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Abstract

Steel fiber reinforced concrete (SFRC) structures have been widely adopted

and attracted great research attention due to their excellent performance in

resisting tension and flexure bending. However, the existing analytical and

numerical analyses of SFRC structures rely mainly on the experimental data of

material tests, thereby being suitable for a case-by-case basis. This is due to the

lack of a general and reliable constitutive material model for SFRC, which ana-

lytically considers the fiber-dependent parameters such as fiber geometry, fiber

stiffness, and interface properties of fibers and concrete matrix. This study pre-

sents an approach to modify the concrete plastic damage model to represent

the SFRC material constitutive relations for simulating the structural behavior

of SFRC. In this approach, the general procedure to integrate the bridging

effect of fibers through the pull-out mechanism into the constitutive relation

of SFRC was proposed. The comparison between the numerical and experi-

mental results was conducted to verify the reliability of the proposed model.

The results demonstrated the proposed model could well represent the mate-

rial performance of SFRC and the numerical simulations could capture reason-

ably the effect of the volume fraction, geometry, and properties of fibers on the

structural response of SFRC.
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1 | INTRODUCTION

Plain concrete is intrinsically brittle and has a low capac-
ity under tension, which can result in premature failure
of structures. Therefore, considerable efforts to improve
the concrete properties have been made over the recent
decades. Among those attempts, the incorporation of
fibers into the concrete matrix is one of the effective
approaches.1–3 In terms of the material properties, steel
fiber reinforced concrete (SFRC) demonstrates superior
performance in tension capacity, energy absorption,
impact resistance, fracture toughness, and postcracking
behavior.4–7 The key feature of SFRC is the ability to
transfer the tension stress after the formation of cracks in
the mortar, which helps postpone the crack propagation
and opening. In terms of structural scale, many previous
studies demonstrated that fiber reinforcement signifi-
cantly enhanced the capacity, ductility, and postpeak
behavior of reinforced concrete beams, columns, and
beam-column joints.8,9 However, most of the research
attention is currently focusing on experimental investiga-
tion whereas only a few studies paid attention to develop-
ing or investigating constitutive material models for
SFRC. Therefore, the current procedure for simulating
SFRC structures requires many experimental data from
material tests for calibration, thereby being applicable on
a case-by-case basis.

The available material models of SFRC in the litera-
ture have been derived from three primary methods:
(1) discrete method, (2) empirical calibration, and (3) con-
tinuum-damage based theory. These methods have
shown pros and cons when being adopted for developing
a constitutive material model. First, the discrete method
adopted the concept of separating the fiber phase from
the concrete matrix phase, thereby increasing the
computational cost significantly.10–12 Even though the
discrete-based models such as lattice models could pre-
dict accurately the response of SFRC at the mesoscale
level, their complexity and high computational cost
impeded them from being deployed in large-scale struc-
tures. The second method, which is simpler and more
feasible, is to calibrate the material parameters of a plain
concrete model based on experimental tests of SFRC.13–16

However, this method is mainly based on fitting experi-
mental data, and hence the fiber bridging mechanism
cannot be physically captured in the calibrated models,
which may lead to a significant error in prediction if
those models are employed in other cases. This type of
model is based on a case-to-case basis since a calibrated
model for a particular concrete with a certain type and
volume fraction of fiber may not be applicable for other
SFRC. Finally, the available approaches based on the
continuum-damage theory exhibited a balance between

computational cost and accuracy. Those models taking
into account of essential fiber bridging mechanism are
able to reflect the variation in structural performance due
to the effect of volume fraction and fiber orientation with
a reasonable computational cost.17–19

From the above reviews, the mechanics-based
continuum-damage theory is an effective approach for
deriving a constitutive model of SFRC. However, in the
literature, the constitutive models derived from this
approach are still scarce and have several limitations.17,19

Those models provided the fundamental concept at the
material level, and they have not been verified for
large-scale structural components. In addition, to imple-
ment those models, a user-material subroutine suitable
for finite element software is usually required, which is
not convenient in practice.20 To overcome these difficul-
ties, this study proposes a procedure to modify the con-
crete damaged plasticity model (CDPM) in ABAQUS.
The principal components of CDPM for SFRC including
the yield criterion, dilation angle of flow rules, damage
evolution, and hardening/softening rules are proposed to
capture the crack bridging stress of fibers. The derivation
is based on the physical working mechanism of steel
fibers.

2 | CONCRETE DAMAGED
PLASTICITY MODEL

2.1 | Overview

The nonlinearity of concrete behavior can be character-
ized by two distinguished mechanical processes: (1) dam-
age evolution, which is caused mainly by the microcrack
coalescence and macroscopic crack growth; and (2) irre-
versible deformation such as the inelastic volumetric
expansion. The use of continuum damage mechanics can
simulate the damage process in concrete, thereby captur-
ing the degradation of stiffness and the softening behav-
ior.21,22 Meanwhile, the theory of plasticity can be
successfully applied to capture the inelastic deformation
of concrete during the unloading process. Therefore, the
constitutive models based on the combination of both
theories of damage mechanics and plasticity are one of
the most effective approaches to simulate the nonlinear
behavior of concrete.

In brief, the CDPM, which is first introduced by
Lubliner et al.23 and later modified by Lee and Fenves,24

is presented in this section before modifications pre-
sented in the next section. The model adopts the isotropic
hardening in a combination with the isotropic damage to
achieve simplicity but ensure the necessary accuracy. The
key elements of this model including the yield criterion,
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flow rule, hardening/softening rule, and function of dam-
age evolution are summarized subsequently.

2.2 | Yield function

The yield function proposed by Lubliner et al.23 and later
modified by Lee and Fenves24 is adopted in CDPM. In
the effective stress space, the function is expressed in the
following form

where αand γ are dimensionless constants to be cali-
brated from material tests; p is the effective hydrostatic
pressure; q is the Mises equivalent effective stress; σmax is
the maximum of principal stress; σc εpc

� �
and σt εpt

� �
are

respectively the effective compressive and tension cohe-
sion stress determined by the hardening/softening rule;
and εpc and εpt are the equivalent compressive and ten-
sion plastic strain, respectively.

The constants α governing the biaxial compressive stress
state can be determined based on the ratio between the equi-
biaxial compressive strength f bc and uniaxial compressive
strength f 0c by using Equation (2). Meanwhile, the param-
eter γ governing the triaxial stress state is calculated from
Equation (3) where Kc is the ratio of J2 on the tensile
meridian and that on the compressive meridian, respec-
tively. According to experimental evidence of plain con-
crete, the ratio f bc=f c are in the range from 1.10 to 1.16
while Kc is conventionally taken as 2/3 in this study.

α¼ f bc=f c�1
2f bc=f c�1

ð2Þ

γ¼ 3 1�Kcð Þ
2Kc�1

ð3Þ

2.3 | Flow rule

Due to the significant change in the volumetric strain of
concrete material, the nonassociated flow rules are com-
monly used in the constitutive model of concrete includ-
ing CDPM. The potential function adopted in this model
is the Drucker-Prager hyperbolic function:

G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵf ct tanψð Þ2þq2

q
�p tanψ ð4Þ

where ψ isthe dilation angle measured in the p–q plane at
high confining pressure; f ctis the uniaxial tensile stress at
failure; and ϵ is the parameter, referred as the eccentric-
ity, that defines the rate at which the function
approaches the asymptote. This flow potential, which is
continuous and smooth, ensures that the flow direction
to be uniquely determined.

2.4 | Hardening and softening rules

In the CDPM, isotropic hardening/softening rules are
adopted and the function with controlling parameters are
defined as the equivalent plastic strain. Due to the signifi-
cant difference in the compression and tension behaviors,
the hardening/softening rules of concrete are defined by
two different functions σc εpc

� �
and σt εpt

� �
as expressed in

Equation (1). Under the uniaxial stress state, by assuming
that the direction of the principal stress σ1 is the loading
direction, the remaining principal stresses σ2 and σ3
equal to zero. By substituting the uniaxial condition in
Equation (1), the effective compressive and tensile stres-
ses for uniaxial loading is reformulated as follows:

σc εpc
� �¼ σ1 εpc

� �
if σ1 < 0 ð5Þ

σt εpt
� �¼ σ1 εpt

� �
if σ1 > 0 ð6Þ

From Equations (5) and (6), the hardening/softening
rules of CDPM have to match with the stress versus
plastic strain curve of concrete under uniaxial tension
and compression loading. In ABAQUS, for convenience,
the tabular form of stress versus inelastic strain
extracted from uniaxial tests can be used as inputs.
Then, the software automatically converts the inelastic
strain (εinc for compressive behavior and εint for tension
behavior) into the plastic strain based on the following
expressions

εpc ¼ εinc� dc
1�dc

σc
Ec

ð7Þ

f σ1,σ2,σ3ð Þ¼ 1
1�α

q�3αpþ σc εpc
� �

σt εpt
� � 1�αð Þ� 1þαð Þ

 !
σmaxh i

0
BBB@ � γ �σmaxh i

1
CCCA�σc εpc

� � ð1Þ
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εpt ¼ εint� dt
1�dt

σt
Ec

ð8Þ

where σc and σt are stress points obtained from the uni-
axial compressive and tension tests, respectively; Ec is the
elastic modulus of concrete; dc and dt are respectively the
damage variables in compression and tension determined
from damage laws, which are presented in the next
section.

2.5 | Damage

The inelastic behavior of a ductile material can be simu-
lated by adopting the plasticity theory where the total
strain tensor ε½ � can be decomposed into two parts includ-
ing the elastic strain tensor εe½ � and plastic strain tensor
εp
� �

, and then stress state can be determined as follows:

ε½ � ¼ εe½ �þ εp
� � ð9Þ

σ½ � ¼ D½ �e ε½ �� εp
� �� � ð10Þ

where σ½ � is the stress tensor and D½ �e is the initial
stiffness tensor. Figure 1 illustrates the loading and
unloading response of a material described by the plastic-
ity theory. It can be seen that the initial stiffness of the
material remains unchanged under the unloading condi-
tion, thereby the inelastic strain εin equaling to the plastic
strain εp (see Figure 1). However, the degradation of the
unloading stiffness of concrete material always occurs

due to damage (see Figure 2). This leads to the fact that
the inelastic behavior of concrete material cannot be
entirely reflected by the plasticity theory. Hence, CDPM
adopts a scalar variable d, 0≤ d≤ 1, to simulate the pro-
gressive material damage of concrete as

σ½ � ¼ 1�dð Þ D½ �e ε½ �� εp
� �� � ð11Þ

Under the uniaxial monotonic loading conditions,
variable d can be characterized by two damage variables
dc and dt that respectively represent damage of concrete
in compression and tension. Therefore, Equation (11) can
be expressed in the scalar form for the uniaxial loading
condition as follows

σc ¼ 1�dcð ÞEc εc� εpc
� � ð12Þ

σt ¼ 1�dtð ÞEc εt� εpt
� � ð13Þ

where Ec is the elastic modulus of concrete; εc and εpc are
respectively the total strain and plastic strain in compres-
sion; and εt and εpt are the total strain and plastic strain
in tension respectively.

3 | PROPOSED MODIFICATION
FOR SFRC

3.1 | General

The presence of macro steel fibers improves the mechani-
cal characteristics of concrete material through the

FIGURE 1 Loading and unloading responses of the

elastoplastic model.

FIGURE 2 Loading and unloading responses of damage plastic

model of concrete.
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bridging effect at cracks. In terms of the tension behavior,
the postpeak behavior of SFRC is significantly better than
that of plain concrete (see Figure 3). When a high fiber
volume fraction is used, SFRC can attain the strain hard-
ening behavior after the formation of first crack
(Figure 3c). This observation demonstrates that the ten-
sion behavior of SFRC is significantly different from plain
concrete. Accordingly, the aspects of CDPM related to
the tension response including the tension softening rules

and tension damage rules are modified to consider the
bridging effect of fibers.

In terms of the compressive behavior, the previous
studies indicated that the bridging effect of fiber at cracks
can result in the slight passive confining stress in out-
of-plane direction.25–28 However, that influence is only
effective in improving the biaxial strength of SFRC26,27,29

(as seen in Figure 4a) while the uniaxial and triaxial
strength of SFRC seems to be not much different from

FIGURE 3 Uniaxial tension

curves including σc versus εc and

σc versus w (crack opening

displacement) of plain and fiber

reinforced concrete.

FIGURE 4 The

experimental data of plain and

fiber reinforced concrete under

compressive biaxial tests29 and

triaxial tests.30–33 (a) Biaxial

behavior and (b) triaxial

behavior.
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the plain concrete30–33 (see Figure 4b). Furthermore, the
confining stress yields smaller plastic volumetric strain,
thereby leading to a reduction of the dilation characteris-
tics (i.e., dilation angle) of SFRC. Therefore, the confining
effect of fiber reinforcement is necessary to be considered
in the compressive behavior of SFRC. Based on the above
discussion, the primary modifications of CDPM for SFRC
are presented as follows:

• Since the confining effect of fibers on the compressive
behavior of SFRC is considered, the ratio f bc=f

0
c in

Equation (2) and the dilation angle ψ in Equation (4)
are modified. Meanwhile, the constant governing the
triaxial state of yield surface Kc in Equation (3)
remains similar to plain concrete.

• The available empirical model for SFRC under the
compressive uniaxial loading is adopted to calculate
the compressive hardening/softening rules and the
compressive damage law.

• The crack bridging effect of fibers into the tension
hardening/softening rules and the tension damage law
for SFRC is analytically considered and the corre-
sponding derivations are made.

3.2 | Yield function

As mentioned in Section 2.2, the yield function of CDPM
is governed by two constants α and γ. The first constant
governs the yield surface at the compressive biaxial fail-
ure state while the second one controls the shape of the
deviatoric plane of the yield surface at the compressive
triaxial failure state. As discussed in Section 2.2, the
experimental findings in the literature indicated that tri-
axial failure state of SFRC was quite similar to plain con-
crete. Thus, the effect of fiber reinforcement on constant
γ is negligible. Meanwhile, the compressive equibiaxial
strength of SFRC has been consistently higher than that
of plain concrete, which indicates that the fiber presence
has a significant influence on the biaxial failure state of
concrete material. Therefore, constants α is affected by
the incorporation of fibers and it is modified for SFRC as
described in the following section.

3.2.1 | Constants α and ratio f bc=f
0
c

Under the biaxial compression, the failure of plain con-
crete is caused by the tensile splitting cracks parallel to
the unloaded face. Before cracking, the presence of steel
fibers has a negligible influence on the stress–strain
response of SFRC.26,27 However, after cracking, the

inclusion of fibers reduces the lateral strain in the
unloaded direction considerably, thereby inducing con-
fining pressure. According to the test data, previous
investigations demonstrated that the increase in biaxial
compressive strength of fiber concrete could be attributed
to this confining pressure of fibers.26,27,29 In addition, the
inelastic behavior of SFRC under biaxial compression
can be considered to be similar to that of plain concrete
under triaxial state of stress.25 Hence, in the present
study, the inclusion of fibers in the concrete is treated as
analogous to applying a confining pressure in the direc-
tion of σ3. That is, the strength envelope for SFRC under
biaxial compression (σ1, σ2) can be regarded as equiva-
lent to the failure envelope for an analogous plain con-
crete under triaxial compression (σ1, σ2, σ3), where σ3 is
the confining pressure (see Figure 5). The value of the
confining pressure in the σ3 direction is assumed to be
equal to σtuwhere σtu is the residual postcracking tensile
strength as proposed by Lim et al.34 Although there is a
need to incorporate the fiber pull-out characteristics, this
modeling can be considered satisfactory, in the case that
most of the available models for plain concrete also
attempt to model the failure envelopes using only stress
variables.27

Based on the above discussions and assumptions, the
equation for equibiaxial state of SFRC is presented as
follows

f 0, f fiberbc , f fiberbc

� �¼ f σtu, f bc, f bcð Þ ð14Þ

where f is the yield function expressed in Equation (1).
By solving the equation, the ratio of f fiberbc =f fiberc , and αfiber

is obtained by Equations (15) and (16) as:

f fiberbc

f fiberc

¼ σtu
f 0c

1þ2αþ γ

1�2α
þ f bc

f 0c
ð15Þ

FIGURE 5 Equivalent triaxial state to determine the biaxial

compressive strength of steel fiber reinforced concrete.
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αfiber ¼ f fiberbc =f fiberc

� ��1

2f fiberbc =f fiberc

� ��1
ð16Þ

where f fiberc is the uniaxial compressive strength of SFRC
and f 0c is that of plain concrete. From the above equa-
tions, it can be seen that the parameter αfiber depends on
σtu, which can be generally derived from the pull-out
mechanism34

σtu ¼ 2ηlη0
V fLfτu
df

ð17Þ

where η0 is the orientation factor taken as 0.405, Vf is the
volume fraction of fibers, Lf and df are respectively the
length and diameter of a fiber, τu is the ultimate bond
strength of steel fibers and concrete matrix taken as
0:4

ffiffiffiffi
f 0c

q
, and ηl is the length efficiency factor taken as 0.5

when Lf ≤Lc and 1�Lc= 2Lf
� �

when Lf > Lc. Lc denotes
the length required to develop the ultimate fiber stress τu,
that is, Lc ¼ 0:5σfudf =τu.

34 By adopting the αfiber in the
yield function, the total envelop of biaxial state in case of
SFRC was obtained and compared to the experimental
data from the previous studies of Golpasand et al.35 and
Bao et al.36 (as shown in Figure 6). It can be seen from
the figure, the biaxial failure of SFRC is well predicted
for specimens adopting the volume fraction of fibers from
0% to 1%. However, with the increase in the volume frac-
tion of fibers, the proposed model tends to underestimate
the biaxial strength of SFRC. This can be attributed to
the conservative assumption of the equivalency between
fibers confining stress and residual stress of SFRC deter-
mined in Equation (17). It should be noted that
Equation (17) was derived for SFRC with the softening
postcrack behavior, that is, volume fraction of fibers
ranging from 0% to 2%.34 With the higher volume

fraction, the postcrack response of SFRC show hardening
behavior, thus the confining stress of fibers might be
higher than the value estimated from Equation (17).
Although further studies can be conducted to achieve the
more accurate modeling of case with high-volume frac-
tions, this modeling can be considered satisfactory for
engineering practice where the practical maximum fiber
volume fraction is limited to about 1%–2%. Figure 7
shows the variation of triaxial failure of SFRC by adopt-
ing the modified parameter αfiber. Due to the increase of
the fiber volume fraction, the triaxial strength of SFRC
increases slightly and the proposed model can capture
this phenomenon. However, the yield function proposed
by Lubliner et al.23 in Equation (1) is not suitable for
representing the failure of concrete under high hydro-
static pressure (higher than five times uniaxial compres-
sive strength). Therefore, discrepancy between the
estimated values and test data from hydrostatic pres-
sures over 120MPa can be observed from the figure.
Modeling the behavior of concrete under large hydro-
static pressures is out of the scope of the proposed
model.

3.3 | Flow rule

According to the definition of potential flow function
G shown in Equation (4), the dilation angle is the vital
parameter that governs the flow rule. In order to refine it
more conveniently, two assumptions are adopted, that is,
(a) the plastic flow angle is not associated with Lode
angle, and (b) the flow direction of the total plastic strain
is always identical to that of plastic strain increment.
Hence, according to Papanikolaou and Kappos,37 the fol-
lowing geometrical relationship can be obtained:

FIGURE 6 Biaxial strength

envelope for steel fiber

reinforced concrete. (a) Compare

with Golpasand et al.35 and

(b) compare with Bao et al.36
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θ¼�dp
dq

¼� dp
dG

dG
dq

¼� q

tanψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵf ct tanψð Þ2þq2

q ð18Þ

It should be noted that the linear potential function,
G¼ q�p tanψ�C, is equivalent to the Drucker-Prager
hyperbolic function in Equation (4) when the hydrostatic
pressure p is compressive. Hence, for simplicity, the lin-
ear potential function is used for determining the dilation
angle. By substituting the linear form of function G into
flow rule _εp ¼ _λ ∂G

∂σ , the dilation angle can be calculated as
follows:

dεp1 ¼
1
3
tan ψð Þþ2σ1�σ2�σ3

2q

� �
dλ ð19Þ

dεp2 ¼
1
3
tan ψð Þþ2σ2�σ1�σ3

2q

� �
dλ ð20Þ

dεp3 ¼
1
3
tan ψð Þþ2σ3�σ2�σ1

2q

� �
dλ ð21Þ

dεpv ¼ dεp1þdεp2þdεp3 ¼ tan ψð Þdλ ð22Þ

dep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

dεp1�dεp2ð Þ2þ dεp2�dεp3ð Þ2þ dεp3�dεp1ð Þ2
	 
r

¼ 3
2
dλ

ð23Þ

dep

dεpv
¼ ep

εpv
¼� 3

2tan ψð Þ ð24Þ

Physically, the incorporation of fiber leads to the
equivalent confinement on the concrete matrix as men-
tioned in the previous section, therefore the dilation
angle of SFRC may be reduced due to a smaller plastic
volumetric deformation. The similar phenomenon has

also been reported in previous investigations on the FRP
confined concrete.38–41 The dilation rate of concrete
reduces due to the presence of passive confining stress
of FRP. With the purpose to reflect the function of
fibers reasonably, it is assumed that the dilation angle
of SFRC is equivalent to that of confined concrete with
the fiber confined stress equaling to the residual post
cracking stress, σtu. This assumption is deemed reason-
able since the post cracking stress of SFRC postpones
the splitting crack development, thereby reduces the
rate of plastic volumetric expansion. The function of
dilation rate of normal concrete under confined stress
σtu is

38

β¼ �2

a σtu
f 0c

	 
b
þ1

�0:5¼ dεp1
dεp3

ð25Þ

where a¼ 65e�0:015f c ; b¼ 1:5� e�0:02f c . By substituting the
dilation rate into Equation (24), the dilation angle of FRC
can be expressed as follows

ψF ¼ψ σtuð Þ¼ 1
2
2βþ1
β�1

ð26Þ

The predictions are plotted against the test results
extracted from the previous study in Figure 8, from
which there are scatter results even though the relation-
ship between the dilation angle and fiber content is quite
clear. This means that the actual fiber confining stress
might not totally equal the residual post cracking stress.
Future studies can be conducted to improve the model by
add one calibration factor to the residual stress for match-
ing the experimental test. In this study, due to the lack of
test data of dilation rate for SFRC, the fiber confining
stress is still assumed to be σtu as also adopted by the pre-
vious study.27

FIGURE 7 Failure state of

triaxial compressive loading for

steel fiber reinforced concrete

(comparison with Jenn-Chuan

Chern and Hong.30)

(a) Compressive meridian and

(b) tension meridian.
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3.4 | Hardening and softening rules

3.4.1 | Compressive behavior

Experimental results from the previous study17 indicated
that fiber reinforcement leads to the advantageous effects
on the uniaxial compression of concrete specimens
such as:

• The compressive strength slightly increases with the
fiber volume fraction.

• The strain at peak stress increases with the fiber vol-
ume fraction.

• The slope of the postpeak stress–strain relation
decreases with the increase of the fiber volume fraction
and aspect ratio of fibers.

The compressive hardening/softening function in the
previous study17 is employed in this study. This function,
providing a smooth transition from pre to post peak
response, is expressed as follows:

σc

f fiberc

¼Y ηcð Þ¼Y 0þ 1�Y 0

A
e�B1ηc �Y 0

� �
1� e�B2ηc
� � ð27Þ

where Y 0 ¼ f 0c
f fiberc

(f 0c is the initial yield stress of SFRC; f fiberc

is the uniaxial compressive strength of SFRC) and ηc ¼ εinc
εpinc

(εinc is the inelastic compressive strain of SFRC as
described in Figure 2 and εpinc is the inelastic compressive
strain at the peak stress). The constants must follow

Equations (28) and (29) to ensure that the peak occurs
at Y= 1:

B1 ¼ B2e�B2

1� e�B2

1�Y 0

1�Y 0e�B2
ð28Þ

A¼ e�B1 1� e�B2
� � 1�Y 0

1�Y 0e�B2
ð29Þ

The slope of the postpeak response of the stress–strain
curve is governed by parameter B2 as expressed in
Equation (30). As aforementioned, the postpeak slope of
the uniaxial compressive behavior in the case of SFRC
decreases with the increase of the fiber volume fraction.
To consider this phenomenon, the following nonlinear
relationship between B2 and the volume fractions of
fibers Vf is adopted as follows17:

B2 ¼ 0:1�0:08 12:5�Vf
� �0:1 ð30Þ

Furthermore, the compressive strength of SFRC, f fiberc ,
and the strain at the peak stress εpc were demonstrated to
be a function of the fiber volume fraction (Vf ) and aspect
ratio (af ¼ Lf

df
).43,44 The variation of f fiberc and εpc with the

volume fraction and aspect ratio of fiber are expressed by
the flowing equations:

f fiberc V f ,af
� �¼ f 0c 1þλv V f

� �
:λa af
� �� � ð31Þ

εpc V f ,af
� �¼ εpc0 1þλvε Vf

� �
:λaε af
� �� � ð32Þ

where f 0c and εpc0 are, respectively, the compressive
strength and strain at the peak stress of plain concrete.
Four parameters λv, λa, λvε, and λaε are expressed by the
Equations (A8)–(A11) in Appendix A.

3.4.2 | Tensile behavior

The mechanisms governing the behavior of plain con-
crete and SFRC can be identified via typical experimental
results of tension tests, shown in Figure 3. In the case of
plain concrete, a single major crack forms immediately
after the stress exceeding the tensile strength of concrete
matrix, and quickly dissipating all the energy, leading to
a very sharp decrease in the postpeak behavior. In con-
trast, a considerable enhancement in the toughness and
fracture resistance can be observed from the behavior of
SFRC. This is due to the bridging effect of fibers during
the opening process of the first crack, which enables to
transfer further stresses between two sides of the crack.

FIGURE 8 Dilation angle of steel fiber reinforced concrete

(comparison with Chi et al.42).
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The concept of uniaxial tension model of SFRC is illustrated
in Figure 9. As can be seen from the figure, the tensile force
transferring at an opening crack include two parts: (1) the
concrete cohesive resistance (σc wð Þ) and (2) the fiber
bridging stress (σF wð Þ). Therefore, the overall response of
SFRC can be expressed in the following equation:

σFRC wð Þ¼ σC wð ÞþσF wð Þ ð33Þ

where σFRC is the overall tension stress of SFRC and w is
the crack opening displacement.

The following subsections present the procedure to
simulate the postcracking response of SFRC. Section 3
exhibits the cohesive stress of plain concrete while the
full bridging stress of fibers at crack surface can be
obtained by following the procedures in Sections 3.4.2.2,
3.4.2.3, and 3.4.2.4. Section 3.4.2.5 introduces the method
to combine the cohesive stress of plain concrete and fiber
bridging stress to obtain the overall tension stress
response of SFRC.

Cohesive stress of plain concrete σC wð Þ
Using cohesive crack models is the simplest method to
describe the fracture process of concrete material. In
those models, it is assumed that a cohesive crack is a ficti-
tious crack able to transfer stress from one side to the
another. As a result, the tension softening behavior of
concrete can be fully described by the relationship
between cohesive stress and crack opening. According to
previous studies in the literature, the bilinear function of
the stress-crack opening law is one of the simplest, yet
reliable, model to capture the softening response of con-
crete material.45,46 The bilinear model adopted in this
study is illustrated in Figure 10, which is governed by
two parameters including the tensile strength of plain
concrete (f ct) and fracture energy (GF). Those two param-
eters f ct and GFcan be obtained by using the equations
suggested by FIB model47 and Equations (A3) and (A4)
in Appendix A presented by Bažant and Becq-Girau-
don.42 The relationship of stress (σC) and crack opening
displacement w in the bilinear model can be expressed as
follows:

σC ¼
f ct�0:8f ct

w
w1

w<w1 ¼GF

f ct

0:2f ct�0:2f ct
w�w1

wu�w1
w1 <w<wu ¼ 5GF

f ct
0 wu <w

8>>>><
>>>>:

ð34Þ

Crack bridging stress σF wð Þ due to fiber pull out
mechanism
The fiber bridging law can be obtained by integrating the
individual contribution of all fibers across the crack sur-
face as illustrated in Figure 11. Due to the random distri-
bution, the probability density functions of the
orientation of fibers p(θ) and the distance between
the crack surface and fiber centroid p(z) are necessary to
be incorporated in the integration. According to Lin and

FIGURE 10 Bilinear cohesive crack model of plain concrete

(stress vs. crack opening displacement).

FIGURE 9 Conceptual model of steel fiber reinforced concrete

(SFRC). (a) Force diagram at the crack surface of SFRC. (b) Stress

versus crack opening relationship of SFRC.
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Li,48 the model of fiber bridging cracks can be expressed
in the following equation:

σF wð Þ¼ 4Vf

π df
� �2

Z π=2

θ¼0

Z lf=2ð Þcosθ
z¼0

P w,θ,zð Þp θð Þp zð Þdzdθ

ð35Þ

where P w,θ,zð Þ is the pull-out force of a single fiber at a
crack surface. In the case of uniform random distribution
( θð Þ¼ sinθ and p zð Þ¼ 2

Lf
), Equation (35) can be rewrit-

ten as:

σF wð Þ¼ 8Vf

πLf df
� �2

Z π=2

θ¼0

Z lf=2ð Þcosθ
z¼0

P w,θ,zð Þsinθdzdθ ð36Þ

However, the feasibility of analytical derivation of
Equation (36) relies on the complexity of pull-out func-
tion P w,θ,zð Þ. To ensure the generality of the model, the
numerical form of Equation (36) according to Gauss–
Legendre quadrature rule49 is expressed as follows:

σF wð Þ¼ 8Vf

πLf df
� �2X10

i¼1

X10
j¼1

P w,θi,zj
� �

sinθiψ θið Þψ zj
� � ð37Þ

where θi,zj,ψ θið Þ, and ψ zj
� �

are determined from the
Legendre polynomial (as described in Appendix C).

The detail for calculating the numerical integration can
be found in Appendix A. The fiber bridging model can
be fully obtained when the pull-out response of a single
fiber at the crack surface is determined. The pull-out
function of straight fibers and hook-end fibers are pre-
sented in the below sections.

Pull out behavior of straight steel fiber
This section presents the derivation of the relationship
between pull-out force and crack opening displacement
of straight steel fibers. In this study, it is assumed that
fibers are pulled out from the side associated with the
shorter embedded length.48 The pull-out response of a
fiber includes two phases: (a) debonding phase and
(b) pull-out phase (see Figure 12). The interfacial fric-
tional slip between a fiber and matrix is activated when
the debonding of the fiber occurs. During the debonding
phase, the interface of matrix and the fiber is divided into
two zones consisting of the intact zone and the debonded
zone with length l as described in the figure. The length
of debonded zone increases with the applying pull-out
force P. When l reaches the embedded length of the fiber
L, the fiber is debonded completely from the matrix,
which means the fiber is completely pulled out from the
matrix. During the pull-out phase without rupture,
the total rigid-body movement of the fiber is considerably
larger than elastic deformation of the fiber.48,50 Accord-
ing to the schematic diagram of fiber pull-out response
described in Figure 12, the interfacial slip Δ between
fiber and matrix can be calculated from the following dif-
ferential equation proposed by Bao and Song50:

d2Δ
dx2

¼ 4 1þηð Þ
Ef df

τ Δð Þ ð38Þ

where τ is the interfacial stress between fiber and matrix,
Ef and df are, respectively, the elastic modulus and diam-
eter of the fiber, and constant η is determined by
Equation (39)FIGURE 11 Illustration of fiber bridging.

FIGURE 12 Schematic

diagram of the pull-out response

of a single fiber.
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η¼ Vf Ef

1�Vf
� �

Ec
ð39Þ

where Vf is the volume fraction of fiber. To solve
Equation (38), the constitutive relation between the inter-
facial stress τ Δð Þ and the slip Δ is required. According to
Le et al.,19 a linear softening relationship should be
adopted for straight steel fibers, and the model is
expressed as follows:

τ Δð Þ¼ τ0 1�β
Δ
df

� �
ð40Þ

where τ0 is the frictional sliding shear stress at the tip of
debonding zone where no slip occurs (Δ = 0), β is a non-
dimensional softening parameter, and df is the fiber
diameter. However, the experimental findings of the pull-
out response of steel fibers and concrete matrix demon-
strated an exponential shape instead of linear function.51

Therefore, this study adopted the exponential slip-
softening function proposed by Bao and Song50 for the
interfacial relationship of steel fiber and concrete matrix.
The function is presented as follows:

τ Δð Þ¼ τ0e
�βΔ

df

	 

ð41Þ

From this relationship, the pull-out model for a
straight steel fiber perpendicular to the crack surface with
the crack opening displacement w is expressed as follows:

P¼
ffiffiffi
2

p
πd2f τ0 1þηð Þ

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

exp βw
2df

	 

vuut for 0≤w≤w0 ð42Þ

for the debonding phase, and

P¼
ffiffiffi
2

p
πd2f τ0 1þηð Þ

ω
exp

�β w�w0ð Þ
df

� �

� tanh
ωLffiffiffi
2

p
df

� tanh
ω w�w0ð Þffiffiffi

2
p

df

 ! ð43Þ

for the fiber pull-out phase (w0 ≤w≤Lþw0), where

η¼ Vf Ef

1�Vf
� �

Em

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1þηð Þβτ0=Ef

q

w0 ¼ 4df
β

ln cosh
ωLffiffiffi
2

p
df

 !
ð44Þ

and P¼ 0 when w≥Lþw0. Vf , Ef , Em, and L are the vol-
ume fractions of fibers, elastic modulus of fiber, elastic
modulus of concrete matrix, and embedded length of
fiber in concrete matrix, respectively; and w0 is the crack
opening displacement at the instant when the debonding
along full length of the embedded fiber segment
completes.

Equations (42) and (43) are applicable to fibers per-
pendicular to the crack surface. For nonperpendicular
fibers with an inclined angle θ as described in Figure 12,
previous studies showed that such orientation signifi-
cantly affects the pull-out force P. It is also found that
due to the snubbing effect, P increases with the increase
of the inclination angle from 0� to 30�.48,51 The snubbing
factor αsnub can be calculated using the following
equation:

αsnub ¼ ef θ ð45Þ

where f is the snubbing coefficient and taken as 0.9 for
steel fiber.52 However, when the inclined angle θ is larger
than 30�, the pull-out force decreased significantly due to
the occurrence of matrix spalling phenomenon.52 The
matrix spalling effect can be expressed as:

αspal ¼ cosθð Þk ð46Þ

where k is the spalling coefficient and taken as 1.6 for
concrete matrix.52,53 Both snubbing and matrix spalling
effect can be incorporated in the pull-out force equation
as follows:

P w,θ,zð Þ¼P w,θ¼ 0,zð Þαsnubαspal ð47Þ

where P w,θ¼ 0,zð Þ is calculated based on Equations (42)
and (43).

Pull out behavior of hooked end fiber
Experimental findings indicated that hooked-end fibers
exhibit a significantly higher pull-out strength and pull-
out work owing to the anchorage effect of hook
parts.54–56 This study adopts the concept of a frictional
pulley along two plastic hinges to consider the mechani-
cal anchorage of the hook into the pull-out model of
hook-end fibers.55,56 The concept of the model is
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illustrated in Figure 13 at which the pull-out phase of
hooked-end steel fibers undergoes the cold work defor-
mation through the plastic hinge to straighten the hook.
From the figure, the straightening process can be divided
into 2 stages. In the first stage (see Figure 13a,b), both
parts of fiber L1 and L2 are straightened at two plastic
hinges and the corresponding increase of pull-out load
ΔP1 can be determined as follows55,56:

ΔP1 ¼ σyπdf
2

12cosγF 1�μsin γF
2

� �2 ð48Þ

where σy is the yield strength of fiber, μ is the kinetic fric-
tion coefficient of matrix and fiber and taken as 0.9, and
γF is the hook angle as described in Figure 13. After stage
2, when the hook part L2 is totally pulled out from the
matrix, there is only one plastic hinge of hook part L1 is
active. Therefore, the pull-out load drops to P2 with the
corresponding increase ΔP2 contributed by only one plas-
tic hinge as follows55,56:

ΔP2 ¼ σyπdf
2

24cosγF 1�μsin γF
2

� � ð49Þ

With the contribution of mechanical anchorage pre-
sented above, the extended pull-out model for hooked-
end fiber is described in Figure 13d. For the debonding
phase with 0≤w≤w0, the pull-out force is calculated
similarly to the case of smooth fiber according to
Equation (42). For the straightening contribution from
both plastic hinges with w0 ≤w≤w0þL2, the pull-out
force is calculated as follows:

P¼ P0þΔP1

L2
w�w0ð Þ ð50Þ

For the straightening contribution from one plastic
hinge with w0þL2 ≤w≤w0þL2þL1, the pull-out force
is determined by using the following expression:

P¼P0þΔP1þΔP2�ΔP1

L1
w�w0�L2ð Þ ð51Þ

After the straightening process, the fiber is subse-
quently pulled out of the matrix by the same frictional
mechanism as experienced by a smooth fiber as described
in the previous section. However, instead of adopting
Equation (43) for w0þL2þL1 ≤w≤w0þL, the pull-out
force is now simplified by a linear approximation as
follows:

P¼ P0þΔP2

L1þL2�L
w�w0�Lð Þ ð52Þ

P0 is the pull-out force at the moment when the com-
plete debonding along the full length of the embedded
part of fiber occurs, and calculated based on Equation (42)
as follows:

P0 ¼
ffiffiffi
2

p
πd2f τ0 1þηð Þ

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

exp βw0
2df

	 

vuut for 0≤w≤w0 ð53Þ

Cohesive model for overall tensile response of SFRC
From Equations (42)–(53), the entire response of the
pull-out behavior of smooth or hooked-end fibers can be
obtained. By substituting those responses into numerical
integration as presented in Equation (37), the fiber bridg-
ing stress response for SFRC is determined. The detailed
example for calculating the model step-by-step is

FIGURE 13 (a) Complete

debonding of hooked-end fiber;

(b) complete straightening of the

first part of the hook;

(c) complete straightening of

two parts of hook; and

(d) simplified pull-out model of

hooked-end fiber.
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presented in Appendix A. The overall tensile response of
SFRC can be obtained by summing the cohesive stress of
plain concrete and fiber bridging stress as expressed in
Equation (34). However, this procedure leads to compli-
cated stress–strain curves of SFRC, which is not favorable
for being adopted in the numerical simulation. In this
study, the trilinear and bilinear curves described in

Figure 14 are adopted as those curves were demonstrated
to be simple but effective to model the overall tensile
response of both plain concrete and SFRC.45,57 To cap-
ture the physical phenomenon of the fiber bridging at
crack, the proposed models illustrated in Figure 14 must
include two parts, where the blue part represents the con-
tribution of fracture energy of plain concrete GF and red
part is the contribution of bridging energy Gp due to
fibers at cracks. Gp can be calculated by integrating the
Equation (37) as follows:

Gp ¼
Z w¼Lf =2

w¼0
σF wð Þdw ð54Þ

and the numerical form as:

Gp ¼ 8Vf

πLf df
� �2X10

k¼1

X10
i¼1

X10
j¼1

P wk,θi,zj
� �

sinθiψ θið Þψ zj
� �

ψ wkð Þ

ð55Þ

In the proposed model, a fictitious tensile stress f Fts is
introduced to control the softening and hardening behav-
iors of SFRC, and determined from Gp by the following
equation:

f Fts ¼
2Gp

Lf
2 �wu

ð56Þ

where wu is the ultimate crack opening displacement of
plain concrete as mentioned in the previous section. If
f Fts < 0:2f ct, the model adopts the trilinear function as
described in Figure 14a. The analytical form of the cohe-
sive cracking stress of SFRC is expressed as follows:

σFRC wð Þ¼

f ct�0:8f ct
w
w1

w<w1 ¼GF

f ct
0:2f ctwu� f Ftsw1

wFts�w1
� 0:2f ct� f Ftsð Þw

wFts�w1
w1 <w<wFts

f FtsLf
Lf �2wFts

� 2f Ftsw
Lf �2wFts

Lf

2
>w>wFts

0 w>
Lf

2

8>>>>>>>>>>><
>>>>>>>>>>>:

ð57Þ
where wFts is the corresponding displacement at fictious
tensile stress f Fts and calculated by

wFts ¼wu� f Fts wu�w1ð Þ
0:2f ct

ð58Þ

In the case of f Fts calculated from Equation (56),
which is larger than 0:2f ct but still smaller than f ct, the
model will follow the bilinear function as illustrated in

FIGURE 14 The simplified concept for steel fiber reinforced

concrete model. (a) Softening behavior when f Fts < 0:2f ct.

(b) Softening behavior when f ct > f Fts > 0:2f ct. (c) Hardening

behavior when f Fts > f ct.
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Figure 14b, and then f Fts and wFts are recalculated to
ensure that the area of red part shown in Figure 14b
equal to the bridging energy Gp:

f Fts ¼
Gpþ 3

8GF
Lf
4 � w1

1:6

ð59Þ

wFts ¼ f ct� f Ftsð Þw1

0:8f ct
ð60Þ

Subsequently, the cohesive crack stress model of FRC
described in Figure 14b is determined as follows:

σFRC wð Þ¼

f ct� f ct� f Ftsð Þ w
wFts

w<wFts

f FtsLf
Lf �2wFts

� 2f Ftsw
Lf �2wFts

wFts <w<
Lf

2

0 w>
Lf
2

8>>>>>><
>>>>>>:

ð61Þ

In the case of f Fts calculated from Equation (56)
which is larger than f ct, the cohesive cracking stress of
FRC undergoes the hardening behavior as described as
Figure 14c. As the contribution of fracture energy of plain
concrete is negligible in the case of hardening behavior,
the area under stress-crack opening relationship can be
assumed equaling to the bridging energy due to fibers at
cracks Gp. Then the peak stress f Fts of model is recalcu-
lated as follows:

f Fts ¼
4Gp�2wpeakf ct

Lf
ð62Þ

where wpeak is assumed to be equivalent to the crack
opening displacement at peak stress of fiber bridging con-
tribution. In other words, wpeak is extracted during the
calculation process of fiber bridging stress σF wð Þ by
Equation (37). Then the analytical formula for hardening
behavior is presented as follows:

σFRC wð Þ¼

f ctþ f Fts� f Ftsð Þ w
wpeak

w<wpeak

f Fts� f Fts
w�wpeak

Lf
2
�wpeak

wpeak <w<
Lf
2

0 w>
Lf
2

8>>>>>>>><
>>>>>>>>:

ð63Þ

From Equations (56)–(63), the total response of
stress-crack opening displacement under uniaxial

conditions of SFRC can be determined. In general, the
proposed model is simple but effective to capture the
fiber bridging effect through three key parameters includ-
ing Gp, f Fts, and wpeak. Those parameters are determined
based on the procedures of Sections 3.4.2.2, 3.4.2.3, and
3.4.2.4 and presented in Appendix A.

3.5 | Damage evolution

The determination of damage variables in this study is
based on the definition of the compressive and tensile
variables as the portion of normalized energy dissipated
by damage23,58:

dc ¼ 1
gc

Z εinc

0
σc εincð Þdεinc;dt ¼ 1

gt

Z εint

0
σt εintð Þdεint ð64Þ

where εinc and εint are inelastic compressive (crushing)
and tensile (cracking) strain, respectively; and gc and gt
are, respectively, the total energies per unit volume dissi-
pated through the entire deterioration process of com-
pression and tension:

gc ¼
Z ∞

0
σc εincð Þdεinc;gt ¼

Z εuint

0
σt εintð Þdεint ð65Þ

By substituting the compressive hardening rule in
Equation (27) into Equations (64) and (65), the normal-
ized crushing energy and compressive damage variable of
SFRC can be determined in Equations (A12) and (A13) of
Appendix A.

For the tension behavior, the cracking strain is deter-
mined from the crack opening displacement w based on
the crack band theory. The fundamental feature of the
crack band theory is that the given constitutive relation
with cracking strain must be associated with a certain
width leq of the crack band (as illustrated in Figure 15)59:

εinc ¼ w
leq

ð66Þ

where leq is a material constant representing the crack
band width. By substituting Equation (66) into the inte-
grations of Equations (64) and (65), the tension damage
variable can be calculated as:

gt ¼
GF þGp

leq
ð67Þ

dt ¼ 1
GF þGp

Z w

0
σt wð Þdw ð68Þ
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where GF is the fracture energy of plain concrete, Gp is
the energy caused by bridging effect of fibers, and σt wð Þ
is the total tension stress of FRC σFRC wð ), which is deter-
mined by the equations presented in Section 3.4.2.5.
Then, through the substitution of Equations (56)–(63)
into Equation (68), the analytical formulas of tension
damage variable can be obtained and presented in
Appendix B.

In numerical simulation, leq is normally taken as the
length of the smallest element.46,58 This ensures that only
a single crack band or crack occurs in each finite ele-
ment.60 However, if leq is selected based on element size,
this will lead to the inaccuracy in predicting the post-
crack behavior of concrete in the following two cases:

1. Element size is larger than the realistic maximum
crack spacing.

2. Element size is smaller than the realistic minimum
crack spacing.

In the first situation, there might be more than one
actual crack localizing inside each finite element as seen
from Figure 16a. This means that the large element size
can result in the underestimation of energy dissipation
during postcrack stage. Meanwhile, the very fine element
size can lead to the prediction of higher number of cracks
in an actual crack band as shown in Figure 16b. Hence,
the energy dissipated during postcrack stage is overesti-
mated and the stiffer response compared to actual behav-
ior is obtained. Based on those reasons, two limits on the
band width are introduced as follows Lmin ≤ leq ≤Lmax ,
where Lmin and Lmax are the minimum and maximum
crack spacing, respectively. The minimal limit Lmin can
be related to the internal structures of the material and
recommended from ag to 3ag, where ag is the maximum
aggregate size. In practice, Lmin ranges from 10 to 50mm.
The maximum limit Lmax should correspond to the

typical crack spacing of concrete structures adopting rein-
forcing bars. It can be estimated from spacing of reinfor-
cing bars in each structural element. In general, if the
element size is in the range between Lmin and Lmax , leq
corresponds to the element size. In other cases, leq equals
Lmax for coarse elements and Lmin for fine elements.

4 | NUMERICAL VERIFICATION

The steps of deriving the corresponding SFRC material
parameters based on the fiber and concrete
material properties and fiber configurations are given in
Appendices. After the completion of model derivations, it
is significant to verify the proposed model against experi-
mental data in terms of both the material and structural
scales. In this section, the reliability of the model is vali-
dated by comparing the numerical results with experi-
mental data from material and structural tests. The above
derivation is adopted to modify the CDPM in Abaqus.

4.1 | Verification with material tests

4.1.1 | Uniaxial compressive tests

The experimental results of the uniaxial compressive test
from the previous study are selected for verification.62

FIGURE 15 Illustration of crack band theory.

FIGURE 16 Two problems when using inappropriate element

size (a) Element size larger than the maximum crack spacing

(image adopted from Červenka et al.61) (b) Element size smaller

than the minimum crack spacing (image adopted from Červenka

et al.61).
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The compressive strength of plain concrete matrix was
49 MPa. The properties of hooked end steel fiber are pre-
sented in Table 1. The height and diameter of cylinder
specimens were, respectively, 300 and 150 mm, and the
test setup is illustrated in Figure 17a.

For the numerical model by using Abaqus, a three-
dimensional eight-node linear brick solid element
(C3D8R) with integration reduction is adopted to simu-
late the cylindrical specimens as describe in Figure 17b.
The displacement-controlled loads are employed in the
model as per the experiment. The model converged at
element size of 10 mm after carrying out a convergence
test, therefore, it is adopted for modeling all cases.

The numerical results are verified with the test data
and plotted in Figure 18. It can be seen that the stress–
strain curves of numerical models agree well with those
obtained from experiment in all cases with different vol-
ume fractions of fiber. This indicates that the modified
model can capture the effect of volume fraction on post-
peak behavior of SFRC under uniaxial compression.

4.1.2 | Uniaxial tension tests

Uniaxial tension tests (Figure 19a) from another study
are adopted to verify the capability of the proposed model
for capturing the tension behavior of SFRC. The experi-
ment was conducted by Amin et al.63 with two types of
commercially available steel fibers including hooked-end
(HE) Dramix® RC-65/35-BN cold-drawn wire fibers and

OL13/0.20 straight (S) high carbon steel fibers. The com-
pressive strength of the concrete matrix was 60 MPa and
the properties of fibers are summarized in Table 2. The
maximum size of aggregate ag was 10mm, thus the mini-
mum limit for crack band width Lmin is taken as ag. For
validation purpose of material tests, since the element is
normally meshed finely, the maximum limit is not neces-
sary to be considered.

To reduce the simulation time, the uniaxial tension
tests are simulated in 2D plane stress condition using a
mesh comprising 2028 three-node triangular elements
as shown in Figure 18b. The previous studies indicated
that using 2D plane stress can reliably simulate the
uniaxial response.17,19 The size of element in the mid-
dle of specimen is 5 mm which is smaller than Lmin .
Therefore, the crack bandwidth leq must equal Lmin . The
comparison of numerical results and experimental data is
illustrated in Figure 20. Three parameters τ0, β, and σy to
determine the pull-out behavior of straight and
hooked-end steel fiber are calibrated based on the test
data of specimen reinforced with 0.5% volume fraction
of fibers (as shown in Figure 20a,c). Subsequently,
those calibrated parameters are used for the case of 1%
volume fraction of fibers. The results from Figure 20
show a fair correlation between numerical findings
and test data for different types of fibers with volume
fractions ranging from 0 to 1%. This indicates that the
three parameters τ0, β, and σy calibrated in the case of
0.5% fiber volume fraction can be used to simulate
softening-behavior of SFRC with higher fiber volume
fraction up to 1%. In future, if more data are available,
recalibration for a similar fiber volume fraction should be
carried out.

Meanwhile, the incorporation of high-volume frac-
tion of fibers may lead to the strain-hardening response
of SFRC. To evaluate the capability of the proposed
model for capturing the strain-hardening response, the
results from uniaxial tensile tests conducted by are used
for verification. The test setup is illustrated in Figure 21a
while the numerical model is presented in Figure 21b.
The properties of fibers are tabulated in Table 3. The cali-
bration for three parameters τ0, β, and σy is conducted
based on the test data of specimen reinforced with 2%
volume fraction. The calibrated values of those parame-
ters are summarized in Table 2. The comparison between
the numerical results and experimental data is plotted in

TABLE 1 Material properties of

fibers for compressive tests.62
Lf (mm) df (mm) Ef (GPa)

50 0.62 210

FIGURE 17 Numerical models and experimental setup of

uniaxial compressive tests. (a) Test setup. (b) Numerical model.
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Figure 22. It can be seen that the stress–strain curves
obtained from the finite element model give a fair agree-
ment with the test data. When the volume fraction of
fibers is lower than 3%, the model can capture well the
behavior of SFRC. With higher volume fraction up to 6%,
the peak stress of the curve still can be successfully pre-
dicted by the proposed model while the ascending branch

of the curve is not well simulated. This discrepancy in
the tension stiffness as shown in Figure 22 can be attrib-
uted to the simplification of the strain-hardening behav-
ior of SFRC under tension as mentioned in
Section 3.4.2.5. The bilinear function as described
in Figure 14c might not be appropriate to capture accu-
rately the shape of strain hardening stress–strain curve of

FIGURE 18 Verification

with test results (compression

behavior) obtained from

Susetyo.62 (a) Vf ¼ 0:5%,

(b) Vf ¼ 1%, and (c) Vf ¼ 1:5%.

FIGURE 19 Numerical

models and test setup of uniaxial

tensile tests conducted by Amin

et al.63 (a) Details of tensile

specimens and test setup.

(b) Numerical model of tensile

specimens.
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SFRC. Further studies can be conducted in future to
improve the model with higher fiber volume fraction.

4.2 | Verification with structural tests

To further verify the proposed model in a large scale with
a complex stress state, the experimental data of large-

scaled fiber reinforced concrete beams with T
section from the previous study65 is adopted. The details
of beam dimension and reinforcing rebars are presented
in Figure 23. Hooked-end steel fibers with 0.75 mm in
diameter and 60 mm in length were used in that study.
The details of fiber geometry are presented in Table 4.
The specified yield strength of longitudinal and trans-
verse reinforcing steel bars was 500 MPa. The cylinder

TABLE 2 The properties of

Dramix® RC-65/35-BN and

OL13/0.20.63

Labels Fiber configuration τ0 (MPa) β σy (MPa)

OL13/0.20 1.6 0.01 NA

RC-65/35-BN 1.6 0.01 600

FIGURE 20 Verification

with test results (direct tension

with low fiber volume fraction)

obtained from Amin et al.63

(a) Straight fiber with Vf ¼ 0:5%.

(b) Straight fiber with Vf ¼ 1%.

(c) Hooked-end fiber with

Vf ¼ 0:5%. (d) Hooked-end fiber

with Vf ¼ 1%.
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compressive strength of concrete without fiber reinforce-
ment was 23.6 MPa. Further details for test setup can be
found in the reference.65

The numerical model adopts the truss elements
(T3D2) and solid elements (C3D8R) to model reinforcing
bars and concrete beams, respectively. The interaction
between rebars and concrete is modeled by the
Embedded Region Constraint function. The elasto-plastic
material model is adopted to model the steel bars. A
mesh size convergence test is carried out, and finally, the
most appropriate mesh size for the whole model is
selected at 10 mm (see Figure 24). Three parameters τ0,
β, and σy are calibrated based on the test data of speci-
men reinforced with 0.75% volume fraction. Those cali-
brated values are adopted in the numerical simulation of
specimens reinforced with 1% fiber volume fraction.

The comparison between the numerical results and
test data is plotted in Figure 25. The initial stiffness of
beams from the numerical models is higher than that
of tested beams. The similar phenomenon was reported

in the previous study.66,67 The main cause of the phe-
nomenon might be attributed to the fact that the actual
elastic modulus of concrete from the tests might be smal-
ler than that determined by the empirical Equation (A2).
Furthermore, the imperfections in the boundary condi-
tion of test setup of experiment such as inaccuracy of
alignment or poor contact of supports and specimen can
lead to the low stiffness behavior at the beginning of the
test.67 Due to the assumption of ideal conditions of test
setup, the numerical models might not reflect the actual
initial stiffness of the tested beams. However, in terms of
the load-carrying capacity, the proposed model can yield
a good prediction and capture the effect of fiber on the
beam capacity.

The failure mode of test specimens and damage con-
tour of the beams is visualized in Figure 26. It can be
seen that the beam without fiber reinforcement fails by
diagonal tension failure with the formation of a single
inclined crack (see Figure 26a). The tension damage con-
tour of numerical beam without fiber shows the agree-
ment with crack profile captured from the tests.
Meanwhile, the results of beam with 1% of fiber rein-
forcement indicate the uniform distribution of tension
damage through the shear span of the beam. This can be

FIGURE 21 The uniaxial tests conducted by Zongjin et al.64

and numerical model proposed in this study. (a) Test setup and

(b) numerical model.

TABLE 3 The properties of Dramix

fiber used in previous study.64
Labels Fiber configuration τ0 (MPa) β σy (MPa)

Dramix 1 1.4 0.01 700

FIGURE 22 Verification with the test results (direct tension

with high fiber volume fraction) obtained from Zongjin et al.64
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explained that due to bridging effect of fibers, the open-
ing of the first tensile crack is postponed, and thus more
diagonal cracks are formed. Therefore, the tension dam-
age can be transferred through multiple cracks instead of
a single critical crack. The crack profile of the tested
beam demonstrated the numerous inclined cracks
formed in the shear span, which can be equivalent to the
uniform damage from the simulation. It is noted that
the proposed model could not visualize the formation of
discontinuous cracks because the continuum damage
mechanics theory is adopted for capturing the stress–
strain response of element.68 This issue was also reported
in previous studies where the cracks could not be

visualized.17,58 However, the model is still able to reflect
reasonably the stress transferring response of SFRC
beams. At failure, the beam reinforced with fiber fails by
combining shear and compressive flexural mode as
described in Figure 26b. The model is also able to capture
the compressive damage due to the bending response
(see Figure 26b).

5 | CONCLUSION

A new approach to modify CDPM for simulating SFRC
structures is proposed in this study. Although the

FIGURE 23 The

configuration of T-beam and

reinforcement details.65

TABLE 4 The properties of hooked

end steel fiber.65
Labels Fiber configuration τ0 (MPa) β σy (MPa)

Dramix 1 0.97 0.01 900

FIGURE 24 3D FEM model

of the T-beams.
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approach is derived for capturing the effect of steel fibers,
it is a generic procedure and can be adopted for different
types of fibers. The most significant contribution of this
work is to analytically incorporate the bridging effect of
fibers in SFRC.

In terms of the yield function and plastic flow rule,
the confining effect of fiber is integrated into the ratio of
biaxial and uniaxial strength and the dilation angle.

For the compressive hardening/softening rules,
empirical equations from the previous study are adopted
to model the improvement in ductility, toughness, com-
pressive strength, and strain at the peak load due to fiber
reinforcement. Meanwhile, the bridging mechanism of
fiber is incorporated in the tension softening curve
of SFRC. The bridging mechanism is derived based on
the integration of entire pull-out contribution of individ-
ual fiber at crack surfaces. The main parameters of the
model including τ0, β, and σy are calibrated from material
tests. According to the calibration, it can be recom-
mended that β is not sensitive in all cases and can be
taken as 0.01, yield strength of fiber σy ranges from 600 to
900MPa, and τ0 is related to the compressive strength f 0c
in the following relationship 0:2

ffiffiffiffi
f 0c

q
. By adopting the

recommended parameter in the modified model, the
response of SFRC with the variation of fiber volume frac-
tion (up to 6%) and geometry can be simulated without
conducting further material tests.

The damage evolution laws are derived based the por-
tion of normalized energy dissipated by damage.13,42

Through the verification with experimental data, the pro-
posed model demonstrates its capability to simulate the

FIGURE 25 Verification of the proposed model with

experimental beam test from Sahoo et al.65

FIGURE 26 Crack profile

of the tested beams69 and

damage contour of simulated

beams (a) Vf = 0%

and (b) Vf = 1%.
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effect of fiber parameters on the response of SFRC
structures.

NOTATION

α parameter in yield function governing the
biaxial compressive stress state

β nondimensional softening parameter in slip
model

γ parameter in yield function governing the tri-
axial compressive stress state

γF Hook angle
εpc equivalent compressive plastic strain
εpt equivalent tension plastic strain
εpc strain at the peak stress of SFRC
εpc0 strain at the peak stress of plain concrete
θ fiber orientation
μ friction coefficient of matrix and fiber
σc εpc
� �

effective compressive cohesion stress
σt εpt
� �

effective tension cohesion stress
σmax maximum of principal stress
σFRC wð Þ overall tension stress of SFRC
σC wð Þ plain concrete cohesive stress
σF wð Þ fiber bridging stress
σtu residual postcracking tensile stress
σfu ultimate strength of fiber
σy yield stress of steel fiber
τ0 frictional sliding shear stress at the tip of

debonding zone
τu ultimate bond strength between fiber and

concrete matrix
ψ dilation angle of plain concrete
ψF dilation angle of SFRC
dc compressive damage variable
dt tension damage variable
df fiber diameter
Ec elastic modulus of plain concrete
Ef elastic modulus of fiber
EFRC elastic modulus of SFRC
f snubbing coefficient
f bc equibiaxial compressive strength of plain

concrete
f fiberbc equibiaxial compressive strength of SFRC
f fiberc uniaxial compressive strength of SFRC
f 0c uniaxial compressive strength of plain

concrete
f 0c initial yield stress of SFRC
f ct uniaxial tensile stress
f Fts fictitious tensile stress of SFRC
GF fracture energy of plain concrete
Gp total bridging energy of fibers
k spalling coefficient
Lf fiber length
Lc critical length of fiber

leq crack band width
Kc ratio of second invariant on tensile meridian

and compressive meridian
q mises equivalent effective stress
p effective hydrostatic pressure
P w,θ,zð Þ pull-out force of a single fiber at a crack

surface
Vf volume fraction of fibers
w crack opening displacement
wu ultimate crack opening displacement of plain

concrete
z distance between the crack surface and fiber

centroid
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APPENDIX A

A.1 | Procedures for calculating parameters of the
proposed CDPM-based model
• Step 1: Input the required material properties

A.1.1. | For fiber

A.1.2. | For concrete

f 0c (compressive strength of plain concrete in MPa), da
(maximum aggregate size in mm), w

c (water to cement
ratio).

Strain at the peak stress of plain concrete47

εpc0 ¼ 0:003 �0:4237
f 0c0
120

� �2

þ0:8606
f 0c0
120

� �
þ0:564

 !

ðA1Þ

Elastic modulus for plain concrete47

Ec ¼ 21:5 103
� � f 0c0

10

� �1=3

ðA2Þ

Tensile strength of plain concrete47

f ct ¼
0:3 f 0c0
� �2=3

f 0c <50MPa

2:12ln 1þ0:1 f 0c0
� �� �

f 0c ≥ 50MPa

(
ðA3Þ

Fracture energy of plain concrete29

GF ¼ 3:6
f 0c

0:051

� �0:46

1þ da
11:27

� �0:22 w
c

	 
�0:3
ðA4Þ

Elastic modulus for SFRC

EFRC ¼Ef Vf =6þEc 1�Vf =6
� � ðA5Þ

Compressive strength of SFRC

f fiberc V f ,af
� �¼ f 0c0 1þ λv V f

� �
:λa af
� �� � ðA6Þ

Strain at the peak stress of SFRC

εpc V f ,af
� �¼ εpc0 1þλvε Vf

� �
:λaε af
� �� � ðA7Þ

λv V f
� �¼ e125�Vf

15þ e125�Vf
�0:0625 ðA8Þ

Straight fiber Hooked-end fiber
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λa af
� �¼ af �20

80

� �0:5

ðA9Þ

λvε Vf
� �¼ 10� e225�Vf

100þ e225�Vf
�0:0099

� �
ðA10Þ

λaε af
� �¼ af �20

80

� �3

ðA11Þ

A.1.3. | For the interface between concrete and
fibers

The frictional sliding shear stress at the tip of debonding
zone τ0 and a nondimensional softening parameter β are
determined based on the calibration of uniaxial tensile
tests in Section 4.

• Step 2: Determine the parameters for the plasticity part
of SFRC

+Calculate the ratio f fiberbc =f fiberc based on Equa-
tions (15) and (17).

+Calculate dilation angle ψF based on Equations (17),
(25), and (26).

• Step 3: Determine the compressive hardening/
softening rules and compressive damage evolution

+ Adopt the values of f fiberc and εpc determined in Step
1 to calculate the curve of stress versus inelastic compres-
sive strain of SFRC based on Equations (27)–(30). The
initial yield stress f 0c is taken as 0:6f fiberc .

+ Calculate the normalized crushing energy of SFRC
as follows

FIGURE A1 Flowchart A

for calculating the bridging

stress σF wð Þ.

TRAN ET AL. 27

 17517648, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/suco.202300640 by C

urtin U
niversity L

ibrary, W
iley O

nline L
ibrary on [09/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE A2 Flowchart B

for calculating the bridging

energy GP .

FIGURE A3 Flowchart C

for determining the tension

softening and damage curve of

Steel fiber reinforced concrete.
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gc ¼
Y 0

B2
þ1�Y 0

AB1
� 1�Y 0

A B1þB2ð Þ ðA12Þ

+ Subsequently, use gc in Equation (64) to calculate
the compressive damage variable of SFRC as follows

dc ¼ 1
gc

Y 0

B2
þ1�Y 0

AB1
� 1�Y 0

A B1þB2ð Þ�
Y 0 exp �B2Xð Þ

B2

0
@

� 1�Y 0ð Þexp �B1Xð Þ
AB1ð Þ þ 1�Y 0ð Þexp � B1þB2ð ÞXð Þ

A B1þB2ð Þ

1
A

ðA13Þ

where X ¼ εinc
εpinc

(εpinc is the inelastic compressive strain at
the peak stress), and the constants A, B1, and B2 deter-
mined in Equations (28)–(30)

• Step 4: Determine the tension softening rules and ten-
sion damage evolution of SFRC

+ Adopt the inputs in Step 1 for the calculation in
flowcharts in Figures A1, A2, and A3

+ Calculate the bridging stress σF wð Þ based on
Flowchart A

+ Calculate the bridging energy Gp based on
Flowchart B

+ Determine the tension softening and damage
model of SFRC based on Flowchart C

APPENDIX B

The damage evolution function of SFRC is derived by
conducting the integration of Equations (67) and (68).
If f Fts < 0:2f ct, the tension damage variable is given as:

dt ¼

f ctw�0:4
f ct
w1

w2

� �
GF þGp

w<w1 ¼GF

f ct
D1w�D2w2�D1w1þD2w2

1þ0:6f ctw1

GF þGp
w1 <w<wFts

D3w�D4w2�D3wFtsþD4w2
FtsþD5

GF þGp
wFts <w<

Lf

2

1 w¼Lf

2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ðB1Þ

where

D1 ¼ 0:2f ctwFts� f Ftsw1

wFts�w1
ðB2Þ

D2 ¼ 0:5
0:2f ct� f Fts
wFts�w1

ðB3Þ

D3 ¼ f FtsLf
Lf �2wFts

ðB4Þ

D4 ¼ f Fts
Lf �2wFts

ðB5Þ

D5 ¼ 0:6f ctw1þ0:5 wFts�w1ð Þ 0:2f ctþ f Ftsð Þ ðB6Þ

and f Fts and wFts are, respectively, determined by Equa-
tions (56) and (58) in Section 3.4.2.5.

In the case of f ct > f Fts > 0:2f ct, the formula of tension
damage variable is presented as:

where the calculation of D0
3 and D0

4 is similar to that of
D3 and D4, in which the value of f Fts and wFts is deter-
mined from Equations (59) and (60).

In the case of f Fts > f ct, the formula of tension damage
variable is expressed as:
where

dt ¼

f ctw�0:2
f ct� f Fts
wFts

w2

� �
GF þGp

w<wFts

D0
3w�D0

4w
2�D0

3wFtsþD0
4w

2
Ftsþ0:5 f ctþ f Ftsð ÞwFts

GF þGp
wFts <w<

Lf

2

1 w¼Lf

2

8>>>>>>>>><
>>>>>>>>>:

ðB7Þ
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D6 ¼ f FtsLf
Lf �2wpeak

ðB9Þ

D7 ¼ f Fts
Lf �2wpeak

ðB10Þ

and f Fts and wpeak are determined by Equation (62) and
Flowchart B, respectively.

APPENDIX C

The method to determine the integrating points and
weights in Equations (37) and (55) including fiber orien-
tation θi, distance zi, and crack opening displacement wi

is presented in this Appendix.
The numerical integration of arbitrary function f xð Þ

with the range [�1 1] by using Gauss quadrature is
expressed as follows70:

I¼
Z 1

�1
f xð Þdx¼

Xn
i¼1

ψ if xið Þ ðC1Þ

where n represents the number of Gauss points. Gauss
quadrature integration yields exact values of integrals for
polynomials of degree up to 2n�1. In this study, using
10 points is sufficient to obtain the accurate results. The
Gauss points xi is the i� th root of Legendre polynomial
Pn xð Þ determined as below:

Pn xð Þ¼ 2n
Xn
k¼0

n

k

� �
nþk�2ð Þ=2

k

� �
xk ðC2Þ

and the weights are given by the following formula:

ψ i ¼
2

1� x2ið Þ P0
n xið Þ� �2 ðC3Þ

Based on MATLAB code,49 the 10 Gauss points and
weights are determined and presented in the Table C1.

If the limits of integration are arbitrary, for example,
range of fiber orientation θ, distance z, or crack opening
displacement w in Equations (37) and (55) is ab½ �, the
integration points θi, zi, wi are determined by the follow-
ing equation:

θi or zi or wi ¼ aþb
2

þb�a
2

xi ðC5Þ

and the new weights ψnew
i in range ab½ � is calculated as

follows:

ψnew
i ¼ b�a

2
ψ i ðC6Þ

By using Table C1 and Equations (C5) and (C6), θi, zi,
and wi and weights can be determined.

TABLE C1 The Gauss points and weights with n = 10.

xi ψ i

�0:1489 0.2955

�0:4334 0.2693

�0:6794 0.2191

�0:8651 0.1495

�0:9739 0.0667

dt ¼

f ctwþ f Fts� f ct
2wpeak

w2

� �
GF þGp

w<wpeak

D6w�D7w2�D6wpeakþD7w2
peakþ0:5 f ctþ f Ftsð Þwpeak

GF þGp
wpeak <w<

Lf
2

1 w¼Lf

2

8>>>>>>>>>><
>>>>>>>>>>:

ðB8Þ
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