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Abstract
Brain iron content is widely reported to increase during “ageing”, across multiple species from nematodes, rodents (mice and 
rats) and humans. Given the redox-active properties of iron, there has been a large research focus on iron-mediated oxida-
tive stress as a contributor to tissue damage during natural ageing, and also as a risk factor for neurodegenerative disease. 
Surprisingly, however, the majority of published studies have not investigated brain iron homeostasis during the biological 
time period of senescence, and thus knowledge of how brain homeostasis changes during this critical stage of life largely 
remains unknown. This commentary examines the literature published on the topic of brain iron homeostasis during age-
ing, providing a critique on limitations of currently used experimental designs. The commentary also aims to highlight that 
although much research attention has been given to iron accumulation or iron overload as a pathological feature of ageing, 
there is evidence to support functional iron deficiency may exist, and this should not be overlooked in studies of ageing or 
neurodegenerative disease.
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Changes to brain metal homeostasis during natural ageing 
and neurodegenerative disease have been under investiga-
tion for several decades, in particular age-related increases 
in brain iron (Fe) content. Due to the propensity of Fe to 
catalyse free radical generation through classic Fenton-like 
chemistry, many researchers logically propose a patho-
logical link between age-related increases in brain Fe and 
heightened oxidative stress [1–13]. Cognitive decline and 
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increased risk of neurodegenerative disease are the proposed 
outcomes of age-related Fe increase [5–7, 14], with some 
suggesting metal chelation therapy as a possible therapeutic 
strategy [11, 15–20].

Despite the widely supported view that brain Fe increases 
during ageing, this article aims to provide a critical com-
mentary of the literature on this topic. First, this paper will 
begin with a brief review of the role of Fe in healthy brain 
function and the analytical tools available to study brain Fe. 
Second, this article will highlight that the published litera-
ture does not adequately differentiate between “adulthood” 
and “senescence” (the biological condition of deterioration 
with age) when studying Fe homeostasis in the ageing brain. 
The majority of studies of “ageing” in fact only investigate 
adulthood but not senescence. Given that age is the great-
est risk factor for neurodegenerative disease [21, 22], and 
the fact that the ageing process itself results in cognitive 
decline during senescence [22, 23], it is important to dif-
ferentiate between how brain Fe content (as well as distri-
bution and speciation of Fe) changes during both adulthood 
and senescence. The article aims to summarise what is cur-
rently known about Fe changes in the brain during adulthood 
and senescence based on the published literature. Lastly, 
while much of the literature studying brain Fe during age-
ing has focussed on Fe accumulation, there may also be a 
role for functional Fe deficiency [24–27]. This commen-
tary will, therefore, conclude by highlighting the concept of 
functional Fe deficiency during ageing and senescence, and 
how despite elevated total brain Fe content, chemical path-
ways and physiological processes responsible for cognitive 
decline may be driven by localised Fe deficiency.

What is the role of Fe in the brain 
and how do we detect it?

Although unregulated Fe accumulation in cells is harmful, 
Fe is essential for healthy function of the cell. Ubiquitous 
roles for Fe needed in all cells include: incorporation into 
ferrodoxins of the electron transfer chain [28]. Fe inclusion 
in cytochromes (ATP production) [29] and acotinase in 
the citric acid cycle [30], and modulating signalling path-
ways through binding to RNA (iron regulatory elements, or 
IREs) [31]. Unique to brain cells, Fe serves as a co-factor 
in enzymes required for neurotransmitter synthesis (phe-
nylalanine hydroxylase, tyrosine hydroxylase, tryptophan 
hydroxylase) [25] and lipid synthesis by oligodendrocytes 
for myelination of axons [32, 33]. A generalised schematic 
(adapted from the literature) showing Fe transport into the 
brain and between brain cells, which is needed to meet the 
above function requirements of brain cells, is provided in 
Fig. 1 [25, 34–37].

Cellular Fe storage is clearly critical to enable ready 
availability of Fe to facilitate the above-mentioned pro-
cesses, which is achieved by ferritin. A detailed discussion 
of ferritin is beyond scope of this article, but most if not all 
readers will be aware of its importance as a key Fe storage 
and Fe regulatory protein [38–43]. The successful storage 
of intra-cellular Fe in ferritin, when not in use, is critical to 
prevent catastrophic oxidative damage that would otherwise 
occur to cells in an unregulated Fe rich environment [43].

Despite the clear necessity of Fe for brain cells and in 
particular neurons (for neurotransmitter synthesis and asso-
ciated metabolic support), it seems unexpected that many 
studies using classical Fe histochemistry (Perls Prussian 
Blue stain) fail to detect Fe in neurons [44–48]. To quote the 
literature (Sands et al.,) “Histochemical methods of detect-
ing iron in the rodent brain result mainly in the labelling of 
oligodendrocytes, but as all cells utilise iron, this observa-
tion suggests that much of the iron in the central nervous 
system goes undetected” [44]. The absence of Perl’s (or 
Turnbull’s) staining in neurons is misleading, as failure to 
produce Perl’s positive staining does not indicate an absence 
of Fe, but rather an absence of histochemically detectable 
Fe. Ourselves and others have now shown, using direct 
spectroscopic measurement (X-ray fluorescence micros-
copy or proton-induced X-ray emission spectrometry), that 
although neurons contain less Fe than glial cells, they do 
indeed contain a substantial Fe pool (~ 0.5–1 mM) [49–53]. 
The discrepancy between Perl’s histochemistry and direct 
spectroscopic measurement could be due to the specific 
chemical forms of Fe found in neurons. Specifically, neurons 
likely contain substantial amounts of low-molecular-weight 
or labile Fe, which is in agreement with their requirements 
of Fe as cofactors for neurotransmitter synthesis. Indeed, 
more recent modification to the Perl’s method, with pro-
tocol alterations aimed at minimising loss of labile Fe, do 
indeed show staining of neuronal cytoplasm [44, 54]. The 
discrepancies regarding measurement of Fe concentration 
and distribution described above demonstrate some of the 
challenges when studying brain Fe, and highlight that careful 
consideration should be given to the analytical measurement 
used. In addition, due to the heterogeneous distribution of Fe 
in the brain (described in detail below), consideration needs 
to be given to the specific sample being analysed, such as 
whole tissue homogenate, micro-dissected tissue region, or 
thin tissue sections.

While Perl’s histochemical methods clearly have limita-
tions for detection of labile Fe and indeed the total Fe pool, it 
is a robust and easily accessible technique that enables study 
of Fe deposition and Fe storage, and the method has revealed 
a wealth of important knowledge of changes in Fe deposition 
in the ageing brain [40–42, 49, 55]. To complement Perl’s 
staining, many researchers now use direct elemental map-
ping techniques such X-ray fluorescence microscopy (XFM) 
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[49, 56–61]. proton-induced X-ray emission spectrometry 
(PIXE) [51–53]. secondary ion mass spectrometry (SIMS) 
[62, 63]. or inductively coupled plasma mass spectrometry 
(ICP-MS) [8, 13]. These techniques are well documented in 
the literature, and they provide mapping capabilities at cellu-
lar resolution (e.g. spatial resolution on the order of microns) 
or sub-cellular resolution (e.g. sub-micron spatial resolu-
tion). Representative examples of XFM elemental mapping 
to study brain Fe distribution are shown in Fig. 2. It should 
be noted that the above techniques typically do not reveal 
information on chemical speciation of Fe; however, this can 
be obtained from a variant of XFM, micro-X-ray absorption 
near-edge spectroscopy (micro-XANES) [64–66], or Möss-
bauer spectroscopy [67].

A limitation of the above-mentioned elemental mapping 
techniques is that they are mostly suited to analysis of tissue 
sections ex vivo. Care must be taken to ensure sample prepa-
ration does not change the distribution or chemical form of 
metal ions from the in vivo state [68–70]. Unfortunately, 
in vivo assessment of Fe is limited, and techniques capable 
of studying Fe levels and Fe speciation in vivo, such as MRI 
[71, 72], do not offer the same level of spatial resolution as 

the elemental mapping techniques described in the previous 
paragraph. Overall, no single analytical tool can provide a 
complete picture of brain Fe homeostasis, and the above-
mentioned tools should be complemented with other ana-
lytical methods such as immuno-fluorescence, western blot, 
RNA sequencing (and more) wherever possible.

Where is brain Fe located?

While the brain is Fe rich, the distribution of Fe is highly 
heterogeneous between different brain regions and differ-
ent cell types, with large variation also observed at the sub-
cellular level. It is well established that Fe concentration 
varies between specific brain regions, such as basal ganglia, 
hippocampus, cortex, cerebellum, pons and other structures 
[11, 73]. Of particular interest to this commentary is hip-
pocampal Fe concentration, as the hippocampus is a brain 
region critical to memory function, and it is often the first 
brain region impacted during cognitive decline associated 
with ageing or dementia [74, 75]. Owing to its implication 
in memory loss, metal distributions in the hippocampus have 
been investigated in detail, by multiple research groups, and 

Fig. 1  Schematic of Fe transport into and within the brain: A large 
fraction of Fe destined for the brain is transported in the blood stream 
bound to transferrin (the main Fe-transport protein), however sub-
stantial pool of non-transferrin bound Fe is also present, such as Fe 
bound to albumin or in low-molecular-weight complexes with mole-
cules such as ATP or citrate. At the blood–brain barrier (e.g. endothe-
lial cell apical surface), transferrin bound Fe enters endothelial cells 
via transferrin receptor-mediated internalisation on the luminal sur-
face. Alternatively, labile of  Fe3+ may be reduced by reductases on 
endothelial cell surface, which could enable  Fe2+ via divalent metal 
transporters (DMT). Direct entry of low-molecular-weight com-
plexes of  Fe3+ into endothelial cells, such as  Fe3+–citrate complexes 
could also be possible. Within cell cytoplasm,  Fe2+ may be oxidised 
via enzymes with ferroxidase activity, enabling subsequent export of 
 Fe3+ through ferroportin. Release of  Fe3+ from abluminal membrane 
of endothelial cells, via ferroportin, is one pathway through which 
 Fe3+ could enter the brain interstitial fluid. Once in interstitial fluid, 

 Fe3+ may exist as low-molecular-weight or labile  Fe3+ complexes, 
it may be taken up via apo-transferrin, or it may be reduced to  Fe2+ 
where it can enter other brain cells (astrocytes, oligodendrocytes, 
neurons, etc.) through membrane-bound DMT. Transferrin receptors 
on cell membranes of neurons present a major pathway for Fe entry, 
from the interstitial Fe pool, into brain cells. It is not clear if transfer-
rin receptors enable Fe entry into glia in vivo. Similarly, there is con-
flicting literature regarding the in vivo role of DMT between differ-
ent brain cells.  Fe3+ bound to low-molecular-weight complexes, such 
as  Fe3+–citrate represents another pathway through which Fe enters 
brain cells from the interstitial fluid. Excess Fe within brain cells is 
sequestered/stored as ferritin, with glial cells displaying far greater 
capacity for Fe storage than neurons. Note: This schematic is for gen-
eral illustration purposes, and is not meant to convey an exhaustive 
summary of Fe import and transport mechanisms. White arrows indi-
cate pathways where diverging opinions exist in the literature. Sche-
matic adapted from literature references [25, 34–37]
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the hippocampus provides an excellent example of the cel-
lular and sub-cellular variation in Fe content that can occurs 
within the brain. Fe distribution within the hippocampus 
although heterogeneous, displays a highly consistent pattern 
of distribution [49, 50, 58, 60, 76, 77]. Specifically, multi-
ple X-ray fluorescence microscopy studies reveal that the 
neuronal layers of the hippocampus, such as the pyramidal 
neurons of cornu Ammonis layers 1, 2, 3 (CA1, CA2, CA3) 
and granule cell layer of the dentate gyrus contain more Fe 
than surrounding molecular layers, stratum oriens or stratum 
radiatum layers (dentate gyrus molecular layer is the most Fe 
enriched of the molecular and stratum layers) [76]. Within 
the CA layers, the CA1 layer contains appreciably more Fe 
than the CA2 or CA3 layers [50]. Although the neuronal 
layers of the hippocampus contain the greatest amount of 
Fe relative to the other hippocampus tissue layers, the neu-
rons are not the most Fe-enriched cell of the hippocampus. 
Glia and microglia, contain appreciably more Fe than neu-
rons, with Fe content reported to be greatest in oligodendro-
cytes, followed by microglia, and then astrocytes [52, 53, 
78]. In all cells, neurons, microglia and glia, Fe distribution 
appears highly localised, with Fe-enriched punctate deposits 

observed both in situ within tissue sections [51–53, 79], and 
also in vitro from cell grown in culture [80–83]. The exact 
organelles responsible for the punctate sub-cellular Fe dis-
tribution and the chemical form of the Fe in these deposits 
still remain to be elucidated.

What is meant by “ageing”, “aged” 
and “senescence”?

In the broadest definition, studying changes in brain Fe con-
tent during “ageing” could mean measurement of brain Fe 
across any two (or more) time-points across the lifespan. 
However, context is important, and the vast majority of stud-
ies of “brain Fe during ageing” aim to investigate mecha-
nisms of cognitive decline or neurodegenerative diseases, 
which are processes/diseases associated with senescence.

In the context of studying brain Fe during ageing, it is 
important to differentiate between “adulthood” and “senes-
cence”. In rodent models, adulthood can be difficult to 
define, so often sexual maturity at adolescence is used to 
delineate, and therefore “adulthood” regarded as the period 

Fig. 2  Direct elemental mapping techniques such as X-ray fluores-
cence microscopy (XFM) have emerged as valuable tools to charac-
terise brain Fe homeostasis during ageing. A Shows a multi-colour 
XFM overlap image of K (green), Fe (red) and Zn (blue) in a mouse 
hippocampus. White box in A shows approximate anatomical loca-
tion of the elemental maps shown in panels B and C. B, C XFM 
elemental maps of Fe in a 5-month-old and 24-month-old C57Bl6 

mouse. White arrows indicate location of hippocampal CA1 pyrami-
dal layer where age-related Fe increase was not observed, while aster-
isks highlight the corpus callosum white matter where age-related Fe 
increase is observed, as described in D statistical analysis. Scale bar 
in A = 500 µm, B, C = 200 µm. Panel A reproduced with permission 
from reference [57], and Panels B–D reproduced with permission 
from reference [45]
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from sexual maturity to cessation of ability to sexually 
reproduce. Puberty is generally regarded to start at ~ 6 weeks 
for mice and ~ 7 weeks in rats [84, 85]. In humans, adult-
hood is often described as closure of the growth plate, 
which occurs at ~ 20 years of age [84, 85]. Similar to adult-
hood, providing a precise definition of senescence is also 
difficult between rodents and humans, but often cessation 
of reproduction function is used as a marker (using onset 
of menopause in women as a human time-point), which 
equates to ~ 18 months in mice, and ~ 50 years in humans 
[84, 85]. Although direct translation of rodent age to human 
age is not possible, and there are gender differences, the 
approximate time-points of “adulthood” (i.e. the time from 
the start of adulthood until onset of senescence) spans 
6 weeks–18 months in mice, 7 weeks–18 months in rats 
and approximately 12–50 years in humans [84, 85]. The 
period of senescence is, therefore, described as ages greater 
18 months in mice and rats, and greater than ~ 50 years in 
humans [84, 85]. A schematic of the above biological time-
lines for mice, rats and humans is presented in Fig. 3.

It is important to note that there are a number of well-
defined physiological and neurochemical differences 
between the adult and senescent brain, particularly with 
respect to myelination, dendritic plasticity and neurogenesis 
[86]. Myelination, which is an energy-consuming and Fe-
demanding process, is not complete at the start of adulthood, 
and in fact the myelin content of the rodent and human brain 
continues to increase until mid-late adulthood, but decreases 
in senescence [87, 88]. The greatest period of synaptic plas-
ticity and ability to form new dendrites is found in the devel-
oping brain, but the adult brain still displays more plasticity 
than the senescent brain [89]. Further, there is a remark-
able drop in neurogenesis [90], rates of neuronal protein 
synthesis [91], and synaptic plasticity[89] in the senescent 
brain relative to the adult brain. Lastly, the senescent brain 
displays a heightened state of inflammation relative to the 
adult brain [92].

Unfortunately, many of the studies that have investigated 
brain Fe during ageing do not actually study the period of 

senescence, i.e. mice or rats older than 18 months of age 
are not used. In studies that do use animals with ages corre-
sponding to senescence, many have incorporated an experi-
mental design that consists of only two time-points (gener-
ally one in early-mid-adulthood and one at the beginning of 
senescence). Although a two time-point design is sufficient 
to demonstrate that the senescent brain contains greater Fe 
content relative to a period earlier in life, it is not possible 
to determine if Fe accumulation occurs during adulthood or 
senescence (or both) when only using two time-points. To 
differentiate between changes in brain Fe levels throughout 
adulthood and senescence, a minimum of 3 time-points is 
required (e.g. one in adulthood, one at the interface of late 
adulthood and early senescence, and one in senescence).

Is elevated Fe in the senescent 
brain the result of Fe accumulation 
during senescence or Fe accumulation 
during adulthood?

There is an abundance of published literature demonstrat-
ing that the brains of senescent animals contain more Fe 
than the brains of animals earlier in life. Of studies that only 
examined two age points, Sato et al. demonstrate elevated 
brain Fe in senescent 22-month-old C57BL/6 mice relative 
to early adulthood mice (4 months old) [9]. Ellison et al. 
(see Fig. 2B–D) demonstrated elevated Fe in the white mat-
ter of 24-month-old C57Bl/6 mice, relative to 5-month-old 
animals [49]. Focht et al., demonstrated elevated brain Fe in 
24-month-old Fischer rats relative to 4-month-old animals 
[55], and although the study of Liu et al., did not extend to 
senescence, they demonstrate elevated brain Fe in 64 week-
old (~ 15  month) C57Bl/6 mice relative to 8-week-old 
(~ 2 month) mice.

While the above-cited studies provide clear evidence 
that the senescent brain contains greater Fe content that the 
young adult brain (in rodents), they do not identify when the 
Fe accumulation has occurred. Studies that have however, 

Fig. 3  Schematic showing the approximate association between age 
and biological timeline of life (development, adulthood, senescence) 
in mice, rats and humans. The majority of pre-clinical studies in 
rodents have characterised changes in brain Fe levels during adult-

hood (blue shaded region), with very few studies characterising brain 
Fe homeostasis across the period of senescence (red shaded region). 
Schematic developed from data contained in references [69] and [70]
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examined brain Fe content at multiple time-points across 
adulthood and senescence do not support increasing brain 
Fe content during ageing (in rodents or humans). Rather, the 
published literature indicates brain Fe accumulates during 
adulthood with the increasing content appearing to cease at 
the onset of senescence. For example, the works of Massie 
et al. quantified brain Fe in male C57BL-6 J mice from 37 
to 888 days, which revealed substantial increases in brain 
Fe concentration in the first year of life, but no significant 
increase after [3]. In another study, Morita et al. quantify 
brain Fe in female B10BR mice aged 2, 6 and 10 months 
old (i.e. a timeline that spans adulthood, but does not include 
senescence which starts at 18  months in mice), which 
revealed Fe levels in 10 month-old mice were increased 
relative to 2 month-old mice, but there was no difference in 
brain Fe levels between 6 and 10 month-old animals. This 
suggests that Fe levels have increased during the earlier part 
of adulthood (e.g. 2–6 months), but not later in adulthood 
(6–10 months). Takahashi et al. studied brain Fe content in 
C3H mice and Wistar rats across ages from 1 to 104 weeks 
(1 week–24 months). Their results showed increases in Fe 
over the time span of 1–17 weeks, but again no increase was 
observed from 17 to 104 weeks. The studies by Belaidi et al. 
analysed brain Fe content across adulthood and senescence, 
studying brain Fe in C57BL6/SV129 mice aged 8,12, 18 and 
22 months [13]. While Fe levels were elevated in mice aged 
22 months relative to 8 month mice, there was no increase 
in brain Fe content from 18 to 22 months (i.e. brain Fe con-
tent did not increase during senescence) [13]. The works 
of Yoo et al. assessed relative hippocampal Fe content in 
Gerbils aged 1, 3, 6, 12, 18 and 24 months, using Perls his-
tochemical staining of tissue sections, [93] and similar to 
the studies above, although the Fe content of the senescent 
hippocampus (18 and 24 months old) was increased rela-
tive to earlier time-points in life, there was no increase in 
histochemically detected Fe between 18 and 24 months [93]. 
Taken together, the literature presented above robustly dem-
onstrates that the period of brain Fe accumulation appears 
to be during adulthood (often early to mid-adulthood) and 
not during senescence.

Similar to rodent models, the senescent human brain 
has also been reported to display elevated Fe content rela-
tive to earlier time-points in life. As with rodents though, 
the time period of brain Fe accumulation appears to be 
adulthood, not senescence: Zecca et al. studied Fe con-
tent of the substantia nigra in men from birth to 90 years 
old, revealing robust increase in brain Fe earlier in life, 
but not increasing during late adulthood or senescence. 
[94] Similarly, Markebery et al. also reported significant 
Fe accumulation earlier in life but not during late adult-
hood or senescence in humans [95]. Taken together, the 
results from animal and human studies appear to partially 
contradict the frequently published statement “brain Fe 

accumulation during ageing”. The Fe content of the aged 
brain is clearly higher when compared to earlier time-
points in life, but this increase in Fe content appears to be 
driven by Fe accumulation during adulthood (often early 
adulthood), and the published literature does not support 
brain Fe accumulation during late adulthood or during 
senescence. This raises important questions about how Fe 
transport and handling is changing during late adulthood 
and senescence. Further, it is interesting that there an asso-
ciation between ageing and oxidative stress in the brain, 
but brain Fe is not increasing during late adulthood and 
senescence. One possible explanation is that the total con-
tent of brain Fe is not the best predictor of oxidative stress, 
but rather the key driver is the specific chemical form of 
Fe, and the cell/organisms ability to handle that Fe. This is 
supported by recent studies in C. elegans, which do indeed 
suggest that total Fe content is not the key determining 
factor of age-related pathology, but rather the organisms 
ability to handle specific forms of Fe is more critical [65].

Brain Fe is critical for cognition and synaptic 
plasticity, and increases rapidly 
during neurodevelopment

Before presenting the concept of functional Fe deficiency 
during ageing, for context, it is worthwhile to summarise 
how brain Fe content changes early in life (neurodevelop-
ment). The Fe content of the brain is generally low follow-
ing birth, and rapidly increases after [38, 39, 60, 96]. In 
mice and rats, the period of rapid brain Fe accumulation 
appears to extend to at least 2–3 months of age [38, 60, 
97], and appears to coincide with a permeable or incom-
pletely formed blood–brain barrier [38, 39, 96]. Of note, 
Fe deficiency during this critical stage of brain develop-
ment can have lasting effects on cognitive function [96]. 
Interestingly, many of the symptoms that follow Fe defi-
ciency during neurodevelopment mirror those seen in the 
senescent brain, and also during neurodegenerative dis-
ease. Pathology that is common between Fe deficiency in 
neurodevelopment and ageing/neurodegenerative disease 
include: reduced levels of PSD-95 (a key protein required 
for dendrite plasticity) [96, 98], reduced levels of MAP-2 
(a marker of dendrite density) [99], reduced cytochrome-c 
oxidase activity [100, 101], reduced mitochondrial respira-
tion [102], impaired dopamine synthesis [101, 103–105], 
and hypomyelination [101, 105]. A simple comparison 
of the commonalities between Fe deficiency during brain 
development and ageing or neurodegenerative disease sug-
gests a role of Fe deficiency during senescence and brain 
disease is plausible.
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Functional Fe deficiency during ageing?

There is growing evidence that supports a role of functional 
Fe deficiency as a contributing factor to brain ageing and 
neurodegenerative disease. The theory has recently been 
stated in the literature as the “Azalea hypothesis” [27], and 
essentially postulates that excessive Fe sequestration dur-
ing ageing or neurodegenerative disease creates conditions 
of functional Fe deficiency in neurons, disrupting normal/
healthy neuron function. It should be noted that this theory 
is not completely new, with others having previously pro-
posed that localised or functional Fe deficiency could occur 
during ageing or neurodegenerative disease [24, 106–108]. 
In support of this theory are recent transcriptomic analysis 
that indicate a degree of overlap in gene expression between 
brain tissue in the early stages of Alzheimer’s disease pathol-
ogy and genes associated with anaemia [26]. Other studies 
have used genetic manipulation of mice to create functional 
Fe deficiency, through ablation of Iron Regulatory Protein 
genes, which post-transcriptionally causes mis-regulation of 
proteins involved in Fe transport (transferrin) and Fe storage 
(ferritin) [102]. The impact from genetic manipulation of 
iron regulatory protein genes are motor neuron loss, which is 
attenuated if capacity for Fe sequestration is reduced, which 
provides a further link between Fe sequestration and func-
tional Fe deficiency [102]. Inflammation has been proposed 
as a key pathological driver of Fe sequestration [106], and 
it is well established that expression of key Fe regulatory 
proteins DMT1, FPN1, and hepcidin are altered in response 
to inflammatory cytokines, promoting Fe sequestration 
[109, 110]. Specifically, in response to pro-inflammatory 
cytokines such as tumour necrosis factor-α (TNF-α) and 
interleukins: DMT1 is upregulated in brain cells (increas-
ing capacity for Fe accumulation), hepcidin is upregulated 
and FPN1 is downregulated (decreasing capacity for Fe 
efflux and/or transport), and ferritin expression is increased 
(increasing capacity for Fe storage [109–112]. Therefore, 
although relatively underexplored, it is possible that height-
ened inflammation during brain ageing drives a shift in Fe 
homeostasis to favour Fe sequestration, and in doing so cre-
ates localised functional Fe deficiency. Lastly, given that Fe 
homeostasis is often related to homeostasis of other transi-
tion metals such as Cu, and Cu is also known to accumulate 
in glial cells in the ageing brain [113], investigation of com-
mon physiological pathways that promote both Cu and Fe 
accumulation may of interest for future work.

Conclusion and future outlook

Based on the published literature studying brain Fe con-
tent, the frequently used statement “brain Fe increases 

during ageing” has the potential to be misleading depend-
ing on how “ageing” is understood or defined, and unfor-
tunately in many published studies it is left undefined. 
As has been presented in this article, most studies have 
not studied brain Fe during the period of both adulthood 
and senescence and in the few studies that have, brain Fe 
content has been shown to increase during adulthood but 
not senescence. As the period of senescence is of criti-
cal importance to cognitive decline during natural age-
ing and also increased risk of neurodegenerative disease, 
continued use of the expression “increased brain Fe during 
ageing” (or similar expressions) is misleading and not sup-
ported by the current published literature. Future studies 
should be encouraged to specifically designate which bio-
logical period of life age-related changes in Fe (or other 
metals) occur (e.g. development, puberty, adulthood, 
senescence). It is hoped that this article has highlighted 
the need for greater characterisation of brain Fe homeosta-
sis during the period of senescence, with a focus not only 
on amount and distribution, but also on chemical form 
(speciation) of Fe. Lastly, although much research atten-
tion has been given to the role that elevated Fe may have 
in driving oxidative stress, it is hoped that future studies 
will pay greater attention to explore the potential roles of 
functional Fe deficiency during brain ageing.
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