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Abstract
This paper describes a maintenance scheduling model for digester banks. Digester banks
are network-connected assets that lie on the critical path of the Bayer process, a chemical
refinement process that converts bauxite ore into alumina. The banks require different main-
tenance activities at different due times. Furthermore, the maintenance schedule is subject to
production-related constraints and resource limitations. Given the complexity of scheduling
maintenance for large fleets of digester banks, a continuous-time, mixed-integer linear pro-
gram is formulated to find the cost-minimisingmaintenance schedule that satisfies all required
constraints. A solution approach that employs lazy constraints and Benders decomposition
is proposed to solve the model. Unlike generic implementations of Benders decomposition,
we show that the subproblems can be solved explicitly using a specialist algorithm. We solve
the scheduling model for realistic scenarios involving two Bayer refineries based in Western
Australia.
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1 Introduction

Refining operations are, by their nature, asset-intensive endeavours. Under harsh environ-
mental and operational conditions, all assets and equipment inevitably face some form of
degradation. Without maintenance interventions, degrading asset health can lead to safety
concerns, equipment failure, and loss of production. Maintenance operations were once con-
sidered retroactive tasks conducted after a failure, but now proactive maintenance strategies
have become mainstream within the resources industry and make up a substantial proportion
of the operating costs of large-scale refineries (de Jonge & Scarf, 2020). Determining the
optimal maintenance strategy can reduce running costs and enable more sustainable pro-
duction, giving organisations a vital competitive advantage. This paper looks at building a
maintenance scheduling model for digester banks, a critical asset used in the Bayer process.

The Bayer process is a chemical refinement process that converts bauxite ore into alumina.
In the digestion phase of the Bayer process, bauxite slurry is mixed with hot caustic liquor in
large banks of pressure vessels that act like pressure cookers (Li et al., 2015). Once processed,
the slurry leaves the bank as supersaturated alumina in solution, also known as green liquor.
This liquor is then passed onto the production units, where the Bayer process is continued.

In this paper, we outline the practical scheduling requirements for digester bank mainte-
nance and formulate an appropriate scheduling model. We use a continuous time framework
to ensure timing accuracy and robustness to increasing time horizons. To assist in solving
the model at large dimensions, a Benders decomposition algorithm is introduced where the
subproblems are solved using a specialist algorithm. Additionally, lazy constraints are used
to better handle a proportion of the constraint set. Finally, model performance is evaluated on
two real-life case studies involving Bayer refineries in Western Australia as well as several
test instances.

1.1 Digester bankmaintenance activities

Routine preventative maintenance activities are crucial to maintaining the health of the
digester banks. The maintenance activities generally fall into two categories: bank clean-
ings and bank services. Due to a chemical reaction in the Bayer process, scale builds up
on the digester equipment. Scale build-up is unavoidable and is often thick and very hard
(Cheng et al., 2021). To manage scale build-up, digester banks require frequent cleanings.
A cleaning activity involves taking a bank offline and mechanically removing the scale until
it is all removed. Bank cleanings are relatively small maintenance activities that must be
planned frequently to sustain bank health and avoid unplanned failures. On the other hand,
a bank service is a major activity that may only occur following a bank cleaning. During
a bank service, worn or broken components may be replaced or repaired. In practice, it is
common for digester banks to be cleaned several times in between services.

Scale only builds up when a bank is operational, meaning maintenance due times are
calculated based on operational time, not elapsed time. As services are major activities
that occur less frequently than cleanings, it is common for a bank to be cleaned several
times between services, and therefore have several distinct operational periods. Changing
the schedule of cleanings affects a bank’s operational time and hence changes when its next
service is due. This presents a significant challenge for schedulers, as minor changes in the
schedule of cleaning activities can lead to significant changes in the operational time of a
bank, and hence when its next service should occur.
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Fig. 1 Example digester setup with eight digester banks feeding five production units, split into three subsys-
tems

A service can only occur immediately after a cleaning, meaning aligning these activities
so they are due at similar times is beneficial. The best alignment of maintenance activities is
a common challenge found in the resources sector, where assets may be subject to different
levels of maintenance activities that are based on different cycle times (Seif et al., 2020).
A trade-off must be made when the due times of two activities that must be scheduled
together are misaligned. This compromise is often encountered when scheduling digester
bankmaintenance, as cleaning and service activities are rarely aligned, butmust be completed
together.

Digester banks sit on the refineries’ critical path of production,meaning unplanned failures
or downtimes can significantly impact site-wide production. Tomitigate the risk of production
loss due to digester bank failure, redundant digester banks are introduced. In a redundancy-
based system, the number of available assets in a system exceeds theminimum required (Olde
Keizer et al., 2016; Siopa et al., 2015). This allows production to be kept at full capacity, even
when a bank is offline and receiving maintenance. Moreover, in the event of a failure of an
operational bank, a standby bank can be brought online to rectify any potential production
loss quickly. To demonstrate this, consider the example shown in Fig. 1, where the entire
digestion system is split into several independent subsystems. In each subsystem, the number
of available banks is more than production units, and hence not every bank is required to
be operational at all times. From a scheduling perspective, managing the redundant digester
banks is crucial. The redundant units allow the production load to be shared across all banks.
This is a cost-effective strategy for refineries, as bank utilisation can be maximised without
halting production. However, finding the optimal operational balance between banks and
usage of the redundant bank is a challenging task.

Digester bankmaintenance should alignwith themaintenance activities of the downstream
production units, the most important of which is known as a valve change. Valve changes
are relatively small activities that are essential to the operations of the entire refinery and are
planned well in advance. After a valve change has been completed, the associated production
unit must connect to a freshly cleaned digester bank. The difficulty with valve changes
is that they are not always consistent, and are planned at fixed times. It is therefore very
challenging to find a stable, repeatable maintenance pattern, as the schedule may be affected
by an upcoming valve change. Subsequently, we need the maintenance schedule for digester
banks to align with these significant activities.

Generally speaking, the revenue from production far outweighs the cost of preventative
maintenance, meaning schedulers may be willing to over maintain to avoid the possibility of
an unexpected failure. The tendency to over maintain is often exacerbated when the mainte-
nance schedule is governed by complex or difficult-to-satisfy restrictions. This paper aims to
build an optimisation model to plan the maintenance activities for a fleet of digester banks.
Given the importance of digestion in the Bayer process, improvements in its maintenance
strategy can lead to cost savings and improved sustainability of production.
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1.2 Scheduling optimisation

The application of optimisation techniques to maintenance scheduling problems is a well-
studied subject in the literature. For a recent review on maintenance optimisation including
maintenance scheduling, the reader is directed to de Jonge and Scarf (2020). The vastmajority
of maintenance scheduling models can be separated into discrete or continuous-time models.
In a discrete-time model, the desired planning or time horizon is broken up into many time
windows or intervals. This allows for constraints to be formulated easily, as the schedule
takes on a grid-like structure, thereby giving control to each discrete time point (Floudas
& Lin, 2004). Discrete-time modelling has been successfully applied to many optimisation
problems, such as job shop scheduling (Manne, 1960), the resource-constrained scheduling
problem (Kopanos et al., 2014) and more complex parallel machine scheduling (Heydar et
al., 2021). A significant challenge in discrete-time modelling is managing the dimension
growth of time-indexed variables when the time horizon increases, or when greater time
precision is required (Hooker, 2007). One method to overcome this difficulty is to move to
a continuous-time model with discrete events.

Continuous-time models have often been proposed to overcome the challenges of their
discrete-time counterparts (Kopanos et al., 2014). In continuous-time models, the decision
variables are the continuous start times for the set of discrete events (Maravelias & Gross-
mann, 2003). Thismakes continuous timemodelsmore robust to increasing time horizons and
can provide greater precision on event start times. Continuous-time modelling has been suc-
cessfully applied to general problems such as the resource-constrained scheduling problem
(Kopanos et al., 2014) and the multi-product batch process scheduling problem (Floudas &
Lin, 2004;Maravelias&Grossmann, 2003), as well as tomore complicated assign and sched-
ule problems (Hooker, 2007). The continuous-time framework has recently been extended
to event-based models. In event-based modelling, the time horizon is broken up into a set
of events. Each event is then given a continuous variable denoting its start time, and binary
variables are used to match activities to events. Koné et al. (2011) formulate two event-based
models for the resource-constrained project scheduling problem and show that these models
outperform others on a specific set of test instances. While continuous-time and event-based
models are more stable when increasing the desired planning horizon, their scale increases
with the number of discrete events that are to be scheduled. Furthermore, to attain the same
level of control on the timing of events as discrete-time models, continuous-time models may
require the inclusion of big-M constraints, which create poor LP relaxations (Maravelias &
Grossmann, 2003). Overcoming these challenges can be achieved through the use of an
appropriate solution approach.

A suitable solution approach can allow the model to be solved faster and at larger scales.
The selection of solution approach often depends on the specific model structure, and the
attributes that can be exploited. Lazy constraints are one such approach that can help solve
problems that contain large constraint sets (Pearce & Forbes, 2018). The technique selects a
subset of constraints called the lazy constraints, which are removed from the original problem
to form a reduced problem and a set of lazy constraints. The reduced problem is then solved
using a generic procedure, and whenever a solution is found, it is checked to see which lazy
constraints are violated. Violated lazy constraints are then returned to the original problem.
When the constraint set of the problem is large, but only a small portion are active in the
optimal solution, the use of lazy constraints can substantially reduce the problem size and
complexity. If only a tiny portion of lazy constraintsmust be reintroduced to the problem, then
the solver benefits from a far simpler problem. This technique has successfully been applied
to the classical traveling salesman problem (Miller et al., 1960), the resource-constrained
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scheduling problem (Lerch & Trautmann, 2019) and a network maintenance scheduling
problem (Pearce & Forbes, 2018). For an in-depth analysis of the benefits of lazy constraints,
the reader is directed to the PhD thesis Pearce (2019).

Another solution approach commonly used to assist in solving large scale scheduling
problems is Benders decomposition. Benders decomposition is a partitioning technique that
can break up a complex mixed-integer linear program (MILP) into easier to solve problems
(Benders, 1962). Using Benders decomposition, the original problem is broken up into a
mixed-integer master problem and several potentially independent continuous subproblems.
The technique has been successfully applied to a wide range of optimisation problems. For
an in-depth review of Benders decomposition, the reader is directed to Rahmaniani et al.
(2017). When the subproblems are independent and easy to solve, Benders decomposition
can lead to significant computational advantages. For example, in Fischetti et al. (2016), the
Benders subproblem of the uncapacitated facility location problem were shown to reduce to
the continuous knapsack problem, which permits a closed-form solution. Similarly, in Pearce
and Forbes (2018), the subproblem of a networkmaintenance scheduling problemwas shown
to be equivalent to the minimum cut problem, for which many solution algorithms already
exist. In some cases, the subproblemsmay exhibit a unique structure that can be solved using a
specialist algorithm, thereby circumventing the need for an LP solver. Contreras et al. (2011)
show that the subproblems of the uncapacitated hub location problem were semi-assignment
problems that could be solved efficiently with a specialist algorithm. Similarly, in Naoum-
Sawaya and Buchheim (2016), the subproblems of a critical node selection problem were
solved using a specialist algorithm derived from the Floyd Warshall algorithm. Specialist
algorithms such as these can provide significant computational improvements when solving
the subproblems.

2 Problem formulation

The digester scheduling model should plan cleaning and service activities for a fleet of
digester banks such that the maintenance cost is minimised and all maintenance, operational
and production-related constraints are adhered to. We now describe the key constraints in
detail, and outline the assumptions made for the scheduling model.

For this model, we assume that the digestion system consists of multiple independent
subsystems, as in Fig. 1.Within each subsystem,we assume that there is always one redundant
bank, i.e., the number of banks is one more than the number of production units. This means
that exactly one bank is to be offline in each subsystem at all times. Additionally, we assume
that a bank can only enter a standby period after completing amaintenance activity. Therefore,
if a bank is to be takenoffline formaintenance, the activity shouldbe commenced immediately.

The due times for cleaning and service activities are based on operational time, not elapsed
time. To ensure the model conducts maintenance on time, it must keep track of each bank’s
operational time and periods. In the case of cleaning activities, taking a bank offline requires
that it immediately receives a cleaning and therefore, there is only ever one operational period
between consecutive cleaning activities. However, this is not the case for service activities.
A service is a significant activity that can only occur immediately after a cleaning activity,
and has a longer operational due time than a cleaning activity. Therefore there will be several
operational periods between consecutive service activities. The number of cleanings, and
therefore operational periods, between consecutive service activities is unknown and may
vary greatly depending on the specific bank and the required due times.
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Fig. 2 Example schedule for a single digester bank. Green represents operational periods, whereas yellow and
purple represent cleaning and services activities respectively. Grey represents periods where the bank is on
standby

To demonstrate the complexity of operational due times, consider the example mainte-
nance schedule for a single bank shown in Fig. 2. The green represents periods where the
bank is operational, yellow represents cleaning activities, purple represents services, and grey
represents periods where the bank is on standby. The due time of the cleaning at t5 is not
calculated as the elapsed time since the previous cleaning at t3, but instead the period where
the bank is operational, which is given as t4 to t5. Similarly, the service activity planned at
t7 is calculated based on the previous three operational periods since the last service at t1,
which are t2 to t3, t4 to t5 and t6 to t7. To ensure these activities are conducted on time, the
model should keep track of each bank’s operational time at all points in time.

The maintenance activities should be scheduled such that production levels are always
satisfied, and resourcing restrictions are adhered to. To ensure required production levels
are always met, there can only ever be one bank offline in each subsystem. This means that
whenever a bank commences a maintenance activity, the offline bank in that subsystem must
come back online to ensure that production levels are satisfied. However, a bank may not
come back online until all its planned maintenance activities are completed.

We assume the labour force restrictions for both cleanings and services take two forms;
overlap penalties and maximum available resources. A cost penalty is incurred whenever
two cleanings (or services) are planned simultaneously. This is known as an overlap penalty.
The penalty is incurred only for the period where the two activities overlap. Additionally, we
assume that three or more simultaneous cleaning or service activities are not permitted, as
this exceeds the maximum available resources. Note that it is possible to conduct, at most,
two cleanings and two services simultaneously. While the model can easily be extended to
consider a larger number of maximum available resources, this is considered beyond the
scope necessary for practical implementations.

2.1 Model setup

The digester scheduling model is a continuous-time, mixed-integer linear program. For the
schedule to be practical, it must plan a considerable amount into the future and decide
on the start times with a high level of accuracy. For this reason, a discrete-time model is
inappropriate, as the number of discrete time points required would be vast. Rather than
being burdened by the enormous scale of a discrete-time model, a continuous-time model
can span the same duration and provide a greater degree of accuracy with far fewer decision
variables.

Given a set of available maintenance activities, the model should decide on the start time
of each activity, which bank is to receive maintenance and whether the activity should be a
cleaning or a service. For the entire digestion system, let B and P be the set of banks and
production units respectively. We let S be the set of subsystems and hence, for every s ∈ S,
Bs ⊂ B gives the subset of banks andPs ⊂ P gives the subset of production units within that
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Table 1 Sets, parameters and decision variables

Sets

I Set of available maintenance activities

S Set of subsystems

B Set of digester banks

P Set of production units

D Set of pairs of banks that lead to a double bank change

Parameters

τ Time horizon

α Time to complete a cleaning

β Time to complete a service

� Operational due time of a cleaning

� Operational due time of a service

A Cost of completing a cleaning

B Cost of completing a service

L Penalty per day when planning simultaneous cleaning activities

M Penalty per day when planning simultaneous service activities

� Largest time between consecutive maintenance start times

Continuous decision variables

ti Start time of maintenance activity i ∈ I
θi,b Cleaning operational time for bank b ∈ B at the start of activity i ∈ I
φi,b Service operational time for bank b ∈ B at the start of activity i ∈ I
λi Amount of cleaning overlap for activity i ∈ I
μi Amount of service overlap for activity i ∈ I
Binary decision variables

ui 1 if maintenance activity i ∈ I is required

xi,b 1 if maintenance activity i ∈ I is a cleaning on bank b ∈ B
yi,b 1 if maintenance activity i ∈ I is a service on bank b ∈ B
zi,b 1 if bank b ∈ B is remaining offline at the start of activity i ∈ I

subsystem. Note that as each subsystem s ∈ S has exactly one extra bank, the cardinality of
Bs is one more than Ps . The model should determine the maintenance schedule up to a given
time horizon, denoted by τ . To do so, let I = {0, 1, . . . , n} be the set of availablemaintenance
activities. Themodel need not use all availablemaintenance activities, in fact,we intentionally
provide an overestimate of the number of maintenance activities needed, allowing the model
to decide exactly how many are required. The decision variables and remaining parameters
are defined as required when formulating the constraint set, which is done in the remainder
of this section. All sets, parameters and decision variables are summarised in Table 1.

2.2 Schedulingmaintenance activities

Let ti be a continuous variable that gives the start time of maintenance activity i ∈ I. As
the set I is an overestimate of the number of activities required, let binary decision variable
ui equal 1 if maintenance activity i ∈ I is required, and 0 otherwise. Let binary decision
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variable xi,b equal 1 if activity i ∈ I is a cleaning on bank b ∈ B. As a service can only
ever occur immediately after a cleaning activity, we group these into one variable. Hence, let
binary decision variable yi,b equal 1 if activity i ∈ I is a service on bank b ∈ B. Within this
activity, the cleaning is completed first and immediately after it the service is commenced.
To track a bank’s operational periods, let binary variable zi,b equal 1 if bank b has not yet
been restarted by activity i ∈ I, following a recently completed maintenance activity.

The timing of the maintenance activities should be such that the schedule starts at zero,
activities are completed in order, and the schedule lasts the time horizon, i.e.,

t0 = 0, ti ≥ ti−1, tn ≥ τ, i = 1, . . . , n. (1)

The use of t0 = 0 ensures the schedule commences immediately, and thus by having tn ≥ τ ,
the schedule is guaranteed to last for the desired time horizon. The model should decide
exactly how many maintenance activities it requires, and use these up in order until no more
are required. This is formulated as

ui ≤ ui−1, i = 1, . . . , n. (2)

Hence, once ui = 0, none of the remaining activities will be used. If ui = 1, then a
maintenance activity must be started, therefore,

∑

b∈B

(
xi,b + yi,b

) = ui , ∀i ∈ I. (3)

At any point in time, the number of banks offline, either receiving maintenance or on standby,
is equal to number of subsystems (as there is one extra bank in each subsystem). Therefore,
whenever an activity is started, therewill be several banks remaining offline, either continuing
a maintenance activity, or on standby after a recently completed activity. As these banks are
offline, this period should not count towards their operational due times. To keep track of
the periods that a bank remains offline after beginning maintenance, but before restarting, let
binary variable zi,b equal 1 if bank b is yet to be restarted following a recent maintenance, at
the start of activity i ∈ I. Then zi,b may be updated with the following constraints,

zi,b + xi,b + yi,b ≤ 1, ∀b ∈ B, i ∈ I, (4)

zi,b ≤ xi−1,b + yi−1,b + zi−1,b, ∀b ∈ B, i = 1, . . . , n, (5)

zi,b ≤ 1 −
∑

b′∈Bs

(
xi,b′ + yi,b′

)
, ∀s ∈ S, b ∈ B, i ∈ I, (6)

xi,b + yi,b ≤ 1 − xi−1,b − yi−1,b, ∀b ∈ B, i = 1, . . . , n, (7)
∑

b∈B
zi,b = |S| − ui , ∀b ∈ B, i ∈ I. (8)

Constraint (4) ensures that each bank is in at most one state in each period and (5) ensures
that zi,b = 0 if in the previous period bank b was not cleaned, serviced or remaining offline.
Constraint (6) ensures that a bank cannot remain on standby if a new maintenance activity is
planned in the same subsystem (and therefore forcing the bank to come online). Constraint
(7) ensures that the same bank does not have maintenance activities planned in consecutive
activities. Lastly, constraint (8) ensures that the correct number of banks are chosen to have
zi,b = 1.

Note that for the purpose of our model, the schedule is assumed to start immediately,
with the first activity planned at t0 = 0. However, in practice, the scheduling of the first
maintenance activity is often influenced by the current state of the bank setup. This includes
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situations where the schedule should begin with banks on standby, rather than immediately
starting a maintenance activity. In such cases, constraints (3) and (8) can be modified to
exclude the case where i = 0 and thus allow x0,b = y0,b = 0 for all b ∈ B. Additionally,
the values of z0,b can be constrained appropriately to match the banks that are currently
offline. This allows the model to begin with the correct banks on standby, without affecting
subsequent maintenance intervals.

Let α be the time to complete a cleaning activity, and let β be the time to complete a
full service, including the cleaning. As a service is a major activity that has a cleaning as
one of its subtasks, we assume that α < β. Maintenance activities must be timed such that
there is only ever one bank in each subsystem offline at any time, thus ensuring production
levels are always maintained. Additionally, across all banks there may never be three or
more simultaneous cleanings or services. Finally, the timing of maintenance activities should
account for overlapping activities, such that the overlap can be included in the objective
function as a penalty.

Consider first the timing of cleaning activities. As a service always begins with a cleaning
activity, a cleaning is undergone at the start of every used maintenance activity. Therefore, to
avoid three simultaneous cleanings, whenever an activity i is planned for maintenance, we
must have ti+2 ≥ ti + α, as this ensures the cleaning in i has finished, before the cleaning in
i + 2 starts. This can formulated as so,

ti ≥ ti−2 + αui−2, i = 2, . . . , n. (9)

To avoid overlapping cleanings within the same subsystem, consecutive activities may not
overlap if they are planned for the same subsystem. This can be formulated as,

ti ≥ ti−1 + α

⎛

⎝
∑

b∈Bs

(
xi−1,b + yi−1,b + xi,b + yi,b

) − 1

⎞

⎠ , ∀s ∈ S, i = 1, . . . , n. (10)

Whenever consecutive maintenance activities are planned for the same subsystem, i.e.,∑
b∈Bs

(
xi−1,b + yi−1,b + xi,b + yi,b

) = 2, constraint (10) becomes ti ≥ ti−1 + α. There-
fore, the cleaning must be completed before the next one is started, thus maintaining
production levels.

To introduce the overlap penalties for cleaning activities, let λi be a continuous variable
that gives the amount of overlap between the cleaning activities in i − 1 and i . Then

0 ≤ λi ≤ α, ∀i ∈ I. (11)

The model may decide how much cleaning overlap to accept with the following constraint,

ti ≥ ti−1 + αui−1 − λi , i = 1, . . . , n. (12)

Whenever the cleaning component of activities i and i − 1 overlap, λi will get the amount
of overlap. This is then included as a penalty in the objective function.

Avoiding clashes in service activities is slightly more challenging as a service activity
may span several maintenance activities, however the constraints can be formulated in an
analogous way to (9), (10) and (12), and are give as

t j ≥ ti + β

⎛

⎝
∑

b∈Bs

(
yi,b + x j,b + y j,b

) − 1

⎞

⎠ , ∀s ∈ S, i, j ∈ I : i < j, (13)
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t j ≥ ti + β

⎛

⎝
∑

b∈Bs

(
yi,b + y j,b

) − 1

⎞

⎠ − α − μ j , ∀s ∈ S, i, j ∈ I : i < j, (14)

tk ≥ ti + β

⎛

⎝
∑

b∈Bs

(
yi,b + y j,b + yk,b

) − 2

⎞

⎠ − α, ∀s ∈ S, i, j, k ∈ I : i < j < k.

(15)

Constraint (13) ensures that no activity is commenced in a subsystem until enough time
has passed since the last conducted service in that subsystem, similar to constraint (10).
Constraint (14) ensures that whenever two activities have services that overlap, μ j is forced
to get the amount of overlap, which can then be included in the objective function as a cost
penalty. As a service includes the cleaning at the start of the activity, and goes into the service
immediately afterwards, this should be offset by α such that the overlap only considers the
service component. Finally, constraint (15) ensures that three or more services are never
planned simultaneously. While the number of constraints introduced here is large, few are
expected to be binding in the optimal solution, as services aremajor activities that are sparsely
scheduled.

2.3 Maintenance due times

To ensure banks are maintained on time, the model should count the time each bank is
operational for. Let θi,b and φi,b be bank b’s operational time since its last cleaning and
service respectively, at the start of activity i ∈ I. Then, let � and � be the operational due
times of a cleaning and service activity, respectively. As a service is a major activity, we
assume that � < �. In practice, we expect � to be several times greater than �. Lastly, let
θ̃b and φ̃b give the starting operational time for bank b ∈ B since its last cleaning or service
respectively, and let � be a parameter such that � ≥ ti − ti−1 for i = 1, . . . , n. Note that we
can always choose � = �.

Observe that the model does not require the exact values of θ and φ at every maintenance
activity, it only requires that maintenances are scheduled on time. Furthermore, themodel has
no benefit from having large values of θ and φ, as this leads to more required maintenance
activities due to longer bank runtimes. For this reason, rather than forcing the model to
calculate the exact values of θ and φ, we can instead provide exact lower bounds. For φ, this
can be achieved with,

φ0,b = φ̃b, ∀b ∈ B, (16)

φi,b ≥ φi−1,b + ti − ti−1 − (� + �) yi−1,b

− �
(
xi−1,b + zi−1,b

)
, ∀b ∈ B, i = 1, . . . , n, (17)

φi,b ≥ φi−1,b − �yi−1,b, ∀b ∈ B, i = 1, . . . , n, (18)

0 ≤ φi,b ≤ �, ∀b ∈ B, i ∈ I. (19)

Any feasible solution satisfies (17–19), and therefore

φi,b ≥ max
{
φi−1,b + ti+1 − ti − (� + �) yi−1,b − �

(
xi−1,b + zi−1,b

)
, φi−1,b − �yi−1,b, 0

}
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for i = 1, . . . , n. If, during the previous activity, the bank was operational, then xi−1,b +
yi−1,b + zi−1,b = 0 and hence

φi,b ≥ max
{
φi−1,b + ti+1 − ti , φi−1,b, 0

} = φi−1,b + ti+1 − ti ,

as required. Alternatively, if the bank was cleaned or on standby, then xi−1,b + zi−1,b = 1
and yi−1,b = 0 and hence

φi,b ≥ max
{
φi−1,b + ti+1 − ti − �,φi−1,b, 0

} = φi−1,b,

as required. Finally, if the bank was serviced, then xi−1,b + zi−1,b = 0 and yi−1,b = 1 and
hence

φi,b ≥ max
{
φi−1,b + ti+1 − ti − � − �,φi−1,b − �, 0

} = 0,

as required. The same logic can then be applied to θ ,

θ0,b = θ̃b, ∀b ∈ B, (20)

θi,b ≥ θi−1,b + ti − ti−1 − (� + �)
(
xi−1,b + yi−1,b

)

− �zi−1,b, ∀b ∈ B, i = 1, . . . , n, (21)

0 ≤ θi,b ≤ �, ∀b ∈ B, i ∈ I. (22)

This provides an appropriate formulation to update the exact lower bounds on θ and φ, and
thus ensure banks are maintained on time.

2.4 Double bank changes

Bank switching may only take place between banks that can connect to the same production
unit. For example, consider subsystem 1 of Fig. 1. Bank 1 may not be switched with bank 3,
as they do not share a common production unit. However bank 1 may be switched with bank
2. Switching banks 1 and 3 is known as a double bank switch, and must be avoided. LetDs be
the set of pairs of banks in subsystem s ∈ S that cannot connect to the same production unit.
For instance, (b1, b2) ∈ Ds if b1, b2 ∈ Bs and they cannot connect to the same production
unit. To avoid a double bank change, their maintenance activities should not take place in
consecutive intervals. Hence,

xi,b1 + yi,b1 ≤ 1 − xi−1,b2 − yi−1,b2 − zi−1,b2 , ∀s ∈ S, (b1, b2) ∈ Ds, i = 1, . . . , n.

(23)

2.5 Estimating number of requiredmaintenance activities

An appropriate upper bound for the number of maintenance activities required to span a time
horizon is given by total number of activities that could potentially be scheduled. This is given
by the schedule that assumes constant cleaning activities with full overlap. Let f : R → Z

be an integer-valued function that determines an upper bound on the number of activities
required to span a given time horizon. Then,

f (t) := 2

⌊
t

α

⌋
, (24)

where t ≥ 0 is the time frame the schedule should span.
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2.6 Valve changes

On every valve change, the schedule requires that a freshly cleaned digester bank is connected
to the associated production unit. To account for valve changes, we can break the schedule
up into distinct time windows, separated by the planned valve changes. Within each window
a set of maintenance activities are provided that can be used to schedule activities. As before,
this set of activities is an over-estimate of the number required. The model should then use
these maintenance activities to find a schedule that starts exactly on a valve change, and
finishes at the next.

Let V = (v1, . . . , vm) be a vector of m planned valve changes, such that v1 < v2 <

· · · < vm < τ and let P = (p1, . . . , pm) denote the associated production unit of each
valve change. The time horizon can be broken up into m + 1 distinct time windows, denoted
by the set W = {1, . . . ,m + 1}. The first m time windows end at the next valve change,
while the last window ends at τ . Let n1 = f (v1), nw = f (vw − vw−1) for w = 2, . . . ,m,
and nm+1 = f (τ − vm) be the number of activities required to span each time window.
Let I = {0, . . . , n} be defined as before, except now let n = ∑

w∈W nw . Lastly, let J =
{0, n1, n1 + n2, . . . , n1 + · · · + nm} be the set that denotes the starting activity of each time
window. Whereas in the previous formulation the model used up maintenance activities until
no more were required over the entire time horizon, this should be amended to within each
time window. To formulate this, constraint (2) should be updated to the following,

ui = 1, ∀i ∈ J , (25)

ui ≤ ui−1, ∀i ∈ I \ J . (26)

Therefore ui = 1 for the first activity of every time window, given by i ∈ J . Within each
time window, activities are used up until no more are required.

Now that it is known what activities are to be planned at valve changes, the following
constraints ensure the schedule adheres to the valve change,

ti = vw, w = 1, . . . ,m, i =
w∑

j=1

n j , (27)

∑

b∈Bpw

(
xi,b + yi,b

) ≥ 1, w = 1, . . . ,m, i =
w∑

j=1

n j , (28)

∑

b∈Bpw

(
xi−1,b + yi−1,b + zi−1,b

) ≥ 1, w = 1, . . . ,m, i =
w∑

j=1

n j , (29)

where Bpw ⊂ B gives the subset of banks that can connect to production unit pw ∈ P . Con-
straint (27) ensures that the activities associated with valve changes are time appropriately.
Constraint (28) ensures that the bank planned for maintenance in i ∈ J can connect to the
appropriate production unit. Similarly, constraint (29) ensures that in the previous activity the
bank offline can also connect to the appropriate production unit. In tandem, these constraints
ensure a bank switch is occurring on the production unit, thus meeting the requirements of a
valve change.
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2.7 Objective function

The objective of thismodel is to determine themaintenance schedule that optimises cost. This
cost is made up of planned maintenance activities as well as overtime cost from overlapping
activities. Let A and B be the cost of a cleaning and service activity respectively and let L and
M be the additional cost per day of operating two cleaning and service activities respectively.
The full model, denoted by OP , can then be formulated as so,

[OP] min
∑

i∈I

(
∑

b∈B

(
Axi,b + Byi,b

) + Lλi + Mμi

)
,

subject to (1), (3) − (23), (25) − (29),

xi,b, yi,b, zi,b ∈ {0, 1}, ∀i ∈ I, b ∈ B,

ui ∈ {0, 1}, ∀i ∈ I,

θi,b, φi,b ≥ 0, ∀i ∈ I, b ∈ B,

ti , λi , μi ≥ 0, ∀i ∈ I.

3 Solution algorithm

The original problem OP is solved using a combination of lazy constraints and Benders
decomposition. Additionally, valid inequalities are introduced to further tighten the problem
formulation.

Lazy constraints are a modelling technique that removes a subset of constraints from the
original problem to form a reduced problem. The lazy constraints are then added back to
the reduced problem only when the solver deems that the constraint is necessary. If only
a small fraction of the lazy constraints are required to be added back in order to find the
optimal solution, then the solver benefits from a far simpler problem, as a large number of
unnecessary constraints have been removed.

Services are significant activities that are expected to be planned infrequently. In many
practical examples, the total number of services planned may be as little as one-fifth of
the total number of cleaning activities. However, the constraints required to ensure service
clashes, in particular (15), represent a significant proportion of total constraints for themodel.
As only a few services are expected to be scheduled, the number of active constraints in this
set is small. Therefore, by formulating (15) as lazy constraints, we are able to reduce the
constraint set to only those that are necessary.

Benders decomposition is a partitioning technique that can break up the original problem
into a mixed-integer master problem and several potentially independent continuous sub-
problems. Once a solution to the master problem is found, this solution is used to construct
dual subproblems. By solving the dual subproblems, feasibility and optimality cuts may be
generated and added to the master problem to either remove this solution, or improve the
objective value.

By applying Benders decomposition to the variables θ and φ, we construct the lifetime
subproblems using the maintenance due time constraints (16–22). These subproblems are
used to identify periods in which a bank is overrun with respect to its cleaning and service
lifetimes.As such, the lifetime subproblems are purely feasibility problems. The subproblems
can be solved independently by separating them into each bank’s cleaning and service lifetime
subproblem. If a subproblem is infeasible, i.e., a bank is overrun, appropriate feasibility cuts
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are added to the master problem to remove this solution and ensure the bank is maintained
on time. Finally, to tighten the master problem formulation, a set of valid inequalities based
on practical assumptions of the problem is introduced.

3.1 Master problem

The master problem (denoted by MP) follows a natural interpretation. It determines a candi-
datemaintenance schedule that minimises the total cost due to plannedmaintenance activities
and overlap penalties. The schedule should avoid double bank changes and be aligned with
the planned valve changes. Additionally, the problem should satisfy a set of valid inequal-
ities, added to tighten the master problem formulation. Lazy constraints are added to MP
whenever a solution that violates a constraint in (15) is found. Finally, feasibility cuts are
added whenever a schedule does not maintain a bank on time. Therefore, the master problem
can be formulated as so,

[MP] min
∑

i∈I

(
∑

b∈B

(
Axi,b + Byi,b

) + Lλi + Mμi

)
,

s.t . (1), (3) − (14), (23), (25) − (29),

Lazy Constraints,

Feasibility Cuts,

Valid Inequalities,

xi,b, yi,b, zi,b ∈ {0, 1}, ∀i ∈ I, b ∈ B,

ui ∈ {0, 1}, ∀i ∈ I,

ti , λi , μi ≥ 0, ∀i ∈ I,

where the feasibility cuts and valid inequalities are described in the following sections.

3.2 Lifetime subproblems

The lifetime subproblems determine whether a candidate solution of MP overruns any of the
banks with respect to either cleaning or service activities. If a bank is overrun, a feasibility
cut is generated and added to MP to remove this solution. The subproblems are broken up
into cleaning lifetimes (associated with variable θ ) and service lifetimes (associated with
variable φ) and then separated further by each bank b ∈ B. Therefore the number of lifetime
subproblems is 2 × |B|. In general, feasibility cuts require using an LP solver to determine
an extreme ray. Here, we show that the extreme rays of the lifetime subproblems can be
generated using the exact operational time of each bank, thereby circumventing the need for
an LP solver.

We begin this section by formulating the dual of the cleaning and service lifetime sub-
problems. We then show how the candidate schedule from the master problem can be used
to calculate the exact operational time of each bank. The exact operational time of each bank
is then used as a candidate solution for its lifetime subproblems. Notably, we show how a
subproblem is feasible if and only if the exact operational time is feasible. Furthermore, this
candidate solution can then be used to generate extreme rays, and thus feasibility cuts.

Given a fixed schedule (xi,b, yi,b, zi,b, ti ) for all b ∈ B, i ∈ I, the cleaning lifetime
subproblems attempt to find values for θb ∈ R

n+1 such that constraints (20–22) are satisfied
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for each bank b ∈ B. The cleaning lifetime subproblem of bank b ∈ B (denoted by θb-SP)
is formulated as follows,

[θb-SP] min 0 (30)

s.t . θ0 ≥ θ̃ , (31)

θi − θi−1 ≥ ti − ti−1 − (� + �)
(
xi−1,b + yi−1,b

) − �zi−1,b, i = 1, . . . , n,

(32)

θi ≤ �, i = 0, . . . , n (33)

θi ≥ 0, i = 0, . . . , n. (34)

The dual problem of θb-SP can be written in terms of dual variables γ ∈ R
n+1 and η ∈ R

n+1

and is denoted by θb-DP ,

[θb-DP] max θ̃γ0 +
n∑

i=1

(
ti − ti−1 − (� + �)

(
xi−1,b + yi−1,b

) − �zi−1,b
)
γi +

n∑

i=0

�ηi

s.t . γi − γi+1 + ηi ≤ 0, i = 0, . . . , n − 1,

γn + ηn ≤ 0,

γi ≥ 0, i = 0, . . . , n,

ηi ≤ 0, i = 0, . . . , n.

Similarly, the service lifetime subproblems attempt to find values for φb ∈ R
n+1 such that

constraints (16–19) are satisfied for each bank b ∈ B. The service lifetime subproblem of
bank b ∈ B (denoted by φb-SP) is formulated as follows,

[φb-SP] min 0 (35)

s.t . φ0 ≥ φ̃, (36)

φi − φi−1 ≥ ti − ti−1 − (� + �) yi−1,b − �
(
xi−1,b + zi−1,b

)
, i = 1, . . . , n,

(37)

φi − φi−1 ≥ −�yi−1,b, i = 1, . . . , n, (38)

φi ≤ �, i = 0, . . . , n (39)

φi ≥ 0, i = 0, . . . , n. (40)

The dual problem of φb-SP can be written in terms of dual variables π ∈ R
n+1, σ ∈ R

n and
ρ ∈ R

n+1 and is denoted by φb-DP ,

[φb-DP] max �b = φ̃π0 +
n∑

i=1

(
ti − ti−1 − (� + �) yi−1,b − �

(
xi−1,b + zi−1,b

))
πi

− �

n∑

i=1

yi−1,bσi +
n∑

i=0

�ρi

s.t . π0 − π1 − σ1 + ρ0 ≤ 0,

πi − πi+1 + σi − σi+1 + ρi ≤ 0, i = 1, . . . , n − 1,

πn + σn + ρn ≤ 0,

πi ≥ 0, i = 0, . . . , n,

σi ≥ 0, i = 1, . . . , n,
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ρi ≤ 0, i = 0, . . . , n.

If for bank b ∈ B, either θb-SP or φb-SP are infeasible, then the schedule generated by MP
does not service the bank on time, and therefore feasibility cuts should be added to MP to
remove this solution. To generate a feasibility cut, the exact operational times of each bank
can be calculated, and provide all information required about θb-SP and φb-SP .

Definition 3.1 Let θ∗
b ∈ R

n+1 be the exact operational time of bank b ∈ B since its’ last
cleaning, based on the schedule determined by MP . This is the operational time of the bank
at everyi ∈ I, if the schedule was followed in practice. Hence, the operational time increases
whenever the bank is in operation, and resets to 0 whenever it is cleaned. Then θ∗

b can be
calculated recursively as follows,

θ∗
i,b :=

{
θ̃b, i = 0,(
θ∗
i−1,b + ti − ti−1

) (
1 − xi−1,b − yi−1,b − zi−1,b

)
, i = 1, . . . , n.

(41)

Similarly, let φ∗
b ∈ R

n+1 be the exact operational time of bank b ∈ B since its’ last service,
based on the schedule determined by MP . Then φ∗

b can be calculated recursively as follows,

φ∗
i,b :=

{
φ̃b, i = 0

φ∗
i−1,b

(
1 − yi−1,b

) + (ti − ti−1)
(
1 − xi−1,b − yi−1,b − zi−1,b

)
, i = 1, . . . , n.

(42)

Lemma 3.2 Let φb ∈ R
n+1 be such that it satisfies (36) - (38) and (40), and let φ∗

i,b be defined
as in (42). Then φi,b ≥ φ∗

i,b for all i ∈ I.

Proof We prove φi ≥ φ∗
i,b for all i ∈ I by induction on dimension i . The base case i = 0

holds because φ0,b satisfies (36) and therefore φ0,b ≥ φ̃b = φ∗
0,b. Suppose φi,b ≥ φ∗

i,b holds
for i ≤ n − 1. We now prove that φi+1,b ≥ φ∗

i+1,b holds by considering three cases. From
constraint (4) of MP either xi,b = yi,b = zi,b = 0, or xi,b + zi,b = 1 and yi,b = 0, or finally
yi,b = 1 and xi,b + zi,b = 0. As φi,b satisfies (37), (38) and (40) we have that

φi+1,b ≥ max
{
0, φi,b + ti+1 − ti − (� + �) yi,b − �

(
xi,b + zi,b

)
, φi,b − �yi,b

}
. (43)

Suppose firstly that xi,b = yi,b = zi,b = 0, then from (43),

φi+1,b ≥ max
{
0, φi,b + ti+1 − ti , φi,b

}

= φi,b + ti+1 − ti

≥ φ∗
i,b + ti+1 − ti

= φ∗
i+1,b.

Alternatively, suppose xi,b + zi,b = 1 and yi,b = 0, then from (43),

φi+1,b ≥ max
{
0, φi,b + ti+1 − ti − �,φi,b

}

= φi,b

≥ φ∗
i,b

= φ∗
i+1,b.

Finally, suppose yi,b = 1 and xi,b + zi,b = 0, then from (43),

φi+1,b ≥ max
{
0, φi,b + ti+1 − ti − (� + �) , φi,b − �

}

= 0
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= φ∗
i+1,b.

Therefore, by induction, φi,b ≥ φ∗
i,b for all i ∈ I. 
�

Lemma 3.3 Let θb ∈ R
n be such that it satisfies (31), (32), and (34), and let θ∗

i,b be defined
as in (41). Then θi,b ≥ θ∗

i,b for all i ∈ I.
Proof The proof follows analogously from the proof of Lemma 3.2. 
�

We now show how θ∗
b and φ∗

b can be used to precisely determine the feasibility of θb-SP
and φb-SP . The proofs are shown to hold for φ∗ first, as this is the more complicated
subproblem and the proofs for θ∗ follow analogously.

Proposition 3.4 φb-SP is feasible if and only if φ∗
i,b ≤ � for all i ∈ I.

Proof We first prove the forward statement. If φb-SP is feasible, then there exists a feasible
solution φi,b that satisfies (36–40). From Lemma 3.2 we therefore have φi,b ≥ φ∗

i,b for all
i ∈ I. As φi,b satisfies (39), we have that φi,b ≤ � for all i ∈ I and therefore φ∗

i,b ≤ � for
all i ∈ I.

We now prove the reverse statement, by showing that if φ∗
i,b ≤ � for all i ∈ I, then φ∗

i,b
is a feasible solution to φb-SP . Firstly, if φ∗

i,b ≤ � for all i ∈ I, then φ∗
b satisfies (39). From

(42), we have that φ∗
0,b ≥ φ̃b, thereby satisfying (36). We now prove that φ∗

i,b satisfies (40)

by induction on dimension i . The base case i = 0 holds because φ∗
0,b ≥ φ̃b ≥ 0. Suppose

φ∗
i,b ≥ 0 holds for i ≤ n − 1. We now prove that φ∗

i+1,b ≥ 0 also holds. Recall from (42),

φ∗
i+1,b = φ∗

i,b

(
1 − yi,b

) + (ti+1 − ti )
(
1 − xi,b − yi,b − zi,b

)
. (44)

From constraint (1) we have ti − ti−1 ≥ 0. Additionally, from constraint (4) of MP , we can
see that 1 − xi,b − yi,b − zi,b ≥ 0 and 1 − yi,b ≥ 0. Therefore, from (44) we can see that
φ∗
i+1,b ≥ 0 as φ∗

i,b ≥ 0. Thus, by induction, we have proved φ∗
i,b ≥ 0 holds for i ≤ n and

hence φ∗
i,b satisfies (40). Recall from (42), for i = 1, . . . , n,

φ∗
i,b = φ∗

i−1,b

(
1 − yi−1,b

) + (ti − ti−1)
(
1 − xi−1,b − yi−1,b − zi−1,b

)
,

= φ∗
i−1,b − φ∗

i−1,b yi−1,b + ti − ti−1 − (ti − ti−1)
(
xi−1,b + yi−1,b + zi−1,b

)
,

≥ φ∗
i−1,b − �yi−1,b + ti − ti−1 − �

(
xi−1,b + yi−1,b + zi−1,b

)
,

as φ∗
i−1,b ≤ � and ti − ti−1 ≤ �, hence φ∗

i,b satisfies (37). Similarly for i = 1, . . . , n,

φ∗
i,b = φ∗

i−1,b

(
1 − yi−1,b

) + (ti − ti−1)
(
1 − xi−1,b − yi−1,b − zi−1,b

)
,

≥ φ∗
i−1,b − φ∗

i−1,b yi−1,b,

≥ φ∗
i−1,b − �yi−1,b,

and therefore φ∗
i,b satisfies (38). As φ∗

b satisfies (36–40) it is a feasible solution to φb-SP ,
meaning the problem is feasible. 
�
Proposition 3.5 θb-SP is feasible if and only if θ∗

i,b ≤ � for all i ∈ I .

Proof Both forward and reverse proofs follow analogously from the proofs of Proposition 3.4.

�

We now show that in addition to determining the feasibility of the lifetime subproblems, θ∗
b

and φ∗
b can outline periods of bank overruns, which can in turn be used to generate valid

feasibility cuts.
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Definition 3.6 (Cleaning Overruns) Let Xb denote the set of maintenance activities where
bank b ∈ B was operational at the previous activity,

Xb :=
{
i ∈ I :

{
xi−1,b + yi−1,b + zi−1,b = 0, if i ≥ 1,

xi,b + yi,b + zi,b = 0, if i = 0,

}
. (45)

This gives the set of activities where the cleaning operational time is non-decreasing. Then,
the set of overrun cleaning lifetimes is given as Cb, where

Cb :=
{
(i, j) ∈ I × I : ∀k ∈ [i, j] , k ∈ Xb, i − 1 /∈ Xb, θ

∗
j,b > �

}
. (46)

If (i, j) ∈ Cb, then from activity i to activity j , bank b is always operational and at activity
j , the bank is overdue for a cleaning.

Definition 3.7 (Service Overruns) Let Yb be the set of maintenance activities where bank
b ∈ B was not serviced in the previous activity,

Yb :=
{
i ∈ I :

{
yi−1,b = 0, if i ≥ 1,

yi,b = 0, if i = 0.

}
. (47)

This gives the set of activities where the service operational time is non-decreasing. The set
of overrun service lifetimes is given as Vb, where

Vb :=
{
(i, j) ∈ I × I : ∀k ∈ [i, j] , k ∈ Yb, i − 1 /∈ Yb, φ

∗
j,b > �

}
. (48)

If (i, j) ∈ Cb, then from activity i to activity j , bank b is never serviced and at activity j , the
bank is overdue for a service.

Definition 3.8 (Standby Periods) LetOb be the set of activities where bank b ∈ B was either
receiving a cleaning, or on standby at the previous activity,

Ob := {
i ∈ {1, . . . , n} : xi−1,b + zi−1,b = 1

}
. (49)

Proposition 3.9 Vb = ∅ if and only if φb-SP is feasible.

Proof We first prove the forward statement. From constraint (7) of MP , there always exists
an i ∈ I whereby yi,b = 0, and therefore Yb = ∅. If Yb = ∅, then for any j ∈ {1, . . . , n}
such that φ∗

j,b > 0, we must have y j−1,b = 0 and therefore from (47), j ∈ Yb. As j ∈ Yb,
there always exists an i ≤ j such that ∀k ∈ [i, j] we have k ∈ Yb and i − 1 /∈ Yb. However,
if Vb = ∅, then for all j ∈ Yb such that φ∗

j,b > 0, we must have φ∗
j,b ≤ �, otherwise

there exists an i such that (i, j) ∈ Vb. Therefore φ∗
i ≤ � for all i ∈ I, and hence from

Proposition 3.4, φb-SP must be feasible.
The reverse statement is trivial. If φb-SP is feasible then from Proposition 3.4 we have

φ∗
i ≤ � for all i ∈ I, and hence there is no j ∈ I such that φ∗

j,b > �, therefore Vb = ∅. 
�
Proposition 3.10 Cb = ∅ if and only if θb-SP is feasible.

Proof Both forward and reverse proofs follow analogously from the proof of Proposition 3.9.

�

Definition 3.11 (UnboundedDirection) Let LP = max
{
aT x : Ax ≤ 0, x ∈ R

n
}
be a linear

program, where a ∈ R
n and A ∈ R

m×n . Then v ∈ R
n is an unbounded direction of LP if

Av ≤ 0 and aT v > 0.
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Proposition 3.12 Fix a schedule (xi,b, yi,b, zi,b, ti ) for all b ∈ B, i ∈ I. Suppose further that
φb-SP is infeasible with respect to the schedule (xi,b, yi,b, zi,b, ti ). Then, for all (i, j) ∈ Vb,
define π∗, ρ∗ ∈ R

n+1 as

π∗
k =

{
1, if k ∈ [i, j] and k ∈ Xb,

0, otherwise,
ρ∗
k =

{
−1, if k = j,

0, otherwise,

for k = 0, . . . , n, and define σ ∗ ∈ R
n as

σ ∗
k =

{
1, if k ∈ [i, j] and k ∈ Ob,

0, otherwise,

for k = 1, . . . , n. Then (π∗, σ ∗, ρ∗) is an unbounded direction of φb-DP.

Proof FromProposition3.9, ifφb-SP is infeasiblewith respect to the schedule (xi,b, yi,b, zi,b, ti )
then Vb is non-empty, and therefore the vector (π∗, σ ∗, ρ∗) exists. Moreover, the problem
φb-DP is of the form max

{
aT x : Ax ≤ 0, x ∈ R

n
}
, and therefore matches that in Defini-

tion 3.11. We now prove (π∗, σ ∗, ρ∗) is feasible solution to φb-DP . The schedule generated
by the master problem must satisfy constraint (4) and hence xi,b + yi,b + zi,b ≤ 1 for all
i ∈ I. Therefore from (45) and (49) we have that Xb ∩ Ob = ∅ and hence for all k ∈ [i, j]
we have π∗

k + σ ∗
k = 1. Therefore the only non-zero constraints are,

πk + σk − πk+1 − σk+1 + ρk = 1 − 1 + 0 = 0 ≤ 0, k = i, . . . , j − 1,

π j + σ j − π j+1 − σ j+1 + ρ j = 1 − 0 − 1 = 0 ≤ 0,

which are all satisfied and hence (π∗, σ ∗, ρ∗) is feasible solution φb-DP .
The objective value �b is given as,

�b = φ̃π∗
0 +

n∑

k=1

(
tk − tk−1 − (� + �) yk−1,b − �

(
xk−1,b + zk−1,b

))
π∗
k

−�

n∑

k=1

yk−1,bσ
∗
k + �

n∑

k=0

ρ∗
k . (50)

From (47) we have that 0 ∈ Yb if and only if 1 ∈ Yb. Therefore from (48), for all (i, j) ∈ Vb,
either i = 0 or i ≥ 2. If i ≥ 2, then (50) can be re-written with non-zero components,

�b =
∑

k∈[i, j]
k∈Xb

(
tk − tk−1 − (� + �) yk−1,b − �

(
xk−1,b + zk−1,b

))

−�
∑

k∈[i, j]
k∈Ob

yk−1,b − �. (51)

Now, from (49), for all k ∈ Ob we have xk−1,b + zk−1,b = 1 and hence from constraint
(4) of MP we have that yk−1,b = 0. Furthermore, if xk−1,b + zk−1,b = 1, then from (42),
φ∗
k,b − φ∗

k−1,b = 0 = yk−1,b. Additionally, from (45), for all k ∈ Xb we have xk−1,b =
yk−1,b = zk−1,b = 0 and therefore from (42) we have φ∗

k − φ∗
k−1 = tk − tk−1. Then (51) can

be simplified as follows,

�b =
∑

k∈[i, j]
k∈Xb

(tk − tk−1) +
∑

k∈[i, j]
k∈Ob

(
φ∗
k,b − φ∗

k−1,b

) − �,
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=
∑

k∈[i, j]
k∈Xb

(
φ∗
k − φ∗

k−1

) +
∑

k∈[i, j]
k∈Ob

(
φ∗
k,b − φ∗

k−1,b

) − �. (52)

Given Xb ∩ Ob = ∅ we can simplify (52) as follows,

�b =
∑

k∈[i, j]

(
φ∗
k − φ∗

k−1

) − �,

= φ∗
j − φ∗

i−1 − �,

= φ∗
j − � > 0,

as φ∗
i−1 = 0 and φ∗

j > �. Therefore (π∗, σ ∗, ρ∗) is an unbounded direction of φb-DP . The
proof for the case where i = 0 follows analogously. 
�
Proposition 3.13 Fix a schedule (xi,b, yi,b, zi,b, ti ) for all b ∈ B, i ∈ I. Suppose further that
θb-SP is infeasible with respect to the schedule (xi,b, yi,b, zi,b, ti ). Then, for all (i, j) ∈ Cb,
define γ ∗, η∗ ∈ R

n+1 as

γ ∗
k =

{
1, if k ∈ [i, j] ,

0, otherwise,
η∗
k =

{
−1, if k = j,

0, otherwise,

for k = 0, . . . , n. Then (γ ∗, η∗) is an unbounded direction of θb-DP.

Proof The proof follows analogously from the proof of Proposition 3.12. 
�
Proposition 3.14 Fix a schedule (xi,b, yi,b, zi,b, ti ) for all b ∈ B, i ∈ I. For all banks b ∈ B
where φb − SP is infeasible,

∑

k∈[i, j]
k∈Xb

(
tk − tk−1 − (� + �) yk−1,b − �

(
xk−1,b + zk−1,b

)) − �
∑

k∈[i, j]
k∈Ob

yk−1,b ≤ �,

∀(i, j) ∈ Vb : i ≥ 2, (53)

φ̃ +
∑

k∈[1, j]
k∈Xb

(
tk − tk−1 − (� + �) yk−1,b − �

(
xk−1,b + zk−1,b

)) − �
∑

k∈[1, j]
k∈Ob

yk−1,b ≤ �,

∀(i, j) ∈ Vb : i = 0, (54)

are valid feasibility cuts for MP.

Proof These cuts are derived from the unbounded directions outlined in Proposition 3.12, and
so from Benders (1962), they are valid cuts that remove this infeasible solution. Furthermore,
the cuts only remove solutions that cause unbounded directions, and therefore infeasible
subproblems. As such, the cuts do not remove other feasible solutions. Hence, they are valid
feasibility cuts. 
�
Proposition 3.15 Fix a schedule (xi,b, yi,b, zi,b, ti ) for all b ∈ B, i ∈ I. For all banks b ∈ B
where θb − SP is infeasible,

t j − ti−1 −
j∑

k=i

(
(� + �)

(
xk−1,b + yk−1,b

) + �zk−1,b
) ≤ �, ∀(i, j) ∈ Cb : i ≥ 2,

t j + θ̃b −
j∑

k=1

(
(� + �)

(
xk−1,b + yk−1,b

) + �zk−1,b
) ≤ �, ∀(i, j) ∈ Cb : i = 0.
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are valid feasibility cuts for MP.

Proof The proof follows analogously from the proof of Proposition 3.14. 
�

3.3 Valid inequalities

Entirely removing the operational due time constraints from the master problem has the
potential to make its formulation weak. In such cases, it is common to introduce a set of valid
inequalities to tighten the master problem. Doing so can reduce the number of feasibility
cuts required, thereby leading to faster convergence. However, if the valid inequalities are
weak then the model may perform worse due to the large number of unnecessary constraints
included. Hence, having strong valid inequalities is highly desirable. We now formulate a set
of valid inequalities based on practical assumptions of the problem, in hopes of tightening
the master problem formulation.

The valid inequalities are based on the assumption that at any time, exactly one bank is
offline in every subsystem. Consider the following formulation for the service due time for
a single bank. Let intervals i, j ∈ I be such that i < j . Then the operational time for bank
b ∈ B between intervals i and j is given as

j−1∑

k=i
xk,b+yk,b+zk,b=0

(tk+1 − tk) . (55)

In other words, it is the sum of the length of intervals between i and j where the bank is
operational. Then, to ensure a bank is serviced on time, we must have

j−1∑

k=i
xk,b+yk,b+zk,b=0

(tk+1 − tk) ≤ �

⎛

⎝1 +
j−1∑

k=i

yk,b

⎞

⎠ . (56)

While this formulation ensures banks are serviced on time, the conditional sum makes it
inappropriate for use in amixed-integer linear model, and hence we proposed the formulation
shown in Section 2.3. However, recall that a practical assumption of the model is that at any
time, exactly one bank is offline in each subsystem. Therefore, if we sum (55) over all b ∈ Bs

where s ∈ S, we get
∑

b∈Bs

j−1∑

k=i
xk,b+yk,b+zk,b=0

(tk+1 − tk) = (|Bs | − 1)
(
t j − ti

)
,

where | · | denotes the cardinality. Applying this to (56), we get the valid inequality

(|Bs | − 1)
(
t j − ti

) ≤ �

⎛

⎝|Bs | +
∑

b∈Bs

j−1∑

k=i

yk,b

⎞

⎠ , ∀s ∈ S, i, j ∈ I : i < j, (57)

and similarly, for cleanings we get

(|Bs | − 1)
(
t j − ti

) ≤ �

⎛

⎝|Bs | +
∑

b∈Bs

j−1∑

k=i

xk,b

⎞

⎠ , ∀s ∈ S, i, j ∈ I : i < j . (58)

These inequalities can then be added to the master problem to tighten its formulation.
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4 Numerical results and discussion

We now explore the effectiveness of the proposed solution method using two case studies
and several test instances. The case studies aim to provide the reader with a realistic problem
setting by examining the scheduling requirements of two Bayer refineries based in Western
Australia. The schedules generated in these case studies outline some common characteristics
found in practical digester maintenance schedules. Using several test instances, we then
assess the sensitivity of the model and solution method to various problem components,
with the aim of identifying the factors that contribute to challenging instances. Specifically,
we investigate how desired time horizon, service due time, and operational setup impact the
model’s performance. Furthermore, we analyse the contribution that Benders decomposition,
valid inequalities, and lazy constraints make to overall algorithmic performance.

The scheduling model and solution algorithm was implemented in Gurobi version 10.0.1,
using the lazy constraint callback feature. This feature allows the lazy constraints andBenders
feasibility cuts to be integrated into the branch and cut framework. The program was run on
a machine with a 2.3GHz AMD EPYC processor with 32 GB of RAM, using a single thread.

4.1 Alcoa case study

Alcoa of Australia operates two bauxite mines and three alumina refineries within Western
Australia, producing a total of 9million tonnes of alumina annually,making up approximately
7% of total production worldwide (Alcoa of Australia Limited, 2019). In this case study, we
apply the digester scheduling model to the digestion setups in the Wagerup and Pinjarra
refineries. The case study aims to provide readers with a realistic parameter selection and
demonstrate some of the characteristics of a practical schedule.

In both case studies, the maintenance-related parameters are chosen as follows;

α = 35 days, β = 80 days,

� = 220 days, � = 680 days,

A = $10, B = $40.

The cleaning overlap cost L was set at 10% the cost per day of a cleaning activity, and the
service overlap cost M was set at 25% the cost per day of a service activity. Each bank’s
starting operational time since its last cleaning, θ̃b is chosen randomly such that θ̃b ∈ [0,�].
Similarly, each bank’s starting operational time since its last service, φ̃b is chosen randomly
such that φ̃b ∈ [0,�]. A practical schedule should last for approximately three years. During
this time, there are expected to be two valve changes for each production unit.

4.1.1 Alcoa Wagerup

AlcoaWagerupuses three digester banks set up in a single subsystem to complete the digestion
phase of the Bayer process. Figure 3 outlines an example of this setup. For this setup S = {1}
and B = {1, 2, 3}. A double bank switch occurs when bank 1 is switched with bank 3, and
vice versa, hence D1 = {(1, 3), (3, 1)}.

Table 2 summarizes the performanceof the originalmodel and the decomposition approach
proposed in Section 3 on theWagerup case study. The originalmodelwas solved in 14 seconds
using Gurobi. The use of Benders decomposition and valid inequalities resulted in a nearly
50% reduction in solve time, indicating a substantial improvement due to the application of
Benders decomposition.
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Fig. 3 Wagerup digestion system with three banks feeding two production units

Table 2 Performance of the original model and Benders decomposition solution algorithm on the Wagerup
and Pinjarra case studies

Case study Original Decomposed
Time (sec) Gap (%) Objective value Time (sec) Gap (%) Objective Value

Wagerup 14.00 0.00 240.0 7.46 0.00 240.0

Pinjarra 7200.02 32.30 1011.0 7200.02 7.52 1010.0

Fig. 4 Optimal three-yearmaintenance schedule forWagerup case study.Green represents operational periods,
yellow represents cleaning activities, purple represents service activities and grey represents standby time.
Valve changes are shown as red dashed lines that cross over their associated banks. For instance, the valve
change on day 212 occurs on production unit 1, as it can connect to banks 1 and 2

Figure 4 displays the optimal three-year maintenance schedule for the Wagerup case
study, which includes fifteen cleanings and three services while meeting all four planned
valve change days. Notably, to prevent double bank changes, the schedule frequently cleans
bank 2. Consequently, the average duration of an operational period for banks 1 and 3 is
significantly longer than for bank 2. This is a common characteristic of digester maintenance
schedules.
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Fig. 5 Best known three-year maintenance schedule for the Pinjarra case study

4.1.2 Alcoa Pinjarra

TheAlcoa Pinjarra refinery contains eight digester banks split into three subsystems. Figure 1
outlines an example of this setup. For this setup, S = {1, 2, 3} with B1 = {1, 2, 3}, B2 =
{4, 5, 6} and B3 = {7, 8}. Double bank switching occurs when bank 1 is switched with
bank 3 or bank 4 is switched with bank 6 and vice versa, hence D1 = {(1, 3), (3, 1)},
D2 = {(4, 6), (6, 4)} and D3 = ∅.

Table 2 presents the performance of the Benders decomposition approach and the origi-
nal model for the Pinjarra case study model. Apart from Benders decomposition and valid
inequalities, a lazy constraint formulation of constraint (15) can be utilized, given the pres-
ence of multiple subsystems in the Pinjarra setup. Despite two hours of solve time, neither
the original model nor Benders decomposition could attain the optimal solution, indicating
that the larger and more complex operational setup poses a significantly more challeng-
ing problem. Nevertheless, Benders decomposition yields an improved objective value and
considerably reduces the optimality gap.

Figure 5 displays the best-known three-year maintenance schedule for the Pinjarra setup,
which includes a total of 39 cleanings, 7 services and meets all ten planned valve changes.
To avoid double bank changes, the schedule frequently plans cleanings for banks 2 and 5.
Moreover, we observe that no more than two cleanings or services occur concurrently, and
efforts are made to minimize any potential clashes.

4.2 Test instances

The analysis in the previous case study was limited to only two problem settings and only
compared the proposed solution algorithm from Section 3 with the original model. To pro-
vide a more comprehensive understanding of the model’s sensitivities and complexities, we
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introduce several test instances. These instances aim to explore how time horizon, service
due time and operational setups impact model performance. Additionally, we investigate the
contribution that Benders decomposition, valid inequalities, and lazy constraints make to
overall algorithmic performance and attempt to determine which approach better tackles the
model complexities.

4.2.1 Time horizon

To explore the effect time horizon has on model performance, we solve the Wagerup and
Pinjarra case study models with varying time horizons. Furthermore, we use different com-
binations of Benders decomposition, valid inequalities, and lazy constraints to gain insights
into the most effective technique for handling increasing time horizons.

Table 3 outlines the performance of the different solution strategies for the Wagerup
scheduling model with time horizons ranging from two to five years. The results show that
all solution approaches are highly sensitive to increasing time horizons.While all approaches
solved the two-year schedule in under a second, the solve time increased exponentially with
an increase in time horizon. No solver was able to prove optimality within two hours of
solve time for a five-year schedule. For the τ = 730 and τ = 1460, the original model
solved the fastest. However, for τ = 1095, Benders decomposition with lazy constraints
solved in half the time of the original model. Interestingly, for τ = 1095 and τ = 1460, the
introduction of valid inequalities appeared to slow the original model, indicating they may
have been ineffective and weighed down the solver. In contrast, valid inequalities improved
the performance of Benders decomposition substantially. For instance, for the case where
τ = 1095, valid inequalities reduced the number of service cuts by 50%, leading to a far
better runtime.

Table 4 outlines the performance of the different solution strategies for the Pinjarra
scheduling model with time horizons ranging from two to four years. As this problem is more
difficult than the Wagerup problem, it is more sensitive to increasing time horizons, with no
approach able to solve the three-year schedule within a two-hour time limit. For τ = 730, the
best performance was achieved by Benders decomposition with lazy constraints, solving in
106 seconds. Additionally, the use of lazy constraints appears very effective in this case. For
the four-year schedule, Benders decomposition was not able to find an integer feasible solu-
tion after two hours. Remarkably, Benders decomposition with valid inequalities achieved a
far tighter best bound than any other approach, despite not finding an integer feasible solu-
tion. Finally, valid inequalities were highly effective for the larger time horizon, significantly
reducing the number of added service and cleaning cuts and tightening the best bound.

Overall, we can conclude that the scheduling model is highly sensitive to the time horizon,
with all solution approaches struggling to solve longer schedules within a reasonable time
limit. However, the use of valid inequalities and Benders decomposition leads to far tighter
best bounds at large time horizons, although these approaches can struggle to find good
quality feasible solutions. Furthermore, the use of lazy constraints appears very effective
when combined with Benders decomposition.

4.2.2 Service due time

The case study highlighted the challenges associated with planning services, as operational
periods can vary significantly in length, making it difficult to determine when to service a
bank. To better understand the effect of this complexity, we explore how different service
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due times impact model performance. Using theWagerup operational setup over a three-year
time horizon, we set � = p� where p = 0, 2, 3, 4. For each value of p, we then examine
the performance of the various solution approaches. Note that when p = 0, we assume no
servicing is required.

Table 5 summarizes the performance of various solution approaches for each value of
p. The findings indicate that the performance of the different solution strategies varies sig-
nificantly depending on the service due time. For example, when no servicing is required
(p = 0), themodel is easily solved in under 10 seconds, with Benders decomposition proving
particularly effective, solving the model to optimality in less than a second. However, when
� = 2�, Benders decomposition becomes vastly ineffective, achieving only a 9.76% gap
after two hours of solve time, whereas the original model solved to optimality in under 400
seconds. On the other hand, when � = 3�, the proposed method of Benders decomposition
and valid inequalities was the best performer, improving on the original model by 400 sec-
onds. The use of valid inequalities appears very effective in this case, reducing the number
of service cuts by almost half. However, when increasing to � = 4�, Benders decomposi-
tion once again performs worse, and when used without valid inequalities, it is not able to
prove optimality in two hours. Finally, when � = 5�, the optimal solution contained no
services across the three-year time horizon. Nevertheless, Benders decomposition was able
to prove optimality far quicker, requiring only 22 service lifetime cuts when used with valid
inequalities.

Service due time represents a complicated and sensitive part of the model. The perfor-
mances of all solution algorithms vary dramatically when service due time changes with
respect to the cleaning due time. Therefore, the decision of which solution algorithm to use
should depend on the ratio. Further analysis and research is necessary to better understand
this trend and find ways of overcoming this sensitivity.

4.2.3 Operational setup

The previous experiments were limited to the operational setups introduced in the case study.
However, upon comparing the results presented in Tables 3 and 4, it is apparent that there
is a significant difference in problem complexity between the Wagerup and Pinjarra setups.
To further understand the impact of varying the size and layout of the operational setup, we
introduce several new test instances. Specifically, for each instance, we assume there are m
subsystems, and within each subsystem, there are n banks, resulting in a total of mn banks.
We set up the banks such that there are no double bank changes and assume no planned valve
change days. All other maintenance-related parameters are identical to those in the Pinjarra
case study. The problem is then solved over a two-year time horizon.

The performance of the various solution approaches on different operational setups are
presented in Table 6. Interestingly, in all exampleswhere therewere two banks per subsystem,
the decomposition approach yielded significantly better results. For instance, when two banks
were spread across four subsystems, Benders decomposition with valid inequalities achieved
optimality in 465 seconds, while the original model only achieved a 75% gap after two hours
of solve time. Moreover, including more banks within the same subsystem creates a much
more difficult problem. For example, the problem of two banks per subsystem spread across
four subsystems (totalling eight banks) was easily solved in under 500 seconds. However,
if the eight banks were split across only two subsystems, the performance was far worse,
with the best-performing model achieving only a 36% gap after two hours of solve time.
Furthermore, for these large and very challenging models, the decomposition approach with
valid inequalities consistently outperformed in terms of both objective value and best bound.
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5 Conclusion

In this paper, we formulated a maintenance scheduling model for digester banks, a critical
asset used in theBayer process. Our researchwasmotivated by the importance digestion plays
in theBayer process and the difficulty of determining cost-efficientmaintenance schedules for
fleets of digester banks. Due to the network nature of digestion systems and complex mainte-
nance requirements, scheduling bank maintenance manually can be challenging. Therefore,
we propose a scheduling model that can find the cost-optimized maintenance schedule that
satisfies all required constraints. While this research focuses on Bayer digestion, many main-
tenance scheduling problems in refinery settings exhibit similar challenges.

Several strategies were introduced to assist in solving the problem at larger dimensions.
Benders decomposition was used to handel the complicated operational lifetime requirement
of the banks. We showed how the Benders subproblems could be solved easily using a
specialist algorithm. Additionally, valid inequalities based on practical assumptions were
introduced to further tighten themaster problem. Finally, lazy constraints were used to handel
service clash constraints, whichmake up a substantial proportion of the constraint set, yet only
a small proportion are ever active. These strategies were then evaluated on two case studies
involving real world digester setups. Several test instances were also generated to further
explore the effectiveness of each strategy as well as better understand the key complexities
of the problem.

Extensive numerical experiments highlight the key model sensitives and complexities.
Parameters such as time horizon, service due time and operational setup each have significant
impacts on the performance of the suggested solution strategies. Crucially, the results show
that no single strategy is better in all cases. The model’s sensitives mean that particular
strategies perform better in particular settings.

As such, a compelling avenue for future research is to better understand each of these
complexities and find ways to overcome them. In particular, the model should become more
stable to increasing time horizons. This is partially taken care of by the continuous-time
model, however, results showed that the desired time horizon still limits the model. More-
over, numerical experiments show how the number of banks within a subsystem impact the
performance of the model. This should be explored further to assist in solving more gen-
eral digestion setups. Making such improvements would make the model more useful in a
practical setting.
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