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A B S T R A C T

Context or problem: Randomised designs are often preferred over systematic designs by agronomists and bio-
metricians. For on-farm trials, however, the choice may depend on the objective of the experiment. If the purpose
is to create a prescription map of a continuous input for each plot in a grid covering a large strip trial, a sys-
tematic design may be a better choice, although it often attracts less discussion and attention.
Objective or research question: This study aims to evaluate the performance of systematic designs with
geographically weighted regression (GWR) models in addressing spatial variation and estimating continuous
treatment effects in large strip trials through numeric simulations.
Methods: A hierarchical model with spatially correlated random parameters is utilised to generate simulated data
for various scenarios of large strip on-farm trials. The study employs GWR models to analyse the simulated data
for two assumptions: a linear response and a quadratic response of yield to the treatment effects.
Results: With the assumption of a quadratic response, a systematic design is superior to a randomised design in
terms of achieving lower mean squared errors (MSEs) with GWR. With the assumption of a linear response, the
difference of MSE between a systematic design and a randomised design is not significant, regardless of the
presence of spatial variation.
Conclusions: The findings highlight the superiority of systematic designs in producing smooth spatial maps of
optimal input levels for quadratic response models in large strip trials, even when impacted by significant spatial
variation. Additionally, we recommend selecting fixed bandwidths in GWR analysis based on the plot configu-
rations used in experimental designs. For a large strip trial, to produce estimates of spatially-varying treatment
effects across strips, a systemic design should be used as it allows us to obtain better estimates than those ob-
tained from a randomised design in post-experiment statistical modelling.
Implications or significance: The findings offer practical recommendations for designing large strip trials. By
drawing attention to the experiment’s main inferential purpose, this research contributes valuable insights for
improving the efficacy and planning of large strip trials.

1. Introduction

The principle of randomisation was first expounded in 1925 by
Fisher (1934), who analysed a few systematically arranged experiments
and pointed out that randomisation can provide valid tests of signifi-
cance subject to appropriate restrictions, such as experimental units
arranged in blocks or in rows and columns of a Latin square (Verdooren,
2020). Traditionally, small-plot trials for agriculture are designed to
obtain unbiased estimates of treatment effects using the completely
randomised design, where treatments are randomly allocated in plots.
More complex designs, such as the randomised complete block design,
the split-plot design, the strip-plot design and the Latin square design,

are also widely used in agricultural experiments to improve the preci-
sion of treatment effect estimates (Petersen, 1994). With the primary
aim of obtaining unbiased estimates of global treatment effects, rando-
mised designs, which use different layouts of treatments in each repli-
cate, are routinely used for on-farm strip trials, whereas systematic
designs, which use the same layout of treatments in all replicates, are
rarely used.

On-farm experiment (OFE) enables farmers the flexibility to imple-
ment large-scale experiments in order to test management practices on
their farms (Evans et al., 2020). The main goal of OFE is to help farmers
better understand uncertainties around farm-related decisions and
leverage their existing strengths in managing translational and
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structural uncertainties in decision-making (Cook et al., 2013). In situ-
ations where the goal is to compare yield responses between manage-
ment classes or to select best-performing crop varieties as new market
varieties, a randomised design may be superior to a systematic design
(Pringle et al., 2004; Selle et al., 2019).

While randomisation is often considered a crucial prerequisite for
obtaining valid statistical inferences (Piepho et al., 2013), this is not
always the case when the goal of OFE shifts from the conventional
analysis. In the application of precision agriculture using variable rate
applicators, a prescription map is required to optimally apply varying
treatments across a field (Pringle et al., 2004). Therefore, in this sce-
nario, the goal of OFE becomes obtaining a spatial map showing the
optimal level of a controllable input, such as nitrogen rates, across a grid
made of rows and columns covering the whole field. An important point
to note when analysing OFEs is that only a single treatment level can be
directly observed at any given point on the grid, while the responses for
other levels at the same grid point must be interpolated. If a randomised
design is conducted, the interpolation distances to locations with
treatment levels of interest will vary throughout the field. These het-
erogeneous distances increase the uncertainty in the analysis and reduce
the accuracy of local prediction. Therefore, a systematic design is pref-
erable to a randomised design in this scenario. Unfortunately, this
perspective has often been overlooked by researchers, leading to the
widespread use of randomised designs.

Analysing a systematic design for the creation of an optimal treat-
ment map is a statistically challenging task. The true responses at each
point on the grid corresponding to all the treatment rates are unknown,
and the treatment producing the optimum response may vary continu-
ously across the field. Cao et al. (2022) implemented a Bayesian
approach with spatially correlated random parameters for analysing
large systematic strip trials. These authors considered a quadratic
response model with both global and local (spatially-varying) compo-
nents. However, Bayesian analysis can be computationally expensive
and would require at least preliminary knowledge of Bayesian inference
to interpret the results, which can be extremely demanding for farmers
and agronomists. Alternatively, Rakshit et al. (2020) adopted a local
regression approach, called geographically weighted regression (GWR),
to obtain spatially-varying estimates of treatment effects for OFE.
Additionally, Evans et al. (2020) concluded through simulation studies
that GWR is capable of accurately separating variation in yield response
due to treatment from the variation that is not due to the applied
treatment. The limitations in their study are the use of a randomised
design and the assumption of a linear response model. To compare be-
tween the systematic and randomised treatment allocation in the
chessboard design, Alesso et al. (2021) simulated corn yield response for
four nitrogen levels and estimated the regression coefficients using
GWR. They concluded that systematic designs achieved the best results
in most cases. However, the use of chessboard design often presents
several challenges, particularly during harvesting. Harvesters can pro-
duce erroneous data due to the abrupt treatment changes between plots
(Pringle et al., 2004). Additionally, the quadratic or plateau feature in a
response model was not considered in their simulation study.

Piepho and Edmondson (2018) presented an example where a linear
model turns out to be inadequate for analysing sugar beet data
(Petersen, 1994). Glynn (2007) showed that many curves exist beyond a
linear trend for nutrient-response relationships. The response curve
often depends on the availability of other macro and micronutrients in
the soil (Marschner, 2011), which means that a linear relationship is
unlikely to be consistent across a large trial. For this reason, it is
important to consider models with terms of order higher than unity. For
example, a quadratic model can often found to be suitable for modelling
nutrient-response relationships (Piepho and Edmondson, 2018; Liben
et al., 2019).

In this study, we generate simulated data for several scenarios, where
each scenario is constructed by choosing one component at a time from
the following four categories: (i) randomised and systematic designs; (ii)

linear and quadratic responses; (iii) model coefficients with low and
high correlations; and (iv) spatial variance-covariance matrix among
grids given by identity (no spatial trend), AR1⊗ AR1, and Matérn forms.
We subsequently evaluate the efficacy of GWR in accurately estimating
the spatially varying treatment effects across these scenarios.

The GWR in this paper is performed using the R-package GWmodel
(Lu et al., 2014; Gollini et al., 2015).

2. Methods

2.1. Hierarchical model for generating simulated data

In a conventional agricultural study, a field experiment can be
considered as a rectangular matrix, representing a regular grid with r
rows and c columns, where the total number of plots in the experiment is
n = r × c. Let si ∈ R 2,i = 1,…,n, denote the Cartesian coordinate of the i-
th plot centroid, located on a regular grid (Zimmerman and Harville,
1991). Let y(si), i = 1,…, n, denote the value of the dependent variable
recorded at the i-th plot.

LetY denote the vector of the plot data ordered as rows nested within
columns. The basic model can be written using the matrix notation as
follows:

Y = Xb+ Zu+ e, (1)

where b and u are vectors of fixed and random effects, respectively; X
and Z are the associated design matrices; and e is the error vector. We
assume that u and e are distributed independently of each other and that
their joint distribution is
[
u
e

]

∼ N

(
0
0 ,
[

Σu 0
0 Σe

])

. (2)

Using the notation introduced above and in Cao et al. (2022), the
simulation model is given by

y(si)
⃒
⃒
⃒
⃒
⃒
ui, θu, σe ∼ N

(
∑l

m=1
bmxm(si) +

∑k

j=1
uj(si)zj(si), e(si)

)

,

ui|θu ∼ N (0,Vu(θu)),

e(si)
⃒
⃒σe ∼ N (0, σ2

e ),

(3)

where x1, …, xl are l fixed terms; z1, …, zk are k random terms; bm and
uj(s) are the coefficients for the fixed and random terms, respectively; ui
is a vector of all random effects at the i-th plot, i = 1, …, n; θu is a set of
parameters of the covariance matrix Vu; and σe is a positive latent
variable.

In model (3), the structure of the covariance matrix Vu(θu) of ui can
be either diagonal, which implies the random terms at grid i are inde-
pendent, or in general form, which means a correlation exists. McElreath
(2015) suggested that the covariance matrix Vu can be decomposed into
B(σu)RuB(σu), where B(σu) denotes the diagonal matrix with diagonal
elements σuj , j = 1, …, k, and Ru denotes the matrix with correlation
coefficients. For the matrix Ru, we specify the
Lewandowski-Kurowicka-Joe (LKJ) distribution (Lewandowski et al.,
2009), which is given by

Ru ∼ LKJcorr(ϵ), (4)

where LKJcorr(ϵ) is a positive definite correlation matrix sampled from
the LKJ distribution controlled by a positive parameter ϵ. As ϵ increases,
a high correlation becomes less likely.

Furthermore, by incorporating a spatial correlation structure Vs, the
complete form of the covariance matrix of u is presented as

Σu = Vs ⊗ Vu. (5)

In fact, Vs is the covariance matrix of all grids on the field. For example,
if Vs = In×n (an identity matrix), the random terms at a given grid point
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are independently distributed from those at other grid points, even
though the terms at that grid point are correlated amongst each other.
However, the correlation among grids is ubiquitous. Hence, we intro-
duce a simple spatial covariance matrix such as

Vs = AR1(ρc) ⊗ AR1(ρr), (6)

where AR1 ⊗ AR1 is the separable first-order auto-regressive model in
the column and row directions, controlled by the correlation parameters
ρc and ρr, respectively (Butler et al., 2017).

On the other hand, the Matérn class covariance is given by

Vs(d) = σ221− ν

Γ(ν)

(
̅̅̅̅̅
2ν

√ d
γ

)ν

Kν

(
̅̅̅̅̅
2ν

√ d
γ

)

, (7)

where d is the space lag or distance; γ is a non-negative scaling param-
eter; ν > 0 is a smoothness parameter; σ2 is the variance parameter; Γ is
the Gamma function; and Kν is the modified Bessel function of the sec-
ond kind. The Matérn covariance is commonly used in the analysis of
geostatistical data (Cressie and Huang, 1999). Moreover, it has also been
used in capturing spatial variation in OFE (Selle et al., 2019). If ν = γ +

1∕2, then the Matérn covariance can be expressed as a product of an
exponential and a polynomial of order γ (Pandit and Infield, 2019;
Abramowitz, 1974), which simplifies the model and the computation
process. The Matérn models with the values 3/2 and 5/2 for the
parameter ν are used in most applications.

In each iteration of the simulation process, we used the above
formulae and pre-defined parameter values to generate 2 × n co-
efficients for the linear response and 3 × n coefficients for the quadratic
response. Then these coefficients are applied to simulate yield response
across strips for both randomised and systematic design layouts.

2.2. Fitting geographically weighted regression to simulated data

GWR is a local regression approach that has been recently adapted to
obtain spatially-varying estimates of treatment effects for OFE (Rakshit
et al., 2020). It is a locally weighted regression method that operates by
assigning a weight to each observation depending on its distance from
the query grid on the field (Páez et al., 2002).

The underlying template model for GWR is given by

y(si) = β0 +
∑k

j=1
βj xj(si) + εi, (8)

where β = (β0, β1,…, βk)
⊤ are model parameters corresponding to the k

treatment levels and εi ∼ N (0, τ2), i = 1, …, n, are independent and
identically distributed error terms at n grid points.

For a query location s, the local log-likelihood is given by

logL(s; β) = −
1
2τ2

∑n

i=1
K(s, si)

(

y(si) − β0 −
∑k

j=1
βjxj(si)

)2

(9)

where K( ⋅ , ⋅ ) is a given kernel function, such as Gaussian, exponential,
bi-square or tri-cube (Gollini et al., 2015).

The local-likelihood estimator, obtained by maximising (9), of the
regression coefficients β at the query location s is given by

β̂(s) = (X⊤W(s)X)− 1X⊤W(s)Y, (10)

where W(s) is an n × n diagonal matrix of weights with i-th diagonal
entry K(s, si).

To obtain local estimates of model parameters in the simulation
study, we have used a Gaussian kernel. In fact, the kernel function is not
the crucial factor in the GWR analysis. In contrast, the bandwidth has a
higher influence on the estimates.

The optimal bandwidth for GWR is usually selected by the lowest
AICc, which is given by

AICc = 2nlog(τ2) + nlog(2π) + n2 + ntr(S)
n − 2 − tr(S)

, (11)

where S is the matrix with the i-th row given by Xi(X⊤W(si)X)− 1X⊤W(si)

(Evans et al., 2020), and tr(⋅) is the trace of a square matrix returning the
sum of the elements on the main diagonal. Alternatively, as suggested by
Rakshit et al. (2020), it can be chosen according to the experimental
design such that the local regressions are performed based on data
covering the full range of treatments.

2.3. Performance evaluation

To compare the performances of randomised and systematic designs
in terms of accurate estimation of the model coefficients using GWR, we
use the mean squared errors (MSEs) corresponding to all coefficient
estimates. The MSE for a coefficient was computed by first taking the
differences between the true coefficient, specified in model (3), and the
spatially varying estimates of that coefficient produced by GWR, and
then averaging these squared differences across all the grid points,
shown in equation (12). The lower the MSE, the better the design’s
performance.

The MSE corresponding to the estimation of spatially varying βj is
given by

MSEj =
1
n
∑n

i=1

(
(bj + uji) − β̂ ji

)2
, (12)

where j = 0, 1 for a linear response and j = 0, 1, 2 for a quadratic
response.

3. Simulation study

The simulation study is performed using realistic values for the
model parameters, which are selected based on the analysis results of a
real-life data recorded from a corn field in Las Rosas, Argentina. This
data set was originally provided by Anselin et al. (2004) and can be
accessed via the R-package agridat(White and van Evert, 2008). In
2001, a systematic design was used, incorporating six rates of nitrogen:
0, 39, 50.6, 75.4, 99.8, and 124.6 kg/ha, in three replicates. Each
replicate consists of 93 rows and 6 columns after data preprocessing; see
Rakshit et al. (2020) for further details about the preprocessing steps.
The unit of yield is quintals per hectare.

Studies by Rakshit et al. (2020); Cao et al. (2022) suggest that the
yield produced by the maximum nitrogen rate of 124.6 kg/ha may be
improved by using a higher rate. Thus, we have made some adjustments
while selecting the nitrogen rates for our simulation study. We use five
evenly-spaced nitrogen rates: 0, 35, 70, 105, and 140 kg/ha. Addition-
ally, we increase the number of replicates from three to four. Conse-
quently, the final layout of the trial used in the simulation consists of 93
rows and 20 columns. Examples of a randomised design, which uses
different orders of treatment in each replicate, and a systematic design,
which uses the same order of treatment in all replicates, for this layout
are presented in Figure 1.

We investigate all possible combinations of the following factors: (i)
types of design with two levels, namely, randomised and systematic; (ii)
response relationship with two levels, namely, linear and quadratic; (iii)
correlation coefficients corresponding to the random effects within each
plot with two levels, namely, low and high; (iv) spatial variation be-
tween grid points with three levels, namely, identity (no spatial trend),
AR1 ⊗ AR1, and Matérn form. This results in 24 unique combinations.
For each combination, we simulated yield data and computed local es-
timates of regression coefficients using GWR for three bandwidth values
of 5, 9 and the optimum value selected by AICc. For a systematic design
in our simulation study, all the treatment levels (five nitrogen levels) can
be covered by the bandwidth of 5, making it adequate for inference
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based on a quadratic response model. On the other hand, the bandwidth
of 9 may be necessary to cover all possible treatment levels in a rand-
omised design. In particular, if identical treatments are positioned at the
far left edge of the first replicate block and at the far right edge of the
second replicate block, a bandwidth smaller than 9 would result in GWR
estimates computed using only the treatments between these bound-
aries, thereby missing the treatment levels at the extremes.

To specify the linear relationship in the simulation study, we
consider the values of 65 and 0.05 for the global intercept b0 and slope b1
coefficients, respectively, in model (3). The variances of the coefficients
ui are set to 5 for σu0 and 0.01 for σu1 . These parameters are chosen
according to the estimates reported by Cao et al. (2022). For the AR1 ⊗

AR1 covariance matrix in (6), the two correlation parameters ρc and ρr
are set to 0.15 and 0.50, respectively. We assume a higher correlation in
the row direction because the crop is traditionally sown and harvested
along the column direction, and the correlation is higher in the direction
perpendicular to the sowing direction (Marchant et al., 2019). For the
Matérn covariance matrix (7), we set the value of the variance param-
eter σ2d to 1, the value of the parameter r to 1, and the value of the
parameter ν to 3/2. After drawing samples of u from N (0, Σu), the
spatially varying coefficients β0 and β1 are specified using the relations
β0 = b0 + u0 and β1 = b1 + u1.

For the quadratic relationship, we consider the values of 65, 0.05
and − 0.0003 for the coefficients b0, b1, and b2, respectively. These
choices make the response curve concave down. For the variance com-
ponents, we set to 5 for σu0 , 0.01 for σu1 , and 0.0001 for σu2 . The rest of
the parameters left unchanged. Consequently, the true spatially varying

coefficients are β0 = b0 + u0, β1 = b1 + u1, and β2 = b2 + u2 for the
quadratic model.

Figure 2 illustrates the global yield response to Nitrogen for the
linear and quadratic relationships.

To summarise, the simulated yield response is obtained by
{
Linear yi = b0 + u0i + (b1 + u1i)Ni + ei

Quadratic yi = b0 + u0i + (b1 + u1i)Ni + (b2 + u2i)N2
i + ei

(13)

where Ni is the nitrogen rate, ei ∼ N (0, 1) is the error term at grid i, i =
1, …, n.

4. Results

In this section, we assess the performances of randomised and sys-
tematic designs in terms of their utility to accurately estimate the model
parameters for both linear and quadratic response models. To this end,
we perform 1000 simulations of each of the 24 scenarios, described in
the previous section. In each simulation, we first generate the co-
efficients for all grids and then apply the treatment in each grid to
calculate the yield value using the model coefficients. For the treatment
order in each iteration, we randomly picked an order of treatments for a
single replicate and repeated this sequence across all other replicates to
construct a systematic design. For a randomised design, all replicates
have random orders of the treatments.

Fig. 1. The nitrogen treatments with five levels (0, 35, 70, 105 and 140 kg/ha) randomly (left) and systematically (right) allocated into strips in each replicate block.

Fig. 2. The global linear relationship of yield and nitrogen is y = 65 + 0.05N (left), and the global quadratic relationship between yield and nitrogen is y = 65 +

0.05N − 0.003N2 (right).
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4.1. Comparison based on mean squared errors

Figures 3 and 4 show the results of linear models for the cases of low
(ϵ = 1) and high (ϵ = 0.1) correlations, respectively, while Figures 5 and
6 show the results of quadratic models for the same low and high cor-
relations, respectively. To specify the covariance matrix Vs used in
producing the results in these figures, we use the following labels: (i)
“NS” for the identity matrix representing no spatial correlation, (ii)
“AR1” for AR1(0.15) ⊗ AR1(0.5), and (iii) “Matern” for Matérn
covariance with ν = 3∕2. Note that the model parameters and their
corresponding MSEs are small values, and this makes it difficult to
compare the MSEs of different scenarios using the original scale of MSE
values. Therefore, to enhance clarity in visualisation and comparison,
we have multiplied theMSEs of β1 and β2 by 104 and 108, respectively, in
the figures presented below.

For the linear response model, both randomised and systematic de-
signs perform similarly, particularly for the case NS. Figure 3 shows that
the MSE corresponding to β̂0 for all bandwidths are fairly similar for
both designs without spatial correlation. However, when a spatial
covariance matrix is incorporated in the model, the MSE results, pre-
sented also in Tables 1 and 2, in the figures below show that the MSE
medians corresponding to β̂1 for AR1 ⊗ AR1 and Matérn cases are lower
for the systematic design.

For the quadratic response model, Figures 5 and Figures 6 show that
the GWR estimates of both β1 and β2 based on fixed bandwidths of 5 and
9 for systematic designs outperform the estimates obtained for rando-
mised designs when spatial correlation (“AR1” and “Matern") is present
in yield data. Using the AICc optimal bandwidth, GWR successfully es-
timates the intercepts β0 but fails to accurately estimate linear and
quadratic coefficients β1 and β2, resulting in MSEs that are relatively
larger than those obtained using a fixed bandwidth. Overall, the results
of our simulation study indicate that the systematic designs are superior
to randomised designs in enabling accurate and precise estimation of
spatially varying treatment effects, especially when the response model
is a quadratic function of the treatment levels.

Moreover, MSE comparisons reveal that the choice of bandwidth

may influence the relative performance of the two designs differently
depending on whether the intercept coefficient or the slope coefficients
are being estimated. Differences in relative performance are also
observed for different forms of spatial covariance matrices considered in
the simulation scenarios. In scenarios without spatial variation, when
estimating β0, β1 and β2, the AICc-selected bandwidths produce the
lowest MSE medians. In contrast, when spatial variation is present
(utilising either AR1 ⊗ AR1 or Matérn covariance structures), the
bandwidth of 9 consistently produces the most accurate estimates of β1
and β2, outperforming the estimates obtained using either the band-
width of 5 or the one chosen by AICc. Tables 1 and Tables 2 present the
median MSEs corresponding to the parameter estimation for the linear
response model in the two scenarios of low (ϵ = 1) and high (ϵ = 0.1)
correlations, respectively.

Tables 3 and 4 present the median MSEs corresponding to the esti-
mation of quadratic response models for the two scenarios of low (ϵ = 1)
and high (ϵ = 0.1) correlations, respectively.

4.2. Comparison of density plot

Figure 7 illustrate the density plots comparing the true coefficients of
β0, β1, and β2 with their estimates derived from both randomised and
systematic designs with Matérn covariance and low within-grid corre-
lation and fitted by GWR with bandwidth 9. The plots reveal that the
true coefficients are well-represented by the GWR estimates, with the
systematic design showing slightly tighter distributions compared to the
randomised design of β̂1 and β̂2. This suggests the systematic design
provides more precise estimates under the given conditions.

4.3. An example of optimal nitrogen maps

In practice, growers are more interested in the prescription map that
tells them where the appropriate amount of nitrogen to apply in each
part of the paddock. With the application of GWR, we can find the local
variations in crop needs, allowing for more precise and efficient nitrogen
application. Each grid of the paddock receives the optimal amount of

Fig. 3. Boxplots of MSE for β̂0 and β̂1 in GWR models using different bandwidths for the simulated data with a linear response. The simulated data had different
spatial covariance matrices (NS, AR1 ⊗ AR1 and Matérn) and a low correlation between the parameters (ϵ = 1).
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fertiliser. Consequently, this leads to improved crop yields, reduced in-
vestment cost and high profit.

Figure 8 is the simulated crop yield map with the assumption of a
quadratic response curve and Matérn spatial covariance and low within-
grid correlation. These two yield maps have the same coefficients but
different yields due to different treatment layouts.

Figure 9 illustrates an example of the optimal Nitrogen rate (kg/ha)

map estimated by GWR with a bandwidth of 9 using the above yield
data. The optimal rate at grid i is given by N̂i = − β̂1i∕(2β̂2i) with con-
straints between 0 and 140, i = 1, …, n. For the randomised design, GWR
underestimated the right part of the paddock. On the contrary, the
estimated map from the systematic design is more consistent.

Fig. 4. Boxplots of MSE for β̂0 and β̂1 in GWR models using different bandwidths for the simulated data with a linear response. The simulated data had different
spatial covariance matrices (NS, AR1 ⊗ AR1 and Matérn) and a high correlation between the parameters (ϵ = 0.1).

Fig. 5. Boxplots of MSE for β̂0, β̂1 and β̂2 in GWR models using different bandwidths for the simulated data with a quadratic response. The simulated data had
different spatial covariance matrices (NS, AR1 ⊗ AR1 and Matérn) and a low correlation amongst the parameters (ϵ = 1).
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5. Discussion

Agronomists and biometricians generally prefer randomised designs
for OFEs. This is likely due to their experience with small-plot experi-
ments, where randomised designs are employed. Our simulation study
shows that a systematic design performs either superiorly or similarly to
a randomised design for the purpose of creating a spatially varying

optimal treatment map. The primary differentiating factors include the
response type and the spatial covariance model, while the correlation
amongst the treatment coefficients is not found to be important. These
factors can be assessed by farmers or agronomists beforehand, and based
on their assessment, an informed decision can be made about the
appropriate design that should be used. Given that a systematic design is
easier to implement and presents few drawbacks when used to create a

Table 1
Median MSE of GWR coefficient estimates for a linear response when the correlation between the parameters is low (ϵ = 1).

Linear Response with ϵ = 1 Randomised Design Systematic Design

Vs Coefficients Bandwidth
5 9 AICc 5 9 AICc

NS β̂0 24.868† 24.927 24.952 24.883 24.931 24.953

β̂1(× 104) 1.458 1.175 1.048 1.479 1.185 1.045†

AR1 β̂0 24.471 24.807 24.134 24.513 24.788 23.538†

β̂1(× 104) 2.178 1.484 12.744 2.173 1.463† 11.922
Matern β̂0 21.125 23.215 9.667 20.928 23.100 8.871†

β̂1(× 104) 1.600 1.232 8.591 1.343 1.123† 7.030

† Indicates the smallest MSE for the row.

Table 2
Median MSE of GWR coefficient estimates of linear response when the correlation between the parameters is high (ϵ = 0.1).

Linear Response with ϵ = 0.1 Randomised Design Systematic Design

Vs Coefficients Bandwidth
5 9 AICc 5 9 AICc

NS β̂0 24.964† 25.000 25.018 24.970 25.006 25.031

β̂1(× 104) 1.455 1.181 1.047 1.456 1.180 1.044†

AR1 ⊗ AR1 β̂0 24.490 24.773 23.928 24.457 24.780 23.524†

β̂1(× 104) 2.168 1.464† 12.014 2.159 1.472 11.153
Matérn β̂0 21.247 23.376 9.668 21.100 23.330 9.093†

β̂1(× 104) 1.596 1.233 8.518 1.359 1.129† 7.676

† Indicates the smallest MSE for the row.

Fig. 6. Boxplots of MSE for β̂0, β̂1 and β̂2 in GWR models using different bandwidths for the simulated data with a quadratic response. The simulated data had
different spatial covariance matrices (NS, AR1 ⊗ AR1 and Matérn) and a high correlation amongst the parameters (ϵ = 0.1).
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varying treatment map, the use of systematic designs is recommended
for large scale OFEs.

The response type is the main factor to consider when choosing be-
tween randomised and systematic designs. When the response is
quadratic, systematic designs perform better than randomised designs.
Therefore, if an approximately linear response is expected in the field,
the choice of the design may be less critical. However, when a nonlinear
relationship (such as a quadratic response curve) is expected, a sys-
tematic design should be implemented.

Another consideration for agronomists and biometricians when
selecting a design is the expected spatial covariance structure in the
field. When no spatial structure was simulated, the differences in esti-
mates between the systematic and random design are minimal. This is
expected given that if there are no spatial autocorrelations, then the
individual query grids are independent, and therefore, the design choice

is not important. However, when a first-order auto-regressive structure
was simulated, the differences became more pronounced, particularly
with a quadratic response, where systematic designs were shown to be
superior. The largest difference between the two designs occurred with
the Matérn spatial covariance structure, showing a strong preference for
systematic designs for quadratic responses and a slight preference for
linear responses. Therefore, only when spatial variability is expected to
be negligible, the use of a randomised design would be reasonable for
quadratic responses. Given the large size of paddocks typically used in
OFEs, the assumption of negligible spatial variability is difficult to
justify, making a systematic design the recommended choice in practice.

There are major drawbacks found in using AICc for bandwidth se-
lection. The distribution of AICc-selected bandwidths was skewed to 1
and, in a few cases, AICc ended up selecting a bandwidth of 93 (number
of rows). The MSEs obtained using AICc-based bandwidths are higher

Table 3
Median MSE of GWR coefficient estimates of quadratic response when the correlation amongst the parameters is low (ϵ = 1).

Quadratic Response with ϵ = 1 Randomised Design Systematic Design

Vs Coefficients Bandwidth
5 9 AICc 5 9 AICc

NS β̂0 25.184 25.106 25.086 25.172 25.109 25.072†

β̂1(× 104) 7.215 3.385 1.480 7.045 3.297 1.471†

β̂2(× 108) 4.016 2.157 1.232† 3.871 2.090 1.243
AR1 ⊗ AR1 β̂0 25.012 25.005† 29.797 25.008 25.013 27.712

β̂1(× 104) 16.741 7.1907 146.097 16.730 7.1906† 123.256

β̂2(× 108) 8.601 3.979 70.112 8.595 3.933† 59.913
Matérn β̂0 21.503 23.470 18.331 21.305 23.359 15.800†

β̂1(× 104) 10.397 4.790 121.474 7.368 3.276† 98.902

β̂2(× 108) 5.470 2.808 58.626 3.912 2.068† 47.653

† Indicates the smallest MSE for the row.

Table 4
Median MSE of GWR coefficient estimates of quadratic response when the correlation amongst the parameters is high (ϵ = 0.1).

Quadratic Response with ϵ = 0.1 Randomised Design Systematic Design

Vs Coefficients Bandwidth
5 9 AICc 5 9 AICc

NS β̂0 25.076 25.036 25.017 25.076 25.006† 25.013

β̂1( × 104) 6.974 3.281 1.473† 7.011 3.326 1.494

β̂2( × 108) 3.900 2.093 1.224† 3.888 2.114 1.225
AR1 ⊗ AR1 β̂0 24.993† 25.051 29.454 25.027 25.032 27.809

β̂1( × 104) 16.835 7.350 137.643 16.678 7.220† 123.024

β̂2( × 108) 8.547 4.065 65.609 8.413 3.955† 57.375
Matérn β̂0 21.542 23.376 16.560† 20.837 23.039 16.630

β̂1( × 104) 11.864 4.953 108.094 8.248 3.532† 95.428

β̂2( × 108) 5.389 3.121 48.640 3.506 1.940† 38.378

† Indicates the smallest MSE for the row.

Fig. 7. Density plots comparing the true coefficients of β0 (left), β1 (middle), and β2 (right) with their estimates from GWR with bandwidth 9, based on 1000
simulations.
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than those obtained using a fixed bandwidth. Therefore, a fixed band-
width based on the layout of the experimental design (5 or 9 in this case)
is recommended, rather than AICc-based bandwidth. Selecting the
bandwidth based on the layout of the experimental design often pro-
duces better estimates because it allows us to include all treatment levels
in the computation of local estimates using GWR.

Given the scope of the paper, some designs and factors were not
considered. Designs such as chequerboard or wave designs have been
suggested for on-farm experiments (Bramley et al., 1999); however,
these designs were not considered here. Topographical factors (spatial
zones) were also not considered in our study.

Fig. 8. Simulated yield map of a randomised design (top), and a systematic design (middle), and the difference of these two designs (bottom).

Fig. 9. Optimal Nitrogen rate estimated by GWR from a randomised design (left), and a systematic design (right).
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6. Conclusion

This research offers a number of recommendations for agronomists
and biometricians for designing OFE trials.

• We recommend using a systematic design over a randomised design
for large strip OFEs when the goal is to produce a spatially varying
optimal treatment map for continuous treatments, such as fertiliser
rates.

• We strongly recommend using a systematic design when the under-
lying treatment-response relationship is expected to be non-linear (e.
g., a quadratic relationship) in a paddock with considerable spatial
variation.

• For analysing data using GWR from a large strip trial, we recommend
that analysts use a fixed bandwidth based on the layout of the trial.
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