
Citation: Lian, M.; Fan, C.; Zhan, X.;

Zhao, M.; Qin, G.; Lu, C. Application

of a Modified First-Order Plate Theory

to Structural Analysis of Sensitive

Elements in a Pyroelectric Detector.

Micromachines 2024, 15, 1012. https://

doi.org/10.3390/mi15081012

Academic Editor: Kenji Uchino

Received: 30 April 2024

Revised: 29 July 2024

Accepted: 4 August 2024

Published: 6 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Application of a Modified First-Order Plate Theory to Structural
Analysis of Sensitive Elements in a Pyroelectric Detector
Mengmeng Lian 1, Cuiying Fan 1,* , Xiaohan Zhan 1 , Minghao Zhao 1, Guoshuai Qin 2 and Chunsheng Lu 3,*

1 School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China;
15294688900@163.com (M.L.); zzuzxiaohan@163.com (X.Z.); memhzhao@zzu.edu.cn (M.Z.)

2 School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China;
gsqin@haut.edu.cn

3 School of Civil and Mechanical Engineering, Curtin University, Perth, WA 6845, Australia
* Correspondence: fancy@zzu.edu.cn (C.F.); c.lu@curtin.edu.au (C.L.)

Abstract: Pyroelectric materials, with piezoelectricity and pyroelectricity, have been widely used in
infrared thermal detectors. In this paper, a modified first-order plate theory is extended to analyze
a pyroelectric sensitive element structure. The displacement, temperature, and electric potential
expand along the thickness direction. The governing equation of the pyroelectric plate is built up.
The potential distributions with upper and lower electrodes are obtained under different supported
boundary conditions. The corresponding numerical results of electric potential are consistent with
those obtained by the three-dimensional finite element method. Meanwhile, the theoretical results of
electric potential are close to that of experiments. The influence of supported boundary conditions,
piezoelectric effect, and plate thickness are analyzed. Numerical results show that the piezoelectric
effect reduces the electric potential. The thickness of the pyroelectric plate enhances the electric
potential but reduces the response speed of the detector. It is anticipated that the pyroelectric plate
theory can provide a theoretical approach for the structural design of pyroelectric sensitive elements.

Keywords: pyroelectric detector; pyroelectricity; piezoelectricity; first-order plate theory; electric
potential; sensitive element

1. Introduction

Because pyroelectric piezoelectric materials have pyroelectricity and piezoelectricity
simultaneously, infrared thermal detectors can be prepared to realize the conversion of
light, heat, and electricity [1]. The pyroelectric detector is pivotal for gas detection, human
body temperature measurement, fire alarms, and other applications [2,3]. Several factors
affect the detector performance [4], including ambient temperature, working load, and the
manufacturing process [5]. Therefore, it is of practical significance to investigate the perfor-
mance of pyroelectric materials under various temperatures. Lithium tantalite (LiTaO3), as
an important pyroelectric material [6], is the most suitable material for sensitive elements
in surface acoustic wave devices, thermoelectric detectors, and electro-optical modula-
tion [7,8]. However, LiTaO3 has the piezoelectric property [9], which would influence
its thermo-electric effect. Thus, it is necessary to explore the mechanical-thermal-electric
coupling properties of sensitive elements.

The sensitive element in a pyroelectric detector is a laminar structure, with upper
and lower surfaces covered by uniform electrodes [10]. Generally, the thin plate theory
can be utilized to analyze the mechanical, thermal, and electrical behaviors of a sensitive
element structure. In elastic plate theories, different hypotheses are introduced on the
displacement field along the thickness direction, describing deformation of a plate [11].
For example, a plane-parallel capacitor was used to establish the model of a piezoelectric
plate with two complete surface electrodes [12]. It implies that the electric field inside a
piezoelectric layer is constant and independent of plane coordinates, i.e., there is no electric
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and mechanical coupling. This theory has also been utilized in analyzing the vibration
characteristics of a piezoelectric semiconductor cantilever [13], piezoelectric semiconductor
plates [14], and the pre-buckling behavior of piezoelectric semiconductor plates [15]. Taking
the piezoelectric effect into account, the same assumptions were applied to describe the
distribution of electric potential along the thickness direction, such as the third-order
power series expansion [16,17], sinusoidal functions [18,19], cosine functions [20], and
the combination of polynomial and cosine functions [21]. Further, a modified first-order
plate theory was proposed, in which a quadratic distribution was utilized to simulate
the distribution of electric potential in a piezoelectric plate [22]. In contrast to other
assumptions, the expansion terms of an electric potential, an electric field, and its differential
have definite and clear physical meanings.

There are two main processes from excitation to response in a pyroelectric detector.
Firstly, the sensitive element absorbs radiation and leads to the temperature increasing.
Then, due to the pyroelectric effect, the temperature change generates pyroelectric volt-
age [23]. Recently, technologies have been well developed for manufacturing absorption
layers in pyroelectric infrared detectors with a high radiation absorption rate. For instance,
Zhao et al. [24] fabricated a sensitive carbon black absorption layer with an impressive
absorption rate of 0.94. Upon exposure to radiation, the sensitive element absorbs the
incoming radiation and subsequently acquires the heat flux. Therefore, considering pyro-
electric materials as a sensitive element, the temperature change induces the significant
electric field induced by the pyroelectric effect.

The classical plate theory does not consider the transverse shear deformation, which
could induce a certain amount of error. Thus, we chose the modified first-order piezoelectric
plate theory to study the pyroelectric plate. Then, the theory is utilized for structural
analysis of a sensitive element in a pyroelectric detector, where displacement is expanded
in the first order, and the electric potential and temperature in the second order along the
thickness direction. Finally, a theoretically optimal structure is suggested, which can be
instructive for the design of pyroelectric infrared detectors.

2. Basic Equations

Let us consider a homogeneous pyroelectricity plate. The equilibrium equations [25]
under steady state conditions are

σij,i = 0, Di,i = 0, hi,i = 0, (i, j = 1, 2, 3) (1)

where σij is the stress, Di is the electric displacement vector, and hi is the heat flux. The
subscript, i.e., a comma followed by a letter, donates the partial differentiation with respect
to the coordinate associated with the letter. In consideration of pyroelectric effects, the
piezoelectric constitutive equations are

σij = cijklεkl − eijkEk, Di = eijkε jk + kijEj + piθ, hi = −βijθ,j, (2)

where cijkl, eijk, κik, pi and βij are the elastic, piezoelectric, dielectric, pyroelectric, and heat
conductivity coefficients, respectively. Here the strain tensor εij, the electric filed Ei, and the
temperature gradient Θj are defined as

εij =
1
2
(
ui,j + uj,i

)
, Ei = −φ,i, Θj = θ,j, (3)

3. The Modified First-Order Plate Theory

As illustrated in Figure 1, the coordinate plane oxy is located on the central plane of a
pyroelectricity plate. The polarization direction is along the plate thickness (z) direction.
The structure is composed of an intermediate layer of LiTaO3, and upper and lower
electrodes. The thicknesses of the upper and lower electrodes are much smaller than that
of the piezoelectric plate. Therefore, the effect of the electrodes can be omitted.
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When the length la and width lb of a plate are much larger than the thickness h, the
stress relaxation approximation, σ33 = 0, can be introduced [26]. Then, it is obtained as

ε33 = − 1
c3333

[c33klεkl − e33kEk − c3333ε33]. (4)

Substituting Equation (4) into Equation (2), we have

σij = cijklεkl − eijkEk, Di = eiklεkl + κikEk + piθ, (5)

where the equivalent material constants are defined as

cijkl = cijkl − cij33c33kl/c3333, ekij = ekij − ek33c33ij/c3333,

κik = κik + ei33e33k/c3333, pi = pi + ei33λ3333/c3333.
(6)

Due to the influence of transverse shear deformation and piezoelectric effect, the
accuracy requirements cannot be satisfied by the first-order expansion of an electric field.
Thus, Lian et al. [22] introduced a modified first-order plate theory for a laminated piezo-
electric plate. Here, a similar method is adopted, with the first-order expansion for the
displacement and the second-order expansion for the electric potential and temperature,
that is

u = u(0)(x, y) + zu(1)(x, y),

v = v(0)(x, y) + zv(1)(x, y),

w = w(0)(x, y),

φ(x, y, z) = φ(0)(x, y) + zφ(1)(x, y) + z2 φ(2)(x, y),

θ(x, y, z) = θ(0)(x, y) + zθ(1)(x, y) + z2θ(2)(x, y),

(7)

where u(0) and v(0) are the displacements of points in the plane of a plate, and u(1) and v(1)

are the rotation of points in the middle plane. φ(0) is the electric potential at a point on the
plate’s reference plane, while φ(1) and φ(2) are the first- and second-order expansion terms
of the potential, respectively. Here it is worth noting that the temperature at any point in
the plate can be characterized by three parameters: the temperature itself, its gradient, and
the higher-order expansion terms, denoted as θ(0), θ(1), and θ(2), respectively.

Based on Equation (7), the strain field, electric field, and temperature gradient field
can be obtained as

ε
(a)
ij = 1

2

[
u(a)

i,j + u(a)
j,i + (a + 1)

(
δ3ju

(a+1)
i + δ3iu

(a+1)
j

)]
,

E(a)
i = −

[
φ
(a)
i + (a + 1)δ3i φ

(a+1)
]
,

Θ(a)
j = θ

(a)
,j + (a + 1)δ3jθ

(a+1),

note :
{

δij = 1, i = j
δij = 0, i ̸= j

(8)
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Integrating Equation (1) across the plate thickness and establishing the internal force
equivalence, the equilibrium equations of the Mindlin plate are derived, that is

σ
(m)
ij,i − mσ

(m−1)
3j + t(m)

j = 0, m = 0, 1 (9a)

D(0)
i,i + d(0) = 0, h(0)i,i + H̃(0) = 0, (9b)

where

σ
(m)
ij =

∞
∑

a=0

((∫ h/2
−h/2 zmzacijkldz

)
ε
(a)
kl −

∫ h/2
−h/2 zmzaeijkdzE(a)

k

)
,

D(0)
i =

1
∑

a=0

(∫ h/2
−h/2 zaeijkdz

)
ε
(a)
kl +

2
∑

b=0

[(∫ −h/2
−h/2 zbκikdz

)
E(b)

k +
(∫ h/2

−h/2 zb pidz
)

θ(b)
]
, i = 1, 2

h(0)i =
1
∑

a=0

(∫ h/2
−h/2 βijzadz

)
θ
(a)
,j ,

t(m)
j =

[
σ3jzm]h/2

−h/2, d(0) = [D3]
h/2
−h/2, H̃(0) = [h3]

h/2
−h/2,

(10)

3.1. Elastic Boundary Conditions

Based on the support method of a detector sensitive element, there are the following
four displacement constraints.

Four-side clamped:

x = 0 and la, . . . u(0) = 0, v(0) = 0, w(0) = 0, u(1) = 0, v(1) = 0, (11a)

y = 0 and lb, . . . u(0) = 0, v(0) = 0, w(0) = 0, u(1) = 0, v(1) = 0. (11b)

Four-side simply supported:

x = 0 and la, . . . v(0) = 0, w(0) = 0, v(1) = 0, (12a)

y = 0 and lb, . . . u(0) = 0, w(0) = 0, u(1) = 0. (12b)

Two-side clamped:

x = 0 and la, . . . u(0) = 0, v(0) = 0, w(0) = 0, u(1) = 0, v(1) = 0. (13)

Four-point simply supported:

x = 0, y = 0 and lb, . . . u(0) = 0, v(0) = 0, w(0) = 0, (14a)

x = la, y = 0 and lb, . . . u(0) = 0, v(0) = 0, w(0) = 0, (14b)

3.2. Thermal Boundary Conditions

When a sensitive element absorbs radiation, the temperature in the pyroelectric de-
tector increases, resulting in a temperature differential on the upper and lower surfaces.
Consequently, the thermal boundary conditions of a detector [27] are

θ = θ0 + ∆θ, . . . . . . at z =
h
2

(15a)

θ = θ0, . . . . . . at z = −h
2

(15b)

where ∆θ is the temperature difference between upper and lower surfaces of the plate, and
θ0 is the reference temperature, θ0 = 300 K.
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3.3. Electrical Boundary Conditions

The electric potentials are uniformly distributed in a pyroelectricity plate with upper
and lower electrodes. If the lower electrode is grounded, the electric boundary condi-
tions are

φ = V1, . . . . . . at z =
h
2

(16a)

φ = 0, . . . . . . at z = −h
2

(16b)

D(0)
i ni = 0. . . . at x = 0, la or y = 0, lb (16c)

However, the upper surface potential V1 of the plate is an unknown constant for
a pyroelectricity detector. That is, one supplementary equation is needed to maintain
electrical neutrality. According to Gauss’s theorem, the upper and lower surface electrical
displacements satisfy∫

Sup
D3dS −

∫
Sdown

D3dS =
∫

S

[
e31

(
hu(1)

,x + hv(1),y

)
− 8k33

h

(
V1

2
− φ(0)

)
+ p3hθ(1)

]
dS = 0, (17)

where Sup and Sdown are the areas of the upper and lower surfaces of the plate, with
S = Sup = Sdown. Obviously, such a mixed boundary condition is nonlinear. The thermal
boundary equations on the upper and lower surfaces in Equation (15), along with the elec-
tric boundary equations in Equations (16b) and (17), the stress equations in Equation (9a),
and the electric displacement equations and heat flow equations in Equation (9b), are solved
with MATLAB R2018a and the Partial Differential Equations module of COMSOL 5.3a.

It is worth noting that, in the classical plate theory, the expansion terms in Equation (7)
can be expressed by

u(1) = −∂w
∂x

, v(1) = −∂w
∂y

, φ(1) =
∂φ

∂z
, θ(1) =

∂θ

∂z
, φ(2) = 0, θ(2) = 0 (18)

This can lead to automatic satisfaction of the proposed conditions of electric neutrality
(see Equation (17)). Thus, it is consistent with the hypothesis of parallel plate capacitors.
Meanwhile, Equation (18) shows that the distribution of electric potential along thickness is
no longer in the form of a quadratic function. That is, such a hypothesis does not accurately
reflect the actual potential distribution along thickness in pyroelectric detectors. Therefore,
the first-order plate theory was adopted in this paper.

4. Verification of Plate Theory and Discussion
4.1. Verification of 3D Finite Element

LiTaO3 was selected as the pyroelectric thin plate with the length and width of
la = lb = 3 × 10−3 m. The corresponding material constants are listed in Table 1. Due
to the pyroelectric effect, an external temperature is applied to the plate, generating an
electric potential difference between its upper and lower surfaces. Figure 2 depicts typi-
cal three-dimensional (3D) cloud images of the temperature θ and electric potential φ in
the plate under the four-side clamped condition, with a surface temperature difference
of 2 × 10−4 K. In a pyroelectric plate subjected to a thermal load, the heat propagates
along the thickness of the plate, resulting in the formation of an isothermal surface that
is distributed perpendicularly to the z-axis, as shown in Figure 2a. The corresponding
electric potential exhibits a similar distribution to the temperature profile within the plate,
as shown in Figure 2b.



Micromachines 2024, 15, 1012 6 of 12

Table 1. The material parameters of lithium tantalite [6].

Elastic Stiffness
(1010 N m−2)

Piezoelectric Constant
(C m−2)

Dielectric Constant
(10−10 F m−1)

Pyroelectric Coefficient
(10−4 C m−2 K−1)

Thermal Conductivity
(W m−1 K−1)

c1111 = 23.30 e113 = 0.08 κ11 = 3.61 p1 = −2.3 β1 = 46
c1122 = 4.69 e333 = 1.88 κ33 = 3.83 p3 = −2.3 β3 = 46
c1133 = 8.02 e311 = 2.30
c3333 = 27.54
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Figure 2. The distributions of (a) the temperature ∆θ and (b) the electric potential φ in a four-side
clamped plate.

Under the same temperature, Figure 3 is a more comprehensive illustration of the
distributions of temperature and electric potential across plate thickness under the four-
side clamped condition, where the computing module of floating potential in COMSOL
5.3a Multiphysics was used in the 3D finite element method (FEM). It is shown that
the theoretical results of the pyroelectric plate have a high accuracy. Meanwhile, it is
noteworthy that temperature exhibits an approximate linear distribution along the plate
thickness, and electric potential demonstrates a strong nonlinear variation. Such a nonlinear
phenomenon of electric potential also appears under the other three supported conditions.
This confirms the accuracy of Equation (7) for the temperature and electric potential
hypothesis and the rationality of electric and thermal boundary conditions.
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Figure 3. The distributions of (a) temperature and (b) electric potential along the plate thickness
under a four-side clamped plate.

The electric potential obtained by the plate theory was compared to those from the 3D
FEM under four elastic-supported boundary conditions, as shown in Figure 4. The electric
potential along Line 1 is constant, and along Line 2, it is also constant except at the plate
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edge of a central plane. Table 2 lists the specific numerical values and numerical errors of
the electric potential at Points 1 and 2 under different supported conditions. These results
agree with that derived from the solutions using the 3D finite element approach. Therefore,
the correctness is reconfirmed on the theoretical derivation of the pyroelectric plate theory.
Meanwhile, it is seen that the small influence of differently supported conditions can
be ignored.
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Figure 3. The distributions of (a) temperature and (b) electric potential along the plate thickness 
under a four-side clamped plate. 
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Figure 4. The distributions of electric potential along the x-axis when ∆θ = 2 × 10−4 K for (a) four-
side clamped; (b) four-side simply supported boundary conditions; (c) two-side clamped; and
(d) four-point simply supported boundary conditions.

Table 2. Numerical values of potential under different support states.

Supported State
Present Theory FEM Upper

Surface
Error (%)

Median
Plane

Error (%)
Point 1 Potential

(10−3 V)
Point 2 Potential

(10−3 V)
Point 1 Potential

(10−3 V)
Point 2 Potential

(10−3 V)

Four-side clamped −6.39 −1.80 −6.61 −1.85 −3.32 −2.70
Four-side simply supported −6.39 −1.81 −6.66 −1.88 −4.05 −3.72
Two-side clamped −6.39 −1.80 −6.64 −1.87 −3.77 −3.74
Four-point simply supported −6.46 −1.84 −6.71 −1.91 −3.72 −3.66
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Figure 5 analyzed the influence of pyroelectric behaviors on the electric potential
with increasing temperature. It is observed that the overall potential increases linearly.
Specifically, the growth rate of potential at Point 1 on the upper surface surpasses that
of Point 2 on the middle plane. This implies that the response time of the pyroelectric
plate detector becomes quicker under a higher external temperature, leading to a stronger
generated signal. Meanwhile, the influence of support states on electric potential can also
be ignored.
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Figure 5. The influence of ∆θ on electric potential at Points 1 and 2 obtained from the present theory
(line), and Ref. [28] (hollow dot) under (a) four-side clamped and (b) four-point simply supported
boundary conditions.

Without considering the piezoelectric property [28], the corresponding electric poten-
tial is shown in Figure 5. It is obvious that, when considering the piezoelectric effect, the
response electric potential of the pyroelectric plate decreases under identical conditions.
As the temperature load rises, the inhibitory impact of the piezoelectric effect on the plate
becomes increasingly pronounced. Based on the present theory, under ∆θ = 5 × 10−3 K, the
electric potential is reduced by 10% under the four-side clamped boundary condition due
to the piezoelectric effect. Therefore, it is necessary to consider the influence of piezoelectric
effects under the high temperature difference.

4.2. Verification of Experimental Results

Given that the sensitive element absorbs the incoming radiation and generates heat,
the heat flux Qt can be represented as

Qt = γRAn, (19)

where γ is the absorption rate of incident radiation in the absorption layer, An is the detector
area, and R is the blackbody irradiance. In the field of infrared detector production, the
blackbody furnace with a furnace temperature of 500 K is usually used as the standard
radiation source. As illustrated in Figure 6, the blackbody irradiance can be calculated
by [29]

R = α
δSt

(
θH

4 − θ4
0

)
As

πlh
2 , (20)

where α is a modulation factor that is controlled by a chopper. It represents the proportion
of blackbody radiation through the chopper. Typically, radiation is blocked half of the time,
so α = 0.5 is usually used in calculations. δ is the effective emissivity of blackbody radiation
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source, St is the Stefan–Boltzmann constant, θH and θ0 are the blackbody temperature and
ambient temperature, respectively, As is the grating area of the blackbody radiation source,
and lh is the distance between light from the blackbody source and the detector.
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The temperature rise rate affects its sensitivity. There is a positive correlation between
the response speed of the detector and the temperature rise rate of the sensitive element. In
terms of the heat conduction theory [30,31], we have

dθm =
Qt

cm
dt =

Qt

cρAnh
dt, (21)

where c is the constant pressure heat capacity of a pyroelectric material, m is the weight of
the pyroelectric material, ρ is the material density, h is the thickness of the sensitive element,
dθm is the temperature rise of the upper surface of the structure, and t is the time. Therefore,
the temperature and the heat flux are in linear relation.

Let us consider a lead zirconate titanate/castor oil-based polyurethane (PZT/PU)
composite material plate with dimensions of 3 × 3 × 0.08 mm3 [28]. A light beam emit-
ted from an unmodulated halogen lamp was focused on the sample fixed in the sensor
chamber. The voltage from the temperature sensor was measured by a lock-in amplifier.
Figure 7a illustrates the curve depicting the electric potential in relation to the change
of temperature. In Ref. [32], a laser was used as the signal source and it was converted
into a modulated square wave with the modulation factor α = 0.5 through a modulation
technology. These experimental results for lithium tantalate tablets are compared with
simulation results, as shown in Figure 7b, where lithium tantalite tablets with the same
dimensions of 3 × 2 × 0.2 mm3 are used. Here it is worth noting that, although there seems
to be a linear trend in simulations, electric potential increases nonlinearly with temperature.
The theoretical results of electric potential are close to that of experiments. Figure 7a,b also
prove the correctness and accuracy of theoretical results.
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5. Optimization of Plate Thickness

To optimize the thickness of lithium tantalite tablets as sensitive elements in a pyroelec-
tric detector, the influence of the radiation process should be considered. The corresponding
constants during radiation are listed in Table 3. As shown in Figure 8, it is evident that, as
plate thickness increases, pyroelectric electric potential increases linearly. However, taking
the sensitivity of a sensor into account, we also investigated the influence of thickness on
the sensitivity (see Figure 8). As the thickness of a pyroelectric plate increases, the rate of
temperature change dθm/dt decreases [33]. In particular, when the plate thickness is less
than 100 µm, the response rate increases dramatically. Therefore, an excessively thick or
thin plate is not conducive to enhancing the performance of a detector, and the appropriate
plate thickness is about 50 µm.

Table 3. The constant parameters in the radiation process.

Parameter Symbol Value Unit

Modulation factor α 0.5 –
Effective emissivity δ 0.99 –

The distance between light and detector lh 0.1 m
Grating area As 7.9 × 10−5 m2

Heat capacity at constant pressure c 250 J kg−1 K−1

Density ρ 7450 kg m−3

Stefan–Boltzmann constant St 5.67 × 10−8 W m−2 K−4

Blackbody temperature θH 500 K
Ambient temperature θ0 293.15 K
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6. Conclusions

In this paper, a modified first-order pyroelectric plate theory has been presented to
analyze sensitive components. The semi-analytical solutions of electric potential distri-
butions obtained under different supported boundary conditions are consistent with 3D
finite element simulations and available experimental results. The main conclusions can be
drawn as follows:

(1) The numerical results indicate that there is little influence of elastic boundary condi-
tions on electric potential.

(2) As temperature generated by the surface of a sensitive element increases, the influence
of the piezoelectric property strengthens. However, the piezoelectric property can
reduce the response electric potential of a pyroelectric plate.

(3) A thicker plate results in a higher pyroelectric voltage, but it decreases the response
speed of the detector response.
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It is expected that the present theory will offer a valuable tool for analyzing the sensi-
tive element performance in pyroelectric detectors and provide a theoretical foundation for
optimizing the detector efficiency.
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