Sample 1 and 42 

bivariate models for Sample 2 will be assessed. As introduced in Chapter 6, the 

methodology chosen is the non-linear ARDL model (NARDL) developed by Shin, Yu 

and Greenwood-Nimmo (2014). This methodology became popular in causality 

assessment between time series for outperforming all other ordinary cointegration 

methods. 

The analytical methodology of Pesaran, Shin and Smith (2001) for the bounds 

cointegration test used in Chapter 7 is also valid for the NARDL approach proposed 

by Shin, Yu and Greenwood-Nimmo (2014). Thus, the methodology explained in 

section 7.2 and illustrated in Figure 7.1 also applies to the asymmetric ARDL 

(NARDL) models. The variables' unit root and structural break analysis were already 
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presented in Chapter 4, suggesting dummy variables are also applied in the NARDL 

modelling. 

8.2 Empirical Results of the Bivariate NARDL Models 

8.2.1 Bivariate NARDL Models Applied to Sample 1 

As explained in Chapter 6, the first step before applying the NARDL bounds 

cointegration Test proposed by Shin, Yu and Greenwood-Nimmo (2014) is 

decomposing the explanatory variables into positive and negative shocks. Recalling 

Equations (6.38) and (6.39), the positive and negative shocks of an explanatory 

variable  can be formulated as follows: 

¨%,!- =H∆¨%,)-
!

*,'

=Hmax	(∆¨%,* , 0)

!

*,'

 
(8.1) 

¨%,!# =H∆¨%,)#
!

5,'

=Hmin	(∆¨%,5 , 0)

!

5,'

 
(8.2) 

As presented in Equation (6.40) of Chapter 6, the NARDL model proposed for the 

application of the bounds cointegration test is as follows: 

Δ¨',! = k& +HN)∆¨',!#)

(

),'

+HB'*∆¨%,!#*-
S

*,&

+HB%5∆¨%,!#5#
T

5,&

+ Ø'¨',!#' + Ø%¨%,!#'- + ØM¨%,!#'# + ±! 

(8.3) 

Where, Δ¨' is the dependent variable. The coefficients B') and B%) are the positive and 

negative asymmetric short-run terms of the explanatory variable ¨%, respectively. The 

indices ¨, ±, and ≤ are the optimal lag lengths of the explanatory variables in their first 

differences. The optimal lag lengths are determined by AIC. The long-run behaviour 

is dictated by the coefficients Ø', Ø%, and ØM. Similar to B') and B%), Ø% and ØM are 

the coefficients representing the positive and negative long-run terms of the 

explanatory variable ¨%, respectively. The F-statistic bounds cointegration test 

investigates the null hypothesis that the long-run terms Ø', Ø%, and ØM  jointly equal 
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to zero. If the bounds test confirms cointegration, the error correction representation 

of Equation (7.3) can be formulated as follows: 

Δ¨',! = k& +HN)∆¨',!#)

(

),'

+HB'*∆¨%,!#*-
S

*,&

+HB%5∆¨%,!#5#
T

5,&

+ DM+p2!#' + ±! 

(8.4) 

The error correction term (+p2!#') substitutes the NARDL long-run terms 

(Ø'¨',!#' + Ø%¨%,!#'- + ØM¨%,!#'#). The coefficient of the error correction term, D, 

represents the speed of adjustment of the bivariate model towards long run 

equilibrium. There is convergence toward long-run equilibrium if the coefficient D is 

negative and significant, otherwise (D > 0)  the model is considered unstable and 

explosive. If DM is significant, then ¨% Granger-causes ¨' in the long-run. The 

significance of DM is assessed by its t-statistic value. The error correction term can be 

presented as follows: 

+p2!#' = ¨',!#' − (k + kVW(J
-¨%,!- + kVW(J

#¨%,!#) (8.5) 

where kVW(J
- and kVW(J

# represents the positive and negative loading factors of the 

explanatory variable ¨%	in the bivariate model. 

Table 8.1 reports the results for the F-statistic bound test for the asymmetric ARDL 

models proposed by Shin, Yu and Greenwood-Nimmo (2014) applied to Sample 1. 

When applicable (null hypothesis is rejected), the speed of adjustment DM and the long-

run terms of ¨%, Ø% and ØM, are also reported. The last column of the table informs by 

stating yes (Y) or no (N) the cases which the variables are cointegrated and the positive 

long-run coefficient Ø% is greater than the negative ØM. 

Table 8.114 Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 1 - 

Cointegration and ECM Long-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL 
Model 

Definition 
(AIC) 

Bounds 
Test: F-
statistics 

I(0) 
5% 

Critical 
Value 

I(1) 
5% 

Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

ê  
(t-stats) 

Loading  
Factor 

cIJKL
M&N

$
	(t) 

cIJKL
M&N

&
	(t) 

ê 
*b−cIJKL

M&N

$,&
d= 

fP
$
	(t-stats) 

fQ
&(t-stats) 

 
LnHH – LnNBP NARDL(1,0,2) 3.72 3.79 4.85 N NA NA NA 

 
14 Table 8.1 continues on the next page. 



143 

 

Table 8.1   Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 1 - 

Cointegration and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL 
Model 

Definition 
(AIC) 

Bounds 
Test: F-
statistics 

I(0) 
5% 

Critical 
Value 

I(1) 
5% 

Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

ê 
(t-stats) 

Loading 
Factor 

cIJKL
M&N

$
	(t) 

cIJKL
M&N

&
	(t) 

ê 
*b−cIJKL

M&N

$,&
d= 

fP
$
	(t-stats) 

fQ
&(t-stats) 

 
LnHH – LnRUS NARDL(1,0,1) 4.44 3.79 4.85 N NA NA NA 
LnHH – LnJPN NARDL(1,1,0) 4.56 3.79 4.85 N NA NA NA 
LnHH – LnOIL NARDL(1,1,3) 3.27 3.79 4.85 N NA NA NA 
LnNBP – LnHH NARDL(2,2,2) 4.14 3.79 4.85 N NA NA NA 
LnNBP – LnRUS NARDL(2,0,1) 11.87*** 3.79 4.85 Y −0.220***  

(−5.993) 
1.047$(6.745) 
0.906&(6.795) 

0.230$*** (4.308) 
0.199&*** (4.178) 

LnNBP – LnJPN NARDL(2,2,0) 6.91*** 3.79 4.85 Y −0.142***  
(−4.574) 

0.896$ (3.934) 
0.941& (4.102) 

0.127$*** (3.206) 
0.134&*** (3.148) 

LnNBP – LnOIL NARDL(2,0,2) 16.71*** 3.79 4.85 Y −0.208***  
(−7.113) 

1.196$ (7.899) 
1.189& (8.173) 

0.248$*** (6.468) 
0.247&*** (6.482) 

LnRUS – LnHH NARDL(4,0,2) 3.68 3.79 4.85 N NA NA NA 
LnRUS – LnNBP NARDL(4,2,4) 5.48** 3.79 4.85 Y −0.066*** 

(−4.073) 
0.937$ (4.382) 
0.998& (4.714) 

0.061$*** (3.008) 
0.065&*** (3.209) 

LnRUS – LnJPN NARDL(4,4,4) 5.33** 3.79 4.85 Y −0.112*** 
(−4.017) 

0.679$ (5.420) 
0.907& (6.842) 

0.076$*** (2.667) 
0.102&*** (2.979) 

LnRUS – LnOIL NARDL(4,0,0) 12.65*** 3.79 4.85 Y −0.103***  
(−6.189) 

0.870$ (6.412) 
0.970& (7.028) 

0.089$*** (4.988) 
0.099&*** (5.365) 

LnJPN – LnHH NARDL(3,0,3) 9.12*** 3.79 4.85 Y −0.073***  
(−5.254) 

0.229$ (2.176) 
0.037& (0.361) 

0.017$*** (2.192) 
0.003& (0.366) 

LnJPN – LnNBP NARDL(2,0,1) 13.68*** 3.79 4.85 Y −0.100***  
(−6.436) 

0.328$ (5.074) 
0.201& (2.772) 

0.033$*** (4.219) 
0.020&*** (2.657) 

LnJPN – LnRUS NARDL(2,0,1) 12.15*** 3.79 4.85 Y −0.099***  
(−6.064) 

0.640$(10.140) 
0.313& (2.772) 

0.063$*** (4.585) 
0.031&*** (2.660) 

LnJPN – LnOIL NARDL(3,2,2) 25.56*** 3.79 4.85 Y −0.129***  
(−8.798) 

0.715$ (9.949) 
0.642& (6.680) 

0.092$*** (7.774) 
0.083&*** (6.384) 

LnOIL – LnHH NARDL(2,4,1) 1.77 3.79 4.85 N NA NA NA 
LnOIL – LNBP NARDL(2,0,3) 2.31 3.79 4.85 N NA NA NA 
LnOIL – LnRUS NARDL(2,0,0) 2.49 3.79 4.85 N NA NA NA 
LnOIL – LnJPN NARDL(2,0,1) 1.78 3.79 4.85 N NA NA NA 
Notes: The I(0) and I(1) Bound Test critical values are reported from Pesaran, Shin, and Smith (2001), Critical values: Case III – constant 
and no trend. α̂ is the speed of adjustment coefficient. ***, ** represent statistical significance at the 1% and 5% levels, respectively. The 
ARDL model definition ARDL(x,y,z) using the AIC approach represents that the lag length of the dependent variable is x and that the lag 
length explanatory variable representing positive increments is y and representing negative increments is z. 

The analysis from Table 8.1 indicates that out of 20 bivariate models tested in Sample 

1 using the NARDL approach, 10 exhibit long-run relationships, demonstrating 

cointegration. This finding includes all seven long-run relationships previously 

identified through the linear ARDL method, plus three additional cointegrated pairs: 

(LnRUS, LnJPN), (LnJPN, LnHH), and (LnJPN, LnRUS). These new pairs show significant 

differences between their positive (φ34	)  and negative (φ56) long-run coefficients. The 

analysis highlights the Japanese gas market (JPN) as the most responsive to other gas 
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prices and oil price changes. Following JPN, the UK's NBP and Russia's RUS gas 

markets are the next most reactive. Complementing the linear ARDL findings, the 

study now points to the Russian market as the leading influencer for European gas 

prices, overtaking oil prices in this role. Specifically, the NBP gas price tends to return 

to equilibrium more quickly when RUS prices are considered over oil prices. For the 

Russian gas market, the pair (LnRUS, LnJPN) shows the highest adjustment speed. 

Unlike the others, the Henry Hub (HH) and oil prices do not depend on long-run 

causality from the examined variables.  

Following the robustness check methodology used to verify the reliability of the 

cointegration models in the previous chapter, we again include the GECON indicator 

as an exogenous variable in the asymmetric ARDL models. This ensures that the long-

run relationships presented in Table 8.1 are indeed significant. Consequently, Table 

8.2 presents the cointegration (long-run causalities) analysis for these bivariate ARDL 

models, including the GECON indicator, mirroring the format of Table 8.1. 

Table 8.215 Asymmetric ARDL (NARDL) Models with GECON Indicator as 

Exogenous Variable Applied to Sample 1 - Cointegration and ECM Long-Run 

Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL Model 
Definition (AIC) 

Bounds 
Test: F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

ê  
(t-stats) 

Loading  
Factor 

cIJKL
M&N

$
	(t) 

cIJKL
M&N

&
	(t) 

LnHH – LnNBP NARDL(1,0,0) 6.55** 3.79 4.85 Y −0.132***  
(−4.453) 

0.419$ (2.196) 
0.553& (2.957) 

LnHH – LnRUS NARDL(1,0,1) 4.24 3.79 4.85 N NA NA 
LnHH – LnJPN NARDL(1,2,0) 4.94 3.79 4.85 N NA NA 
LnHH – LnOIL NARDL(1,3,3) 3.65 3.79 4.85 N NA NA 
LnNBP – LnHH NARDL(2,2,2) 3.91 3.79 4.85 N NA NA 
LnNBP – LnRUS NARDL(2,0,1) 11.8*** 3.79 4.85 Y −0.222***  

(−5.990) 
1.059$(6.854) 
0.923&(6.911) 

LnNBP – LnJPN NARDL(2,2,0) 6.89*** 3.79 4.85 Y −0.142***  
(−4.567) 

0.900$ (3.978) 
0.966& (4.216) 

LnNBP – LnOIL NARDL(2,0,2) 16.32*** 3.79 4.85 Y −0.208***  
(−7.031) 

1.198$ (7.846) 
1.190& (8.148) 

LnRUS – LnHH NARDL(4,0,2) 3.61 3.79 4.85 N NA NA 
LnRUS – LnNBP NARDL(4,2,4) 5.40** 3.79 4.85 Y −0.065*** 

(−4.045) 
0.943$ (4.293) 
1.004& (4.595) 

LnRUS – LnJPN NARDL(4,4,4) 4.83 3.79 4.85 N NA NA 
LnRUS – LnOIL NARDL(4,0,0) 13.27*** 3.79 4.85 Y −0.122***  

(−6.338) 
0.884$ (7.737) 
0.971& (8.409) 

 
15 Table 8.2 continues on the next page. 
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Table 8.2    Asymmetric ARDL (NARDL) Models with GECON Indicator as 

Exogenous Variable Applied to Sample 1 - Cointegration and ECM Long-Run 

Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL Model 
Definition (AIC) 

Bounds 
Test: F-
statistics 

I(0) 5% 
Critical 
Value 

I(1) 5% 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

ê 
(t-stats) 

Loading 
Factor 

cIJKL
M&N

$
	(t) 

cIJKL
M&N

&
	(t) 

LnJPN – LnHH NARDL(3,0,3) 7.10*** 3.79 4.85 Y −0.122***  
(−6.338) 

0.231$ (2.135) 
0.039& (3.371) 

LnJPN – LnNBP NARDL(2,0,1) 11.27*** 3.79 4.85 Y −0.079***  
(−4.851) 

0.328$ (5.074) 
0.201& (2.772) 

LnJPN – LnRUS NARDL(2,0,1) 10.50*** 3.79 4.85 Y −0.097***  
(−5.637) 

0.650$(9.717) 
0.330& (3.421) 

LnJPN – LnOIL NARDL(3,2,2) 24.24*** 3.79 4.85 Y −0.131***  
(−8.567) 

0.710$ (9.857) 
0.635& (6.582) 

LnOIL – LnHH NARDL(2,4,1) 2.16 3.79 4.85 N NA NA 
LnOIL – LNBP NARDL(2,0,3) 3.15 3.79 4.85 N NA NA 
LnOIL – LnRUS NARDL(2,0,0) 7.16*** 3.79 4.85 Y −0.109***  

(−4.657) 
1.025$ (7.427) 
1.109& (5.354) 

LnOIL – LnJPN NARDL(2,2,2) 6.91*** 3.79 4.85 Y −0.065***  
(−4.575) 

1.517$ (4.043) 
2.441& (2.985) 

Notes: The I(0) and I(1) Bound Test critical values are reported from Pesaran, Shin, and Smith (2001), Critical values: Case III – 
constant and no trend. α̂ is the speed of adjustment coefficient. ***, ** represent statistical significance at the 1% and 5% levels, 
respectively. The ARDL model definition ARDL(x,y,z) using the AIC approach represents that the lag length of the dependent variable 
is x and that the lag length explanatory variable representing positive increments is y and representing negative increments is z. 

Analysing the results from the asymmetric ARDL models with the GECON indicator 

included as an exogenous variable in Table 8.2, 17 out of 20 bivariate model 

cointegration outcomes within Sample 1 remain consistent with those in Table 8.1. 

Overall, the asymmetric bivariate ARDL models applied to Sample 1, with and 

without the GECON indicator, demonstrate an 85% consistency in cointegration 

results. 

Figure 8.1 illustrates the long-run causality directions between the price time series in 

Sample 1 asymmetric ARDL models, as derived from the results in Tables 8.1 and 

8.2. 
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Figure 8.1 Diagram of the Asymmetric Long-Run Causality Directions of Sample 1. 

As in the previous chapter, we will not extend the robustness check to asymmetric 

short-run causalities to avoid overly lengthening the results and discussion. This 

decision is also based on the high consistency observed in the cointegration analyses 

in Tables 8.1 and 8.2. 

From Table 8.1, we can distinguish positive and negative asymmetries in the long run. 

When φ-. 	> φ/* in Equation 8.3, positive shocks to the explanatory variable cause a 

larger deviation to the dependant variable from the long-run equilibrium than the 

negative shocks. Therefore, when shocks to the explanatory are positive, it takes more 

time to go back to equilibrium compared to negative shocks. Similarly, when φ-. 	< φ/*, 

negative shocks to the explanatory variable cause a larger deviation to the dependant 

variable from the long-run equilibrium than the positive shocks. Figures 8.2 and 8.3 

present a diagram illustrating the positive (φ-. 	> φ/*) and negative (φ-. 	< φ/*) long-run 

causality asymmetries in Sample 1, respectively. Using the values of the speed of 

adjustment DM of each bivariate model, the diagram shows in each arrow the number of 

months necessary for the dependent variable to return to equilibrium in case of an 

external shock. For example, for the cointegrated pair (LnNBP, LnRUS), the speed of 

adjustment is −0.220; thus, in a presence of a shock, it will take NBP ( '

&.%%&
) 4.55 

months to return to equilibrium. This assessment is important to identify the leading 

and lagging markets in the long-run causality analysis. 

RUS NBP

OILJPNHH

Same Cointegration Outcome 
(with and without GECON)

Weak Cointegration Outcome 
(without GECON)

Weak Cointegration Outcome 
(with GECON)
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Figure 8.2 Diagram of the Positive Asymmetric Long-Run Causality Directions of 

Sample 1. 

 

Figure 8.3 Diagram of the Negative Asymmetric Long-Run Causality Directions of 

Sample 1. 

Analysing the 10 asymmetric long-run causality relationships derived from Table 8.1 

and shown in Figure 8.1, breaking them down into positive and negative components 

reveals a distinct pattern. Six of these relationships exhibit a stronger reaction to 

positive shocks, as depicted in Figure 8.2, while the remaining four respond more to 

negative shocks. The analysis shows that positive shocks to the explanatory variables 

in the analysed cointegrated bivariate NARDL models of Sample 1 tend to push the 

dependent variable further away from its long-run equilibrium than negative shocks. 

Specifically, the Japanese (JPN) gas market is more susceptible to larger deviations 

from its long-run equilibrium due to positive changes in other variables within the 

sample. Conversely, the Russian (RUS) gas market shows a tendency to deviate more 

significantly from its equilibrium following negative shocks, especially from the 

British (NBP), and oil (OIL) markets. 

The analysis of positive and negative adjustments in the explanatory variables' long-

run behaviour from Table 8.1 reveals that in the two models, the positive and negative 

adjustments, though distinct, are considerably similar. The first instance involves the 

RUS NBP

OILJPNHH

!!" 	> !#$

4.55 mos

4.81 mos

13.7 mos

10 mos
10.1 mos

7.75 mos

RUS NBP

OILJPN

!!
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$
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variables LnRUS and LnNBP, where the adjustments for LnNBP show a positive 

change of 0.061 and a negative change of 0.065. The second instance is between 

LnNBP and LnOIL, where LnOIL's adjustments register a positive change of 0.248 

and a nearly identical negative change of 0.247. This similarity in adjustments 

suggests that there is no significant asymmetry in the long-term relationships of these 

bivariate models. 

To assess if the φ34 and φ56 are statistically equal or not, we use the Welch’s t-test based 

on the Welch-Satterthwaite equation (Satterthwaite 1946). The Welch’s t-test is used 

for testing whether two samples have the same population mean. Considering that Y' 

is the number of positive residuals and Y% is the number of negative residuals of the 

bivariate model; ≥' and ≥% are the standard errors of φ34 and φ56, respectively. Welch’s 

t-statistic is given by: 

0 =
φ
2
+† − φ

3
−∂

∑≥'
%

Y'
+ ≥%

%

Y%

 
(8.6) 

If the null hypothesis stands, 0 is approximately t-distributed with ∞ degrees of 

freedom. The degrees of freedom ∞ can be calculated through the Welch-Satterthwaite 

equation as follows: 

∞ =
z
≥'%
Y'

+ ≥%
%

Y%
{
%

z ≥'R
Y'%(Y' − 1)

+ ≥%R
Y%%(Y% − 1)

{
∏  

(8.7) 

Following calculating degrees of freedom, we determine the critical values for both 

positive and negative critical values using the inverse functions of the Student's t-

distribution's right and left tails, with a significance level set at 5%. Should Welch's t-

statistic, derived from Equation (8.6), fall within the critical range defined by these 

tails, we do not reject the null hypothesis. This outcome implies no significant 

difference between φ34 and φ56. The findings, utilizing both the Welch's t-test and the 

Welch-Satterthwaite Equation for φ34 and φ56, are detailed in Table 8.2. 
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Table 8.3 Welch's t-test and Welch-Satterthwaite results for null hypothesis, 

!&:	φ%
- = φM

# (Sample 1). 

Bivariate Model )0
.	 )1

* Welch’s t-test 
6 

Critical Value  
7 = 0.025 

Critical Value  
7 = 0.975 

?2:	φ-. = φ/* 
(Y/N) 

LnNBP – LnOIL 0.248 0.247 0.1975 −1.9708 1.9708 Y 
LnRUS – LnNBP 0.061 0.065 −1.4956 −1.9705 1.9705 Y 

The results in Table 8.3 suggest that the pairs (LnRUS, LnNBP), and (LnNBP, LnOIL) do 

not have an asymmetric long-run relationship (φ34 = φ56) and the causality asymmetries 

from these two pairs can be eliminated from Figures 8.2 and 8.3. 

The assessment of asymmetric short-term causality within the cointegrated NARDL 

models, as shown in Table 8.1, involves conducting a joint F-test on the short-term 

coefficients B'* and B%5 (Equation 8.3) for each explanatory variable. This joint F-test 

is applied to B'* and B%5 separately to examine potential asymmetries in the short-term 

dynamics. Table 8.4 details the outcomes of these B'* and B%5 coefficient estimations, 

chosen based on the optimal lag determined by the Akaike Information Criterion 

(AIC) for each bivariate model. Furthermore, Table 8.4 includes the results from the 

Wald test for joint significance, highlighting the presence of asymmetrical short-term 

causal relationships in the bivariate error ECMs. 

Table 8.416 Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 1 - 

ECM Short-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory 

First-differenced explanatory 
coefficients 

.+5
., .06* (t-stats) 

Wald Test: 
Coefficients Joint 

Significance - 
F-statistic.,* 

Short-run 
Causality 

Relationship 

Short-run 
Asymmetry 

(Y/N) 

∆LnNBP – ∆LnRUS No short-run coefficients in ECM NA RUS → NBP N 
∆LnNBP – ∆LnJPN ∆LnJPN8*9. = 0.95** (2.209) 4.880.** JPN → NBP Y 
∆LnNBP – ∆LnOIL ∆LnOIL8*9* = −0.493*** (−3.015) 9.090**** OIL → NBP Y 
∆LnRUS – ∆LnNBP ∆LnNBP8*9. = 0.105** (2.038) 

∆LnNBP8*9* = 0.021 (0.410) 
∆LnNBP8*-* = 0.124** (2.566) 
∆LnNBP8*/* = −0.105** (−2.094) 

4.153.** 
3.820*** 

NBP → RUS N 

 

 
16 Table 8.4 continues on the next page. 
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Table 8.4   Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 

1 - ECM Short-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory 

First-differenced explanatory 
coefficients 

.+5
., .06* (t-stats) 

Wald Test: 
Coefficients Joint 

Significance - 
F-statistic.,* 

Short-run 
Causality 

Relationship 

Short-run 
Asymmetry 

(Y/N) 

∆LnRUS – ∆LnJPN ∆LnJPN8*9. = 0.111 (0.529) 
∆LnJPN8*-. = 0.187 (0.894) 
∆LnJPN8*/. = 0.590*** (2.852) 
∆LnJPN8*9* = −0.409** (−2.168) 
∆LnJPN8*-* = 0.407** (2.129) 
∆LnJPN8*/* = −0.320 (−1.849) 

3.711.** 
3.000*** 

JPN→ RUS N 

∆LnRUS – ∆LnOIL No short-run coefficients in ECM NA OIL → RUS NA 
∆LnJPN – ∆LnHH ∆LnHH8*9* = 0.034 (1.057) 

∆LnHH8*-* = 0.090*** (2.784) 
4.517*** HH → JPN Y 

∆LnJPN – ∆LnNBP No short-run coefficients in ECM NA NBP → JPN N 
∆LnJPN – ∆LnRUS No short-run coefficients in ECM NA RUS → JPN N 
∆LnJPN – ∆LnOIL ∆LnOIL8*9. = −0.037 (−0.652) 

∆LnOIL8*9* = −0.080 (−1.674) 
0.425. 
2.802* 

OIL → JPN N 

Notes: δ̀	are coefficients of the short-run terms of the bivariate ECM. ***, ** represent statistical significance at the 1% and 5% levels, 
respectively.  

When cointegration is not confirmed, the following model is proposed using the 

dependent and explanatory variables in their first differences to investigate short-run 

causality: 

Δ¨',! = 7& +HY)∆¨',!#)

T

),'

+Hn'*Δ¨%,!#*
-

N

*,&

+Hn%5Δ¨%,!#5
#

!

5,&

+ ∞! 
(8.8) 

In this equation, Y) represents the short-term coefficients of the dependent variable, 

while n'* and n%5 	correspond to the explanatory variable's positive and negative 

asymmetric short-term coefficients, respectively. The optimal lag lengths ≤, ≥ and 	0 

are selected based on the AIC. Assessing asymmetric short-term causality involves 

conducting separate joint F-tests on the short-term coefficients n'* and n%5. The 

causality in the short term is evaluated using the t-statistic of the short-term 

coefficients of the explanatory variable. The findings are presented in Table 8.5. 
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Table 8.5 AIC-Augmented Asymmetric ARDL (NARDL) Bivariate Models 

Applied to Sample 1 – Short-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory 

NARDL 
Model 

Definition 
(AIC) 

First-differenced explanatory 
coefficients 

I+5., I06* (t-stats) 

Wald Test: 
Coeff. Joint 

Significance -  
F-statistic.,* 

Short-run 
Causality 

Relationship 

Short-
run 

Asymm. 
(Y/N) 

∆LnHH – ∆LnNBP 
 

ARDL(1,3,1) ∆LnNBP8*9. = 0.053 (0.451) 
∆LnNBP8*-. = 0.144 (1.313) 
∆LnNBP8*/. = 0.150 (1.647) 
∆LnNBP8*9* = 0.183 (1.830) 

4.811.*** 
3.349* 

NBP → HH Y 

∆LnHH – ∆LnRUS ARDL(1,3,0) ∆LnRUS8*9. = -0.047 (−0.195) 
∆LnRUS8*-. = 0.765*** (3.269) 
∆LnRUS8*/. = -0.482*** (−2.632) 

4.058.*** 
 

RUS → HH Y 

∆LnHH – ∆LnJPN ARDL(1,0,0) No short-run coefficients NA JPN → HH N 
∆LnHH – ∆LnOIL ARDL(1,2,2) ∆LnOIL8*9. = -0.208 (−1.043) 

∆LnOIL8*-. = 0.366*** (2.602) 
∆LnOIL8*9* = -0.109 -0.485) 
∆LnOIL8*-* = 0.375** (2.138) 

3.604.** 
2.647* 

OIL → HH Y 

∆LnNBP – ∆LnHH ARDL(1,3,0) ∆LnHH8*9. = -0.053 (−0.412) 
∆LnHH8*-. = -0.121 (−1.075) 
∆LnHH8*/. = 0.319*** (3.498) 

5.041.*** 
 

HH → NBP Y 

∆LnRUS – ∆LnHH ARDL(4,1,1) ∆LnHH8*9. = 0.113** (2.232) 
∆LnHH8*9* = 0.093** (2.117) 

4.982.** 
4.482*** 

HH → RUS N 

∆LnOIL – ∆LnHH ARDL(1,0,0) No short-run coefficients NA HH → OIL N 
∆LnOIL – ∆LnNBP ARDL(1,0,0) No short-run coefficients NA NBP → OIL N 
∆LnOIL – ∆LnRUS ARDL(1,0,0) No short-run coefficients NA RUS → OIL N 
∆LnOIL – ∆LnJPN ARDL(1,0,0) No short-run coefficients NA JPN → OIL N 
Notes: à	are the coefficients of the ARDL models. ***, ** represent statistical significance at the 1% and 5% levels, respectively. The ARDL 
model definition ARDL(x,y,z) using the AIC approach represents that the lag length of the dependent variable is x and that the lag length 
explanatory variable representing positive increments is y and representing negative increments is z. 

From Tables 8.4 and 8.5, we examine the short-term dynamics through both the short-

run estimates of the ECM and the estimates from the bivariate NARDL models (which 

are not cointegrated) when applied to first-differenced variables. The findings reveal 

that, within Sample 1, 10 out of 20 bivariate NARDL models exhibit a short-run causal 

relationship. Among these, 7 models demonstrate an asymmetric causal relationship. 

By comparing these outcomes with the results from the linear ARDL models applied 

to Sample 1, as discussed in Chapter 7, it is evident that the directions of causality are 

quite similar between the short-run relationships of the NARDL models and those 

observed in the linear ARDL models. 

The primary distinction is that, within the NARDL framework, the short-term impact 

on NBP gas price is influenced not only by OIL but also by HH and JPN variables. In 
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these instances, the variables exert an asymmetric effect on NBP in the short term, 

which accounts for the emergence of new relationships identified through the NARDL 

model analysis. Figure 8.4 depicts the directions of short-run causality among the 

variables in Sample 1, as detailed in the findings presented in Tables 8.3 and 8.4. 

 

Figure 8.4 Diagram of the NARDL Short-Run Causality Directions of Sample 1. 

In the next section, the results of the NARDL bounds cointegration test applied to 

Sample 2 will be presented. 

8.2.2 Bivariate NARDL Models Applied to Sample 2 

Using the methodology outlined in section 8.2.1, Table 8.6 displays the NARDL 

cointegration bounds test outcomes for Sample 2. It presents the F-statistic value for 

each bivariate model. In cases where cointegration is confirmed, it includes the speed 

of adjustment D and the long-run asymmetric terms of the explanatory variable, Ø% 

and ØM. 

Table 8.617   Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 2 - 

Cointegration and ECM Long-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL Model 
Definition (AIC) 

Bounds 
Test: F-
statistics 

I(0) 5% 
I(1) 5% 

 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

ê 
(t-stats) 

Loading 
Factor 

gRSTU
V&N

$
	 

(t-stats) 
gRSTU

V&N

&
	 

(t-stats) 

ê 
*b−gRSTU

V&N

$,&
d

= 
fP
$
	(t-stats) 

fQ
&(t-stats) 

 
LnHH – LnNBP NARDL(1,0,0) 6.149** 3.79 

4.85 
Y −0.201***  

(−4.334) 
0.722$*** (2.772) 
0.693&*** (3.297) 

0.146$*** (2.894) 
0.140&*** (3.247) 

LnHH – LnRUS NARDL(1,3,0) 3.71 3.79 
4.85 

N NA NA NA 

 

 
17 Table 8.6 continues on the next pages. 
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Table 8.6    Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 2 - 

Cointegration and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL Model 
Definition (AIC) 

Bounds 
Test: F-
statistics 

I(0) 5% 
I(1) 5% 

 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

ê 
(t-stats) 

Loading 
Factor 

gRSTU
V&N

$ 
(t-stats) 
gRSTU

V&N

& 
(t-stats) 

ê 
*b−gRSTU

V&N

$,&
d

= 
fP
$
	(t-stats) 

fQ
&(t-stats) 

 
LnHH – LnTTF NARDL(1,1,0) 3.87 3.79 

4.85 
N NA NA NA 

LnHH – LnJPN NARDL(1,0,0) 2.50 3.79 
4.85 

N NA NA NA 

LnHH – LnALNG NARDL(1,1,0) 4.35 3.79 
4.85 

N NA NA NA 

LnHH – LnOIL NARDL(1,1,3) 2.41 3.79 
4.85 

N NA NA NA 

LnNBP – LnHH NARDL(2,0,1) 3.53 3.79 
4.85 

N NA NA NA 

LnNBP – LnRUS NARDL(2,0,1) 13.35*** 3.79 
4.85 

Y −0.658***  
(−6.390) 

0.708$*** (10.149) 
0.717&*** (15.369) 

0.466$*** (4.473) 
0.472&*** (4.891) 

LnNBP – LnTTF NARDL(4,3,2) 12.07*** 3.79 
4.85 

Y −0.591***  
(−6.078) 

0.765$*** (13.953) 
0.804&*** (17.340) 

0.452$*** (5.263) 
0.476&*** (5.452) 

LnNBP – LnJPN NARDL(2,0,0) 3.34 3.79 
4.85 

N NA NA NA 

LnNBP – LnALNG NARDL(2,1,0) 8.16*** 3.79 
4.85 

Y −0.358***  
(−4.994) 

0.567$*** (6.552) 
0.601&*** (8.811) 

0.203$*** (3.600) 
0.215&*** (4.017) 

LnNBP – LnOIL NARDL(2,2,0) 5.61** 3.79 
4.85 

Y −0.194***  
(−4.142) 

0.724$*** (3.000) 
0.715&*** (4.162) 

0.141$*** (2.759) 
0.139&*** (3.324) 

LnRUS – LnHH NARDL(2,0,2) 1.61 3.79 
4.85 

N NA NA NA 

LnRUS – LnNBP NARDL(4,2,2) 4.54 3.79 
4.85 

N NA NA NA 

LnRUS – LnTFF NARDL(4,2,2) 8.92*** 3.79 
4.85 

Y −0.206*** 
(−5.221) 

0.876$*** (7.064) 
0.951&*** (8.827) 

0.180$*** (4.606) 
0.196&*** (4.882) 

LnRUS – LnJPN NARDL(2,4,0) 1.62 3.79 
4.85 

N NA NA NA 

LnRUS – LnALNG NARDL(4,0,4) 7.808*** 3.79 
4.85 

Y −0.260 *** 
(−4.889) 

0.806$*** (8.332) 
0.821&*** (11.038) 

0.209$*** (4.429) 
0.214&*** (4.341) 

LnRUS – LnOIL NARDL(2,3,0) 5.96** 3.79 
4.85 

Y −0.150***  
(−4.269) 

0.925$*** (3.746) 
0.923&*** (5.308) 

0.139$*** (3.456) 
0.138&*** (3.946) 

LnTTF – LnHH NARDL(3,3,2) 1.06 3.79 
4.85 

N NA NA NA 

LnTTF – LnNBP NARDL(3,3,2) 27.28*** 3.79 
4.85 

Y −0.695***  
(−9.133) 

1.167$*** (11.609) 
1.111&*** (14.524) 

0.811$*** (8.114) 
0.772&*** (8.248) 

LnTTF – LnRUS NARDL(4,0,1) 10.60*** 3.79 
4.85 

Y −0.467***  
(−5.693) 

1.116$*** (5.860) 
0.910&*** (8.404) 

0.521$*** (4.678) 
0.425&*** (4.430) 

LnTTF – LnJPN NARDL(3,0,1) 1.44 3.79 
4.85 

N NA NA NA 

LnTTF – LnALNG NARDL(3,0,0) 7.43*** 3.79 
4.85 

Y −0.332***  
(−4.765) 

0.857$*** (4.386) 
0.796&*** (5.540) 

0.284$*** (4.234) 
0.264&*** (4.318) 

LnTTF – LnOIL NARDL(3,1,0) 4.34 3.79 
4.85 

N NA NA NA 
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Table 8.6    Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 2 - 

Cointegration and ECM Long-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL Model 
Definition (AIC) 

Bounds 
Test: F-
statistics 

I(0) 5% 
I(1) 5% 

 
Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

ê 
(t-stats) 

Loading 
Factor 

gRSTU
V&N

$ 
(t-stats) 
gRSTU

V&N

& 
(t-stats) 

ê 
*b−gRSTU

V&N

$,&
d

= 
fP
$
	(t-stats) 

fQ
&(t-stats) 

 
LnJPN – LnHH NARDL(2,0,0) 6.06** 3.79 

4.85 
Y −0.086***  

(−4.304) 
0.482$** (1.886) 
0.414& (1.569) 

0.042$** (2.290) 
0.036&   (1.903) 

LnJPN – LnNBP NARDL(2,1,0) 9.92*** 3.79 
4.85 

Y −0.144***  
(−5.507) 

0.489$*** (4.067) 
0.354&*** (3.162) 

0.070$*** (3.683) 
0.051&*** (3.088) 

LnJPN – LnRUS NARDL(2,3,4) 10.90*** 3.79 
4.85 

Y −0.196***  
(−5.776) 

0.501$*** (4.905) 
0.303&** (2.862)) 

0.098$*** (3.211) 
0.059&** (2.213) 

LnJPN – LnTTF NARDL(2,0,0) 7.85*** 3.79 
4.85 

Y −0.127***  
(−4.897) 

0.369$*** (3.255) 
0.275&** (2.556) 

0.047$*** (3.081) 
0.035&** (2.577) 

LnJPN – LnALNG NARDL(2,0,4) 7.57*** 3.79 
4.85 

Y −0.140***  
(−4.813) 

0.407$*** (3.717) 
0.315&** (2.795) 

0.057$*** (2.895) 
0.044&** (2.306) 

LnJPN – LnOIL NARDL(2,4,4) 62.86*** 3.79 
4.85 

Y −0.465***  
(−13.874) 

0.811$*** (25.002) 
0.823&*** (22.461) 

0.378$***(12.332) 
0.383&***(12.235) 

LnALNG – LnHH NARDL(2,0,2) 2.14 3.79 
4.85 

N NA NA NA 

LnALNG – LnNBP NARDL(1,0,2) 8.41*** 3.79 
4.85 

Y −0.289***  
(−5.070) 

1.224$*** (6.590) 
1.251&*** (8.461) 

0.353$*** (3.924) 
0.361&*** (4.206) 

LnALNG – LnRUS NARDL(3,4,1) 8.56*** 3.79 
4.85 

Y −0.447***  
(−5.117) 

1.034$*** (7.948) 
1.020&*** (12.282) 

0.463$*** (3.781) 
0.456&*** (4.155) 

LnALNG – LnTTF NARDL(2,1,1) 3.848 3.79 
4.85 

N NA NA NA 

LnALNG – LnJPN NARDL(2,0,0) 2.143 3.79 
4.85 

N NA NA NA 

LnALNG – LnOIL NARDL(2,2,0) 8.52*** 3.79 
4.85 

Y −0.243***  
(−5.102) 

1.269$*** (5.029) 
1.188&*** (6.677) 

0.308$*** (4.364) 
0.288&*** (4.801) 

LnOIL – LnHH NARDL(2,0,0) 6.38*** 3.79 
4.85 

Y −0.197***  
(−4.414) 

0.207$ (1.158) 
0.114& (0.626) 

0.041$ (1.103) 
0.022& (0.614) 

LnOIL – LnNBP NARDL(2,2,3) 9.70*** 3.79 
4.85 

Y −0.298***  
(−5.449) 

0.634$*** (4.966) 
0.485&*** (3.980) 

0.189$*** (3.638) 
0.145&*** (3.174) 

LnOIL – LnRUS NARDL(2,0,0) 10.99*** 3.79 
4.85 

Y −0.338***  
(−5.795) 

0.551$*** (5.422) 
0.345&*** (3.784) 

0.186$*** (3.604) 
0.117&*** (2.891) 

LnOIL – LnTTF NARDL(2,0,0) 9.03*** 3.79 
4.85 

Y −0.271***  
(−5.254) 

0.360$*** (3.574) 
0.260&*** (2.762) 

0.098$*** (2.911) 
0.070&** (2.432) 

LnOIL – LnJPN NARDL(2,1,1) 6.68*** 3.79 
4.85 

Y −0.202***  
(−4.518) 

0.324$ (1.130) 
0.021& (0.059) 

0.066$ (0.870) 
0.004& (0.060) 

LnOIL – LnALNG NARDL(2,0,2) 7.63*** 3.79 
4.85 

Y −0.254***  
(−4.829) 

0.327$*** (2.859) 
0.228& (2.005) 

0.083$** (2.213) 
0.058& (1.688) 

Notes: The I(0) and I(1) Bound Test critical values are reported from Pesaran, Shin, and Smith (2001), Critical values: Case III – constant 
and no trend. α̂ is the speed of adjustment coefficient. ***, ** represent statistical significance at the 1% and 5% levels, respectively. 
ARDL(x,y,z) using the AIC approach represents that the lag length of the dependent variable is x and that the lag length explanatory variable 
representing positive increments is y and representing negative increments is z. 

Table 8.6 reveals that among 42 NARDL bivariate models in Sample 2, 26 exhibit 

long-run relationships (cointegrated models). Comparing the linear ARDL bounds 
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cointegration test results in Chapter 7 (Table 7.4) with the NARDL approach in Table 

8.6, 24 cointegrating pairs are consistent across both methods. However, three pairs 

identified in the linear ARDL test were not confirmed in Table 8.6: (LnHH, LnALNG), 

(LnRUS, LnNBP), and (LnTTF, LnOIL). These may require alternative methods for long-

run equilibrium confirmation. Conversely, Table 8.6 uncovers two new cointegrating 

pairs not found in the linear assessment: (LnRUS, LnTTF), and (LnRUS, LnALNG). 

Cointegration here relies on a stronger long-run negative loading factor (φ56), which 

was detected through the breakdown of the explanatory variable into positive and 

negative increments. 

The JPN gas price is the most reactive variable in the long run, affecting all other six 

variables in Sample 2. The coefficients αµ (speed of adjustment) in the bivariate Error 

Correction Model (ECM) involving the Japanese (JPN) gas price as the dependent 

variable and the other five gas prices range from 0.086 to 0.196. However, in the case 

of the bivariate ECM pairing JPN with OIL, the speed of adjustment is 0.465, 

indicating a robust long-run relationship where OIL appears to be the leading market 

influencing JPN gas prices.  

The NBP gas price is the second most reactive variable and is influenced in the long 

run by the other four variables. Also, NBP is strongly affected in the long run by the 

two European gas prices, RUS and TTF, with a speed of adjustment in the ECM 

models equal to 0.658 and 0.591, respectively. Thus, based on the results, RUS is 

considered the leading market over NBP.  

The third most reactive gas prices are the TTF, RUS, and ALNG, and are affected by 

three variables in the long run. While NBP is the leading market causing TTF in the 

long run with a speed of adjustment of 0.695, the RUS gas price leads the long-run 

relationship over ALNG with a speed of adjustment of  0.477. HH is the least reactive 

gas price in Sample 2. HH is influenced only by NBP in the long run, with a speed of 

adjustment of 0.201. Therefore, despite the HH being considered an isolated market 

in Sample 1, there is evidence from Table 8.6 that the HH has a long-run relation with 

at least one European gas price.  

Similar to the cointegration analysis robustness check conducted in the previous 

subsection for Sample 1, Table 8.7 presents the results of the bounds cointegration 
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assessment for the NARDL models, including the GECON indicator as an exogenous 

variable. 

Table 8.718 Asymmetric ARDL (NARDL) Models with GECON Indicator as 

Exogenous Variable Applied to Sample 2 - Cointegration and ECM Long-Run 

Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL Model 
Definition (AIC) 

Bounds 
Test: F-
statistics 

I(0) 5% 
I(1) 5% 

 

Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

α̂ 
(t-stats) 

Loading 
Factor 

βWXYZ
[&%

$ 
(t-stats) 
βWXYZ

[&%

& 
(t-stats) 

LnHH – LnJPN NARDL(1,0,0) 4.57 3.79 
4.85 

N NA NA 

LnHH – LnALNG NARDL(1,1,0) 4.35 3.79 
4.85 

N NA NA 

LnHH – LnOIL NARDL(1,1,3) 2.39 3.79 
4.85 

N NA NA 

LnHH – LnNBP NARDL(1,0,0) 7.27*** 3.79 
4.85 

Y −0.245***  
(−4.714) 

0.507$** (2.304) 
0.526&*** (2.974) 

LnHH – LnRUS NARDL(1,1,3) 4.82 3.79 
4.85 

N NA NA 

LnHH – LnTTF NARDL(1,1,3) 4.70 3.79 
4.85 

N NA NA 

LnNBP – LnHH NARDL(2,0,1) 3.46 3.79 
4.85 

N NA NA 

LnNBP – LnRUS NARDL(2,0,1) 13.15*** 3.79 
4.85 

Y −0.658***  
(−6.390) 

0.726$*** (9.258) 
0.728&*** (14.169) 

LnNBP – LnTTF NARDL(4,3,2) 11.97*** 3.79 
4.85 

Y −0.593***  
(−6.052) 

0.777$*** (12.713) 
0.809&*** (15.885) 

LnNBP – LnJPN NARDL(2,0,0) 3.38 3.79 
4.85 

N NA NA 

LnNBP – LnALNG NARDL(2,1,0) 8.02*** 3.79 
4.85 

Y −0.298***  
(−3.983) 

0.537$*** (6.552) 
0.651&*** (8.811) 

LnNBP – LnOIL NARDL(2,2,0) 5.81** 3.79 
4.85 

Y −0.194***  
(−4.221) 

0.857$*** (2.847) 
0.809&*** (3.791) 

LnRUS – LnHH NARDL(2,0,2) 1.71 3.79 
4.85 

N NA NA 

LnRUS – LnNBP NARDL(4,2,2) 6.66** 3.79 
4.85 

Y −0.194***  
(−4.221) 

1.072$*** (9.650) 
1.124&*** (12.907) 

LnRUS – LnTFF NARDL(4,2,2) 8.83*** 3.79 
4.85 

Y −0.205*** 
(−5.197) 

0.876$*** (7.064) 
0.951&*** (8.827) 

LnRUS – LnJPN NARDL(2,4,0) 2.02 3.79 
4.85 

N NA NA 

LnRUS – LnALNG NARDL(4,0,4) 7.73*** 3.79 
4.85 

Y −0.263*** 
(−4.865) 

0.789$*** (7.552) 
0.809&*** (10.064) 

       

 
18 Table 8.7 continues on the next pages. 



157 

 

Table 8.7    Asymmetric ARDL (NARDL) Models with GECON Indicator as 

Exogenous Variable Applied to Sample 2 - Cointegration and ECM Long-Run 

Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory) 

NARDL Model 
Definition (AIC) 

Bounds 
Test: F-
statistics 

I(0) 5% 
I(1) 5% 

 

Critical 
Value 

Coint. 
(Y/N) 

Speed of 
Adjustment 

α̂ 
(t-stats) 

Loading 
Factor 

βWXYZ
[&%

$ 
(t-stats) 
βWXYZ

[&%

& 
(t-stats) 

LnRUS – LnOIL NARDL(2,3,0) 6.21** 3.79 
4.85 

Y −0.148***  
(−4.359) 

1.071$*** (3.409) 
1.024&*** (4.653) 

LnTTF – LnHH NARDL(3,3,4) 2.94 3.79 
4.85 

N NA NA 

LnTTF – LnNBP NARDL(3,3,2) 29.95*** 3.79 
4.85 

Y −0.761***  
(−9.571) 

1.060$*** (10.860) 
1.033&*** (13.915) 

LnTTF – LnRUS NARDL(4,0,1) 10.60*** 3.79 
4.85 

Y −0.484***  
(−5.693) 

1.034$*** (5.090) 
0.866&*** (7.488) 

LnTTF – LnJPN NARDL(3,0,0) 1.77 3.79 
4.85 

N NA NA 

LnTTF – LnALNG NARDL(3,0,0) 7.79*** 3.79 
4.85 

Y −0.369***  
(−4.878) 

0.718$*** (3.955) 
0.696&*** (5.186) 

LnTTF – LnOIL NARDL(3,1,0) 3.83 3.79 
4.85 

N NA NA 

LnJPN – LnHH NARDL(2,0,0) 5.75** 3.79 
4.85 

Y −0.090***  
(−4.191) 

0.522$** (2.027) 
0.444&* (1.703) 

LnJPN – LnNBP NARDL(2,2,3) 10.60*** 3.79 
4.85 

Y −0.183***  
(−5.595) 

0.537$*** (4.767) 
0.397&*** (3.640) 

LnJPN – LnRUS NARDL(2,3,4) 14.30*** 3.79 
4.85 

Y −0.248***  
(−6.618) 

0.553$*** (7.108) 
0.341&*** (4.292) 

LnJPN – LnTTF NARDL(2,0,0) 7.98*** 3.79 
4.85 

Y −0.143**  
(−4.939) 

0.405$*** (3.839) 
0.302&*** (3.061) 

LnJPN – LnALNG NARDL(2,1,4) 8.65*** 3.79 
4.85 

Y −0.180***  
(−5.145) 

0.450$*** (5.158) 
0.349&*** (3.936) 

LnJPN – LnOIL NARDL(2,4,4) 65.15*** 3.79 
4.85 

Y −0.475***  
(−14.126) 

0.822$*** (25.671) 
0.839&*** (22.917) 

LnALNG – LnHH NARDL(2,0,2) 2.35 3.79 
4.85 

N NA NA 

LnALNG – LnNBP NARDL(1,0,2) 9.95*** 3.79 
4.85 

Y −0.292***  
(−6.399) 

1.184$*** (5.925) 
1.221&*** (7.718) 

LnALNG – LnRUS NARDL(3,4,1) 8.46*** 3.79 
4.85 

Y −0.447***  
(−5.088) 

1.015$*** (6.730) 
1.009&*** (10.707) 

LnALNG – LnTTF NARDL(2,1,1) 3.84 3.79 
4.85 

N NA NA 

LnALNG – LnJPN NARDL(2,0,0) 2.39 3.79 
4.85 

N NA NA 

LnALNG – LnOIL NARDL(2,2,0) 9.24*** 3.79 
4.85 

Y −0.245***  
(−5.316) 

1.495$*** (4.762) 
1.344&*** (6.106) 

LnOIL – LnHH NARDL(2,0,0) 6.42*** 3.79 
4.85 

Y −0.195***  
(−4.431) 

0.122$ (0.600) 
0.039& (0.195) 
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Table 8.7    Asymmetric ARDL (NARDL) Models with GECON Indicator as 

Exogenous Variable Applied to Sample 2 - Cointegration and ECM Long-Run 

Estimates, Continued. 

LnOIL – LnNBP NARDL(2,1,3) 9.20*** 
3.79 
4.85 

Y 
−0.290***  
(−5.306) 

0.594$*** (4.415) 
0.458&*** (3.593) 

LnOIL – LnRUS NARDL(2,0,0) 10.85*** 3.79 
4.85 

Y −0.318***  
(−5.225) 

0.529$*** (4.922) 
0.329&*** (3.455) 

LnOIL – LnTTF NARDL(2,0,0) 8.82*** 3.79 
4.85 

Y −0.268***  
(−5.191) 

0.334$*** (3.095) 
0.243&** (2.403) 

LnOIL – LnJPN NARDL(4,0,1) 7.72*** 3.79 
4.85 

Y 0.171***  
(4.858) 

2.230$** (1.985) 
2.476&* (1.757) 

LnOIL – LnALNG NARDL(2,0,2) 7.56*** 3.79 
4.85 

Y −0.250***  
(−4.807) 

0.298$** (2.426) 
0.202&* (1.683) 

Notes: The I(0) and I(1) Bound Test critical values are reported from Pesaran, Shin, and Smith (2001), Critical values: 
Case III – constant and no trend. α̂ is the speed of adjustment coefficient. ***, ** represent statistical significance at 
the 1% and 5% levels, respectively. The ARDL model definition ARDL(x,y,z) using the AIC approach represents that 
the lag length of the dependent variable is x and that the lag length explanatory variable representing positive 
increments is y and representing negative increments is z. 

Comparing the results from Tables 8.6 and 8.7, we notice that there are no 

discrepancies in the cointegration results. When the GECON indicator is added as an 

exogenous variable to the NARDL bivariate models, 100% of the models consistently 

identify cointegration. 

Figure 8.5 illustrates the long-run causality directions between the time series 

according to the results reported in Table 8.6 and 8.7. 

 

Figure 8.5 Diagram of the Asymmetric Long-Run Causality Directions of Sample 2. 
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Table 8.6 allows us to distinguish cointegrated models exhibiting positive and 

negative asymmetries in the long run by examining their long-run loading factors, φ-. 

and φ/*. Figures 8.6 and 8.7 visually depict these positive (φ-. 	> φ/*) and negative (φ-. 	<

φ/*) long-run causality asymmetries in Sample 2, respectively. Similar to the diagrams 

in Sample 1, the arrows indicating the direction of causality illustrate the number of 

months required for the dependent variable to adjust following an external shock. 

 

Figure 8.6 Diagram of the Positively Asymmetric Long-Run Causality Directions of 

Sample 2. 

 
Figure 8.7 Diagram of the Negatively Asymmetric Long-Run Causality Directions 

of Sample 2. 
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By splitting the long-run causality relationships depicted in Figure 8.5 by positive and 

negative long-run asymmetries, there are 18 bivariate cointegrated models with greater 

positive loading factors and 8 with greater negative loading factors. For example, in 

Sample 1, there is a greater proportion of positive asymmetries in the long run, which 

makes a positive increment of the explanatory variable more effective than the 

dependent variable. Comparing the results from Sample 1, in this new sample period, 

the JPN gas price will deviate more through positive increments of all other five gas 

prices. In contrast, negative increments of OIL will have a larger effect on its long-run 

deviation. TTF and OIL suffer a larger deviation from positive increments of all its 

cointegrating pairs. 

On the other hand, the RUS gas will have a larger deviation in the long run from 

negative increments of TTF and ALNG, as well as from positive increments of OIL. 

Similarly, the NBP gas price is caused by greater intensity in the long run by negative 

increments of TTF, ALNG, and RUS. Finally, HH, which is affected in the long-run 

only by NBP, has a greater impact from positive increments of the explanatory 

variable. 

In Sample 2, similar to Sample 1, we observe three instances where the positive and 

negative asymmetric loading factors exhibit very close values. Firstly, the 

cointegrating pair (LnNBP, LnOIL) demonstrates positive (φ34) and negative (φ56) loading 

factors of 0.141 and 0.139, respectively. Secondly, (LnRUS, LnOIL) exhibits positive 

(φ34) and negative (φ56) loading factors of 0.139 and 0.138, respectively. Thirdly, 

(LnNBP, LnOIL) shows positive (φ34) and negative (φ56) loading factors of 0.378 and 

0.383, respectively. To confirm the asymmetric long-run causality in these cases, we 

apply Welch’s t-test and the Welch-Satterthwaite equation, as detailed in the previous 

subsection. Table 8.8 presents the results of these tests applied to φ34 and φ56 for the 

described cases. 

Table 8.8 Welch's t-test and Welch-Satterthwaite results for null hypothesis, 
!&:	φ%

- = φM
# (Sample 2). 

Bivariate Model )0
.	 )1

* Welch’s t-test 
6 

Critical Value  
7 = 0.025 

Critical Value  
7 = 0.975 

?2:	φ-. = φ/* 
(Y/N) 

LnNBP – LnOIL 0.141 0.139 0.2315 −1.9814 1.9814 Y 
LnRUS – LnOIL 0.139 0.138 0.1425 −1.9820 1.9820 Y 
LnJPN – LnOIL 0.378 0.383 −0.8691 −1.9812 1.9812 Y 
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The findings in Table 8.8 suggest that the pairs (LnNBP, LnOIL), (LnRUS, LnOIL), and 

(LnJPN, LnOIL)  lack an asymmetric long-run relationship, indicating that φ34 = φ56. 

Subsequently, we evaluate the short-run terms of the depicted cointegrating pairs in 

Figure 8.5 by examining a joint F-statistic of their coefficients  (B'* and B%5). Table 

8.9 shows the results of the Wald test for joint significance, which investigates the 

asymmetric short-run causality of the cointegrated bivariate ECMs. 

Table 8.919   Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 2 - 

Cointegration and ECM Short-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory 

First-differenced explanatory 
coefficients 

.+5
., .06* (t-stats) 

Wald Test: 
Coefficients Joint 

Significance -  
F-statistic.,* 

Short-run 
Causality 

Relationship 

Short-run 
Asymmetry 

(Y/N) 

∆LnHH – ∆LnNBP No short-run coefficients in ECM NA NBP → HH N 
∆LnNBP – ∆LnRUS No short-run coefficients in ECM NA RUS → NBP N 
∆LnNBP – ∆LnTTF ∆LnTTF8*9. = −0.015 (−0.145) 

∆LnTTF8*-. = −0.298*** (−2.981) 
∆LnTTF8*9* = −0.467*** (−3.983) 

4.471.** 
15.864**** 

TTF → NBP N 

∆LnNBP – ∆LnALNG No short-run coefficients in ECM NA LNG → NBP N 
∆LnNBP – ∆LnOIL ∆LnOIL8*9. = −0.429 (−1.889) 3.568. OIL → NBP N 
∆LnRUS – ∆LnTTF No short-run coefficients in ECM NA TTF → RUS N 
∆LnRUS – ∆LnALNG ∆LnLNG8*9* = −0.012 (−0.135) 

∆LnLNG8*-* = −0.141 (−1.687) 
∆LnLNG8*/* = 0.149 (1.745) 

2.123* LNG → RUS N 

 

∆LnRUS – ∆LnOIL ∆LnOIL8*9. = 0.269 (1.620) 
∆LnOIL8*-. = −0.552*** (−3.310) 

6.332.*** OIL → RUS Y 

∆LnTTF – ∆LnNBP ∆LnNBP8*9. = −0.631*** (−2.915) 
∆LnNBP8*9* = −0.403 (−1.853) 

8.497.*** 
3.434* 

NBP → TTF Y 

∆LnTTF – ∆LnNBP No short-run coefficients in ECM NA RUS → TTF N 
∆LnTTF – ∆LnALNG No short-run coefficients in ECM NA LNG → TTF N 
∆LnJPN – ∆LnHH No short-run coefficients in ECM NA HH → JPN N 
∆LnJPN – ∆LnNBP No short-run coefficients in ECM NA NBP → JPN N 
∆LnJPN – ∆LnRUS ∆LnRUS8*9. =  −0.042 (−0.488) 

∆LnRUS8*-. =  −0.229** (−2.599) 
∆LnRUS8*9* =  −0.073 (−0.884) 
∆LnRUS8*-* =  −0.019 (−2.632) 
∆LnRUS8*/* = 0.215*** (2.704) 

3.462.** 
3.302*** 

RUS → JPN N 

∆LnJPN – ∆LnTTF No short-run coefficients in ECM NA TTF → JPN N 
∆LnJPN – ∆LnALNG ∆LnLNG8*9* = 0.015 (0.313) 

∆LnLNG8*-* = 0.001 (0.028) 
∆LnLNG8*/* = 0.116** (2.446) 

1.995* LNG → JPN N 

     

 
19 Table 8.9 continues on the next page. 
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Table 8.9    Asymmetric ARDL (NARDL) Bivariate Models Applied to Sample 2 - 

Cointegration and ECM Short-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory 

First-differenced explanatory 
coefficients 

.+5
., .06* (t-stats) 

Wald Test: 
Coefficients Joint 

Significance - 
F-statistic.,* 

Short-run 
Causality 

Relationship 

Short-run 
Asymmetry 

(Y/N) 

∆LnJPN – ∆LnOIL ∆LnOIL8*9. =  −0.366*** (−5.271) 
∆LnOIL8*-. = −0.354*** (−5.261) 
∆LnOIL8*/. = −0.337*** (−5.275) 
∆LnOIL8*9* = −0.393*** (−6.985) 
∆LnOIL8*-* = −0.381*** (−6.859) 
∆LnOIL8*/* = −0.232*** (−3.755) 

24.582.*** 
30.787**** 

OIL → JPN N 

∆LnALNG – ∆LnNBP ∆LnNBP8*9* = 0.360** (1.995) 3.980*** NBP → LNG Y 
∆LnALNG – ∆LnRUS ∆LnRUS8*9. =  −0.477(−1.789) 

∆LnRUS8*-. = 0.539** (2.169) 
∆LnRUS8*/. = 1.206*** (5.407) 

3.544.** RUS → LNG Y 

∆LnALNG – ∆LnOIL ∆LnOIL8*9. = −0.555(−1.938) 3.756. OIL → LNG N 
∆LnOIL – ∆LnHH No short-run coefficients in ECM NA HH → OIL N 
∆LnOIL – ∆LnNBP ∆LnNBP8*9. = −0.170 (−1.358) 

∆LnNBP8*9* = 0.098 (0.749) 
∆LnNBP8*-* = −0.347*** (−2.834) 

1.844. 
4.137*** 

NBP → OIL Y 

∆LnOIL – ∆LnRUS No short-run coefficients in ECM NA RUS → OIL N 
∆LnOIL – ∆LnTTF No short-run coefficients in ECM NA TTF → OIL N 
∆LnOIL – ∆LnJPN No short-run coefficients in ECM NA JPN → OIL N 
∆LnOIL – ∆LnALNG ∆LnLNG8*9* = −0.181 (−1.974) 3.897* LNG → OIL N 
Notes: δ̀	are coefficients of the short-run terms of the bivariate ECM. ***, ** represent statistical significance at the 1% and 5% levels, 
respectively.  

Additionally, we employ the NARDL model using the variables in their first 

differences to examine the short-run causality for models lacking a long-run 

relationship, as depicted in Table 8.6. The outcomes are presented in Table 8.10. 

Table 8.1020 AIC-Augmented Asymmetric ARDL (NARDL) Bivariate Models 

Applied to Sample 2 - Short-Run Estimates. 

Bivariate 
Model 

(Dependant – 
Explanatory 

NARDL 
Model 

Definition 
(AIC) 

First-differenced explanatory 
coefficients 

I+5., I06* (t-stats) 

Wald Test: 
Coefficients 
Joint Signif. -  

F-stat..,* 

Short-run 
Causality  

 

Short-
run 

Asym. 
(Y/N) 

∆LnHH – ∆LnRUS ARDL(1,3,0) ∆LnRUS8*9. =  −0.103 (−0.359) 
∆LnRUS8*-. = 0.861*** (3.041) 
∆LnRUS8*/. =  −0.475** (−2.148) 

3.378.** 
 

RUS → HH Y 

      
      

 
20 Table 8.10 continues on the next pages. 
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Table 8.10    AIC-Augmented Asymmetric ARDL (NARDL) Bivariate Models 

Applied to Sample 2 - Short-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory 

NARDL 
Model 

Definition 
(AIC) 

First-differenced explanatory 
coefficients 

I+5., I06* (t-stats) 

Wald Test: 
Coefficients 
Joint Signif. - 

F-stat..,* 

Short-run 
Causality 

 

Short-
run 

Asym. 
(Y/N) 

∆LnHH – ∆LnTTF ARDL(1,1,2) ∆LnTTF8*9. = 0.411*** (2.691) 
∆LnTTF8*9* = −0.150 (−1.849) 
∆LnTTF8*-* = 0.199** (2.215) 

7.241.*** 
2.924* 
 

RUS → HH Y 

∆LnHH – ∆LnJPN ARDL(1,0,0) No short-run coefficients NA JPN → HH N 
∆LnHH – ∆LnALNG ARDL(1,4,0) ∆LnLNG8*9. = 0.056 (0.382) 

∆LnLNG8*-. = 0.064 (0.452) 
∆LnLNG8*/. = 0.340** (2.413) 
∆LnLNG8*:. = −0.261** (−2.272) 

2.485. LNG → HH N 

∆LnHH – ∆LnOIL ARDL(1,3,2) ∆LnOIL8*9. =  −0.171 (−0.687) 
∆LnOIL8*-. = 0.117 (0.512) 
∆LnOIL8*/. = 0.420** (2.206) 
∆LnOIL8*9* = 0.021 (0.066) 
∆LnOIL8*-* = 0.817*** (2.876) 

3.625.** 
5.157**** 

OIL → HH N 

∆LnNBP – ∆LnHH ARDL(4,3,2) ∆LnHH8*9. = 0.261 (1.307) 
∆LnHH8*-. = −0.396** (−2.228) 
∆LnHH8*/. = 0.487*** (3.295) 
∆LnHH8*9* = −0.249 (−1.412) 
∆LnHH8*-* = 0.356** (2.232) 

3.756.** 
2.523* 

HH → NBP Y 

∆LnNBP – ∆LnJPN ARDL(4,0,0) No short-run coefficients NA JPN → 
NBP 

N 

∆LnRUS – ∆LnHH ARDL(1,4,0) ∆LnHH8*9. = 0.349*** (3.891) 
∆LnHH8*-. = −0.293*** (−3.069) 
∆LnHH8*/. = −0.072 (−0.799) 
∆LnHH8*:. = 0.210*** (2.818) 

5.480.*** HH → RUS Y 

∆LnRUS – ∆LnNBP ARDL(1,2,4) ∆LnNBP8*9. = 0.360**** (3.218) 
∆LnNBP8*-. = 0.241** (2.391) 
∆LnNBP8*9* = 0.561*** (5.429) 
∆LnNBP8*-* =  −0.043 (−0.427) 
∆LnNBP8*/* = −0.181** (−2.036) 
∆LnNBP8*:* = 0.270*** (3.579) 

12.882.*** 
11.704**** 

NBP → 
RUS 

N 

∆LnRUS – ∆LnJPN ARDL(1,0,2) ∆LnJPN8*9* = −0.647 (−1.893) 
∆LnJPN8*-* = 0.775** (2.587) 

3.646*** JPN → 
RUS 

Y 

∆LnTTF – ∆LnHH ARDL(2,0,2) ∆LnHH8*9* = 0.707*** (3.775) 
∆LnHH8*-* = −0.263 (−1.736) 

7.141**** HH → NBP Y 

∆LnTTF – ∆LnJPN ARDL(2,0,2) No short-run coefficients NA JPN → TTF N 
∆LnTTF – ∆LnOIL ARDL(2,0,1) ∆LnOIL8*9* = 0.788** (2.222) 4.937*** OIL → TTF Y 
∆LnALNG – ∆LnHH ARDL(1,3,0) ∆LnHH8*9. = 0.164 (0.823) 

∆LnHH8*-. = −0.051 (−0.323) 
∆LnHH8*/. = 0.293** (2.228) 

3.220.** HH → LNG Y 

∆LnALNG – ∆LnTTF ARDL(1,0,0) No short-run coefficients NA TTF → 
LNG 

N 
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Table 8.10    AIC-Augmented Asymmetric ARDL (NARDL) Bivariate Models 

Applied to Sample 2 - Short-Run Estimates, Continued. 

Bivariate 
Model 

(Dependant – 
Explanatory 

NARDL 
Model 

Definition 
(AIC) 

First-differenced explanatory 
coefficients 

I+5., I06* (t-stats) 

Wald Test: 
Coefficients 
Joint Signif. - 

F-stat..,* 

Short-run 
Causality 

 

Short-
run 

Asym. 
(Y/N) 

∆LnALNG – ∆LnJPN ARDL(1,0,0) No short-run coefficients NA JPN → 
LNG 

N 

Notes: à	are the coefficients of the ARDL models. ***, ** represent statistical significance at the 1% and 5% levels, respectively. The 
ARDL model definition ARDL(x,y,z) using the AIC approach represents that the lag length of the dependent variable is x and that the 
lag length explanatory variable representing positive increments is y and representing negative increments is z. 

Analysing Tables 8.9 and 8.10, we find that among the 42 NARDL bivariate models, 

18 demonstrate short-run causality of the explanatory variable over the dependent 

variable. Within these, 13 exhibit asymmetrical relationships, while 5 show 

symmetrical ones. Additionally, among the models lacking a long-run relationship (as 

seen in Table 8.8), short-run causality is confirmed in 10 out of 16 cases. Considering 

both the long- and short-run causality assessments, 6 models indicate an absence of 

any causal connection. 

Comparing these findings with the ARDL linear short-run assessment in Chapter 6 

reveals significant disparities in short-run causality directions. Notably, in the 

NARDL analysis (Tables 8.9 and 8.10), four other variables influence the RUS gas 

price as the most reactive variable in the short run. Interestingly, although previously 

identified in the ARDL assessment, the short-run causality of TTF and ALNG over 

RUS is absent in the refined NARDL bivariate models. 

The second most reactive gas prices in the short run are HH, TTF, and ALNG, each 

affected by three prices. Notably, two additional short-run causalities over HH are 

observed in the asymmetrical assessment. Comparing linear and asymmetrical ARDL 

assessments, TTF and ALNG are affected by an additional variable in the short run. 

While JPN is influenced by RUS and OIL, similar to the linear ARDL assessment, 

NBP is affected by OIL and HH. The asymmetrical NARDL model reveals the short-

run causality of HH over NBP. Lastly, OIL is the least reactive market but experiences 

asymmetrical short-run effects from NBP. 

The short-run causality directions in Tables 8.9 and 8.10 are illustrated in Figure 8.8 

below. 
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Figure 8.8 Diagram of the NARDL Short-Run Causality Directions of Sample 2. 

8.3 Concluding Remarks 

This chapter explored the connection between natural gas and oil prices using the Non-

linear ARDL (NARDL) bounds cointegration test, a refined method proposed by Shin, 

Yu and Greenwood-Nimmo (2014). This approach examines how changes in one 

variable affect the other, accommodating positive and negative shocks. We applied 

this test to the same datasets as Chapter 7, allowing for a comparison between Linear 

and Non-linear ARDL methods in assessing the relationship between gas and oil 

prices. 

A similar robustness check to the one used in the previous chapter was conducted in 

this chapter's NARDL bounds cointegration test. We included the GECON indicator 

as an exogenous variable in the asymmetric bivariate ARDL to assess the reliability 

of the cointegrated models based solely on price time series. The results showed 

considerable consistency between the two assessments (with and without the GECON 

variable), particularly in the cointegration outcomes related to Sample 2, which 

showed 100% consistency. Therefore, the discussion of asymmetric long-run causality 

(cointegration) will focus on Tables 8.1 and 8.6. 

In summary, Table 8.11 outlines the main findings of this chapter. It presents the 

number of causal relationships discovered through the NARDL bivariate models 

applied to Samples 1 and 2. Additionally, it illustrates the proportion of these causal 

relationships that display asymmetry and categorizes them accordingly. 
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In certain instances, asymmetrical causality in a bivariate NARDL model implies that 

the dependent variable responds differently to positive or negative changes in the 

explanatory variable. In other cases, it suggests that only a positive or negative 

alteration of the explanatory variable holds statistical significance over the dependent 

variable. 

Table 8.11 Summary of the Asymmetric ARDL (NARDL) Bivariate Models 
Results. 

 Sample 1 
2001 - 2020 

Sample 2 
2010 - 2020 

Number of Variables 5 7 

Number of long-run 
relationships (NARDL) 

10 out of 20 26 out of 42 

Positively Asymmetric 
Long-run Causality  

5 16 

Negatively Asymmetric 
Long-run Causality 

3 7 

Symmetric Long-run 
Causality 

2 3 

Number of short-run 
relationships (NARDL) 

10 out of 20 18 out of 42 

Positively Asymmetric 
Short-run Causality 

5 9 

Negatively Asymmetric 
Short-run Causality 

2 4 

Symmetric Short-run 
Causality 

3 5 

This chapter's analysis reveals an enhancement in detecting long-run and short-run 

relationships in Samples 1 and 2, respectively, by comparing the findings in Table 

8.11 with those from Chapter 7 (Table 7.14) concerning Linear ARDL bivariate 

models. Specifically, adopting the asymmetrical cointegration method uncovered 

three more long-run cointegrating pairs in Sample 1, increasing the total to 10 beyond 

the 7 identified using linear ARDL models. In Sample 2, the application of Nonlinear 

ARDL (NARDL) bivariate models led to identifying 18 short-run causality 

relationships, marking a 38% increase over those found with linear ARDL models. 

This improvement is attributed to the NARDL models' capacity to account for 
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asymmetrical effects between the variables, an aspect the linear models could not 

capture. Nevertheless, the comparison shows no significant difference in the number 

of long-run relationships in Sample 2 and short-run relationships in Sample 1 when 

contrasting symmetric and asymmetric ARDL models. For short-run causality, the 

NARDL method highlighted that approximately 70% of causalities in each sample 

were asymmetric, with a tendency towards more positive asymmetries. 

The chapter brings to light several key insights. Firstly, it demonstrates that traditional 

linear ARDL models may overlook complex causal dynamics between variables, such 

as gas and oil prices, that can be captured through the disaggregation of variables into 

positive and negative changes. Secondly, it establishes that a significant portion of 

both short- and long-run relationships exhibit asymmetry, with positive changes in 

variables exerting a stronger causal influence than negative ones in both samples.  
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CHAPTER 9  
VAR ASSESSMENT OF CAUSALITY RELATIONSHIPS 

BETWEEN NATURAL GAS AND OIL PRICES 

9.1 Introduction 

The two previous chapters explored the integration within natural gas markets using 

linear and asymmetrical ARDL models across two distinct datasets. These 

investigations revealed an increase in the causality relationships among natural gas 

prices when comparing an earlier dataset from 2001 with a more recent one from 2010. 

Additionally, the dynamics between natural gas and oil prices were examined, leading 

to the observation that oil prices have less influence on natural gas prices than before 

in the latter and more contemporary sample period. Instead, the relationship among 

natural gas prices has emerged as more significant. 

A main drawback of these bivariate ARDL and NARDL models is that they tend to 

overestimate the actual number of causal links. Addressing this issue, this chapter uses 

a VAR that includes all prices to discard incorrect causality links. 

A three-variable example can demonstrate the emergence of the drawback mentioned 

above. Assume that time series A, B and C belong to a data-generating process in 

which A causes B, A causes C, and no other causal link exists. Furthermore, assume 

that the lag structure defining the propagation delay is shorter for A→B than for A→C. 

These causal relationships should be accurately detectable in a three-variable VAR 

model. The problem occurs when bivariate models (VAR or ARDL) are used. The 

bivariate specification will tend to detect an apparent B→C that does not exist in the 

data-generating process. This is illustrated in Figure 9.1. In reality, A causes both B 

and C with different delays. Hence, causal relationships such as B→C that do not 

appear in the full VAR of this chapter should be rejected.  
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Figure 9.1 Causality Detection Trap in Bivariate Models. 

To address the above and obtain refined information on dynamics interrelationships, 

a unified VAR (Vector Autoregression) model encompassing all relevant time series 

is estimated. The estimation is implemented on Sample 2 from Chapters 7 and 8 only, 

which includes seven time series (6 representing natural gas prices and one for Brent 

crude oil) from July 2010 to February 2020, because it is the most relevant subsample. 

The VAR model's causality will be examined using the Toda and Yamamoto (1995) 

test, complemented by in-depth insights gained from impulse response functions and 

forecast error variance decomposition. While the ARDL approach previously helped 

identify long-term equilibrium relationships and causality directions, the forthcoming 

VAR analysis aims to quantify the effects of dynamic shocks. This methodological 

shift is also adequate by the nature of the variables within Sample 2, which, unlike 

Sample 1's mix of I(0) and I(1) variables, exclusively contains I(1) variables, aligning 

with the findings from the Unit Root tests discussed in Chapter 4. 

9.2 Empirical Results of the VAR Model Applied to Sample 2 

To explore the interrelationships between all variables in Sample 2, we have 

developed a VAR model that consists of 7 equations. Within this framework, every 

time series from the dataset is treated as an endogenous component within the system's 

7-equation structure. An equation for each variable incorporates n lagged values 

within the system's variables. Thus, the structure of the VAR model examined in this 

chapter is outlined as follows: 
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Here, n denotes the number of lags in the VAR model, while 6ki to 6ui represent the 

normally and independently distributed (NID) residuals for each equation. Initially, 

we aim to determine the optimal number of lags for the VAR model, ensuring the 

absence of autocorrelation and the confirmation of normal distribution criteria within 

the residuals of each equation. 

9.2.1 Optimal VAR Lag Length  

The optimal lag length of the specified VAR model is analysed by utilising the 

information criterion outlined in sub-section 6.3.1 of Chapter 6. The value of each 

information criterion (IC) statistic is calculated for each number of lags, and the 

minimum value will dictate the appropriate number of lags. Table 9.1 presents the 

results of the IC minimum values according to the calculations of the three main ICs, 

Akaike’s IC, Schwarz’s IC, and Hannan-Quinn’s IC, in trials allowing for a maximum 

of 13 lags. 

Table 9.1 Optimal Lag Length Selection Using Information Criterion. 

Information Criterion Minimum Value Number of Lags  

Akaike’s IC −25.605 13 

Schwarz’s IC −13.780 1 

Hannan-Quinn’s IC −18.933 13 
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Based on Akaike’s and Hannan-Quinn’s IC values, the optimal lag length for the VAR 

model is 13 lags. However, this may lead to overfitting due to the large number of 

coefficients and constraints. Schwarz’s IC suggests one lag, but it results in residuals 

that are not normally distributed. Further analyses will be conducted to determine the 

optimal lag length. First, the Lagrange Multiplier Test and autocorrelograms will 

assess autocorrelation in the residuals (Breusch 1978, Godfrey 1978). Second, the 

Jarque-Bera test will verify normal distribution. Table 9.2 shows the probability 

results of the Lagrange Multiplier Test for up to 5 lags.  

Table 9.2 LM Test Results for Serial Correlation in the Residuals. 

Number of Lags P-value 

1 0.0001 

2 0.0005 

3 0.0383 

4 0.4434 

5 0.0247 

Table 9.2 suggests that a lag length of four is suitable, as it does not reject the null 

hypothesis of autocorrelation in the residuals. However, when applying the Jarque-

Bera normality test (which accounts for the kurtosis and skewness of the distribution) 

to the VAR with four lags, one residual in the equation with the European gas price as 

the dependent variable is not normally distributed. This anomaly was attributed to 

outliers in the Dutch gas price time series, notably during periods of high volatility in 

2011 and a spike in 2018 due to freezing weather (Kotek, Tóth and Mezõsi 2018). 

Dummy variables were introduced into the VAR model to address these outlier periods 

without altering the model's causal relationships. Thus, the appropriate lag length for 

the proposed VAR model is concluded to be four. Though typical VAR analyses 

include Granger-causality tests, impulse responses, and forecast error variance 

decompositions, this chapter omits reporting the estimated VAR regression 

coefficients. 
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9.2.2 Toda and Yamamoto (1995) Causality Test 

After identifying the optimal lag length for the VAR model, the directional causality 

between the seven variables in Sample 2 is evaluated using Granger causality test on 

an unrestricted VAR with variables in levels, following the approach laid out by Toda 

and Yamamoto (1995). This test is preferred over standard causality tests due to its 

robustness and alignment with the stationarity and cointegration of the data, thus 

avoiding pre-test bias (Zapata and Rambaldi 1997). The results of the Toda-

Yamamoto (T-Y) causality test applied to the VAR model are presented in Table 9.3, 

where the null hypothesis of no Granger causality is examined. 

Table 9.321  Toda and Yamamoto Granger Causality Test in VAR model. 

Dependent 
Variable 

Granger-
causality =v Probability 

Granger-cause 
(Y/N) 

HH NBP ⇏ HH 4.490 0.344 N 
 TTF	⇏ HH 2.585 0.630 N 
 RUS ⇏ HH 5.490 0.241 N 
 JPN ⇏ HH 1.070 0.899 N 
 ALNG ⇏ HH 3.770 0.4380 N 
 OIL ⇏ HH 6.277 0.1794 N 
NBP HH ⇏ NBP 4.122 0.3897 N 
 TTF ⇏ NBP 8.806 0.063 N 
 RUS	⇏ NBP 8.923 0.063 N 
 JPN ⇏ NBP 4.576 0.334 N 
 ALNG ⇏ NBP 11.253** 0.024 Y 
 OIL ⇏ NBP 1.835 0.766 N 
TTF HH ⇏ TTF 3.089 0.543 N 
 NBP ⇏ TTF 11.725** 0.019 Y 
 RUS	⇏ TTF 19.729*** 0.0006 Y 
 JPN ⇏ TTF 8.092 0.088 N 
 ALNG ⇏ TTF 7.897 0.095 N 
 OIL ⇏ TTF 1.713 0.788 N 
     
     
     
     

 
21 Table 9.3 continues on the next page. 
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Table 9.3   Toda and Yamamoto Granger Causality Test in VAR 
model, Continued. 

Dependent 
Variable 

Granger-
causality ?p Probability 

Granger-cause 
(Y/N) 

RUS HH ⇏ RUS 3.865 0.425 N 
 NBP ⇏ RUS 49.310*** 0.000 Y 
 TTF	⇏ RUS 4.766 0.312 N 
 JPN ⇏ RUS 8.746 0.068 N 
 ALNG ⇏ RUS 14.138*** 0.007 Y 
 OIL ⇏ RUS 1.072 0.899 N 
JPN HH ⇏ JPN 0.776 0.942 N 
 NBP ⇏ JPN 0.944 0.918 N 
 TTF	⇏ JPN 1.683 0.794 N 
 RUS ⇏ JPN 6.041 0.196 N 
 ALNG ⇏ JPN 13.604*** 0.009 Y 
 OIL ⇏ JPN 179.46*** 0.000 Y 
ALNG HH ⇏ ALNG 0.497 0.974 N 
 NBP ⇏ ALNG 22.238*** 0.000 Y 
 TTF	⇏ ALNG 5.293 0.259 N 
 RUS ⇏ ALNG 3.255 0.516 N 
 JPN ⇏ ALNG 1.478 0.831 N 
 OIL ⇏ ALNG 3.917 0.417 N 
OIL HH ⇏ OIL 2.023 0.732 N 
 NBP ⇏ OIL 7.079 0.132 N 
 TTF	⇏ OIL 1.199 0.878 N 
 RUS ⇏ OIL 6.863 0.143 N 
 JPN ⇏ OIL 5.770 0.217 N 
 ALNG ⇏ OIL  1.465 0.833 N 
Notes: ***, ** represent statistical significance at the 1% and 5% levels, respectively. 

If the modified Wald chi-square (°%) shows significance at a 5% level, we can reject 

the null hypothesis of no Granger causality. Analysing the outcomes in Table 9.3, 

there's bidirectional causality between NBP and ALNG gas prices, while 

unidirectional causality runs from NBP to RUS and TTF. Additionally, there's 

unidirectional causality from RUS to TTF, OIL to JPN, and ALNG to RUS and JPN. 

According to the T-Y test, no variable demonstrates any causal relationship over the 

HH or OIL prices.  
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As a robustness check to validate the results in Table 9.3, we included the GECON 

indicator as an exogenous variable in the VAR model. The T-Y test results for this 

adjusted VAR model are presented in Table 9.4. 

Table 9.422  Toda and Yamamoto Granger Causality Test in VAR model with 

GECON Indicator as Exogenous Variable. 

Dependent 
Variable 

Granger-
causality =v Probability 

Granger-cause 
(Y/N) 

HH NBP ⇏ HH 4.057 0.398 N 
 TTF	⇏ HH 2.448 0.654 N 
 RUS ⇏ HH 5.368 0.252 N 
 JPN ⇏ HH 1.093 0.895 N 
 ALNG ⇏ HH 3.118 0.538 N 
 OIL ⇏ HH 5.144 0.273 N 
NBP HH ⇏ NBP 3.985 0.408 N 
 TTF ⇏ NBP 8.627 0.071 N 
 RUS	⇏ NBP 8.765 0.067 N 
 JPN ⇏ NBP 4.524 0.340 N 
 ALNG ⇏ NBP 11.148** 0.025 Y 
 OIL ⇏ NBP 1.803 0.772 N 
TTF HH ⇏ TTF 4.235 0.375 N 
 NBP ⇏ TTF 10.644** 0.031 Y 
 RUS	⇏ TTF 21.060*** 0.0003 Y 
 JPN ⇏ TTF 9.399 0.0539 N 
 ALNG ⇏ TTF 9.150 0.058 N 
 OIL ⇏ TTF 1.874 0.760 N 
RUS HH ⇏ RUS 4.339 0.362 N 
 NBP ⇏ RUS 49.538*** 0.000 Y 
 TTF	⇏ RUS 5.175 0.270 N 
 JPN ⇏ RUS 8.833 0.066 N 
 ALNG ⇏ RUS 14.542*** 0.006 Y 
 OIL ⇏ RUS 1.026 0.906 N 
     

 
22 Table 9.4 continues on the next page. 
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Table 9.4    Toda and Yamamoto Granger Causality Test in VAR model with 

GECON Indicator as Exogenous Variable, Continued. 

Dependent 
Variable 

Granger-
causality =v Probability 

Granger-cause 
(Y/N) 

JPN HH ⇏ JPN 0.777 0.942 N 
 NBP ⇏ JPN 0.790 0.940 N 
 TTF	⇏ JPN 1.687 0.793 N 
 RUS ⇏ JPN 5.697 0.223 N 
 ALNG ⇏ JPN 11.893*** 0.018 Y 
 OIL ⇏ JPN 175.29*** 0.000 Y 
ALNG HH ⇏ ALNG 0.502 0.973 N 
 NBP ⇏ ALNG 21.268*** 0.000 Y 
 TTF	⇏ ALNG 5.352 0.253 N 
 RUS ⇏ ALNG 3.165 0.531 N 
 JPN ⇏ ALNG 1.511 0.825 N 
 OIL ⇏ ALNG 3.166 0.531 N 
OIL HH ⇏ OIL 2.048 0.727 N 
 NBP ⇏ OIL 5.013 0.286 N 
 TTF	⇏ OIL 0.816 0.937 N 
 RUS ⇏ OIL 6.948 0.139 N 
 JPN ⇏ OIL 6.108 0.191 N 
 ALNG ⇏ OIL  1.446 0.836 N 
Notes: ***, ** represent statistical significance at the 1% and 5% levels, respectively. 

As expected from the consistency in the cointegration results in Chapters 7 and 8, the 

robustness check confirmed all causal directions derived from the VAR T-Y Granger 

causality test. This outcome ensures the reliability of our results and subsequent 

interpretations. 

Following the diagrams illustrating causality directions in Chapters 7 and 8, Figure 

9.2 represents the causality relationships in Sample 2 based on the long-run T-Y 

causality test results in Tables 9.3 and 9.4. 
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Figure 9.2 Diagram of the Granger Causality Directions Based on the T-Y Causality 

Test Applies to Sample 2. 

There are 8 Granger causality pairs identified through T-Y causality test applied to the 

VAR model. A significant reduction from the findings of Chapter 7 which identified 

via linear ARDL bivariate models a total of 27 long-run causality relationships in 

Sample 2. A detailed discussion of the results will be conducted in the concluding 

section of this chapter. The next sub-sections will present other two methods that will 

help on the interpretation of the VAR model. They are the impulse responses and 

decomposition of forecast error variance. 

9.2.3 VAR Analysis of Impulse Responses 

The impulse responses provide the future observations of each time series in the VAR 

model in response to a one-unit increase in the current value of one of the VAR 

residuals. This analysis is feasible because the residuals exhibit no correlation across 

equations in the VAR. The Cholesky decomposition generates impulse responses in a 

Vector Autoregression (VAR) model. The technique converts the system of equations 

into a corresponding set of orthogonal errors by establishing an order among the 

variables in the VAR model and subsequently decomposing the variance-covariance 

matrix of the errors via the Cholesky decomposition. A specific ordering of the 

variables in the VAR model must be selected. Lütkepohl (2005) states that this 

ordering should reflect the causal relationships among the variables, such that the 

contemporaneous shocks affect the variables in the order specified by the ordering. 

TTF RUS

JPNOIL

NBP

ALNG
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Upon reviewing Table 9.3 and Figure 9.2, we can identify the time series that exerts 

the most influence on others within the dataset. The Cholesky ordering, designed to 

prioritize time series based on their responsiveness to causal relationships within the 

VAR framework, starts with the least responsive and progresses to the most responsive 

variables. Following Figure 9.2, the proposed order for Cholesky decomposition is 

!"45! - !"## - !"2!)3 - !")*+ -  !",-. - !"//0 – !"1+). Figures 9.3 to 9.9 

illustrate the impact of an unexpected one percentage point increase in each residual 

on all other variables in the VAR system. Dashed lines on the graphs represent ±2 

standard error bands, establishing 95% confidence intervals. 
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Figure 9.3 Responses to a Henry Hub (HH) gas price shock. 
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Figure 9.4 Responses to a National Balancing Point (NBP) gas price shock. 
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Figure 9.5 Responses to a Title Transfer Facility (TTF) gas price shock. 
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Figure 9.6 Responses to a Russian (RUS) gas price shock. 
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Figure 9.7 Responses to a Japan’s Monthly Average LNG Import (JPN) gas price 

shock. 
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Figure 9.8 Responses to a shock in LNG prices imported into Northeast Asia 

(ALNG). 
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Figure 9.9 Responses to a Brent crude oil (OIL) price shock. 

 

 

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

1 4 7 10 13 16 19 22

PE
RC

EN
T

LAG

HH Response to OIL

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

1 4 7 10 13 16 19 22

PE
RC

EN
T

LAG

NBP Response to OIL

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 4 7 10 13 16 19 22

PE
RC

EN
T

LAG

TTF Response to OIL

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 4 7 10 13 16 19 22

PE
RC

EN
T

LAG

RUS Response to OIL

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

1 4 7 10 13 16 19 22

PE
RC

EN
T

LAG

JPN Response to OIL

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 4 7 10 13 16 19 22

PE
RC

EN
T

LAG

ALNG Response to OIL

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 4 7 10 13 16 19 22

PE
RC

EN
T

LAG

OIL Response to OIL



186 

 

The impulse responses in Figures 9.3 to 9.9 suggest a considerable variation in the 

reactions to a 1% shock to the variables OIL, ALNG, and RUS. The variable’s 

responses from a shock to NBP and TTF are moderate, while a 1% shock to HH 

appears to have a small effect of no more than 0.02% over the other variables in 24 

months. Furthermore, a one-percent shock to JPN has a negligible effect on the other 

variables as their variations quickly fade to 0% over 24 months. 

Before drawing conclusions based on the above results, the next sub-section will 

report the results of the forecast error decompositions of each variable in the VAR 

model. These findings will then be interpreted collectively to ensure a comprehensive 

understanding. 

9.2.4 VAR Analysis of Forecast Error Variance Decomposition 

The forecast error decomposition, or just variance decomposition, shows the 

percentage of forecast error due to each variable in the VAR model over time in 

response to a specific shock. Essentially, the variance decomposition shows the extent 

of variation in the dependent variable, which is explained by its shocks and the shocks 

of the other variables in the VAR system. 

Just as in the assessment of Impulse Responses, Cholesky decomposition is a crucial 

tool for analysing variance decomposition forecasts within a VAR model. By doing 

so, Cholesky's decomposition enables the estimation of the variance of shocks to each 

variable independently, ensuring that each variable is only affected by its shocks and 

the shocks of variables preceding it in the ordering. This accurately determines each 

variable's contribution to the forecast error variance (H. Lütkepohl 2005). Therefore, 

once again, the order proposed for the Cholesky decomposition is as follows:  LnOIL - 

LnHH - LnALNG - LnNBP -  LnRUS - LnTTF - LnJPN. 

Table 9.5 presents the variance decomposition of each of the seven variables in the 

VAR system over 24 months. 
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Table 9.523  Forecast Error Variance Decomposition from the VAR Model. 

A – Forecast Error Variance Decomposition of LnHH 

Forecast 
Months 

Forecast 
Standard 
Error 

Variance Decomposition (Percentage) 
LnHH LnNBP LnTTF LnRUS LnJPN LnALNG LnOIL 

1 0.10 98.87 0.00 0.00 0.00 0.00 0.00 1.13 
4 0.18 79.63 1.75 0.35 1.01 0.32 4.47 12.46 
8 0.25 56.39 2.03 2.69 4.57 0.39 11.87 22.07 
12 0.30 44.34 2.78 3.77 8.99 0.35 17.07 22.70 
16 0.35 36.18 4.73 4.61 11.28 0.28 23.66 19.27 
20 0.38 30.30 5.73 5.55 14.06 0.23 27.01 17.12 
24 0.42 26.23 6.74 6.11 16.13 0.20 29.33 15.26 

B – Forecast Error Variance Decomposition of LnNBP 

Forecast 
Months 

Forecast 
Standard 
Error 

Variance Decomposition (Percentage) 
LnHH LnNBP LnTTF LnRUS LnJPN LnALNG LnOIL 

1 0.09 0.77 72.13 0.00 0.00 0.00 16.64 10.46 
4 0.20 1.04 49.43 2.06 6.29 0.25 32.40 8.52 
8 0.29 1.44 24.64 5.34 22.17 0.19 25.99 20.23 
12 0.35 1.39 18.81 5.01 22.57 0.13 25.67 26.41 
16 0.41 1.63 16.60 5.00 21.18 0.12 29.11 26.35 
20 0.47 1.84 13.93 5.31 21.97 0.11 28.83 28.00 
24 0.52 2.01 13.05 5.40 22.20 0.10 30.28 26.96 

C - Forecast Error Variance Decomposition of LnTTF 

Forecast 
Months 

Forecast 
Standard 
Error 

Variance Decomposition (Percentage) 
LnHH LnNBP LnTTF LnRUS LnJPN LnALNG LnOIL 

1 0.10 0.43 33.37 51.48 1.04 0.00 5.79 7.90 
4 0.21 0.89 36.92 13.73 12.89 0.58 24.75 10.24 
8 0.32 1.39 23.20 9.97 24.73 0.26 28.57 11.89 
12 0.40 1.35 16.82 8.81 26.12 0.18 27.48 19.25 
16 0.47 1.58 15.36 7.90 24.76 0.14 30.23 20.03 
20 0.54 1.79 13.45 7.59 24.51 0.12 30.76 21.79 
24 0.60 1.97 12.48 7.35 24.59 0.10 31.49 22.03 
         
         
         
         
         
         
         
         
         

 
23 Table 9.5 continues on the next page. 
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Table 9.5   Forecast Error Variance Decomposition from the VAR Model, 
Continued. 

D - Forecast Error Variance Decomposition of LnRUS 

Forecast 
Months 

Forecast 
Standard 
Error 

Variance Decomposition (Percentage) 

LnHH LnNBP LnTTF LnRUS LnJPN LnALNG LnOIL 
1 0.05 0.02 17.35 0.00 62.72 0.00 11.39 8.53 
4 0.17 0.81 32.38 1.02 18.89 0.12 33.70 13.08 
8 0.28 1.21 15.14 4.45 20.63 0.14 33.23 25.19 
12 0.38 1.21 10.06 4.31 20.22 0.13 27.66 36.42 
16 0.46 1.52 9.47 4.23 19.52 0.10 29.64 35.52 
20 0.54 1.76 8.41 4.56 19.95 0.11 29.66 35.54 
24 0.61 1.97 8.23 4.79 20.56 0.10 30.57 33.78 

E - Forecast Error Variance Decomposition of LnJPN 

Forecast 
Months 

Forecast 
Standard 
Error 

Variance Decomposition (Percentage) 

LnHH LnNBP LnTTF LnRUS LnJPN LnALNG LnOIL 
1 0.02 0.02 3.57 2.10 3.96 89.01 0.24 1.09 
4 0.03 0.73 3.20 1.67 4.06 57.67 9.73 22.94 
8 0.15 0.17 0.46 0.27 1.55 2.45 4.78 90.33 
12 0.23 0.62 0.38 0.41 5.17 1.19 6.10 86.13 
16 0.30 0.90 0.83 0.68 6.80 0.82 9.93 80.04 
20 0.35 1.28 1.39 1.21 8.66 0.65 13.71 73.11 
24 0.40 1.59 2.08 1.81 10.63 0.54 17.10 66.26 

F - Forecast Error Variance Decomposition of LnALNG 

Forecast 
Months 

Forecast 
Standard 
Error 

Variance Decomposition (Percentage) 

LnHH LnNBP LnTTF LnRUS LnJPN LnALNG LnOIL 
1 0.11 0.39 0.00 0.00 0.00 0.00 89.77 9.84 
4 0.26 0.28 11.74 0.50 2.37 0.14 62.08 22.88 
8 0.38 0.57 6.35 3.87 11.33 0.10 45.65 32.11 
12 0.47 0.70 6.08 3.90 14.57 0.10 39.88 34.76 
16 0.55 1.06 6.92 4.15 15.41 0.08 39.64 32.73 
20 0.64 1.36 6.61 4.63 17.35 0.09 37.24 32.73 
24 0.71 1.60 7.01 4.86 18.46 0.08 36.99 31.00 

G - Forecast Error Variance Decomposition of LnOIL 

Forecast 
Months 

Forecast 
Standard 
Error 

Variance Decomposition (Percentage) 

LnHH LnNBP LnTTF LnRUS LnJPN LnALNG LnOIL 
1 0.08 0.00 0.00 0.00 0.00 0.00 0.00 100.0 
4 0.20 0.35 0.32 0.11 1.99 0.58 0.98 95.68 
8 0.28 0.86 0.37 0.19 5.10 0.40 3.63 89.45 
12 0.34 1.04 0.68 0.50 6.23 0.36 7.53 83.66 
16 0.40 1.41 1.16 0.98 8.04 0.32 11.29 76.78 
20 0.45 1.70 1.86 1.56 9.87 0.29 15.00 69.72 
24 0.49 1.93 2.64 2.19 11.63 0.26 18.30 63.05 
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The results reported in Table 9.5 suggest a significant interaction between the 

variables. More specifically, the variables ALNG and OIL have the most significant 

spillover effect on the changes in all the other variables at the end of the time horizon. 

Also, the RUS price is shown to have a considerable impact on the changes in most 

variables and is the third most impactful variable in the variance decomposition table. 

The NBP price has a small impact on the forecasting changes in the RUS, TTF, and 

ALNG prices. The prices that have the least influence over the variability of the other 

variables are the JPN, HH, and TTF. 

9.3 Concluding Remarks 

The literature commonly employs bivariate models like the linear and asymmetric 

ARDL to explore short- and long-term causality and assess cointegration relationships 

between natural gas markets and oil prices. While useful for examining long-run 

equilibrium interactions between two variables, bivariate models may not fully capture 

the complex dynamics of the entire system. To address this limitation, this chapter 

introduces the VAR model, allowing for the simultaneous modelling of all variables 

within the system, thereby offering deeper insights into their mutual influences and 

complementing the findings of bivariate ARDL models. 

Employing the T-Y causality test within the VAR framework enhances the robustness 

of Granger causality detection, a feature absent in traditional linear ARDL bivariate 

models. Furthermore, following the robustness checks conducted in the bounds 

cointegration test models in Chapters 7 and 8, we included the GECON indicator as 

an exogenous variable in the VAR model. We compared the results to the original 

model based solely on price time series. The robustness check confirmed all results of 

the T-Y Granger causality test. 

In our analysis, the T-Y causality test applied to the VAR model revealed 8 Granger 

causality pairs, a significant decrease from the 27 long-run causality relationships 

identified in Sample 2 through linear ARDL bivariate models, as discussed in Chapter 

7. It is essential to emphasize that this comparison is not intended to discredit ARDL 

results. Rather, the VAR model complements the findings by shedding light on 

spillover effects inherent in bivariate relationships, offering a more comprehensive 

perspective on the interplay among variables. 
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The results of the T-Y causality test presented in Table 9.3 reveal that NBP, RUS, and 

ALNG have a strong causal influence on each other. While NBP and RUS do not 

exhibit bidirectional causality at a 5% significance level, the p-value of RUS causing 

NBP (0.063) almost satisfies the maximum significance level. This finding 

corroborates Chapters 7 and 8, which indicate a correlation between European and 

Asian markets. TTF is heavily impacted by NBP and RUS gas prices. At the same 

time, ALNG significantly influences JPN gas prices, indicating strong regional 

integration between European gas prices and the two Asian gas benchmarks. 

However, the causality relationships between the HH gas price and the Brent crude oil 

price to the other gas prices identified in the ARDL assessment are not detected in the 

VAR framework. This finding once again present evidence that the relationship 

between OIL and gas prices has weakened over the last decade. The only exception is 

the strong causality from OIL to JPN, which results from the high proportion of oil 

indexation in the imported gas to Japan. As a result, JPN is the only price with a 

causality dependency on OIL price. The results showed that the HH price representing 

the U.S. gas market is independent, as there is no causal relationship in any direction 

between HH and all the other price time series. 

After examining the VAR Impulse Responses and Variance Decomposition Forecasts, 

we found that the OIL time series has a certain impact on gas prices other than HH. 

Additionally, the analysis indicates that ALNG and RUS significantly influence the 

other gas prices present in Sample 2. Overall, the findings from Tables 9.3 and 9.4, as 

well as Figures 9.3 to 9.9, lead us to conclude the following: 

• The T-Y causality test within the VAR framework enhances Granger causality 

detection compared to traditional linear ARDL bivariate models, revealing 8 

Granger causality pairs. This not only complements the findings but also 

highlights the possibility of spillover effects, offering a more comprehensive 

perspective on the integration of natural gas prices. 

• The findings in this chapter echo those in Chapter 7, particularly in the 

assessment of leading and lagging markets outlined in Section 7.3.5. Russia 

emerges as the leading market in Europe, while ALNG leads in Asia. 

Additionally, a correlation between European and Asian gas markets is 

observed, notably with bidirectional causality between NBP and ALNG, where 
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ALNG is the leading market. However, HH does not exhibit any strong 

relationship with any of the time series in the sample. 

• The reduction from 27 causality relationships among cointegrated pairs 

discussed in Chapter 7 to just 8 VAR T-Y causality pairs aligns with 

explanations in the Introduction and is illustrated in Figure 9.1. The process 

successfully addressed the causality detection trap by removing previously 

identified bidirectional causalities between OIL and other gas prices. Only a 

few causal links were found within JPN, and all involving the HH were 

discarded. The T-Y findings clarify that OIL impacts only JPN, which ALNG 

influences, but no other gas prices. Furthermore, the research confirms a causal 

connection between the three European gas prices and ALNG. 

• Analysing the overall results, OIL has notably reduced its influence on gas 

markets. However, it is important to note that OIL still retains some degree of 

impact on certain gas prices, as indicated by the Impulse Response and 

Variance Decomposition Forecasts. This could offer insight into the causality 

relationships uncovered in the ARDL assessments, which were not 

corroborated by the VAR T-Y Causality test. Chapter 7 has already examined 

potential explanations for these findings.  

Moving forward, Chapter 10 will explore the factors influencing natural gas 

demand, specifically focusing on key LNG importer markets such as Japan and 

Korea. This last methodology will expand the thesis' investigation into the intricate 

relationship between natural gas demand and its underlying determinants. By 

utilizing autoregressive distributed lag models, Chapter 10 aims to uncover 

valuable insights into the elasticity of natural gas demand across industrial and 

residential sectors. The study will enrich our understanding of price formation 

dynamics in the global natural gas market. 
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CHAPTER 10  
PRICE AND INCOME ELASTICITY OF NATURAL GAS 

DEMAND: A MULTI-SECTOR ANALYSIS IN JAPAN 
AND KOREA 

10.1 Introduction 

In an era marked by increasing global concerns over energy security, environmental 

sustainability, and economic growth, the role of natural gas as a pivotal energy source 

has gained significant attention. As nations strive to diversify their energy mix and 

transition towards cleaner alternatives, the demand for natural gas has surged, 

contributing to meeting energy needs and reducing greenhouse gas emissions. Within 

this landscape, fast-growing gas importers in Asia emerge as vital players. Although 

the literature has extensively analysed the gas demand factors in China, demand in 

Japan and South Korea has been underlooked. This chapter fills this gap by estimating 

long-run elasticities for these countries. 

Natural gas, characterised by its relatively lower carbon intensity than other fossil 

fuels, has become a transitional energy source in the journey towards a more 

sustainable energy future. As Japan and Korea forge their paths towards economic 

development and energy security, their reliance on natural gas has become 

increasingly pronounced. Both nations have strategically positioned themselves to tap 

into global natural gas supplies, underlining the importance of understanding their 

demand behaviour in changing market dynamics.  

Japan, a nation historically grappling with limited regional energy resources, has 

turned to natural gas as a vital component of its energy strategy. Following the 

Fukushima nuclear disaster in 2011, Japan accelerated its transition away from nuclear 

power, elevating the role of natural gas in its energy portfolio. Similarly, while 

grappling with energy resource constraints, Korea has placed considerable emphasis 

on natural gas to support its expanding economy and meet the growing energy 

demands of its industries. 
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In this chapter, the elasticity of natural gas demand considering the major importer 

markets is investigated, and it is found that the price and income elasticities of natural 

gas demand in the industrial and residential sectors are distinctive. This chapter's 

methodology constructs autoregressive distribution lag models to study the elasticity 

of natural gas demand in these two sectors of Japan and Korea. South Korea and Japan 

were chosen for this thesis's focus for four specific reasons. 

First, previous literature has thoroughly investigated the natural gas demand 

elasticities of significant importer markets like Europe and China (Andersen, Nilsen 

and Tveteras 2011; Zhang, Ji and Fan 2018; Lin and Li 2020; Erias and Iglesias 2022; 

Erias and Iglesias 2022; Wang, et al. 2022). However, there are significant knowledge 

gaps regarding the natural gas demand patterns in Japan and Korea. These gaps 

emphasise the need for studies on these regions, considering the unique energy market 

dynamics that influence how natural gas is consumed in these nations. 

Second, the significance of natural gas as an energy source holds substantial weight in 

the neighbouring East Asian countries of South Korea and Japan. Japan and South 

Korea are the world's second and third-largest liquefied natural gas (LNG) consumers, 

respectively. The global LNG spot market relies on two key price indicators: the Title 

Transfer Facility (TTF) and the Japan Korea Maker (JKM) indices. Essentially, these 

nations wield considerable influence in the LNG market to the extent that an 

international LNG price index is specifically directed towards South Korea and Japan. 

While the traditional trend of the JKM index surpassing the TTF index has recently 

been reversed, maintaining a stable supply of LNG imports remains a longstanding 

energy concern for these countries (Lee, Kim and Yoo 2023). 

Third, South Korea and Japan are chosen for comparison due to their similar natural 

gas supply conditions. Despite being geographically distinct, both nations heavily rely 

on imported natural gas, given their limited domestic production. This shared 

dependence on imported natural gas, primarily sourced from Middle Eastern countries 

like Qatar and Oman, highlights their common ground. Despite South Korea's 

peninsula status and geopolitical tensions with North Korea, its natural gas supply 

dynamics mirror those of island nations due to the absence of piped natural gas. This 

convergence underscores the importance of examining LNG imports in both countries 

for a comprehensive understanding of their energy landscapes. 
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Fourth, South Korea and Japan use natural gas in similar ways. Both countries use 

about the same amount of natural gas to make electricity and supply gas to cities. Since 

these countries are situated around the same distance from the equator, they also have 

similar patterns of using natural gas for heating and cooling (International Energy 

Agency 2021, International Energy Agency 2020). This means that South Korea and 

Japan compete to bring LNG from the global LNG market. In short, because South 

Korea and Japan are alike in how they use natural gas, how they bring it in, and how 

it is supplied, it makes sense to compare them. Of course, there could be some 

differences, but these can be seen as reasons for any variations in the comparison 

results. 

By focusing on Japan and Korea, we aim to bridge this gap in the literature and 

contribute valuable insights into the determinants of natural gas demand. By exploring 

the price and income elasticities of natural gas demand in the industrial and residential 

sectors, we seek to uncover the underlying relationships between these key variables 

and the consumption patterns in these nations. By shedding light on the factors driving 

natural gas demand in Japan and Korea, we not only enhance our understanding of 

their energy landscapes but also pave the way for more informed energy policy 

decisions, sustainable growth strategies, and effective energy transition planning. 

The chapter is organised as follows. Section 10.2 presents a brief outline of the natural 

gas industry in Japan and South Korea. Section 10.3 presents a brief literature review 

on using the demand function to assess natural gas demand elasticities. Section 10.4 

introduces the methodology and data used for this chapter's assessment. Section 10.5 

presents specific models and their respective results for the industrial and residential 

sectors, as well as a comparison discussion of natural gas demand elasticity in both 

nations and sectors. Finally, Section 10.6 presents the concluding comments and 

policy implications. 
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10.2 Overview of the Natural Gas Markets in Japan and South 

Korea 

10.2.1 Japan 

The Fukushima nuclear disaster in 2011 prompted Japan to overhaul its energy 

strategy, leading to the phasing out of nuclear power and a significant shift in its 

energy mix. Natural gas emerged as a key player, providing a reliable and cleaner 

alternative to bridge the energy gap left by nuclear shutdowns. Its versatility in 

electricity generation and compatibility with renewable sources helped ensure a stable 

power supply and mitigate the risk of energy shortages. This transformation extended 

beyond energy sources, as Japan underwent comprehensive liberalisation in both the 

electricity and gas sectors, fostering market convergence and facilitating cross-sector 

ventures. Notably, Japan's gas market transitioned from a regional monopoly 

framework to an open competitive landscape, driven by the surge in natural gas 

demand following the Fukushima disaster, resulting in a staggering 21% increase in 

total natural gas consumption in 2012 compared to 2010 (International Energy Agency 

2021). 

According to the IEA Japan Energy Policy Review (2021) report, Japan is taking 

significant steps to reshape its energy landscape for a more environmentally 

responsible future. The country's commitment to curbing climate change is evident as 

it transitions from coal-based power generation to more sustainable alternatives like 

natural gas cogeneration facilities and fuel cells. Japan is dedicated to a greener path 

with a bold target of reducing greenhouse gas emissions by 80% by 2050 compared to 

2013. As a nation isolated without energy pipelines connecting to other countries, 

Japan heavily relies on imported liquefied natural gas (LNG) to meet its energy 

demands. Most (over 95%) of the natural gas used is imported as LNG, given that only 

about 2% is produced domestically. The imported LNG serves a dual purpose, with 

around 66% used for power generation and the remainder as city gas. Industries such 

as steel and chemicals are the primary natural gas consumers for their operations, 

underlining their importance in the industrial sector. Japan's strategy involves sourcing 

around one-third of its imported LNG from Australia, while the rest is divided among 

Malaysia, Qatar, and Russia, showcasing a diverse supply chain approach. 
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10.2.2 South Korea 

The natural gas sector in South Korea has experienced significant changes, primarily 

due to the establishment of KOGAS (Korea Gas Corporation). Formed in 1983, 

KOGAS was founded to ensure a steady supply of natural gas to meet the nation's 

energy demands. KOGAS assumed a crucial role as a transmission system operator 

overseeing natural gas import and wholesale distribution. Given the absence of 

pipelines connecting South Korea to other nations, KOGAS played a vital part in 

managing the importation of natural gas, particularly liquefied natural gas (LNG). 

However, a notable shift occurred in 2005 when the government allowed the direct 

import of LNG for private consumption. This decision marked a pivotal moment, 

bringing about changes in the industry's framework and fostering competition and 

variety in the market. As of 2020, roughly 22% of the nation's total domestic LNG 

imports were directly procured without involving KOGAS, highlighting the industry's 

adaptability and readiness to embrace evolving energy consumption trends. While 

KOGAS remains central to South Korea's energy infrastructure, the coexistence of 

new LNG import avenues underscores the country's dedication to a resilient and 

flexible energy strategy (International Energy Agency 2020, U.S. Energy Information 

Administration 2023). 

LNG is significant in South Korea's energy landscape, making up the third-largest 

portion of its primary energy sources. As of 2021, the country imported around 46 

million tons of natural gas, underscoring its reliance on imports, as its self-sufficiency 

in NG is just 0.6%. Key exporters of LNG to South Korea include the Middle East 

(especially Qatar), Southeast Asia, Russia, Australia, and the United States (U.S. 

Energy Information Administration 2023). 

The use of natural gas in South Korea is diverse, spanning the industrial, building, and 

transportation sectors. Industries like petrochemicals, metal assembly, and steel rely 

on natural gas. In urban areas, natural gas primarily serves as city gas for cooking and 

heating. Natural gas is also a key fuel for compressed natural gas buses. The demand 

for natural gas varies with the seasons, peaking in winter due to heating needs. For 

instance, during the coldest months from November to February, which is winter in 

South Korea, a significant 45% of the total annual natural gas consumption occurs. 

KOGAS operates an LNG receiving terminal where the imported LNG is stored. 
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KOGAS then converts this LNG back into its gaseous form, transported through an 

extensive network of natural gas pipelines nationwide (International Energy Agency 

2020). Notably, 45% of the imported natural gas is used for generating power, 

reflecting South Korea's efforts to transition away from coal-fired power plants to 

reduce pollution and greenhouse gas emissions. This shift is expected to increase 

natural gas consumption for power generation (Ministry of Trade, Industry and Energy 

2020). 

10.3 Literature Review on the Energy Demand Equation 

Much research has been carried out to understand how responsive the demand for 

natural gas is, mainly looking at it from the perspective of the demand equation. Price 

elasticity of demand is a concept that deals with how much the demand for a product 

changes in response to variations in its price. When looking at the short term, the focus 

is on how quickly demand reacts to price changes within that specific time frame. In 

contrast, the long-term price elasticity of demand looks at the bigger picture, 

considering how the overall demand adjusts to a price change over time until a new 

balance is achieved (Donnelly 1987). Thus, it is important to consider both immediate 

and gradual effects when studying the impact of price changes on natural gas demand. 

Hunt and Manning (1989) and Bentzen and Engsted (1993) investigated how the 

demand for energy changes in response to various factors. They chose to focus on the 

UK and Denmark, respectively. They used the error correction model to understand 

the short-term changes. This method helped them determine how quickly the energy 

demand adjusts when variables like prices and income change. For a broader and 

longer view, they used cointegration analysis, which allowed them to see the bigger 

patterns of how energy demand changes over longer periods. Using these different 

techniques, they gained a more detailed understanding of how energy demand reacts 

immediately and gradually when changing variables like prices or other factors. 

Contemporary studies exploring how the demand for natural gas behaves often adopt 

the demand function approach. Asche, Nilsen, and Tveteras (2008), Erdogdu (2010), 

Dagher (2012), and Yu, Zheng, and Han (2014) have used this approach. These studies 

consider many factors, like natural gas prices, other energy sources that could be used 

as substitutes, the climate, and income, among other demand determinants.  
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There are two main methods when assessing how these factors affect demand. The 

first is called the partial adjustment model. This model considers gradual demand 

changes that follow from changes in endogenous demand determinants. The long-term 

elasticity derived from this model equals short-term elasticity divided by the 

adjustment rate. Nonetheless, this model's postulation of a uniform responsiveness rate 

has sparked concerns regarding its applicability across diverse contexts. 

On the other hand, the autoregressive distributed lag model (ARDL) introduces an 

alternative perspective. This model incorporates a multistep view by considering 

instantaneous and delayed responses. This approach offers an understanding of the 

intricate dynamics of demand. Notably, it tackles the constraints of the partial 

adjustment model by directly affording insights into both short-term and long-term 

elasticities, thus sidestepping the presumptive uniformity in responsiveness. 

Both models can be written in their ECM representations, but level-representation 

equations are used instead, as ECM representations are not always relevant. In 

addition, these models can be implemented in an instrumental-variable SEQ demand-

and-supply system when adequate data, including cost data, is available with enough 

observations for the identification of such a system. 

The ARDL approach has been extensive applied in energy demand estimations when 

limited data is available. Bentzen and Engsted (2001) assess how the ARDL model 

and the ECM approach yield comparable outcomes regarding short-term and long-

term elasticities and the dynamic adjustment pattern of energy demand. According to 

Cuddington and Dagher (2015), the ARDL method is a comprehensive version of the 

ECM and the partial adjustment model. Furthermore, the analysis of income elasticity 

is a pertinent aspect in this domain. Dagher (2012) demonstrates that attaining long-

term equilibrium occurs within a relatively rapid timeframe, approximately 18 

months, following changes in income or price. The ARDL model also finds relevant 

use in examining income and price elasticity within the context of natural gas demand, 

facilitating the assessment of the enduring relationship between demand and various 

influencing factors (Farhani, et al. 2014, Furuoka 2016, Zhang, Ji and Fan 2018). 
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10.4 Methodology and Data   

10.4.1 Model Specification 

The ARDL method is used to model natural gas demand in Japan and Korea, offering 

advantages over the ECM and partial adjustment models, which restrict elasticity 

analyses. Pesaran and Shin (1999) showed that ARDL reliably estimates coefficients, 

even when variables differ in their levels of integration I(0) or I(1), making it a robust 

choice for analysing the responsiveness of natural gas demand. 

Examining the relationship between natural gas demand and factors like natural gas 

prices, alternative energy prices, and income levels across different sectors is the 

primary objective of the ARDL demand function. We ensure the suitable lag length 

for these variables through a series of tests, including the F-test, t-test, and the Akaike 

Information Criterion (AIC), following a similar method described by Bentzen and 

Engsted (2001). The general model formula can be represented as follows: 
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Z,&
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(10.1) 

Where ∑ 	π&,) > 0,P
),'  Z! refers to the quantity of natural gas demand in year t;  b!#* 

and bN,!#N refers to the real price of natural gas in year t-j and the real price of the 

energy substitute r in year t-s, respectively. ¢!#Z represents the real income level in 

year t-v; and [ represents the random error term. 

The short-run and long-run self-price elasticity of natural gas demand are represented 

as Equations (10.2) and (10.3), respectively. 

GNVJ\
] = 	π',& (10.2) 
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The short-run and long-run cross-price elasticity of natural gas demand for energy 

substitute (e.g. coal, electricity, crude oil, and LPG) are represented as (10.4) and 

(10.5), respectively. 

GBT^NN] = 	π%,T,& (10.4) 
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(10.5) 

The short-run and long-run income elasticity of natural gas demand are represented as 

(10.6) and (10.7), respectively. 

GBT^NN] = 	πM,& (10.6) 
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10.4.2 Variables and Data Sources 

To determine how changes in income and prices affect the demand for natural gas in 

specific sectors in Japan and Korea, we collect pertinent data to construct and apply 

the ARDL model. It is crucial to thoroughly explain each variable in our dataset to 

ensure a clear understanding of their roles and importance in our analysis. In this 

section, we provide a detailed description of each variable. 

Datasets on natural gas prices, substitute prices, and natural gas demand were sourced 

from the OECD iLibrary databases. We relied on relevant variables from the World 

Bank database to assess industrial and residential income levels in Japan and Korea. 

The time series were obtained at a yearly frequency with a sample period from 2001 

to 2021(21 observations). The decision to focus on a sample period from 2001 to 2021, 

with yearly data points, was mainly influenced by constraints related to data 

availability. However, it is important to note that the ARDL model can still yield 

meaningful results even with limited observations. We can find examples in the 

existing literature, such as Zhang et al. 2018, where researchers have successfully 
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employed this methodology with a 20-year sample period of yearly observations. 

Nominal price or value data are adjusted to real prices or values using 2001 as the base 

year. Furthermore, we applied a logarithmic transformation to all the variables to 

mitigate heteroscedasticity. The list of  variables is as follows: 

• Price of natural gas: We gather yearly average natural gas prices in Japan 

(b_(L) and Korea (b`^T), expressed in local currency per megawatt-hour 

(MWh). This data is disaggregated to distinguish between prices applicable to 

the residential (baVN
_(L, baVN

`^T) and industrial sectors (bbLc
_(L, bbLc

`^T). 

• Prices of substitutes: Prices of alternative energy sources vary across different 

sectors, so we selected the relevant variables tailored to the specific 

characteristics of sectoral natural gas demand. According to Liu et al. 2018, it 

is evident that electricity, liquefied petroleum gas (LPG), and natural gas play 

pivotal roles in heating and cooking within the residential sector. Therefore, in 

our analysis of the residential sector, we incorporate the prices of residential 

electricity (+aVN
_(L, +aVN`^T) and LPG (F_(L, F`^T) as representative alternative 

energy prices. In contrast, when focusing on the industrial sector in Japan and 

Korea, natural gas is primarily used for industrial fuels and gas-fired power 

generation. Therefore, for our industrial sector analysis, we consider coal and 

electricity, as proposed by Zhang et al. 2018, as alternative energy sources 

relative to natural gas. To capture this, we include the prices of industrial 

electricity (+bLc
_(L, +bLc`^T) and the coal price (p_(L, p`^T) as indicators of 

alternative energy prices. All alternative prices time series were obtained in 

local currency per megawatt-hour (MWh). 

• Income: Given the geographical concentration of residential natural gas 

consumption within urban and town areas, we opt to utilise the annual total 

Gross Domestic Product (âZb_(L, âZb`^T) in the local currency as the 

income indicator for the residential sector. Furthermore, we designate the 

Industrial Value Added (¢õr_(L, ¢õr`^T)  in the local currency as the income 

variable representing the industrial sector. 
 
A summary of the variables' description and abbreviation is presented in Table 10.1 as 

follows: 
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Table 10.1 Variables' Description and Abbreviation. 

Variable description Abbrev.  

Demand for natural gas (MCM logarithm form) in Japan’s industrial sector !"P
wnx

y[n 

Demand for natural gas (MCM logarithm form) in Korea’s industrial sector !"P
wnx

z{| 

Demand for natural gas (MCM logarithm form) in Japan’s residential sector !"P
}Y~

y[n 

Demand for natural gas (MCM logarithm form) in Korea’s residential sector !"P
}Y~

z{| 

Real price (logarithm form) of natural gas in Japan’s industrial sector  !"+
wnx

y[n 

Real price (logarithm form) of natural gas in Korea’s industrial sector  !"+
wnx

z{| 

Real price (logarithm form) of natural gas in Japan’s residential sector !"+
}Y~

y[n 

Real price (logarithm form) of natural gas in Korea’s residential sector !"+
}Y~

z{| 

Real price (logarithm form) of electricity in Japan’s industrial sector !"Q
wnx

y[n 

Real price (logarithm form) of electricity in Korea’s industrial sector !"Q
wnx

z{| 

Real price (logarithm form) of electricity in Japan’s residential sector !"Q
}Y~

y[n 

Real price (logarithm form) of electricity in Korea’s residential sector !"Q
}Y~

z{| 

Real price (logarithm form) of LPG in Japan’s residential sector !"!y[n 

Real price (logarithm form) of LPG in Korea’s residential sector !"!z{| 

Real price (logarithm form) of coal in Japan’s industrial sector !"Ry[n 

Real price (logarithm form) of coal in Korea’s industrial sector !"Rz{| 

Total yearly Gross Domestic Product (logarithm form) in Japan !"3P+y[n 

Total yearly Gross Domestic Product (logarithm form) in Korea !"3P+z{| 

Total yearly Industrial Value Added (logarithm form) in Japan !"5S2y[n 

Total yearly Industrial Value Added (logarithm form) in Korea !"5S2z{| 

10.5 Empirical Results and Discussion 

10.5.1 Unit Root Test 

Before constructing the ARDL model, it is crucial to evaluate the stationarity of our 

variables and determine their integration orders. It is important to note that while the 

ARDL model does not demand uniform integration orders among variables, our 

calculation of the F-statistic in the boundary test relies on the assumption that each 

variable adheres to either I(0) or I(1), as suggested by the research of Pesaran, Shin, 

and Smith (2001). This leads us to a fundamental requirement for applying the ARDL 
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model: the integration order of our variables must not exceed 1. If it does, the validity 

of the co-integrated F-test comes into question. 

To assess the stationarity of our variables, we turn to the Augmented Dickey-Fuller 

(ADF) and Philips-Perron (PP) tests. The results of the unit root test for all the 

variables are displayed in Table 10.2 below. These results confirm that all our 

variables exhibit stationarity when differenced once, assuring that they conform to 

either the I(0) or I(1) process. With this verification, we can confidently proceed with 

applying the ARDL model.  

Table 10.2 Results of Unit Root Tests. 

LEVELS FIRST DIFFERENCE 
Variables ADF (t-Stat.) PP (Adj. t-Stat.) Variables ADF (t-Stat.) PP (Adj. t-Stat.) 

 Const. Const. 
& Trend 

Const. Const. 
& Trend 

 Const. Const. 
& Trend 

Const. Const. & 
Trend 

;<=!"#
$%" −4.385∗∗∗ −3.095 −7.092∗∗∗ −4.240∗∗ ;<=!"#

$%" −3.101∗∗ −3.127 −3.716∗∗ −2.756 

;<=!"#
'() −1.593 −1.534 −1.873 −1.084 ;<=!"#

'() −2.845∗ −2.955 −3.035∗∗ −2.788 

;<=*+,
$%" −2.756∗ −3.667∗∗ −2.683∗ −3.696∗∗ ;<=*+,

$%" −6.206∗∗∗ −6.425∗∗∗ −9.730∗∗∗ −11.84∗∗∗ 

;<=*+,'() −3.921∗∗∗ −3.847∗∗ −3.797∗∗ −5.517∗∗∗ ;<=*+,'() −5.912∗∗∗ −5.608∗∗∗ −9.377∗∗∗ −8.722∗∗∗ 

;<G!"#
$%" −2.207 −2.577 −1.711 −2.887∗ ;<G!"#

$%" −3.889∗∗∗ −3.730∗∗ −2.887∗ −2.727 

;<G!"#
'() −1.535 −1.190 −1.562 −1.190 ;<G!"#

'() −4.105∗∗∗ −3.940∗∗ −4.105∗∗∗ −4.425∗∗ 

;<G*+,
$%" −2.348 −2.336 −1.969 −1.896 ;<G*+,

$%" −4.116∗∗∗ −3.956∗∗ −3.180∗∗ −3.140 

;<G*+,'() −1.042 −0.862 −1.191 −0.862 ;<G*+,'() −3.641∗∗ −4.132∗∗ −3.641∗∗ −4.140∗∗ 

;<H!"#
$%" −1.149 −1.498 −1.248 −1.484 ;<H!"#

$%" −3.039∗∗ −2.838 −3.049∗∗ −2.893 

;<H!"#
'() −0.789 −2.184 −0.839 −1.624 ;<H!"#

'() −3.318∗∗ −3.145 −3.318∗∗ −3.145 

;<H*+,
$%" −1.030 −2.553 −1.104 −1.624 ;<H*+,

$%" −3.981∗∗∗ −3.807∗∗ −4.005∗∗ −3.777∗∗ 

;<H*+,'() −1.271 −1.759 −1.202 −1.557 ;<H*+,'() −3.053∗∗ −3.025 −3.047∗∗ −3.025∗ 

;<;$%" −1.750 −2.341 −1.553 −2.341 ;<;$%" −5.076∗∗∗ −4.983∗∗∗ −5.265∗∗∗ −5.682∗∗∗ 

;<;'() −2.219 −2.135 −2.219 −2.092 ;<;'() −4.079∗∗∗ −4.387∗∗ −4.079∗∗∗ −4.385∗∗ 

;<I$%" −3.108∗∗ −2.086 −1.824 −1.950 ;<I$%" −4.451∗∗∗ −4.856∗∗∗ −4.453∗∗∗ −6.628∗∗∗ 

;<I'() −1.134 −1.858 −1.135 −1.858 ;<I'() −4.295∗∗∗ −4.192∗∗∗ −4.297∗∗∗ −4.189∗∗ 

;<J=G$%" −1.723 −2.390 −1.698 −2.390 ;<J=G$%" −4.626∗∗∗ −4.667∗∗∗ −4.627∗∗∗ −4.669∗∗∗ 

;<J=G'() −4.119∗∗∗ −1.228 −10.00∗∗∗ −2.178 ;<J=G'() −4.645∗∗∗ −3.775∗∗ −4.635∗∗∗ −14.43∗∗∗ 

;<KLM$%" −2.577 −2.547 −1.865 −1.746 ;<KLM$%" −4.069∗∗∗ −3.923∗∗ −4.098∗∗∗ −3.968∗∗ 

;<KLM'() −3.133∗∗ 0.207 −4.994∗∗∗ −1.071 ;<KLM'() −3.308∗∗ −4.219∗∗ −3.212∗∗ −5.369∗∗∗ 

Note: * p < 0.1, ** p < 0.5, *** p < 0.01. 

10.5.2 Analysis of the Natural Gas Demand in the Industrial Sector: 

Japan and Korea 

Natural gas serves as a high-quality industrial fuel, finding extensive application in 

sectors like oil refinement, chemical production, metal processing, electrical and 
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thermal power generation, and oil and gas extraction. Consequently, natural gas can 

substitute or complement coal, fuel oil, and electricity. In developing an ARDL model 

to study the demand for natural gas within the industrial sector, our primary emphasis 

lies in examining the real prices of industrial natural gas, coal, and industrial electrical 

power. Furthermore, as economic progress advances, it is expected that there will be 

a heightened demand for energy consumption. Hence, we also consider the influence 

of the real Industrial Value Added on the natural gas demand. 

We verify whether the ARDL model includes the autoregressive term and the lag order 

through a sequence of evaluations, similar to the approach introduced by Bentzen and 

Engsted (2001). The process involves performing the F-test, t-test and evaluating the 

Akaike Information Criterion (AIC). Representing the natural gas demand function 

for the industrial sectors in Japan and Korea, Equations (10.8) and (10.9) serve as the 

foundation for this analysis. 

FòZbLc
_(L

!
=	∅bLc

_(L + 	D&FòZbLc
_(L

!#'
+ 	D'FòbbLc

_(L
!
+ 	D%Fòp_(L!

+ 	DMFòp_(L!#' + 	DRFòp_(L!#% + 	D@Fò+bLc
_(L

!

+ 	DdFò¢õr_(L! + 	DeFò¢õr_(L!#' + 	DfFò¢õr_(L!#%

+ 	Dg2ª+tZ + [bLc
_(L 

(10.8) 

Based on the significance of the parameters and collinearity issues, the coal price is 

not included in the demand model for Korea's industrial sector. Consequently, the 

resulting equation is as follows: 

FòZbLc
`^T

! =	∅bLc
`^T + 	k&FòZbLc

`^T
!#' + 	k'FòbbLc

`^T
! + 	k%FòbbLc

`^T
!#'

+ 	kMFò+bLc
`^T

!

+ 	kRFò+bLc
`^T

!#'+	k@Fò+bLc
`^T

!#% + 	kdFò¢õr
`^T

!

+ 	keFò¢õr`^T!#' + 	kfFò¢õr`^T!#% + [bLc
`^T 

(10.9) 

The coefficient results for the two ARDL models demonstrated above are reported in 

Table 10.3. We derive the short-term and long-term elasticities for natural gas demand 

by substituting these coefficient estimations alongside Equations (10.2) through 

(10.7). 
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Table 10.3 Coefficient Estimation of Natural Gas Demand in Japan and Korea: 

Industrial Sector. 

Japan – Industrial Sector 

Coefficient ARDL estimated value Standard Error t-Statistic P-value 

∅NOP%QO 25.805** 8.623 2.993 0.017 

	-R 0.224 0.186 1.202 0.264 

	-S 0.079 0.084 0.941 0.374 

	-3 0.049 0.058 0.844 0.423 

	-5 0.102 0.071 1.433 0.190 

	-T −0.215** 0.070 −3.093 0.015 

	-U −0.803*** 0.166 −4.849 0.001 

	-V 0.433** 0.188 2.310 0.049 

	-W −0.325 0.252 −1.291 0.233 

	-X −0.448** 0.180 −2.488 0.038 

	-Y 0.020*** 0.005 3.777 0.005 

Adjusted R2 = 0.86 , F-statistic = 11.99 , AIC = −4.12 

Korea – Industrial Sector 

Coefficient ARDL estimated value Standard Error t-Statistic P-value 

∅NOPZ[\ −8.850 6.472 −1.368 0.205 

	0R 0.817*** 0.228 3.580 0.001 

	0S −0.245 0.250 −0.979 0.353 

	03 −0.357** 0.155 −2.305 0.047 

	05 −0.072 0.328 −0.220 0.831 

	0T 0.214 0.302 0.709 0.496 

	0U −1.258*** 0.336 −3.748 0.005 

	0V 0.751 0.400 1.878 0.093 

	0W 1.104 0.724 1.525 0.162 

	0X −0.989 0.505 −1.959 0.082 

Adjusted R2 = 0.98 , F-statistic = 91.75 , AIC = −3.08 
Notes: * p < 0.1, ** p < 0.5, *** p < 0.01. 

Referring to Equations (10.2) through (10.7) and the data presented in Table 10.3 for 

the industrial sector, we can determine natural gas demand's short-run and long-run 

elasticities. We assess the significance of the long-term elasticities using the Wald test 

for the joint significance of each variable's contemporary and lagged coefficients. This 

test is a statistical tool used to determine if a combination of independent variables 

collectively has a 'significant' influence on a model. 
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In Japan's industrial sector context, the short-run and long-run own-price elasticities 

regarding the demand for natural gas are 0.079 and 0.101, respectively. These 

estimates do not exhibit statistical significance at a 10% significance level, which 

implies that the demand for natural gas remains relatively inelastic concerning changes 

in the price of natural gas, both in the short term and the long term. The short- and 

long-run cross-price elasticities of natural gas demand in relation to coal are 0.049 and 

-0.083, respectively. The short- and long-run cross-price elasticity of natural gas 

demand concerning electricity are -0.803 and -1.034, respectively. While only the 

long-run cross-price elasticity for coal is significant at a 10% level, the cross-price 

elasticities for electricity are statistically significant at a 1% level. The income 

elasticity of natural gas demand is 0.433 in the short-run, while in the long-run, the 

elasticity is -0.437. Both income elasticities are significant at a 5% level. 

Analysing the results for natural gas demand in the Japanese industrial sector over the 

past two decades reveals several key findings. Firstly, variations in natural gas prices 

are inelastic to its demand, mainly because natural gas plays a vital role in Japan's 

energy mix following the 2011 nuclear disaster. Its demand is a critical buffer against 

energy shortages, regardless of price fluctuations. Moreover, it is noteworthy that coal 

prices exhibit an inelastic effect on natural gas demand, reflecting a broader trend of 

reducing the use of more polluting fuels and promoting cleaner alternatives like natural 

gas. 

Secondly, the findings reveal a significant negative correlation when examining the 

electricity price elasticity of natural gas demand, suggesting that electricity and natural 

gas function more as complements than substitutes in the industrial sector. This 

outcome may be due to the flexibility of using electricity as an alternative to coal-

based power generation despite natural gas's higher fuel quality. 

Finally, regarding income elasticity, short-term growth in Industrial Value Added 

(IVA) positively stimulates natural gas demand. However, long-term income elasticity 

turns negative, reflecting the Japanese government's commitment to reducing 

greenhouse gas emissions by incorporating renewable energy sources into the energy 

mix in the coming years. 
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Considering the industrial sector in Korea, the short- and long-run own-price 

elasticities for the demand for natural gas are -0.245 and -3.298, respectively. 

However, only the long-run own-price elasticity is significant at a 10% level. The 

short-run cross-price elasticity of natural gas demand in regard to electricity is -0.072 

and not significant. On the other hand, the long-run elasticity is -6.115 and statistically 

significant at a 1% level. The short- and long-run income elasticities are 0.751 and 

4.750, respectively. While the long-run income elasticity is significant at 1%, the 

short-run is significant at 10%. 

The rising price of natural gas has a negative effect on its demand within the Korean 

industrial sector, particularly over the long term. In this sector, a complementary 

relationship exists between natural gas and electricity consumption. As the industrial 

value-added (IVA) in Korea continues to grow, the capacity for industrial power 

generation has expanded. Consequently, this growth has increased the demand for 

natural gas across various sectors, resulting in a relevant and positive income elasticity 

of natural gas demand. 

10.5.3 Analysis of the Natural gas Demand in Residential Sector: Japan 

and Korea 

We incorporate the real price of natural gas consumption in the residential sector, the 

real prices of residential liquefied petroleum gas and electricity, and the real total GDP 

as an income variable of urban residents into formulating the natural gas demand 

equation. Cross-price variables for residential liquefied petroleum gas (LPG) and 

electricity in the assessment of natural gas demand are warranted because these energy 

sources can act as substitutes for natural gas in household applications. Moreover, 

since LPG and electricity are commonly used for heating and cooking, their inclusion 

allows for a more comprehensive understanding of how price shifts affect residential 

natural gas demand, shedding light on consumer behaviour and energy market 

dynamics. Additionally, incorporating the total Gross Domestic Product (GDP) 

variable as an income assessment is justified because it reflects urban residents' 

economic well-being and can influence household energy consumption patterns. 

Therefore, Equations (10.10) and (10.11) represent the natural gas demand function 

of the residential sector in Japan and Korea, respectively. 



208 

 

Based on the significance of the parameters and concerns related to collinearity, the 

LPG price is not included in the demand model for Japan's residential sector. 

Consequently, the resulting equations are as follows: 

FòZaVN
_(L

!
=	∅aVN

_(L + 	7&FòZaVN
_(L

!#'
+ 	7'FòbaVN

_(L
!
+ 	7%Fò+aVN
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!
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_(L

!#'
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(10.10) 
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(10.11) 

The coefficient results for the ARDL demand Equations (10.10) and (10.11) are 

presented in Table 10.4. 

Table 10.424 Coefficient Estimation of Natural Gas Demand in Japan and Korea: 

Residential Sector. 

Japan – Residential Sector 

Coefficient ARDL estimated value Standard Error t-Statistic P-value 

∅&]^%QO 21.609*** 5.798 3.727 0.002 

	7j 0.086 0.197 0.439 0.667 

	7k −0.213** 0.072 −2.937 0.011 

	7p 0.190 0.141 1.348 0.199 

	7q −0.251 0.138 −1.815 0.091 

	7r −0.312 0.162 −1.917 0.076 

Adjusted R2 = 0.75 , F-statistic = 5.17 , AIC = −4.88 

 
 
 
 
 
 

 
24 Table 10.4 continues on the next page. 
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Table 10.4   Coefficient Estimation of Natural Gas Demand in Japan and Korea: 

Residential Sector, Continued. 

Korea – Residential Sector 

Coefficient ARDL estimated value Standard Error t-Statistic P-value 

∅&]^Z[\ −14.861** 4.434 −3.352 0.012 

	1R −0.720 0.308 −2.335 0.052 

	1S −1.024*** 0.268 −3.825 0.007 

	13 0.012 0.150 0.080 0.939 

	15 −0.104 0.160 −0.648 0.538 

	1T −0.724*** 0.203 −3.565 0.009 

	1U 0.729** 0.230 3.165 0.016 

	1V 0.137 0.089 1.543 0.167 

	1W 0.135 0.117 1.155 0.268 

	1X 0.061 0.534 1.115 0.912 

	1Y −0.172 0.555 −0.309 0.766 

	1SR 1.222*** 0.558 2.190 0.065 

Adjusted R2 = 0.84 , F-statistic = 9.43 , AIC = −4.16 
Notes: * p < 0.1, ** p < 0.5, *** p < 0.01. 

When examining Japan's residential sector, we find that short- and long-run own-price 

elasticities concerning natural gas demand are statistically significant at the 1% level, 

with values of -0.213 and -0.233, respectively. In contrast, the short- and long-run 

cross-price elasticities of natural gas demand concerning residential electricity, at 

0.199 and -0.068, respectively, are not statistically significant, indicating an inelastic 

relationship with natural gas demand. Lastly, the income elasticity of natural gas 

demand, both in the short and long run, stands at -0.312 and -0.341, respectively, 

which are significant at a 10% level. 

Within the Japanese residential sector, natural gas holds a different position in the 

energy mix than in the industrial sector. Consequently, an increase in its price typically 

results in a negative response in demand, following the usual economic pattern. 

Notably, variations in the price of residential electricity, which serves as a competing 

energy source, have no influence (inelastic) on the demand for natural gas. As was 

observed in the industrial sector, income elasticity in the residential sector is negative. 

This trend can also be attributed to the transition toward renewable energy, which 

gains increasing feasibility as the population's income (GDP) rises. 



210 

 

Analysing natural gas demand in Korea's residential sector, both short- and long-run 

own-price elasticities for natural gas demand are estimated at 0.012 and -0.297, 

respectively, with only the long-run elasticity proving statistically significant at the 

5% level, suggesting a more substantial impact over time. Conversely, cross-price 

elasticities related to LPG and residential electricity in both the short and long run fail 

to reach statistical significance, indicating an inelastic relationship with natural gas 

demand. Additionally, income elasticities stand at 0.061 for the short-run and 0.405 

for the long-run, with the latter being statistically significant at the 1% level, while the 

former does not achieve statistical significance. 

In the Korean residential market, the elasticity of natural gas demand exhibits 

significance only in the long term, with a negative own-price elasticity, aligning with 

typical economic patterns, much like in Japan. There is no influence (demand is 

inelastic) of substitute prices, such as electricity and LPG, on natural gas demand. In 

contrast to Japan, Korea demonstrates a positive income elasticity in the long run, 

which implies that as the population's GDP increases, there is a corresponding rise in 

natural gas demand within the residential sector. 

10.6 Concluding Remarks 

This chapter has explored the dynamics of natural gas demand within Japan and 

Korea's industrial and residential sectors, deploying an ARDL approach to capture 

demand elasticities over short- and long-term horizons. The analysis deepens our 

understanding of the economic dynamics affecting natural gas demand, highlighting 

the need for evidence-based, strategic energy policies in both countries. 

In Japan, the demand for natural gas in the industrial sector is inelastic to price 

changes, underscoring the indispensable role of natural gas in ensuring energy 

security, especially post-2011 nuclear disaster. The transition away from coal and the 

significant negative elasticity with respect to electricity prices illustrate a shift towards 

cleaner energy sources, with natural gas and electricity emerging as complements 

rather than substitutes. This scenario highlights the strategic importance of 

maintaining a stable and diversified energy supply, promoting energy efficiency, and 

supporting the integration of renewable energy sources. 
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The residential sector reflects a negative response to own-price changes, a distinct 

position within the energy mix compared to the industrial sector. Consequently, an 

increase in its price generally leads to a decrease in demand, consistent with standard 

economic behaviour. The negative income elasticity reveals a shift towards renewable 

energies as income levels rise. This shift indicates a broader commitment to 

sustainable energy consumption and the need for policies that support renewable 

energy adoption and the development of energy infrastructures that can accommodate 

these changes. 

Conversely, in Korea, the industrial sector exhibits a significant negative own-price 

elasticity, suggesting that demand reduces as natural gas prices increase. This finding 

implies a need for energy diversification and the development of more resilient energy 

infrastructures that can adapt to fluctuating energy markets. Moreover, the positive 

income elasticity indicates a growing demand for natural gas with economic growth, 

emphasizing the importance of enhancing energy efficiency and investing in 

alternative energy sources to meet this increasing demand without exacerbating 

environmental impacts.  

The residential sector in Korea, like Japan, shows a negative own-price elasticity, 

reflecting a significant response to price changes over time. However, the positive 

income elasticity highlights the rising demand for natural gas as household income 

increases, underscoring the need for policies that encourage energy efficiency and the 

adoption of renewable energy as an alternative source that  households could access. 

The findings from both countries underscore the need for targeted energy policies that 

address the specific dynamics of natural gas demand within different sectors. For 

Japan, the emphasis should be on further integrating renewable energy sources and 

strengthening the energy infrastructure to support a gradual transition away from fossil 

fuels. For Korea, there is a clear imperative to diversify energy sources, promote 

renewable energy sources, and prepare for the increasing demand for natural gas in 

the face of economic growth, with a keen focus on environmental sustainability. Both 

countries' experiences highlight the importance of strategic energy planning 

incorporating the evolving landscape of global energy markets, technological 

advancements in renewable energy, and the socioeconomic factors influencing energy 

demand. As Japan and Korea navigate their future energy pathways, the insights from 
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this chapter can assist the development of flexible and sustainable energy policies that 

meet the current demand and anticipate and adapt to future energy needs. 

  



213 

 

CHAPTER 11  
CONCLUSIONS AND POLICY IMPLICATIONS  

11.1 Introduction 

This thesis explores the integration of global gas markets and their relationship with 

crude oil prices, considering major natural gas benchmarks from North America, 

Europe, and Asia and the Brent crude oil price. It employs different analytical 

methods, including the convergence test, linear and asymmetrical bounds 

cointegration tests, and VAR analysis. It also touches upon the demand drivers for 

natural gas in Japan and South Korea, acknowledging their significant roles as major 

importers in the global natural gas and LNG markets. Amidst the expanding trade and 

consumption of natural gas, the findings from this research make a meaningful 

contribution to the ongoing academic and industry discussion concerning the 

integration of global gas prices and the strategic direction forward. 

11.2 Discussion of the Results and Policy Implications 

For the global gas market integration analysis, this thesis uses a dataset spanning the 

years 2001 to 2020, deliberately omitting the period affected by the COVID-19 

pandemic. This exclusion is strategic, recognizing that the pandemic-induced demand 

and supply shocks did not impact all regions uniformly, with effects considered to be 

transient rather than enduring over the long term. Additionally, there was a notable 

surge in the total interconnectedness of energy commodity markets following the onset 

of the pandemic, significantly enhancing the spillover effects of other energy 

commodities on the natural gas market (Lin and Su 2021).  

The primary findings of our convergence analysis suggest a lack of evidence 

indicating integration among transoceanic gas markets, and a diminished impact of 

crude oil prices on gas prices in the most recent sample period. 

The extent of LNG trading is unlikely to match that of crude oil due to the significantly 

higher proportion of transportation costs in LNG final prices. While LNG shipping 

contributes to a growing share of global gas consumption, it remains relatively small, 
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with only about a third of total LNG shipped available to spot and short-term markets. 

Therefore, rather than envisioning a singular global natural gas market, it is more 

accurate to consider distinct regional markets such as East Asia, Europe, and North 

America. In these markets, gas prices are constrained by an upper limit set by the oil 

market and a lower limit established by potential arbitrage opportunities between the 

different regions. 

Furthermore, in our initial convergence assessment of the latest sample period, it is 

observed that regional gas markets exhibit divergence amongst them, except for the 

three European prices. However, there is a noticeable convergence trend between the 

Asian spot LNG price and European prices after 2015. The North American Henry 

Hub price appears isolated and does not converge with any other price in the model. 

Additionally, the oil price loses its convergence pattern with all gas prices except for 

the Japanese average import gas price. 

The cointegration and causality assessments reveal a growing integration among 

global natural gas markets, with reduced reliance on oil prices over time. European 

and Asian markets are increasingly interconnected, with Russia playing a dominant 

role in pricing dynamics while the US transitions into a net exporter. Although fewer 

causality pairs are identified comparing the cointegrated bivariate models and the 

VAR model, the findings corroborate the diminishing influence of oil prices and the 

increased level of integration between European and Asian spot gas prices. They also 

highlight the independent nature of the North American gas market. 

The US natural gas market is predominantly influenced by domestic elements, with 

its gas prices showing little sensitivity to fluctuations in crude oil prices. Additionally, 

it underscores the North American gas market's disconnection from other regional 

markets, such as those in Europe and Asia, emphasizing its distinct market dynamics. 

This observation aligns with the research findings of Aruga (2016), Zhang et al. 

(2018), Zhang and Ji (2018), and Szafranek and Rubaszek (2023).  

The distinct dynamics of the US natural gas market can be traced back to two key 

developments. Firstly, the market became the first to be fully deregulated after the 

Natural Gas Policy Act 1978, leading to market forces solely determining natural gas 

prices from the mid-1990s	(Joslow 2013). Secondly, the shale gas revolution in the 
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2010s emerged as a pivotal factor in decoupling US natural gas prices from oil prices 

and prices in other regional markets. Corbeau and Ledesma (2016) attribute this price 

divergence to abundant, low-cost supply, high Brent oil prices (above USD 

100/barrel), the European recession, and the Fukushima crisis in Japan. 

The surge in U.S. natural gas production, primarily from the shale gas revolution, 

transformed the country from a net importer to a net exporter of natural gas. By 

February 2016, LNG exports commenced, escalating to 8 billion cubic feet (Bcf) per 

day by 2020 and reaching 10-11 Bcf/day by 2022. This shift led U.S. exporters to 

adopt a pricing strategy tied to the Henry Hub, reflecting the opportunity cost of 

overseas sales. U.S. LNG export agreements favour a Henry Hub-linked pricing model 

over traditional oil-indexed formulas, allowing buyers to adjust to global spot market 

prices (U.S. Department of Energy 2022). Nonetheless, the "shale gas boom" also 

saturated the domestic natural gas market due to inadequate liquefaction facilities, 

constraining export volumes. Consequently, North American natural gas prices have 

not yet converged with those in key LNG-importing regions such as Europe and Asia, 

a finding supported by this thesis and corroborated by existing literature. 

North American LNG export capacities are rapidly expanding, with 2023 marking its 

ascent as the world's largest LNG provider, exceeding Qatar and levelling with 

Australia. A new wave of LNG export infrastructure is expected to come online around 

2025. According to Fulwood (2023), an estimated addition of up to 100 million tonnes 

per annum (MTPA) could augment the existing global capacity of 470 MTPA between 

2025 and 2027. Consequently, the projected surge in U.S. LNG exports to European 

and Asian markets in the coming years is expected to gradually shift natural gas 

markets from regionally segmented to a more integrated global market framework. 

This shift will likely prompt other players in the market to increase the share of flexible 

pricing structures and shorter-term delivery terms in their conventional long-term 

LNG contracts to sustain market share, further fostering global gas market integration. 

Another important finding revealed throughout this thesis is that despite this apparent 

disconnection with the North American market, the European and Asian spot gas 

markets are becoming increasingly correlated, and their dependence on oil prices has 

diminished, with the exemption of the Japanese average import gas price which is still 

highly dependent on the oil-indexation price mechanism.  
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These results can be attributed to the fact that Europe's gas market has undergone a 

liberalisation process over the last two decades. By 2020, Europe saw a major shift 

from oil-linked to hub-based natural gas pricing, decreasing oil indexation from 91% 

to 19% since 2005, as suppliers, including Russian exporter Gazprom, adopted gas 

hub pricing, which rose from 7% to 81% (International Gas Union 2021). On the Asian 

side, Japan, heavily reliant on LNG imports and historically tied to JCC-based 

contracts, led the efforts for contract flexibility post-Fukushima, highlighted by the 

Fair Trade Commission's scrutiny in 2017, leading to the removal of destination 

restrictions and the establishment of the Japan OTC exchange, reflecting a broader 

shift in Asia away from JCC pricing and towards longer, more adaptable LNG 

contracts (Carriere 2018). Also, the Platts Japan Korea Marker (JKM), which is highly 

correlated with the Asian LNG price used in this thesis (ALNG), has recently emerged 

as a significant independent benchmark price for LNG. Despite a notable increase in 

spot LNG transactions in the broader Asia-Pacific region since 2017, only a quarter of 

total LNG imports in 2020 were conducted through spot or short-term contracts 

(International Gas Union 2021). 

Amidst increasing flexibility in destination restrictions and pricing mechanisms in 

LNG contracts and rising trading volumes, a competitive landscape is emerging 

between European and Asian importers for LNG exports, potentially bolstering 

convergence and causality in these regional spot natural gas prices. For instance, 

Qatar's role as a swing supplier, catering to long-term contracts in Asia and short-term 

and spot contracts to Asia and Europe based on price dynamics, reinforces pricing 

linkages between these regions (Kim, et al. 2020). Therefore, it is imperative to assess 

supply security in these LNG importer markets within broader market contexts, 

prompting the need for bilateral policies to manage demand and supply shocks 

effectively. Policy implications may involve enhanced collaboration between regions 

to share crucial information on LNG trade flows, production levels, and demand 

forecasts, facilitating informed decision-making and mitigating market uncertainties. 

The decreasing influence of oil prices on natural gas prices in Europe and Asia, as 

highlighted in this thesis, resonates with recent research. In a study by Hupka et al. 

(2023), an in-depth literature review reveals a shift in the understanding of the oil-gas 

relationship. While earlier studies indicated a strong cointegrated relationship between 
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natural gas and crude oil, subsequent research using updated data and refined 

methodologies suggests this relationship has diminished following structural breaks. 

Employing Engle-Granger cointegration with structural breaks, the authors identify a 

pivotal break in August 2008, mirroring the primary structural break examined in this 

thesis, and conclude a strong cointegrated relationship between natural gas and oil 

prices before the break, transitioning to no relationship thereafter. 

The Asian LNG and European gas hub prices exhibit a notable shift following the 

2022 European supply shock, providing further evidence of this trend. As illustrated 

in Figure 11.1, sourced from Stern (2023), the surge in European LNG prices was 

followed by the Asian LNG price JKM, underscoring their divergence from the Japan 

oil-indexed gas price. 

 

Figure 11.1 European Gas Hub and Asian LNG Prices 2020-22 ($/MMBtu). Source: 

Stern (2023) 

Nevertheless, it remains notable that oil prices continue to significantly influence 

Asian and European gas prices. Despite the diminishing impact of oil on spot prices 

in Asia and Europe, a considerable portion of natural gas transactions still adhere to 

long-term contracts indexed to oil prices. 

Long-term contracts with oil-indexation remain advantageous for natural gas buyers 

with consistent gas demand, such as base load electricity facilities and industrial 

processes requiring clean fuel. With the recent developments, these contracts typically 

offer flexibility, allowing buyers to adjust volumes, typically around 10 %. Importers 
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can strategically respond to fluctuations in spot LNG prices by adjusting contract 

volumes, leveraging LNG storage to mitigate demand shocks and prevent prolonged 

periods of elevated prices compared to oil-indexed rates. Additionally, during periods 

of declining LNG prices, importers can decrease purchases under long-term contracts 

and compensate by increasing spot market purchases, ensuring cost-effectiveness and 

flexibility in procurement strategies. As such, policymakers may encourage importers 

to adopt strategies that optimise the benefits of long-term contracts while remaining 

responsive to market dynamics, promoting stability and efficiency in LNG 

procurement. 

In contrast, importer markets, particularly in Asia, must carefully consider the 

benchmark for indexation in their long-term contracts. According to a recent study by 

Zhang et al. (2023), Asian gas purchasing contracts indexed to the JKM (Asian spot 

LNG benchmark) are more adept at risk sharing than oil-indexed contracts, despite 

potential liquidity constraints. Policymakers should thus advocate for diversifying 

natural gas suppliers and incorporating spot LNG benchmarks into purchasing 

agreements to enhance risk-sharing dynamics between importers and exporters. 

The evolving dynamics of the global gas market are particularly pertinent to Australia, 

given its significant role as the world's second-largest LNG exporter, which 

necessitates strategic adjustments in export regulations and negotiation tactics. With 

Australia's predominant LNG exports directed towards the Asian market, 

policymakers should adapt to the emergence of LNG spot benchmarks and anticipate 

potential changes in regional natural gas price dynamics, fostering resilience and 

competitiveness in the evolving market landscape. 

Another significant discovery from this research is the strong integration of European 

spot gas prices, where Russian export gas prices largely lead the pricing dynamics. 

This correlation is unsurprising given that Eurostat data indicates the EU's substantial 

reliance on gas imports from Russia, reaching nearly 40% in 2020. Furthermore, 

reinforcing this observation, the notable surge in European natural gas prices from the 

latter half of 2021 to August 2022, attributed to reduced gas exports from Russia 

following the Russia-Ukraine war, substantially disrupted the European economy. 
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This underscores the vital role of LNG as a flexible alternative for Europe's gas supply 

amid its heavy reliance on Russian pipeline imports. The EU actively pursues 

diversification measures to address this dependency, including constructing new LNG 

terminals and improving connections between existing regasification facilities in 

Spain and Central Europe (European Commission 2022). By late 2022, Europe's 

increased LNG imports caused a global supply shortage, which can only be alleviated 

by major new LNG projects, primarily from Qatar and the US, expected to come 

online in 2026-27 (Stern 2023). Expanding US LNG exports and upgrading to 

European LNG import infrastructure could improve the connection between these 

geographically separated gas markets and lessen the Russian impact on Europe's gas 

market. Therefore, European policymakers should prioritise diversifying their gas 

supply, considering Europe's demonstrated low gas price elasticity of natural supply, 

anticipating a shift in gas price dynamics as reliance on Russia decreases as LNG 

imports grow. 

The dynamics of natural gas demand in Japan and Korea's industrial and residential 

sectors indicate that Japan's industrial sector exhibits inelasticity in gas demand 

response to price changes, contrasting with the negative response observed in the 

residential sector. Similarly, demand for gas in Korea's industrial sector demonstrates 

a negative own-price elasticity, while both industrial and residential sectors show 

positive income elasticity. 

As prices in Japan's industrial sector do not influence the demand, the Japanese 

economy could suffer from rising natural gas import prices. Japan may consider 

further regulatory measures to ensure fair competition and transparency in LNG 

contracts, including continued oversight by regulatory bodies to prevent anti-

competitive practices and promote market efficiency. Additionally, policymakers 

should promote market diversification by exploring new trade agreements, 

partnerships, and infrastructure investments to reduce dependence on specific LNG 

suppliers and enhance energy security while supporting the region's establishment and 

growth of LNG trading hubs. This can be achieved by providing regulatory support, 

infrastructure investment, and market incentives to facilitate transparent price 

discovery and enhance market efficiency. 
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In Korea, the rise in gas prices negatively affects natural gas demand within the 

industrial sector, yet demand increases with rising incomes in both industrial and 

residential areas. To address this, the Korean government should prioritise energy 

diversification efforts to reduce dependence on natural gas and fortify the nation's 

energy infrastructure. This strategy could involve advocating for advancing and 

utilising renewable energy sources, allocating resources to develop energy storage 

technologies, and investigating alternative fuel alternatives. Implementation may 

include offering financial incentives, simplifying regulatory procedures, and fostering 

research and development in renewable energy technologies. 

In conclusion, the projected increase in global gas consumption by ten per cent by 

2030, estimated by the Oxford Institute of Energy Studies, particularly concentrated 

in Asia and the Middle East, underscores the necessity of strategic energy planning. 

While there is momentum towards renewable energy sources, their widespread 

adoption will take time, and natural gas remains a crucial transitional fuel, especially 

in regions heavily reliant on coal, like South and East Asia. Efforts to restrict natural 

gas production and exports overlook the long-term benefits, as natural gas can serve 

as a cleaner alternative to coal in electricity generation. Encouraging the substitution 

of natural gas for coal and stringent carbon emission controls in the natural gas supply 

chain can help manage the transition towards a more sustainable energy future. 

Additionally, LNG is pivotal in providing affordable gas to regions lacking access to 

pipeline infrastructure, offering a viable alternative to coal while renewable capacities 

ramp up. 
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