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We propose a novel approach to pricing European call options when both of the volatility 
of the underlying asset and interest are uncertain. In this approach, we formulate the option 
pricing problem with uncertain parameters as a partial-differential inequality constrained interval 
optimization problem. An interior penalty method is then developed for the numerical solution 
of the finite-dimensional optimization problem arising from the discretization of the continuous 
pricing problem by a finite difference scheme. A convergence theory for the penalty method 
is established. An algorithm based on Newton’s iterative method is also proposed for solving the 
penalty equation. Numerical results are presented to demonstrate the effectiveness and usefulness 
of this approach and the numerical methods.

1. Introduction

An options is a financial derivative which gives its hold the right, not obligation, to buy (Call option) or sale (Put Option) a pre-

defined number of shares of an underlying stock at a fixed price, called strike price, on or before a given date (Maturity). If an option 
can only be exercised on maturity, it is called a European option. Otherwise, it is an American option. Options are used extensively 
in hedging risks in investments. Options can be traded on a secondary financial market before maturity, and thus how to price an 
option accurately has been a hot topic for both practitioners and researchers. In [4] Black and Scholes proposed a mathematical 
model, known as the Black-Scholes model for pricing European options under certain conditions. These conditions include that the 
short interest rate is constant and the underlying stock price follows a geometric Brownian motion with a constant volatility. Since 
the publication of this seminal paper by Black and Scholes, valuation of options has attracted a lot of attention from both researchers 
and practitioners.

Assume the price of a stock, 𝑆 , follows a geometric Brownian motion. Using Ito’s lemma and the Δ-hedging strategy, one can 
easily show that the price of a European call option 𝑉 satisfies the following Black-Scholes’ equation
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with appropriate boundary and terminal conditions, where 𝜎 is the volatility of the underlying stock and 𝑟 the nominal interest rate. 
This PDE governs the price of a European option when both 𝜎 and 𝑟 are given constants.

Many extensions of (1) have been proposed to price options under more realistic economic and market conditions such as 
transaction costs in trading and stochastic market parameters. In particular, models for pricing options under stochastic volatility 𝜎
or/and interest rate 𝑟 in (1) have been established. These models are based on the assumption that the volatility of the underlying 
stock price and/or interest rate, in addition to the stock price itself, follow their respective Brownian motions. In practice, system 
and market parameters of any aforementioned models can not be known exactly and need to be calibrated using trading or economic 
data. Thus, these calibrated data contain uncertainties. Full statistical information for such an uncertain parameter, such as its 
distribution, can hardly be determined, but partial statistical information on the parameter can be determined easily. Therefore, in 
practice, we often represent an uncertain parameter approximately by an interval, called an interval number. Optimal decision-making 
for problems with interval coefficients has attracted much attention from researchers and practitioners. In [1], a technique based 
on the so called ‘worst-case scenario’ is developed to price a European option when 𝜎 in (1) is uncertain (non-stochastic), and a 
computational method for solving this model is developed in [25]. There are some non-PDE based methods for pricing European 
options when the coefficients are uncertain or fuzzy such as those in [3,16,29], just to name a few. However, to our best knowledge, 
there are essential no methods for determining optimal solutions of PDE pricing models such as (1) in the open literature when some 
of the coefficients in (1) are interval numbers.

In this work, we propose a novel approach to determining optimal values of European options when both 𝜎 and 𝑟 in (1) are 
interval numbers, based on some interval number order relations. We will also develop a numerical method for solving the pricing 
problem and present a mathematical analysis for the numerical method. The rest of this work is organise as follows.

In the next section, we first give a brief account of interval number order relations. We then formulate the option pricing problem 
with uncertain 𝜎 and 𝑟 as a constrained interval optimization problem and show that the feasible set of solutions to this continuous 
optimization problem is non-empty. In Section 3, we discretize the interval optimization problem using a finite-difference scheme to 
form a finite-dimensional constrained interval optimization problem. In Section 4, we propose to approximate the KKT conditions 
of the discrete interval optimization problem by a penalty equation, and establish a convergence theory for the solutions from 
the penalty equation. An algorithm is also proposed for numerically solving the penalty equation. In Section 5, we present some 
numerical results to demonstrate the usefulness and effectiveness of this approach.

2. Preliminaries and problem formulation

2.1. Interval numbers and orders

When a real number 𝑎 is uncertain, we often represent it as an interval number, that is, 𝑎 = [𝑎𝐿, 𝑎𝑅], where 𝑎𝐿 and 𝑎𝑅 are two 
real numbers such that 𝑎𝐿 ≤ 𝑎𝑅. This interval number can alternatively be written as 𝑎 = ⟨𝑎𝐶 , 𝑎𝑊 ⟩, where 𝑎𝐶 = (𝑎𝐿 + 𝑎𝑅)∕2 and 
𝑎𝑊 = (𝑎𝑅 − 𝑎𝐿)∕2. Definitions for extensions of arithmetic operations on scalars to interval numbers have been discussed and used 
in many existing works such as [2,5,6,8,11,15,19,20,24]. In this work, we use the following definitions of extensions of arithmetic 
operations ([15]).

Definition 2.1. Let 𝑎 = [𝑎𝐿, 𝑎𝑅] = ⟨𝑎𝐶 , 𝑎𝑊 ⟩ and 𝑏 = [𝑏𝐿, 𝑏𝑅] = ⟨𝑏𝐶 , 𝑏𝑊 ⟩ be two interval numbers. Then, the arithmetic operations 
addition (+), multiplication (⋅) and division (∕) are defined respectively as

• 𝑎 + 𝑏 = [𝑎𝐿 + 𝑏𝐿, 𝑎𝑅 + 𝑏𝑅] = ⟨𝑎𝐶 + 𝑏𝐶 , 𝑎𝑊 + 𝑏𝑊 ⟩,
• 𝑎 ⋅ 𝑏 = [min{𝑎𝐿𝑏𝐿, 𝑎𝑅𝑏𝐿, 𝑎𝐿𝑏𝑅, 𝑎𝑅𝑏𝑅}, max{𝑎𝐿𝑏𝐿, 𝑎𝑅𝑏𝐿, 𝑎𝐿𝑏𝑅, 𝑎𝑅𝑏𝑅}],
• 𝑎∕𝑏 = [min{𝑎𝐿∕𝑏𝐿, 𝑎𝑅∕𝑏𝐿, 𝑎𝐿∕𝑏𝑅, 𝑎𝑅∕𝑏𝑅}, max{𝑎𝐿∕𝑏𝐿, 𝑎𝑅∕𝑏𝐿, 𝑎𝐿∕𝑏𝑅, 𝑎𝑅∕𝑏𝑅}], when 0 ∈ [𝑏𝐿, 𝑏𝑅], and

• 𝑘𝑎 = ⟨𝑘𝑎𝐶 , |𝑘|𝑎𝑊 ⟩ ={
[𝑘𝑎𝐿,𝑘𝑎𝑅] 𝑘 ≥ 0
[𝑘𝑎𝑅,𝑘𝑎𝐿] 𝑘 < 0

for any real number 𝑘.

The order relationships on interval numbers defined below are important in an minimization problem.

Definition 2.2. Let 𝑎 = ⟨𝑎𝐶 , 𝑎𝑊 ⟩ = (𝑎𝐿, 𝑎𝑅) and 𝑏 = ⟨𝑏𝐶 , 𝑏𝑊 ⟩ = (𝑏𝐿, 𝑏𝑅). The interval orders ⪯𝐶𝑊 , ≺𝐶𝑊 , ⪯𝐶𝑅 and ≺𝐶𝑅 for 𝑎 and 𝑏
are defined as follows.

• 𝑎 ⪯𝐶𝑊 𝑏 iff 𝑎𝐶 ≤ 𝑏𝐶 and 𝑎𝑊 ≤ 𝑏𝑊 ,

• 𝑎 ≺𝐶𝑊 𝑏 iff 𝑎 ⪯𝐶𝑊 𝑏 and 𝑎 ≠ 𝑏,

• 𝑎 ⪯𝐿𝑅 𝑏 iff 𝑎𝐿 ≤ 𝑏𝐿 and 𝑎𝑅 ≤ 𝑏𝑅,

• 𝑎 ≺𝐿𝑅 𝑏 iff 𝑎 ⪯𝐶𝑅 𝑏 and 𝑎 ≠ 𝑏.

These order relations are partial orders on the set of all interval numbers. We may also define the following order relation

• 𝑎 ⪯𝐶𝑅 𝑏 iff 𝑎𝐶 ≤ 𝑏𝐶 and 𝑎𝑅 ≤ 𝑏𝑅,
2

• 𝑎 ≺𝐶𝑅 𝑏 iff 𝑎 ⪯𝐶𝑅 𝑏 and 𝑎 ≠ 𝑏.
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It has been shown in [15] that 𝑎 ⪯𝐶𝑅 (≺𝐶𝑅)𝑏 if and only if 𝑎 ⪯𝐶𝑊 (≺𝐶𝑊 )𝑏 or 𝑎 ⪯𝐿𝑅 (≺𝐿𝑅)𝑏. Thus, we will use this order relation 
in the rest of this work. For notational simplicity we will simply write ⪯𝐶𝑅 as ⪯.

We comment that ⪯𝐶𝑅 is a partial order. However, we will show that under this partial order relationship, the solution set of our 
optimization-based pricing problem is non-empty. Also, it is straightforward to show our results to be presented in the rest of this 
paper hold true when ⪯𝐶𝑅 is replaced by the full order relationship proposed in [11].

2.2. The option pricing problem

Assume the unit price 𝑆(𝑡) of a traded risky asset follows a geometric Brownian motion at any time 𝑡, i.e., 𝑆 satisfies the following 
stochastic differential equation:

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡+ 𝜎𝑆(𝑡)𝑑𝑊 ,

where 𝜇 is the drift rate of 𝑆(𝑡), 𝜎 is the volatility and 𝑑𝑊 denotes the increment of a Wiener process 𝑊 . An investor would like to 
sell a European call option on this risky asset with strike price 𝐾 > 0 and maturity 𝑇 > 0, assuming the risk-free return rate is 𝑟 > 0. 
A natural question is how to determine the fair price 𝑉 of this option when both 𝜎 and 𝑟 are interval numbers.

When 𝜎 and 𝑟 follow their respective Brownian motions, their dynamics can be modelled by a stochastic differential equation. 
In this case, 𝑉 is governed by a multi-factor Black-Scholes equation [10,14,28]. However, for our case, full statistical properties 
of 𝜎 and 𝑟 are unknown and these parameters can only be characterized as interval numbers. In [1], a pricing model for the case 
that 𝜎 is an interval number is developed based on the ‘worse-case scenario’. In our present work, we shall use the interval number 
optimization technique and the Δ-hedging strategy to price a European call option when both 𝜎 and 𝑟 are interval numbers. More 
specifically, we consider the hedging strategy for the investor issuing one European call whose value at 𝑡 is 𝑉 (𝑆(𝑡), 𝑡). It is known 
that the investor can use the Δ-hedging strategy to neutralize the risk in selling the option, i.e. the investor needs to hold 𝜕𝑉

𝜕𝑆
number 

of the underlying shares at time 𝑡, so that the portfolio

Π(𝑆, 𝑡) = 𝜕𝑉 (𝑆(𝑡), 𝑡)
𝜕𝑆

𝑆(𝑡) − 𝑉 (𝑆(𝑡), 𝑡) (2)

becomes risk-free. Thus, the investment gain in Π in an infinitesimal [𝑡, 𝑡 +𝑑𝑡) is a combination of 𝑑𝑆 and 𝑑𝑉 , i.e., 𝑑Π = 𝜕𝑉

𝜕𝑆
𝑑𝑆−𝑑𝑉 . 

Applying Ito’s lemma to Π(𝑆(𝑡), 𝑡), we can represent 𝑑Π as

𝑑Π= −
(
𝜕𝑉

𝜕𝑡
+ 1

2
𝜎2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑑𝑡. (3)

In the conventional case that 𝜎 and 𝑟 are non-interval numbers, we expect this portfolio Π is also risk-free, i.e.,

𝑑Π= 𝑟Π𝑑𝑡 = 𝑟

(
𝜕𝑉

𝜕𝑆
𝑆 − 𝑉

)
𝑑𝑡, (4)

which, when combined with (3), yields (1). However, in the case that both 𝜎 and 𝑟 are interval numbers, (1) cannot usually hold 
true. This is because that, from (3), we see that 𝑑Π is an interval number depending on 𝜎 and the right-hand side of (4) is an interval 
number depending on 𝑟. There usually does not exist a function 𝑉 such that the two interval numbers are equal to each other. Thus, 
it is generally not possible to determine 𝑉 so that the conventional Black-Scholes equation (1) holds true when 𝜎 and 𝑟 are interval 
numbers.

To remedy this difficulty, we propose a new technique to determine the option price. Note that the coefficient of 𝑑𝑡 on the right-

hand side of (3) represents the growth rate in the value of the portfolio Π at 𝑡. Since this growth rate as a interval number can not be 
exactly equal to the (uncertain) risk-free growth rate 𝑟Π on the right-hand side of (4), we propose to use to following optimization 
problem to determine 𝑉 at any time 𝑡: find option price 𝑉 (𝑆, 𝑡) satisfying

minimize

𝑆max

∫
0

Π2(𝑆, 𝑡)𝑑𝑆 (5)

subject to 𝑟(𝑡)
(
𝜕𝑉

𝜕𝑆
𝑆 − 𝑉

)
⪯ −

(
𝜕𝑉

𝜕𝑡
+ 1

2
𝜎2𝑆2(𝑡)𝜕

2𝑉

𝜕𝑆2

)
(6)

for 𝑆 ∈ (0, 𝑆max) almost everywhere (a.e.), where 𝑆max ≫𝐾 is a positive number, Π is the portfolio defined in (2), and ⪯ represents 
one of the order relations defined in Definition 2.2. The explanation of this optimization problem is that we look for 𝑉 which, at 
time 𝑡 and when 𝑑𝑡 → 0+, minimizes the 𝐿2-norm squared of the portfolio Π in a computable range (0, 𝑆max) of the underlying stock 
price 𝑆 , subject to the constraint that the gain rate of Π (as an interval number) is not smaller than that of the risk-free portfolio. 
The minimization at 𝑡 can also be regarded as the worst-case scenario of the portfolio while its return is at lease equal to that of the 
risk-free portfolio. This is reasonable because the interval number 𝑟 should be the minimum return rate an investor expects.

The following theorem shows that (5)–(6) is equivalent to the conventional Black-Scholes partial differential equation model 
when both 𝜎 and 𝑟 are real numbers.

Theorem 1. When 𝜎 > 0 and 𝑟 > 0 become real numbers, the solution to the optimization problem defined in (5)–(6) is determined by the 
3

Black-Scholes equation (1).
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Proof. When 𝜎 > 0 and 𝑟 > 0 are real numbers, the order relation ⪯ becomes ≤, and thus (6) becomes a conventional constraint that 
the return rate of Π at 𝑡 is bounded below by 𝑟. For any 𝑡 > 0, consider the interval [𝑡 − Δ𝑡, 𝑡], where Δ𝑡 > 0 is a sufficiently small 
increment in time. We write Π(𝑆, 𝑡) =Π(𝑆, 𝑡 −Δ𝑡) +ΔΠ(𝑆, 𝑡), where Π(𝑆, 𝑡 −Δ𝑡) ≥ 0 is the value of the portfolio at 𝑡 −Δ𝑡. Integrating 
Π2(𝑆, 𝑡) from 0 to 𝑆max and using this equality and (3) with 𝑑𝑡 replaced with Δ𝑡, we have

𝑆max

∫
0

Π2(𝑆, 𝑡)𝑑𝑆 =

𝑆max

∫
0

[
Π(𝑆, 𝑡−Δ𝑡) −

(
𝜕𝑉

𝜕𝑡
+ 1

2
𝜎2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑡−Δ𝑡

Δ𝑡
]2
𝑑𝑆

≥
𝑆max

∫
0

[
Π(𝑆, 𝑡−Δ𝑡) +

(
𝑟

(
𝜕𝑉

𝜕𝑆
𝑆 − 𝑉

))
𝑡−Δ𝑡

Δ𝑡
]2
𝑑𝑆

for any feasible 𝑉 by (6). Therefore, when

−
(
𝜕𝑉

𝜕𝑡
+ 1

2
𝜎2𝑆2 𝜕

2𝑉

𝜕𝑆2

)
𝑡−Δ𝑡

=
[
𝑟

(
𝜕𝑉

𝜕𝑆
𝑆 − 𝑉

)]
𝑡−Δ𝑡

,

the cost in (5) is minimized. Finally, when Δ𝑡 → 0+, the above equality becomes (1). □

From the definition of Π in (2), we see that the cost function in (5) can be rewritten as

𝑆max

∫
0

Π2(𝑆, 𝑡)𝑑𝑆 =

𝑆max

∫
0

((
𝜕𝑉

𝜕𝑆

)2
𝑆2 − 2𝜕𝑉

𝜕𝑆
𝑆𝑉 + 𝑉 2

)
𝑑𝑆. (7)

Using integration by parts, we have

𝑆max

∫
0

𝜕𝑉

𝜕𝑆
𝑆𝑉 = 𝑉 2(𝑆max)𝑆max −

𝑆max

∫
0

(
𝑉 2 + 𝜕𝑉

𝜕𝑆
𝑆𝑉

)
𝑑𝑆,

from which we obtain

𝑆max

∫
0

𝜕𝑉

𝜕𝑆
𝑆𝑉 𝑑𝑆 = 1

2
𝑉 2(𝑆max, 𝑡)𝑆max −

1
2

𝑆max

∫
0

𝑉 2𝑑𝑆,

where 𝑉 (𝑆max, 𝑡) is the boundary condition of 𝑉 at (𝑆max, 𝑡), which is predetermined in computation. Thus, combining the above 
equality and (7) gives

𝑆max

∫
0

Π2(𝑆, 𝑡)𝑑𝑆 =

𝑆max

∫
0

[(
𝜕𝑉

𝜕𝑆

)2
𝑆2 + 2𝑉 2

]
𝑑𝑆 − 𝑉 2(𝑆max, 𝑡)𝑆max. (8)

Since 𝑉 (𝑆max, 𝑡) is a prescribed boundary condition, using (8), we may rewrite (5)–(6) as the following equivalent minimization 
problem:

minimize

𝑆max

∫
0

[(
𝜕𝑉

𝜕𝑆

)2
𝑆2 + 2𝑉 2

]
𝑑𝑆 (9)

subject to 𝑟(𝑡)
(
𝜕𝑉

𝜕𝑆
𝑆 − 𝑉

)
⪯ −

(
𝜕𝑉

𝜕𝑡
+ 1

2
𝜎2(𝑡)𝑆2 𝜕

2𝑉

𝜕𝑆2

)
(10)

for (𝑆, 𝑡) ∈ (0, 𝑆max) × [0, 𝑇 ) a.e..

We comment that in this continuous optimization problems, we only require that the constraint is satisfied almost everywhere in 
(0, 𝑆max) × [0, 𝑇 ). This is because a subset of (0, 𝑆max) × [0, 𝑇 ) with a zero measure on which (10) is not satisfied by 𝑉 does not affect 
the value of the cost function in (9).

In (9)–(10), we have assumed that 𝜎 is a local volatility and 𝑟 is also a function of 𝑡. The boundary and payoff conditions for this 
call option are

𝑉 (0, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ), (11)

𝑉 (𝑆max, 𝑡) = 𝑆max −𝐾 exp
⎛⎜⎜⎝−

𝑇

∫
𝑡

𝑟(𝜏)𝑑𝜏
⎞⎟⎟⎠ , 𝑡 ∈ [0, 𝑇 ), (12)
4

𝑉 (𝑆,𝑇 ) = max{𝑆 −𝐾,0}, 𝑆 ∈ (0, 𝑆max). (13)
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We also represent the interval numbers 𝜎(𝑡) and 𝑟(𝑡) as 𝜎(𝑡) = [𝜎𝐿(𝑡), 𝜎𝑅(𝑡)] and 𝑟(𝑡) = [𝑟𝐿(𝑡), 𝑟𝑅(𝑡)] for 𝑡 ∈ [0, 𝑇 ), where 𝜎𝐿, 𝜎𝑅, 𝑟𝐿 and 
𝑟𝑅 are given functions of 𝑡 satisfying 𝜎𝐿(𝑡) < 𝜎𝑅(𝑡) and 𝑟𝐿(𝑡) < 𝑟𝑅(𝑡) for all 𝑡 ∈ [0, 𝑇 ).

We remark that 𝑉 (𝑆max, 𝑡) in (12) is also an interval number because of 𝑟. In computation, we need to fix this boundary condition 
by replacing 𝑟(𝜏) in (12) with (𝑟(𝜏)𝐿 + 𝑟𝑅(𝜏))∕2.

We now show in the following theorem that the set of feasible solutions to (9)–(10) is non-empty in the weak sense, i.e., there 
exists at least one function that satisfies (10) almost everywhere ((a.e.) on (0, 𝑆max) ×(0, 𝑇 ) and the boundary and terminal conditions 
(11)–(12).

Theorem 2. The set of feasible solutions to (9)–(13) is non-empty.

Proof. Consider the function 𝑈 (𝑆, 𝑡) ∶= max
{
0, 𝑆 −𝐾 exp

(
− ∫ 𝑇

𝑡
𝑟(𝜏)𝑑𝜏

)}
. We shall show 𝑈 (𝑆, 𝑡) satisfies (10) for (𝑆, 𝑡) ∈

(0, 𝑆max) × [0, 𝑇 ) a.e. and the payoff and boundary conditions (11)–(13). It is trivial to verify that 𝑈 (𝑆, 𝑡) satisfies the payoff and 
boundary conditions (11)–(12), and we only prove the former.

We now show 𝑈 (𝑆, 𝑡) satisfies (10) for (𝑆, 𝑡) ∈ (0, 𝑆max) × (0, 𝑇 ) a.e.. From its definition, we have that, when 𝑆 <

𝐾 exp
(
− ∫ 𝑇

𝑡
𝑟(𝜏)𝑑𝜏

)
, 𝑈 (𝑆, 𝑡) = 0, and thus (10) holds true in the sub-domain {(𝑆, 𝑡) ∶ 𝑆 <𝐾 exp

(
− ∫ 𝑇

𝑡
𝑟(𝜏)𝑑𝜏

)
, 0 < 𝑡 < 𝑇 }.

When 𝑆 >𝐾 exp
(
− ∫ 𝑇

𝑡
𝑟(𝜏)𝑑𝜏

)
, from the definition of 𝑈 we have

𝜕𝑈

𝜕𝑆
= 1, 𝜕𝑈

𝜕𝑡
= −𝑟(𝑡)𝐾 exp

⎛⎜⎜⎝−
𝑇

∫
𝑡

𝑟(𝜏)𝑑𝜏
⎞⎟⎟⎠ , 𝜕2𝑈

𝜕𝑆2 = 0.

Therefore, for any 𝑡 ∈ (0, 𝑇 ), we have, in this case,

𝑟(𝑡)
(
𝜕𝑈

𝜕𝑆
𝑆 −𝑈

)
= 𝑟(𝑡)𝐾 exp

⎛⎜⎜⎝−
𝑇

∫
𝑡

𝑟(𝜏)𝑑𝜏
⎞⎟⎟⎠ = −

(
𝜕𝑈

𝜕𝑡
+ 1

2
𝜎2(𝑡)𝑆2 𝜕

2𝑈

𝜕𝑆2

)
Combining the above two cases we see that (10) is satisfied by 𝑈 with ‘⪯’ replaced with ‘=’ in

⎧⎪⎨⎪⎩(𝑆, 𝑡) ∈ (0, 𝑆max) × (0, 𝑇 ) ∶ 𝑆 ≠𝐾 exp
⎛⎜⎜⎝−

𝑇

∫
𝑡

𝑟(𝜏)𝑑𝜏
⎞⎟⎟⎠
⎫⎪⎬⎪⎭ . □

In Theorem 2, we have shown that the feasible solution set of the pricing problem (9)–(10) is non-empty under the partial order 
interval relation ⪯. As mentioned before, Theorem 2 also holds true when ⪯ is replaced by the full interval order relation proposed 
in [11]. In the rest of this work, we shall use ⪯ in our discussion, as we are able to make an optimal decision for the pricing problem 
even this partial interval order relationship is used.

3. Discretization of the infinite-dimensional optimization problem

We now discretize the optimization problem (9)–(10) by a finite difference scheme based on the upwind finite difference schemes 
in [17,23]. Let 𝑀 and 𝑁 be two positive integers. We partition (0, 𝑆max) × (0, 𝑇 ) into a set of sub-domains using the break points 
(𝑆𝑖, 𝑡𝑛) for 𝑖 = 0, 1, ..., 𝑀 and 𝑛 = 0, 1, ..., 𝑁 satisfying

0 = 𝑆0 < 𝑆1 <… < 𝑆𝑀 = 𝑆max, 𝑇 = 𝑡0 > 𝑡1 > ... > 𝑡𝑁 = 0.

Let ℎ𝑖 ∶= 𝑆𝑖+1 −𝑆𝑖 for 𝑖 = 0, 1, ..., 𝑀 −1 and Δ𝑡𝑛 = 𝑡𝑛− 𝑡𝑛−1 for 𝑛 = 1, 2, ..., 𝑁 . (Note Δ𝑡𝑛 < 0 for all feasible 𝑛.) For any 𝑖 ∈ {1, 2, ..., 𝑀 −
1} and 𝑛 ∈ {1, 2, ..., 𝑁}, we approximate the derivatives in (10) at (𝑆𝑖, 𝑡𝑛) respectively by the following finite differences used in [17]:

𝜕𝑉

𝜕𝑡
≈
𝑉 𝑛−1
𝑖

− 𝑉 𝑛
𝑖

−Δ𝑡𝑛
, 𝑟(𝑡)

(
𝑆
𝜕𝑉

𝜕𝑆
− 𝑉

)
≈ 𝑟𝑛

(
𝑆𝑖

𝑉 𝑛
𝑖+1 − 𝑉 𝑛

𝑖

ℎ𝑖
− 𝑉 𝑛

𝑖

)
,

1
2
𝜎2(𝑡)𝑆2 𝜕

2𝑉

𝜕𝑆2 ≈ (𝜎𝑛)2(−𝑝𝑖,𝑖−1𝑉 𝑛
𝑖−1 − 𝑝𝑖,𝑖𝑉

𝑛
𝑖
− 𝑝𝑖,𝑖+1𝑉

𝑛+1
𝑖

),

where 𝑉 𝑘
𝑗

denotes an approximation to 𝑉 (𝑆𝑗, 𝑡𝑘) for all feasible 𝑗 and 𝑘, 𝜎𝑛 = 𝜎(𝑡𝑛) and 𝑟𝑛 = 𝑟(𝑡𝑛) are interval numbers at 𝑡𝑛, and

−𝑆2
𝑖

−𝑆2
𝑖

𝑆2
𝑖

5

𝑝𝑖,𝑖−1 =
ℎ𝑖−1(ℎ𝑖−1 + ℎ𝑖)

, 𝑝𝑖,𝑖+1 =
ℎ𝑖(ℎ𝑖−1 + ℎ𝑖)

, 𝑝𝑖,𝑖 = −𝑝𝑖,1 − 𝑝𝑖,3 =
ℎ𝑖−1ℎ𝑖

. (14)
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Replacing the derivatives in (10) with the approximations defined above gives

𝑟𝑛

(
𝑆𝑖

𝑉 𝑛
𝑖+1 − 𝑉 𝑛

𝑖

ℎ𝑖
− 𝑉 𝑛

𝑖

)

⪯ −
𝑉 𝑛−1
𝑖

− 𝑉 𝑛
𝑖|Δ𝑡𝑛| + (𝜎𝑛)2(𝑝𝑖,𝑖−1𝑉 𝑛

𝑖−1 + 𝑝𝑖,𝑖𝑉
𝑛
𝑖
+ 𝑝𝑖,𝑖+1𝑉

𝑛
𝑖+1)

for 𝑖 = 1, 2, ..., 𝑀 − 1 and 𝑛 = 1, 2, ..., 𝑁 with the payoff and boundary conditions (11)–(13). Discretizing (9) using the mesh defined 
and rewriting the above inequality in a matrix form, we have the following finite-dimensional optimization problem approximating 
(9)–(10):

min 2
𝑀∑
𝑖=0

(𝑉 𝑛
𝑖
)2ℎ𝑖−1∕2 +

𝑀−1∑
𝑖=0

ℎ𝑖𝑆
2
𝑖+1∕2

(𝑉 𝑛
𝑖+1 − 𝑉 𝑛

𝑖
)2

ℎ2
𝑖

(15)

subj. to 𝑟𝑛
(
−𝑄𝑉 𝑛 + 𝑏𝑛2

)
⪯ 1|Δ𝑡𝑛|𝑉 𝑛 + (𝜎𝑛)2

(
𝑃𝑉 𝑛 − 𝑏𝑛1

)
− 1|Δ𝑡𝑛|𝑉 𝑛−1, (16)

where ℎ𝑖−1∕2 = (ℎ𝑖−1 + ℎ𝑖)∕2 for 𝑖 = 0, 1, ..., 𝑀 with ℎ0 = 0 = ℎ𝑀 , 𝑆𝑖+1∕2 = (𝑆𝑖 + 𝑆𝑖+1)∕2, 𝑉 𝑘 = (𝑉 𝑘
1 , 𝑉

𝑘
2 , ..., 𝑉

𝑘
𝑀−1)

⊤ for 𝑘 = 𝑛 − 1, 𝑛, 𝑃
is a tri-diagonal matrix of order (𝑀 −1) × (𝑀 −1) with non-zero entries defined in (14), 𝑄 is a bi-diagonal (𝑀 −1) × (𝑀 −1) matrix 
with 𝑞𝑖,𝑖 =

𝑆𝑖

ℎ𝑖
+ 1 and 𝑞𝑖,𝑖+1 = −𝑆𝑖

ℎ𝑖
, and 𝑏𝑛1 and 𝑏𝑛2 are (𝑀 − 1) × 1 matrices defined by

𝑏𝑛1 = −(𝑝1,0𝑉 𝑛
0 , ..., 𝑝𝑀−1,𝑀𝑉 𝑛

𝑀
)⊤ and 𝑏𝑛2 = −(0, ...,0, 𝑞𝑀−1,𝑀𝑉 𝑛

𝑀
)⊤.

For any 𝑛 = 1, 2..., 𝑁 , we define⎧⎪⎨⎪⎩
𝑟𝑛∗ = arg min

𝑟𝐿(𝑡𝑛)≤𝑟≤𝑟𝑅(𝑡𝑛) 𝑟
(
−𝑄𝑉 𝑛 + 𝑏𝑛2

)
,

𝑟∗𝑛 = arg max
𝑟𝐿(𝑡𝑛)≤𝑟≤𝑟𝑅(𝑡𝑛) 𝑟

(
−𝑄𝑉 𝑛 + 𝑏𝑛2

)
,

(17)

⎧⎪⎨⎪⎩
𝜎𝑛∗ = arg min

𝜎𝐿(𝑡𝑛)≤𝜎≤𝜎𝑅(𝑡𝑛)𝜎
2 (𝑃𝑉 𝑛 − 𝑏𝑛1

)
,

𝜎∗𝑛 = arg max
𝜎𝐿(𝑡𝑛)≤𝜎≤𝜎𝑅(𝑡𝑛)𝜎

2 (𝑃𝑉 𝑛 − 𝑏𝑛1
)
.

(18)

Note that the above optimization processes are performed element-by-element, and thus 𝑟𝑛∗, 𝑟∗𝑛, 𝜎𝑛∗ , 𝜎∗𝑛 ∈ℝ(𝑀−1). From the above it 
is easy to see that 𝑟𝑛∗,𝑖 =

1
2 [sgn((−𝑄𝑉

𝑛 + 𝑏𝑛2)𝑖) + 1]𝑟𝐿(𝑡𝑛) −
1
2 [sgn((−𝑄𝑉

𝑛 + 𝑏𝑛2)𝑖) − 1)]𝑟𝑅(𝑡𝑛), and 𝑟∗𝑛
𝑖

, 𝜎𝑛∗,𝑖 and 𝜎∗𝑛
𝑖

can be evaluated in 
a similarly way for 𝑖 = 1, 2, ..., 𝑀 − 1, where sgn() denotes the sign function.

We comment that (15)–(16) is to minimize the sum of squared weighted 𝓁2-norms of 𝑉 𝑛 and the forward differences of 𝑉 𝑛. From 
the definition of 𝑆

𝑖+ 1
2

and ℎ
𝑖− 1

2
we see that the values of the weights of the two sums in (15) may differ to each other by a few orders 

of magnitudes. This unbalance in the numerical values of the two terms will cause difficulties in numerical solution of (15)–(16), as, 
in computation, (15)–(16) is to effectively minimize the second sum in (15). To remedy this difficulty in computation, we need to 

scale the two sums in (15). More specifically, we replace the cost function in (15) with 2 
∑𝑀

𝑖=0(𝑉
𝑛
𝑖
)2ℎ𝑖−1∕2 +𝛼

∑𝑀−1
𝑖=0 𝑆2

𝑖+1∕2
(𝑉 𝑛
𝑖+1−𝑉

𝑛
𝑖
)2

ℎ𝑖
, 

where 𝛼 ∈ (0, 1] is a chosen constant. Thus, in what follows, we shall use this scaling parameter 𝛼 in this optimization problem.

Note 𝑉 𝑛
0 and 𝑉 𝑛

𝑀
are given boundary conditions. When all ℎ𝑖’s are sufficiently small, we may omit the first and last terms in both 

of the sums in (15) involving the boundary conditions. Thus, from the definition of ⪯ (i.e., ⪯𝐶𝑅) and using the optimal solutions in 
(17)–(18), we rewrite (15)–(16) as the following equivalent problem.

min 2
𝑀−1∑
𝑖=1

ℎ
𝑖− 1

2
(𝑉 𝑛

𝑖
)2 + 𝛼

𝑀−2∑
𝑖=1

𝑆2
𝑖+ 1

2

ℎ𝑖
(𝑉 𝑛

𝑖+1 − 𝑉 𝑛
𝑖
)2 (19)

subj. to 𝑐𝑛(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
) −𝐴𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
)𝑉 𝑛 ≤ 0, (20)

𝑐𝑛(𝜎∗𝑛, 𝑟∗𝑛) −𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛)𝑉 𝑛 ≤ 0 (21)

for 𝑛 = 1, 2, ..., 𝑁 , where 𝜎𝑛
𝐴
= 1

2 (𝜎
𝑛
∗ + 𝜎∗𝑛), 𝑟𝑛

𝐴
= 1

2 (𝑟
𝑛
∗ + 𝑟∗𝑛),

𝐴𝑛(𝜎, 𝑟) ∶= 1|Δ𝑡𝑛|𝐼 + (𝜎. ∗ 𝜎). ∗ 𝑃 + 𝑟. ∗𝑄, (22)

𝑐𝑛(𝜎, 𝑟) ∶= 1|Δ𝑡𝑛|𝑉 𝑛−1 + (𝜎. ∗ 𝜎). ∗ 𝑏𝑛1 + 𝑟. ∗ 𝑏𝑛2 (23)

for 𝜎, 𝑟 ∈ ℝ(𝑀−1), where . ∗ denotes the element-by-element product operator (used in Matlab). The payoff (terminal) condition is 
𝑉 0 = (𝑉 (𝑆1, 𝑇 ), ..., 𝑉 (𝑆𝑀−1, 𝑇 ))⊤ with 𝑉 (𝑆, 𝑇 ) given in (13).
6

We comment that the constraints (20) and (21) are nonlinear, as 𝜎𝑛
𝐴

, 𝜎∗𝑛, 𝑟𝑛
𝐴

and 𝑟∗𝑛 are functions of the decision variable 𝑉 𝑛.
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For the system matrix 𝐴𝑛(𝜎, 𝑟) in (22), we have the following theorem.

Theorem 3. When |Δ𝑡| is sufficiently small, the matrix 𝐴𝑛(𝜎, 𝑟) defined in (22) is a positive-definite 𝑀 -matrix.

The proof of this theorem can be found in [17].

4. Solution of the finite-dimensional optimization problem

We now consider the solution of (19)–(21). Since the 2nd sum in (19) is a quadratic form, we rewrite it as the following symmetric 
form:

𝑀−2∑
𝑖=1

𝑆2
𝑖+ 1

2

ℎ𝑖
(𝑉 𝑛

𝑖+1 − 𝑉 𝑛
𝑖
)2 = 1

2
(𝑉 𝑛)⊤𝐸𝑉 𝑛, (24)

where 𝐸 is an (𝑀 − 1) × (𝑀 − 1) tri-diagonal symmetric matrix with non-zero entries given below:

⎧⎪⎨⎪⎩
𝑒𝑖,𝑖−1 = −

𝑆2
𝑖− 1

2
ℎ𝑖−1

for 𝑖 = 2,3, ...,𝑀 − 1, 𝑒𝑖,𝑖+1 = −
𝑆2
𝑖+ 1

2
ℎ𝑖

for 𝑖 = 1,2, ...,𝑀 − 2,
𝑒𝑖,𝑖 = |𝑒𝑖,𝑖−1|+ |𝑒𝑖,𝑖+1| for 𝑖 = 1,2, ...,𝑀 − 1 with 𝑒0,1 = 0 = 𝑒𝑀−1,𝑀 .

(25)

The KKT conditions for (19)–(21) are listed below:

[𝐻 + 𝛼𝐸]𝑉 𝑛 − (𝐴𝑛(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
))⊤𝜆1 − (𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛))⊤𝜆2 = 0, (26)⎧⎪⎨⎪⎩

𝑐𝑛(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
) −𝐴𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
)𝑉 𝑛 ≤ 0,

−𝜆1 ≤ 0,
𝜆⊤1

(
𝑐𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
) −𝐴𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
)𝑉 𝑛

)
= 0,

(27)

⎧⎪⎨⎪⎩
𝑐𝑛(𝜎∗𝑛, 𝑟∗𝑛) −𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛)𝑉 𝑛 ≤ 0,
−𝜆2 ≤ 0,
𝜆⊤2

(
𝑐𝑛(𝜎∗𝑛, 𝑟∗𝑛) −𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛)𝑉 𝑛

)
= 0,

(28)

where 𝜆1 ∈ ℝ𝑀−1 and 𝜆2 ∈ ℝ𝑀−1 are multipliers and 𝐻 = 4diag(ℎ 1
2
, ℎ1+ 1

2
, ..., ℎ(𝑀−1)− 1

2
) is an (𝑀 − 1) × (𝑀 − 1) diagonal matrix. 

For the matrix 𝐻 + 𝛼𝐸 we have the following theorem.

Theorem 4. The matrix 𝐻 + 𝛼𝐸 with 𝛼 > 0 is a positive-definite 𝑀 -matrix.

Proof. We first prove positive-definiteness of 𝐻 + 𝛼𝐸. For any 𝑢 ∈ℝ𝑀−1, from the definitions 𝐻 and 𝐸 in (24), we have

𝑢⊤(𝐻 + 𝛼𝐸)𝑢 =
𝑀−1∑
𝑖=1

ℎ
𝑖− 1

2
𝑢2
𝑖
+ 𝛼

𝑀−2∑
𝑖=1

𝑆2
𝑖+ 1

2

ℎ𝑖
(𝑢𝑖+1 − 𝑢𝑖)2 ≥

(
min

1≤𝑖≤𝑀−1
ℎ
𝑖− 1

2

)‖𝑢‖22,
where ‖ ⋅ ‖2 denotes the 𝓁2-norm on ℝ𝑀−1. Thus, it is positive-definite.

To prove that 𝐻 + 𝛼𝐸 is an 𝑀 -matrix, we note that from (25), we see that 𝐸 is a diagonally dominant with 𝑒𝑖,𝑖 > 0 and 𝑒𝑖,𝑗 ≤ 0
when 𝑗 ≠ 𝑖. Therefore, 𝐻 + 𝛼𝐸 satisfies the properties that it is strictly diagonally dominant with positive diagonal and non-positive 
off-diagonal entries. It is clear that 𝐸 is irreducible. Thus, 𝐻 + 𝛼𝐸 is irreducibly diagonally dominant, and so it is am 𝑀 -matrix (see, 
eg, [22]). □

4.1. The interior penalty method

Penalty methods have been shown to be very efficient and effective for solving both infinite- and finite-dimensional complemen-

tarity problems (see, for example, [7,12,13,26,27]). In this subsection, we shall use the idea proposed in [26,27] and construct a 
system of nonlinear equations to approximate (26)–(28). This idea is based on an interior method for constrained nonlinear opti-

mization problems ([9]).

Note that (26)–(28) is a mixed complementarity problem containing two sub complementarity problems. If we let 𝑥 = 𝑉 𝑛 and 
𝑦 = (𝜆⊤1 , 𝜆

⊤
2 )

⊤ ∈ℝ2×(𝑀−1), we can rewrite (26)–(28) in the following matrix form.[ ]

7

(𝐻 + 𝛼𝐸)𝑥− 𝐹𝑛⊤𝑦 ∶= (𝐻 + 𝛼𝐸)𝑥− 𝐴𝑛(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
)⊤ 𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛)⊤ 𝑦 = 0, (29)
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⎧⎪⎨⎪⎩
𝐹𝑛𝑥− 𝑓𝑛 ∶=

[
𝐴𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
)

𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛)

]
𝑥−

[
𝑐𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
)

𝑐𝑛(𝜎∗𝑛, 𝑟∗𝑛)

]
≥ 0,

𝑦 ≥ 0,
𝑦⊤(𝐹𝑛𝑥− 𝑓𝑛) = 0,

(30)

where the definitions of the matrices introduced in (29)–(30) are self-explanatory.

Let  ∶=
{[

𝑢

𝑣

]
∈ℝ𝑀−1 ×ℝ2(𝑀−1) ∶ 𝑣 > 0

}
. Following the ideas in [26,27], we propose to approximate (29)–(30) with the 

following problem. Find (𝑥⊤
𝜇
, 𝑦⊤
𝜇
)⊤ ∈ satisfying

𝐺𝑛

[
𝑥𝜇
𝑦𝜇

]
−
[

0
𝜇.∕𝑦𝜇

]
∶=

[
𝐻 + 𝛼𝐸 −(𝐹𝑛)⊤
𝐹 𝑛 0

][
𝑥𝜇
𝑦𝜇

]
−
[

0
𝜇.∕𝑦𝜇

]
=
[
0
𝑓𝑛

]
, (31)

where 𝜇 is a (small) positive constant, called a penalty constant, 𝑥𝜇 and 𝑦𝜇 are approximations to 𝑥 and 𝑦 respectively and .∕ denotes 
the element-by-element division operator used in Matlab programming language, i.e. 𝜇.∕𝑦𝜇 = (𝜇∕𝑦𝜇,1, 𝜇∕𝑦𝜇,2, ..., 𝜇∕𝑦𝜇,𝑀−1)⊤. In (31), 
we used 0 to represent zero matrices of an appropriate size determined from its context.

For the penalty equation (31), we have the following theorem.

Theorem 5. Eq. (31) has the following properties when |Δ𝑡𝑛| is sufficiently small.

1. For any 𝑥 ∈ℝ𝑀−1 and 𝑦 ∈ℝ2(𝑀−1), the system matrix of (31) satisfies[
𝑥⊤ 𝑦⊤

]
𝐺𝑛

[
𝑥

𝑦

]
≥ 𝐶‖𝑥‖22 (32)

for some positive constant 𝐶 .

2. Let (𝑥⊤
𝜇
, 𝑦⊤
𝜇
)⊤ ∈ be a solution to (31) for any 𝜇 satisfying 0 < 𝜇 ≤ 𝜇0, where 𝜇0 is a given constant. Then, there exists a constant 

𝐿 > 0, independent of 𝜇, such that ‖𝑥𝜇‖2 + ‖𝑦𝜇‖2 ≤𝐿.

Proof. We firs prove Item 1. It is easy seen that[
𝑥⊤ 𝑦⊤

]
𝐺𝑛

[
𝑥

𝑦

]
= 𝑥⊤(𝐻 + 𝛼𝐸)𝑥− 𝑥⊤(𝐹𝑛)⊤𝑦+ 𝑦⊤𝐹 𝑛𝑥 = 𝑥⊤(𝐻 + 𝛼𝐸)𝑥 ≥ 𝐶‖𝑥‖22

by Theorem 4.

Let 𝐿 > 0 be a generic positive constant, independent of 𝜇. We rewrite 𝑦𝜇 as 𝑦𝜇 =

[
𝑦
(1)
𝜇

𝑦
(2)
𝜇

]
, where 𝑦(1)𝜇 , 𝑦(2)𝜇 ∈ ℝ𝑀−1. For any 

𝑖 = 1, 2, ..., 𝑀 − 1, from the definition of 𝐹𝑛 we see that left-multiplying (31) by (0, ..., 𝑦(1)
𝜇,𝑖
, 0, ..., 𝑦(2)

𝜇,𝑖
, 0, ...) gives

𝑦
(1)
𝜇,𝑖
[𝐴𝑛

𝑖
(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
)𝑥𝜇 − 𝑐𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
)] = 𝜇, 𝑦

(2)
𝜇,𝑖
[𝐴𝑛

𝑖
(𝜎∗𝑛, 𝑟∗𝑛)𝑥𝜇 − 𝑐𝑛(𝜎∗𝑛, 𝑟∗𝑛)] = 𝜇 (33)

for 𝑖 = 1, 2.., 𝑀 − 1, where 𝐵𝑖 denotes the 𝑖th row of a matrix 𝐵. When 𝜇→ 0+, we consider the following two cases.

Case 1. If 𝐴𝑛
𝑖
(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
)𝑥𝜇 − 𝑐𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
) → 0, it is necessary that 𝑦(2)

𝜇,𝑖
→ 0+ as both 𝐴𝑛

𝑖
(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
)𝑥𝜇 − 𝑐𝑛(𝜎𝑛

𝐴
, 𝑟𝑛
𝐴
) and 𝐴𝑛

𝑖
(𝜎∗𝑛, 𝑟∗𝑛)𝑥𝜇 −

𝑐𝑛(𝜎∗𝑛, 𝑟∗𝑛) cannot approach 0 at the same time, since (𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
) ≠ (𝜎∗𝑛, 𝑟∗𝑛).

Case 2. Symmetrically, if 𝐴𝑛
𝑖
(𝜎∗𝑛, 𝑟∗𝑛)𝑥𝜇 − 𝑐𝑛(𝜎∗𝑛, 𝑟∗𝑛) → 0, then 𝑦(1)

𝜇,𝑖
→ 0+.

Thus, combining these two cases above we have the complementary condition that 𝑦(1)
𝜇,𝑖
𝑦
(2)
𝜇,𝑖

→ 0+ for 𝑖 = 1, 2, ..., 𝑀 −1, as 𝜇→ 0+. 
Using this condition, we have that, for 𝑖 = 1, 2, ..., 𝑀 − 1, either 𝑦(1)

𝜇,𝑖
≤ 𝐿 or 𝑦(2)

𝜇,𝑖
≤ 𝐿. This implies there are (𝑀 − 1) components in 

𝑦𝜇 , each of which is bounded above by 𝐿. We write these (𝑀 −1) components as �̄�𝜇 ∈ℝ𝑀−1 which satisfies ‖�̄�𝜇‖2 ≤√
𝑀 − 1𝐿. We 

denote the rest of components in 𝑦𝜇 as �̂�𝜇 ∈ℝ𝑀−1. Therefore, from the definition of 𝐹𝑛, we see that the first block of equations in 
(31) can be written in the following form:

(𝐻 + 𝛼𝐸)𝑥𝜇−𝐴𝑛⊤(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
)𝑦(1)
𝜇

−𝐴𝑛⊤(𝜎∗𝑛, 𝑟∗𝑛)𝑦(2)
𝜇

= (𝐻 + 𝛼𝐸)𝑥𝜇 − �̄�𝑛⊤�̄�𝜇 − �̂�𝑛⊤�̂�𝜇 = 0, (34)

where �̄�𝑛 and �̂�𝑛 are (𝑀 − 1) × (𝑀 − 1) matrices containing rows of 𝐴𝑛(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
) and 𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛) corresponding respectively to the 

rows of �̄�𝜇 and �̂�𝜇 in 𝑦𝜇 .

From Theorem 3, we see that both 𝐴𝑛(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
) and 𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛) are positive-definite 𝑀 -matrices when |Δ𝑡𝑛| is sufficiently small. 

Since �̂�𝑛 is formed by a combination of (𝑀 − 1) different rows from 𝐴𝑛(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
) and 𝐴𝑛(𝜎∗𝑛, 𝑟∗𝑛), �̂�𝑛 should also be an 𝑀 -matrix 

since it is still irreducibly diagonally dominant. Note �̂�𝑛 also contains the diagonal matrix 1|Δ𝑡𝑛|𝐼 from the definition of 𝐴𝑛 in (22), it 
should be positive-definite as well when |Δ𝑡𝑛| is sufficiently small. Thus, we conclude that 𝐴𝑛 is a positive-definite 𝑀 -matrix. Now, 
8

left-multiplying (34) with �̂�⊤
𝜇

, re-arranging the resulting equation and using the positive-definiteness of �̂�𝑛, we have
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𝐶‖�̂�𝜇‖22 ≤𝐿�̂�⊤
𝜇
�̂�𝑛⊤�̂�𝜇 = �̂�⊤

𝜇

[
(𝐻 + 𝛼𝐸)𝑥𝜇 − �̄�𝑛⊤�̄�𝜇

] ≤𝐿‖�̂�𝜇‖2 (‖𝑥𝜇‖2 + 1
)
.

Thus, combining ‖�̄�𝜇‖2 ≤√
𝑀 − 1𝐿 and the above estimate, we obtain ‖𝑦𝜇‖2 ≤𝐿 

(‖𝑥𝜇‖2 + 1
)
.

Left-multiplying (31) with (𝑥⊤
𝜇
, 𝑦⊤
𝜇
) gives

[
𝑥⊤
𝜇

𝑦⊤
𝜇

]
𝐺𝑛

[
𝑥𝜇
𝑦𝜇

]
− 𝜇𝑦𝜇.∕𝑦𝜇 = 𝑦⊤

𝜇
𝑓𝑛. (35)

Since 𝑦𝜇.∕𝑦𝜇 = 2(𝑀 − 1), using (32) and the estimate for ‖𝑦𝜇‖2 obtained above, we have from (35)

𝐶‖𝑥𝜇‖22 ≤ 2𝜇(𝑀 − 1) + ‖𝑓𝑛‖2‖𝑦𝜇‖2 ≤𝐿(1 + ‖𝑥𝜇‖2).
It is trivial to show that the above inequality implies ‖𝑥𝜇‖22 ≤𝐿. (Recall 𝐿 > 0 is a generic constant, independent of 𝜇.) □

Using Theorem 5, we have the following result.

Theorem 6. Let the conditions in Theorem 5 be fulfilled. The penalty equation (31) has a unique solution in .

The proof of this theorem is essentially a rewriting of that of Theorem 2.3 in [26]. Thus, we omit this proof and refer the reader 
to [26].

4.2. Convergence

The following theorem establishes an upper bound as a function of 𝜇 for the 𝓁2-norm of the difference between the solutions to 
(31) and (29)–(30), respectively.

Theorem 7. Let (𝑥⊤, 𝑦⊤)⊤ be the solution to (29)–(30) and (𝑥⊤
𝜇
, 𝑦⊤
𝜇
)⊤ ∈  the solution to (31). Then, there exists a constant 𝐿 > 0, 

independent of 𝜇, such that

‖𝑥𝜇 − 𝑥‖2 + ‖𝑦𝜇 − 𝑦‖2 ≤𝐿
√
𝜇. (36)

Proof. We first show that (𝑥⊤
𝜇
, 𝑦⊤
𝜇
)⊤ satisfies (30) when 𝜇→ 0+. Since 𝑦𝜇 > 0, from the 2nd block of equations in (31) we see tat 

𝐹𝑛𝑥𝜇 > 𝑓𝑛, and thus the inequalities in (30) are satisfied by 𝑧𝜇 . From (33), we have that

𝑦⊤
𝜇
(𝐹𝑛𝑥𝜇 − 𝑓𝑛) = 2(𝑀 − 1)𝜇, (37)

and so, when 𝜇→ 0+, 𝑦⊤
𝜇
(𝐹𝑛𝑥𝜇 − 𝑓𝑛) = 0, which is the equality in (30).

Let 𝐿 denote generic positive constant, independent of 𝜇. For any 𝑢 ∈ℝ𝑀−1, left-multiplying (29) by (𝑢 − 𝑥)⊤ yields

(𝑢− 𝑥)⊤[(𝐻 + 𝛼𝐸)𝑥− 𝐹𝑛⊤𝑦] = 0. (38)

Similarly, for any 𝑣 ∈ℝ2(𝑀−1) satisfying 𝑣 > 0, we have

(𝑣− 𝑦)⊤(𝐹𝑛𝑥− 𝑓𝑛) = 𝑣⊤(𝐹𝑛𝑥− 𝑓𝑛) − 𝑦⊤(𝐹𝑛𝑥− 𝑓𝑛) ≥ 0,

since 𝐹𝑛𝑥 − 𝑓𝑛 ≥ 0, 𝑦⊤(𝐹𝑛𝑥 − 𝑣⊤𝑓𝑛) = 0 by (30) and 𝑣 > 0. Combining the above inequality with (38) gives([
𝑢⊤ 𝑣⊤

]
−
[
𝑥⊤ 𝑦⊤

])(
𝐺𝑛

[
𝑥

𝑦

]
−
[
0
𝑓𝑛

])
≥ 0. (39)

Now, left-multiplying (31) with [(𝑥𝜇 − 𝑥)⊤ (𝑦𝜇 − 𝑦)⊤], we have

[
(𝑥𝜇 − 𝑥)⊤ (𝑦𝜇 − 𝑦)⊤

](
𝐺𝑛

[
𝑥𝜇
𝑦𝜇

]
−
[
0
𝑓𝑛

])
− (𝑦⊤

𝜇
− 𝑦⊤)𝜇.∕𝑦𝜇 = 0. (40)

Replacing 𝑢 and 𝑣 in (39) with 𝑥𝜇 and 𝑦𝜇 respectively and taking both sides of the resulting inequality from the corresponding sides 
of (40) gives[

(𝑥𝜇 − 𝑥)⊤ (𝑦𝜇 − 𝑦)⊤
]
𝐺𝑛

[
𝑥𝜇 − 𝑥

𝑦𝜇 − 𝑦

]
− 𝜇𝑦𝜇.∕𝑦𝜇 + 𝜇𝑦.∕𝑦𝜇 ≤ 0.

Since 𝑦 ≤ 0 and 𝑦𝜇 < 0, 𝜇𝑦.∕𝑦𝜇 > 0. Also, 𝑦𝜇.∕𝑦𝜇 = 2(𝑀 − 1). Thus, using (32), we obtain from the above inequality 𝐶‖𝑥𝜇 − 𝑥‖22 ≤
2(𝑀 − 1)𝜇, yielding √
9

‖𝑥𝜇 − 𝑥‖2 ≤𝐿 𝜇. (41)
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We now prove the convergence of 𝑦𝜇 . As in the proof of Theorem 5, we introduce the partition 𝑦𝜇 = ((𝑦(1)𝜇 )⊤, (𝑦(2)𝜇 )⊤)⊤. Similarly, 
we write 𝑦 as 𝑦 = ((𝑦(1))⊤, (𝑦(2))⊤)⊤. Taking both sides of the 1st block of equations in (31) from the corresponding sides of (29) yields

(𝐻 + 𝛼𝐸)(𝑥− 𝑥𝜇) +𝐴𝑛⊤(𝜎𝑛
𝐴
, 𝑟𝑛
𝐴
)(𝑦(1)

𝜇
− 𝑦(1)) +𝐴𝑛⊤(𝜎∗𝑛, 𝑟∗𝑛)(𝑦(2)

𝜇
− 𝑦(2)) = 0.

From the proof of Item 2 of Theorem 5, particularly (33), we see that 𝑦1
𝜇,𝑖
𝑦2
𝜇,𝑖

≤ (𝜇) for 𝑖 = 1, ..., 𝑀 − 1. Similarly, using the 
complementarity condition in (30) we can also easily show that 𝑦1 and 𝑦2 satisfy the complementary slackness condition 𝑦(1)

𝑖
𝑦
(2)
𝑖

= 0
for all feasible 𝑖. Furthermore, it is easy to see that the combined complementary slackness condition is (𝑦1

𝑖
+ 𝑦1

𝜇,𝑖
)(𝑦2

𝑖
+ 𝑦2

𝜇,𝑖
) ≤ (𝜇). 

Therefore, if we use the matrices �̄�𝑛 and �̂�𝑛 introduced in the proof of Item 2 of Theorem 5, we may rewrite the above equation in 
the following form

(𝐻 + 𝛼𝐸)(𝑥− 𝑥𝜇) + �̄�𝑛⊤(�̄�𝜇 − �̄�) + �̂�𝑛⊤(�̂�𝜇 − �̂�) = 0,

where �̄�𝜇 − �̄� ∈ℝ(𝑀−1) contains (𝑀 − 1) entries and �̂�𝜇 − �̂� ∈ℝ(𝑀−1) contains the remaining ones from 𝑦𝜇 − 𝑦 satisfying �̂�𝜇,𝑖 + �̂�𝑖 ≤(𝜇). Left-multiplying the above equality with (�̄�𝜇 − �̄�)⊤ and reorganising the resulting equality, we have

(�̄�𝜇 − �̄�)⊤�̄�𝑛⊤(�̄�𝜇 − �̄�) = (�̄�𝜇 − �̄�)⊤
[
(𝐻 + 𝛼𝐸)(𝑥− 𝑥𝜇) − �̂�𝑛⊤(�̂�𝜇 − �̂�)

]
≤𝐿‖�̄�𝜇 − �̄�‖2 (‖𝑥− 𝑥𝜇‖2 + ‖�̂�𝜇 − �̂�‖2) . (42)

(Recall 𝐿 > 0 is a generic positive constant, independent of 𝜇.) In the proof of Theorem 5, we showed that �̄�𝑛 is a positive-definite 
𝑀 -matrix. Also, ‖�̂�𝜇 − �̂�‖2 ≤ (𝑀 − 1)1∕2(𝜇) since �̂�𝜇,𝑖 + �̂�𝑖 ≤ (𝜇) for all feasible 𝑖. Thus, using the positive-definiteness of �̄�𝑛, this 
estimate and (41), we have from (42)

‖�̄�𝜇 − �̄�‖2 ≤𝐿(
√
𝜇 + (𝑀 − 1)1∕2𝜇) ≤𝐿

√
𝜇,

when 𝜇 > 0 is sufficiently small. Combining the above estimate and (41) gives (36). □

4.3. Algorithm

We rewrite (31) as the following a nonlinear system:

𝑊 𝑛(𝑥𝜇, 𝑦𝜇) ∶=𝐺𝑛

[
𝑥𝜇
𝑦𝜇

]
−
[

0
𝜇.∕𝑦𝜇

]
−
[
0
𝑓𝑛

]
= 0 (43)

and consider the numerical solution of (43) in . It is easy to see that 𝑊 a smooth function in . Thus, in this subsection, we 
propose a algorithm based on the conventional Newton’s iterative method for nonlinear system of equations. Note the computed 
option price 𝑥𝜇 should be non-negative. Thus, we introduce a sufficiently small positive parameter 𝛿 and look for a solution to (43)

in ̂ = {(𝑢⊤, 𝑣⊤)⊤ ∈ ∶ 𝑢𝑖 ≥ 0, 𝑣𝑗 ≥ 𝛿, 𝑖 = 1, ..., 𝑀 −1, 𝑗 = 1, ..., 2(𝑀 −1)}. Also, since the Jacobian matrix of 𝑃 , i.e. 𝐺𝑛 +𝜇.∕(𝑦𝜇. ∗ 𝑦𝜇), 
may be ill-conditioned in some of the Newton iterations, we introduce a (small) positive regularity parameter 𝜌, similar to that in 
Lavenberg-Marquardt algorithm [18,21], and replace the Jacobian matrix with 𝐺𝑛+𝜇.∕(𝑦𝜇. ∗ 𝑦𝜇) +𝜌𝐼 . The algorithm is given below.

Choose parameters 𝜇, 𝛼, 𝛿, 𝜌, 𝜀 ∈ (0, 1) with 𝜀 the tolerance in the Newton’s iterative scheme. Calculate the payoff and boundary conditions 𝑥0
𝑖

for 
𝑖 = 1, 2, ..., 𝑀 − 1, 𝑥𝑗0 and 𝑥𝑗

𝑀
for 𝑗 = 1, 2, ..., 𝑁 . Let 𝑦0

𝑖
= 1 for 𝑖 = 1, 2, ..., 2(𝑀 − 1).

for 𝑛 = 1 to 𝑁 do

�̂�0 ← 𝑥𝑛−1 , �̂�0 ← 𝑦𝑛−1 ,

for 𝑘 = 1, 2, ... do

Evaluate 𝜎𝐴 , 𝜎∗ , 𝑟𝐴 and 𝑟∗ using (17)–(18) .

Calculate 𝐴𝑛(𝜎𝐴.𝑟𝐴), 𝐴𝑛(𝜎∗, 𝑟∗), 𝑐𝑛(𝜎𝐴, 𝑟𝐴) and 𝑐𝑛(𝜎∗, 𝑟∗) using (22)–(23).

Solve [𝐺𝑛 + 𝜇.∕(𝑦𝑘−1 . ∗ 𝑦𝑘−1) + 𝜌𝐼
] [ 𝑝𝑥

𝑝𝑦

]
= −𝑊 (�̂�𝑘−1, ̂𝑦𝑘−1) for 

[
𝑝𝑥
𝑝𝑦

]
.

�̂�𝑘 ←max{�̂�𝑘−1 + 𝑝𝑥, 0} and �̂�𝑘 ←max{�̂�𝑘−1 + 𝑝𝑦, 𝛿} .

Evaluate 𝐸𝑟𝑟=max

{‖‖‖‖‖
[
𝑝𝑥
𝑝𝑦

]‖‖‖‖‖2 , ||�̂�𝑘⊤(𝐹𝑛�̂�𝑘 − 𝑓𝑛) − 2(𝑀 − 1)𝜇||
}

, where 𝐹𝑛 and 𝑓𝑛 are defined in (30).

if 𝐸𝑟𝑟 < 𝜀 then

Break from loop 𝑘
end

end

(𝑥𝑛, 𝑦𝑛) ← (�̂�𝑘, ̂𝑦𝑘) .

end

Algorithm 1: Solution of the option pricing problem.

We comment that in the stopping criterion, we require that both the 𝓁2-norm of the correction of the current Newton iterate and 
10

the complementarity condition (37) to be smaller than the tolerance 𝜀.
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Fig. 1. Computed 𝑉 , 𝜆1 , 𝜆2 and 𝑉 − 𝑉𝐴 for Test 1.

5. Numerical experiments

In this section, we numerically price some model European options using the above pricing model and numerical methods. In all 
of the numerical experiments in this section, the parameter in Algorithm 1 are chosen to be 𝜇 = 10−12 = 𝛿, 𝛼 = 1∕𝑆2

max, 𝜌 = 10−9 and 
𝜀 = 10−8. All numerical experiments have been carried out under Matlab programming environment.

Test 1. European call option with 𝐾 = 50, 𝑆max = 100 and 𝑇 = 1. The volatility and interest rate are chosen to be constant interval 
numbers 𝜎 = [0.3, 0.6] and 𝑟 = [0.03, 0.05], respectively.

To solve this problem, we choose the uniform mesh for (0, 𝑆max) ×(0, 1) with mesh sizes ℎ𝑖 = 1∕𝑀 and |Δ𝑡𝑛| = 1∕𝑁 for all feasible 
𝑖 and 𝑛, where 𝑀 = 100 =𝑁 . The penalty equation (31) (or (43)) is solved using Algorithm 1. The computed option value 𝑉𝐼 and 
the multipliers 𝜆1 and 𝜆2 are depicted in Fig. 1. From the plots of 𝜆1 and 𝜆2 we see that the constraint (20) is active and (21) is 
in-active in a large portion of the solution region. We also solve this pricing problem as a conventional European option pricing one 
with non-interval coefficients 𝜎 = 0.45 and 𝑟 = 0.04 and the solution is denoted as 𝑉𝐴. In Fig. 1(d), we plot the difference 𝑉𝐼 − 𝑉𝐴, 
from which we see that the two solutions are different, though they are close to each other.

We now use this test problem to numerically verify the result in Theorem 1. We assume 𝜎 = [0.45, 0.45] and 𝑟 = [0.04, 0.04], and 
other parameters are the same as in Test 1. This problem is solved by Algorithm 1, and the numerical solution is denoted as 𝑉𝐼 . 
The difference 𝑉𝐼 − 𝑉𝐴, 𝐴𝑛(𝜎𝐴, 𝑟𝐴)𝑉𝐼 − 𝑐𝐴 and 𝐴𝑛(𝜎𝑅, 𝑟𝑅)𝑉𝐼 − 𝑐𝑅 for 𝑛 = 0, 1, ..., 𝑁 are depicted in Fig. 2, from which we see that 
when the interval numbers reduce to a real ones, the solution 𝑉𝐼 becomes that to the conventional Black-Scholes equation, 𝑉𝐴, with 
constant 𝜎 and 𝑟 (up to an approximation error). Also, the inequality constraints in (20)–(21) become the same equality, up to an 
approximation error.

Test 2. European call option with 𝐾 = 50, 𝑆max = 100, 𝑇 = 1. The volatility is a time-dependent interval number 𝜎 = [0.5 −
0.2(1 + 0.2rand), 0.5 − 0.2(1 + 0.2rand)], where ‘rand’ is the random number generator in Matlab. The interest rate is chosen to be 
11

time-dependent interval number defined by 𝑟(𝑡) = [0.05 + 0.02 sin(5𝑡) − 0.01(1 + 0.2rand), 0.05 + 0.02 sin(5𝑡) + 0.01(1 + 0.2rand)].
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Fig. 2. Computed 𝑉𝐼 − 𝑉𝐴 , 𝐴𝐴𝑉𝐼 − 𝑐𝐴 and 𝐴𝑅𝑉𝐼 − 𝑐𝑅 for Test 1.

To solve this test problem, we use the same uniform mesh used for Test 1, and on this mesh, we generate sequences of interval 
numbers [𝜎𝐿(𝑡𝑛), 𝜎𝑅(𝑡𝑛)] and [𝑟𝐿(𝑡𝑛), 𝑟𝑅(𝑡𝑛)] for 𝑛 = 0, 1, ..., 𝑁 using the functions defined above. The discrete optimization problem 
is solved using Algorithm 1, and the computed option price, and the multipliers are denoted as 𝑉𝐼 , 𝜆1 and 𝜆2 respectively. For 
comparison, we also solve this problem using non-interval 𝜎𝐴(𝑡𝑛) = 0.5(𝜎𝐿(𝑡𝑛) + 𝜎𝑅(𝑡𝑛)) and 𝑟𝐴(𝑡𝑛) = 0.5(𝑟𝐿(𝑡𝑛) + 𝑟𝑅(𝑡𝑛)) for 𝑛 =
0, 1, ..., 𝑁 , and the numerical solution is denoted as 𝑉𝐴. The computed 𝑉𝐼 , 𝜆1, 𝜆2 and the difference 𝑉𝐼 − 𝑉𝐴 are plotted in Fig. 3. 
Comparing Fig. 3 with Fig. 1 we see that both problems have similar behaviours, i.e. the constraints (20)–(21) are inactive when 𝑆
is small and active as 𝑆 increases. From Fig. 3(d) we also see, as in Test 1, 𝑉𝐼 and 𝑉𝐴 are different, but close to each other.

6. Conclusions

In this work, we formulate the valuation of European call options with uncertain volatility and interest rate as an infinite-

dimensional interval optimization problem. We propose an interior penalty method with a penalty constant 𝜇 ∈ (0, 1) for the 
numerical solution of the discretized optimization problem and prove that the solution to the penalty equation converges to that of 
the KKT conditions of the discretized optimization problem at the rate (𝜇1∕2). An algorithm based on Newton’s iterative method 
is proposed for solving the nonlinear penalty equation. Numerical results are presented to show that the solutions from this novel 
optimization-based pricing model is close, but not equal, to the option price obtained by taking the averages of uncertain volatility 
and interest rate. Numerical results also show that, when the interval volatility and interest rate become real numbers, i.e., the 
widths of the intervals become zero, the price of an option from this new model become, up to an approximation error, that from the 
conventional Black-Scholes’ model.

Data availability
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No data was used for the research described in the article.
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Fig. 3. Computed 𝑉𝐼 , 𝜆1 , 𝜆2 and 𝑉𝐼 − 𝑉𝐴 for Test 2.
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