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Abstract—An understanding of the spatial distribution of infor-
mal settlements within a city is important for urban management
decision-making and service infrastructure provision, provides
useful information for planners and policymakers, and has a role
in minimizing future urban environmental issues. The objective
of this article is to evaluate the performance of an ontology of
informal settlements mapping for Riyadh city. Satellite data include
a combination of medium-resolution Landsat thematic mapper,
enhanced thematic mapper plus, and operational land imager, and
VHR Worldview-3 imagery. Object-based image analysis (OBIA)
technique was employed to identify 30 useful indicators at defined
object, settlement, environment, and temporal levels. Time-series
analysis (TSA) was undertaken, and a multidimensional model
was developed to define the trend of changes through 30 years.
The classification process incorporated OBIA, random forest (RF),
and LandTrendr techniques. The classification output included
delineation of formal and informal settlement boundaries and road
networks, as well as vegetated and vacant areas. The final OBIA–
RF and TSA classification demonstrated an overall accuracy (OA)
of 89% with the corresponding kappa value of 87%. The OBIA–RF
classification developed without TSA techniques returned an OA
of 87% and kappa value of 84%. The article indicated that using
OBIA and RF methods, in combination with LandTrendr, can be
a useful tool for planners and decision-makers to identify changes
in the land cover of informal settlements within Riyadh city and
beyond.

Index Terms—Expert knowledge (EK), informal settlements,
Landsat, LandTrendr, object-based image analysis–random forest
(OBIA–RF), time-series analysis (TSA), worldview-3.

I. INTRODUCTION

MANY cities, particularly those found in developing coun-
tries, have experienced a rise in the growth of informal

settlements as the urban areas have expanded [1]. These are
usually characterized by low-income communities, have hous-
ing issues, and typically suboptimal infrastructure, roads, and
other services [2], [3]. Understanding the unique traits of these
informal settlements, also known as unplanned areas, is essential
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when crafting and implementing urban policies. The absence
of a universally agreed-upon definition of an informal settle-
ment, however, makes comparisons difficult [4]. These areas can
usually be identified based on their physical attributes and so-
cioeconomic characteristics, including high population/housing
densities and limited social services [2], [5], [6], [7]. Informal
settlements within the Kingdom of Saudi Arabia (KSA) are
unique in having medium population densities compared to
other parts of the world, which tend to have high population
densities. The KSA settlement areas also typically have good
road networks and adequate access to public services. They are
predominantly situated in or around city centers [8], [9], and
exhibit a mixture of very old and new structures. They differ from
slum areas in India or Indonesia in that they develop concurrently
with newer urban spaces.

Satellite imagery is useful for studying the dynamics of
informal settlements by providing data characterized by both
high spatial detail and temporal frequency [10], [11], [12], [13].
Techniques based on remote sensing and aerial imagery analysis
are proving invaluable for producing maps and spatial infor-
mation about informal settlements without the need for in situ
observations [14]. The medium-resolution imagery provided by
Landsat—with a data record spanning over four decades—is
one example of this data availability. These tools provide urban
policymakers with a synoptic overview of urban layouts [12],
[15] as well as evidence of city spatiotemporal dynamics [16],
[17].

Kuffer et al. [6] defined three core aspects in the settlement
mapping process. The “Where” refers to the location of informal
settlements within specific urban areas [9], [18], [19], [20].
The “What” focuses on identifying changes in these informal
settlement areas. The “When” focuses on changes taking place
over time and the temporal changes [7], [21], [22].

Recent availability of commercial VHR satellite imagery
(with submeter accuracy) has led to researchers concentrating
more on object analysis than actually monitoring spatiotemporal
change [23]. A lack of information regarding the specific spatial
and temporal dimensions of informal settlements can, as a result,
be a barrier to understanding the actual development dynamics
in these areas [24], [25]. This is because research focus timelines
are usually for a year or a number of years at most, rather
than decades [24], [25]. The complexity inherent in informal
settlement characteristics (orientation, material types, building
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density, narrow streets, and building textures) also provide chal-
lenges for longer term temporal studies [7].

Current change detection techniques include but not limited
to spectral mixture analysis [26], structural feature analysis
[27], fuzzy sets [28], and chi-square transformations [29]. Some
challenges arise when using these methods, including spatial
heterogeneity issues, the presence of mixed pixels, and assump-
tions related to linear spectral mixing. To address these issues,
a number of more advanced techniques have been developed.
This includes object-based image analysis (OBIA) [7], texture
analysis [11], [30], and machine learning (ML) [31]. The OBIA
technique has been the most commonly used informal settlement
detection method in the past two decades [7]. Despite drawbacks,
such as low accuracy, and the normal difficulty encountered
in using large datasets [9]. The use of ML algorithms, which
overcome some of the issues inherent in the above techniques,
is now prevalent, and a combination of OBIA and ML techniques
[random forest (RF) or support vector machines] is now used for
studies on urban areas, agriculture, land surface temperature,
biodiversity, ecotourism, and land use and land cover [32].

Alrasheedi et al. [8] and [9] developed a local ontological
framework for mapping informal settlements in Riyadh by defin-
ing it at the environment, object, and settlement levels. This
framework also incorporated indicators suggested by local area
experts, and employed OBIA using extremely high-resolution
imagery as the data source. These studies were extended by
including RF and SVM methods in the initial OBIA. The article
concluded that using an OBIA–RF for mapping informal settle-
ments was more effective than using OBIA–SVM [8]. The RF al-
gorithm is a robust choice for diverse remote-sensing classifica-
tion tasks using a range of data sources [31], [32], (Matarira et al.
2022). OBIA–RF has proven its ability to generate very accurate
maps of informal settlement areas. Previous articles have shown
that input feature selection is critical in the classification process
and directly influences classification accuracy [9], [20], [31],
[32]. It should be noted that the effectiveness of the ontological
framework and research methodology developed by Alrasheedi
et al. [9] for informal settlement mapping has yet to be rigorously
tested. This would involve assessing ease of transferability to
different locations and the ability to handle diverse datasets.
Addressing the intricate challenge of achieving homogeneity
within informal settlements and understanding their dynamic
expansion trajectories is both important and challenging [33]. It
is notable that integration of time-series analysis (TSA) into this
methodology can be an avenue that has also not been thoroughly
assessed.

This article aims to analyze and validate the performance
of a proposed ontology for mapping informal settlements. The
process employs multidate Landsat images and Worldview-3
VHR, and expert knowledge (EK) about the local area. Using
the advice of these specialists, data extracted from remotely
sensed images are used to define 30 suitable indicators at the
object, settlement, environ, and temporal levels. The article also
aims to address existing gaps in current informal settlement
spatiotemporal change monitoring within Riyadh. It will map
the changes detected every 5 years for the period 1990–2020.
It will then use the previously defined indicators and OBIA–RF

to improve the classification process for these changes. Last, it
will quantify how successful the use of combined OBIA–RF and
TSA techniques has been for mapping informal settlements.

II. MATERIALS AND METHODS

A. Description of the Study Area

Riyadh, the capital and largest city of the KSA, is located on
the Najid Plateau about 600-m above sea level at a latitude of
24°18′′ to 25°11′′ N and a longitude of 46°15′′ to 47°19′′ E).
The city has undergone rapid urbanization since the 1970s. The
population of the city is currently 8 million [8].

Significant investments have been made within the city in
areas, such as education, finance, health, and security. The
economic expansion and accompanying infrastructural mod-
ernization, along with the availability of more affordable ac-
commodation, have been key drivers in people moving from
other parts of the region to Riyadh in search of better-paying
jobs and a more satisfying lifestyle [9], [34]. The number of
informal settlements found in Riyadh is low in comparison to
other cities in the KSA. Twenty-seven informal settlement neigh-
borhoods (typically older residential areas), totaling 30.56 km2,
were selected for this study. The final selection was based on
the advice of local urban experts. The study area is shown in
Fig. 1 and details of the selected neighborhoods are shown in
Table I.

B. Data

This article used VHR Worldview-3 and Landsat medium-
resolution (30 m) imageries. The VHR image was acquired
on 8 June 2021, with a panchromatic resolution of 0.3 m and
multispectral resolution of 1.4 m. These data were also used in
previous articles [8], [9]. Landsat imagery consisted of 30 years
with 0% cloud cover and include thematic mapper (TM) and
enhanced thematic mapper plus (ETM+) sensors (1991 to 2020)
for the annual period, 1 February–29 February (path 170/row
45). The products were processed at Level-2 (Table II) and strip
lines was atmospherically corrected using Gap tool in Envi 5.6
software. The bands used were 1, 2, 3, and 4 (blue, green, red,
and infrared) in Landsat 5 TM and 7 ETM+ and 2, 3, 4, and
5 in Landsat 8 operational land imager (OLI; blue, green, red
and infrared). Band 1 in Landsat OLI was removed as it has
a different spectral reflectance to earlier Landsat series. Thirty
annual composites were processed.

C. Ontological Framework

A local ontology of informal settlements of Riyadh was
adopted for this article. This used the original 16 indicators
recommended by Alrasheedi et al. [9] and adding another 15 new
indicators based on EK (Table III). The original digital surface
model indicator was removed due to a lack of data for the entire
study area. A total of 30 indicators have been used in the current
classification process. OBIA parameterization was employed to
transform qualitative data into quantitative indicators.
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Fig. 1. Location of study areas.

The method used indicators suggested by local EK which
utilized to this framework. A temporal level also used to de-
tect informal and formal settlements changes. The associated
indicators were included and described using TSA. Thirty
Landsat TM, ETM+, and OLI satellite images were used in
TSA process. Worldview-3 image was combined with TSA
and used for OBIA–RF classification. The workflow employed
to map and describe informal settlements is shown in Fig. 2.
There are three key steps, they are TSA, OBIA, and OBIA–RF
classification.

D. Time-Series Analysis (TSA)

The processing and analysis phase utilized OBIA–RF,
LandTrendr, and 30 years of Landsat data. The smallest con-
tribution to the model was made by using TSA with LandTrendr
as input data in an ML classifier. The overall accuracy (OA)
was achieved for each predicted class. As LandTrendr is a
pixel-based algorithm, results should be generalized to mix
it with segments to extract the indicators from WorldView-3
imagery.

Thirty Landsat TM, ETM+, and OLI satellite images from
1991 to 2020 were processed to create a multidimensional
raster dataset cube representing the Landsat time series. The
imagery values were then converted into surface reflectance
values. Spectral indices were converted to network common
data format to allow easier detection of object changes. The
near-infrared (NIR) band (Band 7) provides very good land
cover classification information, so this was used during the
processing. Spatial and temporal changes in informal and formal

settlement areas were flagged using the LandTrendr algorithm
which identified key turning points (trend of changes in pixel)
within infrared band. The ultimate change trajectory consisted of
a series of interconnected linear segments, with the combination
of temporal and spectral data at the endpoints of these linear
segments to identify the disturbance in informal settlements
years by selecting sample points to monitor where the changes
were detected. This provided valuable evidence of settlement
change.

Time-series turning point changes were identified and used
in a comparative analysis of the annual changes visible in
the study area. The recovery rate of pixels in a specific year
was determined through the subtraction of the recovery values
from the preceding year. The algorithm effectively detects land
disturbances by analyzing the spatial trends of change in land-
cover magnitude (spectral difference), as well as considering
the year of disturbance and the duration of these changes. Three
raster maps were produced to illustrate the temporal aspects
of disturbance and recovery. This included the specific year in
which an event occurred, the duration of time of occurrence, and
the degree of intensity associated with the change.

E. Image Segmentation and Analysis

1) OBIA Segmentation: Image segmentation was conducted
using eCognition software (v 9.2). The segmentation of Landsat
and Worldview-3 imagery was achieved using a multiresolution
technique. A scale parameter, weighting of shape, and spectral
reflectance compactness were defined the during image pro-
cessing to prevent object overlap [9]. An SP of 30 was selected
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Fig. 2. Workflow, showing methods of this article.

for the Worldview-3 images, and an SP of 55 was selected
for the Landsat images. Weighting values of 0.3 and 0.5 were
assigned to shape and spectral compactness, respectively. The
grey-level cooccurrence matrix (GLCM) was utilized to extract
texture from the roof and building. We used five different textural
measures: 1) GLCM entropy; 2) GLCM homogeneity; 3) GLCM
contrast; 4) GLCM correlation; and 5) GLCM mean. GLCM
entropy was used to obtain the building roofs from Band 5 of
the Worldview-3 image.

GLCM contrast, GLCM correlation, and GLCMmean mea-
surements were employed to determine lacunarity of housing.
This enabled more accurate classification of the various settle-
ment types. Vegetation was extracted using normalized differ-
ence vegetation index (NDVI). Thirty indicators were segmented
and converted to vectors for input into the OBIA–RF classifica-
tion process.

2) OBIA–RF Classification: The objects were classified into
five classes—informal and formal settlements, road networks,
vegetation extent, and vacant land. Thirty indicators were used
in the classification. The three raster files produced using

LandTrendr (year of change, duration, and magnitude) were
combined, and then used as explanatory indicator rasters for
training and prediction. The other 27 indicators produced using
the OBIA imagery segmentation process were also used for
training. The classification operation ran twice: the first time
with the TSA features included and then without these features.

F. Training Data

A random sample of 6000 points was created for training
purposes, with each point converted into a 2-m radius polygon.
Reference samples were randomly selected for use in the train-
ing, testing, and validation phases. A total of 30% of the dataset
was used for training, and the remaining 70% for implementing
the image classification [30], [35]. A total of 500 trees with
30 roots for each tree were used as input for OBIA–RF training.
In the training phase, each tree was divided using a bootstrap-
aggregating method (bagging) [36]. Ten iterative classification
trials were conducted. This guaranteed an accurate estimation
of the classifier performance, improved the classifier stability,
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TABLE I
SUMMARY OF THE SELECTED NEIGHBORHOODS

and accounted for any potential variance in accuracy levels that
could occur due to random nature of training sample selection.

G. Accuracy Assessment

The accuracy of the final OBIA–RF classification for each
class was determined. Every class type in the image was assessed
to make sure the sampled polygons were valid. OA, kappa coeffi-
cient (k), and F1-score were generated for accuracy assessment.
During RF processing, a random input variable is selected and
altered while the remaining variables remain constant. A Gini
index is then used to evaluate the decrease in impurity. Classifi-
cation accuracy was evaluated using out-of-bag (OOB) sample
statistics [9]. The current article used a relatively large value
(1266) to illustrate the fluctuation in OOB error [8], [30]. Two
important parameters, ntree (the number of trees) and mtry (the
degree of randomness), were used to determine the effectiveness
of the OBIA–RF process [35]. This enabled an accurate assess-
ment of ntree to be considered [30]. The difference between
the average of all variables and the variable-specific average
was used to determine the significance of each spectral variable
in the change detection process. A greater difference indicated
a higher level of importance for a given variable. A relative
relevance graph was created to rank the relative importance of
the parameters (Fig. 9).

III. RESULTS

The multidimensional cube of TSA spatiotemporal difference
of informal settlements from 1991 to 2020 is displayed in Fig. 3.
An increase and decrease of area in km2 in informal and formal
settlements from 1991 to 2020 is displayed in Fig. 3. Temporal
change values (km2) and (%) for urban settlements between
1991 and 2020 are displayed in Figs. 4 and 5. Fig. 6 shows
results of LandTrendr process, 6a is the years of change, 6b
is magnitude, and 6c is the duration. Figs. 7 and 8 illustrate
the temporal TSA trendline trajectory of informal and formal
settlement. Fig. 9 illustrates the relative importance of the 30
indicators. The OBIA–RF classified combination of Worldview-
3 and Landsat imagery is shown in Fig. 10. The OA and F1-score
of the classification process is defined in Tables IV and V.

A. Change Detection

The classified, multidimension Landsat imagery cube il-
lustrates the spatial and temporal changes in the formal and
informal settlement categories—road, vacant area, and vege-
tation. The periods of individual assessment are 1991–1995,
1995–2000, 2000–2005, 2005–2010, 2010–2015, and 2015–
2020 [Fig. 11(a)–(g)]. Each of the periods show significant
changes in the above class categories (Fig. 11). The development
of informal settlement areas commenced earlier than those for
formal settlements and were generally concentrated in the cen-
tral and southern areas of the city (Fig. 11). Expansion of formal
settlements around these initial informal areas is primarily due
to the very flat nature of the city terrain. The observed spatial pat-
tern was mainly influenced by ongoing economic development
and associated increases in population and services accessibility.

A decrease in the areal extent of informal settlements appears
to be associated with ongoing urbanization and government
efforts to redevelop the original informal settlement areas into
more formal settlements. The amount of settlement area clas-
sified as informal in 1991 was calculated to be 27.3 km2. By
2020, this had decreased to 11.5 km2. During this same period,
the amount of settlement area classified as formal increased from
5.8 to 31.35 km2 (Fig. 3).

The change in land cover from 1991 to 2020 is shown in Fig. 4.
The greatest change in formal settlement areas was between
2005 and 2010, with an increase of 8.54 km2. Settlement areas
identified as informal decreased by 8.16.35 km2 from 1991
to 2020, with the greatest change noted from 1995 to 2000
(a decrease of 8.79 km2). From 2000 to 2005, there was not
much change noted in informal settlements areas, and these
areas decreased to 15.08 km2 in 2005. Informal settlement area
decreased by only 1.33 km2. There was no significant decrease
in the amount of informal settlement area noted from 2005 to
2020 (Fig. 4). The area decreased from 15.12 to 12 km2 in 2010,
11.46 km2 in 2015, and finally to 10.77 km2 in 2020. Vacant
areas also decreased during the same period. Otherwise, formal
settlements and areas was increased with time as can be seen in
Fig. 4.

During the period 1991 to 1995, formal settlements, informal
settlements, and vegetation increased by 48%, 9%, and 8%,
respectively. From 1995 to 2000, the percentage of formal
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TABLE II
CHARACTERISTICS OF SATELLITE IMAGES

TABLE III
ADDITIONAL 15 INDICATORS USED IN THIS ARTICLE
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Fig. 3. Relative change in total informal and formal settlement areas (km2)—1991 to 2020.

Fig. 4. Changes in land cover areas (km2)—1991 to 2020.

settlements, roads, and vegetation increased by 87%, 64%, and
45%, respectively. During this period, the percentage of infor-
mal settlements and vacant area decreased by 35% and 40%,
respectively. This indicates an increase in planned construction.
From 2000 to 2005, formal settlement areas and vacant areas
increased by 13% and 17%, respectively, and informal settle-
ments, roads, and vegetated areas decreased by 8%, 11%, and
10%, respectively (Fig. 5).

These results indicate removal of informal settlements and
replacement with formal settlements. From 2005 to 2010, formal
settlements, roads, and vegetation increased by 46%, 22%, and
3%, while informal settlements and vacant areas decreased by
20% and 38%. From 2010 to 2015, formal settlements, roads,

vacant areas, and vegetation increased by 16%, 30%, 14%,
and 17%, while informal settlements decreased by 4%. This
indicates a greater focus by government authorities on planned
development. From 2015 to 2020, formal settlements, roads, and
vacant land increased by about 1.5%, 3%, and 14%, while infor-
mal settlements and vegetation decreased by 6% and 2%. The
temporal and spatial TCA trajectory is shown in Fig. 6(a)–(c).
The amount of settlement area designated as informal decreased,
to be replaced by formal settlements. The magnitude of the
change is low.

An object-based RF classification was used for the TSA model
annual pattern definition. This flags a noticeable difference in
the spectral characteristics of each class (Figs. 7 and 8). The
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Fig. 5. Changes in land cover areas (%)—1991 to 2020.

Fig. 6. Results of LandTrendr process: (a) is the years of change, (b) is magnitude, and (c) is the duration between 1991 and 2020.

Fig. 7. Temporal TSA trendline trajectory of informal settlements.
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Fig. 8. Temporal TSA trendline trajectory of formal settlements.

TABLE IV
OVERALL ACCURACY OF THE OBIA–RF CLASSIFICATION—VHR IMAGERY WITH AND WITHOUT

TABLE V
F1-SCORE OF THE OBIA–RF CLASSIFICATION

distinguished changes appeared with the change of the trajectory
trend in 30 years. The contribution was recorded according to
the disturbance in spectral characteristics of each class. It can
be observed that the changes of informal settlement areas were
significantly transformed in 1992, 2003, 2008, and 2014 years
(Fig. 7). The largest trajectory trend changes of formal settle-
ments were significantly transformed in 1996, 2006, 2013, and
2018 years. These patterns were largely due to an increased focus

by government on urban planning aimed at reducing the amount
of informal settlements areas within the city boundaries (Fig. 8).

B. Object-Based Ontology Indicators

An assessment of the importance of the of the 30 indicators
used within the classification is shown in Fig. 9. The OBIA–RF
classification was evaluated using the three informal settlement
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Fig. 9. OBIA–RF relative importance indicators.

spatial levels (object, settlement, and environ), as defined in the
ontology.

At the object level, dwelling size was used to determine the
characteristics of the object roof. OBIA–RF was employed to
map dwelling size based on the characteristics of the buildings,
including shape, size, and spacing. The dwelling size relative
importance was identified as moderate (Fig. 9).

At the settlement level, density and NDVI were identified
as the two most important indicators, with values of 54% and
49%, respectively. NDVI has been shown to greatly improve the
accuracy of the classification process.

The third and fourth most important indicators, with values
of 47% and 46%, thus demonstrating the importance of border
index and standard deviation of blue (SDB) band in determining

the shape of built-up areas, and therefore the ability to distinguish
them from other classes. Shape index and border length were
ranked as the fifth and sixth most important indicators, both with
values of 43%, and are also considered important indicators.

The standard deviation of red (SDR) band was identified as
the seventh most important indicator with a value of 40%. In
contrast, the standard deviation of infrared band (SDIR) band
was ranked 22nd with a value of 26%. This indicates that the
SDB and SDR bands are more effective than the SDIR band for
identifying informal and formal settlements when using OBIA–
RF for the classification. The mean of the red band and mean
of blue band were ranked as the 12th and 13th most important
indicators, with values of 32% and 31%, respectively. The mean
of the infrared band was ranked as the 23rd most important
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Fig. 10. Object-based ML RF classified Worldview-3 and Landsat imagery of informal and formal settlements in 2020 in Riyadh.

indicator with a value of 25%. This indicates the importance of
using the visible bands in the OBIA–RF classification process
and suggests that these bandwidths are particularly good for
mapping informal settlements. The red and blue bands produce
a higher reflectance value for buildings, vacant areas, and roads,
than does infrared band (Fig. 9).

In urban areas, variables related to texture and structure
are important. In this article, the GLCM was used to iden-
tify a descriptive vector for the texture of each segment. Five
such measures were identified. GLCM entropy ranked foremost
among the GLCM texture features, with a relative importance
value of 39%. Four other GLCM textural features (correlation,
homogeneity, mean, and contrast) were ranked as moderate
indicators. Correlation recorded a value of 30%, while contrast
returned a value of 27%. GLCM contrast appeared to have
the least impact on image classification. GLCM contrast and
homogeneity are inversely correlated: homogeneity decreases

as contrast increases. Other textural measurements, such as
variations in image segments or repetition defined by spectral
intensity, are also very effective in identifying variations in
informal settlement form.

The standard deviation of green band classification contribu-
tion was very small, as shown in Fig. 9. The standard deviation
importance value of the blue band is also low. An improvement
in classes was noted when the TSA descriptors were included.
This can be observed as a slight improvement in the detection
of the width of the road network and an increase in the road
network connectivity. No improvement was noted in vacant land.
In general, the indicators played a key role in the identification of
informal settlements, however this was reduced in regards the
TSA level variables. The three TSA level variables (duration,
years of change, and magnitude) were ranked last.

Indicators at the environ level were less successful, consis-
tently returning scores below those recorded at the settlement
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Fig. 11. Changes in informal settlements—1991 to 2020.

and object levels. The proximity to hazardous locations returned
a very low value (23%). Slope and distance to potential hazards
were determined using the DEM. Landslides and other potential
hazards cannot occur due to the very flat terrain and so are
disregarded as possible issues.

The analysis was conducted initially using TSA and then
repeated without using TSA. Processing the data in this manner
provides a good indication of the accuracy of each method. It

appears from the results that any benefits derived by using the
TSA method are lost due to the spectral similarity of objects
within the study area. Clear and distinct spectral characteristics
are required to successfully use this technique. The object-based
ML (RF) classification using TSA is shown in Fig. 12(a), and
without using TSA in Fig. 12(b). Processing the data using
TSA, and including EK indicators and OBIA–RF, improves the
accuracy of the final classification.
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Fig. 12. Processing the data using TSA, including EK indicators and OBIA-RF, improves the accuracy of the final classifi cation. (a) Combined OBIA–RF with
TSA and 12, (b) without combining OBIA–RF with TSA.

C. Accuracy Assessment

The results of accuracy assessment are shown in Tables IV
and V. OA of the OBIA–RF classification combined with the
VHR imagery and TSA variables was 89%. The kappa was 87%.
When removing the TSA variables, the accuracy was 87% and
kappa was 84%. This shows that there is a definite improvement
in classification when using the TSA variables (Fig. 5).

IV. DISCUSSION

The F1-score accuracy is shown in Table V. The four classes
(formal, road, vacant, and vegetation) returned a higher user
accuracy F1-score using the TSA variables, than when they
were processed without using the TSA variables. The results
indicate very good informal settlement identification ability. The
current article evaluated an ontology originally developed by
Alrasheedi et al. [9] for mapping informal settlements in Riyadh
city, KSA, and introduced an expanded dataset. The article
incorporated 30 years of Landsat and Worldview-3 imagery,
TSA techniques, and local EK. Twenty-eight neighborhoods
were examined, with thirty urban indicators used in the analysis.
These were categorized into five main classes—informal and
formal settlements, vacant areas, road networks, and vegetation.

OBIA–RF, an ML technique, was employed in the data
processing. The spectral characteristics from high-resolution
WorldView-3 was integrated with segmented Landsat imagery
and used to assess the validity of using these techniques for
mapping informal settlements. Landtrendr and TSA—two con-
trasting change detection methods—were used to identify the
temporal and spatial dynamics found within informal settlement
areas. These were combined with OBIA–RF to classify the data.
The accuracy of the final classification was then assessed using
a confusion matrix and F1 score.

The article used TSA (represented by a multidimensional
cube) and LandTrendr to identify spatiotemporal changes no-
ticeable in the Landsat images. OBIA was used in the segmenta-
tion stage to generate unique indicators for the processing phase,

as recommended by local experts. These indicators served as
input data for the classification of the Worldview-3 imagery, re-
sulting in improved model performance and increased accuracy
for each of the predicted classes (Table III). This underscores
the crucial role that a combination of Landsat and VHR images
can play in effectively mapping urban development as previ-
ously highlighted by [37]. The classification results confirm the
suitability of this integrated approach.

A small improvement in accuracy was obtained when includ-
ing TSA in the classification process (Table IV). The OBIA–RF
classification recorded an accuracy score of 89% and a Kappa
of 87%. The smallest contribution to the ontology was made
by using TSA, in combination with LandTrendr and OBIA,
as input data. LandTrendr is a pixel-based algorithm, so the
results needed to be generalized to integrate it with the segments
generated from the Landsat and VHR imagery.

Riyadh’s informal settlements are commonly located within
the old skirt, in contrast to the usual situation where they are
usually situated outside the city centers [38], [39], [40]. Parts of
the old city contain historical buildings with significant heritage
value. The location of these structures has been designated
restricted areas by the government and programs to upgrade
and refine them have been underway for some time. Structures
in other parts of the informal settlements, however, have been
erected without conformance to any regulatory planning or engi-
neering requirements, or adherence to the Saudi Building Code
(SBC) [41], [42]. The SBC defines various technical, regulatory,
and legal requirements (as well as administrative guidelines)
that establish minimum standards for building construction, and
ensure public health and safety standards are met [41], [42]. This
planning and development process differs from other countries
where urban redevelopment normally leads to the displacement
of residents from informal settlements. This typically renders
them homeless due to the high cost of housing and the lack
of any financial support from the government [43], [44]. In
the KSA, the fundamental components of the development
process encompass the delivery of public services, residential
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construction development, urban planning, and the rehabilitation
of affected areas, all with comprehensive government assistance
[45]. This article supports the idea that using multitemporal
data imagery has the potential to provide suitable inputs for
simulation modeling which can enable the efficient and accurate
analysis of informal settlement expansion. This is promising in
regards providing policy-relevant insights into future develop-
ment scenarios [13], [46], [47], [48], [49], [50].

The article incorporated GLCM texture-based analysis to cap-
ture urban morphological features. The density of built-up areas
was ranked as the most important indicator in regards shape,
size, orientation, and roof material type. This approach involves
defining five GLCM measures (used to identify a vector) by
describing the texture of each segment and has been undertaken
in previous article [8], [9]. These measures were integrated into
the current article. An improved ability to identify morpholog-
ical attributes within informal settlements was achieved and
it appears that the integration of various texture descriptors is
essential for effectively distinguishing between these complex
urban settlement patterns. This aligns with the findings of prior
articles [35], [51]. OBIA–RF, in conjunction with local expert
opinions, shows a very good ability to capture the morphological
characteristics of informal settlements compared to temporal
analysis studies that rely solely on ML or OBIA. The OBIA–RF
classification revealed that GLCM entropy is the best GLCM
indicator to use for distinguishing between buildings in formal
and informal built-up areas. It is therefore suggested that the
GLCM entropy variable is included in any future change de-
tection studies, particularly when employing TSA. The incor-
poration of texture into ML methods was found to be effective
and contributed to the enhancement of classification accuracy,
especially when applied to the VHR imagery.

One issue identified in regards discriminating between
informal and formal settlements relates to the spectral mixing
occurring between roof buildings and vacant areas, and
hence difficulty in separating these differing features. This
is attributed to winds depositing sand onto building roofs
and hence providing a similar spectral response pattern when
viewed in the satellite imagery. This finding agrees with
previous articles [52], [53], [54]. The use of blue, red, and NIR
band standard deviation values also appears to be an effective
classification tool. This observation aligns with the findings of
prior articles by Alrasheedi et al. [9] and Rouibah [55]. These
findings indicate that the blue band is effective in identifying
built-up areas and road networks, the red band is useful in
GLCM processing for discerning building textures, and the NIR
band can be used for effectively recognizing features, such as
vegetation and vacant areas [8], [35]. The standard deviation of
the green band, on the other hand, appears to be less effective
in the OBIA–RF settlement classification work. The use of
the mean of the blue, red, and infrared bands provided only
moderate ranking values and proved less effective than the
use of standard deviation values. This article confirms that
using the band standard deviation of VHR images is superior
to using the band mean of these images when applying ML
techniques in classification work. The results show that using
area-relevant indicators as inputs produces superior outcomes

in regards informal settlement identification. Despite increasing
the feature space dimensionality as a result of adding additional
features, such as textural variables to the spectral bands, the
article suggests that incorporating more input variables could
actually improve the ability to distinguish between settlement
types. This aligns with the observation noted in a previous article
that extracting a large number of relevant features from satellite
data can actually enhance image classification accuracy as [56].

The current article drawn upon the ontological framework
developed by Alrasheedi et al. [9] for mapping settlement areas
in the Arabian Peninsula. It confirmed the effectiveness of
ontology-based temporal analysis in defining the characteristics
of these built-up areas. It also incorporates the use of EK about
the actual study areas. This enables identification of indicators
unique to these areas which are regarded as of significant value
for the processing phase. A further benefit of this article relates
to the transferability of the concepts across diverse geographical
locations.

V. CONCLUSION

This article assessed the transferability potential of the origi-
nal informal settlement ontology developed by Alrasheedi et al.
[8] and [9]. It utilized new datasets and introduced new spatial–
temporal analysis methods as part of the assessment work.
The ontology was designed to integrate OBIA and ML (RF)
methods using Worldview-3 and Landsat imagery as inputs. It
also utilized remote-sensing-based TSA detection methods and
30 EK indicators to define all spatiotemporal changes evident in
selected areas of the Riyadh city between 1991 and 2020. Three
key study objectives were successfully achieved.

1) The accurate identification and mapping of the informal
settlement areas.

2) Differentiation of informal from formal settlements using
an OBIA–RF classification process.

3) Detection of informal settlement spatiotemporal changes
over a period of 30 years using a TSA method.

An advantage of the techniques assessed lies in the effortless
incorporation of OBIA and ML (RF) into the existing ontological
framework. The purpose of this combination is to simplify and
improve the readability of the classification process in regards
remotely sensed data.

The utilization of the ML (RF) method effectively addresses
some challenges presented by OBIA, such as issues regarding
accuracy, and the efficient handling of large datasets. The se-
lected OBIA–RF approach also demonstrated the effectiveness
of each indicator in the settlement identification process. The
informal settlement mapping results provided an OA combined
with (TSA) of 89% and Kappa of 87%, and OA of OBIA–RF
without combining (TSA) of 87% and Kappa of 84%. Based on
the results, indicators at the settlement level appear to have the
most influence on informal settlements mapping.

Certain limitations were noted. The green band was ranked
as a weak indicator. This should be investigated in more detail
in any future articles. Informal settlement mapping work should
also utilize three-dimensional (3-D) and multispectral data (po-
tentially acquired using drones) to construct 3-D models from
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orthophotos. By employing these methods, a reliable dataset
suitable for more detailed informal settlement mapping can be
developed. This article has shown that the use of object-oriented
analysis techniques should be encouraged, with a future focus
on the capabilities evident in Google Earth Engine.

The analysis of TSA provides valuable insights into the
spatial and temporal dynamics of informal settlements in
Arabian Peninsula. This aids in the understanding of long-term
trends and introduce a future sight informing future urban
planning strategies. The article provides a useful tool for urban
planners and policymakers to identify and manage informal
settlements, which can help with infrastructure design and
implementation, as well as environmental, social, and financial
impact assessments.
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